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ABSTRACT

TOWARDS UNDERSTANDING THE ROLE OF NATURAL VARIABILITY IN CLIMATE

CHANGE

Natural variability plays a large role in determining surface climate on local and regional scales.

Understanding the role of natural variability is crucial for accurately assessing and attributing cli-

mate trends, both past and future. One successful way to examine the role of natural variability

in climate change has been through large ensembles of climate models. This thesis uses one such

large ensemble (the NCAR CESM-LE) to test various methods used to quantify natural variability

in the context of climate change.

We first introduce a simple analytic expression for calculating the lead time required for a linear

trend to emerge in a Gaussian first order autoregressive process. The expression is derived from the

standard error of the regression and is tested using the CESM-LE. It is shown to provide a robust

estimate of the point in time when the forced signal of climate change has emerged from the natural

variability of the climate system with a predetermined level of statistical confidence. The expres-

sion provides a novel analytic tool for estimating the time of emergence of anthropogenic climate

change and its associated regional climate impacts from either observed or modeled estimates of

natural variability and trends.

We next compare and analyze various methods for calculating the effects of internal circulation

dynamics on surface temperature. Dynamical adjustment seeks to separate out dynamical contri-

bution to temperature trends, thus reducing the amplitude of natural variability that obscures the

signal of anthropogenic forcing. Three specific methods used in the climate literature are exam-

ined: principal component analysis (PCR), maximum covariance analysis (MCA), and constructed

circulation analogs. An assessment of these methods are given with their respective results from

the CESM control run and large ensemble.
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Chapter 1

Introduction

One of the most important issues for the 21st century is predicting how local and regional cli-

mate will change due to anthropogenic forcing. Increasing greenhouse gas concentrations have

already contributed to at least half of the observed warming seen since 1951 ( [2]). While the

radiative forcing due to increasing greenhouse gas concentrations will be the key driver of fu-

ture climate, it is difficult to distinguish the signal from the noise intrinsic to the climate system.

This thesis seeks to distinguish between these two influences (natural and anthropogenic) to help

elucidate future effects on climate.

Section 1.1 reviews the concept of natural variability and examines previous studies on its

role in climate, Section 1.2 introduces the concept of “time of emergence" (TOE), a key variable

in climate prediction, and reviews previous studies on TOE. Section 1.3 examines past studies

on dynamical adjustment techniques, which attempt to remove circulation-induced variability in

surface temperature. Section 1.4 outlines the motivation and goals of this thesis.

1.1 Natural and Internal Variability

Uncertainty in future climate projections arise from three main sources: 1) uncertainty in an-

thropogenic emissions, 2) uncertainty in the model response (differences amongst climate models),

and 3) uncertainty from the internal variability of the climate system ( [3]). Internal variability is

defined as the natural (innate) variability of the climate system arising from processes and coupled

interactions between the atmosphere, oceans, land, and cryosphere. While we can better specify

emissions scenarios and improve our climate models, the random processes in the unforced cli-

mate system makes it unlikely that the uncertainty from internal variability can be reduced. Thus,

internal variability poses an inherent limit to climate predictability. Although human-induced cli-

mate change is likely to dominate over internal variability for time periods longer than a decade

on the global scale, internal variability can overwhelm anthropogenic forcing on regional and local
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scales, even on timescales of up to 50 years at middle and high latitudes ( [4], [3]). At the same

time, opposing signs of internal variability may mask or hide the effects of anthropogenic forcing.

Thus, in order to more accurately detect the impacts of anthropogenic climate change, the role of

internal variability must be accurately assessed.

It is important to note the difference between variability due to innate processes within the cli-

mate system and variability due to processes that are natural but not part of the internal oscillatory

processes of the climate system. Such “external natural forcings” include processes such volcanic

eruptions and solar irradiance changes, which has been called “total" natural variability in previous

studies ( [5]), but in this thesis will be referred to simply as natural variability. Meanwhile, the in-

nate processes or coupled interactions between the atmosphere, oceans, land, and cryosphere will

be referred to as internal variability, although many previous studies have also called this natural

variability.

Previous studies have looked at the climate system in the context of internal or natural variabil-

ity both for the past century and for future projections of climate change. For instance, [6] found

differences up to 6◦C in projections of temperature over North America for the period 2005-2060

due solely to internal variability. Precipitation showed an even wider spread than temperature. This

makes it even harder to forecast future climate projections, as different model results could be due

to internal or natural variability along with differences between model physics and parameteriza-

tions. Indeed, [3] suggested that at least half of the inter-model spread amongst CMIP3 models for

the period 2005-2060 is due to internal variability.

The uncertainty in future climate due to internal variability is often assessed by running large

ensembles of climate change simulations. In a large ensemble, every ensemble member is run using

the same climate model and the same external forcing but slightly different initial atmospheric con-

ditions. Thus, any differences between the ensemble members are solely due to internal variability.

This is because after initial condition memory is lost (on the order of weeks in the atmosphere),

each ensemble develops from internal fluctuations characteristic of a random, stochastic process

( [7]). Figure 1.1 shows an example from one such large ensemble, the NCAR CCSM 40-member
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ensemble. The right panels shows two examples of the spread of temperature and precipitation,

one at the grid box collocated with Los Angeles and one collocated with Berlin. The grey lines

show the output from each of the 40 ensemble members, whose differences are solely due to in-

ternal variability. Since the real world is only a single realization (one of the grey lines), Figure

1.1 shows graphically the obstacle presented by internal variability to climate prediction. The left

panels extend the example grid box results to the whole globe, showing the standard deviations of

50-year wintertime trends of temperature and precipitation given by the ensemble members. We

can also see geographical differences; temperature variance due to internal variability is greatest

in the extratropics, while precipitation variance is greatest in the tropics. While this has been a

successful way to estimate the uncertainty due to internal variability, large ensembles are not only

computationally expensive but also include their own model biases. [1] demonstrated an alternative

approach to calculating the uncertainty in trends due to internal variability. If the internal variabil-

ity is roughly Gaussian, then the margin of error on a trend can be calculated analytically from

two statistics of the unforced climate variability: its standard deviation and its autocorrelation. The

analytical model has been tested and found robust by comparing the range of trends found in all 40

members of the NCAR CCSM3 large ensemble of climate change simulations with those predicted

by the statistics of its associated pre-industrial control simulation.

1.2 Time of Emergence

A key variable in climate detection is the time of emergence (TOE), defined as the point in

time when the signal of climate change “emerges" from the underlying noise of background natural

variability (e.g., [3,8–15]). This emergence is said to occur when the new climate state has deviated

significantly from a reference climate state for a period of time. It is helpful for anticipating when

the impacts of climate change are likely to have significant effects across societies and ecosystems,

and can inform risk assessments, mitigation policies, and climate adaptation planning. The IPCC

AR5 concluded that it is “virtually certain that internal variability alone cannot account for the

3



observed global warming since 1951" ( [2]). But when are we confident that such a change can be

detected? And what metric is used to reach that conclusion?

The IPCC AR5 ( [16]) has also noted that there is “no single metric" for estimating TOE, and as

such, it is difficult to reach a consensus on the changing state of the climate. But for the most part,

TOE is estimated as the first lead time when the anthropogenic signal in climate change exceeds a

predetermined factor of the amplitude of the natural variability, often presented as a signal-to-noise

problem. In this case, the TOE for a time series x(t) is expressed as:

nTOE =
kse
b

(1.1)

where nTOE is the time of emergence (the number of time steps when the anthropogenic signal

in climate change has “emerged"), k is the required signal to noise ratio of the forced signal to

the natural variability (generally between 1 and 3), se is the amplitude of the internal (unforced)

variability, and b is the linear trend per time step.

Most previous studies of TOE are based on empirical estimates of the first lead time when

Equation 1.1 (or a closely related variant) is satisfied. The differences lie in the methodologies

used to determine b, se, and k. For example, [12], [13], [17], and [15] all define b as the change in

the climate state averaged over an ensemble of climate change simulations, where the forced signal

is smoothed with different averaging periods. [10] estimates b using a generalized least squares

regression model. [14] define b as the linear projection of regional temperatures onto smoothed

values of simulated global-mean temperatures. [12], [13], and [14] estimate b from ordinary least

squares (OLS) linear regression and prescribe a signal to noise ratio (k) that is an integer factor

of the natural variability. [11], [3] and [15] consider various “epoch differences" and a value of

k derived from the t-statistic for the difference of means. [18] also considers differences between

epochs when assessing the time of emergence, and apply a Kolmogorov-Smirnov test to assess

whether two sample epochs are significantly different (i.e., rather than a t-statistic).

The existing literature on TOE provides valuable insight into the point in time when anthro-

pogenic climate change will emerge from natural climate variability on regional spatial scales. But
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it also has several shortcomings. The methodologies used to estimate the trend (b in Equation 1.1),

the amplitude of the natural variability (se in Equation 1.1), and the predetermined signal to noise

ratio (k in Equation 1.1) vary widely from one study to the next, which makes it difficult to re-

produce and compare different estimates of the TOE. Times of emergence defined on the basis of

a fixed signal to noise ratio [14, e.g.,] do not correspond to a particular level of statistical signifi-

cance. Several existing methods require smoothing the data using a wide range of methodologies.

Furthermore, many of the methods are based on empirical rather than analytical techniques. Chap-

ter 3 of this thesis will introduce an alternative model for estimating the lead time required for a

linear trend to emerge from natural variability at a predetermined level of statistical confidence.

1.3 Dynamical Adjustment

Given the large uncertainty in climate projections due to natural and internal variability, dynam-

ical adjustment arises as a way to remove circulation-induced temperature variability that obscures

the signal of anthropogenic forcing. Although the circulation itself may respond to anthropogenic

forcing (e.g., a poleward shift in the annular modes), this response is generally much weaker than

the surface temperature response ( [3]). Many previous studies have used a variety of methods

to examine the role of internal circulation dynamics on surface climate over different regions and

time periods. The earliest studies done by [19] and [20] were of teleconnection patterns, in which

linear combinations of surface temperature and sea level pressure were used to define telecon-

nection indices. These studies also correlated temperature and precipitation at various locations

around the world and attempted to separate out large-scale variability patterns, defining indices

for the Southern Oscillation, the North Atlantic Oscillation, and the South Pacific Oscillation.

Later studies attempted to explicitly isolate the contribution to surface temperature from circula-

tion dynamics. [21] estimated the dynamically induced contribution to global-mean temperatures

from a cold-ocean-warm-land (COWL) pattern. The COWL pattern, while explaining a substantial

amount of the month-to-month variance in hemispheric and global-mean temperatures, cannot be

considered to be solely dynamically-induced since greenhouse gases warms the continents more
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rapidly than the oceans ( [22]). [23] used multivariate linear regression to show that much of the

temperature trends in the Northern Hemisphere from the mid 1970s to early 1990s were due to

natural variability patterns (rather than anthropogenic forcing). For instance, changes in the North

Atlantic Oscillation (NAO) resulted in cooling in the northwest Atlantic and warming across Eu-

rope and Eurasia, while teleconnections from ENSO and its feedbacks in the midlatitudes were

linked to temperature changes in the Pacific basin and North America. [24] applied principal com-

ponent (PC) based indices from the sea level pressure field (the NAM and the PNA patterns) to

surface air temperature trends over the time period 1958-1999. [25] found that dynamical adjust-

ment in observed Northern Hemisphere winter temperatures over the period 1965-2000 decreased

the respective temperature trend by 41% and brought the observed trends much closer to those sim-

ulated by climate models used in the IPCC AR4. [26] used maximum covariance analysis between

the sea level pressure and temperature fields to estimate the dynamical contribution to global-mean

surface temperature over the period 1900-2009, along with the signatures of temperature due to

ENSO and volcanic eruptions. The study also showed that the dynamical contribution to temper-

ature is uncorrelated with the global mean SST. [27] applied three variants of partial least squares

(PLS) regression on sea level pressure to derive dynamically-adjusted temperature and compared

such methods to a PC regression method. [28] applied dynamical adjustment to a large ensemble

of model simulations (the CESM-LE) to examine temperature trends over North America for the

past 50 years (1963-2012) using a variation of the constructed analog method developed in [29].

The authors concluded that the atmospheric circulation accounted for one-third of the surface tem-

perature trend over all of North America during this time period, and that removing the effects of

internal dynamics narrows the ensemble distribution and substantially advances the time of emer-

gence for the forced SAT anomalies due to the smaller amplitude of the noise.

1.4 Thesis Goal

As summarized in this chapter, previous studies have clearly demonstrated the importance of

natural and internal variability, as well as the usefulness of a large ensemble to more accurately
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quantify their effects. The goal of this thesis is twofold. First, we introduce a simple and novel

expression for estimating the lead time required for a linear trend to emerge from natural variability

at a predetermined level of statistical significance. The expression is developed from the standard

error of the regression, which is widely used in climate research, but as far as we know has not

been exploited for the explicit purpose of calculating TOE. We then test the resulting expression

in a large ensemble of climate change simulations and extend the analysis to compare with obser-

vations. The results demonstrate the robustness of the assumptions that underlie the expression,

and make clear its utility for assessing the emergence of linear trends in climate data. Second,

we specifically compare three methods prevalent in the climate literature for calculating the con-

tribution to surface air temperature from internal circulation dynamics, using both a prehistorical

control run and a large ensemble of climate simulations. The dynamically-induced temperature is

subtracted from the original temperature time series, and the ensemble distribution of the resulting

residual temperature is compared to that of the original temperature data. The application to a

large ensemble allows us to examine both the uncertainty of the dynamically-adjusted temperature

results and its comparisons to a “true" forced signal (the ensemble mean), something that would

not be possible from only observational data.

Chapter 2 describes the data and methods used in this study. Chapter 3 derives a novel method

for time of emergence and discusses its application to climate trends is explored. Chapter 4 ex-

plores the results of dynamically-adjusted temperature methods in the context of the large ensem-

ble. Conclusions and an outline for future research are provided in chapter 5.
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Figure 1.1: (left) The standard deviations of 50 year trends in October-March mean surface temperature

(top) and precipitation (bottom) from the NCAR CCSM4 40-member large ensemble. Trends are expressed

as the total change over the period 2011-2061, and the standard deviations are over the 40 ensemble mem-

bers. The right panels show wintertime mean temperature and precipitation for two specific grid boxes: Los

Angeles and Berlin. The grey lines show results for all 40 ensemble members; the red and blue lines indicate

ensemble members with the largest and smallest trends, respectively. Tick marks at every 1
◦C and 1 mm

day−1. Figure taken from [1].
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Chapter 2

Methods

2.1 Data

2.1.1 CESM1 Model

In this thesis, the main way of quantifying natural and internal variability is through the NCAR

Community Earth System Model Large Ensemble (CESM-LE). The CESM-LE is a set of 40 cli-

mate change simulations at approximately 1◦ resolution for both latitude and longitude run using

a single CMIP5 coupled climate model: the Community Earth System Model version 1 (CESM1),

with the Community Atmosphere Model, Version 5 [CESM1(CAM5)]. The CESM1(CAM5) con-

sists of coupled atmosphere, ocean, land, and sea ice prognostic component models. All simula-

tions (consisting of the period 1920-2100) have the same model configuration and external forcings

(historical until 2005 and RCP8.5 thereafter) but begin from slightly different initial conditions.

The only differences in initial conditions are in the surface air temperature field (on the order of

10−14K), with all other initial conditions held constant across ensemble members ( [7]). In this

thesis, we use the original 30 simulations released in 2014, along with a 1800-year preindustrial

control run of the same model, forced with 1850 carbon dioxide levels. Further details of the

simulations can be found in [30] and [7].

2.1.2 Observational Datasets

To examine where the observations fall in the CESM-LE distribution, we use observed temper-

ature data from CRUTEM4, a gridded dataset of monthly near-surface air temperature anomalies

over land at a resolution of 5◦ × 5◦ ( [31]). It is one of the datasets from the Met Office Hadley

Centre and was obtained from the Climatic Research Unit at the University of East Anglia. The
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data is available from 1950 to the present day, and we use the time period April 1970 to March

2016.

2.2 Statistical Methodology

2.2.1 Linear Regression

The most widely used statistical technique in this thesis is simple linear regression analysis.

Given time series x and y, we can write an estimate of y as:

ŷ = â1x+ â0 (2.1)

Equation 2.1 gives the estimate of y from linear regression, modeled as a straight line. â1 is

the estimated regression coefficient and â0 is the estimated y-intercept. Both are calculated by

minimizing the sum of the squared errors of y, and are given by the following equations:

â1 =
x′y′

x′2
(2.2)

â0 = y − â1x (2.3)

where overbars denote the mean and primes denote the deviation from the mean.

To derive an analytical method for the time of emergence we apply this linear regression to a

first order autoregressive process (Section 3.1). In this case the x time series is time, while the y

time series is surface air temperature.

2.2.2 EOF analysis

To look at the dynamically-induced temperature, we also make use of Empirical Orthogonal

Function (EOF) analysis, also called Principal Component Analysis (PCA). This was performed
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on monthly anomalies of SLP for the winter season (December through February) for the area 20N

to 90N. The time mean was subtracted and the data cosine weighted to account for the decrease

in area towards the pole. The anomaly data is organized into a matrix X , and the cosine weighted

data into a matrix Xw, both with dimensions [M × N], where M is the time dimension and N is the

spatial dimension. The spatial dispersion matrix is calculated as

C =
1

N
XwX

T (2.4)

We then perform eigenanalysis on the spatial dispersion matrix, and the resulting eigenvectors

are the PC time series. The PC time series are each standardized, and the resulting EOF pattern is

calculated by

di =
1

M
zTi X (2.5)

where zi is the ith standardized PC time series, and di is the EOF pattern associated with one

standard deviation of the corresponding PC time series.

2.2.3 Correlation and Variance Explained

To assess how well each of our three dynamical adjustment methods explain the variance in

surface air temperature, we make use of the correlation coefficient, defined as:

r =
x′y′

σxσy

(2.6)

The linear correlation coefficient r is a value between -1 and 1 and is a measure of the strength

and direction of the linear relationship between the variables x and y. The square of the correlation

coefficient (r2) is the percent of the variance in y that is explained by the linear least-squares fit

with x.
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Chapter 3

Results: Part I

The goal of this chapter is to use the standard error of the regression to develop a simple

analytic expression for the lead time required for a linear trend to emerge from natural variability at

a predetermined level of statistical significance. The expression is derived from an AR(1) process

and then explicitly applied to surface air temperature data as a metric of calculating the time of

emergence. We test the usefulness of this metric for assessing the emergence of significant linear

trends in the CESM-LE, taking advantage of the ability to calculate natural and internal variability

from a large ensemble. Lastly, the expression is applied to observed temperature data over the past

45 years to compare any differences between simulated and observed natural variability as well as

where the observations as a single realization fall within the spread of the large ensemble.

3.1 An Analytic Expression for the Lead Time Required for a

Linear Trend to Emerge from Natural Variability

Consider the case of a first order autoregressive (AR(1)) time series of length N with a linear

trend b imposed upon it such that

x(nt) = bnt + αx(nt − 1) + βǫ(nt)

where nt = 1, 2, ..., N is the number of time steps, x(0) = 0 by assumption, and ǫ is white noise

(independent Gaussian noise with mean of zero and variance of σ2
ǫ ). The parameter α is between

0 and 1 and represents the memory in the time series x(nt) from one time step to the next.

Here we estimate the trend b using simple linear regression, where b̂ is the regression estimator

of the trend. The parameter α can be estimated as the lag-one autocorrelation of the time series

(r1). The confidence interval in the total change in x(nt) over time nt can thus be expressed as:
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CI = b̂nt ± e

where nt is again the number of time steps and e is the uncertainty in the change in x(nt) over time

nt given by b̂nt. The margin of error (e) is given in units ∆x/(nt∆t), where ∆t is the time step.

The trend b̂ is given in units ∆x/∆t so that b̂nt is the change over the length of the record and has

the same units as e.

Following [1], if detrended values of x(nt) are well-modeled as an AR(1) process, then the

margins of error on the linear trend in x(nt) can be expressed as:

e = tc · nt · s · γ(nt, r1) · g(nt) (3.1)

where

γ(nt, r1) ≡

(

[nt−2]

[nt

(

1−r1
1+r1

)

−2]

)1/2

and

g(nt) ≡
√

12
n3
t
−nt

In Equation 3.1, tc is the t-statistic for the desired confidence level and s is the standard de-

viation of the residuals of the regression (i.e., of detrended values of x(t)). The expressions for

γ(nt, r1) and g(nt) account for 1) the effects of persistence on the estimate of s, where r1 is the

lag-one autocorrelation of the residuals, and 2) the standard deviation of the time axis, respectively.

Note that Equation 3.1 is simply the standard error of the regression for the case where 1) the pre-

dictor is time, and 2) detrended values of the predictand are well-modeled as an AR(1) process

(e.g., [1, 32]).

The trend in x(t) is statistically significant when it exceeds its margins of error. Setting e = b̂nt

in Equation 3.1 yields:

(T 3
SIG − TSIG)

12
·

TSIG

(

1−r1
1+r1

)

− 2

[TSIG − 2]
=

(

tcs

b̂

)2

(3.2)
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where TSIG denotes the lead time when the trend in x(t) is statistically significant (in units of time

steps). That is: Given our parameter estimates of b̂, s, and r1, TSIG is the estimated number of

time steps required for the trend to be statistically significant at the desired confidence level. The

value of TSIG can be trivially calculated given the estimated amplitude of the forced signal (b̂), the

amplitude of the natural climate variability (s), the lag-one autocorrelation of the natural climate

variability (r1), and the desired significance level (tc). It requires no subjective analysis choices

(such as the length of the periods used in epoch differences) and no smoothing of the data.

The parameters b̂, s, and r1 are calculated using the entire length of the time series (nt), while

tc is a function of nt. Thus, to solve for TSIG, Equation 3.2 is calculated iteratively at each time

step. For instance, a time series with a TSIG of 10 time steps is calculated using the two-tailed

95% value of tc = ±2.26, while a time series with a TSIG of 50 time steps is calculating using

the respective value of tc = ±2.01. We use the entire length of the time series to determine the

values of b̂, s, and r1. This provides the most accurate estimates given that the linear trend and the

Gaussian AR(1) distribution are consistent throughout the entire time period, as calculations using

short time series can produce erroneous values. A graphical representation of the calculation of

TSIG can be seen in Figure 3.1, denoted as the time step when the lower 95% error bound intersects

zero.

Equation 3.2 can be simplified greatly given two conditions: 1) detrended values of x(nt) are

not serially correlated (r1 ≈ 0). This condition holds for climate variability at most terrestrial

locations on interannual timescales, since there is very little memory in the internal variability of

land surface climate from one year to the next (see discussion in [1]). 2) The trend length is at least

∼10 time steps. In this case, T 3
SIG ≫ TSIG and the two tailed t-statistic for the 95% confidence

level is tc ∼ 2. Applying both conditions yields a simplified version of Equation 3.2 that is suitable

for cases where the internal variability is not serially correlated from one time step to the next:

T95% ≈ 3.6

(

s

b̂

)2/3

(3.3)
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where T95% is the lead time when the trend in x(t) is statistically significant at the 95% confidence

level. Equation 3.3 places Equation 3.2 in a “signal to noise" format that is similar but not identical

to that used in many previous studies and provides a useful back-of-the-envelope estimate for TSIG.

All analyses in this thesis use the general expression of Equation 3.2 for accuracy.

3.2 Application to Climate Trends

In this section, we test the robustness of Equation 3.2 (TSIG) for assessing the point in time

when the signature of anthropogenic warming emerges from the background noise of natural cli-

mate variability (i.e., achieves statistical significance) on regional scales. We perform the assess-

ment for land surface temperature changes at individual grid boxes. To do so, we exploit a large

ensemble of climate change simulations.

In a large ensemble of climate change simulations, each individual ensemble member may be

viewed as a unique realization of “model reality." Here we test the expression for TSIG using output

from the NCAR Community Earth System Model Large Ensemble (CESM-LE). The analyses are

based on seasonal-mean values of surface temperature for the Northern Hemisphere (NH) cold

(October-March) and warm (April-September) season months over the 1970-2015 period. There

are three reasons for choosing this time period: 1) We wish to focus on the period with the largest

global warming observed to date [2]; 2) We wish to compare results derived from the CESM-LE

with results derived from observations, which are relatively sparse before 1970; and 3) Our analytic

expression is based on a linear least-squares fit to the forced signal, which is approximately linear

over the selected period (the linear assumption is discussed in more detail in the final section). The

simulated trends in global-mean surface temperature from the CESM-LE are not linear over the full

simulation period 1920-2100, i.e., the trends increase from roughly zero in the mid-20th century

to roughly 0.5 K/decade in the latter part of the 21st century [ [7], c.f., Fig. 2]. However, they

are approximately linear over the comparatively short 1970-2015 period examined here. We tested

the linearity assumption by comparing residual temperature time series derived by subtracting a

linear fit to the data with those derived by subtracting second and third order fits to the data. The
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higher-order fits do not significantly change the variance explained by the residual time series (see

Figure 3.2).

The expression for TSIG is tested as follows. First, we calculate the “empirically-derived TSIG"

as the first time step when 29 out of 30 ensemble members exhibit trends of the same sign as that

of the model forced signal in the current and all subsequent time steps. In the context of large

ensembles, for a confidence level of 95%, the expression for TSIG (Equation 3.2) should thus

correspond to the lead time when 97.5% of all possible realizations of “model reality" exhibit

trends of the same sign as the forced signal (for a two-tailed confidence interval). Given that the

CESM-LE only consists of 30 members, 29 is the closest approximation to our 95% confidence

level. Note that the empirically-derived TSIG does not correspond to a strict statistical quantity and

is calculated primarily to explore the robustness of Equation 3.2 in the context of a large ensemble

of climate simulations. The additional requirement that 29 out of 30 ensemble members must also

exhibit trends of the same sign as that of the model forced signal in all subsequent time steps is

to control for any false positives in the TSIG results (i.e., a TSIG that has “emerged" but then falls

below the 29/30 threshold at a future time step).

Second, we calculate the “analytically-derived TSIG" at all grid boxes by solving Equation

3.2 for TSIG using: 1) the ensemble mean trends in temperature calculated over the period 1970-

2015 (b̂); 2) the standard deviations of the residuals of the regression (i.e., the variability about the

long-term trends; s); and 3) the lag-1 autocorrelations of the residuals of the regression (r1). The

ensemble mean trends are assumed to reflect the forced signal in surface temperature. The standard

deviation and lag-1 autocorrelation of the residuals are found by 1) detrending the seasonal-mean

temperature time series in each of the ensemble members and at each grid box and 2) calculating

the pooled standard deviations and ensemble-averaged lag-1 autocorrelations of the residual time

series. The resulting values of s and r1 are assumed to reflect the amplitude and persistence of the

model’s natural variability. We note that for short time series (less than 20 time steps) or time series

with large memory, using detrended residuals from ordinary least squares can result in erroneous
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lag-1 autocorrelation values. In such cases, it is advisable to use a generalized least squares (GLS)

estimator of the trend to calculate r1.

In principle, the model’s natural variability can be isolated using a variety of different method-

ologies. Figure 3.2 explores four different approaches for estimating the parameter s in Equations

3.1-3.3 using the CESM output: 1) removing a linear fit to the temperature time series in each of

the ensemble members (as done in our analyses), 2) removing a second order polynomial (rather

than linear) fit to the grid box temperature time series in all ensemble members, thus retaining

natural external forcings due to, say, volcanic eruptions and allowing for exponential changes in

temperature; 3) removing the grid box ensemble-mean temperature time series from the grid box

temperature time series in all ensemble members, thus explicitly removing the signals of all forms

of forced variability from the ensemble members and allowing for forced variability on a range of

timescales; and 4) taking the last 1380 years of the CESM preindustrial control run, in which there

are no natural external forcings (e.g., volcanoes or solar irradiance changes). In practice, all four

methods yield very similar estimates of internal/natural climate variability and thus very similar

estimates of the time of emergence (Figure 3.2).

The four methods have various advantages and disadvantages. The advantages of Method 1

are that a) the residuals of the linear fit correspond directly to the residuals of the regression that

form the basis for s in Equation 3.2; and b) a similar method can be applied to observations in

the absence of climate model output. The disadvantages are that a) the anthropogenic signal is not

necessarily best modeled as a linear trend; b) the linear fits include a component of the internal

variability, since stochastic variability includes a trend component; and c) the linear fit does not

account for externally forced variability due to, say, volcanic eruptions. Method 2 is similar to

Method 1, but has the additional advantage that it allows for exponential changes in temperature.

However, the residuals of the second order polynomial fit do not - strictly speaking - correspond to

the residuals of the regression that form the basis for s in Equation 3.2. The residuals of Method 3

also do not form the basis for sigma in Equation 3.2, but removing the ensemble mean time series

arguably reflects the most robust method for removing the variability due to all forms of external
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forcing in the CESM-LE, including anthropogenic forcings (e.g., due to increasing greenhouse

gases) and external natural forcings (e.g, due to volcanoes). Method 4 is the simplest and most

accurate for estimating pure internal variability, as the preindustrial control run does not include

either anthropogenic forcings or natural external forcings such as volcanic eruptions (which are

included in the forced simulations). Note that the first two methods include both internal climate

variability and natural variability due to volcanic forcings and solar irradiance changes, whereas

the latter two methods only include internal variability.

Figure 3.3 illustrates the analytically and empirically-derived values of TSIG in NH wintertime

surface temperatures at three grid boxes: one from Northern Hemisphere midlatitudes (at a grid box

whose node is close to London, UK); one from a region of relatively high temperature variance

(located in central Siberia); and one from a region of relatively low temperature variance (close

to Jakarta, Indonesia). The sloping black lines in all three panels indicate the ensemble mean

trend over the 1970-2015 period at each location. As noted above, the ensemble mean trend is

interpreted as the “forced signal" of climate change. The small red dots indicate the trends in

surface temperature from all 30 individual ensemble members, where the trends start in 1970 and

end on the date indicated on the ordinate axis. The units on all trends are K/length of the record.

The dashed lines in all three panels indicate the 95% margins of error on the “forced signal,"

where the margins of error are derived from Equation 3.1. Note that the close agreement of the

95% margins of error given by Equation 3.1 (dashed lines) and the large ensemble (red dots) attest

to the robustness of Equation 3.1 for estimating the role of natural variability in climate trends

(see [1]).

The analytically-derived values of TSIG are calculated at each terrestrial location by inserting

the estimated forced signal and natural variability for each grid point into Equation 3.2. For ex-

ample, in the case of London, the estimated forced signal is b̂ = 0.02 K/year, the amplitude of

the natural variability is s = 0.6 K, and the winter-to-winter autocorrelation is not significantly

different from zero (r1 ∼ 0). Inserting the above values into Equation 3.2 yields TSIG = 41 years,

or 2011, which by definition is the lead time when the lower bound of the 95% confidence lev-
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els intersects zero (the intersection is marked by the vertical blue line in Figure 3.3). The forced

signal and natural variability both vary from one location to the next in Figure 3.3, but in general

the latter dominates the variations in TSIG. For example, TSIG is longer over Siberia where the

interannual temperature variance is much larger (s = 2 K), but shorter over Indonesia where the

interannual temperature variance is relatively small (s = 0.2 K). The inverse relationship between

regional temperature variance and the emergence of the forced signal has been noted extensively in

previous works (e.g., [11,13]). The key point in Figure 3.3 is that the expression given in Equation

3.2 for TSIG clearly provides a simple and robust estimate of the first lead time at which 95% of

the realizations of model “reality" (as given by individual ensemble members) exhibit warming.

Figure 3.4 shows the results for a similar test at all terrestrial grid boxes during the NH winter

and summer seasons. The top panels indicate the “empirically-derived" values of TSIG found by

empirically calculating the lead time when 29 of the 30 ensemble members exhibit warming in

the current and subsequent time steps. The bottom panels in Figure 3.4 indicate the analytically-

derived values of TSIG from Equation 3.2 (very similar results are derived for Equation 3.3, since

the lag-one autocorrelation of seasonal-mean surface temperature is not significantly different from

zero at most terrestrial grid boxes). Warm colors indicate lead times of 45 years since 1970 (e.g.,

times of emergence less than 2015). White denotes lead times that exceed the analysis period

(TOE beyond 2015), while grey denotes oceans and any missing data. The top and bottom panels

of Figure 3.4 are very similar, as further shown in Figure 3.5. Here, we compare TOE results

from the empirical and analytical methods using a scatterplot. The 1:1 ratio line, given in red,

represents all locations where the TOE calculated from the empirical method is identical to the

TOE calculated from the analytical method. Each blue dot represents the TOE calculated from

both methods at a single grid box. Overall, the two methods have a good agreement about the 1:1

ratio line, although there is a large spread in the TOE results.

The strong similarities between the top and bottom panels in Figure 3.4 are important. They

suggest that the lead time given by Equation 3.2 provides a reliable estimate of the geographical

pattern of detection time - the time at which virtually all possible realizations of model “reality"
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indicate trends of the same sign as the forced signal. They also support the assumptions that

underlie Equation 3.2, e.g., that the natural variability is sufficiently Gaussian and the forced signal

sufficiently linear to warrant use of the standard error of the regression. As noted in numerous

previous studies (e.g., [11, 13, 14]), the forced signal in surface temperature emerges earliest in

regions where the variance is smallest, i.e., the tropics during all seasons and the extratropics

during the warm season months.

The top panels in Figure 3.6 examine analogous results, but for the case where 1) the estimated

forced signal (b̂) is again derived from the CESM-LE but 2) the natural variability (s and r1) is

derived from observations of surface temperature from the HadCRUT4 dataset. The HadCRUT4

data are obtained from the Climatic Research Unit at the University of East Anglia and are analyzed

on a 5x5 degree grid for the time period January 1970 to September 2015. The advantage of using

observations to estimate the natural variability is that - by definition - they best reflect the variance

of the “real-world." The disadvantages are that: 1) the observed record may be too short to fully

sample variability on decadal timescales; and 2) the observed record includes missing data and

may include residual errors that influence estimates of the observed variability. As in the case of

Figure 3.4, b̂ is defined as the ensemble-mean trend from CESM over 1970-2015. In contrast to

Figure 3.4, s is found by 1) detrending the observed wintertime-mean surface temperature data at

each grid box, and 2) calculating the standard deviation of the resulting time series. Note that the

detrending methodology is identical to that applied to individual ensemble members (except for

the pooling) in Figure 3.4.

Results based on the amplitude of observed natural variability are similar but not identical to

those based on the natural variability displayed by the CESM-LE. Regions of strong agreement

between the top panels in Figure 3.6 and bottom panels of Figure 3.4 correspond to areas where

the variability in the CESM-LE closely corresponds to that in the observations. Regions where

the top panels in Figure 3.6 and bottom panels in Figure 3.4 are notably different point to areas

where differences between the simulated and observed natural variability lead to differences in the

lead time when surface warming emerges in a statistically significant sense. These differences can
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be seen more clearly in the top panels of Figure 3.7, which show the ratios of the amplitudes of

natural variability derived from the CESM-LE to those derived from observations. For the most

part, the CESM-LE overestimates the variance of surface temperature and thus underestimates the

times of emergence over much of the Northern Hemisphere midlatitudes.

The bottom panels in Figure 3.6 show analogous results to those in the top panels, but in this

case both the natural variability and the forced signal (the linear trends) are estimated from obser-

vations. That is: the forced signal (b̂) is defined as the linear trend calculated from observations

over the period 1970-2015, and the natural variability (s) is found in an identical manner to the top

panel. The observed trends reflect only one realization of reality and are therefore noisier than the

model ensemble-mean trends, particularly over regions of large temperature variance such as the

Northern Hemisphere midlatitudes during winter (e.g., [6]). Nevertheless, the resulting lead times

are interesting in that they provide a purely observational estimate of the lead time when the ob-

served warming emerges from the observed natural climate variability in a statistically significant

sense.

The differences between the upper and lower panels in Figure 3.6 arise solely from differences

between trends from the CESM-LE ensemble mean and the observations. The CESM-LE ensemble

mean trends from 1970-2015 are weaker than those derived from the observations over much of

the tropical land areas, Europe and East Asia during summer (see bottom panels of Figure 3.7).

Hence, the purely observational lead times in these regions are shorter than those derived from the

ensemble-mean trends.

Figure 3.8 explores whether the TOE estimates obtained solely from observations lie outside

the range of TOE estimates derived from all individual ensemble members. To address this ques-

tion, we calculated the TOE at all grid boxes and for all ensemble members using the individual

ensemble member trends and detrended standard deviations as estimates of the forced signal and

natural variability (i.e., we treated output from individual ensemble members as we treated the ob-

servations in the lower panel of Figure 3.6). Interestingly, the observed TOE estimates given in the
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bottom panel of Figure 3.6 lie within the 95% bounds on TOE estimates derived from individual

ensemble members over 95% of all land areas (Figure 3.8).

3.3 Discussion

The standard error of the regression is widely used in climate research. But to the best of our

knowledge, it has not been explicitly used to develop an expression for the time of emergence of

anthropogenic climate change. The resulting expression for TSIG provides a novel and general

“rule of thumb" for assessing the lead time when anthropogenic climate change will emerge from

natural climate variability. The methodology has some disadvantages relative to existing methods,

e.g., it assumes that the natural variability is Gaussian, which is not required in existing metrics

based on the Kolmogorov-Smirnov test (e.g., [18]). However, it also has several key advantages:

1) The expression for TSIG given by Equation 3.2 (and Equation 3.3 for the case where the data

are not serially correlated) indicates the lead time when the forced signal of the trend has emerged

in a statistically significant sense. Some previous studies explicitly consider TOE in the context of

statistical significance (e.g., [6, 11, 15]). But others consider it in the context of specific values of

the natural variability. For example, consider the case of TOE defined as the first lead time when

the forced signal exceeds two times the amplitude of the natural variability (e.g., one of the criteria

outlined in [14]). At the grid box close to London, the TOE for k = 2 in Equation 1.1 occurs

at a lead time of 74 years, which is more than three decades longer than the point in time when

the trend is significant (Figure 3.3). Similarly large differences are found throughout much of the

extratropics (Figure 3.9).

2) The expression for TSIG exploits linear regression instead of epoch differences to estimate

the linear trend. For example, [11], [3], and [15] all consider statistical significance when assessing

the time of emergence, but consider the differences in means between epochs of various lengths

rather than linear trends. The distinction is important. Linear regression uses all of the data in a

time series, while epoch differences only take data from the beginning and end of the time series.

Additionally, the variance of the epoch difference estimator varies greatly depending on the length
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of the epoch used, and is always larger than the variance of the linear trend estimator for AR(1)

time series with lag-1 autocorrelations less than about 0.85 ( [33]). Thus, for all time series with a

lag-1 autocorrelation less than 0.85, we believe the linear regression estimator to be preferable to

epoch differences.

3) The expression for TSIG is not subject to a multiple testing problem. Many previous methods

of calculating TOE have relied on stepping through continuous time steps and defining the TOE as

the first time step when the criteria is met (e.g., the first time step when the forced signal exceeds

two times the amplitude of the natural variability). This sequential testing increases the rate of

Type I errors (false positives in the results).

4) The expression for TSIG can be solved analytically and requires no additional modifications

to the data. Hence the resulting estimate of TOE can be easily reproduced from one study to the

next, and readily compared across different model configurations and forcing scenarios.
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Figure 3.1: Schematic showing the TOE as calculated from Equation 3.2. The black solid line shows the

estimated trend (b̂), and the dashed lines indicate the predicted ranges of trends calculated from Equation

3.1. The blue vertical line indicates the lead time when the forced trend is statistically significant, which is

the point when the lower dashed line (lower 95% bound) intersects the zero line.
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Figure 3.2: Comparisons of the standard deviations calculated from the CESM model over the period

1970-2015 using four different methods to remove the long-term forced signal. Panels (a) and (b) show the

pooled standard deviations after removing the linear trend from all grid point time series in all ensemble

members (as used for Figure 3.4c, d); panels (c) and (d) show pooled standard deviations after removing a

2nd order polynomial fit from all grid point time series in all ensemble members; panels (e) and (f) show

pooled standard deviations after removing the ensemble mean time series from all grid point time series

in all ensemble members; and panels (g) and (h) show standard deviations from the last 1380 years of the

control run. Grey denotes ocean regions.
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(b) Siberia
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Figure 3.3: Trend amplitudes for modeled surface temperature at the grid box collocated with (a) London,

UK, (b) central Siberia, (c) Jakarta, Indonesia, using CESM-LE output. The red dots indicate individual

trends from all 30 ensemble members and the dashed lines indicate the predicted ranges of trends found by

applying Equation 3.1 to the statistics of the model internal variability. The blue vertical line indicates the

lead time when the forced trend is statistically significant as per Equation 3.2. See text for details.
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Analytically derived lead times (T
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Figure 3.4: Using CESM-LE output to test Equation 3.2. The top panels show the “empirically derived"

lead times when the trends emerge from natural variability, calculated as the time step when 29 out of 30

ensemble members exhibit positive trends in the current and all subsequent time steps. The bottom panels

show the “analytically derived" lead times (TSIG) derived by applying Equation 3.2 to the model natural

variability. Winter corresponds to the October-March means; summer to the April-September means. Note

that all lead times beyond the limit of the analysis period (45 years or 2015) are white. Grey denotes ocean

regions.

27



TOE empirical method
10 15 20 25 30 35 40 45

T
O

E
 a

n
a
ly

ti
c
a
l 
m

e
th

o
d

10

15

20

25

30

35

40

45
(a) Winter

TOE empirical method
10 15 20 25 30 35 40 45

T
O

E
 a

n
a
ly

ti
c
a
l 
m

e
th

o
d

10

15

20

25

30

35

40

45
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Figure 3.5: Scatterplots showing the relationship between the “empirically-derived" values of TSIG and

the “analytically-derived" values of TSIG for (a) the winter season, and (b) the summer season. The good

agreement about the 1:1 ratio (represented as the red line) shows that both methods give similar distributions

of TSIG.
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Figure 3.6: As in the bottom panels of Figure 3.4, but for lead times calculated by applying Equation

3.2 to the (top) ensemble mean trends from CESM-LE and the observed natural variability and (bottom)

linear trends from the observations and the observed natural variability. The observed natural variability is

estimated in both panels as the standard deviation of the detrended data. The observations are used over the

period 1970-2015. White denotes lead times beyond the limit of the analysis period (larger than 45 years),

while grey denotes oceans and any regions of missing data. See text for details.
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Differences between ensemble-averaged CESM-LE trends and observed trends
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Figure 3.7: Top panels show the ratio of amplitudes of natural variability from the CESM-LE to that from

observations for (a) winter (October-March) and (b) summer (April-September). Warm colors denote re-

gions where the amplitude of natural variability is larger in the model for the 1970-2015 period, while cool

colors denote regions where the amplitude of natural variability is larger in observations for the same pe-

riod. Bottom panels show differences between the 1970-2015 ensemble-averaged trends from CESM-LE

and trends from HadCRUT4 observations for (c) winter and (d) summer. The CESM-LE trends were used in

calculating the lead times in the top panels of Figure 3.6, while the observed trends were used in calculating

the lead times in the bottom panels of Figure 3.6. The predominance of cool colors for both seasons indicate

that observed trends from 1970-2015 were larger than the simulated ensemble mean trends over the same

period. Grey denotes oceans and any regions of missing data.
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Comparison of TOE between HadCRUT4 and CESM large ensemble
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Figure 3.8: Grid boxes where TOE calculated from HadCRUT4 surface temperature observations fall out-

side the 95% bounds on TOE calculated for individual ensemble member trends and standard deviations.

Only 5% of the observed TOE estimates lie outside the bounds given by the individual ensemble members.

 

(b) Lead time when signal:noise > 2
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Figure 3.9: Comparison between lead times calculated using Equation 3.2 (top) and Equation 1.1 where k

= 2 (bottom). In both cases, the forced signal is given as the ensemble mean temperature trends over 1970-

2015, and the natural variability as the detrended observed interannual standard deviation. Grey denotes

oceans and any regions of missing data. Note the top panel is reproduced from Figure 3.6a.
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Chapter 4

Results: Part II

As demonstrated in the previous chapter, natural variability can make it difficult to identify the

signal of anthropogenic forcing, especially in the extratropics where the variance in surface climate

is largest. In this chapter, we examine various methods of quantifying and removing the dynamical

contribution to internal variability in surface temperature trends. As introduced in Chapter 1,

dynamical adjustment seeks to determine the role of temperature variability that is solely due to

internal atmospheric circulation changes, all other factors being equal. The overall model for

dynamical adjustment is as follows:

T = Tfit + ǫ

where T is the surface temperature time series at a single grid box, Tfit is the temperature predicted

by internal circulation dynamics, and ǫ is the error (or the non-dynamical contribution to temper-

ature variability, i.e., all other contributions to natural variability as well as the radiative signal).

We will specifically compare three dynamical adjustment methods used in previous studies by ap-

plying these methods to both the CESM preindustrial control run and the CESM large ensemble.

The control run is useful because the only variations are due to internal variability, which allow

us to separate the dynamical contribution from the total internal variability. The large ensemble

simulations provide a simple and accurate way to test and quantify our results, since 1) there are

30 different realizations of model “reality," and 2) we have a good estimate of the model forced

signal (the ensemble-mean). Our study focuses on the Northern Hemisphere extratropics (20N

to 90N) during the boreal winter months (December through February, or DJF), as the amplitude

of internal climate variability is strongest during this period. All analyses are on monthly mean

surface air temperature, with monthly mean sea level pressure (SLP) being used as a proxy for the

circulation.

32



4.1 Comparing Methods with the CESM Control

The CESM preindustrial control run consists of 1800 years and has constant 1850 carbon diox-

ide levels. Because the control run does not include either anthropogenic forcings or natural ex-

ternal forcings (e.g., volcanic eruptions or solar irradiance changes), the only variability present

within this run is internal variability. This makes the control run an easy way to compare different

methods of estimating dynamical adjustment. In addition, the long simulation period allows us

to accurately quantify the role of circulation dynamics in surface temperature variability. We first

estimate the signature of stochastic circulation variability in surface temperature at a given grid

box in the following ways: 1) As the linear least squares best fit of the leading PC time series of

the SLP field to the grid box surface temperature (principal component regression, or PCR); 2) As

the expansion coefficient time series of the SLP pattern most closely related to the grid box surface

temperature, which is equivalent to Maximum Covariance Analysis (MCA) between the SLP field

and the grid box temperature time series; and 3) Via the circulation analog method, as recently

exploited in [28]. We first discuss the PCR method.

Figure 4.1 shows both SLP and temperature regressed onto the first 10 PCs of DJF SLP anoma-

lies from the CESM control run. The SLP patterns of variability (i.e., EOF patterns) are contoured,

while their corresponding temperature patterns associated with one standard deviation anomaly of

the SLP are shaded. Positive (negative) SLP anomalies are shown in solid (dashed) lines, while

positive (negative) temperature anomalies are shown in warmer (cooler) colors. The panels (es-

pecially PCs 1-3) show a strong temperature correspondence over the landmasses with the largest

SLP variability. This shows that circulation dynamics have a large effect on both local and regional

temperature. One caveat of the PCR method is that it is highly dependent on the number of PCs

selected. In the case of the CESM-LE control run, we have 1700 years of data (first 100 years

thrown out for spinup), which means 5100 timesteps when only looking at DJF months. If we use

all 5100 PCs, it would explain 100% of the surface temperature data, leaving us with no residual

error and making this method useless. If we choose too few PCs, we risk not capturing the entirety

of the atmospheric circulation effects. Here we choose to use the first 10 EOFs as they explain a
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large majority of the variance in the SLP field (90% in the CESM control run), and as a method

of comparison based on previous studies (e.g., [26], [27]). However, there are other studies which

also use a different number of EOFs for their dynamical adjustment calculations (e.g., [34], who

only use the first 5 EOF patterns).

To estimate the total temperature contribution from internal circulation dynamics, we use mul-

tiple linear regression, where the predictors are the first 10 PCs. This is written as

Tfit(x) = α1(x) ∗ PC1 + α2(x) ∗ PC2 + ...α10(x) ∗ PC10 (4.1)

where x is grid box and Tfit is the contribution to temperature from the combined effects of the first

10 PCs of SLP. Since each PC is orthogonal to the rest, there are no partial correlations between

predictors, and thus each αi can be calculated as the regression coefficient between the temperature

time series and each PC time series at each grid box.

Figure 4.2 shows an example of this decomposition of temperature at a single grid box in

central Siberia. The top time series (blue line) is the monthly DJF anomaly time series at the

Siberia grid box from the CESM control run. The middle time series (red line) is the contribution

of temperature from the first 10 PCs at this grid box, calculated as Tfit from Equation 4.1. This

Tfit time series explains around 56% of the variance in the original (top) temperature time series.

The bottom time series (orange line) is the residual time series (Tres = T − Tfit), obtained as the

difference between the top two time series. We then apply this method to find a Tfit and Tres for

each grid box in the Northern Hemisphere extratropics.

We next apply the MCA method to find the SLP hemispheric pattern that is most strongly

coupled to temperature at each grid box. This is calculated as

A(i, x) =
SLP (x, t)′T (i, t)′

T (i, t)′
(4.2)

where x and i are space (grid boxes) and t is time. Thus, at each grid box i, we have a temperature

time series T (i, t). A(i, x) is then the regression map showing the hemispheric pattern of SLP most
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strongly related to that grid box temperature time series. An expansion coefficient time series at

each grid box can then be calculated by projecting SLP onto the respective regression maps. This

can be written as

Xec(i, t) = SLP (x, t) ∗ A(i, x) ∗ cos(θ) (4.3)

where Xec is the expansion coefficient time series and θ is the latitude at each grid box x. The

dynamical contribution to temperature is then calculated as

Tfit = αXec (4.4)

where Tfit is analogous to the one in Equation 4.1, but is now calculated via the MCA method. α is

solved as the regression coefficient between the original temperature time series and the expansion

coefficient time series Xec.

The same grid box in central Siberia from Figure 4.2 is shown in Figures 4.3 and 4.4. Follow-

ing the MCA method, the SLP (Figure 4.3a) and temperature (Figure 4.3b) patterns most strongly

related to the Siberia grid box temperature time series are calculated using Equation 4.2. Unsur-

prisingly, the temperature regression map shows an inverse relationship between the regression

coefficient and the distance from the grid box, with the strongest values nearest the grid box. The

SLP regression map shows a strong negative relationship in the region of northern Siberia extend-

ing towards the North Pole, and a positive relationship with SLP over western Europe. Figure 4.4 is

analogous to Figure 4.2, showing surface temperature over the same Siberia grid box decomposed

into an internal dynamical component and a residual component, with the dynamical component

now calculated by fitting the expansion coefficient time series from MCA to the temperature time

series (Equation 4.4). For this method, the variance in temperature explained by Tfit is only 40%,

lower than that obtained by using the first 10 PCs. This also means that the residual time series

(Tres) comprises 60% of the variance of the original temperature time series. The time series in

Figures 4.2 and 4.4 show that: 1) circulation dynamics play a large role in temperature variability
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over central Siberia, and 2) dynamical adjustment drastically decreases the variance in the residual

temperature time series.

We now extend our results from both the PCR and MCA method to all grid boxes in the North-

ern Hemisphere extratropics. Figure 4.5 compares the percentage of temperature variance ex-

plained by internal circulation dynamics using these two methods. Figure 4.5a shows the variance

in monthly surface air temperature that can be explained by the first 10 principal components (PCs)

of SLP. The spatial average over the Northern Hemisphere is around 40%, but in some regions the

percentage is as high as 80%. Figure 4.5b shows analogous results, but for the MCA method. The

two plots show similar regions of larger variance (e.g., over central Siberia, central and western

Canada), but overall the PCR method yields a larger fraction of variance explained. Over the entire

NH extratropics, the percent variance in temperature explained by dynamics calculated from the

MCA method is around 32%, which is a 20% decrease compared to the variance explained by the

first 10 PCs. This is perhaps not surprising because, as noted earlier, the PCR method is highly

dependent on the number of PCs chosen. The variance explained from the MCA method is about

the same as the PCR method using 7 PCs. The additional PCs allows us to account for a large

fraction of the variance in temperature, and thus we focus on the PCR method for further analysis

in the large ensemble.

We also extend our analysis to examine how well the PCR method works to reduce the uncer-

tainty in 50 year trends from the control run. First, we take the 1700-year monthly DJF anomaly

temperature data from the control run and split it into 34 chunks of 50-year periods. We then form

3-month winter averages from the DJF monthly anomalies, and then calculate the linear trend over

each 50-year period using ordinary least squares regression. The top panel of Figure 4.6 shows the

standard error on the 34 chunks of 50-year trends from the surface air temperature DJF anomalies

(left) and the interannual standard deviation of wintertime temperature over the 1700-year period

(right). Based on the results of [1], the two plots should look very similar, as evident here.

We can then compare the variability of the original temperature to those of Tfit and Tres as

calculated via the PCR method. Tfit and Tres of the control run are calculated as in Equation 4.1
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and then each split into 34 chunks of 50-year periods. We form 3-month winter averages and then

calculate the linear trend in the same manner. The middle and bottom panels in Figure 4.6 show the

corresponding plots (the standard error of 50-year trends from the control and interannual standard

deviation from the control) for Tfit and Tres from the control run. Since the control run has no

anthropogenic forcing, all trends are due to internal variability. By using 50 year periods we are

able to capture these trends from internal variability and circulation dynamics (which would be

∼0 if we used all 1700 years) and examine the ranges of such trends. The similarities between

these figures (each left panel with each right panel) affirm the results from [1], but they also give

us insight into the dynamically induced temperature for the control run. The Tfit trends have their

largest variances over land and closer to the pole, especially over central and northern Siberia and

western Canada and Alaska. This suggests that circulation dynamics play a large role in those

areas and thus induce large variations in overall temperature trends (this is consistent with areas of

high r2 values in Figure 4.5), but a minor role over the oceans and regions south of around 40N.

In contrast with the original temperature trends, the standard error on Tres trends show: 1) much

smaller amplitude across the entire hemisphere, and 2) a much closer range of errors between

individual regions. Thus, by removing the effects of circulation dynamics on temperature, the

range of uncertainty in the surface temperature trends decreases noticeably.

4.2 Applying Dynamical Adjustment Methods to the Large En-

semble

Studies that have examined dynamical adjustment in a single model or in observations provide

valuable feedback in showing the contribution of circulation dynamics to surface temperature.

For instance, [23] observed that the temperature trends of the 1970s to 1990s were mostly due to

internal dynamics rather than anthropogenic forcing. However, these studies cannot estimate the

forced trend given only one realization. To quantify the role of circulation dynamics in internal

variability, we extend our dynamical adjustment methods to the CESM large ensemble simulations

for the period 1955-2004. This time period was chosen because the CESM-LE is run with historical
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forcings until 2005, which minimizes any uncertainty due to future emission scenarios. We first

form 3-month winter averages for temperature at each grid box in each ensemble member for the

period 1955-2004. Then for each ensemble member we calculated the trend across the 50 year

period. These temperature trends are shown in figure 4.7 for all 30 ensemble members. Note that

the differences among ensemble members are solely due to internal variability.

For each ensemble member, we calculate the first 10 PCs of monthly DJF anomaly SLP data

from 1955-2004 and fitted the temperature time series of that ensemble member to its correspond-

ing first 10 PCs. Residuals are obtained to result in 30 different Tfit and Tres time series. The

temperature timeseries are again DJF averaged to form 50 years of 3-month winter temperatures,

and trends are then calculated for each ensemble member. Figure 4.8 shows the 50 year winter

trends of the residual temperature time series for each of the 30 ensembles. This can be directly

compared, ensemble member by ensemble member, to Figure 4.7. When we remove the effects of

circulation on temperature via the PCR method, the spread of the temperature trends across the 30

ensemble members is greatly decreased. The trends are more similar between individual ensemble

members, and their amplitudes are decreased as well.

The reduction in the spread of the trends afforded by the PCR method can be quantified by

calculating the standard error in the trends across the 30 ensemble members, as shown in Figure

4.9. This quantifies the variability amongst the 30 ensemble members shown in Figures 4.7 and

4.8. The first panel shows the standard error on 1955-2004 winter temperature trends from all

30 ensemble members (i.e., the variance of the ensemble results in Figure 4.7), the second panel

shows the standard error on the Tfit trends as calculated via the PCR method, and the third panel

shows the standard error on the Tres trends (i.e., the variance of the ensemble results in Figure 4.8).

These are analogous to the left panels from Figure 4.6. Two key points can be gained from Figure

4.9: 1) The error on the trends of Tres is much smaller than the error on the trends of the original

temperature data. This general pattern could be seen from Figures 4.7 and 4.8, but Figure 4.9

allows a direct mathematical comparison across the 30 ensemble members and for all grid boxes.

2) The standard errors of the trends from the large ensemble look very similar to their respective
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values from the control run, even though the control run is only a single simulation. Thus, the role

of the circulation in surface temperature and its variability amongst individual ensemble members

can be estimated simply from a coupled control run, instead of needing to run a large ensemble of

simulations.

Given that the uncertainty in Tres is reduced compared to the uncertainty in the original temper-

ature data, how many ensemble members do we need to get a good estimate of the forced signal?

We have previously defined the “true" forced signal as the ensemble mean across the 30 ensemble

members. Figure 4.10a shows the spatial correlation between 50 year temperature trends of indi-

vidual ensemble members and the ensemble mean for the original temperature data. The x-axis

shows the number of ensemble members used for that calculation. For example, for 5 ensemble

runs, we randomly select 5 of the 30 ensemble members, average their trends, and calculate the

spatial correlation between that average and the ensemble mean 50 year trend. We then do this

random selection 100 times. The blue line shows the average correlation of the 100 Monte Carlo

runs, while the red dots show the distribution given by the 100 runs. By construction, at 30 en-

semble members the correlation is 1. As expected, the uncertainty between ensemble members

decreases as more ensemble members are used. For one ensemble run, the correlation between any

one single randomly selected ensemble member and the ensemble mean (the true forced signal)

ranges from 0.25 to 0.73. The real world, being only one realization, is simply one dot within this

range.

Figure 4.10b shows analogous results, but now for Tres. The major difference between the two

figures is the narrower range of uncertainty exhibited by the ensemble members. This is useful

for several reasons. First, a smaller range of uncertainty among the ensemble members means

each ensemble member is closer to the forced signal. This helps us identify the forced signal that

otherwise was obscured by circulation-induced variability. This would, for instance, improve our

TOE calculation from Chapter 3. This is also important given that the real world is only a single

realization, and reducing the uncertainty would make for better climate prediction. Second, the
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number of ensemble members needed for a reasonable estimate of the true forced signal decreases.

This lessens the computational burden and expense needed to run large ensembles.

To quantitatively assess the differences between the two panels in figure 4.10, we calculate the

probability density distributions of the correlation coefficient when 1, 2, and 5 ensemble members

are used (Figure 4.11). The left panels show the distribution from the trends of the original tem-

perature data (Figure 4.10a), while the right panels show the distribution from the trends of Tres

(Figure 4.10b). As more ensemble members are used, the correlation becomes closer to 1, and the

spread in those correlations become much smaller. For each of the three cases, the spread for the

Tres trends are narrower than the spread in the original temperature trends. It is interesting to note

that at 10 ensemble members (not shown), the mean correlation in Tres starts to become smaller

than the correlation from the original data. This is because the maximum correlation for Tres trends

is 0.94 instead of 1. This difference suggests that there is a forced component in the circulation

(at least in the PCR method) that we have removed, resulting in a different forced signal when

we average the 30 Tres trends together. In this case, when using less than 10 ensemble members

Tres provides a higher average correlation with the ensemble mean of the surface air temperature,

but for more than 10 ensemble members the current PCR method is unable to do a better job at

estimating the forced signal. Figure 4.10 therefore claims that dynamical adjustment alone is not

enough. This method can narrow the uncertainty exhibited by internal variability. However, it can-

not separate the circulation dynamics from unforced internal variability and circulation changes

due to climate change.

While the PCR and MCA methods can be calculated separately for both the control run and the

large ensemble, the analog method offers an alternative approach. Instead of using the ensemble

SLP data from 1955-2004, as done previously in this chapter, the analog method described by [28]

makes use of the control run to estimate the internal dynamical contribution to temperature in the

large ensemble. This is a variation of the constructed analog method used in [29]. For this method,

we take monthly SLP data for all ensemble members for the years 1955-2004, and for each month

and each ensemble member we search all the corresponding months in the last 1700 years of
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the control run and find the closest 150 months (from Euclidean distance). Then we randomly

select 100 of the 150 and calculate the optimal linear combination of those analogs that best fit the

ensemble SLP field. For example, for January 1955 we search all January values in the control

run and find the 150 closest values to that of our 1955 field. We randomly select 100 of the 150

closest months, then calculate a set of linear regression coefficients β that best explain the original

(January 1955) field. We can write the definition of a constructed analog as follows:

XCA = βXC (4.5)

where XCA is the constructed analog, XC is the matrix containing the 100 analogs, and β is the

optimal linear combination that best fits the ensemble SLP field.

This results in a basic linear equation Ax = B. However, because the elements of X are

not orthogonal states no unique solution exists for the values of β. Instead, we estimate the β

coefficients using the Moore-Penrose pseudoinverse of A, defined as A† = (ATA)−1AT . In this

case A†A = In. We can then solve for β as:

β = [(XT
CXC)

−1XT
C ]X0 (4.6)

where X0 is the original monthly dataset.

In our example, X0 is January 1955, and XC are the 100 SLP analogs we have selected. After

calculating β, we plug β back into Equation 4.5 and solve XCA for the estimated temperature field.

By using β and the closest analogs from the SLP field, the analogous calculation for temperature

estimates in the temperature that is solely due to circulation dynamics. For 100 analogs, XC has

size [M x 100], β has size [100 x 1], and XCA has size [M x 1], where M is the number of grid

boxes (space) of the region you are looking at (e.g., Northern Hemisphere extratropics). We then

do the random selection of the 100 analogs 50 times, and average the resulting 50 constructed

analogs together. The average of these 50 constructed analogs removes any sampling error that

may occur from using a single constructed analog.
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An advantage of the constructed analog method is that it can be applied to any field, including

the SLP field itself. Thus, we can calculate how much of the anomaly SLP field is reproduced by

the linear combination of constructed analogs themselves. However, the analog method assumes

that there are no changes in the SLP field itself due to climate change, and any differences in the

control run SLP and large ensemble SLP due to external forcing will be (mistakenly) thought of as

internal variability. Furthermore, it also requires a longer period to draw analogs from (the CESM1

1700 year control run here), and thus would not be as appropriate if applied to a short observational

dataset.

Finally, Figure 4.12 offers a comparison of all three methods in the CESM-LE. The left columns

show the root mean square error (RMSE) between the ensemble mean trend and each of the 30 en-

semble trends, while the right columns show the same RMSE for the dynamically adjusted trends.

All three dynamical adjustment methods show a significant decrease in both the mean RMSE as

well as the variance amongst the ensemble members. The maximum RMSE is around 1.4 in the

unadjusted temperature trends, but goes down to just over 1 for all three methods. Since the real

world is only one realization (any single ensemble member), we need to look at the variance and

outliers in addition to the mean RMSE values.
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Figure 4.1: SLP (contours) and surface air temperature (shading) regressed onto the first 10 standardized

principal components of monthly mean SLP data from the CESM control run. Contours are every 1.5 hPa;

negative contours are shown in the dashed lines. DJF values only.
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Figure 4.2: Time series for a single grid box in central Siberia of temperature (top, blue), Tfit from the first

10 PCs of SLP (middle, red), and Tres (bottom, orange), obtained as the difference between the first two

time series.

Figure 4.3: Regression maps for (a) SLP, and (b) temperature on the temperature timeseries at a single grid

box in central Siberia. Data is for DJF monthly anomalies from the CESM-LE control run.
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Figure 4.4: Same as Figure 4.2, but with Tfit and Tres from the MCA method.

Figure 4.5: Variance in temperature for DJF months explained by (a) the first 10 PCs of SLP, and (b)

the expansion coefficient timeseries, both calculated from DJF monthly anomalies of SLP from the CESM

control run. PCR does a better job overall, explaining an average of 40% of the variance in the winter

temperature field, while MCA explains an average of 32% of the variance over the Northern Hemisphere

extratropics.
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Figure 4.6: Plots showing (left) the standard error on 50 year DJF averaged trends, calculated as (left) two

times the standard deviation across all 34 chunks of 50 year trends, and (right) the interannual standard

deviation of DJF averaged anomaly data. The calculations are shown for (top) temperature, (middle) dy-

namically induced temperature (Tfit via PCR), and (bottom) the dynamically adjusted temperature (Tres).

From the CESM control run.
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Figure 4.7: 50-year DJF surface temperature trends for each ensemble member of the CESM-LE (labeled

1-30) for the period 1955-2004.
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Figure 4.8: 50-year dynamically-adjusted DJF temperature trends for each ensemble member of the CESM-

LE (labeled 1-30) for the period 1955-2004. The dynamically-adjusted temperature was calculated as the

residual obtained by subtracting the temperature fitted to first 10 PCs for each ensemble member from the

original temperature data.
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Figure 4.9: 95% standard error on DJF averaged trends across all ensemble members for 1955-2004 of (a)

surface air temperature (b) Tfit from internal circulation dynamics found by applying the PCR method, and

(c) Tres, the residual temperature not associated with internal dynamics.
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Figure 4.10: The correlation between varying numbers of ensemble members used and the ensemble-mean

DJF temperature trend. The left panel shows the spread given by the ensemble members for the actual

DJF temperature trends for the period 1955-2004, while the right panel shows the same spread for the

temperature with circulation dynamics removed via the PC regression method. For the ensemble mean, the

residual temperature trends and actual temperature trends have a correlation of 0.94.
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Figure 4.11: Probability density distributions of the spatial correlations shown in Figure 4.10. The left

panels show the correlations for surface air temperature data, while the right panels show the correlations

for the dynamically-adjusted temperature. Comparisons are for 100 runs of random averaged values for 1,

2, and 5 ensemble members.
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Figure 4.12: PDFs of (left) RMSE between the ensemble mean temperature trend and temperature trends

from 30 ensemble members; and (right) RMSE between the ensemble mean temperature trend and temper-

ature trends from 30 dynamically adjusted ensemble members.
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Chapter 5

Conclusions

5.1 Time of Emergence

The impacts of anthropogenic climate change are felt locally. But the lead times when warming

and related impacts emerge from the natural climate variability vary greatly from one location to

the next. In this thesis we have derived an expression (Equation 3.2) that provides a simple analytic

tool for estimating the lead time when regionally-dependent impacts of climate change emerge

from the natural variability in a statistically significant sense. This expression is tested on surface

temperature data from the CESM large ensemble of climate change simulations and found to be in

good agreement with TOE predicted by the model. We then apply the expression to observations

and find that the real world is warming faster than what the CESM-LE would predict. However,

this result falls within the bounds of natural variability in the large ensemble, thus suggesting that

natural variability has contributed to the additional warming in observations for the past 45 years.

We have focused on the application of Equation 3.2 to surface temperature, but the expression

holds for any time series where the following three conditions are met: 1) the forced signal can be

modeled as a linear trend; 2) the statistics of the natural variability (detrended values of the time

series) are Gaussian; and 3) the standard deviation of the natural variability is stationary. These

three assumptions derive from our use of the standard error of the regression. The bases for all

three assumptions are discussed and justified in [1].

The methodology outlined here is derived from statistical tools that are used widely in climate

change research. It is potentially useful for climate change research for three primary reasons.

One, it provides an analytic estimate of the lead time required for a trend to emerge, and can thus

be trivially calculated given a) the amplitude and autocorrelation of the observed natural variability

and b) the simulated forced signal. Two, it provides an estimate of the time required for a linear

trend to emerge in a statistically significant sense, rather than as a (statistically arbitrary) factor of
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the internal variability. And three, the expression requires no treatment of the data, which renders

the resulting lead times easy to compare across different model configurations, different forcing

scenarios, and different estimates of the natural variability.

5.2 Dynamical Adjustment

Given the large amplitudes of natural and internal variability innate to the climate system, the

signal of radiative forcing can be hard to distinguish and requires a long timescale to emerge in

a statistically significant sense. There is a need to narrow the amplitude of natural variability by

removing various aspects of natural variability that obscure the forced signal, and the climate liter-

ature includes many different methods for dynamical adjustment. In this thesis we have examined

the role of circulation dynamics on surface temperature via several of these statistical methods us-

ing the SLP field. Two popular methods, PCR and MCA, were applied to a fully coupled control

run. Both methods removed a significant amount of the internal variability within the model, but

the PCR method explained a larger percent of the surface temperature variance in the Northern

Hemisphere extratropics. We then applied 3 methods (PCR, MCA, and constructed analogs) to the

30 climate simulations in the CESM-LE over the period 1955-2004 to examine the specific effects

of dynamical adjustment. The circulation effects in the large ensemble were found to be similar

to those predicted by the control run. Since we know the forced signal in the large ensemble, we

are able to quantify the effects of dynamical adjustment, something that would not be possible in

observations.

Dynamical adjustment greatly reduces the uncertainty in the residual temperature trends, but

there is an additional forced component of the circulation that was removed as well. This resulted

in a slightly different forced signal estimate by the dynamically adjusted temperature. The dynam-

ically adjusted temperature proved more useful in estimating the true forced signal when using a

smaller number of ensembles (≤10), but the forced component in the circulation prevented the dy-

namically adjusted trends from doing better with more than 10 ensemble members. We found that

all three methods reduces the average and spread of the uncertainty in the forced signal. However,
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there appears to be a lower limit on the error reduction, which represents all additional aspects of

natural variability.

5.3 Future Work

This thesis raises additional questions on the role of natural and internal variability and the

obstacle it presents in estimating future climate change. The use of a large ensemble is invaluable

in this regard, as it allows us to know the “true" forced signal and quantify the role of natural

or internal variability. However, since the observations is only one realization, knowing where

the real world falls within this range of natural variability is crucial in future climate projections.

We have examined differences in TOE results between the CESM-LE and observations in surface

temperature and found that observations fall within the bounds of natural variability in the large

ensemble. Future work would benefit from extending the result further to more accurately assess

where observations fall in the range of natural variability. We know that the observational and

model trends differ, which result in different TOE values. However, we do not know how much

other errors contribute, including: model error in the estimation of the forced signal, model error

in the representation of natural variability, observational error due to sampling inconsistencies and

missing data, and error in observational estimates due to the short length of the record used. By

adjusting for all of the other uncertainties we can better pinpoint where observations fall within the

natural variability of the climate system.

This thesis also examined various methods of removing the temperature contribution from cir-

culation dynamics. We would like to extend our results from Chapter 4 to create a comprehensive

comparison and analysis between each of the methods used in the climate literature. While the

methods all give fairly similar results, they are also very different and can be applied in differ-

ent ways. It would be helpful for the climate community to understand these differences and know

which methods are best for their respective needs. In addition, there still remains a large uncertainty

in the residual temperature trends. The results from dynamical adjustment could be extended to re-

move additional contributions to internal variability. For instance, contributions to the uncertainty
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in Tres include: sea ice dynamics, amount and location of snow cover, and soil moisture, among

others. By removing these additional factors of internal variability we can further reduce the range

of uncertainty. We would also like to extend our analysis to quantify the forced contribution to

these various contributions to internal variability. Separating out the circulation dynamics, sea ice,

snow cover, and soil moisture changes that are a result of the anthropogenic signal will allow us

to more clearly identify the true forced signal. Further work would also benefit from extending

these methods to observational datasets or reanalysis data. This would provide additional insights

into historical temperature data trends, allowing us to examine the temperature contribution from

internal variability versus the contribution from anthropogenic forcing.
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