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ABSTRACT OF DISSERTATION

ACCESS CONTROL MODELS FOR PERVASIVE COMPUTING ENVIRONMENTS

With the growing advancement of pervasive computing technologies, we are moving to-

wards an era where context information will be necessary foraccess control. Traditional access

control models like Mandatory Access Control (MAC), Discretionary Access Control (DAC),

and Role-Based Access Control (RBAC) do not work well in thisscenario for several rea-

sons. First, unlike traditional applications, pervasive computing applications usually do not

have well-defined security perimeter–the entities an application will interact with or the re-

sources that will be accessed may not be known in advance. Second, these applications are

also dynamic in nature–the accessing entities may change, resources requiring protection may

be created or modified, and an entity’s access to resources may change during the course of

the application, which make the resources protection during application execution extremely

challenging. Third, pervasive computing applications usethe knowledge of surrounding phys-

ical spaces to provide services; security policies designed for such applications must therefore

use contextual information. Thus, new access control models and technologies are needed for

pervasive computing applications.

In this dissertation, we propose two types of access controlmodels for pervasive computing

environments; one determine the accessibility based on thespatio-temporal constraints, and the

other determine the accesibility based on the trustworthiness of the entities. The different fea-

tures of access control models may interact in subtle ways resulting in conflicts. Consequently,

it is important to analyze and understand these models before they are widely deployed. The

other contribution of this dissertation is to verify the correctness of the model. The results

obtained by analyzing the access control models will enablethe users of the model to make
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informed decisions. Toward this end, we propose automated verification techniques for our

access control models.

Manachai Toahchoodee
Department of Computer Science

Colorado State University
Fort Collins, Colorado 80523

Summer 2010
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Chapter 1

Introduction

Mark Weiser [88] has given the quote regarding the definitionof pervasive computing as

“The most profound technologies are those that disappear. They weave themselves into the

fabric of everyday life until they are indistinguishable from it.”.

1.1 Ubiquitous or Pervasive Computing

What is pervasive computing? Below are some definitions we can get from the Internet.

• “The trend towards an information environment in which users have access to ICTs

throughout the environment. This trend is particularly associated with the growth of

wireless technologies that allow users to access online information and services remotely

and synchronize data between different computers.”

(http://www.parliament.vic.gov.au/sarc/E-Democracy/F inal_Report/

Glossary.htm )

• “Inexpensive microprocessors embedded in everyday objects and environments. Char-

acterized by being numerous, casually accessible, often invisible computing devices,

frequently mobile or embedded in the environment and connected to an increasingly

ubiquitous network structure.”

(http://framework.v2.nl/archive/archive/node/text/de fault.xslt/

nodenr-156647 )
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• “The use of a computing infrastructure that supports information appliances from which

users can access a broad range of network-based services, including Internet-based e-

commerce services. Pervasive computing thus provides users with the ability to access

and take action on information conveniently.”

(http://www-03.ibm.com/ibm/history/reference/glossar y_p.html )

• “Ubiquitous computing (ubicomp, or sometimes ubiqcomp) integrates computation into

the environment, rather than having computers which are distinct objects. Another term

for ubiquitous computing is pervasive computing. Promoters of this idea hope that em-

bedding computation into the environment would enable people to move around and in-

teract with computers more naturally than they currently do.” (http://en.wikipedia.

org/wiki/Pervasive_Computing )

In summary, pervasive computing is a technology that relieson the computing and commu-

nication capability. This technology communicates with the user in such a way that the user

merely recognizes its existence.

1.1.1 Pervasive Computing Model

The technology necessary to build a pervasive computing environment fall into four broad

areas [70]: devices, networking, middleware, and applications. Figure 1.1 [70] illustrates their

relationships.

Devices

Pervasive computing environment consists of various device types interacting with each

other to serve common purposes (See Figure 1.2 [81] for the example of pervasive devices).

These devices include traditional input devices, such as mice or keyboards, and output devices,

such as speakers or light-emitting diodes; wireless mobiledevices, such as pagers, personal

digital assistants, cell phones, palmtops, and so on; and smart devices, such as intelligent ap-

pliances, floor tiles with embedded sensors, and biosensors. All cooperating together under the

middleware which mediates interactions among them. In theory, pervasive computing should
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Figure 1.1: Pervasive computing framework. Middleware mediates interactions with the net-
working kernel on the user’s behalf and keeps users immersedin the pervasive computing
space.

be applied to all of these intelligent devices.

Figure 1.2: Example of pervasive devices. (a) infrared and radio frequency sensors for locator
badges reside throughout the Elite Care environment; (b) residents use badges as apartment
keys and to locate service or summon help.

Pervasive networking

Since the fundamental of the ubiquitous computing environment is based on the commu-

nication between various devices in the network, the rapid growth of the number of pervasive

devices causes existing network technologies to be renovated. In addition to extending the
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backbone infrastructure to meet the anticipated demand, global networks like the Internet also

must modify existing applications to completely integratethese pervasive computing devices

into existing social systems.

Pervasive middleware

Like distributed computing and mobile computing, pervasive computing requires a middle-

ware “shell” to interface between the networking kernel andthe end-user applications running

on pervasive devices. As Figure 1.1 shows, this pervasive middleware will mediate interac-

tions with the networking kernel on the user’s behalf and will keep users connected to the

pervasive computing space. The middleware will consist mostly of firmware and software

bundles executing in either client-server or peer-to-peermode. User interfaces are another as-

pect of middleware. Standard web browsers represent the high end of interface sophistication.

Nonetheless, the usage of color, graphics, and controls aremore than users typically expect on

pervasive devices. As a result, mobile computing has already introduced microbrowsers. For

example, phone.com’s UP.Browser is implemented on severalcommercially available digital

phones.

Pervasive applications

The unique property of the pervasive computing is that, it relies more on the surrounding

context than both web-based and mobile computing. The application will interact based on the

contextual information it perceives. Consider a heart patient wearing an implanted monitor that

communicates wirelessly with computers trained to detect and report anomalies. The monitor

should know when to raise the alarm, based on its knowledge about the environment and pa-

tient’s health record. Such scenario requires much more than simple wireless communication.

1.1.2 Pervasive Computing Environment

Pervasive computing aims to simplify day-to-day life by providing mobile users with the

means to carry out personal and business tasks via portable and embedded devices [44]. These
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tasks range from the simple–switching on the lights in a conference room, checking e-mail, and

organizing meetings–to the more complex–booking airline tickets, buying and selling stock, or

managing bank accounts. Pervasive computing environmentsof the near future will involve the

interaction, coordination, and cooperation of numerous, casually accessible, and often invisible

computing devices and services. As Figure 1.3 [44] shows, these devices–whether carried on

our person or located in our homes, businesses, and classrooms–will connect via wired and

wireless links to one another as well as to the global networking infrastructure to provide more

relevant information and integrated services.

Figure 1.3: Pervasive computing environment
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1.2 Problem Description and Motivation

The growth of pervasive computing technology will spawn applications such as, the Aware

Home [22] and CMU’s Aura [27], that will make life easier for people. Pervasive comput-

ing is revolutionary because it provides services and functionalities that use the knowledge of

surrounding physical places. Pervasive computing applications typically involve many entities

that may span different organizations interacting in complex and subtle ways. Unconstrained

interactions result in security and privacy breaches. Application design requires understanding

what resources an entity has access to, which entities it should interact with, what information

can be released to an entity, how to protect the information used or produced by an entity,

which entities can be trusted and to what extent, and how these trust relationships change over

time.

Security and privacy are major concerns for such applications. Consider a cardiac patient

living by himself in a smart home. Data collected by sensors is sent to a monitoring service

which takes appropriate decisions when necessary. Preventing data transmission to the moni-

toring service or sending false data may be fatal. Sending too many false alarms can cripple

emergency services. Disclosing the patients health data toprospective employers may cause

financial hardship and disclosing the data to unapproved doctors causes breach of privacy.

Comparing a patients report to unauthentic reports of otherpatients results in incorrect diag-

nosis. These severe consequences motivate the need to consider security and privacy issues

when designing secure pervasive computing applications. Security policies and mechanisms

developed for traditional applications are inadequate forpervasive computing applications for

the following reasons:

1. Unlike traditional applications, pervasive computing applications have no definite secu-

rity perimeters –the entities an application will interactwith or the resources that will be

accessed may not be known in advance.

2. These applications are also dynamic in nature–the accessing entities may change, re-

sources requiring protection may be created or modified, andan entity’s access to re-
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sources may change during the course of the application. Protecting resources during

application execution remains challenging.

3. Pervasive computing applications use the knowledge of surrounding physical spaces to

provide services which requires security policies to use contextual information. For in-

stance, access to a resource may be contingent upon the location of the user and time of

day. This contextual information can be used to infer the activities of the user and cause

a privacy breach. Contextual information must, therefore,be protected by security and

privacy policies.

In the model which supports multiple features, such as, hierarchical structures, separation

of duties constraints, or delegation of authority, it is possible that the different features of the

model might result in inconsistencies and conflicts. Consequently, it is important to analyze

and understand these models before it is widely deployed. With respect to this aspect, our

second proposition is motivated by the following observations:

1. Nowadays, there are very few verification approaches proposed for the access control

verification. Most of them are either non-automated, error-prone, or hard to use.

2. Interaction between various access control model features can lead to conflict which

could result in the denial of service, or security breach. The existing researches focus

more on modeling the functionality of access control model.To the best of our knowl-

edge, none of the proposed works deal with the verification ofthe interaction among

access control model functionalities.

1.3 Research Goals and Tasks

Motivated by the open issues listed in the previous section,in this Ph.D. dissertation, we

propose access control models for pervasive computing applications, which are capable of:

1. Granting or denying an access decision in the pervasive computing systems where the

entities an application will interact with or the resourcesthat will be accessed may not

be known in advance.
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2. Granting or denying an access decision in such dynamic scenario where the accessing

entities may change, resources requiring protection may becreated or modified, and an

entity’s access to resources may change on the fly.

3. Using the knowledge of space and time to provide accessibility to resources for the user.

To ensure the correctness of the models, the proposed modelsmust also be analyzed. In

this Ph.D. dissertation, we propose a methodology to verifythe correctness of access control

models. The proposed methodology can:

1. Automatically detect the existence of conflicts between different features in the proposed

access control model.

2. Detect conflicts taking into account the dynamic aspects of the model, when the entities

and interactions between them are modified on the fly.

We decompose the research into three tasks. All these tasks are cohesive and related to

each other, serving the major goals as: (i) to propose the context-aware access control models

for pervasive computing environments; and (ii) to propose the verification methodology for the

access control models. The set of tasks are described in details in the following Sections.

1.3.1 Task 1. Investigate and identify the types and characteristics of
policies needed in pervasive computing environment and develop
policy models

A pervasive computing application typically collects information from a wide variety of

sources, aggregates it, processes it, and distributes it todifferent users. The nature of the

interactions with different sources are not always well defined. Much of the information that

is exchanged is sensitive and must be protected. Sensitive information is protected by different

kinds of policies. In the first task, first we need to evaluate the kinds of policies needed and

develop suitable policy models for use in pervasive computing applications.

A policy model formalizes the syntax and semantics of supported policies and provides

guidelines for their development. Researchers have proposed different kinds of models to for-
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malize policies, including the Bell-Lapadula (BLP) model [11] and the Biba model [14]. The

Role-Based Access Control (RBAC) model [23, 24, 40, 75, 76] is used by commercial orga-

nizations and formalizes the access control policies in a commercial environment. However,

traditional models cannot be used for pervasive computing applications because they do not

capture the notion of physical context.

Since RBAC model is the de facto standard, flexible, and policy neutral, we decided to base

our work on the RBAC model. There are several ways in which RBAC must be extended. We

need to explicitly capture the notion of context. We must integrate the contextual information

to the existing entities in RBAC and formalize the contextual constraints to support both au-

thorization and delegation policies. Identifying the impact that the context has on entities and

their relationships is a major concern in this task.

1.3.2 Task 2. Develop a model verification methodology

It is widely known that different features of RBAC such as, role hierarchy and SoD, interact

in subtle ways resulting in inconsistencies and conflicts. Improper resolution of conflicts may

cause security breaches. Consequently, it is important to analyze and detect the discrepancy

before the model is deployed. In this task, we intend to develop a verification method to verify

the correctness of the model.

Manual analysis is tedious and error-prone. Analyzers based on theorem proving are hard

to use, require expertise, and need manual intervention. Model checkers are automated but are

limited by the size of the system they can verify.

We will focus on the properties and interaction between different features of the access

control model. We will analyze these properties and define a methodology to detect conflicts

that may occur between the features of the access control model. We will classify all kinds of

such conflicts with respect to different context.

Making a thorough analysis and giving a complete list of conflicts is the major challenge

of this task. Developing a verification methodology for the model is another big challenge in

this part.
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1.4 Significance and Contributions

The research conducted in this dissertation is significant.In this research, we address the

need of a novel access control model for pervasive computingenvironments. We then develop

access control models to support the security requirement in the context-aware environment.

This research is among the earliest works in extending RBAC to support contextual constraints.

Moreover, this research seems to be the first work in analyzing the possible conflicts among

the constraints in RBAC model. We show how we can model the access control model, and

automatically check for its consistency. Finally, we show how our approach can be adapted to

the complicated real-world application which are typically modeled as workflows.

Contributions of this research are summarized below:

1. It proposes access control models that use contextual information to make access deci-

sions.

2. It proposes access control models that are suitable for dynamic applications where access

rules may change during the course of the application.

3. It illustrates how to describe the syntax and semantics ofthese models.

4. It provides techniques for analyzing the interaction of various features of the access

control models.

5. It describes approaches for analyzing the interference of access control constraints with

application requirements.

1.5 Dissertation Structure

The rest of the dissertation is organized as follows. Chapter 2 describes the related work.

Chapter 3 discusses our Spatio-Temporal Role Based Access Control model. Chapter 4 dis-

cusses how we can analyze and verify correctness of our Spatio-Temporal Role Based Access

Control model by using the automated tool called Alloy. Chapter 5 proposes the second model
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called a Spatio-Temporal Aware Role-Based Access Control with Delegation (STARBACD)

model. The development of the model is based on graph representation, which is well-formed

semantics. Chapter 6 discusses the extension of the Spatio-Temporal Role Based Access Con-

trol model and its graph-theoretic representation. Chapter 7 describes how the model can be

transformed into the form of Coloured Petri-Nets to enable the automatic verification. Chapter

8 discusses the other approach of developing the access control model for pervasive computing

environment based on the trustworthiness between the entities. Chapter 9 demonstrates how

such trustworthiness can be used in the delegation operation and how we can ensure the security

of the system after the delegation was performed. Chapter 10concludes the dissertation.
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Chapter 2

Related Work

Our work consists of two research areas: access control model and access control model

analysis. In this chapter, we provide an overview of the relevant work categorized by the areas

of our research.

2.1 Access Control Model

In the past three decades, various types of access control models have been proposed. In

this chapter, we review the background and describe different approaches of access control

model and access control model analysis.

2.1.1 Access Control Matrix

The access control matrix was defined by Lampson in [47]. Access control matrix [25, 47,

52] is a two-dimensional matrix representing subjects on the rows and objects on the columns.

Each entry in the matrix contains theaccess attributes, specifying the access privileges held by

subjectS to objectO. Table 2.1 shows the example of access control matrix.

Table 2.1: Access Control Matrix

File1 File2 File3 Process1
Alice Read, Write Read Write –
Bob – – – Suspend
Charlie Read Read Read –
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From Table 2.1, subjectAlice may read or write objectFile1, since ‘Read’ and ‘Write’

appear in the corresponding access control matrix entry. Similarly, subjectBobmay suspend

objectProcess1.

In a large system, the access matrix will be enormous in size,and most of its entries are

likely to be empty. As a result, the access matrix is very rarely implemented as a matrix. We

now discuss two common approaches to implementing the access matrix in practical systems

[76].

2.1.1.1 Access Control List

In Access Control List (ACL) implementation, each object isassociated with an ACL,

indicating for each subject in the system the accesses the subject is authorized to execute on

the object. This approach corresponds to storing the matrixby columns.

It is easy to determine which access privileges subjects arecurrently granted for that object

by using the ACLs. In other words, ACLs provide for convenient access review with respect to

an object. It is also easy to revoke all access to an object by replacing the existing ACL with

an empty one. However, ACL implementation makes it difficultto determine all the accesses

that a subject has. To do that, it is necessary to examine the ACL of every object in the system

to do access review with respect to a subject. Similarly, if all accesses of a subject need to

be revoked, all ACLs must be traversed. In practice, revocation of all accesses of a subject

is often done by deleting the user account corresponding to that subject. This is acceptable if

a user is leaving an organization. However, if a user is reassigned within the organization it

would be more convenient to retain the account and change itsprivileges to match the changed

assignment of the user. ACLs corresponding to the access control list in Table 2.1 is shown in

Figure 2.1.
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File1 Alice

Read
Write 

File2 Alice

Read 

File3 Alice

Write 

Process1 Bob

Suspend 

Charlie

Read 

Charlie

Read 

Charlie

Read 

Figure 2.1: Access Control Lists

2.1.1.2 Capability List

The dual approach to the ACL is theCapability List. Each subject is associated with a

list, called the capability list, indicating for each object in the system, the access privileges the

subject is authorized to execute on the object. This approach corresponds to storing the access

matrix by rows. The capability lists of Table 2.1 are shown inFigure 2.2. In this approach,

it is easy to review all accesses that a subject is authorizedto perform, by simply examining

the subject’s capability list. On the other hand, determination of all subjects who can access a

particular object is cumbersome. It requires examination of each and every subject’s capability

list. Moreover, implementing this approach also causes thedifficulties in adding or removing

protected objects to the system. If such case should happen,the access privileges have to be

updated to all capability lists in the system.
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Alice File1

Read
Write 

Bob Process1

Suspend 

Charlie File1

Read

File2

Read 

File2

Read 

File3

Write 

File3

Read 

Figure 2.2: Capability Lists

2.1.1.3 HRU System Protection Model

Harrison et al [26] propose a HRU model–a formal protection system model based on the

access matrix model. To manage the authorization policy, the protection system consists of (1)

a finite set of generic rightsR, and (2) a finite setC of commands of the form:

commandα(X1,X2, . . . ,Xk)

if r1 in (Xs1,Xo1) and

r2 in (Xs2,Xo2) and

. . .

rm in (Xsm,Xom)

then

op1

op2

. . .

opn

end
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Each command body consists of primitive operationopi and the condition as shown above.

The body of the command is allowed to execute only if the rights specified in the condition

parts exist in the access control matrix. The authors discuss about the safety property of the

HRU command which could affect the safety of the system. From[26], the formulation of

safety system can be summarized as follow: The system is “unsafe” if there exists a command

which causes the leakage of right from one place to another place in the access matrix. It is

later shown in the literature that the safety problem of the system is, in general,undecidable.

However, the work shows that the problem isdecidablein the mono-operational case, where

the body part of the command consists of only one primitive operation.

2.1.2 Discretionary Access Control Model

Discretionary Access Control (DAC) Model [26, 52, 76] restricts the accessibility to objects

based on the identity of subjects and/or groups to which theybelong. Each request of a user to

access an object is checked against the specified authorizations in the access control matrix. If

there exists an authorization stating that the user can access the object in the specific mode, the

access is granted, otherwise it is denied. As the name implies, the controls are discretionary in

the sense that a user or process given discretionary access to information is capable of passing

that information along to another subject. To provide this discretionary control, DAC policies

usually include a concept of object ownership, where the object owner has control permission

to grant access permission to the object for other subjects.

DAC policies are very flexible and widely used in the industry. However, they do not pro-

vide a high security assurance for two reasons [23, 76]: First, the granting access is transitive.

For example, a user who is able to read data can pass his read privilege to other users not au-

thorized to read it unbeknownst to the object owner. Second,DAC policies are vulnerable to

Trojan Horseattacks. ATrojan Horseprogram is the one that appears to be doing one thing on

the surface but actually does something more underneath without the cognizance of the user.

Because programs inherit the identity of the invoking user,the intruder can bypass the access

control policies by giving the authorized user theTrojan Horseprogram, which on the surface
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performs the desirable function for that user, while at the same time reads the contents of user’s

files and writes them to the reachable location for both the authorized user and the intruder. In

this manner, the intruder can now access the information which was supposed to be protected

from him.

2.1.3 Mandatory Access Control Model

The Mandatory Access Control (MAC) policies are known to be defined to prevent theTro-

jan Horseproblem [23]. An important goal of MAC is to enforce information flow policies to

ensure confidentiality [11] and integrity [14]. This can be done by augmenting the discretionary

access control with the mandatory access control. To grant the accessibility, MAC takes a two-

step approach. First, each subject’s access privileges stored in the discretionary access control

matrix are checked. These privileges can be modified by subjects as mentioned earlier in Sec-

tion 2.1.2. However, having authorizations stored in the access control matrix is not sufficient

to perform the operation. In addition, the operation must beauthorized by the MAC policy,

over which subjects have no control. MAC policies govern access on the basis of classification

of subjects and objects in the system. With regard to this model, security levels are assigned

to subjects and objects. The security level associated withan object, also called security clas-

sification, reflects the sensitivity of the information contained in the object, i.e, the potential

damage which could result from unauthorized disclosure of the information. The security level

associated with a subject, also called security clearance,reflects the subject’s trustworthiness

not to disclose sensitive information to subjects not cleared to see it [74, 76]. Security levels

may related with each other through the dominance relationship. The dominance relationship

is defined as follow [74]:

Definition 1 (Dominance)

A≥B (read asA dominatesB ) if and only if the information can flow fromB to A. The strictly

dominates relation> is defined byA > B if and only if A≥ B andA 6= B. We say thatA andB

arecomparableif A≥ B or B≥ A, otherwiseA andB areincomparable.
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Together with the dominance relationship, these security levels generally form a lattice

structure. Hence, MAC policy is sometimes referred to as a lattice-based policy [74]. We now

discuss different types of the mandatory access control model.

2.1.3.1 The Bell-LaPadula Model

Bell and LaPadula [11, 74] formalized the model to protect the information confidentiality.

With respect to the security level of objects and subjects, the Bell-LaPadula (BLP) model

[11, 23, 74] grants accessibilities based on two properties[74]:

• Simple-Security Property:Subjectscan read objecto only if λ(s)≥ λ(o) whereλ(s) and

λ(o) are security level ofs ando (no-readupproperty)

• ⋆-Property (Star-Property):Subjectscan write objectoonly if λ(s)≤ λ(o) (no-writedown

property)

With the simple-security property, we can prevent subjectsfrom being able to read infor-

mation that dominates their clearance level and the⋆-property prevents subjects from writing

the information to the lower security level. Satisfaction of both properties ensure the system

confidentiality. However, the system still lacks the systemintegrity because the⋆-property al-

lows the subject at the dominated security level to write theinformation to an object belonging

to the dominating security level. Hence, the subject can corrupt the information at dominating

level.

2.1.3.2 The Biba’s Integrity Model

As the name imply, Biba [14] designed the Biba model to achieve the information integrity.

Unlike BLP model, the accessibility in Biba model is based onthe integrity level. The access

is granted with respect to two properties [74]:

• Simple-Integrity Property:Subjects can read objecto only if ω(s) ≤ ω(o) whereω(s)

andω(o) are integrity level ofs ando (no-readdownproperty)
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• Integrity⋆-Property:Subjectscan write objecto only if ω(s)≥ ω(o) (no-writeupprop-

erty)

Satifying both properties prevent the information from integrity violation. However, the

model suffers from the confidentiality problem because the integrity ⋆-property allows the

subject to write his data to the object of the lower integrityclassification (lower secrecy). This

can later lead to the Trojan Horse problem.

To overcome those problems discussed in Sections 2.1.3.1 and 2.1.3.2, a composite model

which can achieve both confidentiality and integrity is needed. Sandhu describes in [74] how

to combine the BLP model and the Biba model using lattices to achieve such model.

2.1.4 The Clark-Wilson Model

Clark and Wilson described the differences between commercial and military security re-

quirements in [20]. The authors argue that MAC policies lackadequate flexibility, and the

primary concern for most commercial applications is the information integrity, rather than se-

crecy. Integrity refers to the accuracy and authenticity ofinformation, as well as the need to

ensure that objects are modified only in authorized ways by authorized personnel [23].

To ensure the information integrity, the model relies on twoprinciples [20, 23]:

• Well-formed transactions:This constraint ensures that all data that starts in the valid

state will remain in valid state after the execution of the transaction.

• Separation of duties:This constraint prevents the authorized subjects from modifying

the information in the improper way. This goal is achieved byseparating all critical

operations into multiple subparts and requiring differentperson perform each subpart.

For example, to authorize the check, we divide the process into check issuingandcheck

authorizing. Check issuingtask has to be done by the clerk, whilecheck authorizingtask

has to be done by the account manager.

Unlike the BLP and Biba models, where the accessibility relies on the information flow

controlled at the operating system kernel level. In Clark-Wilson’s approach, the model ensures
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that information is modified only in authorized ways by authorized people. Such requirement

relies on the application-level controls which yield more flexible control that cannot be achieve

from the kernel level controls [23].

2.1.5 Role-Based Access Control Model

Role-based access control model [24] is used for addressingthe access control needs of

commercial organizations. In RBAC permissions are attached to roles and users must be as-

signed to roles to get the permissions. Permissions determine what operations can be carried

out on resources under access control. A user must establisha session to activate a subset of

roles to which the user is assigned. Each user can activate multiple sessions, however, each

session is associated with only one user. The operations that a user can perform in a session

depend on the roles activated in that session and the permissions associated with those roles.

RBAC also supports role hierarchies. Role hierarchies define an inheritance relationship be-

tween roles. To prevent conflict of interests that arise in anorganization, RBAC allows the

specification of Static and Dynamic Separation of Duty constraints. The summarization of

RBAC components can be shown in Figure 2.3.

Figure 2.3: RBAC Components

RBAC approach provides several benefits [23, 24, 40, 75, 76] including:
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• Security Management:RBAC model specifies user authorizations by breaking this task

into two parts, one which assigns users to roles and one whichassigns permissions for

objects to roles. This greatly simplifies security management. For instance, suppose a

user’s responsibilities change, say, due to a promotion. The user’s current roles can be

taken away and new roles assigned as appropriate for the new responsibilities. Similarly,

if there are any changes in the permission assignments, those changes can be done at the

role level without having to apply the changes to all users. And since the role structure

of the organization does not change frequently, assigning permissions to role make the

permissions management task easier.

• Data Abstraction:Instead of the read, write, execute permissions typically provided by

the operating systems, RBAC can establish abstract permissions, such as credit and debit

on an account object.

• Group Objects:RBAC provides a classification of users according to the activities they

execute. Similarly, such classification should be providedfor objects. Objects could be

classified according to their type (letters, manuals) or their application area (commercial

letters, advertising letters). Access authorizations of roles should then be on the basis of

object classes, not specific objects. For example, a secretary role can be given the au-

thorization to read and write the entire class of letters, instead of giving it explicit autho-

rization for each single letter. This approach has the advantage of making authorization

administration much easier and better controlled. Moreover, the accesses authorized on

each object are automatically determined according to the type of the object without the

need of specifying authorizations upon each object creation [76].

• Least Privilege Principle:User is allowed to be assigned to multiple roles. This allows

an user to sign on with the least privilege required for the particular task at hand. Users

authorized to powerful roles do not need to exercise them until those privileges are ac-

tually needed. This minimizes the danger of damage due to inadvertent errors or by

intruders masquerading as legitimate users [76].
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• De Facto Standard:Nowadays, RBAC is widely used as an industrial standard [28,58].

• Support Role Hierarchy:The structure of an organization in terms of lines of authority

can be modeled as an hierarchy. This organization structurecan be easily reflected in

RBAC in the form of a role hierarchy [75]. Role hierarchy is a relation among roles.

Roles higher up in the hierarchy are referred to assenior rolesand those lower down are

junior roles. The major motivation for adding role hierarchy to RBAC was to simplify

role management. Senior roles can inherit the permissions of junior roles, or a senior

role can activate a junior role, or do both depending on the nature of the hierarchy.

This obviates the need for separately assigning the same permissions to all members

belonging to a hierarchy.

• Support Separation of Duties:Separation of duties (SoD) enables the protection of the

fraud that might be caused by the user [80]. SoD constraints ensure that the invoca-

tion of mutually exclusive roles be required to complete a sensitive task [75]. Hence,

a deliberate fraud is more difficult to perpetrate because itrequires collusion of two or

more individuals or parties. RBAC supports invoking SoD constraints both statically and

dynamically.

• Policy Neutrality:RBAC is policy neutral. It can be configured to model the specification

of other access control e.g. MAC policies in which system administrator maintains the

access matrix or DAC policies in which users create and update security policies for their

devices [53, 59, 60, 73].

The Spatio-Temporal Role-Based Access Control (STRBAC) model proposed in this dis-

sertation is an extension of NIST RBAC model [23, 24]. The extensions are with respect to

augmenting the time dimension and location dimension to thecore components of the existing

RBAC model.
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2.1.5.1 Context Aware Role-Based Access Control Model

With the increase in the growth of wireless networks and sensor and mobile devices, re-

searchers have also worked on extending RBAC to recognize the context information to support

the ubiquitous computing applications.

Sampemane et al. [71] present a new access control model for active spaces. Active space

denotes the computing environment integrating physical spaces and embedded computing soft-

ware and hardware entities. The active space allows interactive exchange of information be-

tween the user and the space. Environmental aspects are adopted into the access control model

for active spaces, and the space roles are introduced into the implementation of the access con-

trol model based on RBAC. The model supports specification ofMAC policies in which system

administrator maintains the access matrix and DAC policiesin which users create and update

security policies for their devices.

Covington et al. [22] introduce environment roles in a generalized RBAC model (GRBAC)

to help control access control to private information and resources in ubiquitous computing

applications. The environments roles differ from the subject roles in RBAC but do have similar

properties including role activation, role hierarchy and separation of duty. In the access control

framework enabled by environment roles, each element of permission assignment is associated

with a set of environment roles, and environment roles are activated according to the changing

conditions specified in environmental conditions; in this way, environmental properties like

time and location are introduced into the access control framework. In a subsequent work [21],

Covington et al. describe the Context-Aware Security Architecture (CASA) which is an imple-

mentation of the GRBAC model. The access control is providedby the security services in the

architecture. In CASA, polices are expressed as roles and managed by the security manage-

ment service, authentication and authorization services are used to verify user credentials and

determine access to the system resources. The environmental role activation services manage

environmental role activation and deactivation accordingto the environment variables collected

by the context management services.

Ya-Jun et al. [89] propose Trust Based Access Control (TBAC), the extension of the Role
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Based Access Control model (RBAC), for ubiquitous computing application where users are

not known in advance. The access privileges of a user dependson his trust level which in turn

depend on contextual information. The model is based on the basic RBAC model and does not

take into account the role hierarchy and separation of duty constraint. Our work also focuses

on such feature of RBAC. Moreover, we also study on the effectof trust on the operation such

as delegation of authorities.

Chakraborty et al. [17] propose another trust-based authorization model called TrustBAC.

The model is the extension of the hierarchical RBAC model. Inthis model, user can activate

the role and invoke the permissions assigned to that role based on histrust level. User’s trust

level can be obtained from the calculation based on three factors–user’s past behavior, knowl-

edge about user, and recommendation provided by others about the user. The trust level will

be updated periodically. Chakraborty’s model also introduce the concept oftrust dominance

which is equivalent to the inheritance hierarchy. The modelhowever, does not take into ac-

count the activation hierarchy nor the separation of duty. Our trust-based access control model

fills in this gap.

2.1.5.2 Temporal Role-Based Access Control Model

Other extensions to RBAC include the Temporal Role-Based Access Control Model (TR-

BAC) proposed by Bertino et al. [12]. This work adds the time dimension to the RBAC model.

The authors in this paper introduce the concept ofrole enablingandrole disabling. Temporal

constraints determine when the roles can be enabled or disabled. A role can be activated only

if it has been enabled. Joshi et al.[40, 41, 43] extend this work by proposing the Generalized

Temporal Role Based Access Control Model (GTRBAC). The authors identify two basic types

of temporal hierarchy. The first is the permission inheritance hierarchy where a senior rolex

inherits the permission of a junior roley. The second is the role activation hierarchy where a

user assigned to a senior role can activate a junior role. Theauthors also propose Time-Based

SoD. In [40, 42, 43], the authors discuss two forms of SSoD with the existing of temporal

information–theWeak FormandStrong Form. The Weak Form states that no two conflicting
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roles can be assigned to the same user at the same time. The Strong Form is equivalent to the

non-temporal RBAC i.e. it states that no two conflicting roles can be assigned to the same user

at any time. The same semantics can be applied to the DSoD. Themodel focus on the User-

Role assignment only. The definition of SoD in our proposed model is based on the one in

GTRBAC model. However, we enhance the constraints to support spatial information. More-

over, we fill the gap existing in GTRBAC model by introducing the definition of the other form

of SSoD (Permission-Role assignment).

2.1.5.3 Spatial Role-Based Access Control Model

Researchers have also extended RBAC to incorporate spatialinformation [13, 64]. Bertino

et al. propose the GEO-HRBAC–the GEO-RBAC model supportingthe Spatial Role-Hierarchy

in [13]. In GEO-HRBAC model, role activation is based on the location of the user. Moreover,

the senior role can inherits permissions assigned to its junior role only when the user of the

senior role is in junior role’s enabled location. The model does not deal with separation of

duties.

Another work incorporating spatial information is by Ray etal. [64]. Here again, the

authors propose how each component of RBAC is influenced by location. The authors define

their formal model using the Z specification language. Role hierarchy and separation of duties

are not addressed in this paper. None of these works discusses the impact of time on location.

2.1.5.4 Spatio-Temporal Role-Based Access Control Model

Incorporating both time and location in RBAC is addressed byseveral works [18, 72].

Chandrans work combines the main features of GTRBAC and GEO-RBAC. Here again, role

is enabled by time constraints. The user can activate the role if the role is enabled and the

user satisfies the location constraints associated with role activation. Our Spatio-Temporal

RBAC model is closely related to this work. The similarity isthat in both the models role

activation occurs when temporal and spatial constraints are satisfied. However, there are a

number of points where we differ. First, in Chandran’s work,role assignment is not dependent

on location or time. A number of motivating examples indicate that role assignment should be
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dependent on role and time. Consequently, we incorporate this feature in our model. Second,

in Chandran’s work, when a role can be activated all the permissions associated with the role

can be invoked. This may not be true in real world. For instance, a system administrator’s

role can be activated from 9:00 a.m. to 9:00 p.m. everyday. However, he can perform backup

only during 8:00 to 9:00 p.m. on Fridays. Chandran’s model cannot express this situation. We

associate a permission with additional location and temporal constraints that must be satisfied

before a permission can be invoked. Third, Chandran’s work does not discuss the impact of

location and time on role hierarchy or separation of duty. Wepropose different types of time

and location based hierarchy and separation of duty constraints in our model which will be

useful for real-world applications.

Samuel et al. [72] propose GST-RBAC which incorporates topological spatial constraints

to the existing GTRBAC model. The authors do this by augmenting GTRBAC operations,

namely, role enabling, user-role assignment, role-permission assignment, and role-activation

with spatial constraints. The operations are allowed only if the spatial and temporal constraints

are satisfied. The model also introduces the notion of Spatial Role Hierarchy and Spatial

Separation of Duty (spSoD) constraints. Although the goal of the model is similar to our

work, Samuel’s model is different from our work in various ofpoints. First, again the spatial

and temporal constraints are not applied to the permissionsassigned to role. When a role can

be activated all the permissions a ssociated with the role can be invoked. This may not be true

in the real world as illustrated by the example in the summaryof Chandran’s work. Second,

Samuel’s work only discuss the permission inheritance typeof role hierarchy. This may not

be sufficient in the real world. For example, a project manager may be able to activate the

code developer role but we should not allow him to inherit permissions from the developer

role for the responsibility purpose. To resolve this scenario, we also include the role activation

hierarchy in our work. Third, in Samuel’s work, the hierarchical relationship mainly focus on

the spatial constraints. The model assume that both senior role and junior role are temporally

enabled i.e. both roles satisfy the temporal constraints. This also may not be true. For instance,

the account auditor role may inherits all permissions from the accountant role. He can use the
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inherited permissions at any time and at any place. We associate the time as well as location

constraints in our model to handle such requirement. Fourth, Samuel’s work discuss only the

dynamic separation of duty. We argue that this might not be enough for the real world. For

instance, we cannot allow the check writer and check authorizer role to be assigned to the same

user. Consequently, we include the static separation of duty to our model. Fifth, Samuel’s

work does not incorporate time constraints into the separation of duty. Two conflict roles are

allowed to activate if user is in the different location during the same time period when both

roles are enabled. This may not sufficient for the real world situation. For example, if a user has

activated the Graduate Teaching Assistant role in his office, he should not be able to activate

the role of Lab Operator at anywhere during the same time period. To handle this situation, we

also incorporate the time constraints into both types of separation of duties in our work.

Chen and Crampton develop the graph based representation for the spatio-temporal RBAC

in [19]. All RBAC components are represented by vertices while the assignment and hier-

archical relationships are represented by the edges of the directed graph. The model can be

categorized into three types i.e. standard, strong, and weak model. For the standard model,

componentv1 is said to be authorized to componentvn if all vertices along the authorization

path satisfy the spatio-temporal constraints. For the strong model, componentv1 is said to

be authorized to componentvn if all vertices together with the edges along the authorization

path satisfy the spatio-temporal constraints. And in the weak model, componentv1 is said to

be authorized to componentvn if both vertices satisfy the spatio-temporal constraints.The

model has a well-defined semantics. However, it does not address separation of duty or delega-

tion constraints. It also does not take into account the spatio-temporal attributes of the object

before determining access.

2.1.6 Other Spatio-Temporal Access Control Models

Location-based access control has been addressed in other works not pertaining to RBAC

[27, 48, 63]. Many researchers have developed the non-RBAC based access control which

support the usage of spatio-temporal information.
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Atluri and Chun [5, 6] propose the Geospatial Data Authorization Model (GSAM), which

is the authorization model for the Geospatial information.The accessibility to the information

is provided based on the relationship between the geospatial object and the credential of the

requester, which is the requester geospatial information.To access the specific geospatial in-

formation of the object, the credential that the user own hasto match with the corresponding

credential expression defined as an authorisation for that object. The authorization is valid only

during the specified period which defined by the temporal termof the authorization.

Ardagna et al. [4] present the Location-Based Access Control (LBAC) model. In this

model, the requester can be granted or denied access by checking her location as well as her

credentials. The examples of the location-based information of the requester used in the model

are: the location of the requester, her velocity, and the number of people in that location.

All these information form the location conditions which later can be used to determine the

accessibility of the requester.

Yu et al. [90] propose LTAM, a location-temporal authorization model which focuses on

controlling access to the different locations. For example, access rules may have temporal

constraints that can specify when a user can enter or leave a location or how many times a user

can enter a location. However, it does not address the issue of where and when a subject can

access a given object. And since this model is based on DAC, authorization management is

non-trivial.

Pu et al. [61] present the context access control model, called CACM, which integrates

the context information to theUCONABC usage control model. To access the resource, the user

must satisfy the predefined combination of authorization, obligation, and condition constraints.

The value of conditional status can be changed as the environmental situation is being changed

(e.g. the change of time, location associated with user). Nonetheless, the impacts on the model

components as a result from introducing the context information are not mentioned in the work.

Context Sensitive Access Control (CSAC) [29] proposed by Hulsebosch et al. focus on

using context information such as time, location, velocityto control the accessibility of services

while preserving the privacy of user information. Hengartner et al. [27] discuss how location
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information pertaining to a user can be securely accessed.

2.2 Access Control Model Analysis

A lot of work also appears in the area of analysis of security policies. Researchers have

used formal logic for specifying authorization policies sothat they can be analyzed. Many

work appears that attempt to analyze RBAC specifications. Some have used the Z modeling

language for specifying RBAC [91] and LRBAC [64]. Although Zlanguage can represent

RBAC and its constraints in the formal manner, the language itself lacks the tool to support

the automatic analysis of the formalized model. Others haveused an extension of the Uni-

fied Modeling Language (UML) [65] called parameterized UML to visualize the properties of

RBAC constraints. The model describes how one can visualizethe conflicts that may occur

with RBAC constraints. However, it still lacks the ability to perform automatic model analysis.

Researchers have also advocated the use of Alloy for modeling RBAC specifications. In

[92], Zao et al. model basic features of RBAC, role hierarchy, and static separation of du-

ties. The author briefly illustrates how to use Alloy to modelthe Bell-LaPadula access control

model.

Schaad et al. model user-role assignment, role-permissionassignment, role hierarchy, and

static separation of duties features of RBAC extension using Alloy in [77]. The authors do not

model role activation hierarchy, dynamic separation of duties or the delegation operation. The

authors briefly describe how to analyze conflicts in the context of the model.

Samuel et al. [72] illustrate how GST-RBAC can be specified inAlloy. They describe how

the various GST-RBAC functionalities, that is, user-role assignment, role-permission assign-

ment, and user-role activation, can be specified by Alloy. However, this work does not focus

on how to identify interactions between features that result in conflicts.

Although Alloy supports automated analysis, it has limitations with respect to the types

of verifications it can perform. For example, analyzing and understanding the behavior of the

application using Alloy is non-trivial. Such analysis is needed for dynamic systems where

we need to ensure that the system does not enter an undesirable state. Towards this end, re-
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searchers [7, 39, 46, 49, 62] have investigated alternate approaches, such as, Coloured Petri

Nets (CPNs) [35, 38, 46] for automated analysis. CPN allows one to represent the model in a

graphical language, has a well-defined semantics and has automated tools for doing simulation

and verification.

Rasmussen and Singh [62] show how CPN is used in designing thePRISMA C96 intruder

alarm system. The interactions of components were modeled and verified using CPN to detect

if the configurations have any conflicts. CPN has also been used in access control model

verification. Jiang et al. [39] develop a CPN model to verify the security properties of the Bell

LaPadula (BLP) model. Laborde et al. propose the use of CPN for analyzing the traditional

RBAC-based policies of network security mechanisms in [46]. This work focuses on verifying

confidentiality, integrity, availability, and filtering rules.

Lu et al. [49] show how access control properties of workflowscan be verified using CPNs.

Specifically, they describe how to formalize the control flow, authorization rules, and separation

of duty constraints in a workflow in the presence of role activation hierarchy. The authors first

show how to model each part (namely, control flow, authorization rules, and separation of

duty) in isolation. Subsequently, the authors propose an approach for producing the integrated

model which allows one to study the interactions of the parts, such as RBAC authorization

policy with separation of duty constraints. Reachability analysis is used to detect conflicts

between the features. The size of the integrated model increases exponentially when new

entities are added. To prevent state explosion during reachability analysis, the authors introduce

two rules for reducing the size of the model. The model analyzed by the authors do not support

many features which are needed in workflow applications: permission inheritance hierarchy,

separation of duty for permission-role assignment, and delegation.

Atluri et al. [8] propose an authorization model to use for workflows. The model specifies

constraints that allows authorized subjects to gain accesson the required objects for the dura-

tion of the task. Subsequently, the authors extend this workto support task-based separation

of duty constraints and show how this extended model can be specified using CPN [7]. The

authors then show how to do a reachability analysis to check whether the given tasks can be

30



executed in the presence of authorization constraints.

Shafiq et al. [78] show how the various constraints of GTRBAC,such as, cardinality con-

straints, SoD constraints, and role hierarchy can be modeled using CPN. The reachability anal-

ysis reveals the presence of infeasible paths where an entity cannot invoke the privileges as-

signed to him. However, analyzing the interaction of constraints is not discussed in these

works.

Samrat et al. [51] demonstrate how to analyze the propertiesof GTRBAC model using

timed automata. The authors propose the methodology to transform GTRBAC into the state

transition model. The model maps the behavior of the GTRBAC components such as users,

roles, and permissions. The different behaviors of components are captured by creating the

timed automaton corresponding to each types of interactions. A desirable set of security prop-

erties is constructed from the GTRBAC constraints. These properties are later used for the

model verification process. The verification process is automatically done by using a time

automata based verification tool called Uppaal [9, 10]. Although, this approach makes it pos-

sible to perform an automated analysis of the model, there are two major limitations. First,

because the number of timed automaton is varied by the numberof components, the approach

is affected by the state space explosion problem. Therefore, verifying the large scale system

by using this approach still remains a challenge. And second, because every time the changes

occur to the components of the relationships between them, the set of the corresponding timed

automatons have to be changed i.e. the existing timed automatons must be updated or the new

timed automatons must be added. The process of adding or updating the timed automatons

requires some time. This makes this approach not suitable for the pervasive computing ap-

plication which the configuration is frequently changed. Our work present a methodology to

reduce the scope of analysis to rectify the former issue. Forthe latter issue, our verification

methodology can handle such changes in the access control model configuration by updating

only the set of relationships or components affected by the modification of the access control

model configuration while the core part of the verification model remains unchanged.

31



2.3 Chapter Summary

In this chapter, we briefly discuss the work related to two research areas in which this

dissertation is focusing on, namely, the access control model and its analysis. Regarding the

access control model, our research indicated that none of these work provide an access control

model which fully support the requirements of the pervasivecomputing applications discussed

in Chapter 1. In subsequent chapters, we will discuss our access control models which fulfill

this gap.
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Chapter 3

The Spatio-Temporal Role Based Access
Control Model

Our preliminary investigation reveals the following: Pervasive computing applications need

different kinds of policies for protecting sensitive resources. Authorization policies will be used

to protect resources from unauthorized access. Simple authorization policies are specified by

subject, object, and permissions, where the permissions specify what operations the subject can

perform on the object. More complex authorization policiesalso have conditions specifying

access constraints. Consider our running example the a cardiac patient living by himself in

a smart home. Simple authorization policies may be defined that allow only the responsible

doctor to be able to monitor the patient’s data collected by sensors in the smart home. Policies

are needed to prevent unauthorized disclosure or modification of the data that is transmitted to

the different sensors.

For critical applications, delegation policies are needed. A delegation permits subjects to

temporarily transfer some of their privileges to other subjects. Pervasive computing applica-

tions are dynamic in nature and the set of users and resourcesare not known in advance. It

is possible that a user/role for doing a specific task is temporarily unavailable and another

user/role must be granted access during this time to complete it. This necessitates that the

model be able to support delegation. Moreover, different types of delegation needs to be sup-

ported because of the unpredictability of the application.A delegation policy may also have

conditions suggesting the delegation constraints. For example, a delegation policy will enable
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the emergency room doctor to temporarily put the cadio pacermonitoring the cardiac patient’s

heart rate to a sleep mode. If the local hospital does not havequalified cardiologists to evaluate

the patient’s condition, the job is delegated to external experts. The responsible cardiologist

may specify the conditions the experts must satisfy before the job can be delegated (for in-

stance, working experience in the area of cardiology).

In pervasive computing applications, the access decisionscannot be based solely on the

attributes of users and resources. For instance, we may wantaccess to the patient information

be enabled when a doctor enters a patient room and it to be disabled when he leaves the room.

Such types of access control can only be provided if we take environmental contexts, such

as, time and location, into account before making access decisions. Thus, the access control

model for pervasive computing applications must allow for the specification and checking of

environmental conditions.

As a result of our study different access control models, we decided to base our work on the

RBAC model for the following reasons: First, reinventing a new kind of access control is the

time consuming process. Since RBAC is widely use as an industrial standard, developing the

model based on RBAC reduces the complexity in the implementation phase. Second, RBAC

model has powerful access control management. In RBAC, permissions are assign to roles

not to users, hence, if there are any changes in the permission assignments, those changes

can be done at the role level without having to apply the changes to all users. Since the role

structure of the organization does not change frequently, assigning permissions to role make

managing permissions easier. Furthermore, RBAC supports concept of role hierarchy. In role

hierarchy, the senior role in the hierarchy inherits all permissions assigned to junior role. This

idea helps us to avoid the redundancy in assigning the same set of permissions to the senior role.

Third, RBAC supports separation of duty constraints and delegation of authority. Basically,

separation of duty states that no single individual should have control over two or more phases

of a transaction or operation. Thus, a deliberate fraud is more difficult to perpetrate because

it requires collusion of two or more individuals or parties.Finally, RBAC is policy neutral.

It can model the specification of other access control policies, such as MAC or DAC policies
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[53, 59, 60, 73] as well.

In this chapter, we describe how we incorporate the spatio-temporal constraints to the com-

ponents of RBAC model.

3.1 The Spatio-Temporal Role Based Access Control (STR-
BAC) Model

In order to extend the RBAC model to be able to use the spatio-temporal information to

determine whether a user has access to a given object, we needto understand how RBAC

components and their relationships are affected by spatio-temporal information.

From Section 3.1.1 to 3.1.2, we propose the STRBAC model entities. Next, we discuss

the spatio-temporal role hierarchies in Section 3.2. Then,we describe the variations of spatio-

temporal separation of duty constraints in 3.3. The preliminary version of this model has been

proposed in [67, 83].

3.1.1 Representing Location and Time

3.1.1.1 Representing Location

In order to perform location-based access control, we need to perform operations on loca-

tion information and protect the location information. In this section, we formalize the concept

of location [13, 18] and propose the location comparison operators that are used in our model.

There are two types of locations:physicalandlogical. All users and objects are associated

with locations that correspond to the physical world. Theseare referred to as the physical

locations. A physical location is formally defined by a set ofpoints in a three-dimensional

geometric space.

Definition 2 (Physical Location)

A physical locationPLoci is a non-empty set of points{pi , p j , . . . , pn} where a pointpk is

represented by three co-ordinates.

Physical locations are grouped into symbolic representations that will be used by appli-

cations. We refer to these symbolic representations as logical locations. Examples of logical
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locations are Fort Collins, Colorado etc.

Definition 3 (Logical Location)

A logical location is an abstract notion for one or more physical locations.

We assume the existence of two translation functions,m andm′, that convert from logical

locations to physical locations and vice-versa.

Definition 4 (Mapping Functions mand m′)

m is a total function that converts a physical location into a logical one.m′ is a total function

that converts a logical location into a physical one. LetP be the set of all possible physical

locations andL be the set of all logical locations. The following formalizes the functions.

• m : P→ L.

• m′ : L→ P

• For any logical locationLoci , m(m′(Loci)) = Loci .

• For any physical locationPLocj , m′(m(PLocj)) = PLocj .

Different kinds of relationships may exist between a pair oflocations. We discuss one such

relationship, known ascontainment, that will be used in this paper. Containment formalizes

the idea whether one location is contained within another. Intuitively, a physical locationplocj

is contained in another physical locationplock, if all points in plocj also belong toplock. This

is formalized as follows.

Definition 5 (Containment Relation)

A physical locationplocj is said to be contained in another physical locationplock, denoted

as, plocj ⊆ plock, if the following condition holds:∀pi ∈ plocj , pi ∈ plock. The location

plocj is called the contained location andplock is referred to as the containing or the enclosing

location. A logical locationllocm is contained inllocn, denoted as,llocm ⊆ llocn, if and

only if the physical location corresponding tollocm is contained within that ofllocm, that is

m′(llocm)⊆m′(llocn).
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Note that, a physical location may be contained in a logical location or vice-versa. In such

cases, we use the mapping functions to convert the logical locations into physical ones and then

test whether one is contained within the other. We assume theexistence of a logical location

calleduniversethat contains all other locations. In the rest of the section, we do not discuss

physical locations any more. The locations referred to are logical locations.

3.1.1.2 Representing Time

Our model uses two kinds of temporal information. It is necessary to distinguish between

these two kinds of information because they have very different semantics. The first is known

as time instant and the other is time interval. Time can be represented as a set of discrete points

on the time line.

Definition 6 (Time Instant)

A time instantis one discrete point on the time line.

The exact granularity of a time instant will be application dependent. For instance, in some

application a time instant may be measured at the nanosecondlevel and in another one it may

be specified at the millisecond level.

Definition 7 (Time Interval)

A time intervalis a set of time instances. When the time instances making up an interval are

consecutive, we refer to the interval as acontinuousone. Otherwise, the interval is said to be

non-continuous.

Example of a continuous interval is 9:00 a.m. to 3:00 p.m. on 25th December. Example

of a non-continuous interval is 9:00 a.m. to 6:00 p.m. on Mondays to Fridays in the month of

March. Some researchers refer to time intervals as time expressions. We use the notationti ∈ d

to mean thatti is a time instance in the time intervald.

Two time intervals can be related by any of the following relations: disjoint, equality, and

overlapping. Two time intervalstvi and tv j are disjoint if the intersection of the set of time

instances intvi with those oftv j results in the null set. Two time intervalstvi andtv j are equal

if the set of time instances intvi is equal to those oftv j . Two time intervalstvi and tv j are
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overlapping if the intersection of the set of time instancesin tvi with those oftv j results in a

non-empty set. A special case of overlapping relation is referred to ascontainment. A time

interval tvi is contained in another intervaltv j if the set of time instances intvi is a subset of

those intv j . We formally denote this astvi � tv j .

3.1.2 Relationship of Core-RBAC Entities with Time and Location

In this section, we discuss how the different entities of core RBAC, namely,Users, Roles,

Sessions, Permissions, andObjects, are associated with location and time.

3.1.2.1 Users

We assume that each valid user, interested in doing some location-sensitive operation, car-

ries a locating device which is able to track his location. The location of a user changes with

time. The relationUserLocation(u, t) gives the location of the user at any given time instantt.

Since a user can be associated with only one location at any given point of time, we have the

following constraint:

UserLocation(u, t) = l i ∧UserLocation(u, t) = l j ⇔ (l i ⊆ l j)∨ (l j ⊆ l i)

We define a similar functionUserLocations(u,d) that gives the location of the user during

the time intervald. Note that, a single location can be associated with multiple users at any

given point of time.

3.1.2.2 Objects

Objects can be physical or logical. Example of a physical object is a computer. Files are ex-

amples of logical objects. Physical objects have devices that transmit their location information

with the timestamp. Logical objects are stored in physical objects. The location and timestamp

of a logical object corresponds to the location and time of the physical object containing the

logical object. We assume that each object is associated with one location at any given instant

of time. Each location can be associated with many objects. The functionObjLocation(o,t)

takes as input an objecto and a time instancet and returns the location associated with the
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object at timet. Similarly, the functionObjLocations(o,d)takes as input an objecto and time

intervald and returns the location associated with the object.

3.1.2.3 Roles

We have three types of relations with roles. These are user-role assignment, user-role acti-

vation, and permission-role assignment. We begin by focusing on user-role assignment. Often

times, the assignment of user to roles is location and time dependent. For instance, a person

can be assigned the role of U.S. citizen only in certain designated locations and at certain times

only. To get the role of conference attendee, a person must register at the conference location

during specific time intervals. Thus, for a user to be assigned a role, he must be in designated

locations during specific time intervals. In our model, a user must satisfy spatial and temporal

constraints before roles can be assigned. We capture this with the concept ofrole allocation.

A role is said to beallocatedwhen it satisfies the temporal and spatial constraints needed for

role assignment. A role can be assigned once it has been allocated. RoleAllocLoc(r) gives

the set of locations where the role can be allocated.RoleAllocDur(r) gives the time inter-

val where the role can be allocated. Some roles can be allocated anywhere, in such cases

RoleAllocLoc(s) = universe. Similarly, if role p can be assigned at any time, we specify

RoleAllocDur(p) = always.

Some roles can be activated only if the user is in some specificlocations. For instance, the

role of audience of a theater can be activated only if the useris in the theater when the show

is on. The role of conference attendee can be activated only if the user is in the conference

site while the conference is in session. In short, the user must satisfy temporal and location

constraints before a role can be activated. We borrow the concept ofrole-enabling[12, 43] to

describe this. A role is said to beenabledif it satisfies the temporal and location constraints

needed to activate it. A role can be activated only if it has been enabled.RoleEnableLoc(r)

gives the location where roler can be activated andRoleEnableDur(r) gives the time interval

when the role can be activated.

The predicateUserRoleAssign(u, r,d, l) states that the useru is assigned to roler during
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the time intervald and locationl . For this predicate to hold, the location of the user when

the role was assigned must be in one of the locations where therole allocation can take place.

Moreover, the time of role assignment must be in the intervalwhen role allocation can take

place.

UserRoleAssign(u, r,d, l)

⇒ (UserLocation(u,d) = l)∧ (l ⊆ RoleAllocLoc(r))∧ (d⊆RoleAllocDur(r))

The predicateUserRoleActivate(u, r,d, l) is true if the useru activated roler for the interval

d at locationl . This predicate implies that the location of the user duringthe role activation

must be a subset of the allowable locations for the activatedrole and all time instances when

the role remains activated must belong to the duration when the role can be activated and the

role can be activated only if it is assigned.

UserRoleActivate(u, r,d, l)

⇒ (l ⊆RoleEnableLoc(r)) ∧(d⊆ RoleEnableDur(r))∧UserRoleAssign(u, r,d, l)

The additional constraints imposed upon the model necessitates changing the preconditions

of the functionsAssignRoleandActivateRole. The permission role assignment is discussed

later.

3.1.2.4 Sessions

In mobile computing or pervasive computing environments, we have different types of

sessions that can be initiated by the user. Some of these sessions can be location-dependent,

others not. Thus, sessions are classified into different types. Each instance of a session is

associated with some type of a session. The type of session instances is given by the function

Type(s). The type of the session determines the allowable location.The allowable location

for a session typest is given by the functionSessionLoc(st). When a useru wants to create

a sessionsi, the location of the user for the entire duration of the session must be contained

within the location associated with the session. The predicateSessionUser(u,s,d) indicates

that a useru has initiated a sessions for durationd.
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SessionUser(u,s,d)⇒ (UserLocation(u,d)⊆ SessionLoc(Type(s)))

Since sessions are associated with locations, not all rolescan be activated within some ses-

sion. The predicateSessionRole(u, r,s,d, l) states that useru initiates a sessions and activates

a role for durationd and at locationl .

SessionRole(u, r,s,d, l)⇒UserRoleActivate(u, r,d, l)∧ l ⊆ SessionLoc(Type(s)))

3.1.2.5 Permissions

The goal of our model is to provide more security than their traditional counterparts. This

happens because the time and location of a user and an object are taken into account before

making the access decisions. Our model also allows us to model real-world requirements where

access decision is contingent upon the time and location associated with the user and the ob-

ject. For example, a teller may access the bank confidential file if and only if he is in the bank

and the file location is the bank secure room and the access is granted only during the working

hours. Our model should be capable of expressing such requirements.

Permissions are associated with roles, objects, and operations. We associate three additional

entities with permission to deal with spatial and temporal constraints: user location, object lo-

cation, and time. We define three functions to retrieve the values of these entities.PermRoleLoc(p, r)

specifies the allowable locations that a user playing the role r must be in for him to get permis-

sion p. PermOb jLoc(p,o) specifies the allowable locations that the objecto must be in so that

the user has permission to operate on the objecto. PermDur(p) specifies the allowable time

when the permission can be invoked.

We define another predicate which we termPermRoleAcquire(p,r,d,l). This predicate is true

if role r has permissionp for durationd at locationl . Note that, for this predicate to be true,

the time intervald must be contained in the duration where the permission can beinvoked and

the role can be enabled. Similarly, the locationl must be contained in the places where the

permission can be invoked and role can be enabled.

PermRoleAcquire(p, r,d, l)
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⇒ (l ⊆ (PermRoleLoc(p, r)∩RoleEnableLoc(r)))∧

(d⊆ (PermDur(p)∩RoleEnableDur(r)))

The predicatePermUserAcquire(u,o, p,d, l) means that useru can acquire the permission

p on objecto for durationd at locationl . This is possible only when the permissionp is

assigned some roler which can be activated duringd and at locationl , the user location and

object location match those specified in the permission, thedurationd matches that specified

in the permission.

PermRoleAcquire(p, r,d, l)∧UserRoleActivate(u, r,d, l)∧

(Ob jectLocation(o,d)⊆ PermOb jectLoc(p,o))⇒ PermUserAcquire(u,o, p,d, l)

3.2 Impact of Time and Location on Role-Hierarchy

The structure of an organization in terms of lines of authority can be modeled as an hier-

archy. This organization structure is reflected in RBAC in the form of a role hierarchy [75].

Role hierarchy is a relation among roles. This relation is transitive, and anti-symmetric. Roles

higher up in the hierarchy are referred to as senior roles andthose lower down are junior roles.

The major motivation for adding role hierarchy to RBAC was tosimplify role management. A

properly design role hierarchy allows efficient specification and management of access control

structure of the system.

Senior roles can inherit the permissions of junior roles, ora senior role can activate a junior

role, or do both depending on the nature of the hierarchy. This obviates the need for separately

assigning the same permissions to all members belonging to ahierarchy.

In the environment where the accessibility is based on the time and location, it is necessary

that the role hierarchy should evaluate the spatio-temporal information before allow the senior

role to inherits the junior role’s permissions or activate the junior role. In our model, each of

these hierarchies may be constrained by location and temporal constraints.
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3.2.0.6 The Spatio-Temporal Permission Inheritance Hierarchy

In the permission inheritance hierarchy, a senior rolex inherits the permission of a junior

roley. By incorporating various time and location constraints, we can have a number of differ-

ent hierarchical relationships in our model that are described below.

Definition 8 (Unrestricted Permission Inheritance Hierarchy)

Let x and y be roles such thatx ≥ y, that is, senior rolex has an unrestricted permission-

inheritance relation over junior roley. In such a case,x inheritsy’s permissions but not the

locations and time associated with it. This is formalized asfollows:

(x≥ y)∧PermRoleAcquire(p,y,d, l)⇒ PermRoleAcquire(p,x,always,universe)

Here, a senior role inherits the junior roles permissions but not the spatial and temporal

constraints associated with it. For example,account auditorrole inherits the permissions from

theaccountantrole but he can use the permissions at any time and at any place.

Definition 9 (Time Restricted Permission Inheritance Hierarchy)

Let x andy be roles such thatx≥t y, that is, senior rolex has a time restricted permission-

inheritance relation over junior roley. In such a case,x inherit’s y’s permissions together with

the temporal constraints associated with the permission. This is formalized as follows:

(x≥t y)∧PermRoleAcquire(p,y,d, l)⇒ PermRoleAcquire(p,x,d,universe)

Here, a senior role inherits the junior role’s permissions but the duration when the permis-

sions are valid are those that are associated with the juniorrole. For example, acontact author

can inherit the permissions of theauthoruntil the paper is submitted.

Definition 10 (Location Restricted Permission InheritanceHierarchy)

Let x andy be roles such thatx≥l y, that is, senior rolex has a location restricted permission-

inheritance relation over junior roley. In such a case,x inherit’s y’s permissions together with

the location constraints associated with the permission. This is formalized as follows:

(x≥l y)∧PermRoleAcquire(p,y,d, l)⇒ PermRoleAcquire(p,x,always, l)
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Here, a senior role inherits the junior roles permissions but these permissions are restricted

to the locations imposed on the junior roles. For example, atop secret scientistinherits the

permission oftop secret citizenonly when he is in top secret locations.

Definition 11 (Time Location Restricted Permission Inheritance Hierarchy)

Let x and y be roles such thatx ≥tl y, that is, senior rolex has a time-location restricted

permission-inheritance relation over junior roley. In such a case,x inherit’s y’s permissions

together with the temporal and location constraints associated with the permission. This is

formalized as follows:

(x≥tl y)∧PermRoleAcquire(p,y,d, l)⇒ PermRoleAcquire(p,x,d, l)

Here, a senior role inherits the junior roles permissions together with the spatial and tempo-

ral constraints imposed upon those of the junior role. For example,daytime doctorrole inherits

permission ofdaytime nurserole only when he is in the hospital during the daytime.

3.2.0.7 The Spatio-Temporal Role Activation Hierarchy

In the role activation hierarchy, a user assigned to a seniorrole can activate a junior role.

By incorporating various time and location constraints, wecan have a number of different

hierarchical relationships in our model that are describedbelow.

Definition 12 (Unrestricted Activation Hierarchy)

Let x andy be roles such thatx < y, that is, senior rolex has a role-activation relation over

junior roley. Then, a user assigned to rolex can activate roley at any time and at any place.

This is formalized as follows:

(x < y)∧UserRoleActivate(u,x,d, l)⇒UserRoleActivate(u,y,always,universe)

Here, a user who can activate a senior role can also activate ajunior role at any time and

at any place. For example, aproject managercan activate thecode developerrole at any time

and at any place.
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Definition 13 (Time Restricted Activation Hierarchy)

Let x andy be roles such thatx <t y, that is, senior rolex has a role-activation relation over

junior roley. Then, a user assigned to rolex can activate roley only at the time when roley can

be enabled. This is formalized as follows:

(x <t y)∧UserRoleActivate(u,x,d, l)∧ (d⊆RoleEnableDur(y))

⇒UserRoleActivate(u,y,d,universe)

Here again, a user who can activate a senior role can activatea junior role only during

the time when the junior role can be activated. For example, aprogram chaircan activate a

reviewerrole only during the review period.

Definition 14 (Location Restricted Activation Hierarchy)

Let x andy be roles such thatx <l y, that is, senior rolex has a role-activation relation over

junior roley. Then, a user assigned to rolex can activate roley only at the places when roley

can be enabled. This is formalized as follows:

(x <l y)∧UserRoleActivate(u,x,d, l)∧ l ⊆ RoleEnableLoc(y)

⇒UserRoleActivate(u,y,always, l)

Here again, a user who can activate a senior role can also activate a junior role but the acti-

vation is limited to the place where the junior role can be activated. For example, aDepartment

Chair can activate aStaffrole only when he is in the Department.

Definition 15 (Time Location Restricted Activation Hierarchy)

Let x andy be roles such thatx <tl y, that is, senior rolex has a role-activation relation over

junior roley. Then, a user assigned to rolex can activate roley only at the places and during

the time when roley can be enabled. This is formalized as follows:

(x <tl y)∧UserRoleActivate(u,x,d, l)∧ (d⊆ RoleEnableDur(y))∧ (l ⊆RoleEnableLoc(y))

⇒UserRoleActivate(u,y,d, l)

Here again, a user who can activate a senior role can also activate a junior role but must

obey the temporal and spatial constraints imposed on the activation of the junior role. For
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example, user who has a role ofmobile usercan activate theweekend mobile userrole only if

he/she is in the US during the weekend.

When a senior role and a junior role are related with both permission inheritance and acti-

vation hierarchies, the application must choose the required type of inheritance and activation

hierarchies.

3.3 Impact of Time and Location on Separation Of Duty

Separation of Duty (SoD) is a fundamental principle in security systems. SoD is basically

states thatcritical operations are divided among two or more people, sothat no single indi-

vidual can compromise security[23]. SoD enables the protection of the fraud that might be

caused by the user. There are two categories of SoD: Static (SSoD) and Dynamic (DSoD) [80].

SSoD constrains the User-Role and Permission-Role assignments, while DSoD constrains the

User-Role activation. When SoD constraints are properly implemented, collusion of two or

more parties is required to commit a damaging action. Therefore, the risk of critical damage

is reduced. Moreover, SoD increases the opportunity for detecting errors, since two or more

parties are involved in committing the fraud.

Unlike the traditional RBAC, where the SoD constraints are applied all the time at any

location, with the existing of the context information, we can increase the flexibility of the

model by apply the spatio-temporal information into SoD constraints.

Next, we propose variations of Spatio-Temporal SoD. The preliminary version of such

constraints has been proposed in [67, 83].

3.3.0.8 The Spatio-Temporal Static Separation of Duty

Due to the presence of temporal and spatial constraints, we can have different flavors of

separation of duty – some that are constrained by temporal and spatial constraints and others

that are not. In the following, we describe the first form of static separation of duty constraints.

This form is with respect to user role assignment.
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Definition 16 (Weak Form of SSoD - User Role Assignment)

Let x andy be two roles such thatx 6= y andx,y ∈ SSODw(ROLES), that is,x andy are two

distinct roles that are related by theSSODw relation. A useru assigned to rolex during timed

and locationl cannot be assigned to roley at the same time and location ifx andy are related

by SSODw. This is formalized as follows:

(x,y) ∈ SSODw(ROLES)⇒ (UserRoleAssign(u,x,d, l)∧UserRoleAssign(u,y,d, l)= False)

Here the same user cannot be assigned to two conflicting rolesduring the same time and

at the same location. For example, a user should not be assigned theaudiencerole andmobile

phone userrole at the same time and location.

Definition 17 (Strong Temporal Form of SSoD - User Role Assignment)

Let x andy be two roles such thatx 6= y and(x,y) ∈ SSODt(ROLES), that is,x andy are two

distinct roles that are related by theSSODt relation. A useru assigned to rolex during time

d and locationl cannot be assigned to roley at any timed′ in the same location ifx andy are

related bySSODt. This is formalized as follows:

(x,y) ∈ SSODt(ROLES)⇒ (UserRoleAssign(u,x,d, l)∧UserRoleAssign(u,y,d′, l) = False)

Here the same user cannot be assigned to two conflicting rolesat the same location at any

time. Theconsultant for oil company Awill never be assigned the role ofconsultant for oil

company Bin the same country.

Definition 18 (Strong Spatial Form of SSoD - User Role Assignment)

Let x andy be two roles such thatx 6= y and(x,y) ∈ SSODl(ROLES), that is,x andy are two

distinct roles that are related by theSSODl relation. A useru assigned to rolex during time

d and locationl cannot be assigned to roley at the same time at any locationl ′ if x andy are

related bySSODl . This is formalized as follows:

(x,y) ∈ SSODl(ROLES)⇒ (UserRoleAssign(u,x,d, l)∧UserRoleAssign(u,y,d, l ′) = False)

Here the same user cannot be assigned to two conflicting rolesat any location during the

same time. For example, a person cannot be assigned the rolesof realtor andinstructorat the

same time.
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Definition 19 (Strong Form of SSoD - User Role Assignment)

Let x andy be two roles such thatx 6= y and(x,y) ∈ SSODs(ROLES), that is,x andy are two

distinct roles that are related by theSSODs relation. A useru assigned to rolex during time

d and locationl cannot be assigned to roley at any timed′ or at any locationl ′ if x andy are

related bySSODs. This is formalized as follows:

(x,y) ∈ SSODs(ROLES)⇒ (UserRoleAssign(u,x,d, l)∧UserRoleAssign(u,y,d′, l ′) = False)

Here the same user cannot be assigned to two conflicting roles. For example, the same

person cannot be assigned the role ofminority candidateandregular candidatein a job appli-

cation.

We next consider the second form of static separation of dutythat deals with permission

role assignment. The idea is that the same role should not acquire conflicting permissions. For

instance, the same manager should not make a request for funding as well as approve it.

Definition 20 (Weak Form of SSoD - Permission Role Assignment)

Let p andq be two permissions such thatp 6= q and (p,q) ∈ SSODPRAw, that is, p andq

are two distinct permissions that are related by theSSODPRAw relation. A rolex which has

permissionp at timed and locationl cannot be assigned permissionq at the same time and

location if p andq are related bySSODPRAw. This is formalized as follows:

(p,q) ∈ SSODPRAw⇒ (PermRoleAcquire(p,x,d, l)∧PermRoleAcquire(q,x,d, l) = False)

Here the same role cannot be assigned two conflicting permissions during the same time

and at the same location. For example, a passenger role should not be assigned the permission

to go aboard the planeanduse the cell phoneat the same place and time.

Definition 21 (Strong Temporal Form of SSoD - Permission RoleAssignment)

Let p andq be two permissions such thatp 6= q and (p,q) ∈ SSODPRAt, that is, p andq

are two distinct permissions that are related by theSSODPRAt relation. A rolex which has

permissionp at timed and locationl cannot be assigned permissionq at the any timed′ in the

same location ifp andq are related bySSODPRAt . This is formalized as follows:

(p,q) ∈ SSODPRAt ⇒ (PermRoleAcquire(p,x,d, l)∧PermRoleAcquire(q,x,d′, l) = False)
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Here the same role cannot be assigned two conflicting permissions at the same location at

any time. In the top secret base, if any role has a permission to access the high confidential

information, the permission tostore or distribute informationshould not be granted to that role.

Definition 22 (Strong Spatial Form of SSoD - Permission Role Assignment)

Let p andq be two permissions such thatp 6= q and (p,q) ∈ SSODPRAl , that is, p andq

are two distinct permissions that are related by theSSODPRAl relation. A rolex which has

permissionp at timed and locationl cannot be assigned permissionq at the same time at any

locationl ′ if p andq are related bySSODPRAl . This is formalized as follows:

(p,q) ∈ SSODPRAl ⇒ (PermRoleAcquire(p,x,d, l)∧PermRoleAcquire(q,x,d, l ′) = False)

Here the same role cannot be assigned two conflicting permissions at any location during

the time. For example, the permission toaccess the exam paperandaccess the answer key

should not be assigned for the same time.

Definition 23 (Strong Form of SSoD - Permission Role Assignment)

Let p andq be two permissions such thatp 6= q and (p,q) ∈ SSODPRAs, that is, p andq

are two distinct permissions that are related by theSSODPRAs relation. A rolex which has

permissionp at timed and locationl cannot be assigned permissionq at any timed′ or at any

locationl ′ if p andq are related bySSODPRAs. This is formalized as follows:

(p,q) ∈ SSODPRAs⇒ (PermRoleAcquire(p,x,d, l)∧PermRoleAcquire(q,x,d′, l ′) = False)

Here the same role cannot be assigned two conflicting permissions. For example, The

permission toissue checkand permission toauthorize checkmust not be assign to the same

role.

3.3.0.9 The Spatio-Temporal Dynamic Separation of Duty

We next consider the dynamic separation of duty. Static separation of duty ensures that a

user does not get assigned conflicting roles or a role is not assigned conflicting permissions.

Dynamic separation of duty addresses the problem that a useris not able to activate conflicting

roles during the same session.

49



Definition 24 (Weak Form of DSoD)

Let x andy be two roles such thatx 6= y and(x,y) ∈ DSODs, that is, two distinct rolesx and

y are related byDSODw. If roles x andy are related through weak DSoD and if useru has

activated rolex in some sessions for durationd and locationl , thenu cannot activate roley

during the same timed and in the same locationl in sessions. This is formalized as follows:

(x,y) ∈DSODw⇒ (SessionRole(u,x,s,d, l)∧SessionRole(u,y,s,d, l)= False)

This allows the same user to activate two conflicting roles inthe same session but not during

the same time and in the same location. A user can activate a sales assistant role and a customer

role in the same session but not during the same time and in thesame location.

Definition 25 (Strong Temporal Form of DSoD)

Let x andy be two roles such thatx 6= y and(x,y) ∈ DSODt, that is, two distinct rolesx andy

are related byDSODt . If rolesx andy are related through strong temporal DSoD and if useru

has activated rolex in some sessions, thenu can never activate roley at any timed′ at the same

location in the same session. This is formalized as follows:

(x,y) ∈DSODt ⇒ (SessionRole(u,x,s,d, l)∧SessionRole(u,y,s,d′, l) = False)

This allows the same user to activate two conflicting roles inthe same session but not in

the same location at any time. For example, in a teaching session in a classroom, a user cannot

activate the the grader role and the student role at any time.

Definition 26 (Strong Spatial Form of DSoD)

Let x andy be two roles such thatx 6= y and(x,y) ∈ DSODl , that is, two distinct rolesx and

y are related byDSODl . If roles x andy are related through strong DSoD and if useru has

activated rolex in some sessions, thenu can never activate roley in sessions during the same

time in any location. This is formalized as follows:

(x,y) ∈DSODl ⇒ (SessionRole(u,x,s,d, l)∧SessionRole(u,y,s,d, l ′) = False)

This allows the same user to activate two conflicting roles inthe same session but not at the

same time in any location. If a user has activated theGraduate Teaching Assistantrole in his

office, he cannot activate theLab Operatorrole at the same time in any location.
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Definition 27 (Strong Form of DSoD)

Let x andy be two roles such thatx 6= y and(x,y) ∈DSODs. If rolesx andy are related through

strong DSoD and if useru has activated rolex in some sessions, thenu can never activate role

y in the same session. This is formalized as follows:

(x,y) ∈DSODs⇒ (SessionRole(u,x,s,d, l)∧SessionRole(u,y,s,d′, l ′) = False)

Here a user can never activate the roles related through strong DSoD. For example, a user

cannot be both acode developerand acode testerin the same session.

3.4 Impact of Time and Location on Delegation

Many situations require the temporary transfer of access rights to accomplish a given task.

For example, in a pervasive computing application, a doctormay give certain privilege to a

trained nurse, when he is taking a short break. In such situations, the doctor can give a subset

of his permission to the nurse for a given period of time. There are a number of different types

of delegation. The entity that transfers his privileges temporarily to another entity is often re-

ferred to as the delegator. The entity who receives the privilege is known as the delegatee. The

delegator (delegatee) can be either a user or a role. Thus, wemay have four types of dele-

gations:user to user(U2U), user to role(U2R), role to role (R2R), androle to user(R2U).

System administrators are responsible for overseeing delegation when the delegator is a role.

Individual users administer delegation when the delegatoris an user. When a user is the dele-

gator, he can delegate a subset of permissions that he possesses by virtue of being assigned to

different roles. When a role is the delegator, he can delegate either a set of permissions or he

can delegate the entire role. We can therefore classify delegation on the basis of role delegation

or permission delegation. We identify the following types of delegation.

Definition 28 (U2U Unrestricted Permission Delegation)

In this type of delegation, the delegatee can invoke the delegator’s permissions at any time and

at any place where the delegator could invoke those permissions. Let the predicateDelega-

teU2U Pu(u, v, Perm)be true if the useru is allowed to delegate the permissions in the set
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Perm to userv without any temporal or spatial constraints. This will allow v to invoke the

permissions at any time or at any place.

∀p∈Perm,DelegateU2U Pu(u,v,Perm)∧PermUserAcquire(u,o, p,d, l)

⇒ PermUserAcquire(v,o, p,d, l)

For example, the illness of the company president caused himto delegate his email reading

privilege to his secretary.

Definition 29 (U2U Time Restricted Permission Delegation)

In this type of delegation, the delegator places time restrictions on when the delegatee can in-

voke the permissions. However, no special restrictions areplaced with respect to location–

the delegatee can invoke the permission at any place that thedelegator could do so. Let

DelegateU2U Pt(u,v,Perm,d′) be the predicate that allows useru to delegate the permissions

in the setPermto userv for the durationd′.

∀p∈Perm,DelegateU2U Pt(u,v,Perm,d′)∧PermUserAcquire(u,o, p,d, l)∧ (d′⊆ d)

⇒ PermUserAcquire(v,o, p,d′, l)

For example, the professor can delegate his permission to proctor an exam to the teaching

assistant while he is on travel.

Definition 30 (U2U Location Restricted Permission Delegation)

A delegator can place spatial restrictions on when the delegatee can invoke the permissions.

However, the only temporal restriction is that the delegatee can invoke the permissions during

the period when the original permission is valid. LetDelegateU2U Pl (u,v,Perm, l ′) be the

predicate that allows useru to delegate the permissions in the setPermto userv in the location

l ′.

∀p∈Perm,DelegateU2U Pl (u,v,Perm, l ′)∧PermUserAcquire(u,o, p,d, l)∧ (l ′⊆ l)

⇒ PermUserAcquire(v,o, p,d, l ′)

For example, the teaching assistant can delegate the permission regarding lab supervision

to the lab operator only in the Computer Lab.
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Definition 31 (U2U Time Location Restricted Permission Delegation)

In this case, the delegator imposes a limit on the time and thelocation where the delegatee can

invoke the permission. LetDelegateU2U Ptl (u,v,Perm,d′, l ′) be the predicate that allows user

u to delegate the permissions in the setPermto userv in the locationl ′ for the durationd′.

∀p∈Perm,DelegateU2U Ptl (u,v,Perm, t ′, l ′)∧PermUserAcquire(u,o, p,d, l)

∧(d′ ⊆ d)∧ (l ′ ⊆ l)⇒ PermUserAcquire(v,o, p,d′, l ′)

For example, a nurse can delegate his permission to oversee apatient while he is resting in

his room to a relative.

Definition 32 (U2U Unrestricted Role Delegation)

The delegator delegates a role to the delegatee. The delegatee can activate the roles at any time

and place where the delegator can activate those roles. LetDelegateU2U Ru(u,v, r) be the

predicate that allows useru to delegate his roler to userv.

DelegateU2U Ru(u,v, r)∧UserRoleActivate(u, r,d, l)⇒UserRoleActivate(v, r,d, l)

For example, a manager before relocating can delegate his roles to his successor in order to

train him.

Definition 33 (U2U Time Restricted Role Delegation)

In this case, the delegator delegates a role to the delegateebut the role can be activated only for

a more limited duration than the original role. LetDelegateU2U Rt(u,v, r,d′) be the predicate

that allows useru to delegate his roler to userv for the durationd′.

DelegateU2U Rt(u,v, r,d′)∧UserRoleActivate(u, r,d, l)∧ (d′⊆ RoleEnableDur(r))

∧(d′ ⊆ d)⇒UserRoleActivate(v, r,d′, l)

For example, a user can delegate his role as a teacher to a responsible student while he is in

a conference.

Definition 34 (U2U Location Restricted Role Delegation)

In this case, the delegator delegates a role to the delegateebut the role can be activated in more

limited locations than the original role. LetDelegateU2U Rl(u,v, r, l ′) be the predicate that

allows useru to delegate his roler to userv in the locationl ′.
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DelegateRl(u,v, r, l ′)∧UserRoleActivate(u, r,d, l)∧ (l ′⊆ RoleEnableLoc(r))∧ (l ′ ⊆ l)

⇒UserRoleActivate(v, r,d, l ′)

For example, a student can delegate his lab supervision roleto another student in a desig-

nated portion of the lab only.

Definition 35 (U2U Time Location Restricted Role Delegation)

The delegator delegates the role, but the delegatee can activate the role for a limited duration in

limited places. LetDelegateU2U Rtl (u,v, r,d′, l ′) be the predicate that allows useru to delegate

his roler to userv in locationl ′ and timed′.

DelegateU2U Rl (u,v, r,d′, l ′)∧UserRoleActivate(u, r,d, l)∧ (l ′⊆RoleEnableLoc(r))∧

(d′ ⊆ RoleEnableDur(r))∧ (d′ ⊆ d)∧ (l ′ ⊆ l)⇒UserRoleActivate(v, r,d′, l ′)

For example, a student can delegate his lab supervision roleto another student only in the

lab when he leaves the lab for emergency reasons.

Definition 36 (R2R Unrestricted Permission Delegation)

All users assigned to the delegatee role can invoke the delegator role’s permissions at any time

and at any place where the user of this delegator role could invoke those permissions. Let

DelegateR2R Pu(r1, r2,Perm) be the predicate that allows roler1 to delegate the permissions

in the setPermto role r2 without any temporal or spatial constraints. This will allow users in

the roler2 to invoke the permissions at any time or at any place.

∀p∈Perm,DelegateR2R Pu(r1, r2,Perm)∧PermRoleAcquire(p, r1,d, l)∧

(d⊆RoleEnableDur(r2))∧ (l ⊆ RoleEnableLoc(r2))⇒ PermRoleAcquire(p, r2,d, l)

For example, the Smart Home owner role may delegate the permission to check the status

of security sensors of the home to the police officer role, so all police officers can detect the

intruder at any time at any place.

Definition 37 (R2R Time Restricted Permission Delegation)

The delegator role can place temporal restrictions on when the users of the delegatee role

can invoke the permissions. No special restrictions are placed with respect to location i.e.
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the delegatee role’s users can invoke the permissions at anyplace that the delegator role’s

users could do so. LetDelegateR2R Pt(r1, r2,Perm,d′) be the predicate that allows roler1 to

delegate the permissions in the setPermto roler2 for the durationd′.

∀p∈Perm,DelegateR2R Pt(r1, r2,Perm,d′)∧ (d′ ⊆ d)∧PermRoleAcquire(p, r1,d, l)∧

(l ′ ⊆ l)∧ (d′ ⊆RoleEnableDur(r2))∧ (l ⊆ RoleEnableLoc(r2))

⇒ PermRoleAcquire(p, r2,d′, l)

For example, CS599 teacher role can grant the permission to access course materials to

CS599 student role for the specific semester.

Definition 38 (R2R Location Restricted Permission Delegation)

The delegator role places spatial constraints on where the users of the delegatee role can in-

voke the permissions. No special temporal constraints are placed, that is, the delegatee role’s

users can invoke the permissions at any time that the delegator role’s users could do so. Let

DelegateR2R Pl (r1, r2,Perm, l ′) be the predicate that allows roler1 to delegate the permissions

in the setPermto roler2 in the locationl ′.

∀p∈ Perm,DelegateR2R Pl (r1, r2,Perm, l ′)∧PermRoleAcquire(p, r1,d, l)∧ (l ′ ⊆ l)∧

(d⊆ RoleEnableDur(r2))∧ (l ′ ⊆ RoleEnableLoc(r2))⇒ PermRoleAcquire(p, r2,d, l ′)

For example, the librarian role may grant the permission to checkout the book to the student

role only at the self-checkout station.

Definition 39 (R2R Time Location Restricted Permission Delegation)

The delegator role imposes a limit on the time and the location where the delegatee role’s users

could invoke the permissions. LetDelegateR2R Ptl (r1, r2,Perm,d′, l ′) be the predicate that

allows roler1 to delegate the permissions in the setPerm to role r2 in the locationl ′ for the

durationd′.

∀p∈ Perm,DelegateR2R Ptl (r1, r2,Perm,d′, l ′)∧PermRoleAcquire(p, r1,d, l)∧

(d′ ⊆ RoleEnableDur(r2))∧ (l ′ ⊆ RoleEnableLoc(r2))∧ (d′ ⊆ d)∧ (l ′ ⊆ l)

⇒ PermRoleAcquire(p, r2,d′, l ′)
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For example, the daytime doctor role may delegate the permission to get his location infor-

mation to the nurse role only when he is in the hospital duringthe daytime.

Definition 40 (R2R Unrestricted Role Delegation)

All users assigned to the delegatee role can activate the delegator role at any time and at any

place where the user of this delegator role could activate the role. LetDelegateR2R Ru(r1, r2)

be the predicate that allows roler1 to be delegated to roler2.

DelegateR2R Ru(r1, r2)∧UserRoleActivate(u, r2,d, l)∧ (d⊆ RoleEnableDur(r1))∧

(l ⊆RoleEnableLoc(r1))⇒UserRoleActivate(u, r1,d, l)

For example, in the case of company reorganization, the manager role can be delegated to

the manager successor role in order to train him.

Definition 41 (R2R Time Restricted Role Delegation)

The delegator places temporal constraints on when the usersof the delegatee role can activate

the delegator role. No special spatial constraints are placed i.e. the delegatee role’s users

can activate the delegator role at any place that the delegator role’s users could do so. Let

DelegateR2R Rt(r1, r2,d′) be the predicate that allows roler1 to be delegated to roler2 for the

durationd′.

DelegateR2R Rt(r1, r2,d′)∧UserRoleActivate(u, r2,d′, l)∧ (d⊆ RoleEnableDur(r1))∧

(l ⊆RoleEnableLoc(r1))∧ (d′ ⊆ d)⇒UserRoleActivate(u, r1,d′, l)

For example, the permanent staff role can be delegated to thecontract staff role during the

contract period.

Definition 42 (R2R Location Restricted Role Delegation)

The delegator role can place spatial restrictions on where the users of the delegatee role can

activate the delegator role. No special restrictions are placed with respect to time i.e. the

delegatee role’s users can activate the delegator role at any time that the delegator role’s users

could do so. LetDelegateR2R Rl (r1, r2, l ′) be the predicate that allows roler1 to be delegated

to roler2 in the locationl ′.
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DelegateR2R Rl (r1, r2, l ′)∧UserRoleActivate(u, r2,d, l ′)∧ (d⊆ RoleEnableDur(r1))∧

(l ⊆RoleEnableLoc(r1))∧ (l ′ ⊆ l)⇒UserRoleActivate(u, r1,d, l ′)

For example, the researcher role can be delegated to the lab assistant role at the specific

area of the lab.

Definition 43 (R2R Time Location Restricted Role Delegation)

In this case, the delegator role imposes a limit on the time and the location where the delegatee

role’s users could activate the role. LetDelegateR2R Rtl (r1, r2,d′, l ′) be the predicate that

allows roler1 to be delegated to roler2 in the locationl ′ for the durationd′.

DelegateR2R Rtl (r1, r2,d′, l ′)∧UserRoleActivate(u, r2,d′, l ′)∧ (d′ ⊆ d)∧ (l ′ ⊆ l)∧

(d⊆RoleEnableDur(r1))∧ (l ⊆ RoleEnableLoc(r1))∧ (d′ ⊆ d)∧ (l ′ ⊆ l)

⇒UserRoleActivate(u, r1,d′, l ′)

For example, the full-time researcher role can be delegatedto the part-time researcher role

only during the hiring period in the specific lab.

3.5 Chapter Summary

Unlike the tradional access control model, in pervasive computing applications, the access

decisions cannot be based solely on the attributes of users and resources. In such applica-

tions, the system might want to grant access base on the context information such as location

and time. In this chapter, we propose our Spatio-Temporal Role Based Access Control (STR-

BAC) model. The model determine the accessibility of the user based on the time and location

constraints. The model also supports various types of role hierarchy and separation of duties

constraints. In a highly dynamic application such as the ubiquitous computing, it is necessary

for the model to support the transfer of privileges via delegation operations. Our model also

supports different types of delegation.

As mentioned above, our STRBAC model consists of various features to support the various

application requirements. These features of the model may interact in subtle ways resulting

in inconsistencies and conflicts. Such inconsistencies andconflicts must be detected before

57



the model can be deployed for real-world application. Manual analysis of the access control

specifications of complex, real-world applications is tedious and error-prone. To resolve this

issue, an automated analysis approach is needed. In Chapter4, we propose the usage of Alloy

analyzer tool for doing an automated analysis on our STRBAC model.
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Chapter 4

The ALLOY Specification of STRBAC
Model

Our STRBAC model consists of various features to support thevarious application require-

ments. Such features of the model may interact in subtle waysresulting in inconsistencies and

conflicts. The access control constraints of an applicationusing our model must be analyzed to

ensure that such problems, which, in turn, may cause security breaches, do not occur. Manual

analysis of the access control specifications of complex, real-world applications is tedious and

error-prone. In this chapter, we propose the use of Alloy analyzer tool for doing automated

analysis. The analysis can be done at two different levels–the model levelandthe application

level. Analysing the model at the model level ensures that in general, our STRBAC model

does not contain any inconsistencies or conflicts. The application level analysis guarantees that

the implementation of our model is fully protect the real-world application and does not cause

any security breaches. In this chapter, first we briefly discuss the Alloy specification language

we will use to assist our model analysis in Section 4.1. Next,we show how to use Alloy to

analyze the STRBAC model in Section 4.2. And finally, we show how to analyze the security

properties of the STRBAC–embedded real-world applicationin Section 4.3.

4.1 Alloy Lightweight Modeling System

ALLOY ([30], [31], [32], [92]), is a textual language developed at MIT by Daniel Jackson

and his team. Unlike a programming language, an Alloy model is declarative: it can describe
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the effect of a behavior without giving its mechanism. This allows very succinct and partial

models to be constructed and analyzed. It is similar in spirit to the formal specification lan-

guages Z, VDM, Larch, B, OBJ, etc, but, unlike all of these, isamenable to fully automatic

analysis in the style of a model checker.

Z was a major influence on Alloy. Very roughly, Alloy can be viewed as a subset of Z.

Unlike Z, Alloy is first order, which makes it analyzable (butalso less expressive). Alloys

composition mechanisms are designed to have the flexibilityof Z’s schema calculus, but are

based on different idioms: extension by addition of fields, similar to inheritance in an object-

oriented language, and reuse of formulas by explicit parameterization, similar to functions in a

functional programming language. Alloy is a pure ASCII notation and does not require special

typesetting tools.

An Alloy model consists of a number of signature and relationdeclarations. A signature

specifies entities used to model the system, and relation declarations specify the dependencies

between such entities, allowing the designer to capture complex structures. Alloy is supported

by a fully automated constraint solver, called Alloy Analyzer, that analyzes system properties

by searching for model instances that violate assertions about them. Alloy Analyzer translates

the model into a Boolean expression, and analyzes it using embedded SAT-solvers. The user

specifies a scope to the tool, which is an integer number used to bound the domain of model

elements. Bounding enables the tool to create finite Booleanformulas for evaluation by the

SAT-solver. If Alloy Analyzer produces an instance that violates the assertion (a counterexam-

ple), we can infer that the specified property is not satisfied. However, for a chosen scope, if no

counterexample emerges, it is possible that the property isviolated in a larger scope. The larger

the scope, the more confidence is warranted, but the longer the analysis will take [33]. Experi-

ence has shown that design flaws are often discovered in smallscopes. This is known as “small

scope hypothesis” [33]. Choosing the right scope, and the degree of confidence a given scope

provides, depends on the problem and the security property being analyzed. Currently, there

are no generic guidelines on how to choose the scope for a given problem. However, when de-

veloping security-critical systems, where a higher degreeof confidence is required, the Alloy
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Analyzer can be used as a first line of defense to discover flawsin the design of a system. If the

analyzer does not produce a counterexample, other techniques such as Model Checking and

Theorem Proving can be used to ensure the security property is not violated. Such techniques

are more time consuming and require human intervention and expertise. Our approach can

therefore save time and resources by using the Alloy Analyzer to rapidly discover a number of

flaws that would otherwise require much more time and resources to uncover. For more details

on Alloy and its comparison with other formal methods pleaserefer to [31, 32, 33].

4.2 STRBAC Model in ALLOY

An Alloy model consists ofsignaturedeclarations,fields, factsandpredicates. Each sig-

nature consists of a set ofatomswhich are the basic entities in Alloy. Atoms areindivisible

(they cannot be divided into smaller parts),immutable(their properties do not change) and

uninterpreted(they do not have any inherent properties). Each field belongs to a signature and

represents a relation between two or more signatures. A relation denotes a set of tuples of

atoms. Facts are statements that define constraints on the elements of the model. Predicates

are parameterized constraints that can be invoked from within facts or other predicates.

To represent the STRBAC model, we The basic types in the access control model, such as,

User, Time, Location, Role, PermissionandObjectare represented as signatures. For instance,

the declarations shown below define a set namedUser and a set namedRole that represents

the set of all users and the set of all roles in the system. Inside theRolesignature body, we

have four relations, namely,RoleAllocLoc, RoleAllocDur, RoleEnableLoc, andRoleEnableDur

which relatesRoleto other signatures.

sig Time{}

sig Location{}

sig User{}

sig Role{

RoleAllocLoc: Location,

RoleAllocDur: Time,
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RoleEnableLoc: Location,

RoleEnableDur: Time}

sig Permission{

PermRoleLoc: Role->Location,

PermObjLoc: Object->Location,

PermDur: Time}

sig Object{}

sig TimeLoc{

dur : Time,

loc : Location}

The different relationships between the STRBAC componentsare also expressed as signa-

tures. RoleEnablehas a field calledmemberthat maps to a cartesian product ofRole, Time

andLocation. UserRoleAssignmenthas a field calledmemberthat maps to a cartesian product

of User, Role, TimeandLocation. RolePermissionAssignmenthas a field calledmemberthat

maps to a cartesian product ofRole, Permission, TimeandLocation. UserLocationhas a field

calledmemberthat maps to a cartesian product ofUser, TimeandLocation. ObjLocationhas

a field calledmemberthat maps to a cartesian product ofObject, TimeandLocation. User-

RoleActivatehas a field calledmemberthat maps to a cartesian product ofUser, Role, Time

andLocation. PermRoleAcquirehas a field calledmemberthat maps to a cartesian product of

Role, Permission, TimeandLocation. PermUserAcquirehas a field calledmemberthat maps to

a cartesian product ofUser, Object, PermissionandTimeLoc. Note that forPermUserAcquire,

instead of declare it as a cartesian product of product ofUser, Object, Permission, Timeand

Location, we have to define a special signature calledTimeLocwhich consists of two fields

calleddur andloc representing Time and Location, respectively. The rational behind this indi-

rect declaration is to overcome the limitation of Alloy, which limits the dimension of cartesian

product to 4. And finally,RoleHierarchyhas a fieldRHmemberthat represents a relationship

betweenRoleandRole. Note that we use theabstractsignature to represent role hierarchy, and
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the different types of role hierarchy are modeled as the subsignatures ofRoleHierarchy. By

this way, the analyzer will recognize that role hierarchy consists of only these different types

of role hierachy, and nothing else.

one sig RoleEnable {member : Role-> Time ->Location}

one sig UserRoleAssignment{member : User -> Role ->Time ->L ocation}

one sig RolePermissionAssignment{member : Role-> Permiss ion ->Time->Location}

one sig UserLocation{member : User->Time->Location}

one sig ObjLocation{member : Object->Time->Location}

one sig UserRoleActivate{member : User-> Role->Time->Loc ation}

one sig PermRoleAcquire{member : Role->Permission->Time ->Location}

one sig PermUserAcquire{member : User->Object->Permissi on->TimeLoc}

abstract sig RoleHierarchy{member : Role -> Role}

sig UPIH, TPIH, LPIH, TLPIH, UAH, TAH, LAH, TLAH extends Role Hierarchy{}

The various invariants in the STRBAC model are represented as facts in Alloy. For instance,

the factURActivatestates that for useru to activate roler during the time intervald and location

l, this user has to be assigned to roler in location l during timed. Moreover, the location of

the user must be a subset of the locations where the role is enabled, and the time must be in

the time interval when roler can be enabled. This is specified in Alloy as shown below. Other

invariants are modeled in a similar manner.

fact URActivate{

all u: User, r: Role, d: Time, l: Location, uras: UserRoleAss ignment,

urac: UserRoleActivate |

((u->r->d->l) in urac.member) => (((u->r->d->l) in uras.m ember) &&

(l in r.RoleEnableLoc) && (d in r.RoleEnableDur))

}
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To represents the effects of STRBAC hierarchical structure, we use Alloy’sfact feature.

The factUPIHFact represents the Unrestricted Permission Inheritance Hierarchy’s property.

The fact states that senior rolesr can acquire all permission assigned to itself together withall

permissions assigned to junior rolejr . Note that to be more specific, we also explicitly state

that the permission assigned to junior role have never been assigned to the senior role.

//Unrestricted Permission Inheritance Hierarchy

fact UPIHFact{

all sr, jr: Role, p: Permission, d: Time, l: Location, upih: U PIH,

rpa: RolePermissionAssignment, pra: PermRoleAcquire |

((sr->jr in upih.member) && (jr->p->d->l in pra.member) &&

(sr->p !in (rpa.member).Location.Time)) =>

(sr->p->sr.RoleEnableDur->sr.RoleEnableLoc) in pra.me mber}

The separation of duty constraints are modeled as predicates. Consider the Weak form of

Static Separation of Duties User Role Assignment. This constraint says that a useru assigned

to role r1 du ring timed and locationl cannot be assigned to its conflicts roler2 at the same

time and location. The other forms are modeled in a separate manner.

pred W_SSoD_URA(u: User, disj r1, r2: Role,

ura: UserRoleAssignment.member, d: Time, l: Location){

((u->r1->d->l) in ura) => ((u->r2->d->l) not in ura)}

The different types of delegation are also modeled as predicates. Consider the U2U Un-

restricted Permission Delegation. This type of delegationsays that a userdtr delegates his

permissionp to userdte. Userdte can invoke the delegator’s permission at any time and at

any place where the delegator could invoke the permission. The other forms are modeled in a

separate manner.

//U2U Unrestricted Permission Delegation

pred u2uUPD(disj dtr, dte: User, p: Permission){
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all o: Object, tl: TimeLoc, puacq: PermUserAcquire |

(dtr->o->p->tl in puacq.member) =>

(dte->o->p->tl in puacq.member)}

Finally, we need to verify whether any conflicts occur between the features of the model.

We rely on the powerful analysis capability of the ALLOY analyzer for this purpose. We create

anassertionthat specifies the properties we want to check. After we create the assertion, we

will let ALLOY analyzer validate the assertion by usingcheckcommand. If our assertion is

wrong in the specified scope, ALLOY analyzer will show the counterexample.

For instance, to check the interaction of the Weak form of SSOD User Role Assignment

and the Unrestricted Permission Inheritance Hierarchy, wemake the assertion shown below.

The assertion does not hold as illustrated by the counterexample shown in Figure 4.1.

// WSSoD_URA violation in the present of UPIH Hierarchy

assert TestConflict1_1{

no u: User, disj x, y: Role, upih: UPIH,

d: Time, l: Location, ura: UserRoleAssignment |

((x->y in ˆ(upih.member)) &&

(u->x->d->l in ura.member)) =>

W_SSoD_URA[u, x, y, u->(x+y)->d->l, d, l]

}

check TestConflict1_1

The counterexample shows one possible scenario. In this case, it uses the following in-

stances to show the violation.

1. Role= {Role0,Role1,Role2}

2. UPIH0= {Role0→ Role1,Role2→Role0,Role2→ Role1}

3. Time= d, Location= l
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4. UserRoleAssignment= {User→Role0→ Time→ Location,User→Role1→ Time→

Location,User→ Role2→ Time→ Location}

Substitutingx andy in W SSoDURA predicate withRole2 andRole1 respectively, we get the

violation.

Figure 4.1: Counterexample for assertion TestConflict11

We checked the assertion on a HP-xw4400-Core2Duo-SATA withtwo Core2Duo 1.86Ghz

CPU and 2 Gb memory running Linux 64. We used Version 4.1.2 Alloy Analyzer. The time

taken to check this assertion was 25,916 ms.

Another example, to check the interaction of the Weak form ofSSOD Permission Role

Assignment and the R2R Unrestricted Permission Delegation, we make the assertion shown

below. The assertion does not hold as illustrated by the counterexample shown in Figure 4.2.

// WSSoD_PRA violation in the present of R2R Unrestricted

// Permission Delegation

assert TestConflict14_1{

all disj rdtr, rdte: Role, disj p, q: Permission, d: Time,
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Figure 4.2: Counterexample for assertion TestConflict141

l: Location |

(r2rUPD[rdtr, rdte, p] && r2rUPD[rdtr, rdte, q]) =>

W_SSoD_PRA[rdte, p, q, d, l]

}

check TestConflict14_1

The counterexample shows one possible scenario. In this case, it uses the following in-

stances to show the violation.

1. Role= {Role0,Role1}

2. Permission= {Permission0,Permission1}

3. Time= d, Location= l
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4. PermRoleAcquire= {Role1→Permission0→Time→Location,Role1→Permission1→

Time→ Location}

Substitutingrdtr, rdte, p, q, d, and l in r2rUPD and WSSoDPRA predicates withRole0,

Role1, Permission0,Permission1,d andl respectively, we get the violation. By using the same

setup, the time taken to check this assertion was 20,572 ms.

With the advocate of the STRBAC model in Alloy shown in Appendix B, we could reveal

the following types of conflict:

1. Conflict of Unrestricted, Time Restricted, Location Restricted, and Time Location Re-

stricted Permission Inheritance Hierarchy with the Weak Form of Static Separation of

Duties-User Role Assignment (detected by assertionTestConflict11, TestConflict12,

TestConflict13, andTestConflict14, respectively)

2. Conflict of Unrestricted, Time Restricted, Location Restricted, and Time Location Re-

stricted Permission Inheritance Hierarchy with the StrongTemporal Form of Static Sep-

aration of Duties-User Role Assignment (detected by assertion TestConflict21, TestCon-

flict2 2, TestConflict23, andTestConflict24, respectively)

3. Conflict of Unrestricted, Time Restricted, Location Restricted, and Time Location Re-

stricted Permission Inheritance Hierarchy with the StrongSpatial Form of Static Sepa-

ration of Duties-User Role Assignment (detected by assertion TestConflict31, TestCon-

flict3 2, TestConflict33, andTestConflict34, respectively)

4. Conflict of each type of Permission Inheritance Hierarchywith the Strong Form of Static

Separation of Duties-User Role Assignment (detected by assertionTestConflict4)

5. Conflict of Unrestricted, Time Restricted, Location Restricted, and Time Location Re-

stricted Permission Inheritance Hierarchy with the Weak Form of Static Separation of

Duties-Permission Role Assignment (detected by assertionTestConflict51, TestCon-

flict5 2, TestConflict53, andTestConflict54, respectively)
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6. Conflict of Unrestricted, Time Restricted, Location Restricted, and Time Location Re-

stricted Permission Inheritance Hierarchy with the StrongTemporal Form of Static Sep-

aration of Duties-Permission Role Assignment (detected byassertionTestConflict61,

TestConflict62, TestConflict63, andTestConflict64, respectively)

7. Conflict of Unrestricted, Time Restricted, Location Restricted, and Time Location Re-

stricted Permission Inheritance Hierarchy with the StrongSpatial Form of Static Sep-

aration of Duties-Permission Role Assignment (detected byassertionTestConflict71,

TestConflict72, TestConflict73, andTestConflict74, respectively)

8. Conflict of each type of Permission Inheritance Hierarchywith the Strong Form of Static

Separation of Duties-Permission Role Assignment (detected by assertionTestConflict8)

9. Conflict of Unrestricted, Time Restricted, Location Restricted, and Time Location Re-

stricted Activation Hierarchy with the Weak Form of DynamicSeparation of Duties (de-

tected by assertionTestConflict91, TestConflict92, TestConflict93, andTestConflict94,

respectively)

10. Conflict of Unrestricted, Time Restricted, Location Restricted, and Time Location Re-

stricted Activation Hierarchy with the Strong Temporal Form of Dynamic Separation of

Duties (detected by assertionTestConflict101, TestConflict102, TestConflict103, and

TestConflict104, respectively)

11. Conflict of Unrestricted, Time Restricted, Location Restricted, and Time Location Re-

stricted Activation Hierarchy with the Strong Spatial Formof Static Separation of Duties

(detected by assertionTestConflict111, TestConflict112, TestConflict113, andTestCon-

flict11 4, respectively)

12. Conflict of each type of Activation Hierarchy with the Strong Form of Dynamic Separa-

tion of Duties (detected by assertionTestConflict12)

13. Conflict occurs during the permission role assignment operation i.e. the spatio-temporal
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constraints of the permission assigned to the role are conflicted with the spatio-temporal

constraints of the role (detected by assertionTestConflict13)

14. Conflict of R2R Unrestricted, R2R Time Restricted, R2R Location Restricted, and R2R

Time Location Restricted Permission Delegation with the Weak Form of Static Sepa-

ration of Duties-Permission Role Assignment (detected by assertionTestConflict141,

TestConflict142, TestConflict143, andTestConflict144, respectively)

15. Conflict of R2R Unrestricted, R2R Time Restricted, R2R Location Restricted, and R2R

Time Location Restricted Permission Delegation with the Strong Temporal Form of

Static Separation of Duties-Permission Role Assignment (detected by assertionTestCon-

flict15 1, TestConflict152, TestConflict153, andTestConflict154, respectively)

16. Conflict of R2R Unrestricted, R2R Time Restricted, R2R Location Restricted, and R2R

Time Location Restricted Permission Delegation with the Strong Spatial Form of Static

Separation of Duties-Permission Role Assignment (detected by assertionTestConflict161,

TestConflict162, TestConflict163, andTestConflict164, respectively)

17. Conflict of R2R Unrestricted, R2R Time Restricted, R2R Location Restricted, and R2R

Time Location Restricted Permission Delegation with the Strong Form of Static Sep-

aration of Duties-Permission Role Assignment (detected byassertionTestConflict171,

TestConflict172, TestConflict173, andTestConflict174, respectively)

18. Conflict of R2R Unrestricted, R2R Time Restricted, R2R Location Restricted, and R2R

Time Location Restricted Role Delegation with the Weak Formof Dynamic Separation

of Duties (detected by assertionTestConflict181, TestConflict182, TestConflict183,

andTestConflict184, respectively)

19. Conflict of R2R Unrestricted, R2R Time Restricted, R2R Location Restricted, and R2R

Time Location Restricted Role Delegation with the Strong Temporal Form of Dynamic

Separation of Duties (detected by assertionTestConflict191, TestConflict192, TestCon-

flict19 3, andTestConflict194, respectively)
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20. Conflict of R2R Unrestricted, R2R Time Restricted, R2R Location Restricted, and R2R

Time Location Restricted Role Delegation with the Strong Spatial Form of Dynamic

Separation of Duties (detected by assertionTestConflict201, TestConflict202, TestCon-

flict20 3, andTestConflict204, respectively)

21. Conflict of R2R Unrestricted, R2R Time Restricted, R2R Location Restricted, and R2R

Time Location Restricted Role Delegation with the Strong Form of Dynamic Separation

of Duties (detected by assertionTestConflict211, TestConflict212, TestConflict213,

andTestConflict214, respectively)

4.3 Using Alloy to Analyze the STRBAC-Embedded Appli-
cation

The analysis approach we propose in Section 4.2 is performedat the model level, which

means the model in general is free from the inconsistencies and conflicts listed in Section 4.2.

In this section, we propose a methodology that describes howwe can get assurance that an

application is adequately protected. Since the applications are generally specified in UML, we

use UML to specify our application and access control constraints as well. UML can be used

in conjunction with OCL which is based on formal logic; this allows us to formally specify the

constraints in our model. However, in order to get assurancethat our application is adequately

protected, we need to analyze our application together withthe access control constraints.

Manual analysis is tedious and error-prone, so we need to automate the verification process.

Existing tools for automated analysis of UML models, such asUSE and OCLE, cannot verify

behavioral properties and so are inadequate. We propose an approach that will transform UML

models with OCL constraints into an Alloy specification.

4.3.1 Model Transformation from UML to Alloy

There are clear similarities between Alloy and UML languages such as class diagrams

and OCL. From a semantic point of view both Alloy and UML can beinterpreted by sets of

tuples [34, 69]. Alloy is based on first-order logic and is well suited for expressing constraints
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on object-oriented models. Similarly, OCL has extensive constructs for expressing constraints

as first order logic formulas. Considering such similarities, model transformation from UML

class diagrams and OCL to Alloy seems straightforward. However, UML and Alloy have

fundamental differences, which are deeply rooted in their underlying design decisions. For

example, Alloy makes no distinction between sets, scalars and relations, while the UML makes

a clear distinction between the three. Other examples include that UML supports a number of

primitive types, whereas Alloy only supports integers. UMLalso supports aggregation and

composition, but there is no counterpart in Alloy. All of this makes the transformation from

UML to Alloy challenging.

Figure 4.3 depicts an outline of our approach. Using the Extended Backus-Naur Form

(EBNF) representation of the Alloy grammar [34], we shall first generate a Meta Object Facility

(MOF) compliant [55] metamodel for Alloy. We then select a subset of the class diagrams [57]

and OCL [56] metamodels. To conduct the model transformation, a set of transformation rules

has been defined. The rules map elements of the metamodels of class diagram and OCL into

the elements of the metamodel of Alloy. The rules have been implemented into a prototype

tool called UML2Alloy. If a UML class diagram, which conforms to the subset of UML we

support, is provided as input to UML2Alloy, it automatically generates an Alloy model. For

lack of space, we do not show how the EBNF representation of Alloy’s grammar is transformed

into a MOF compliant metamodel but refer the interested reader to [3].

4.3.2 Mapping Class diagram and OCL to Alloy

The transformation rules map elements of the UML class diagram and OCL metamodels

to the Alloy metamodel. Due to space limitations the UML and OCL metamodels are not

presented here, but can be found in the respective specification documents [57, p.29], [56].

Table 4.1 presents a table which provides an informal mapping between the most important

elements of the UML and OCL metamodels and Alloy. More specifically a UML Class is

translated to an Alloy signature declaration (ExtendsSigDecl), which defines aSigId with the

same name. If the class is not a specialization the Alloy signature is not related to anySigRef.
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Figure 4.3: Outline of the transformation method.

UML+OCL metamodel element Alloy metamodel element
Class ExtendsSigDecl

Property DeclExp
Operation Predicate
Parameter Decl

Enumeration ExntedsSigDecl
EnumerationLiteral ExtendsSigDecl

Constraint Expression

Table 4.1: Informal mapping between UML and Alloy metamodelelements

Otherwise it might be related to aSigRef, which references the signature it might extend.

A Property is translated to a declaration expression (declExp), which is used to define a

field in an Alloy model. AnOperationis transformed to aPredicateand theParametersof the

operation are transformed to declarations (Decl). An Enumeration [57, p.63] is transformed to

a signature declarationSigDecl, which declares an abstract signature. AnEnumerationLiteral

is transformed to a sub signature. A more complete transformation rules from UML to Alloy

and their implementation are explained in our previous work[3].

4.3.3 UML2Alloy

UML2Alloy is the tool developed to transform the UML enriched with OCL constraints

to Alloy. UML2Alloy makes use of Model Driven Architecture (MDA) [45] techniques to
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perform this transformation. Both OCL and Alloy are based onfirst-order logic. They are

therefore quite similar, and the translation from OCL to Alloy is straightforward when dealing

with first-order logic statements. For example, the forAll OCL construct is translated to all

in Alloy and the exists OCL construct to some in Alloy. Table 4.2 [16] shows subset of the

transformation rules which UML2Alloy uses to transform UMLand its associate OCL to Alloy.

Table 4.2: A Subset Of UML2Alloy Transformation Rules
UML Alloy
Classes Signature Declarations
Attributes Relations of the Signature
Data Types Signature Declarations
OCL Expressions Formula Expressions
If Expressions If Formulas
Operations that return a type Functions
Operations that return void typePredicates
Operation Parameters Parameters of Predicates or Functions
Associations Relations of a Signature

4.3.4 Example Scenario: Dengue Decision Support System

We illustrate our approach using a real-world Dengue Decision Support (DDS) system. The

DDS helps state-level public health officials respond to local outbreaks of dengue. Response

consists of vector control and vector surveillance, namelyspraying for mosquitoes (control)

and investigating locations where they might be breeding and living (surveillance) in areas

where the level of confirmed dengue cases has increased abovea prescribed threshold. Public

health officials are organized in jurisdictions, based on population, and multiple jurisdictions

are included in a single state. When the threshold is reached, officials at both levels respond.

The jurisdiction officer activates vector control and surveillance teams that are local to the ju-

risdiction, with instructions regarding the specific control and surveillance protocols to follow

and the locations where they are to be performed. The state officer releases materials for con-

trol to the team, and the local team then performs the controls and surveillance ordered. The

jurisdiction and state vector control officials are often located in different buildings, although

the vector control team is co-located with the jurisdictionofficer. All control materials are
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Table 4.3: DDS Tasks List
Task Task

1 Read Premise 10 Read VControl
2 Change Premise 11 Change VControl
3 Read Case 12 Read Work Record
4 Change Case 13 Change Work Record
5 Read Patient 14 Read VC Materials
6 Change Patient 15 Change VC Materials
7 Read Patient Names 16 Signal VC Need for DV
8 Read Schedule Work 17 Signal VC Need for DHF
9 Change Schedule Work

located in warehouses elsewhere, and for coordination reasons are controlled by the state offi-

cer. Information about specific cases of dengue is retained in what is called an epidemiological

study. This data includes information about the patient, the location where the patient lives (the

premise), the case, and control and surveillance actions performed at the premise. The patient

and case data are considered private information, and are only available to epidemiologists at

the jurisdiction and state levels. The vector control team receives premise information along

with orders for control and surveillance. However, the teamalso needs to have names asso-

ciated with the premises in order to validate the location. The team therefore needs access to

some of the patient data for a fixed period of time, in order to perform control and surveillance

duties.

4.3.4.1 DDS Security Policies

Entities

DDS system consists of the following roles:State Epidemiologist, Jurisdiction Epidemiologist,

Clinic Epidemiologist, Clinician, State Vector Control, Jurisdiction Vector Control, andLocal

Jurisdiction VC Team. Tasks user can perform are listed in Table 6.1. Each role canperform

their own set of tasks in the designated location and time summarized in Table 6.2.

Role Hierarchy

Some roles in the DDS are related using unrestricted permission inheritance hierarchy. Using
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Table 4.4: DDS Role Constraints
Role Tasks Location Constraint Time Constraint
State Epi 16 A–State Office a–Regular Hours
Juris Epi 1, 3 B–Juris Office a–Regular Hours

17 B–Juris Office b–Any Time
Clinic Epi 17 C–Clinic b–Any Time
Clinician 1, 2, 3, 4, 5, 6 C–Clinic a–Regular Hours
State VC 11, 15 A–State Office a–Regular Hours
Juris VC 1, 8, 9, 10, 12, 14 B–Juris Office a–Regular Hours
Local VC Team 7 B–Juris Office, E–Emergency Locationc–24 Hours Window after signal to

begin work received
1, 9, 13 B–Juris Office, D–Field a–Regular Hours

the STRBAC model, these relationships can be define as follow: State Epi≥ Juris Epi, Clinic

Epi≥ Clinician, andState VC≥ Juris VC.

Separation of Duty

There are two separation of duty constraints in DDS system. Both are the strong spatial form

of static separation of duty.

1. User should not have permission to change VC protocols at the same time as he has

permission to change VC materials.

2. User should not have permission to signal DV at the same time as signal DHF.

These can be represented in STRBAC as follow:(11,15)∈SSODPRAl and(16,17)∈SSODPRAl .

4.3.4.2 DDS Model Analysis

The first step in formal security analysis is to abstract and transform the STRBAC model

in the context of DDS into a UML class diagram and accompanying OCL. The class diagram

depicts the entities that take part in the model, and defines their attributes related in the ac-

cess control operations, such as the time and location attribute. OCL statements specify the

invariants of the model such as the tasks assigned to role andsecurity constraints that all enti-

ties in the model must satisfy. In the next step, we use UML2Alloy [15, 16] to automatically

transform the class diagram and OCL statements into an Alloymodel, which we subsequently

analyze using Alloy Analyzer.
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Stage 1: Model Abstraction

The first step of the abstraction is to simplify the original model by removing non-essential

elements so that the translation to Alloy produces a model that only contains items necessary

to reason about its security properties. For example, we remove the attributes which is not

related with the security such as,gender, birthdate, ssid from thePersonentity since these

attributes are not related with the access control model. The resulting UML class diagram is

shown in Figure 4.4.

<<<<enumeration>>>>

Task

 ONE: void

 TWO: void

 THREE: void

 FOUR: void

 FIVE: void

 SIX: void

 SEVEN: void

 EIGHT: void

 NINE: void

 TEN: void

 ELEVEN: void

 TWELVE: void

 THIRTEEN: void

 FOURTEEN: void

 FIFTEEN: void

 SIXTEEN: void

 SEVENTEEN: void

<<<<enumeration>>>>

Location

 A: void

 B: void

 C: void

 D: void

 E: void

<<<<enumeration>>>>

Time

 a: void

 b: void

 c: void

Role

 locationCon: Location

 

 

 timeCon: Time

 

StateEpi LocalVCTeam JurisEpi ClinicEpi StateVC Clinician JurisVC

Person
 +uses

0..*

 +roles  

1..*  

 +tasks  

0..*   

  +roles

 1..*

Figure 4.4: UML Model for the DDS’s STRBAC

The permission role assignments are expressed as OCL constraints. The following OCL

depicts the constraints for the permission role assignmentfor Juris Epirole.

context JurisEpi

inv jurisEpiCon : (self.tasks = (Task :: ONE ->

including (Task :: THREE)) and

self.location = Location :: B and

self.timeCon = Time :: a) or

(self.tasks = (Task :: SEVENTEEN -> including

(Task :: SEVENTEEN)) and
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self.location = Location :: B and

self.timeCon = Time :: b )

The effect of permission inheritance hierarchy can also be expressed as OCL. The following

OCL depicts the constraints for the permission role assignment forState Epirole.

context StateEpi

inv stateEpiCon : (self.tasks = (Task :: SIXTEEN ->

including (Task::SIXTEEN)) and

self.location = Location :: A and

self.timeCon = Time :: a) or

(self.tasks = (Task :: ONE -> including

(Task :: THREE)) and self.location = Location :: B and

self.timeCon = Time :: a) or

(self.tasks = (Task :: SEVENTEEN -> including

(Task :: SEVENTEEN)) and self.location = Location :: B

and self.timeCon = Time :: b)

Note that all permissions assigned toJuris Epi, which is the junior role ofState Epirole are

appended to the set of permissions assigned toState Epirole.

The separation of duty can also be modeled using OCL constraint. For instance, the con-

straint said that user should not have permission to change VC protocols at the same time as he

has permission to change VC materials can be modeled as follow:

context Person

inv no_eleven_fifteen : self.roles ->

forAll (r1 , r2 : Role |

(r1.tasks -> includes (Task :: ELEVEN) implies

(r2.tasks -> excludes (Task :: FIFTEEN))) and

(r1.tasks -> includes (Task :: FIFTEEN) implies

r2.tasks -> excludes (Task :: ELEVEN)))

78



The complete list of the OCL constraints can be refered to Appendix B.1.

Stage 2: Model Transformation

The UML2Alloy tool is used to create an Alloy model from the class diagram and associated

OCL specification.

When we apply UML2Alloy to the UML class diagram and its OCL specification, the class

diagram will be transformed to the followingsignaturesin Alloy corresponding to each class

shown in Figure 4.4.

abstract sig Role{

location:one Location,

timeCon:one Time,

tasks:some Task,

uses:set Person}

one sig StateEpi extends Role{}

one sig JurisEpi extends Role{}

one sig ClinicEpi extends Role{}

one sig Clinician extends Role{}

one sig StateVC extends Role{}

one sig JurisVC extends Role{}

one sig LocalVCTeam extends Role{}

some sig Person{roles:some Role}

abstract sig Location{}

one sig A extends Location{}

one sig B extends Location{}

one sig C extends Location{}
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one sig D extends Location{}

one sig E extends Location{}

sig Time{}

sig a in Time{}

sig b in Time{}

sig c in Time{}

abstract sig Task{}

one sig ONE extends Task{}

one sig TWO extends Task{}

one sig THREE extends Task{}

one sig FOUR extends Task{}

one sig FIVE extends Task{}

one sig SIX extends Task{}

one sig SEVEN extends Task{}

one sig EIGHT extends Task{}

one sig NINE extends Task{}

one sig TEN extends Task{}

one sig ELEVEN extends Task{}

one sig TWELVE extends Task{}

one sig THIRTEEN extends Task{}

one sig FOURTEEN extends Task{}

one sig FIFTEEN extends Task{}

one sig SIXTEEN extends Task{}

one sig SEVENTEEN extends Task{}

The OCL constraint for the permission role assignment will be transformed tofact and

predicatein Alloy. For example, the OCL constraint for the permissionrole assignment of the
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Juris Epirole will be transformed to the following Alloy code.

fact JurisEpi_jurisEpiCon_fact{

all self: JurisEpi | JurisEpi_jurisEpiCon[self]}

pred JurisEpi_jurisEpiCon[self: JurisEpi]{

((self.tasks = ONE+THREE) && (self.location = B) &&

(self.timeCon = a)) || ((self.tasks = SEVENTEEN) &&

(self.location = B) && (self.timeCon in Time))}

The effect of role hierarchy represented in the OCL constraint will also be transformed to

fact andpredicatein Alloy. For example, the OCL constraint for the set of permissions that

assigned to theState Epirole through the role hierarchy will be transformed to the following

Alloy code.

fact StateEpi_stateEpiCon_fact{

all self: StateEpi | StateEpi_stateEpiCon[self]}

pred StateEpi_stateEpiCon[self: StateEpi]{

(self.tasks = SIXTEEN + ONE + THREE + SEVENTEEN) &&

(self.location = A) && (self.timeCon = a)}

The OCL constraint for the separation of duty constraint will be transformed topredicate

in Alloy. For instance, the OCL constraint for the constraint said that user should not have per-

mission to change VC protocols at the same time as he has permission to change VC materials

will be transformed to the following Alloy code.

pred Person_no_eleven_fifteen[self: Person]{

all r1, r2: self.roles |

((ELEVEN in r1.tasks) => (FIFTEEN !in r2.tasks)) &&

((FIFTEEN in r1.tasks) => (ELEVEN !in r2.tasks))}

The complete Alloy code generated by UML2Alloy is shown in Appendix B.2.
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Stage 3: Model Analysis

Alloy assertions must be formulated prior to analysis by Alloy Analyzer. Assertions are state-

ments that capture properties we wish to verify. Alloy Analyzer automatically checks such

assertions and if they fail it produces a counterexample. Wehave checked several assertions

regarding the security properties of the example system. For example, it is crucial to ensure

that no user can change VC protocols (task 11) at the same timeas he has permission to change

VC materials (task 15). To verify this, we create the following assertion:

assert NoConflictPermsSTVCAssigned{

all r: Person.roles, d: Time, l: Location|

((ELEVEN in r.tasks) && (d in r.timeCon) &&

(l in r.location)) =>

((FIFTEEN !in r.tasks) && (d in r.timeCon) &&

(l in r.location))}

We chose a value of 8 for the scope of analysis, and the assertion was checked for this

scope. A scope of 8 means that the Alloy Analyzer will attemptto find an instance that violates

the assertion, using up to 8 instances for each of the entities defined in the class diagram of

Figure 4.4. The assertion produced no counterexample, meaning that it is valid for the given

scope.

Next, we will check whether the SoD for role permission assignment is maintained. To do

this, we create the following assertion:

assert NoConflictPermsSTVC{

all r: StateVC, d: Time, l: Location|

((ELEVEN in r.tasks) && (d in r.timeCon) &&

(l in r.location)) =>

((FIFTEEN !in r.tasks) && (d in r.timeCon) &&

(l in r.location))}
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We chose a value of 8 for the scope of this analysis as well. However, this time the analyzer

showed the counterexample, which means these conflicting permissions can be assigned to the

same role. The counterexample is shown in Figure 4.5.

Figure 4.5: Counterexample for Assertion NoConflictPermsSTVC

4.4 Chapter Summary

In this chapter, we demonstrate how we can perform automatedanalysis on the STRBAC

model. We propose the usage of Alloy analyzer tool for doing automated analysis. Our analysis

can be done at two different levels–the model level and the application level. Analysing the

model at the model level ensures that the different featuresof our STRBAC model does not

contain any inconsistencies or conflicts. The application level analysis guarantees that the
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implementation of our model is fully protect the real-worldapplication and does not cause any

security breaches.

Our STRBAC model is efficient in the aspect that it can represent the different kind of

constraints and relationships as shown in Chapter 3. The transformation of the model to do the

automated verification is feasible as demonstrated in Section 4.3. However, semantically, the

model is extremely complicated. In Chapter 5, we define a model with well-defined semantics

expressed in graph-theoretic notation. We name this new model as the Spatio-Temporal Aware

Role-Based Access Control with Delegation (STARBACD) Model.
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Chapter 5

A Spatio-Temporal Aware Role-Based
Access Control with Delegation
(STARBACD) Model

Chen and Crampton develop the graph based representation for the spatio-temporal RBAC

in [19]. All RBAC components are represented by vertices while the assignment and hier-

archical relationships are represented by the edges of the directed graph. The model can be

categorized into three types i.e. standard, strong, and weak model. For the standard model,

componentv1 is said to be authorized to componentvn if all vertices along the authorization

path satisfy the spatio-temporal constraints. For the strong model, componentv1 is said to be

authorized to componentvn if all vertices together with the edges along the authorization path

satisfy the spatio-temporal constraints. And in the weak model, componentv1 is said to be

authorized to componentvn if both vertices satisfy the spatio-temporal constraints.Although

the authors developed a strong and clear semantics of the model, the model still lack of some

useful functionalities. Firstly, the model does not consider the spatio-temporal constraint which

may be applied to the object. As we mentioned earlier, this point is critical for the security in

the pervasive computing environment. Secondly, the model does not implement the separation

of duties constraints which is widely known as a useful function of the RBAC model. Thirdly,

the delegation operation which is widely used nowadays is not supported in the model. We

borrow the idea of graph representation from both [19] and [54], and then improve it to rectify

their shortcomings.

85



In this chapter, we propose the second model based on graph representation, which is well-

formed semantics. Based on this model, we will propose the model analysis algorithm in

Section 5.4.

5.1 Spatio-Temporal Model

Our model extends the one proposed by Chen and Crampton [19] in the following ways.

First, we believe that a spatio-temporal access control model must also support access control

for moving objects, that is, objects whose physical location changes with time. Thus, access

control should not only depend on the spatio-temporal coordinate-ordinate of the user but also

of the object. Second, separation of duties must also be supported by access control models.

Third, the model must also provide support for delegation which is an absolute necessity for

access control in pervasive computing applications. In this and the next two sections, we show

how the model by Chen and Crampton can be extended to support each of these features.

We first propose the model where access is dependent on the location of the user as well as

that of the object. We extend the graph-theoretic notation of Chen and Crampton [19] in the

following manner. In our work, the set of verticesV = U ∪R∪P∪O correspond to the RBAC

entities: Users (U ), Roles (R), Permissions (P), and Objects (O). Like Chen and Crampton

[19], our model assumes the existence of the following relationships of RBAC that constitute

the set of edgesE = UA∪PA∪PO∪RHa∪RHu where

• User-Role Assignment (UA) = U×R

• Permission-Role Assignment (PA) = R×P

• Permission-Object Assignment (PO) = P×O

• Role Hierarchy (RH) = R×R×{a,u}, which can be categorized to:

– the activation hierarchy (RHa) = {(r, r ′) : (r, r ′,a) ∈RH}, and

– the permission usage hierarchy (RHu) = {(r, r ′) : (r, r ′,u) ∈RH}

We define the notion of activation path, usage path and accesspath in a manner similar to

that proposed by Chen and Crampton. Anactivation path(or act-path) betweenv1 andvn is
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defined to be a sequence of verticesv1, . . . ,vn such that(v1,v2) ∈UA and(vi−1,vi) ∈ RHa for

i = 3, . . . ,n. A usage path(or u-path) betweenv1 andvn is defined to be a sequence of vertices

v1, . . . ,vn such that(vi ,vi+1) ∈ RHu for i = 1, . . . ,n−2, and(vn−1,vn) ∈ PA. An access path

(or acs-path) betweenv1 andvn is defined to be a sequence of verticesv1, . . . ,vn, such that

(v1,vi) is an act-path,(vi ,vn−1) is an u-path, and(vn−1,vn) ∈ PO. Note that, our access path

definition is similar to the au-path definition of Chen and Crampton [19], except that we include

the path to the object as part of our definition. This is important especially if we are dealing

with objects whose location varies with time. Following Chen and Crampton’s work [19], we

assume the existence of a spatio-temporal domainD. We also propose three models, namely,

the standard model, the strong model, and the weak model. Themodels differ with respect to

the spatio-temporal constraints that must be satisfied by the entities for the authorization to be

successful.

5.1.1 Authorization in the Standard Model STARBACD=

In the standard model, the individual entities, namely, users, roles, permissions, and objects,

are associated with set of points in the spatio-temporal domain. These points indicate when and

where the individual entities can be activated. The spatio-temporal points associated with the

user describe when and where the user can create a session, those associated with a role specify

when and where the role can be activated, those associated with a permission state when and

where a permission can be invoked, and those associated withan object state when and where

the object can be accessed. The standard model requires thatif a useru can access an object

o at some spatio-temporal pointd, thend is contained in the set of spatio-temporal points

associated with all the nodes in the path connectingu to o. These ideas are formalized below.

The spatio-temporal constraints in thestandard STARBACD model(or STARBACD=) are

denoted with a functionλ :V→ 2D . Forv∈V, λ(v)⊆D denotes the set of points in space-time

at whichv can be invoked.

• if u∈U , thenλ(u) denotes the set of points in space-time at whichumay create a session;

• if r ∈ R, thenλ(r) denotes the set of points in space-time at whichr may be activated in
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a session;

• if p∈ P, thenλ(p) denotes the set of points in space-time at whichp may be granted;

• if o∈O, thenλ(o) denotes the set of points in space-time at whicho may be accessible.

Given a pathv1, . . . ,vn in the labeled graphG = (V,E,λ), whereE = UA∪PA∪PO∪RHa∪

RHu, we write λ̂(v1, . . . ,vn) = λ̂(v1,vn) ⊆ D to denote
Tn

i=1λ(vi). In other words,̂λ(v1,vn)

is the set of points at which every vertexvi is enabled. Note that semantics ofλ and λ̂ are

consistent with those proposed by Chen and Crampton [19].

Authorization in STARBACD =:

• A userv∈U may activate rolev′ ∈Rat pointd∈D if and only if there exists an act-path

v = v1,v2, . . . ,vn = v′ andd ∈ λ̂(v,v′);

• A role v∈R is authorized for permissionv′ ∈ P at pointd ∈D if and only if there exists

an u-pathv = v1,v2, . . . ,vn = v′ andd ∈ λ̂(v,v′);

• A userv∈U is authorized for permissionv′ ∈ P with respect to objectv′′ ∈ O at point

d ∈D if and only if there exists an acs-pathv = v1,v2, . . . ,vi, . . . ,vn−1 = v′,vn = v′′ such

that vi ∈ R for somei, v1, . . . ,vi is an act-path,vi , . . . ,vn−1 is a u-path,(vn−1,n) ∈ PO,

andd ∈ λ̂(v,v′′);

5.1.2 Authorization in the Strong Model STARBACD+

The strong model is used when not only the individual entities (users, roles, permissions,

objects) involved must satisfy the spatio-temporal constraints, but the different relationships

must also satisfy such constraints. For instance, considerthe relation(r, p) ∈ PA. In this

case, we not only have to take into account the spatio-temporal points at which the roler can

be activated in a session and the points at which the permission p can be invoked, but we also

must consider the spatio-temporal points whenr can invokep. This requires specifying another

function in the strong model as described below.

88



The spatio-temporal constraints in thestrong STARBACD model(or STARBACD+) are

denoted with a functionµ : E→ 2D . For e= (v,v′) ∈ E, µ(v,v′) denotes the set of points in

space-time at which the association betweenv andv′ is enabled.

• if (u, r) ∈UA, thenµ(u, r) denotes the set of points in space-time at whichu is assigned

to r;

• if (r ′, r) ∈ RHa, thenµ(r ′, r) denotes the set of points in space-time at whichr ′ is senior

to r in the activation hierarchy;

• if (r ′, r) ∈ RHu, thenµ(r ′, r) denotes the set of points in space-time at whichr ′ is senior

to r in the permission usage hierarchy;

• if (r, p) ∈ PA, thenµ(r, p) denotes the set of points in space-time at whichp is assigned

to r.

• if (p,o) ∈ PO, thenµ(p,o) denotes the set of points in space-time at whicho is assigned

to p.

Given a pathv1, . . . ,vn in the labeled graphG = (V,E,λ,µ), whereV = U ∪R∪P∪O andE =

UA∪PA∪PO∪RHa∪RHu , we writeµ̂(v1, . . . ,vn) = µ̂(v1,vn)⊆D to denote
Tn−1

i=1 µ(vi,vi+1).

The semantics imply that an edge can only be enabled if both endpoints are enabled. Hence,

µ̂(v1,vn) is the set of points at which every vertex and every edge in thepath is enabled. Here

again the semantics ofµ andµ̂ are consistent with those proposed by Chen and Crampton [19].

Authorization in STARBACD +:

• a userv∈U may activate rolev′ ∈Rat pointd∈D if and only if there exists an act-path

v = v1,v2, . . . ,vn = v′ andd ∈ µ̂(v,v′);

• a rolev∈ R is authorized for permissionv′ ∈ P at pointd ∈D if and only if there exists

an u-pathv = v1,v2, . . . ,vn = v′ andd ∈ µ̂(v,v′);

• a userv ∈U is authorized for permissionv′ ∈ P with respect to objectv′′ ∈ O at point

d ∈D if and only if there exists an acs-pathv = v1,v2, . . . ,vi, . . . ,vn−1 = v′,vn = v′′ such
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thatvi ∈ R for somei, v1, . . . ,vi is an act-path,vi , . . . ,vn−1 is an u-path,(vn−1,vn) ∈ PO

andd ∈ µ̂(v,v′′);

5.1.3 Authorization in the Weak Model STARBACD−

The weak model is derived from the standard model. Recall that the standard model re-

quires that each entity (users, roles, permissions, and objects) in the authorization path be as-

sociated with a set of spatio-temporal points and the intersections of all these sets be non-zero.

In the weak model, the entityv is authorized for another entityv′ provided there is overlap in

their spatio-temporal points. There is no requirement thatthe intermediate nodes on the path

satisfy the spatio-temporal constraints. Like STARBACD=, the model is based on the labeled

graphG = (V,E,λ), whereV = U ∪R∪P∪O andE = UA∪PA∪PO∪RHa∪RHu.

Authorization in STARBACD −:

• A userv∈U may activate rolev′ ∈Rat pointd∈D if and only if there exists an act-path

v = v1,v2, . . . ,vn = v′ andd ∈ λ(v)∩λ(v′);

• A role v∈R is authorized for permissionv′ ∈ P at pointd ∈D if and only if there exists

a u-pathv = v1,v2, . . . ,vn = v′ andd ∈ λ(v)∩λ(v′);

• A userv∈U is authorized for permissionv′ ∈ P with respect to objectv′′ ∈ O at point

d ∈D if and only if there exists an acs-pathv = v1,v2, . . . ,vi, . . . ,vn−1 = v′,vn = v′′ such

thatvi ∈ R for somei, v1, . . . ,vi is an act-path,vi , . . . ,vn−1 is an u-path,(vn−1,vn) ∈ PO

and andd ∈ λ(v)∩λ(vi)∩λ(v′)∩λ(v′′);

5.2 Separation of Duties Constraints

Separation of duties (SoD) prevents the occurrence of fraudarising out of conflicts of in-

terests in organizations [80]. Separation of duties ensurethat conflicting roles are not assigned

to the same user or that conflicting permissions are not assigned to the same role.

Separation of Duty (SoD) comes in two varieties. First one iswith respect to the mutual

exclusion relations between two roles. This is to guaranteethat no user can be assigned to two
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conflicting roles. The second one is with respect to the mutual exclusion relations between

two permissions. This is to guarantee that no role can be assigned two conflicting permissions.

We denote these two types of SoD by usingSDR andSDP edges, respectively. Since SoD is a

symmetric relationship, theSDR andSDP edges are bi-directional.

We next define the separation of duties for the standard and weak models. The SoDs defined

for the standard and weak models are expressed in terms of thegraphG = (V,E,λ), where

E = UA∪PA∪PO∪RHa∪RHu∪SDR∪SDP andV = U ∪R∪P∪O. For these cases, the SoD

is similar to the SoD constraints in traditional RBAC. Theseare given below.

SoD Constraints for STARBACD− and STARBACD=

• User-Role Assignmentif (r, r ′) ∈ SDR then there are no two edges(u, r) and(u, r ′) such

that{(u, r),(u, r ′)} ⊂UA

• Permission-Role Assignmentif (p, p′) ∈ SDP then there are no two u-paths of the form

r = v1,v2, . . . ,vn = p andr = v′1,v
′
2, . . . ,v

′
n = p′

Similar to other associations, we defined the spatio-temporal constraint for the separation of

duties with a functionµ : E→ 2D . Fore= (v,v′) ∈SDR∪SDP, µ(v,v′) denotes the set of points

in space-time at which the association betweenv andv′ (in this case, the SoD) is enabled. In

particular,

• if (r, r ′) ∈ SDR, µ(r, r ′) denotes the set of points in space-time at which the role-role

separation of duties constraint is valid;

• if (p, p′) ∈SDP, µ(p, p′) denotes the set of points in space-time at which the permission-

permission separation of duties constraint is valid.

The strong model is defined over the labeled graphG = (V,E,λ,µ), whereE = UA∪PA∪

PO∪RHa∪RHu∪SDR∪SDP andV =U ∪R∪P∪O. The strong model allows specification of

weaker forms of SoD constraints than those supported by the traditional RBAC. Specifically, it

allows one to specify the spatio-temporal points at which the SoD constraints are valid.

SoD Constraints for STARBACD+
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• User-Role Assignment: if (r, r ′) ∈ SDR then there are no two edges(u, r) and (u, r ′),

corresponding to some useru, whereµ(u, r)∩µ(u, r ′)∩µ(r, r ′) 6= /0

• Permission-Role Assignment:if (p, p′)∈SDP then there are no two u-pathsr = v1,v2, . . . ,

vn = p andr = v′1,v
′
2, . . . ,v

′
n = p′ whereµ̂(v1,vn)∩ µ̂(v′1,v

′
n)∩µ(p, p′) 6= /0

5.3 Delegation in STARBACD

Many situations require the temporary transfer or grantingof access rights belonging to a

user/role to another user/role in order to accomplish a given task. For example, a department

chair may delegate his privilege to the assistant chair while he is traveling. The entity that

transfers or grants his privileges temporarily to another entity is referred to as the delegator

and the entity who receives the privilege is known as the delegatee. The delegator (delegatee)

can be either an user or a role. Thus, we may have four types of delegations:user to user

(U2U), user to role(U2R), role to role (R2R), androle to user(R2U). When a user is the

delegator, he can delegate a subset of permissions that he possesses by virtue of being assigned

to different roles. When a role is the delegator, he can delegate either a set of permissions or he

can delegate the entire role. We can therefore classify delegation on the basis of role delegation

or permission delegation. In the graphical representationof STARBACD, we define a function

ν : (U ∪R)× (R∪P)→ (U ∪R) that maps the delegation to the delegator. We assume the

existence of different types of relationship corresponding to the different types of delegation as

follows:

• User to User Role Delegation (DelegateRU2U ) = U×R, ν(u, r ′) = u′ denotes the delegator

who is a user authorized for roler ′.

• User to User Permission Delegation (DelegatePU2U ) = U ×P, ν(u, p′) = u′ denotes the

delegator who is a user authorized for permissionp′.

• User to Role Role Delegation (DelegateRU2R) = R×R, ν(r, r ′) = u′ denotes the delegator

who is a user authorized for roler ′.
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• User to Role Permission Delegation (DelegatePU2R) = R×P, ν(r, p′) = u′ denotes the

delegator who is a user authorized for permissionp′.

• Role to Role Role Delegation (DelegateRR2R) = R×R, ν(r, r ′′) = r ′ denotes the delegator

which is a role authorized for roler ′′. Note thatr ′ andr ′′ can be the same role.

• Role to Role Permission Delegation (DelegatePR2R) = R×P, ν(r, p′) = r ′ denotes the

delegator which is a role authorized for permissionp′

• Role to User Role Delegation (DelegateRR2U ) = U×R, ν(u, r ′′) = r ′ denotes the delegator

which is a role authorized for roler ′′. Note thatr ′ andr ′′ can be the same role.

• Role to User Permission Delegation (DelegatePR2U ) = U ×P, ν(u, p′) = r ′ denotes the

delegator which is a role authorized for permissionp′.

5.3.1 Delegation in the Standard Model STARBACD=

To represent delegation in a graph-theoretic manner for thestandard and weak models, we

have the labeled graphG = (V,E,λ), whereE = UA∪PA∪PO∪RHa∪RHu∪DelegateRU2U ∪

DelegatePU2U ∪DelegateRU2R∪DelegatePU2R∪DelegateRR2R∪DelegatePR2R∪DelegateRR2U∪

DelegatePR2U , andV = U ∪R∪P∪O. We use the notationsλ andλ̂ as before. The constraints

below describe the situations when delegation is possible in our spatio-temporal model. For

instance, the first constraint gives the spatio-temporal constraints that must be satisfied when

useru′ wants to delegate roler ′ to another useru. It states that this delegation is possible

only if there is some overlap among the set of spatio-temporal points associated with useru′’s

activation of roler ′ with those of useru’s session creation. The other constraints are specified

in a similar manner.

Delegation in STARBACD=

• If (u, r ′)∈DelegateRU2U andν(u, r ′) = u′, then there exists an act-pathu′= v1,v2, . . . ,vn =

r ′ such that̂λ(v1,vn)∩λ(u) 6= /0
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• If (u, p′)∈DelegatePU2U andν(u, p′) = u′, then there exists a pathu′= v1,v2, . . . ,vi , . . . ,vn =

p′ such thatvi ∈ R for somei, v1, . . . ,vi is an act-path,vi+1, . . . ,vn is a u-path such that

λ̂(v1,vn)∩λ(u) 6= /0

• If (r, r ′)∈DelegateRU2R andν(r, r ′) = u′, then there exists an act-pathu′ = v1,v2, . . . ,vn =

r ′ such that̂λ(v1,vn)∩λ(r) 6= /0

• If (r, p′)∈DelegatePU2R andν(r, p′) = u′, then there exists a pathu′= v1,v2, . . . ,vi , . . . ,vn =

p′ such thatvi ∈R for somei, v1, . . . ,vi is an act-path,vi+1, . . . ,vn is a u-path such that

λ̂(v1,vn)∩λ(r) 6= /0

• If (r, r ′′) ∈ DelegateRR2R andν(r, r ′′) = r ′, then there exists a pathr ′ = v1,v2, . . . ,vn = r ′′

where(vi ,vi+1) ∈RHa for 1≤ i ≤ (n−1) such that̂λ(v1,vn)∩λ(r) 6= /0

• If (r, p′) ∈DelegatePR2R andν(r, p′) = r ′, then there exists a u-pathr ′ = v1,v2, . . . ,vn = p′

such that̂λ(v1,vn)∩λ(r) 6= /0

• If (u, r ′′) ∈DelegateRR2U andν(u, r ′′) = r ′, then there exists a pathr ′ = v1,v2, . . . ,vn = r ′′

where(vi ,vi+1) ∈RHa for 1≤ i ≤ (n−1) such that̂λ(v1,vn)∩λ(u) 6= /0

• If (u, p′)∈DelegatePR2U andν(u, p′) = r ′, then there exists a u-pathr ′= v1,v2, . . . ,vn = p′

such that̂λ(v1,vn)∩λ(u) 6= /0

5.3.2 Delegation in the Weak Model STARBACD−

The weak model is defined on the same graph as the standard model given in Section 5.3.1.

In the weak model, the entityv is authorized for the delegated entityv′ if both entitiesv and

v′ are enabled. There is no requirement that the intermediate nodes on the path are enabled.

The constraints shown below describe when delegation is possible in the weak model. The first

constraint says that the useru′ can delegate roler ′ to another useru if the useru′ can activate

the roler ′ in the weak model and provided the spatio-temporal points when useru can create a

session and roler ′ can be activated have some overlap. The other constraints are defined in a

similar manner.
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Delegation in STARBACD−

• If (u, r ′)∈DelegateRU2U andν(u, r ′) = u′, then there exists an act-pathu′= v1,v2, . . . ,vn =

r ′ such thatλ(v1)∩λ(vn) 6= /0 andλ(u)∩λ(r ′) 6= /0

• If (u, p′)∈DelegatePU2U andν(u, p′) = u′, then there exists a pathu′= v1,v2, . . . ,vi , . . . ,vn =

p′ such thatvi ∈ R for somei, v1, . . . ,vi is an act-path,vi+1, . . . ,vn is an u-path such that

λ(v1)∩λ(vn) 6= /0 andλ(u)∩λ(p′) 6= /0

• If (r, r ′)∈DelegateRU2R andν(r, r ′) = u′, then there exists an act-pathu′ = v1,v2, . . . ,vn =

r ′ such thatλ(v1)∩λ(vn) 6= /0 andλ(r)∩λ(r ′) 6= /0

• If (r, p′)∈DelegatePU2R andν(r, p′) = u′, then there exists a pathu′= v1,v2, . . . ,vi , . . . ,vn =

p′ wherevi ∈ R for somei, v1, . . . ,vi is an act-path,vi+1, . . . ,vn is an u-path such that

λ(v1)∩λ(vn) 6= /0 andλ(r)∩λ(p′) 6= /0

• If (r, r ′′) ∈ DelegateRR2R andν(r, r ′′) = r ′, then there exists a pathr ′ = v1,v2, . . . ,vn = r ′′

where(vi ,vi+1)∈RHa for 1≤ i≤ (n−1) such thatλ(v1)∩λ(vn) 6= /0 andλ(r)∩λ(r ′′) 6= /0

• If (r, p′) ∈DelegatePR2R andν(r, p′) = r ′, then there exists a u-pathr ′ = v1,v2, . . . ,vn = p′

such thatλ(v1)∩λ(vn) 6= /0 andλ(r)∩λ(p′) 6= /0

• If (u, r ′′) ∈DelegateRR2U andν(u, r ′′) = r ′, then there exists a pathr ′ = v1,v2, . . . ,vn = r ′′

where(vi ,vi+1)∈RHa for 1≤ i≤ (n−1) such thatλ(v1)∩λ(vn) 6= /0 andλ(u)∩λ(r ′′) 6= /0

• If (u, p′)∈DelegatePR2U andν(u, p′) = r ′, then there exists a u-pathr ′= v1,v2, . . . ,vn = p′

such thatλ(v1)∩λ(vn) 6= /0 andλ(u)∩λ(p′) 6= /0

5.3.3 Delegation in the Strong Model STARBACD+

The spatio-temporal constraints enforced in the delegation of the STARBACD+ model are

denoted with a functionµ : E→ 2D . For e= (v,v′) ∈ E, µ(v,v′) denotes the set of points in

space-time at which the association betweenv andv′ is activated.
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The strong model is defined over the labeled graphG = (V,E,λ,µ), whereE = UA∪PA∪

PO∪RHa∪RHu∪DelegateRU2U ∪DelegatePU2U ∪DelegateRU2R∪DelegatePU2R∪DelegateRR2R∪

DelegatePR2R∪DelegateRR2U ∪DelegatePR2U andV = U ∪R∪P∪O. The constraints for the

strong model are enumerated below. The first constraint saysthat when a useru′ delegates role

r ′ to useru, then the delegation is possible only if the spatio-temporal points for activating user

u′’s role r ′ overlap with those in which the delegation is valid.

Delegation in STARBACD+

• If (u, r ′)∈DelegateRU2U andν(u, r ′) = u′, then there exists an act-pathu′= v1,v2, . . . ,vn =

r ′ such that ˆµ(v1,vn)∩µ(u, r ′) 6= /0

• If (u, p′)∈DelegatePU2U andν(u, p′) = u′, then there exists a pathu′= v1,v2, . . . ,vi , . . . ,vn =

p′ wherevi ∈ R for somei, v1, . . . ,vi is an act-path,vi+1, . . . ,vn is an u-path such that

µ̂(v1,vn)∩µ(u, p′) 6= /0

• If (r, r ′)∈DelegateRU2R andν(r, r ′) = u′, then there exists an act-pathu′ = v1,v2, . . . ,vn =

r ′ such that ˆµ(v1,vn)∩µ(r, r ′) 6= /0

• If (r, p′)∈DelegatePU2R andν(r, p′) = u′, then there exists a pathu′= v1,v2, . . . ,vi , . . . ,vn =

p′ such thatvi ∈ R for somei, v1, . . . ,vi is an act-path,vi+1, . . . ,vn is an u-path such that

µ̂(v1,vn)∩µ(r, p′) 6= /0

• If (r, r ′) ∈ DelegateRR2R andν(r, r ′′) = r ′, then there exists a pathr ′ = v1,v2, . . . ,vn = r ′′

where(vi ,vi+1) ∈RHa for 1≤ i ≤ (n−1) such that ˆµ(v1,vn)∩µ(r, r ′) 6= /0

• If (r, p′)∈DelegatePR2R andν(r, p′) = r ′, then there exists an u-pathr ′= v1,v2, . . . ,vn = p′

such that ˆµ(v1,vn)∩µ(r, p′) 6= /0

• If (u, r ′′) ∈DelegateRR2U andν(u, r ′′) = r ′, then there exists a pathr ′ = v1,v2, . . . ,vn = r ′′

where(vi ,vi+1) ∈RHa for 1≤ i ≤ (n−1) such that ˆµ(v1,vn)∩µ(u, r ′′) 6= /0

• If (u, p′) ∈DelegatePR2U andν(u, p′) = r ′, then there exists an u-pathr ′ = v1,v2, . . . ,vn =

p′ such that ˆµ(v1,vn)∩µ(u, p′) 6= /0
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5.4 Dynamism Analysis

The pervasive computing applications are dynamic in nature–the accessing entities may

change, resources requiring protection may be created or modified, and an entity’s access to

resources may change during the course of the application. Such changes may result in the un-

reachable entity or the violation of separation of duty constraints. Regarding this, the analysis

is needed to detect the conflicts that may arise in the model inthe presence of such dynamism.

Our study reveals the possible changes which may lead to the associated conflict as follow:

1. Entity Removal The entity could be either user, role, permission, or object. This type of

change can cause the isolated entity.

2. Relationship RemovalThe relationship could be either User-Role Assignment, Per-

mission Usage Hierarchy, Role Activation Hierarchy, Role-Permission Assignment, or

Permission-Object Assignment. This type of change can cause the isolated entity.

3. Entity and Relationship Creation The new entity together with its corresponding new

relationship can be created. The entity could be either user, role, permission, or ob-

ject. The relationship could be either User-Role Assignment, Permission Usage Hier-

archy, Role Activation Hierarchy, Role-Permission Assignment, Permission-Object As-

signment, SoD, or Delegation. This type of change can cause the SoD constraints viola-

tion.

In this section, we present the algorithms used to detect these conflicts.

5.4.1 Algorithm for Detecting the Isolated Entity

5.4.1.1 Preliminaries

In STARBACD model, we define the isolated entity as the entitywhich cannot be used. The

isolated entity can be determined by considering thein-degreeandout-degreeof each vertex.

The in-degreeof the vertex can be defined correspond with different type ofSTARBACD

model as follow:
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Definition 44 (In-degree)

STARBACD= and STARBACD− In the labeled graphG = (V,E,λ), whereV = U ∪R∪P∪

O andE = UA∪PA∪PO∪RHa∪RHu, in-degreeof a vertexv is the cardinality of the

set{(v′,v)|((v′,v) ∈ E)∧ (λ(v′)∩λ(v) 6= /0)}

STARBACD+ In the labeled graphG = (V,E,λ,µ), whereV = U ∪R∪P∪O andE = UA∪

PA∪PO∪RHa∪RHu, in-degreeof a vertexv is the cardinality of the set{(v′,v)|((v′,v)∈

E)∧ (λ(v′)∩λ(v)∩µ(v′,v) 6= /0)}

Definition 45 (Source)

Sourceis a vertexv which in-degree(v) = 0

Similarly, we define theout-degreeof the vertex as follow:

Definition 46 (Out-degree)

STARBACD= and STARBACD− In the labeled graphG = (V,E,λ), whereV = U ∪R∪P∪

O andE = UA∪PA∪PO∪RHa∪RHu, out-degreeof a vertexv is the cardinality of the

set{(v,v′)|((v,v′) ∈ E)∧ (λ(v)∩λ(v′) 6= /0)}

STARBACD+ In the labeled graphG = (V,E,λ,µ), whereV = U ∪R∪P∪O andE = UA∪

PA∪PO∪RHa∪RHu, out-degreeof a vertexv is the cardinality of the set{(v,v′)|((v,v′)∈

E)∧ (λ(v)∩λ(v′)∩µ(v,v′) 6= /0)}

Definition 47 (Sink)

Sinkis a vertexv whichout-degree(v) = 0

Note that we do not consider neither separation of duty nor the delegation edges since the

modifications of these edges do not result in changes of the isolated entity.

5.4.1.2 The Detection Algorithm

By considering the value ofin-degreeandout-degreeof each vertex, we can determine the

isolated entity based on different types of vertex as follow:

User Forv∈U , v is the isolated entity iffout-degree(v) = 0
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Role and PermissionFor v ∈ R∪P, v is the isolated entity iff (in-degree(v) = 0) ∨ (out-

degree(v) = 0)

Object Forv∈O, v is the isolated entity iffin-degree(v) = 0

To get thein-degreeandout-degree, we have to count the number of edges connected to

each vertex. This could be done inO(VE). However, we can improve this by recording thein-

degreeandout-degreeof each vertex. Each time the vertex or the edge is added to or removed

from the graph, we update thein-degreeandout-degreeof the related vertices. Since we do not

allow the existence of multiple edges between each pair of vertices, this update process could

be done inO(V). After we have such values recorded for every vertex, the detection can be

done inO(V).

5.4.2 Algorithm for Detecting the Infeasible Path

5.4.2.1 Preliminaries

In STARBACD model, a useru is authorized for permissionp through roler with respect

to objecto iff there exists a validacs-pathwhich containsu, r, p, ando. We define an infea-

sible path as an invalidacs-pathi.e. anacs-pathwhich cannot grant the authorization of any

permission to user.

5.4.2.2 The Detection Algorithm

To detect the infeasible path, we assume that we store all source vertices in a list. Each

member in the list maintain its own depth-first search (DFS) tree. To generate these trees, we

perform DFS from each source. While performing the DFS, we check if there is any spatio-

temporal conflicts between the nodes (for STARBACD= and STARBACD−) or edges (for

STARBACD+). If there is any conflicts, then there exists an infeasible path. This step could be

done inO(VE). After the process we will have set of the initial DFS trees which are all consists

of feasible paths. Next for each update operation of the graph, we ensure that the following

conditions are satisfied:

• Only uservertices can be the root of each subtree.
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• Only objectvertices can be the leave node of each subtree.

For each update operation of the graph, we perform the following:

If any new entityv and its corresponding relationship have been added to the initial graph, we

consider the following:

• If v is a new source, we check whether the spatio-temporal constraint between the source

and its immediate successors is satisfied. If so, we addv to the source list and maintain

its pointers to its immediate successors. If not, then thisv will create an infeasible path.

This step could be done inO(E).

• If v is a new intermediate vertex, we check whether the spatio-temporal constraint be-

tweenv, its immediate predecessors, and its immediate successorsis satisfied. If so, we

create pointer fromv’s immediate predecessors tov, and fromv to its immediate suc-

cessors. If not, then thisv will create an infeasible path. This step could be done in

O(E).

• If v is a new sink, we check whether the spatio-temporal constraint betweenv and its

immediate predecessors is satisfied. If so, we create pointer from its immediate prede-

cessors tov. If not, then thisv will create an infeasible path. This step could be done in

O(E).

If any entity and its corresponding relationship has been removed from the graph, we con-

sider the following:

• If the (u,v) ∈ E is removed from the graph, and cause eitheru or v to be an isolated

entity, this will create an infeasible path. This detectioncould be done inO(1).

• If v ∈ V and its related edges are removed from the graph, we determine whether this

cause any of its neighbor vertices to become an isolated entity. If so, then this will create

an infeasible path. Otherwise, we determine whetherv is in the source list. If it is in the

list, then we remove it out. This detection could be done inO(E).
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5.4.3 Algorithm for Detecting the SoD Violation

5.4.3.1 Preliminaries

In STARBACD model, the SoD can be violated by two ways. First,if (r1, r2) ∈ SDR, and

there existsacs-pathsfrom u1 to r1 andu1 to r2. Or, if (p1, p2) ∈ SDP, and there existsu-paths

from r1 to p1 andr1 to p2.

5.4.3.2 The Detection Algorithm

Consider the dynamic case where the edge can be add and deletefrom the graph. The

naive algorithm can be done by performing the reverse DFS on each(v,v′) ∈ SDR∪SDP of the

modified graph to find the common predecessor. This could be done inO(k|E|) time.

Our algorithm which will be proposed next is the special caseof the algorithm to find the

common predecessors in a Directed Acyclic Graph (DAG) described in detail in the Appendix

C. In our algorithm, each entity except users will maintain alist of users authorized for it

by performing the DFS from each user. Only users satisfied thespatio-temporal constraints

will be added to the list. To determine whether the SoD(v,v′) ∈ SDP∪SDR is violated, we

compare whetheru∈U is in the authorized users list of bothv andv′, andλ(u)∩µ(v,v′) 6= /0.

If this is evaluate to true, then there exists a SoD violation. Since the size of each list cannot

exceeds the number of user vertices, the evaluation time isO(|U |). Let k be number of SoD

edges, the detection time for the static case where no addingor removing edges allow is equal

to O(k|U |). To label all vertices takesO(|E||U |) time, yields the total running time in the static

graph equal toO((k+ |E|)|U |). However, in case that all edges modifications are of same type

i.e. only either adding edges or deleting edges are allowed,we can improve the running time

by applying the following graph specification updating summarized below:

• When only adding edges is allow to be done with the graph, eachtime that new edge is

added, we update only the label list of vertices belonged to the graph portion that have

not been reached before by using the Incremental-DFS described in the Appendix C. All

updates takeO(|E||U |) time, and detecting whether the SoD is violated takeO(|U |) per

SoD edge. This yields the total processing time equal toO((k+ |E|)|U |).
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• When only removing edges is allow to be done with the graph, weupdate only the

label list of vertices that becomes unreachable by some useru after the edge removal.

Following the algorithm described in the Appendix C, the removal of an edge takes

O(|E|log|V|) time for relabeling for each user vertex, and detecting whether the SoD

is violated takeO(|U |) per SoD edge. This yields the total processing time equal to

O((k+ |E|log|V|)|U |).

For the detail on graph specification updating algorithm andproof of correctness. We refer to

the Appendix C.

5.5 Example Scenario

Military application is one scenario which STARBACD can be applied. The army applica-

tion is dynamic in nature–during the period of war, soldiersmight be under attack and cannot

continue to pursue thier mission. In such scenario, it is important for the access control to

support the delegation of authority from the soldier who is under attack to another soldier.

In this section, we will demonstrate a scenario where the STARBACD+ model can be used

to control the accessibility to the resource. Let assume that in the battlefield, each troop consists

of military staff with the following responsibilities: TheIntelligent Officerresponsible for the

process of acquiring enemy information then interpreting and exploiting it to theSoldier in

his troop in order to perform a suitable attack. And finally, the Clinical Officer is in charge

of monitoring the health information of his troop, evaluatethe information to check whether

the trooper’s life is in danger, and send the SOS signal to thecommander to get the proper

help. The list of entities and the spatio-temporal relationships are shown in Tables 8.1 and 8.2

respectively.

The graph-theoretic representation is shown in Figure 5.1(a). We will only describe parts

of this configuration. UserAlex(u1) can create session at any time and at any place as per Row

1 of Table 8.1. He is assigned the role ofIntelligence Officer(r1) which can be activated at any

place at any time. During this time and at this location, he has permission (p1) to access the

Surveillance Sensor Information(o1). SinceIntelligence Officeris senior toSoldierrole in the
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NAME DESCRIPTION SPATIO-TEMPORAL DOMAIN (λ)
u1 Alex [Universe,Always]
u2 Ben [Universe,Always]
u3 Charlie [Universe,Always]
r1 Intelligence Officer [Universe, Always]
r2 Soldier [Field, Always]
r3 Clinical Officer [Universe, Always]
p1 Access Surveillance Sensor [Universe, Always]
p2 Manouver the Vehicle [Field, Always]
p3 Access Vital Sensor [Universe, Always]
o1 Surveillance Sensor Information[Universe, Always]
o2 Tank [Field, Always]
o3 Health Information [Universe, Always]

Table 5.1: STARBACD Entities for the Example

NAME DESCRIPTION SPATIO-TEMPORAL DOMAIN (µ)
(u1, r1) User-Role Assignment [Universe, Always]
(u2, r2) User-Role Assignment [Field, Always]
(u3, r3) User-Role Assignment [Universe, Always]
(r1, r2) Permission Usage Hierarchy [Field, Always]
(r1, p1) Permission-Role Assignment [Universe, Always]
(r2, p2) Permission-Role Assignment [Field, Always]
(r3, p3) Permission-Role Assignment [Universe, Always]
(p2, p3) Separation of Duties [Universe, Always]
(p3, p2) Separation of Duties [Universe, Always]
(p1,o1) Permission-Object Assignment[Universe, Always]
(p2,o2) Permission-Object Assignment[Field, Always]
(p3,o3) Permission-Object Assignment[Universe, Always]

Table 5.2: STARBACD Relationships and Constraints

permission usage hierarchy, he can also get the permission to manouver theTank. However,

this permission is allowed only when the hierarchy is enabled on the battle field. During the

war, Alex gets shot and cannot pursue his mission. So, he decides to delegate his role to Charlie

for a month until he is fully recovered. This new graphical representation is shown in Figure

5.1(b) where the delegation edge is represented by the dash arrow. However, this delegation

should not be allowed because our algorithm detects a violation of separation of duty constraint

in the existence of this delegation.
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(a) Configuration before delegation (b) Configuration after delegation

Figure 5.1: STARBACD Configuration for Example

5.6 Chapter Summary

In this chapter, we propose the second spatio-temporal access control model, namely the

Spatio-Temporal Role Based Access Control Model with Delegation (STARBACD) model.

The model is based on graph representation, which is well-formed semantics. Based on this

model, we develop algorithms to detect the conflicts and inconsistencies based on graph theory

as described in Section 5.4. The algorithm can reveal differenct types of conflicts, namely,

isolated entity, infeasible path, and separation of duty violation. Nonetheless, this analysis

approach is far from being automated.

In Chapter 6, we will extend our STRBAC model discussed in Chapter 3 to support the

delegation chain. To get the well-formed semantics, the model will be transformed into the

graph representation. The graph will then be transformed into the Coloured Petri-Nets format,

which can be automately analyzed by using the analysis tool called CPN Tool.
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Chapter 6

The Extended STRBAC Model

In this chapter, we present a comprehensive model with a well-defined semantics expressed

in graph-theoretic notation and that can be automatically verified by existing tools.

6.1 Our Model

6.1.1 Representing Location and Time

Representing Location

In order to perform location-based access control, we need to formalize the concept of

location [13, 18] and propose the location comparison operators that are used in our model.

There are two types of locations:physicalandlogical. All users and objects are associated with

locations that correspond to the physical world. These are referred to as the physical locations.

A physical location is formally defined by a set of points in a three-dimensional geometric

space. Aphysical location PLoci is a non-empty set of points{pi , p j , . . . , pn} where a point

pk is represented by three co-ordinates. The granularity of each co-ordinate is dependent upon

the application. Physical locations are grouped into symbolic representations that will be used

by applications. We refer to these symbolic representations as logical locations. Examples of

logical locations are Fort Collins, Colorado etc. Alogical locationis an abstract notion for one

or more physical locations. We assume the existence of a mapping functionm that converts a

logical location to a physical one.
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Definition 48 (Mapping Functionsm)

m is a total function that converts a logical location into a physical one. Formally,m : L→ P,

whereP is the set of all possible physical location andL is the set of all logical location.

Different kinds of operations can be performed on location data. We define two binary

operators, namely,containment⊆, andequality=.A physical locationplocj is said to becon-

tained inanother physical locationplock, denoted as,plocj ⊆ plock, if the following condition

holds:∀pi ∈ plocj , pi ∈ plock. The locationplocj is called the contained location andplock is

referred to as the containing or the enclosing location. Intuitively, a physical locationplocj is

contained in another physical locationplock, if all points in plocj also belong toplock. Two

physical locationsplocr and plocs areequal if plocr ⊆ plocs and plocs ⊆ plocr . Note that

these operators are defined on physical locations. Thus, logical locations must be transformed

into physical locations (using mapping functionm defined above) before we can apply these

operators. We define a logical location calledUniversethat contains all other locations.

Representing Time

Our model uses two kinds of temporal information. The first isknown as time instant and

the other is time interval. Atime instantis one discrete point on the time line. The exact

granularity of a time instant is application dependent. Forinstance, in some application a time

instant may be measured at the nanosecond level and in another one it may be specified at the

millisecond level. Atime intervalis a set of time instants. We use the notationti ∈ d to mean

that ti is a time instant in the time intervald. Here again, we define operators containment⊆

and equality= for operating on time intervals. A time intervald j is said to becontained in

another time intervaldk, denoted as,d j ⊆ dk, if the following condition holds:∀ti ∈ d j , ti ∈ dk.

The intervald j is called the contained interval anddk is referred to as the containing or the

enclosing interval. Two time intervalsds anddr are said to be equal ifdr ⊆ ds andds⊆ dr . We

define a time interval calledAlwaysthat includes all other time intervals.

Representing Time and Location as Spatio-Temporal Points

106



In order to simplify our presentation, we use the concept of spatio-temporal points to rep-

resent time and location. A spatio-temporal point is represented as a pair of the form(d, l)

whered represents the temporal component andl represents the spatial one. Note that,d and

l represent time interval and location respectively. We say that a spatio-temporal point(d, l) is

contained in another(d′, l ′), denoted by(d, l)⊆ (d′, l ′) iff (d⊆ d′)∧(l ⊆ l ′). The union of two

spatio-temporal points, denoted as(d, l)∪(d′, l ′), is given by(d, l)∪(d′, l ′) = (d∪d′, l∪ l ′). The

intersection of two spatio-temporal points, denoted as(d, l)∩(d′, l ′), is given by(d, l)∩(d′, l ′)

= (d∩d′, l ∩ l ′).

6.1.2 Relationship of Core-RBAC Entities and Relationships with Time
and Location

In this section, we describe how the entities in RBAC, namely, Users, Roles, Sessions, Per-

missions, andObjects, are associated with location and time.

Users

We assume that each valid user, interested in doing some location-sensitive operation, car-

ries a locating device that is able to track his location. Thelocation of a user changes with

time. The relationUserLocation(u, t) gives the location of the user at any given time instant

t. Since a user can be associated with only one location at any given point of time, the fol-

lowing constraint must be true. Note that, in this and all thesubsequent formulae, we omit the

quantification symbols.

(UserLocation(u, t) = l i)∧ (UserLocation(u, t) = l j)⇔ (l i ⊆ l j)∨ (l j ⊆ l i)

We define a similar functionUserLocation(u,d) that gives the location of the user during

the time intervald. Note that, a single location can be associated with multiple users at any

given point of time.

Objects
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Objects can be physical or logical. Example of a physical object is a computer. Files are

examples of logical objects. Physical objects have devicesthat transmit their location infor-

mation with the timestamp. Logical objects are stored in physical objects. The location and

timestamp of a logical object corresponds to the location and time of the physical object con-

taining the logical object. Each location can be associatedwith many objects. The function

ObjLocation(o,t)takes as input an objecto and a time instancet and returns the location as-

sociated with the object at timet. Similarly, the functionObjLocation(o,d)takes as input an

objecto and time intervald and returns the location associated with the object.

Roles

We have three types of relations with roles. These are user-role assignment, user-role acti-

vation, and permission-role assignment. We begin by focusing on user-role assignment. Often

times, the assignment of user to roles is location and time dependent. For instance, a person

can be assigned the on-campus student role only when he is in the campus during the semester.

Thus, for a user to be assigned a role, he must be in designatedlocations during specific time

intervals. In our model, a user must satisfy spatial and temporal constraints before roles can

be assigned. We capture this with the concept ofrole allocation. A role is said to beallocated

when it satisfies the temporal and spatial constraints needed for role assignment. A role can

be assigned once it has been allocated.RoleAllocTimeLoc(r) gives the set of spatio-temporal

points where the role can be allocated.

The predicateUserRoleAssign(u, r,d, l) states that the useru is assigned to roler during

the time intervald and locationl . For this predicate to hold, the location of the user when

the role was assigned must be in one of the locations where therole allocation can take place.

Moreover, the time of role assignment must be in the intervalwhen role allocation can take

place.

UserRoleAssign(u, r,d, l)⇒ (UserLocation(u,d) = l)∧ ((d, l)⊆RoleAllocTimeLoc(r))

Some roles can be activated only if the user is in some specificlocations at given time.
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For instance, the role of audience of a theater can be activated only if the user is in the the-

ater when the show is on. The role of conference attendee can be activated only if the user

is in the conference site while the conference is in session.In short, the user must satisfy

temporal and location constraints before a role can be activated. We borrow the concept of

role-enabling[12, 43] to describe this. A role is said to beenabledif it satisfies the tempo-

ral and location constraints needed to activate it. A role can be activated only if it has been

enabled.RoleEnableTimeLoc(r) gives the set of spatio-temporal points where roler can be

activated.

The predicateUserRoleActivate(u, r,d, l) is true if the useru activated roler for the interval

d at locationl . This predicate implies that the location of the user and theduration of role

activation must be a subset of the allowable spatio-temporal points for the activated role and

the role can be activated only if it is assigned.

UserRoleActivate(u, r,d, l)⇒ ((d, l)⊆RoleEnableTimeLoc(r))∧UserRoleAssign(u, r,d, l)

The permission-role assignment is discussed later.

Sessions

In mobile computing or pervasive computing environments, we have different types of

sessions that can be initiated by the user. Some of these sessions can be time-dependent,

location-dependent, or both. Thus, sessions are classifiedinto different types. Each instance of

a session is associated with some type of a session. The type of session instances is given by

the functionType(s). The type of the session determines the allowable location and duration.

The allowable spatio-temporal points where a session of type st can be created is denoted by

SessionTimeLoc(st).

When a useru wants to create a sessions, the session durationd and the location of the

userl must be contained within the spatio-temporal points associated with the session. The

predicateSessionUser(u,s,d, l) indicates that a useru has initiated a sessions for durationd at

locationl .

SessionUser(u,s,d, l)⇒ (d, l)⊆ SessionTimeLoc(Type(s))
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Since sessions are associated with time and locations, not all roles can be activated within

some session. The predicateSessionRoles(u, r,s,d, l) states that useru initiates a sessionsand

activates a roler for durationd and at locationl . This is possible only if useru can activate

role r for durationd and at locationl and the session can be created during the same time and

at the same location.

SessionRole(u, r,s,d, l)⇒UserRoleActivate(u, r,d, l)∧ (d, l)⊆ SessionTimeLoc(Type(s))

Permissions

Our model allows us to specify real-world requirements where access decision is contingent

upon the time and location associated with the user and the object. For example, a teller may

access the bank confidential file only if he is in the bank, the file location is the bank secure

room, and the time of access is during the working hours. Our model should be capable of

expressing such requirements.

Permissions are associated with roles, objects, and operations. We associate additional enti-

ties with permission to deal with spatial and temporal constraints: user location, object location,

and time. We define three functions to retrieve the values of these entities.PermRoleLoc(p, r)

specifies the allowable locations that a user playing the role r must be in for him to get permis-

sion p. PermOb jLoc(p,o) specifies the allowable locations that the objecto must be in so that

the user has permission to operate on the objecto. PermDur(p) specifies the allowable time

when the permission can be invoked.

We define another predicate which we termPermRoleAcquire(p, r,d, l). This predicate is

true if role r has permissionp for durationd at locationl . Note that, for this predicate to be

true, the spatio-temporal point(d, l) must be contained in the point where the roler can be

enabled and where the permissionp can be invoked byr.

PermRoleAcquire(p, r,d, l)⇒

(d, l)⊆ RoleEnableTimeLoc(r)∩ (PermDur(p)×PermRoleLoc(p, r))

The predicatePermUserAcquire(u,o, p,d, l) means that useru can acquire the permission

p on objecto for durationd at locationl . This is possible only when the permissionp can be
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acquired by roler during timed and at locationl , useru can activate roler at the same time

and location, and object location matches those specified inthe permission.

PermRoleAcquire(p, r,d, l)∧UserRoleActivate(u, r,d, l)

∧(Ob jectLocation(o,d)⊆ PermOb jectLoc(p,o))⇒ PermUserAcquire(u,o, p,d, l)

6.1.3 Impact of Time and Location on Role-Hierarchy

The structure of an organization in terms of lines of authority can be modeled as a hier-

archy. This organization structure is reflected in RBAC in the form of a role hierarchy [75].

Role hierarchy is a transitive and anti-symmetric relationamong roles. Roles higher up in the

hierarchy are referred to as senior roles and those lower down are junior roles. The major mo-

tivation for adding role hierarchy to RBAC was to simplify role management. Senior roles can

inherit the permissions of junior roles, or a senior role canactivate a junior role, or do both

depending on the nature of the hierarchy. This obviates the need for separately assigning the

same permissions to all members belonging to a hierarchy.

Joshi et al. [43] identify two basic types of hierarchy. The first is the permission inheritance

hierarchy where a senior rolex inherits the permission of a junior roley. The second is the role

activation hierarchy where a user assigned to a senior role can activate a junior role. Each of

these hierarchies may be constrained by location and temporal constraints. Consequently, we

have a number of different hierarchical relationships in our model.

[Unrestricted Permission Inheritance Hierarchy] Sometimes we want a senior role to inherit

permissions of a junior role without any additional spatio-temporal constraints. For example, a

contact author can inherit the permissions of the author without any extra spatio-temporal con-

straints. That is, the contact author can invoke the author’s permission wherever and whenever

the author can invoke them. Unrestricted permission inheritance hierarchy allows the senior

role to acquire inherited permissions whenever and wherever the junior role can acquire them.

Let x andy be roles such thatx≥(Always,Universe) y, that is, senior rolex has an unrestricted

permission-inheritance relation over junior roley. In such a case,x inheritsy’s permissions

without any additional spatio-temporal constraints. Thisis formalized as follows:
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(x≥(Always,Universe) y)∧PermRoleAcquire(p,y,d, l)⇒ PermRoleAcquire(p,x,d, l)

[Unrestricted Activation Hierarchy] Sometimes a senior role may want to activate a junior

role without placing any additional constraints. For example, a user who has a role of mobile

user can activate the weekend mobile user role only if he/sheis in the US during the weekend.

Unrestricted activation hierarchy allows the senior role to be activated whenever and wherever

the junior role can be activated.

Let x andy be roles such thatx <(Always,Universe) y, that is, senior rolex has an unrestricted

role-activation relation over junior roley. Then, a user assigned to rolex can activate roley at

any time and at any place thaty can be activated. This is formalized as follows:

(x <(Always,Universe) y)∧UserRoleActivate(u,x,d, l)∧

((d, l)⊆RoleEnableTimeLoc(y))⇒UserRoleActivate(u,y,d, l)

[Time Restricted Permission Inheritance Hierarchy] Sometimes a senior role can inherit a

junior role only at certain times. For example, a company mayhave a policy that allows the

project manager to inherit the permissions of the code developer role only when the product

deadline date is less than a given threshold. Time restricted permission inheritance hierarchy al-

lows the senior role to acquire the permissions of the juniorrole when the temporal constraints

associated with the hierarchy hold and the senior role satisfies the spatio-temporal constraints

that are needed by the junior role to invoke those permissions.

Let x and y be roles such thatx ≥(d′,Universe) y, that is, senior rolex has a time restricted

permission-inheritance relation over junior roley. In such a case,x inheritsy’s permissions

together with the temporal constraints associated with thepermissions and the hierarchy. This

is formalized as follows:

(x≥(d′,Universe) y)∧PermRoleAcquire(p,y,d, l)⇒ PermRoleAcquire(p,x,d∩d′, l)

[Time Restricted Activation Hierarchy] In some applications, the senior role may need to

be activated only during specific periods. For example, the account auditor role can activate

the accountant role only during the auditing period. Time restricted activation hierarchy allows
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the senior role to activate the junior role when the temporalconstraints associated with the

hierarchy hold and the senior role satisfies the spatio-temporal constraints that are needed to

activate the junior role.

Let x andy be roles such thatx<(d′,Universe) y, that is, senior rolex has a role-activation relation

over junior roley. Then, a user assigned to rolex can activate roley only at the location and

time when roley can be enabled and the additional temporal constraints are satisfied. This is

formalized as follows:

(x <(d′,Universe) y)∧UserRoleActivate(u,x,d, l)∧

((d, l)⊆ RoleEnableTimeLoc(y))⇒UserRoleActivate(u,y,d∩d′, l)

[Location Restricted Permission Inheritance Hierarchy]Sometimes a senior role can inherit

a junior role only in certain locations. For example, a top secret nuclear scientist inherits the

permissions of a nuclear scientist only in top secret locations. Location restricted permission

inheritance allows the senior role to acquire the permissions of the junior role when the location

constraints associated with the hierarchy hold and the senior role satisfies the spatio-temporal

constraints that are needed by the junior role to invoke those permissions.

Let x andy be roles such thatx≥(Always,l ′) y, that is, senior rolex has a location restricted

permission-inheritance relation over junior roley. In such a case,x inheritsy’s permissions

together with the location constraints associated with thepermission and the hierarchy. This is

formalized as follows:

(x≥(Always,l ′) y)∧PermRoleAcquire(p,y,d, l)⇒ PermRoleAcquire(p,x,d, l ∩ l ′)

[Location Restricted Activation Hierarchy] Sometimes we want the senior role to be able to

activate the junior role only at certain locations. For example, a department chair can activate

a staff role only when he is in the department. Location restricted activation hierarchy allows

the senior role to activate the junior role when the locationconstraints needed for the hierarchy

activation hold and the senior role satisfies the spatio-temporal constraints needed to activate

the junior role.
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Let x andy be roles such thatx <(Always,l ′) y, that is, senior rolex has a role-activation relation

over junior roley. Then, a user assigned to rolex can activate roley only at the places when role

y can be enabled and the location constraints of the hierarchyare satisfied. This is formalized

as follows:

(x <(Always,l ′) y)∧UserRoleActivate(u,x,d, l)∧

((d, l)⊆RoleEnableTimeLoc(y))⇒UserRoleActivate(u,y,d, l∩ l ′)

[Time Location Restricted Permission Inheritance Hierarchy] Sometimes we may want to

place additional temporal as well as spatial constraints onthe permission inheritance hierarchy.

For instance, a doctor can inherit the daytime nurse role only when he is in the hospital at the

daytime. Time-location restricted permission inheritance hierarchy allows the senior role to

invoke the permissions of the junior role provided the senior role satisfies the spatio-temporal

constraints of the inheritance hierarchy and also the spatio-temporal constraints needed to ac-

quire the permissions of the junior role.

Let x andy be roles such thatx≥(d′,l ′) y, that is, senior rolex has a time-location restricted

permission-inheritance relation over junior roley. In such a case,x inheritsy’s permissions

together with the temporal and location constraints associated with the permission together

with the temporal and location constraints associated withthe hierarchy. This is formalized as

follows:

(x≥(d′,l ′) y)∧PermRoleAcquire(p,y,d, l)⇒ PermRoleAcquire(p,x,d∩d′, l ∩ l ′)

[Time Location Restricted Activation Hierarchy] Sometimes additional spatial and temporal

constraints must be satisfied for a senior role to activate a junior role. Emergency physicians

can activate the role of primary care physicians only when the patient is in an emergency room.

Time location restricted activation hierarchy allows the senior role to activate the junior role

when the spatio-temporal constraints associated with the hierarchy are satisfied together with

the spatio-temporal constraints associated with the invocation of the junior role.

Let x andy be roles such thatx <(d′,l ′) y, that is, senior rolex has a role-activation relation over
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junior roley. Then, a user assigned to rolex can activate roley only at the places and during

the time when roley can be enabled, and the additional spatio-temporal constraints assigned to

the hierarchy are satisfied. This is formalized as follows:

(x <(d′,l ′) y)∧UserRoleActivate(u,x,d, l)∧

((d, l)⊆ RoleEnableTimeLoc(y))⇒UserRoleActivate(u,y,d∩d′, l ∩ l ′)

It is also possible for a senior role and a junior role to be related with both permission

inheritance and activation hierarchies. In such a case, theapplication will choose the type of

inheritance hierarchy and activation hierarchy needed.

6.1.4 Impact of Time and Location on Static Separation Of Duty Con-
straints

Separation of duty (SoD) protects against the fraud that maybe caused from a user or role

gaining too much power [80]. SoD can be either static or dynamic. Static Separation of Duty

(SSoD) comes in two varieties. The first one, which is referred to asSSoD - User Role As-

signment (SSoD-URA), is with respect to user-role assignment. SSoD-URA is specified as a

relation between roles – the same user cannot be assigned to the roles that are related by the

SSoD-URA relation. The second one, which is referred to asSSoD - Permission Role Assign-

ment (SSoD-PRA), is with respect to permission-role assignment. SSoD-PRA is specified as

a relation between permissions – the same role cannot be assigned to the permissions that are

related by the SSoD-PRA relation. Due to the presence of temporal and spatial constraints, we

can have different flavors of separation of duties – some thatare constrained by temporal and

spatial constraints and others that are not. In the following, we describe the different types of

separation of duty constraints.

[Weak Form of SSoD - User-Role Assignment]Let x andy be two roles such thatx 6= y.

(x,y) ∈ SSODURAw if the following condition holds:

UserRoleAssign(u,x,d, l)⇒¬UserRoleAssign(u,y,d, l)
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The above definition says that a useru assigned to rolex during timed and locationl cannot

be assigned to roley at the same time and location ifx andy are related bySSODURAw. An

example where this form is useful is that a user should not be assigned the audience role and

mobile user role at the same time and location.

[Strong Temporal Form of SSoD - User-Role Assignment]

Let x andy be two roles such thatx 6= y. (x,y) ∈ SSODURAt if the following condition

holds:

UserRoleAssign(u,x,d, l)⇒¬ (∃d′ ⊆ always•UserRoleAssign(u,y,d′, l))

The above definition says that a useru assigned to rolex during timed and locationl cannot

be assigned to roley at any time in the same location ifx andy are related bySSODURAt.

The consultant for oil companyA will never be assigned the role of consultant for oil company

B in the same country.

[Strong Spatial Form of SSoD - User-Role Assignment]Let x andy be two roles such that

x 6= y. (x,y) ∈ SSODURAl if the following condition holds:

UserRoleAssign(u,x,d, l)⇒¬ (∃l ′ ⊆Universe•UserRoleAssign(u,y,d, l ′))

The above definition says that a useru assigned to rolex during timed and locationl ,

he cannot be assigned to roley at the same time at any location ifx and y are related by

SSODURAl . A person cannot be assigned the roles of student and instructor of the same

course at the same time.

[Strong Form of SSoD - User-Role Assignment]Let x andy be two roles such thatx 6= y.

(x,y) ∈ SSODURAs if the following condition holds:

UserRoleAssign(u,x,d, l)⇒ ¬ (∃l ′ ⊂Universe,∃d′ ⊆ always•UserRoleAssign(u,y,d′, l ′))
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The above definition says that a useru assigned to rolex during timed and locationl , he

cannot be assigned to roley at any time or at any location ifx andy are related bySSODURAs.

The same employee cannot be assigned the roles of minority and non-minority employee at any

given corporation.

We next consider the second form of static separation of dutythat deals with permission-

role assignment. The idea is that the same role should not acquire conflicting permissions.

[Weak Form of SSoD - Permission-Role Assignment]Let p andq be two permissions such

that p 6= q. (p,q) ∈ SSODPRAw if the following condition holds:

PermRoleAcquire(p,x,d, l)⇒¬ PermRoleAcquire(q,x,d, l)

The above definition says that if permissionsp and q are related through weak SSoD

Permission-Role Assignment andx has permissionp at timed and locationl , thenx should

not be given permissionq at the same time and location. The same role should not be assigned

the permission of chairing the session and presenting the paper in the conference at the same

location and at the same time.

[Strong Temporal Form of SSoD - Permission-Role Assignment] Let p andq be two per-

missions such thatp 6= q. (p,q) ∈ SSODPRAt if the following condition holds:

PermRoleAcquire(p,x,d, l)⇒¬ (∃d′ ⊆ always•PermRoleAcquire(q,x,d′, l))

The above definition says that if permissionsp andq are related through strong temporal

SSoD Permission-Role Assignment andx has permissionp at timed and locationl , thenx

should not get permissionq at any time in locationl . The accountant should not get both the

permissions of modifying accounts and auditing accounts atthe same branch location at any

time.

117



[Strong Spatial Form of SSoD - Permission-Role Assignment]Let p andq be two permis-

sions such thatp 6= q. (p,q) ∈ SSODPRAl if the following condition holds:

PermRoleAcquire(p,x,d, l)⇒¬ (∃l ′ ⊆Universe•PermRoleAcquire(q,x,d, l ′))

The above definition says that if permissionsp and q are related through strong spatial

SSoD Permission-Role Assignment andx has permissionp at timed and locationl , thenx

should not be given permissionq at the same time. The same role should not be given the

permission of grading the exam and taking the exam at the sametime at any location.

[Strong Form of SSoD - Permission-Role Assignment]Let p andq be two permissions such

that p 6= q. (p,q) ∈ SSODPRAs if the following condition holds:

PermRoleAcquire(p,x,d, l)⇒¬ (∃l ′ ⊆Universe,∃d′ ⊆ always•PermRoleAcquire(q,x,d′, l ′))

The above definition says that if permissionsp and q are related through strong SSoD

Permission-Role Assignment, then the same role should never be given the two conflicting

permissions. The permission to authorize a check and issue it should not be given to the same

role at any time and at any location.

6.1.5 Impact of Time and Location on Dynamic Separation of Duty Con-
straints

Dynamic separation of duty addresses the problem that a useris not able to activate con-

flicting roles during the same session.

[Weak Form of DSoD] Let x and y be two roles such thatx 6= y. (x,y) ∈ DSODw if the

following condition holds:

SessionRole(u,x,s,d, l)⇒ ¬ SessionRole(u,y,s,d, l)

The above definition says that if rolesx andy are related through weak DSoD and if user

u has activated rolex in some sessions for durationd and locationl , thenu cannot activate
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role y during the same time and in the same location in sessions. In the same session, a user

can activate a sales assistant role and a customer role. However, both these roles should not be

activated at the same time in the same location.

[Strong Temporal Form of DSoD] Let x andy be two roles such thatx 6= y. (x,y) ∈DSODt if

the following condition holds:

SessionRole(u,x,s,d, l)⇒ ¬ (∃d′ ⊆ always,•SessionRole(u,y,s,d′, l))

The above definition says that if rolesx andy are related through strong temporal DSoD

and if useru has activated rolex in some sessions, thenu can never activate roley any time

at the same location in the same session. In a teaching session in a classroom, a user cannot

activate the the grader role once he has activated the student role.

[Strong Spatial Form of DSoD] Let x andy be two roles such thatx 6= y. (x,y) ∈ DSODl if

the following condition holds:

SessionRole(u,x,s,d, l)⇒ ¬ (∃l ′ ⊆Universe•SessionRole(u,y,s,d, l ′))

The above definition says that if rolesx andy are related through strong DSoD and if user

u has activated rolex in some sessions, thenu can never activate roley in sessions during the

same time in any location. If a user has activated the Graduate Teaching Assistant role in his

office, he cannot activate the Lab Operator role at the same time.

[Strong Form of DSoD] Let x and y be two roles such thatx 6= y. (x,y) ∈ DSODs if the

following condition holds:

SessionRole(u,x,s,d, l)⇒ ¬ (∃l ′ ⊆Universe,∃d′ ⊆ always•SessionRole(u,y,s,d′, l ′))

The above definition says that if rolesx andy are related through strong DSoD and if user

u has activated rolex in some sessions, thenu can never activate roley in the same session. A

user cannot be both an code developer and a code tester in the same session.
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6.1.6 Impact of Time and Location on Delegation

Many situations require the temporary delegation of accessrights to accomplish a given

task. For example, a doctor may give certain privileges to a trained nurse when he is taking

a break. In such situations, the doctor can give a subset of his permissions to the nurse for a

given period of time. This requirement can be fulfilled by thedelegation operation. The entity

who delegates his privileges temporarily to another entityis referred to as the delegator. The

entity who receives the privilege is known as the delegatee.Delegation can be eithergrant

or transfer. Granting of privileges allows the delegator to temporarily assign his privileges to

the delegatee without relinquishing his own privileges. Transferring of privileges allows the

delegator to transfer his privileges temporarily to the delegatee. Note that, during the period of

delegation the delegator does not have the privileges whichhe has transferred to the delegatee.

The delegator can be either a user or a role. System administrators are responsible for over-

seeing delegation when the delegator is a role. Individual users administer delegation when the

delegator is an user. The delegator can delegate either a setof permissions that he possesses

by virtue of being assigned to different roles or he can delegate a set of roles assigned to him

directly by the user-role assignment or indirectly by the effect of the activation hierarchy. We

can therefore classify delegation on the basis of role delegation or permission delegation. For

role delegation, the delegatee can be either role or user. For permission delegation, the delega-

tee can be role only. This is to maintain the intent of RBAC – permissions should be assigned

to user via role, not to user directly.

Role Delegation

A delegator (user or role) can delegate a role to a delegatee.Note that, for a delegator to

delegate a roler for time d and at locationl , the delegator must have been assigned to the

role r during timed and locationl either directly or indirectly. Depending on the type of

delegation (grant or transfer), the delegator may or may notcontinue to enjoy the privileges he

has delegated.

Let DelegateR(dtr,dte, r,{g, t},d, l) be the predicate that allows the delegatordtr ∈U ∪R
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to grant (g) or transfer (t) a roler to the delegateedte∈U ∪R during timed and at location

l . This will allow individual user (ifdte∈U ) or all users assigned todte (if dte∈ R) to be

temporary assigned to roler at the specific location and time. The following specifies the

various conditions under which useru′ acquires roler for durationd′ and locationl ′ by virtue

of delegation.

1. DelegateR(u,u′, r,g,d′, l ′)⇒UserRoleAssign(u′, r,d′, l ′)

2. DelegateR(u,u′, r, t,d′, l ′)⇒UserRoleAssign(u′, r,d′, l ′)∧¬UserRoleAssign(u, r,d′, l ′)

3. DelegateR(r ′,u′, r,g,d′, l ′)⇒UserRoleAssign(u′, r,d′, l ′)

4. DelegateR(r ′,u′, r, t,d′, l ′)∧UserRoleAssign(u, r ′,d′, l ′)

⇒UserRoleAssign(u′, r,d′, l ′)∧¬UserRoleAssign(u, r,d′, l ′)

5. DelegateR(u, r ′, r,g,d′, l ′)∧UserRoleAssign((u′, r ′,d′, l ′)⇒UserRoleAssign(u′, r,d′, l ′)

6. DelegateR(u, r ′, r, t,d′, l ′)∧UserRoleAssign((u′, r ′,d′, l ′)

⇒UserRoleAssign(u′, r,d′, l ′)∧¬UserRoleAssign(u, r,d′, l ′)

7. DelegateR(r ′′, r ′, r,g,d′, l ′)∧UserRoleAssign(u′, r ′,d′, l ′)⇒UserRoleAssign(u′, r,d′, l ′)

8. DelegateR(r ′′, r ′, r, t,d′, l ′)∧UserRoleAssign(u′, r ′,d′, l ′)⇒UserRoleAssign(u′, r,d′, l ′)

∧UserRoleAssign(u, r ′′,d′, l ′)∧¬UserRoleAssign(u, r,d′, l ′)

The above eight conditions describe how useru′ can be assigned to roler for durationd′

and locationl ′ under user to user, role to user, user to role and role to role delegation with the

grant and transfer mode. Note that, the transfer mode causesthe delegator to lose his privileges.

With the effect of role activation hierarchy, the delegateeof a delegated role can also activate

all junior roles in the activation hierarchy. Moreover, thedelegatee inherits all permissions that

the delegated role can acquire directly through the permission-role assignment and indirectly

through the permission inheritance hierarchy.

Permission Delegation

A delegator (user or role) can delegate a permission to a delegatee. Note that, for a delegator

to delegate a permissionp for time d and at locationl , the delegator must have acquired the

privileger during timed and locationl either directly or indirectly. Depending on the type of
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delegation grant or transfer, the delegator may or may not continue to enjoy the privileges he

has delegated.

Let DelegateP(dtr,dte, p,{g, t},d, l) be the predicate that allows the delegatordtr ∈U ∪R

to grant or transfer a permissionp to the delegateedte∈ R during timed and at locationl .

The following specifies the various conditions that allow permissionp to be delegated to role

r ′ during timed′ and locationl ′.

1. DelegateP(u, r ′, p,g,d′, l ′)⇒ PermRoleAcquire(p, r ′,d′, l ′)

2. DelegateP(r, r ′, p,g,d′, l ′)⇒ PermRoleAcquire(p, r ′,d′, l ′)

3. DelegateP(r, r ′, p, t,d′, l ′)⇒PermRoleAcquire(p, r ′,d′, l ′)∧¬PermRoleAcquire(p, r,d′, l ′)

The first two conditions say that if a useru or role r has granted privilegep to role r ′ for

durationd′ and locationl ′, then roler ′ acquires permissionp for durationd′ and locationl ′.

The last condition says that if a roler ′ has transferred privilegep to roler ′ for durationd′ and

location l ′, then roler ′ acquires permissionp for durationd′ and locationl ′, and roler loses

permissionp for durationd′ and locationl ′. Note that, we have not specified transfer of privi-

lege from useru to role r ′. Since privileges are not directly assigned to any user, permissions

cannot be removed directly from the user. The only way to remove permission from a user is

to revoke the permission from the role assigned to the user and associated with the permission.

However, this will impact all users assigned to this role. Consequently, we do not allow transfer

of permission from user to role. Since privileges are not directly assigned to the user, we do

not define the permission delegation in which the delegatee is the user.

Delegation Chains

In some cases, the delegator may allow the delegatee to further delegate the privileges that

he has acquired by virtue of delegation. This could cause a sequence of delegations called

the delegation chainor delegation path[41, 93]. Once a delegatee is granted a privilege, he

can grant or transfer this privilege to another delegatee ifthe delegation chain is permitted by

the delegator. However, if a delegatee is transferred a privilege, he can only transfer it to an-

other delegatee in the presence of the delegation chain. Thus, the transfer operation is more
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restrictive than grant operation(grant> trans f er). We now formally define the two delegation

chains that our model supports:Monotonic Role Delegation ChainandMonotonic Permission

Delegation Chain.

[Monotonic Role Delegation Chain]Monotonic role delegation chain is the delegation chain

of the form:
n−1̂

i=0

DelegateR(dtei,dtei+1, r,gti+1,di+1, l i+1)

wheredte0 represents the original delegator,dtei represents the delegatee in theith delegation,

gti refers to grant or transfer,di , l i refers to the time and location where theith delegation is

valid, andgti > gti−1, di+1⊆ di , andl i+1⊆ l i . The above formalism implies that this delegation

will gradually reduce the spatio-temporal points where thedelegation can be granted or trans-

ferred. We define monotonic permission delegation chain in asimilar manner.

[Monotonic Permission Delegation Chain]Monotonic permission delegation chain is the

delegation chain of the form:
n−1̂

i=0

DelegateP(dtei,dtei+1, p,gti+1,di+1, l i+1)

wheredte0 represents the original delegator,dtei represents the delegatee in theith delegation,

gti refers to grant or transfer,di , l i refers to the time and location where theith delegation is

valid, andgti > gti−1, di+1⊆ di , andl i+1⊆ l i .

The delegator may want to define on the length of the delegation chain. LetDC (dtr,e)

denote the delegation chain starting from the original delegatordtr with respect to delegated

entity e. The functiondepthwhen applied to this delegation chain, that is,depth(DC(dtr,e))

gives the total number of delegation operations that occursin DC (dtr,e).

6.2 Graph-Theoretic Representation of the Model

Although our proposed spatio-temporal model is syntaxically strong and can represent the

spatio-temporal access control policies needed in the real-world application, we propose a
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graph-theoretic representation that accurately reflects the semantics of the model.

Our graph-theoretic representation was inspired by the work of Chen and Crampton [19].

However, we adapt this model to better reflect our semantics.In our work, the set of vertices

V = U ∪R∪P∪O correspond to the RBAC entities: Users (U ), Roles (R), Permissions (P),

and Objects (O). The relationships of our spatio-temporal role-based access control model

constitute the edgesE = UA∪PA∪PO∪RH∪SD∪RD∪PD where

• User-Role Assignment (UA) = U×R

• Permission-Role Assignment (PA) = R×P

• Permission-Object Assignment (PO) = P×O

• Role Hierarchy (RH) = R×R which can be categorized into

– activation hierarchyRHa consisting of unrestricted activationRHau, time restricted

activationRHat, location restricted activationRHal and time location restricted ac-

tivationRHatl hierarchies.

– permission inheritance hierarchyRHi consisting of unrestricted permission inheri-

tanceRHiu, time restricted permission inheritanceRHit , location restricted permis-

sion inheritanceRHil , and time location permission inheritanceRHitl hierarchies.

• Separation of Duty (SD) = (R×R)∪ (P×P) which can be categorized into

– static separation of duty for user role assignmentsRSSDconsisting of weak-form

RSSDw, strong temporal formRSSDt, strong spatial formRSSDl and strong form

RSSDs.

– static separation of duty for permission-role assignmentPSSDconsisting of weak-

form PSSDw, strong temporal formPSSDt, strong spatial formPSSDl and strong

form PSSDs.

– dynamic separation of dutyDSDconsisting of weak-formDSDw, strong temporal

form DSDt , strong spatial formDSDl and strong formDSDs.

• Role Delegation (RD), which can be categorized into

– Role Delegation to User (RDU ) = U×R
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– Role Delegation to Role (RDR) = R×R

• Permission Delegation (PD) = R×P

An activation path(or act-path) betweenv1 andvn is defined to be a sequence of vertices

v1, . . . ,vn such that(v1,v2) ∈ (UA∪RDU) and (vi−1,vi) ∈ (RHa∪RDR) for i = 3, . . . ,n. A

usage path(or u-path) betweenv1 andvn is defined to be a sequence of verticesv1, . . . ,vn such

that (vi,vi+1) ∈ RHi for i = 1, . . . ,n−2, and(vn−1,vn) ∈ (PA∪PD). An access path(or acs-

path) betweenv1 andvn is defined to be a sequence of verticesv1, . . . ,vn, such that(v1,vi) is

an act-path,(vi ,vn−1) is an u-path, and(vn−1,vn) ∈ PO. An access path(v1,v2, . . . ,vn−1,vn)

allows userv1 to access objectvn using permissionvn−1 .

We define two functions,ρ andµ, on the edgesE of the graph, whereE = UA∪PA∪PO∪

RH∪SD∪RD∪PD. Functionρ represents information associated with delegation edges and

is specified as follows.ρ : (RDU ∪RDR∪PD)→ (U ∪R)×N that maps the delegation edge to

the corresponding delegator and delegation depth. If a delegator further delegates his delegated

entity, the delegation depth of the newly created delegation edge is calculated by subtracting

one from the delegation depth of its immediate preceding delegation edge.µ represents the

spatio-temporal constraints associated with all the edgesin the graph and is defined as follows.

µ : E→ 2D whereD denotes the spatio-temporal domain. Fore= (v,v′) ∈ E, µ(v,v′) denotes

the set of spatio-temporal points at which the association betweenv andv′ is enabled. In the

following, we describe the value ofµ for each type of edge in our graph.

• if (u, r)∈UA, thenµ(u, r) = {(d, l)|UserRoleActivate(u, r,d, l)}denotes the set of spatio-

temporal points in which useru can activate roler.

• if (r, p)∈PA, thenµ(r, p) = {(d, l)|PermRoleAcquire(p, r,d, l)}denotes the set of spatio-

temporal points in which permissionp is assigned to roler.

• if (p,o)∈PO, thenµ(p,o)= PermDur(p)×PermOb jLoc(p,o) denotes the set of spatio-

temporal points at which objecto can be accessed by virtue of permissionp.

• if (r ′, r) ∈ RHau∪RHiu, thenµ(r ′, r) = RoleEnableTimeLoc(r) because senior role can

activate the junior role, or inherit permissions of junior role at all the spatio-temporal

points where the junior role can be enabled.
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• if (r ′, r) ∈ RHat ∪RHit , thenµ(r ′, r) = (d′,Universe)∩RoleEnableTimeLoc(r), where

r ′ <(d′,Universe) r or r ′ ≥(d′,Universe) r, because senior role can activate the junior role, or

inherit permissions of junior role when the junior role can be enabled and the hierarchy

constraints are satisfied.

• if (r ′, r)∈RHal∪RHil , thenµ(r ′, r) = (Always, l ′)∩RoleEnableTimeLoc(r), wherer ′<(Always,l ′)

r or r ′≥(Always,l ′) r, because senior role can activate the junior role, or inherit permissions

where the junior roles can be enabled and the hierarchy spatial constraints are satisfied.

• if (r ′, r)∈RHatl∪RHitl , thenµ(r ′, r) = (d′, l ′)∩RoleEnableTimeLoc(r), wherer ′ <(d′,l ′)

r or r ′ ≥(d′,l ′) r, because senior role can activate the junior role, or inherit permissions

where and when both the roles can be enabled, and the spatio-temporal constraints of the

hierarchy are satisfied.

• if (r ′, r) ∈ RSSDw∪DSDw, thenµ(r ′, r) = (d, l) denotes the set of points in space-time

where no user should be assigned/allowed to activate rolesr andr ′.

• if (r ′, r) ∈ RSSDt ∪DSDt, thenµ(r ′, r) = (Always, l) because the same user cannot be

assigned/allowed to activate rolesr andr ′ at specified locationl at any time.

• if (r ′, r)∈RSSDl ∪DSDl , thenµ(r ′, r)= (d,Universe) denotes the spatio-temporal points

where the same user cannot be assigned or allowed to activaterolesr andr ′ from any

location.

• if (r ′, r) ∈ RSSDs∪DSDs, thenµ(r ′, r) = (Always,Universe) because no user can be

assigned or allowed to activate rolesr andr ′ from any place and at any time.

• if (p′, p) ∈ PSSDw, thenµ(p′, p) = (d, l) denotes the set of points in space-time where

no role should be assigned to conflicting permissionsp andp′.

• if (p′, p) ∈ PSSDt, thenµ(p′, p) = (Always, l) denotes the set of spatio-temporal points

where the same role cannot be assigned to conflicting permissionsp andp′ at any time.

• if (p′, p)∈PSSDl , thenµ(p′, p) = (d,Universe) denotes the set of spatio-temporal points

where the same role cannot be assigned to conflicting permissions p andp′ at any loca-

tion.

• if (p′, p) ∈ PSSDs, thenµ(p′, p) = (Always,Universe) because no role can be assigned
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to conflicting permissionsp andp′ from any place and at any time.

• if (u′, r) ∈ RDU , then

µ(u′, r) = {(d, l)|DelegateR(u,u′, r,{g, t},d, l)∨DelegateR(r ′,u′, r,{g, t},d, l)} denotes

the set of points in space-time where useru′ has been delegated roler.

• if (r ′, r) ∈RDR, then

µ(r ′, r) = {(d, l)|DelegateR(u, r ′, r,{g, t},d, l)∨DelegateR(r ′′, r ′, r,{g, t},d, l)} denotes

the set of points in space-time where roler ′ has been delegated roler.

• if (r, p) ∈ PD, then

µ(r, p) = {(d, l)|DelegateP(u, r, p,g,d, l)∨DelegateP(r ′′, r, p,{g, t},d, l)}denotes the set

of points in space-time where roler has acquired permissionp.

We write µ̂(v1, . . . ,vn) = µ̂(v1,vn) ⊆ D to denote
Tn−1

i=1 µ(vi,vi+1). Hence,µ̂(v1,vn) is the

set of points at which every edge in the path is enabled. The authorization scheme in the access

control graph can be summarized as follows:

• a userv∈U may activate rolev′ ∈Rat pointd∈D if and only if there exists an act-path

v = v1,v2, . . . ,vn = v′ andd ∈ µ̂(v,v′);

• a rolev∈ R is authorized for permissionv′ ∈ P at pointd ∈ D if there exists an u-path

v = v1,v2, . . . ,vn = v′ andd ∈ µ̂(v,v′);

• a userv ∈U is authorized for permissionv′ ∈ P with respect to objectv′′ ∈ O at point

d ∈D if and only if there exists an acs-pathv = v1,v2, . . . ,vi, . . . ,vn−1 = v′,vn = v′′ such

thatvi ∈ R for somei, v1, . . . ,vi is an act-path,vi , . . . ,vn−1 is an u-path,(vn−1,vn) ∈ PO

andd ∈ µ̂(v,v′′).

Note that, generating the access control graph consists of two steps. First, we have to create

all vertices corresponding to the entities which takesO(V) time. Next, we have to create all

edges corresponding to the relationships between entitiesand constraints between entities. This

step takesO(E) time. Hence, total time to create the whole graph isO(V +E).
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6.3 Example Application

In this section, we present a revised version of the real-world application called the Dengue

Decision Support (DDS) system previously discussed in Section 4.3.4 to illustrate our ap-

proach.

6.3.1 DDS Security Policies

Entities

DDS system consists of the following entities

• Users:Alice, Bob, Ben, Charlie, Claire andDavid

• Roles: State Epidemiologist (State Epi), Jurisdiction Epidemiologist (Juris Epi), Clinic

Epidemiologist (Clinic Epi), Clinician (Clinic), State Vector Control (State VC), Juris-

diction Vector Control (Juris VC), and Local Jurisdiction VC Team (Local VC Team).

• Permissions:pi where 1≤ i ≤ 17 whose descriptions are given in Table 6.1.

• Objects are omitted from the example to keep it simple.

Table 6.1: DDS Permissions List
Task Task

p1 Read Premise p10 Read VControl
p2 Change Premise p11 Change VControl
p3 Read Case p12 Read Work Record
p4 Change Case p13 Change Work Record
p5 Read Patient p14 Read VC Materials
p6 Change Patient p15 Change VC Materials
p7 Read Patient Names p16 Signal VC Need for Dengue Virus (DV)
p8 Read Schedule Work p17 Signal VC Need for Dengue Hemorrhagic Fever (DHF)
p9 Change Schedule Work

Role AssignmentThe user-role assignments and permission-role assignments are specified as

follows.

• User-role assignments:UserRoleAssign(Alice, State Epi,b,A∪B),UserRoleAssign(Bob,

Clinic Epi,b,C), UserRoleAssign(Ben, Clinician,a,C), andUserRoleAssign(Charlie,

State VC,a,A∪B).
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Table 6.2: DDS Role-Permission Assignment Constraints
Role Tasks Location Constraint Time Constraint
State Epi p16 A–State Office, B–

Juris Office
a–Regular Hours

Juris Epi p1, p3 B–Juris Office a–Regular Hours
p17 B–Juris Office b–Always

Clinic Epi p17 D–Universe b–Always
Clinician p1, p2 C–Clinic a–Regular Hours
State VC p11, p15 A–State Office a–Regular Hours
Juris VC p1, p8 B–Juris Office a–Regular Hours
Local VC Team p7 B–Juris Office, E–

Emergency Location
a–Regular Hours, c–
Emergency Hours

• Permission-role assignments are summarized in Table 6.2.

Role Hierarchy Two pairs of roles are related by the unrestricted permission inheritance hier-

archy. These relationships are specified as follows:

• State Epi≥(Always,Universe) Juris Epi, State VC≥(Always,Universe) Juris VCandJuris VC

≥(Always,Universe) Local VC Team.

Separation of DutyThere are three separation of duty constraints in DDS system:

• User should not have permission to change VC protocols at thesame time as he has

permission to change VC materials.

• User should not have permission to signal DV at the same time as signal DHF.

• User should not be assigned to both Epidemiologist and Vector Control roles at any place

and time.

These can be represented as follows:

• SSODPRAl = {(p11, p15),(p16, p17)}

• SSODURAs ={ (State Epi,State VC), (Juris Epi, State VC), (Clinic Epi, State VC),

(State Epi, Juris VC), (Juris Epi, Juris VC), (Clinic Epi, Juris VC) }

DelegationOnly one delegation constraint is specified for this application. The system ad-

ministrator decided to transfer permissionp17 from Clinic Epi role to Clinician role during
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emergency hours at the clinic. The administrator does not allow the delegatee to delegate the

permission further. This can be represented in our model as follows:

• DelegateP(Clinic Epi, Clinician, p17, t,c,C)

• depth(DC(Clinic Epi, p17)) = 1
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Figure 6.1: DDS System’s Access Control Graph

The graph representation of the DDS security policies are shown in Figure 6.1. To avoid

crowding the graph, we show the spatio-temporal and delegation constraints in Table 8.2. The

PD edge is represented by dashed arrow.SD edges are represented by dotted bi-directional

arrows. The activation paths and their associated spatio-temporal constraints are listed below:

• (Alice, State Epi) whereµ̂(Alice, State Epi) = [b,A∪B]

• (Ben, Clinician) whereµ̂(Ben, Clinician) = [a,C]
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• (Bob, Clinic Epi) whereµ̂(Bob, Clinic Epi) = [b,C]

• (Charlie, State VC) whereµ̂(Charlie, State VC) = [a,A∪B]

Some examples of usage paths and their associated spatio-temporal constraints are given below:

• (Clinician, p1) whereµ̂(Clinician, p1) = [a,C]

• (Juris VC, Local VC Team) whereµ̂(Juris VC, Local VC Team) = [b,A]

• (State VC, Juris VC, p1) whereµ̂(State VC, Juris VC, p1) = [a,B]

• (State VC, Juris VC, Local VC Team, p7) whereµ̂(State VC, Juris VC, Local VC Team,

p7) = [a, /0]

Some examples of access paths are as follows:

• (Alice, State Epi, p16) whereµ̂(Alice, State Epi, p16) = [a,A∪B]

• (Bob, Clinic Epi, p17) whereµ̂(Bob, Clinic Epi, p17) = [b,C]

• (Charlie, State VC, JurisVC, p1) whereµ̂(Charlie, State VC, JurisVC, p1) = [a,B]

6.4 Chapter Summary

In this chapter, we propose the third model, namely, extended STRBAC model. The model

remove the ambiguities from the first version and improve thefunctionality by including the

delegation chains as a new feature. To strengthen the semantics of the model, we propose the

methodology to transform the model into the graph-theoretic representation. From here, we can

use the graph algorithm discussed in Chapter 5 to detect the conflicts and inconsistencies of the

model. However, there is no tool which could advocate this task to be done automatically. To

resolve this weakness, in Chapter 7 we introduce the approach to transform the access control

graph into the Coloured-Petri Nets (CPNs). By using the CPN analysis application calledCPN

Tools, we can automatically analyze the STRBAC model at the application level.
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NAME DESCRIPTION CONSTRAINTS

µ ρ
(Alice,State Epi) User-Role Assignment [b, A∪B]
(Bob,Clinic Epi) User-Role Assignment [b, C]
(Ben,Clinician) User-Role Assignment [a, C]
(Charlie,State VC) User-Role Assignment [a, A∪B]
(State Epi,Juris Epi) Permission Usage Hierarchy[b, B]
(State VC,Juris VC) Permission Usage Hierarchy[a, B]
(Juris VC,Local VC Team) Permission Usage Hierarchy[b, A]
(State Epi, p16) Permission-Role Assignment[a, A∪B]
(Juris Epi, p1) Permission-Role Assignment[a, B]
(Juris Epi, p3) Permission-Role Assignment[a, B]
(Juris Epi, p17) Permission-Role Assignment[b, B]
(Clinic Epi, p17) Permission-Role Assignment[b, D]
(Clinician, p1) Permission-Role Assignment[a, C]
(Clinician, p2) Permission-Role Assignment[a, C]
(State VC, p11) Permission-Role Assignment[a, A]
(State VC, p15) Permission-Role Assignment[a, A]
(Juris VC, p1) Permission-Role Assignment[a, B]
(Juris VC, p8) Permission-Role Assignment[a, B]
(Local VC Team, p7) Permission-Role Assignment[b, B∪E]
(Clinician, p17) R2R Permission Delegation [c, C] [Clinic Epi, 1]
(State Epi,State VC) Role Static SoD [b, D]
(State Epi,Juris VC) Role Static SoD [b, D]
(Juris Epi,State VC) Role Static SoD [b, D]
(Juris Epi,Juris VC) Role Static SoD [b, D]
(Clinic Epi,State VC) Role Static SoD [b, D]
(Clinic Epi,Juris VC) Role Static SoD [b, D]
(p11, p15) Permission Static SoD [a, D]
(p16, p17) Permission Static SoD [a, D]

Table 6.3: DDS Relationships and Constraints
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Chapter 7

The Analysis of an Extended STRBAC
Model

The model that we proposed in Chapter 6 has numerous featuresthat can interact with each

other to produce inconsistencies and conflicts. For example, incorrect spatio-temporal con-

straints may prevent a user from invoking his permission. Similarly, incorrect delegation may

cause violation of separation of duty constraints. Thus, wemust perform an analysis to ensure

that inconsistencies or security violations do not occur when a given application is using our

model. Manual analysis is error-prone and tedious. Towardsthis end, we show how Coloured

Petri Nets (CPNs) can be used for detecting problems in the authorization specifications.

7.1 Coloured Petri Nets

Coloured Petri Nets (CPN) modelling language [35, 37, 38] has been widely used to model

and analyze various domain of real-world applications. In CPN, the states of the system are

represented as a set of circles or ellipses calledplaces. The events which cause the change

between states are represented as a rectangles calledtransitions. Between a state and its corre-

sponding transition which leads to the next state will be linked with a directed arc. Figure 7.1

shows a simple example of coloured petri nets.

Modeling with CPN has a number of benefits. First, with a comprehensive graphical repre-

sentation and well-defined semantics, CPN allows user to perform the formal analysis. Second,

CPN has a well-defined semantics, which allows us to unambiguously define the behavior of
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6

1`"Alice"++
1`"Ben"++
1`"Bob"++
1`"Charlie"++
1`"Claire"++
1`"David"

Figure 7.1: Simple example of CPN model

the model. Third, the Modeling Language (ML) supported by CPN is very general and can

be used to describe a large various systems. Fourth, the language semantics is built upon true

concurrency processing. Fifth, CPN supports a hierarchical description, which is helpful to

model in a modular approach, where each system functions aremodelled separately as sub

CPNs. Finally, CPN also offers interactive simulation and has tools to support the drawing,

simulation, and formal analysis.

Laborde et al. [46] have nicely described the characteristics of a CPN as follow. The states

of a CPN are represented by theplaces, which are drawn as ellipses or circles. Each place

has an associated type, which termedcolor setto determine the data type that the place may

contain. A state of a CPN is called amarking. A marking consists of a number of tokens

transfered to the individual places. Each token carries a value (color), which belongs to the

type of the place on which the token resides. The tokens present on a particular place are

called the marking of that place. The tokens of a CPN are distinguishable from each other. The

marking of a place is, in general, a multi-set of token values. A multi-set is similar to a set,

except that there may be several appearances of the same element. This means that a place may

have several tokens with the same token value. We can formally define a CPN as follow [37]:

Definition 49 (A Coloured-Petri Net (CPN))

A CPN is a nine-tuple of the form(P,T,A,Σ,V,C,G,E, I), where

1. P is a finite set of places.

2. T is a finite set of transitions.
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3. A⊆ P×T ∪T×P is a set of directed arcs from places to transitions and from transitions

to places.

4. Σ is a finite set of non-empty colour sets, a colour set is comparable to a data type in the

programming paradigm.

5. V is a finite set of typed variables such thatType[v] ∈ Σ for all variablesv∈V.

6. C : P→ Σ is a mapping function that assign colour set to each place.

7. G : T → EXPRV is a guard function that assigns a guard to each transitiont such that

Type[G(t)] = Boolean. The guard isenabledand can befired if and only if the guard

functionG(t) is evaluate totrue.

8. E : A→ EXPRV is an arc expression function that assigns an arc expressionto each arc

a such thatType[E(a)] = C(p)MS, whereC(p)MS represents the colour set of the placep

connected to the arca.

9. I : P→ EXPR/0 is an initialisation function that assigns an initialisation expression (,

which evaluates to a set oftokenssatified the initialisation function) to each placep such

thatType[I(p)] = C(p)MS.

For the complete version of the formal definition of ColouredPetri Nets, please refer to

[37]. In this paper, we advocate the use of the coloured petrinets tool called CPNTools [36, 38]

to develop and analyze the CPN model. CPNTools [38], is a computer tool for creating and

analyzing the CPN models. Using CPNTools allow us to investigate the behavior of CPN

model using the simulation.

7.2 The Extended STRBAC Model Analysis

We propose to use the CPN Tools [38] to detect problems in the access control specification.

The CPN Tools allow one to performstate spaceanalysis to identify potential problems. CPN
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Tools will generate all possible states that are reachable together with the values of environ-

mental variables that cause the change. Checking all the generated states is a time consuming

and error-prone task. To solve this problem, we create queries using the Standard ML language

[50] to select only those states which have the exact properties that we are interested in. To

avoid state explosion, we develop a CPN model for each of the problems that we try to detect.

The models are populated using values from the access control graph representing the access

control policies of the organization.

We detect the following problems with the access control specification:

• Isolated entity occurs when an entity is not connected to anyother entity.

• Infeasible path occurs when a user cannot access a permission or an object in an access

path.

• Delegation constraint violation occurs when the spatio-temporal constraints associated

with delegation or the delegation depth constraint is violated.

• Separation of duty violation occurs when a user is assigned conflicting roles, when a

permission is assigned conflicting roles, or when a user is able to activate conflicting

roles.

7.2.1 Isolated Entity Detection

Isolated entity occurs when an entity is disconnected from other entities in the access con-

trol graph, thus making it useless with respect to the accesscontrol specification. Consider the

DDS example discussed in Section 9.4. If we look at the graph in Figure 6.1 representing the

access control policies of the DDS, we find that usersClaire andDavid are not connected to

any roles or permissions–these are examples of isolated entities. A similar argument can be

made for permissionsp4 and p5. In our model, we can have three types of isolated entities,

corresponding to users, roles, and permissions, as described below.

1. Type 1:User who is not assigned to any role,

2. Type 2:Role which is not assigned to any permission or junior role, and
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3. Type 3:Permission which is not assigned to any role.

We develop CPN models to detect each of these types of isolated entities. In the following,

we describe how to detect isolated users, that is, isolated entity of Type 1.

colset LOCATION = list STRING;

colset DURATION = list STRING;

colset VERTEX = STRING;

colset EDGETYPE = STRING;

colset DEPTH = INT;

colset EDGE = product VERTEX*VERTEX*EDGETYPE*DURATION*L OCATION*

VERTEX*DEPTH;

All types of entities and relationships in our model are represented using color sets. From

the declaration above, edge is represented by a tuple of vertices. The color set calledED-

GETYPEis used to distinguish between different types of edges. To representµ function, we

use the product ofDURATIONandLOCATION. Similarly to representρ function, we use the

product ofSTRINGandDEPTH.

We next model the states of the application that are of interest. The state of the application

is represented using CPN’s places which are drawn as ellipses or circles. Each place has an

associated type, specified using color set, that determinesthe data type that the place may con-

tain. In Figure 7.2, we have three places denoted byUser Assign Edges, Users, andAssigned

Usersthat have data typesUSER, EDGEandUSERrespectively. Each state of a CPN is called

a marking. The marking of a place is represented by a multi-set of token values. The initial

markings, representing the initial states, are initialized using values from the access control

graph and are shown in the boxes adjoining the places. For example, the initial marking of the

Usersplace, referred to asAllUsers, consists of six tokens corresponding to the usersAlice,

Ben, Bob, Charlie, ClaireandDavid in the access control graph.AllUsersis described using a

multi-set. Since all users are unique, the number of each multi-set member equals one. For ex-

ample, the notation,1‘("Alice") indicates there is only one user Alice. The union operation
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(++) is used to represent situations when there are more thanone member, as in our example.

The initial marking of placeUser Assign Edges, referred to asAllUserAssign, is specified in

a similar manner and are populated using User-Role Assignment and Role to User Delegation

edges from the access control graph. Here, we repeat the specifications of the initial markings.

val AllUsers=1‘("Alice")++1‘("Bob")++1‘("Ben")++1‘(" Charlie")++

1‘("Claire")++1‘("David");

val AllUserAssign=1‘("Alice","State Epi","UA",["a","c "], ["A","B"],"",0)++

1‘("Bob","Clinic Epi","UA",["a","c"], ["C"],"",0)++

1‘("Ben","Clinician","UA",["a"], ["C"],"",0)++

1‘("Charlie","State VC","UA",["a"], ["A","B"],"",0);

The actions of the CPN are described by transitions, which are represented using rectangles.

Arcs connect transitions and places. An activation (firing)of a transition removes tokens from

places connected to the transition’s incoming arcs (input places) and adds tokens to the places

connected to the transition’s outgoing arcs (output places). This results in the markings of the

CPN, that symbolizes its state, to change. It is also possible to attach a boolean expression,

referred to as a guard, to each transition. In such a case, theguard function must evaluate to

true before it can be activated. The exact number of tokens added or removed by the firing

of a transition and their respective data values are determined by the arc expressions. The

transitions can be fired repeatedly. When the marking of a place can no longer be changed, it

is referred to as dead marking.

Figure 7.2, shows one transitionMove Assigned Userthat is activated when the arc expres-

sions match on theu values and the guard function ofMove Assigned Userverifies thatu is not

null. The initial markings cause this transition to be fired.The correspondingu, (u, v, etype,

d1, l1, dtr, depth) get removed fromUsersandUser Assign Edgesplaces respectively andu

gets added toAssigned Users. The transitions are fired repeatedly until no more state change

can take place. In the given example, the transitions are fired for usersAlice, Ben, Boband

Charlie. The terminal state is reached when no more transitions can be fired.
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Figure 7.2: CPN Model for Isolated Entity Detection (Type 1)

Query 1

Show all terminal states

SearchNodes (EntireGraph,

fn n => (length(OutArcs(n)) = 0),

NoLimit,

fn n => n,

[],

op ::)

We use Query 1, which is the general query to show all terminalstates, to detect isolated en-

tity. This query is written using built-in query function ofthe State Space Tool calledSearchN-

odes[36]. The first argument inSearchNodes, namely,EntireGraph , signify that we want

to search the whole graph. The second argument,fn n => (length(OutArcs(n)) = 0) ,

states that we want to check all nodes that have no outgoing arcs, that is, the terminal nodes.

The third argument,NoLimit , states that we want the query to return all possible results. The

fourth argument,fn n => n , states that we do not want to change the value of the search re-

sult. The fifth argument states that the initial value of the result set is equal to empty list. The

last argument,op :: , will combine all search results into one list. From the explanation above,

Query 1 will return the state where the transition cannot proceed anymore. The result is the
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state number 16 which can be viewed using the command:print(NodeDescriptor 16) .

The content of each place in state number 16 can be shown below:

Users=1‘("Claire")++1‘("David");

User Assign Edges=empty;

Assigned User=1‘("Alice")++1‘("Ben")++1‘("Bob")++1‘( "Charlie");

The result shows that tokens corresponding to usersClaire andDavid are in placesUsers

when the transitions cannot be fired anymore. These users cannot be transferred to the next

state (Assigned User) and they are isolated entities. With trivial modification,we can develop

the CPN models to detect the other types of isolated entity.

7.2.2 Infeasible Path Detection

Recall that in an access control graph, a useru is authorized for permissionp through

role r if there is an access path connectingu, r, andp. The spatio-temporal constraints may

be specified in such a manner that it may not be possible foru to invoke r resulting in an

infeasible path. Consider the following access path given in Figure 6.1:(Ben,Clinician, p17).

Ben is assigned toClinician role during regular hours at theClinic. However, theClinician

role is delegated permissionp17 only during emergency hours at theClinic. Thus, the temporal

constraints prohibitBenfrom ever invoking permissionp17. This is an example infeasible path.

Figure 7.3 shows the CPN model for detecting infeasible paths. This model is developed

to perform a depth first search on the access control graph andcalculate the ˆµ function of

each acs-path. If there is an acs-path where the ˆµ function equal to empty set, then this acs-

path is the infeasible path. In this CPN model we have a transition calledGet Initial Vertex.

This transition will get the first token needed to start the analysis. Moreover, it will prevent

other tokens from being retrieved while the previous token is still in the analysis process. The

transitionRetrieve Edgewill retrieve the authorization edge which starts atv1, then add it to
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theAuthorization Pathplace as a record. Then the transitionCalculate Mu Hatwill calculate

the current ˆµ value. If either the spatial value or temporal value of ˆµ equals empty set, it will

trigger theInfeasible Pathtransition to fire. This transition will send boolean value true to the

Infeasible Pathplace, which will notify us that there exists an infeasible path in our policy.

The initial marking of theUsersplace, denoted byAllUsers, consists of all users in the access

control model. The initial marking of theAuthorization Edgesplace, denoted byAllAuthEdges,

consists of all edges except the SoD edges in the access control graph.

if (intersection(d1,d2) <> []) andalso 
(intersection(l1,l2) <> []) andalso 
(etype <> "PA") then
1`v2
else empty (intersection(d1,d2), 

intersection(l1,l2))

(v1,v2,etype,d1,l1,dtr,depth)

(v1,v2,etype,d1,l1,dtr,depth)
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Figure 7.3: CPN Model for Infeasible Path Detection

Query 2

Infeasible Path

fun InfeasiblePath() : Node list

= SearchNodes(

EntireGraph,

fn n=>(

(size(Mark.UserInfeasiblePath’Infeasible_Path 1 n) <> 0 )
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),

NoLimit,

fn n=>n,

[],

op ::)

Query 2 checks the infeasible path that may occur due to incorrect specifications in the

spatio-temporal constraints. The second argument in SearchNodes which represents a function

states that we want to check the states where the number of tokens inInfeasible Path place

is not equal to zero. The result shows that states 37 and 47 contain the infeasible path. To

observe the result, we print the content of state number 47. Below is part of the content of state

47.

Authorization Path = 1‘("Charlie","State VC","UA",["a"] , ["A","B"],"",0)++

1‘("State VC","Juris VC","RHI",["a"], ["B"],"",0)++

1‘("Juris VC","Local VC Team","RHI",["a","c"], ["A"],"" ,0);

The analysis reveals another infeasible path that exists inour DDS example: (Charlie, State

VC, Juris VC, Local VC Team). This infeasible path is caused because no spatial constraints can

be satisfied.Charlie is assigned the roleState VCin theState OfficeandJuris Office. However,

the State VCinherits Juris VC’s permissions only in theJuris Officeand Juris VC inherits

Local VC Team’s permission only inState Office. This preventsCharlie from invoking any of

theLocal VC Team’s permission. State 37 reveals another infeasible path (Ben,Clinician, p17

) that exists in our application.

7.2.3 Delegation Constraint Violation Detection

A delegator can delegate only the roles or privileges assigned to him. Moreover, the del-

egation duration and location should satisfy the associated spatio-temporal constraints. In the

context of our example, ifClinic Epi tried to delegate privilegep3 (which he does not pos-

sess), then it would be an example of delegation constraint violation. Similarly, if the roleJuris
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Epi delegated permissionp3 to Clinician at locationA (State Office) and timec (Emergency

Hours), then it would violate the delegation constraint. This is because the roleJuris Epidoes

not have permissionp3 in locationA at timec.

The delegation should also not violate the delegation depthconstraint. This type of viola-

tion occurs when there is a chain of delegation and the delegatee further delegates the privilege

beyond the specified depth. For example, if the delegation depth is specified as one, then a

delegation depth violation will occur if the delegatee is trying to further delegate the privileges

he has acquired by virtue of delegation. In the context of ourexample, the roleClinic Epi

transfers the permissionp17 to Clinician at timec and locationC and the delegation depth is

specified as 1. Now, if theClinician further delegates privilegep17 to some other role, then the

delegation depth constraint will be violated.

Figure 7.4 shows the CPN model to detect the delegation constraint violation. This model

is developed to ensure that both delegation depth constraint and delegation spatio-temporal

constraint are satisfied by using the guard function of the transitionCheck Delegation Depth

andCheck Delegation Constraint, respectively. If theCheck Delegation Depthtransition is ac-

tivated, then there exists a delegation depth violation. Similarly, if the Check Delegation Con-

straint is activated, then there exists a spatio-temporal delegation constraint violation, which

will occurs if the delegator delegate the privileges that hehas no accessibility. The model will

send the problematic edge to the place corresponding to eachtype of error to notify the error.

The initial markings of theDelegation Edgesplace, denoted byAllDelEdges, consists of all

delegation edges, that is,RD∪PD. The initial markings of theDelegator Authorization Edges

place, denoted byAllDtrAuthEdges, consists of all edges belonging toUA∪RH∪PA.

We then formulate Query 3 and 4 to check the delegation depth violation and the delegation

constraint violation states, respectively. Both queries return empty list, which ensures that our

model is free from both types of violation.

Query 3

Delegation Depth Violation

fun DepthViolation() : Node list
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(v1,v2,etype,d1,l1,dtr,depth)
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Figure 7.4: CPN Model for Delegation Constraint Violation Detection

= SearchNodes(

EntireGraph,

fn n=>(

(size(Mark.DelegationConstraint’Depth_Violation 1 n) < > 0)),

NoLimit,

fn n=>n,

[],

op ::)

Query 4

Delegation Constraint Violation

fun ConstraintViolation() : Node list

= SearchNodes(

EntireGraph,

fn n=>(

(size(Mark.DelegationConstraint’Constraint_Violatio n 1 n) <> 0)),

NoLimit,

fn n=>n,

[],
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op ::)

7.2.4 SoD Violation Detection

Separation of duty violations can be static or dynamic. Static separation of duty can be with

respect to the user-role assignment or permission-role assignment. In DDS system we have two

different types of SSoDone with respect to user-role assignment and the other with respect to

permission-role assignment. Let us take the example of SSoDfor permission-role assignment.

No role should have permissionsp16 (Signal VC for Dengue Virus) andp17 (Signal VC for

Dengue Hemorrhagic Fever) at the same time. Thus, if a role does have these conflicting

permissions , SSoD will be violated.

Figure 7.5 shows the CPN model to detect the separation of duty violation. The model will

perform a reverse depth first search starting from the vertices associated with the SoD edge.

The ancestors of the two vertices will be stored in two separate places calledV1 Ancestorsand

V2 Ancestorsrespectively, together with their corresponding ˆµ value. If there exist a common

ancestor and there is an overlap of spatio-temporal points,then SoD is violated. The model

will then send the problematic SoD and its ancestor toSoD ViolateandSoD Violate Ancestor

places respectively to notify the error.

The initial marking of theSoD Edges, denoted byAllSoDEdgesis populated by all SoD

edges in the access control model. The initial markings ofAuthorization Edges V1andAutho-

rization Edges V2, denoted byAllAuthEdges, consists of all edges except the SoD edges in the

access control graph. The content ofAllSoDEdgesis shown below.

val AllSoDEdges=

1‘("State Epi","State VC","RSSD",["a","c"],["A","B"," C","E"],"",0)++

1‘("State Epi","Juris VC","RSSD",["a","c"],["A","B"," C","E"],"",0)++

1‘("Juris Epi","State VC","RSSD",["a","c"],["A","B"," C","E"],"",0)++

1‘("Juris Epi","Juris VC","RSSD",["a","c"],["A","B"," C","E"],"",0)++

1‘("Clinic Epi","State VC","RSSD",["a","c"],["A","B", "C","E"],"",0)++

1‘("Clinic Epi","Juris VC","RSSD",["a","c"],["A","B", "C","E"],"",0)++
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1‘("p11","p15","PSSD",["a"],["A","B","C","E"],"",0) ++

1‘("p16","p17","PSSD",["a"],["A","B","C","E"],"",0) ;

(v1,v2,etype,dSoD,lSoD,dtr,depth)

(v,intersection(dSoD,intersection(d1,d2)),
intersection(lSoD,intersection(l1,l2)))

(v,d2,l2)

(v,d1,l1)

(v1,v2,etype,dSoD,lSoD,dtr,depth)

(v4,intersection(d4,dMu), 
intersection(l4,lMu))

(intersection(d4,dMu), 
intersection(l4,lMu))

(dMu, lMu)

(v4,v2,etype,d4,l4,dtr,depth)

if etype <> "UA" then 
1`v4
else empty

v2

InitMuHat

v2

if etype <> "UA" then 
1`v3
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(v3,intersection(d3,dMu), 
intersection(l3,lMu))
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Figure 7.5: CPN Model for Separation of Duty Violation Detection

Query 5

SoD Violation

fun SOD() : Node list

= SearchNodes(

EntireGraph,

fn n=>(

(size(Mark.SoD’SoD_Violate 1 n) <> 0)),

NoLimit,

fn n=>n,

[],

op ::)
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We then formulate Query 5 to check the SoD violation. Our analysis reveals various SoD

violations. For example, there is a SoD violation caused by assigning the roleState VCtwo

conflicting permissionsp11 andp15. Similarly, there is another SoD violation caused because

role State Epigets conflicting permissionsp16 and p17. Our analysis reveals that there is no

SoD violation caused by any user being assigned conflicting roles.

7.2.5 Soundness and Completeness

The set of problems that we considered in this work are by no means exhaustive. For

example, it is quite possible that the spatio-temporal constraints have been incorrectly specified

but this error does not lead to isolated entities, infeasible path, SoD violation or delegation

constraint violation and will not be detected. However, with respect to the problems that we

do detect, we can make a few comments about the soundness and completeness. If the CPN

model has been correctly constructed and populated using the access control graph, then we

can prove soundness and completeness properties with respect to the given problem.

Consider, for example, the problem of detecting isolated users as shown in Figure 7.2. Let

us recall how this CPN will operate. The initial markingAllUsersare populated using the user

entities in the access control graph. Similarly, the initial markingAllUserAssignare initialized

using UA andRDU edges in the access control graph. The transitionMove Assigned User

will fire as long as some useru matches the useru in the edge(u,v,etype,d1, l1,dtr,depth).

This firing results in removingu and(u,v,etype,d1, l1,dtr,depth) from UsersandUser Assign

Edgesrespectively and addingu to Assigned Users. When no more transitions can be fired, the

terminal state has been reached and the placeUserscontain isolated users.

Suppose there is some isolated userui in the access control graph that is not detected by this

CPN model. In other words, userui is not in theUsersplace when the terminal state is reached.

This leads to two possibilities: either userui is in Assigned Usersplace in the terminal state or it

is not. Ifui is in Assigned Users, then there exists an edge of type(ui ,v,etype,d1, l1,dtr,depth)

in the initial markingAllUserAssign. This is possible only if there is a correspondingUA or

RDU edge in the access control graph involvingui; this, in turn, precludesui from being an
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isolated user. Ifui is not in Assigned Usersin the terminal state and it is also not inUsers,

thenui was not in the initial markingAllUsers. This is possible only if the access control graph

does not containui . Since both the cases are not possible, it means that userui must be in the

Usersplaces when the terminal state is reached. Thus, all isolated users are detected by the

CPN model.

Supposeu j is detected as an isolated user by the CPN. This implies thatu j is in the place

Usersin the terminal state. In other words, there is no edge of the form(u j ,v,etype,d1, l1,dtr,depth)

in the initial markingAllUserAssign. In other words, there is noUA edge orRDU edge associ-

ated withu j in the access control graph. This implies thatu j is indeed an isolated user.

7.3 Improving the Analysis Performance

CPN explores the state space to check for violations of access control properties. Our in-

vestigations reveal that even a modest increase in the number of places and transitions cause

a significant increment to the number of states of the state space; this substantially raises the

verification time. We looked at the various CPN models that wegenerated for detecting prob-

lems with the access control specifications. We observed that the number of states generated

in the CPN model were related to the number of edges traversedin the access control graph for

detecting a specific problem. We looked at the number of states generated for each problem.

For detecting delegation constraint violation, the numberof states generated is of the order

O(|PD|+ |RD|), where|PD| and |RD| represent the number of permission delegation edges

and role delegation edges respectively. Since typically the number of delegation edges will be

small, we did not think it necessary to produce further optimization. We next considered the

problem of detecting infeasible paths. In this case, the number of states generated is of the or-

derO(|U ||E|+ |IP|) where|U | is the number of users,|E| is the number of edges in the access

path, and|IP| is the number of infeasible paths. Next, consider the problem of detecting SoD

violations. Here, the number of states generated is of the order ofO(|SD||E|+ |SoD|) where

|SD| is the number of SoD edges,|E| is the number of edges in the access path, and|SoD| is

the number of SoD violations. Thus, one way to reduce the number of states is to decrease the
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number of edges in the graph.

One way of reducing the number of edges is to flatten the hierarchy. We did some initial

experiments in order to understand the effect of flattening the hierarchy on the state space. We

created a very simple access control graph consisting of oneuser, one user-role assignment,

one permission-role assignment, and multiple levels of hierarchy. With 10 levels of hierarchy

the state space reduction was 40%, which is quite significant. T his motivated us to transform

the access control graph to a smaller graph, which we term, theprivilege acquisition graph.

7.3.1 Privilege Acquisition Graph

In order to generate a smaller number of states in the CPN model that does efficient veri-

fication, we propose to transform the access control graph into the privilege acquisition graph.

The privilege acquisition graph essentially flattens out the hierarchical structure. It captures the

following relationships:UA′,PA′,PO′ andSD′ whereUA′ represents the user-role assignment

that occurs either directly or indirectly via hierarchy anddelegation constraints,PA′ represents

permission-role assignment that occurs either directly orindirectly due to inheritance and dele-

gation,PO′ corresponds to the permission-object relationship (represented byPO in the access

control graph), andSD′ corresponds to separation of duty (represented bySD in the access

control graph). Algorithm 1 shows the transformation process. Step 1 adds all the vertices of

the access control graph to the privilege acquisition graph. Step 2 converts all the act-path in

the access control graph toUA′ edges in the privilege acquisition graph. Step 3 converts all

the u-path in the access control graph toPA′ edges in the privilege acquisition graph. Steps 4

and 5 adds all thePO,SDedges in the access control graph toPO′,SD′ edges in the privilege

acquisition graph respectively. The time complexity to generate the privilege acquisition graph

is O(VE), whereV is the number of vertices andE is the number of edges of the original access

control graph.

Theorem 1

The role authorizations and user authorizations are equivalent in the access control graph

G(V,E,µ,ρ) and its corresponding privilege acquisition graphG′(V ′,E′,µ′).
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Proof First, let us consider the case of role authorizations. Suppose rolev∈ R is authorized

for permissionv′ ∈ P in the access control graphG. This is possible if there exists an u-path

in the access control graph(v,v1,v2, . . . ,vn,v′) and µ̂(v,v′) 6= /0. By step 3 of Algorithm 1, if

there exists an u-path(v,v1,v2, . . . ,vn,v′) in the original graphG, it will be transformed to a

PA′ edge in its corresponding privilege acquisition graphG′ with the same spatio-temporal

constraint (µ′(v,v′) = µ̂(v,v′)). Hence, for every u-path inG, there exists aPA′ edge inG′ that

authorizesv to acquire permissionv′ at µ̂(v,v′). To show the converse, let us consider an edge

(v,v′) ∈ PA′ in G′. Since edge(v,v′) ∈ PA′ in G′ is created from some u-path inG, every role

authorization inG′ has a corresponding u-path inG that gives rolev permissionv′ at the same

spatio-temporal points. Thus, for every edge(v,v′) ∈ PA′, there exists an u-path inG that gives

rolev permissionv′.

Next, let us consider user authorizations. Let userv ∈ U be authorized for permission

v′ ∈ P with respect to objectv′′ ∈O in the access control graphG. This is possible if there ex-

ists an acs-path(v,v1,v2, . . . ,vi , . . . ,v′,v′′) such thatvi ∈R for somei, (v1, . . . ,vi) is an act-path,

(vi , . . . ,v′) is an u-path,(v′,v′′) ∈ PO andµ̂(v,v′′) 6= /0. Corresponding to this acs-path, the al-

gorithm to generate the privilege acquisition graph creates three edges in Steps 2, 3, and 4. The

edges created are(v,vi)∈UA′ whereµ′(v,vi) = µ̂(v,vi),(vi,v′)∈PA′ whereµ′(vi,v′) = µ̂(vi ,v′),

and (v′,v′′) ∈ PO′ whereµ′(v′,v′′) = µ̂(v′,v′′). Moreover,µ′(v,vi) ∩ µ′(vi ,v′)∩ µ′(v′,v′′) =

µ̂(v,v′′). These three edges(v,vi),(vi,v′) and(v′,v′′) give the userv permissionv′ to access ob-

jectv′′ at pointsµ̂(v,v′′) in graphG′. To prove the converse, let us assume that the privilege ac-

quisition graphG′ provides some useru permissionp for objecto. This implies that there exists

three edges of the(u, r)∈UA′, (r, p)∈PA′ and(p,o)∈PO′ andµ′(u, r)∩µ′(r, p)∩µ′(p,o) 6= /0.

The existence of these three edges is possible only if there is an act-path(u,v1,v2, . . . ,vn, r),

an u-path(r,v′1,v
′
2, . . . ,v

′
m, p), an edge(p,o) ∈ PO in the corresponding access control graph.

Moreover,µ′(u, r) = µ̂(u, r),µ′(r, p) = µ̂(r, p), andµ′(p,o) = µ(p,o). Thus, useru will get

permissionp to access objecto at the same spatio-temporal points in graphG.

Lemma 1

Each isolated entity that exists in the access control graphG is also present in the corresponding
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privilege acquisition graphG′ and vice-versa.

Proof Let ui be an isolated user in the access control graph. This means that there is no act-

path starting atui. Consequently, there is no edge inUA′ in the privilege acquisition graph of

the form(ui,v). Since the edges inUA′ are the only edges joining users to roles in the privilege

acquisition graph,ui is also an isolated entity in the privilege graph. Conversely, let u j be an

isolated user in the privilege acquisition graph. Thus, there is no edge of the form(u j ,v) in

UA′. This is possible only if there is not act-path starting atu j in the access control graph,

which implies thatu j is an isolated entity in the access control graph. We can makesimilar

arguments for isolated roles and permissions.

Lemma 2

For each infeasible path that exists in the access control graphG, there exists a corresponding

infeasible path in the privilege acquisition graphG′ and vice-versa.

Proof LetP=(v1,v2, . . . ,vn) be an infeasible path in the access control graph where(v1, . . . ,vi)

is an act-path,(vi, . . . ,vn−1) is an u-path and(vn−1,vn) be in PO. SinceP is an infeasible

path,µ̂(v1,vn) = µ̂(v1,vi)∩ µ̂(vi,vn−1)∩ µ̂(vn−1,vn) = (d, l) where eitherd = /0 or l = /0. The

construction of the privilege graph from this acquisition graph generates the the following

edges:(v1,vi),(vi,vn−1), and(vn−1,vn) where(v1,vi) ∈UA′,(vi,vn−1) ∈ PA′ and(vn−1,vn) ∈

PO andµ′(v1,vi) = µ̂(v1,vi),µ′(vi ,vn−1) = µ̂(vi ,vn−1), andµ′(vn−1,vn) = µ̂(vn−1,vn). Thus,

µ̂′(v1,vi) = µ̂(v1,vn) = µ̂(v1,vi)∩ µ̂(vi ,vn−1)∩ µ̂(vn−1,vn) = (d, l) where eitherd = /0 or l = /0.

Thus, the path(v1,vi ,vn−1,vn) is an infeasible path in the privilege acquisition graph. The

converse can be similarly proved.

Lemma 3

For every SoD violation that exists in the access control graph G, there exists a corresponding

SoD violation in the privilege acquisition graphG′ and vice-versa.

Proof Suppose the access control graph has a SSoD role-permissionviolation of the form

(r1, r2, . . . , rn, pi),(r1, r ′2, . . . , r
′
n, p j) and(pi , p j) where(r1, r2, . . . , rn, pi) and(r1, r ′2, . . . , r

′
n, p j)

are u-paths and(pi , p j) is a SoD edge and ˆµ(r1, pi)∩ µ̂(r1, p j)∩µ(pi , p j) = (d, l) whered 6= /0
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and l 6= /0. By construction, the following edges are generated for theprivilege acquisition

graph: (r1, pi) and(r1, p j) are edges inPA′ and(pi , p j) is an edge inSD′. Sinceµ′(r1, pi) =

µ̂(r1, pi),µ′(r1, p j) = µ̂(r1, p j), andµ′(pi , p j) = µ(pi, p j), we haveµ′(r1, pi)∩µ′(r1, p j)∩µ′(pi , p j) =

(d, l). Thus, the edges(r1, pi),(r1, p j) and(pi , p j) indicate there is a SoD violation. The con-

verse can be proved in a similar manner. We can also prove the other types of SoD constraint

violations similarly.

Theorem 2

The privilege acquisition graph accurately captures isolated entities, infeasible paths, and SoD

violations.

Proof The proof follows from Lemmas 1, 2, and 3.

Note that, the privilege acquisition graph contains less information than the corresponding

access control graph. For example, information about the role hierarchy is no longer present

in the privilege acquisition graph. The CPN analysis of privilege acquisition graphs will detect

the problems, but it may not have enough information to identify the source of the problem.

Thus, if a problem exists, the access control graph or its subgraph related to the problem must

be analyzed. For instance, if the analysis of the CPN corresponding to the privilege acquisition

graph identifies that there is an infeasible path(v1,vi ,vn−1,vn), then to detect where the spatio-

temporal constraints have been violated we need to find the subgraph of the access control

graph involving these vertices and analyze it. Similarly, if the CPN analysis of the privilege ac-

quisition graph reveals a potential SoD violation involving edges(r1, pi),(r1, p j), and(pi, p j),

the corresponding subgraph of the access control graph mustbe analyzed to identify the source

of the problem.

7.3.2 DDS Example Privilege Acquisition Graph

We use Algorithm 1 to transform the access control graph of the dengue decision support

system into the privilege acquisition graph, shown in Figure 7.6. The new spatio-temporal

constraints can be calculated from the ˆµ(v,v′) function as described in Algorithm 1. For
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Algorithm 1 Transform access control graph to privilege acquisition graph
{Input: Access control graphG(V,E,µ,ρ)}
{Output: Privilege acquisition graphG′(V ′,E′,µ′)}
BEGIN
V ′← /0
E′← /0
µ′← /0
{Step 1: Add all vertices of the access control graph to the privilegeacquisition graph}
for all v∈V do

V ′←V ′∪v
end for
{Step 2: Transform all act-path started at each user vertex of the access control graph to the set of
edges of the privilege acquisition graph (UA′)}
for all v∈U do

for all act-pathacti = (v, . . . ,v′) do
EdgeType(v,v′)←UserRoleAuth
E′← E′∪ (v,v′)
µ′(v,v′)← µ̂(v,v′)
µ′← µ′∪µ′(v,v′)

end for
end for
{Step 3: Transform all u-path started at each role vertex and ended atthe permission vertex of the
access control graph to the set of edges of the privilege acquisition graph (PA′)}
for all (v∈ R)∧ (v′ ∈ P) do

for all u-pathui = (v, . . . ,v′) do
EdgeType(v,v′)← PermRoleAuth
E′← E′∪ (v,v′)
µ′(v,v′)← µ̂(v,v′)
µ′← µ′∪µ′(v,v′)

end for
end for
{Step 4: Add all POedges from the access control graph to the set of edges of the privilege acquisi-
tion graph (PO′)}
for all (v,v′) ∈ POdo

EdgeType(v,v′)← PermOb jAssign
E′← E′∪ (v,v′)
µ′(v,v′)← µ(v,v′)
µ′← µ′∪µ′(v,v′)

end for
{Step 5:Add all SDedges from the access control graph to the set of edges of the privilege acquisition
graph (SD′)}
for all SD edgesdi = (v,v′) do

EdgeType(v,v′)← EdgeType(sdi)
E′← E′∪ (v,v′)
µ′(v,v′)← µ(v,v′)
µ′← µ′∪µ′(v,v′)

end for
ReturnG′(V ′,E′,µ′)
END
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instance,µ(State Epi, p1) in the condensed graph can be calculated from ˆµ(State Epi, p1) of

the original access control graph, which equals toµ(State Epi,Juris Epi)∩µ(Juris Epi, p1) =

[b,B]∩ [a,B] = [b∩ a,B∩B] = [a,B]. Note that in this example durationb meansAlways,

hence,b∩a = a. We compute other spatio-temporal constraints in the same manner. All new

spatio-temporal constraints are shown in Table 7.1.
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Figure 7.6: DDS System’s Privilege Acquisition Graph
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NAME DESCRIPTION SPATIO-TEMPORAL DO-
MAIN (µ)

(Alice,State Epi) User-Role Authorization [b, A∪B]
(Bob,Clinic Epi) User-Role Authorization [b, C]
(Ben,Clinician) User-Role Authorization [a, C]
(Charlie,State VC) User-Role Authorization [a, A∪B]
(State Epi, p1) Permission-Role Authorization[a, B]
(State Epi, p3) Permission-Role Authorization[a, B]
(State Epi, p16) Permission-Role Authorization[a, A∪B]
(State Epi, p17) Permission-Role Authorization[b, B]
(Juris Epi, p1) Permission-Role Authorization[a, B]
(Juris Epi, p3) Permission-Role Authorization[a, B]
(Juris Epi, p17) Permission-Role Authorization[b, B]
(Clinic Epi, p17) Permission-Role Authorization[b, D]
(Clinician, p1) Permission-Role Authorization[a, C]
(Clinician, p2) Permission-Role Authorization[a, C]
(Clinician, p17) Permission-Role Authorization[c, C]
(State VC, p1) Permission-Role Authorization[a, B]
(State VC, p7) Permission-Role Authorization[a, /0]
(State VC, p8) Permission-Role Authorization[a, B]
(State VC, p11) Permission-Role Authorization[a, A]
(State VC, p15) Permission-Role Authorization[a, A]
(Juris VC, p1) Permission-Role Authorization[a, B]
(Juris VC, p7) Permission-Role Authorization[b, /0]
(Juris VC, p8) Permission-Role Authorization[a, B]
(Local VC Team, p7) Permission-Role Acquisition [c, B∪E]
(State Epi,State VC) Role Static SoD [b, D]
(State Epi,Juris VC) Role Static SoD [b, D]
(Juris Epi,State VC) Role Static SoD [b, D]
(Juris Epi,Juris VC) Role Static SoD [b, D]
(Clinic Epi,State VC) Role Static SoD [b, D]
(Clinic Epi,Juris VC) Role Static SoD [b, D]
(p11, p15) Permission Static SoD [a, D]
(p16, p17) Permission Static SoD [a, D]

Table 7.1: New Relationships and Constraints

7.3.3 Problem Detection using Privilege Acquisition Graph

In this section, we show how to detect infeasible paths and separation of duty violations

using our modified approach.
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7.3.3.1 Infeasible Path Detection

We define the types in the model as colorset as shown in Section7.2. We use the privilege

acquisition graph instead of the access control graph to populate the initial markings of our

previous CPN model shown in Figure 7.3. The initial marking forAuthorization Edges, denoted

asAllAuthEdgesis populated by theUA′ and thePA′ edges of the privilege acquisition graph.

The rest of the initial markings for other places are the sameas before.

We allow the execution of this model and run the queries to detect infeasible paths. The

analysis result shows that the system contains infeasible path. The query shows that a set of

states{42,43} suffers from the infeasible path. To check this, we use theprint command to

check the descriptor (environmental variables) of the state. For instance, let us check the state

43. Below is part of the content of state 43.

Authorization Path = 1‘("Ben","Clinician","UA",["a"], [ "C"],"",0)++

1‘("Clinician","p17","PA",["c"], ["C"],"",0);

The result shows that the infeasible path occurs because user Bencannot acquire permission

17 assigned to him via theClinician role. The percentage reduction in the number of states

when using the privilege acquisition graph instead of the access control graph is only 8 percent

in this case.

In this analysis, we do not have enough information about howBenwas assigned theClini-

cian role, whether through direct assignment or indirect assignment by hierarchy or delegation.

If we are interested in knowing the source of conflict, we haveto verify the original graph.

However, since we know that onlyp17 causes the problem, we can bypass the verification of

other irrelevant entities. To do this, from the access control graph, we create a subgraph con-

sists of all entities related withp17 by performing a reverse depth first search starting fromp17.

The subgraph derived from the access control graph shown in Figure 7.7.

We then run the same CPN model for the derived subgraph, whichis similar to Figure 7.3.
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Figure 7.7: Subgraph of the related entities ofp17.

We observe the state variable, which shown thatp17 is the delegated permission which has

temporal conflict with roleClinician.

7.3.3.2 SoD Violation Detection

We run our previous CPN model for detecting the SoD violationshown in Figure 7.5 on

the privilege acquisition graph. We then create the state space graph and execute the query

to detect conflicts. The percentage reduction in the number of states obtained by using the

privilege acquisition graph is 25 percent. The tools returna list of possible conflict states

{38,46,48,50,53,55,56,57,58,59}. We run the print command to show the value of environ-

mental variables of state number 46. Below is part of the content of state 46 which shows that

the conflict occurs betweenp16 andp17.

SoD Violate Ancestor = 1‘("State Epi",["a"], ["B"]);

SoD Violate = 1‘("p16","p17","PSSD",["a"],

["A", "B", "C", "D", "E"], "", 0);

Since CPNs based on the privilege acquisition graph can detect conflicts but cannot identify

the source, we create a subgraph from the access control graph by performing a reverse depth

first search starting from node forp16 and then forp17. The resulting subgraph is shown in

Figure 7.8. This subgraph can be analyzed as described in Section 7.2 to reveal the source of
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conflict. Since the subgraph is much smaller than the original access control graph, it will take

significantly less time. We then run the model again on the derived subgraph. This time the

model indicates thatp17 is the inherited permission which together with the assigned p16 of

roleState Epihave violated the SSoD for permission-role assignment.
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Figure 7.8: Subgraph of the related entities of permission 16 and 17.

7.4 Chapter Summary

In this chapter, we investigated how the various features ofthe extended STRBAC model

may interact with each other in subtle ways resulting in conflicts and other inconsistencies.

Consequently, we need to analyze the access control constraints of the application to ensure

that such problems do not occur. Since manual analysis is tedious and error-prone, we show

how the analysis can be automated using Coloured Petri Nets.For large complex applications,

the analysis may take a significant amount of time. Towards this end, we show how to speed up

the analysis by condensing the graph representing the application and verifying this condensed

graph.
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Chapter 8

A Trust-Based Access Control Model for
Pervasive Computing Applications

From Chapter 3 to 7, we propose three types of the access control model for the pervasive

computing. These models utilize the location and time constraint to determine the accessibility

of the users. In the highly secure pervasive computing environment, where uncontrolled dis-

closure of information, unconstrained interaction among entities, or relying on untrustworthy

entities may have very serious consequences, only the trustworthy user should be allowed to

perform a critical operation independent of time and location constraints. In such scenario, the

spatio-temporal access control model might not be the rightchoice. In this chapter, we propose

another access control model for pervasive computing environment–the Trust-Based Access

Control Model.

8.1 Trust Modeling and Computation

In our model, only the user (human users and devices) with adequate trustworthiness can be

authorized to the roles and permissions. Trust values for each user are calculated based on the

role the user performed previously. Trust value of a user canchange based on her/his activities.

Activities detrimental to the security of the system such as, committing fraud will decrease the

user’s trustworthiness. Other properties of users, such as, location, signal strength, or stability

factor for sensors, and education level, age, etc for human users, can affect the trustworthi-

ness. Finally, recommendations provided by others are evaluated to compute trustworthiness
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of users.

In this section, we describe how trust is modeled between twoentities with respect to a

given context. We adapt the trust model proposed by Ray et al.in [66]. The authors formalize

trust as a relationship between two entities, the truster, an entity that trusts the target entity,

and the trustee, the target entity that is trusted. Initially, an entityA does not trust entityB

completely. EntityA needs to evaluate a trust relationship with entityB in some context. The

context in our model is the role to which a user will be assigned to. We will refer to the context

as a role contextrc throughout the trust model. The truster is the pervasive computing system

while the trustee (the user) is either a human user (or its representative treated synonymously)

or a device.

Users can be associated with multiple roles. In order to verify the authorization between

a user and a role, a user’s trust value is evaluated based on each role context separately. For

instance, if a human user needs to be assigned as theengineer in pH monitoring roleand

engineer in impeller speed monitoring role, then two trust values need to be evaluated for each

role in order to make a decision about role assignments. The trust relationship between human

user or device user and a system in the role contextrc depends on three factors:properties,

experience, andrecommendations. The semantics of these three factors are different for the

human and the device user.

A trustee discloses a set of physical properties to be verified by the truster. A device may

be associated with a set of properties such as CPU processingspeed, memory capacity, trans-

mission rate, signal strength, location of sensor, and physical security (such as is the sensor

placed inside a tamper proof container). The properties associated with a human user could be

age, gender, education level, specialization, credentials, and so on.

Experience is based on the set of events that had occurred in the past within a certain

period of time in which the trustee was involved and that the truster has recollection about.

For a device, this can be incidents like number of defects encountered, tamper occurrences,

collected data quality, and alarms and control signals responsiveness. For the human user, this

could be decisions made in the past, task execution time taken, finesse demonstrated, and so
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on.

Recommendations are provided by trusted third-parties whohave knowledge about the

trustee with respect to the role contextrc. Recommendations in case of a device can be pro-

vided by other organizations that have used the device undersimilar circumstances. For a

human user, the recommendations can be provided by an organization that he was worked with

in the same (or similar) role contextrc.

The trustworthiness between a system and a human user is evaluated in the same way

as between the system and a device user. In our trust model, weformally represent a trust

relationship between trusterA and trusteeB on some role contextrc as a triple(Abrc
B ,Adrc

B ,Aurc
B ),

whereAbrc
B is A’s belief onB in role contextrc, Adrc

B is A’s disbelief onB in role contextrc, and

Aurc
B is A’s uncertainty onB in role contextrc. Each of these components has a value between

[0,1] and sum of these components is 1. In the following, we describe how trust relationship

can be evaluated based on properties, experience, and recommendations factors. Later, we will

use the resulting trust relationship to evaluate the trust value.

8.1.1 Quantifying Properties

Each role in an organization requires certain properties ofa user. Some other properties

are desirable. The properties are scored based on information provided by the user to the sys-

tem at the initiation of the access request. Each role in our model is associated with a set of

positive properties and negative properties, collectively called the role properties. Let a set of

positive properties associated with roleRbe denoted byPSR wherePSR = {ps1, ps2, . . . , psn}.

Each of these properties has different weight and depends onthe organization policy. Let

wps1,wps2, . . . ,wpsn be the weights of the positive propertiesps1, ps2, . . . , psn respectively, where

wpsi ∈ [0,1] and
n

∑
i=1

wpsi = 1. The weights of positive properties indicate their effectiveness with

respect to the roleR. Similarly, let a set of negative properties associated with role R be de-

noted byNER whereNER = {ne1,ne2, . . . ,nen}, and the weights of these negative properties

arewne1,wne2, . . . ,wnen, wherewnei ∈ [0,1] and
n

∑
i=1

wnei = 1.

Let the set of properties possessed by a userB be UP = up1,up2, . . . ,upn. Let pB =
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{UP
T

PSR} be the set of positive properties for the user that are relevant for the role, and

nB = {UP
T

NER} be the set of negative properties. The contribution of the user’s proper-

ties towards its trust is represented by(bP,dP,uP) wherebi , di , ui denotes belief, disbelief,

and uncertainty respectively. Each positive property increases the belief factorbP, whereas

each negative property increases the disbelief factordP. Let wpsi
be the weight of the positive

property pBi ∈ UP
T

PSR, andwnei be the weight of the negative propertynBi ∈ UP
T

NER,

m = |UP
T

PSR|, andn = |UP
T

NER|, the values ofbP,dP and uP are computed using the

following formulas:

bP =

m

∑
i=1

wpsi

m

∑
i=1

wpsi
+

n

∑
i=1

wnei

; dP =

n

∑
i=1

wnei

m

∑
i=1

wpsi
+

n

∑
i=1

wnei

; anduP = 1−bP−dP.

8.1.2 Quantifying Experience

Experience constitutes an important factor in this model. We model experience in terms of

a number of events encountered by a trusterA regarding trusteeB in particular context within

a specific period of time[t0, tn]. The time period[t0, tn] is equally divided into a setSi of n

intervals,Si = {[t0, t1], [t1, t2], . . . , [tn−1, tn]}. The intervals overlap at the boundary points only.

The trusterA keeps a history file of events performed by the trusteeB within these intervals.

Within each interval[t j , t j+1] ∈ Si where j ∈ N, there exists a (possibly empty) set of events

that transpired between the user and the system.

A user is granted a role based on the recorded events performed by the user with respect to

the role context within a certain period. The length of the time period depends on the system

implementation. We assume that the length of the time periodis specified by the security ad-

ministrator. Intuitively, events far back in time do not count as strongly as very recent events

for evaluating trust relationship. We assume that trusterA has a log file of the events performed

by trusteeB in the time period betweent0 andtn. An event can be positive, negative, or neutral.

Positive events increases the belief component of experience, negative event increase the dis-

belief component of experinece, and netural events equallyincrease both belief and disbelief
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components. In addition, the neutral event contributes towards increase in the uncertainty com-

ponent. In the following, we explain how to calculate the experience that a trusterA has about

trusteeB with respect to the role context in period of time[t0, tn]. This formally denoted as

AErc
B = (bE,dE,uE) wherebE, dE , uE represent belief, disbelief, and uncertainty components

with respect to the experience in the time period[t0, tn] in the role contextrc.

Let experience acquired from events occured in the at interval i where 1≤ i ≤ n be repre-

sented as(bi,di ,ui) wherebi ,di,ui denote belief, disbelief, and uncertainly respectively. When

no events occured in the intervali, thenui = 1,bi = di = 0. Let Pi be a set of all positive

events,Qi is a set of all negative events, andNi is a set of all neutral events occured in the

interval i. The values ofbi ,di, andui are computed as follows:

bi =
|Pi |+

|Ni |
2

|Pi |+ |Qi|+ |Ni|
; di =

|Qi|+
|Ni |
2

|Pi|+ |Qi|+ |Ni|
; andui =

0.5× |Ni |
2

|Pi|+ |Qi|+ |Ni|
.

Note that events occured in the distant past has less effect than events occured recently.

To accomodate this in the trust model, we assign non-negative weight to each interval. Let

wi denotes to the weight ofith interval such thatwi > w j wheneverj < i, i, j ∈ N. Recent

intervals in the experience policy are given more weights than those far back in time. We use

the formulawi =
k
S

for all k = 1,2, . . . ,n whereS=
n× (n+1)

2
to evaluate weights of the

intervals. Formally, the experience of trusterA about trusteeB with respect to the role context

rc in the time period[t0, tn], represented byAErc
B is computed asAErc

B = (bE,dE,uE), where the

values ofbE, dE, andue are given by:bE =
n

∑
i=1

wi ×bi , dE =
n

∑
i=1

wi ×di , anduE =
n

∑
i=1

wi ×ui ,

wheren is the number of intervals.

8.1.3 Quantifying Recommendations

Recommendations play major role on the trust evaluation when the truster does not know

much about the trustee. Truster obtains recommendations from one or more recommender

knowing about the trustee with respect to particular roles.The recommendation is evaluated

based on the recommendations returned by recommenderM aboutB as well as the trust re-

lationship between trusterA and the recommenderM in providing a recommendation about
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trusteeB. The trust relationship between trusterA and recommenderM in the context of giving

recommendation about userB with respect to particular role effects the weight of the recom-

mendation given by the recommender. The trust relationshipbetween trusterA and recom-

menderM to provide recommendation is formally represented as a 3× 3 matrix. The rows

of the matrix correspond to properties, experience, and recommendation. The columns corre-

spond to belief, disbelief, and uncertainty on each of thesefactors. The matrix is normalized

to (b,d,u) and it will be used to evaluate the recommendation sent by a recommender.

Let the triples(MbB,M dB,M uB) be the recommendation sent by recommenderM about user

B to trusterA, and the trust relationship between the trusterA and recommenderM is repre-

sented as a triples(AbM,AdM,AuM), then the recommendation scoreAMRrc
B generated by recom-

menderM about a userB to the trusterA in the role contextrc is given by(AMbrc
B ,AM drc

B ,AM urc
B ).

, whereAMbrc
B =A bM×M bB; AMdrc

B =A dM×M dB; andAMurc
B =A dM +A uM +A bM×M uB.

Note that trusterA could get recommendations about trusteeB from several recommenders.

Therefore,A’s disbelief on the recommendation about userB is the average of the disbelief

values of all recomendations. The same applies to both belief and uncertainty values. LetGbe a

set of recommendations about userB to trusterA with respect to the role contextrc, represented

by triples(AGbR,AGdR,AGuR), where the belief componentAGbR, the disbelief componentAGdR,

and the uncertainty componentAGuR are computed as follow:

AGbR =

n

∑
i=1

Aib
rc
B

n
; AGdR =

n

∑
i=1

Aid
rc
B

n
; andAGuR =

n

∑
i=1

Aiu
rc
B

n
.

8.1.4 Computing Trustworthiness

We have determine trust vector for properties, experience,and recommendation compo-

nents of trust relationship between trusterA and trusteeB with respect to a role contextrc. The

trust relationship between trusterA andB is specified as:
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(A
rc
−→ B) =





bP dP uP

bE dE uE

AGbR AGdR AGuR





Note that truster may come up with different values for the factors that influence trust for

the same trustee with respect to different role contexts. This may happen because a truster

may assign different weights to different factors that influence trust. A truster may give more

weights to one of the component than others in computing trust relationship to assign partic-

ular role to the trustee. For example, truster may choose to focus more on experience than

recommendation in computing trust with respect to the role contextrci , whereas he may focus

more on recommendation about the trustee in computing trustwith respect to role contextrc j .

A truster choose to emphasis on particular component of trust than others based on evaluation

policy of the truster with respect to each role context. The evaluation policy of the truster is

repersented by tripleAWrc
B = (WP,WE,WR) whereWP +WE +WR = 1 andWP,WE,WR∈ [0,1].

The trust relationship between a trusterA and trusteeB for a particular role contextrc is given

by:

(A
rc
−→ B)=A Wrc

B × (A
rc
−→ B)

= (WP,WE,WR)×





bP dP uP

bE dE uE

AGbR AGdR AGuR





= (Abrc
B ,Adrc

B ,Aurc
B )

whereAbrc
B = (WP× bP) + (WE × bE) + (WR×AG bR), Adrc

B = (WP× dP) + (WE × dE) +

(WR×AG dR), andAurc
B = (WP× uP) + (WE× uE) + (WR×AG uR). The elements of the trust

relationshipAbrc
B ,Adrc

B ,Aurc
B ∈ [0,1], andAbrc

B +A drc
B +A urc

B = 1. After evaluating the trust of

the properties, experience, and recommendation factors inthe previous subsections and the

normalized trust relationship between a trusterA and the trusteeB with respect to the role

contextrc, the trust value is computed as follows:
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Tau =
Abrc

B +A urc
B

Abrc
B +A drc

B +A urc
B

The valueT will be in the range of [0,1]. The value closer to 0 indicates low trust value of

userB with respect to roleR, while the value closer to 1 indicates very high trust value of user

with respect to roleR.

8.2 Our Trust-Based RBAC Model

To represent our model, we adapt the graph-theoretic approach proposed by Chen and

Crampton [19] in the following manner. In our work, the set ofverticesV = U ∪R∪P corre-

spond to the following RBAC entities:

• Users (U ), which can be either human (Uh) or intelligent device (Ud);

• Roles (R), which can be categorized to human role (Rh) and device role (Rd), and

• Permisssions (P), which can be categorized to human permission (Ph) and device per-

mission (Pd).

Our model assumes the existence of the following relationships of RBAC that constitute

the set of edgesE = UA∪PA∪RHa∪RHu where

• User-Role Assignment (UA) = (Uh×Rh)∪ (Ud×Rd)

• Permission-Role Assignment (PA) = (Rh×Ph)∪ (Rd×Pd)

• Role Hierarchy (RH) = ((Rh×Rh)∪ (Rd×Rd))×{a,u}, which can be categorized to:

– the activation hierarchy (RHa) = {(r, r ′) : (r, r ′,a) ∈RH}, and

– the permission usage hierarchy (RHu) = {(r, r ′) : (r, r ′,u) ∈RH}

In our model, trust values for each user are calculated basedon the role he performed

previously. The information of the roles he used to perform will be stored in the User Role

History, which is the history of roles that user used to performed. The values of trust can be

changed from time to time based on user activities. Negativeactivities such as, committing the
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fraud in the can decrease his trustworthiness. The calculation process is described in Section

8.1.

The system administrator will assign trust constraints in the form of a correspondingtrust

interval to roles, permissions, and other associations between entities based on different char-

acteristics of each model. Trust interval is an interval[l ,1], wherel is the lowest trust value

that each role, permission or association is active.

Note that in the organization structure, users of the seniorrole can perform the same set of

duties as its junior role, hence user who will be assigned to the senior role require more trust-

worthiness than the user who will be assigned to junior role only. Based on this observation,

when we introduce the notion of trust value, we assume that the trust value of the senior role

always dominate the trust value of its junior roles. Figure 8.1 shows components in our model.

USER_ROLE_HISTORY

Human

USERS

Device

TRUST_VALUES

ROLES

Device
Roles

SOD

Human 
Roles

RH

UA PA

PERMISSIONS

TRUST_CONSTRAINTS

SOD

Device
Permissions

Human 
Permissions

Figure 8.1: Trust RBAC Model

We define the notion of activation path, usage path and accesspath in a manner similar to

that proposed by Chen and Crampton. Anactivation path(or act-path) betweenv1 andvn is

defined to be a sequence of verticesv1, . . . ,vn such that(v1,v2) ∈UA and(vi−1,vi) ∈ RHa for

i = 3, . . . ,n. A usage path(or u-path) betweenv1 andvn is defined to be a sequence of vertices

v1, . . . ,vn such that(vi ,vi+1)∈RHu for i = 1, . . . ,n−2, and(vn−1,vn) ∈PA. An access path(or
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acs-path) betweenv1 andvn is defined to be a sequence of verticesv1, . . . ,vn, such that(v1,vi)

is an act-path, and(vi ,vn) is an u-path. We assume the existence of a trust domainD. The

value of trust in the domain can be any real number vary from zero to one. Following Chen and

Crampton’s work [19], we also propose three models, namely,the standard model, the strong

model, and the weak model. The models differ with respect to the trust constraints that must

be satisfied by the entities for the authorization to be successful.

8.2.1 The Standard Model

In the standard model, individual entities, namely, users,roles, and permissions are associ-

ated with trust values. The trust values associated with theuser describe how much the user is

trusted to perform each specific role. The trust interval associated with a role specify the range

of trust values with respect to that role which user has to acquire in order to activate the role.

The trust interval associated with a permission specify therange of trust values with respect

to the current role of the user which he has to acquire in orderto invoke the permission. The

standard model requires that if a useru can invoke a permissionp, then the trust value ofu is

in the trust interval associated with all other nodes in the path connectingu to p. These ideas

are formalized below.

The trust values for the user with respect to each role are denoted with a functionT :

((Uh×Rh)∪ (Ud×Rd))→ t ∈ D. The trust interval for role and permission are denoted with

a functionL : (R∪P)→ [l ,1]⊆D.

• for u∈U, r ∈R, T (u, r) denotes the trust value ofu with respect tor;

• for r ∈ R, L(r) denotes the trust interval in whichr is active;

• for p∈ P, L(p) denotes the trust interval in whichp is active.

Given a pathv1, . . . ,vn in the labeled graphG = (V,E,T ,L), whereE = UA∪PA∪RHa∪

RHu, we writeL̂(v2, . . . ,vn) = L̂(v2,vn)⊆ D to denote
n

\

i=2

L(vi). In other words,L̂(v2,vn) is

the trust interval in which every vertexvi ∈R∪P is enabled.

Authorization in the Standard Model:

168



• A userv1 ∈U may activate rolevn ∈R if and only if there exists an act-pathv1,v2, . . . ,vn

andT (v1,v2) ∈ L(v2);

• A role v1 ∈ R is authorized for permissionvn ∈ P if and only if there exists an u-path

v1,v2, . . . ,vn andL(v1)⊆ L̂(v1,vn);

• A userv1 ∈U is authorized for permissionvn ∈ P if and only if there exists an acs-path

v1,v2, . . . ,vi , . . . ,vn such thatvi ∈ R for somei, v1, . . . ,vi is an act-path,vi , . . . ,vn is a

u-path,v can activatevi , andvi is authorized forv′.

8.2.2 The Strong Model

The strong model is used when not only the individual entities (users, roles, permissions)

involved must satisfy the trust constraints, but the different relationships must also satisfy such

constraints. For instance, consider the relation(r, p) ∈ PA. In this case, we not only have to

take into account the trust values at which the roler can be activated and the trust values at

which the permissionp can be invoked, but we also must consider the trust values when r can

invoke p. This requires specifying another function in the strong model as described below.

The trust constraints in thestrong modelare denoted with a functionµ : E→ [l ,1] ⊆ D.

For e= (v,v′) ∈ E, µ(v,v′) denotes the trust interval in which the association betweenv andv′

is active.

• if (u, r) ∈UA, thenµ(u, r) denotes the trust interval in whichu is assigned tor;

• if (r ′, r) ∈ RHa, thenµ(r ′, r) denotes the trust interval in whichr ′ is senior tor in the

activation hierarchy;

• if (r ′, r) ∈ RHu, thenµ(r ′, r) denotes the trust interval in whichr ′ is senior tor in the

permission usage hierarchy;

• if (r, p) ∈ PA, thenµ(r, p) denotes the trust interval in whichp is assigned tor.
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Given a pathv1, . . . ,vn in the labeled graphG = (V,E,T ,L ,µ), whereV = U ∪R∪P and

E = UA∪PA∪RHa∪RHu, we write µ̂(v1, . . . ,vn) = µ̂(v1,vn) ⊆ D to denote
n−1
\

i=1

µ(vi,vi+1).

Hence,µ̂(v1,vn) is the trust interval in which every edge in the path is enabled.

Authorization in the Strong Model:

• a userv1 ∈U may activate rolevn ∈R if and only if there exists an act-pathv1,v2, . . . ,vn

and∀i = 2, . . . ,n•T (v1,vi) ∈ (L(v1)∩L(vi)∩ µ̂(v1,vi));

• a rolev1 ∈ R is authorized for permissionvn ∈ P if and only if there exists an u-path

v1,v2, . . . ,vn andL(v1)⊆ (L̂(v1,vn)∩ µ̂(v1,vn));

• A userv1 ∈U is authorized for permissionvn ∈ P if and only if there exists an acs-path

v1,v2, . . . ,vi , . . . ,vn such thatvi ∈ R for somei, v1, . . . ,vi is an act-path,vi , . . . ,vn is a

u-path,v1 can activatevi , andvi is authorized forvn.

8.2.3 The Weak Model

The weak model is derived from the standard model. Recall that the standard model re-

quires that each entity (users, roles, and permissions) in the authorization path be associated

with a trust value and in order to be authorized to access other entities, the requester’s trust

value must be included in the trust interval of the entity he wants to access, together with other

entities along the path. In the weak model, the entityv is authorized for another entityv′ if the

trust value ofv is included in the trust interval ofv′. There is no requirement that the intermedi-

ate nodes on the path satisfy the trust constraints. Like thestandard model, the model is based

on the labeled graphG = (V,E,T ,L), whereV = U ∪R∪P andE = UA∪PA∪RHa∪RHu.

Authorization in the Weak Model:

• A userv1 ∈U may activate rolevn ∈R if and only if there exists an act-pathv1,v2, . . . ,vn

andT (v1,vn) ∈ L(vn);

• A role v1 ∈ R is authorized for permissionvn ∈ P if and only if there exists a u-path

v1,v2, . . . ,vn andL(v1)⊆ L(vn);
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• A userv1 ∈U is authorized for permissionvn ∈ P if and only if there exists an acs-path

v1,v2, . . . ,vi , . . . ,vn such thatvi ∈ R for somei, v1, . . . ,vi is an act-path,vi , . . . ,vn is a

u-path,v1 can activatevi , andvi is authorized forvn.

8.3 Separation of Duties Constraints

Separation of duties (SoD) prevents the occurrence of fraudarising out of conflicts of in-

terests in organizations [80]. Separation of duties ensurethat conflicting roles are not assigned

to the same user or that conflicting permissions are not assigned to the same role.

Separation of Duty (SoD) comes in two varieties. First one iswith respect to the mutual

exclusion relations between two roles. This is to guaranteethat no user can be assigned to two

conflicting roles. The second one is with respect to the mutual exclusion relations between

two permissions. This is to guarantee that no role can be assigned two conflicting permissions.

We denote these two types of SoD by usingSDR andSDP edges, respectively. Since SoD is a

symmetric relationship, theSDR andSDP edges are bi-directional.

We next define the separation of duties for the standard and weak models. The SoDs defined

for the standard and weak models are expressed in terms of thegraphG = (V,E,T ,L), where

E = UA∪PA∪RHa∪RHu∪SDR∪SDP andV = U ∪R∪P. For these cases, the SoD is similar

to the SoD constraints in traditional RBAC. These are given below. SoD Constraints for the

Weak and Standard Model

• User-Role Assignmentif (r, r ′) ∈ SDR then there are no two edges(u, r) and(u, r ′) such

that{(u, r),(u, r ′)} ⊂UA

• Permission-Role Assignmentif (p, p′) ∈ SDP then there are no two u-paths of the form

r,v1,v2, . . . , p andr,v′1,v
′
2, . . . , p′

In the organization, sometimes we want the user who gain the very high trust to be able to

bypass the SoDs. To do this, we defined the trust constraint for the separation of duties with a

functionδ : E→ [l ,1] ⊆ D. For e= (v,v′) ∈ SDR∪SDP, δ(v,v′) denotes the trust interval in

which the SoD constraint can be ignored. In particular,

171



• if (r, r ′) ∈ SDR, δ(r, r ′) denotes the trust interval in which the role-role separation of

duties constraint can be ignored;

• if (p, p′) ∈ SDP, δ(p, p′) denotes the trust interval in which the permission-permission

separation of duties constraint can be ignored.

The strong model is defined over the labeled graphG = (V,E,T ,L ,µ,δ), whereE = UA∪

PA∪RHa∪RHu∪SDR∪SDP andV = U ∪R∪P. The strong model allows specification of

weaker forms of SoD constraints than those supported by the traditional RBAC. Specifically,

it allows one to specify the trust interval in which the SoD constraints can be ignored.SoD

Constraints for the Strong Model

• User-Role Assignment: if (r, r ′) ∈ SDR then there are no two edges(u, r) and (u, r ′),

corresponding to some useru, whereT (u, r) /∈ (L(u)∩ L(r)∩ µ(u, r)∩ δ(r, r ′)) and

T (u, r ′) /∈ (L(u)∩L(r ′)∩µ(u, r ′)∩δ(r, r ′));

• Permission-Role Assignment:if (p, p′)∈SDP then there are no two u-pathsr,v1,v2, . . . , p

and r,v′1,v
′
2, . . . , p′ whereL(r) * (L̂(r, p) ∩ µ̂(r, p)∩ δ(p, p′)) andL(r) * (L̂(r, p′) ∩

µ̂(r, p′)∩δ(p, p′)).

8.4 Example Scenario

Consider a typical pervasive computing application–hazardous chemical monitoring and

control in a chemical plant. The general environment withinthe plant is continuously moni-

tored by various chemical sensors for chemical leaks. Thesesensors are linked with various

controllers that can regulate the flow of chemicals to various machineries. Engineers monitor

variables such as temperature, pH values, liquid levels, feed flow rates, and speed of impellers

through other sensors. Back end systems analyze the sensed information to actuate different

equipment. Operators in control room oversee various aspects of the plant operating comput-

ers. They can override automatic control or tune different operational parameters.

In this section we will demonstrate how our model can supportthe requirements described

above. We describe a set of entities in the process control application for the chemical plant
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with their corresponding trust values in Table 8.1, the trust constraints for each relationship

between entities are shown in Table 8.2, and the configuration of the access control is shown

in Figure 8.2.

NAME DESCRIPTION TRUST VALUES (T )
u1 Alice T (u1, r1) = 0.95
u2 Bob T (u2, r2) = 0.7
u3 Charlie T (u3, r3) = 0.8
u4 Central Control Server T (u4, r4) = 0.9
u5 Sensor Server T (u5, r5) = 0.8
u6 Actuator Server T (u6, r6) = 0.95
NAME DESCRIPTION TRUST CONSTRAINTS (L )
r1 Senior Engineer L(r1) = [0.9,1]
r2 Operator L(r2) = [0.7,1]
r3 Junior Engineer L(r3) = [0.8,1]
r4 Sensors and Actuators ManagerL(r4) = [0.9,1]
r5 Sensor Interface L(r1) = [0.8,1]
r6 Actuator Interface L(r1) = [0.85,1]
p1 Analyze Sensors Data L(p1) = [0.9,1]
p2 Control Actuator L(p2) = [0.8,1]
p3 Observe Sensors Data L(p3) = [0.7,1]
p4 Update Event Log L(p4) = [0.9,1]
p5 Analyze Sensors Alarm L(p5) = [0.6,1]
p6 Retrieve Sensors Data L(p6) = [0.7,1]
p7 Send Control Signal to ActuatorL(p7) = [0.9,1]

Table 8.1: Entities and Trust Values

First, let us assume that we use the standard model to secure the process control. Here,

Alice can activate the senior engineer role since her trust value with respect to the senior engi-

neer role (0.95) satisfies the trust constraints of the senior role ([0.9,1]). She also inherits the

permission assigned to junior engineer role through the permission usage hierarchy, and since

her trust value satisfies the trust constraints of permission assigned to junior engineer role, she

is allowed to invoke such permission. Moreover, she is also trusted to activate the operator role

and use the permission assigned to that role. Similarly, thecentral control server is trusted to

perform the sensors and actuators manager role. However, the server cannot invoke both per-

mission toRetrieve Sensors DataandSend Control Signal to Actuatorsbecause it is prohibited

by the SoD. Charlie is assigned to the role of junior role and his trust value allow him to per-
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NAME DESCRIPTION TRUST CONSTRAINTS

(u1, r1) User-Role Assignment µ(u1, r1) = [0.95,1]
(u2, r2) User-Role Assignment µ(u2, r2) = [0.8,1]
(u3, r3) User-Role Assignment µ(u3, r3) = [0.8,1]
(u4, r4) User-Role Assignment µ(u4, r4) = [0.9,1]
(u5, r5) User-Role Assignment µ(u5, r5) = [0.8,1]
(u6, r6) User-Role Assignment µ(u6, r6) = [0.9,1]
(r1, r2) Activation Hierarchy µ(r1, r2) = [0.98,1]
(r1, r3) Permission Usage Hierarchyµ(r1, r3) = [0.9,1]
(r4, r5) Permission Usage Hierarchyµ(r4, r5) = [0.9,1]
(r4, r6) Permission Usage Hierarchyµ(r4, r6) = [0.9,1]
(r1, p1) Permission-Role Assignmentµ(r1, p1) = [0.9,1]
(r2, p2) Permission-Role Assignmentµ(r2, p2) = [0.8,1]
(r3, p1) Permission-Role Assignmentµ(r3, p1) = [0.95,1]
(r3, p3) Permission-Role Assignmentµ(r3, p3) = [0.8,1]
(r4, p4) Permission-Role Assignmentµ(r4, p4) = [0.9,1]
(r4, p5) Permission-Role Assignmentµ(r4, p5) = [0.9,1]
(r5, p6) Permission-Role Assignmentµ(r5, p6) = [0.8,1]
(r6, p7) Permission-Role Assignmentµ(r6, p7) = [0.9,1]
(p6, p7) Separation of Duties δ(p6, p7) = [0.9,1]
(p7, p6) Separation of Duties δ(p7, p6) = [0.9,1]

Table 8.2: Relationships and Trust Constraints

form this role. However, he cannot analyze the data because this permission requires a higher

trust level ([0.9,1]) than his own (0.8). Charlie can later be authorized for this permission in

the future after his trust level is at least 0.9.

Later, there is an emergency situation at the chemical plantwhere the higher trustworthiness

is required for accessibility. Under this circumstance, the system administrator decide to switch

to the strong model. Now, not only we have to satisfy the trustconstraints assigned to entities,

but the related trust constraints assigned to the relationships in Table 8.2 must be satisfied as

well. As a result, now Alice can still perform the role of senior engineer and use the junior

engineer’s permission. However, she cannot activate the operator role anymore because her

trust level is not satisfied the trust constraints of the rolehierarchy. For Bob, now he cannot

perform the operator role which he is allowed to do in the standard model. Next, let us assume

that before this crisis, Charlie has performed a very good job in his junior engineer role, and

his trust value with respect to the role is increased to 0.92.Using the standard model, now he
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Figure 8.2: Access Control Model Configuration for Example

should be able to analyze the data. However, according to thenew policy, he is not satisfies for

the permission role assignment’s trust constraint ([0.95,1]) and hence still cannot perform the

data analysis. Next, let us investigate the impact of the model to the SoD constraints. Using

the strong model, now the central control server has enough trustworthiness to bypass the SoD

constraint and invoke the permission toRetrieve Sensors Dataand Send Control Signal to

Actuators. The weak model can be implemented using the similar idea hence will be left out

of discussion.

8.5 Chapter Summary

In this chapter, we proposed a trust based access control model based on RBAC. First, we

propose the methodology to evaluate the trust worthiness ofthe user entity in RBAC. We then

identified the entities and relations in RBAC and investigated their dependence on trust. This

dependency necessitates changes in the invariants and the operations of RBAC. The configura-

tion of the model is formalized using graph-theoretic notation.

The usage of trust presented in this chapter is just one way ofusing the trust. We can
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apply the trustworthiness to the operation in the access control such as delegation. Delegation

operation is crucial in the pervasive computing environment, it allows the user to transfer his

privileges to another user in the emergency situation. Although a lot of research appears in

extending RBAC to support delegation, not much appears on providing a formal basis for

choosing delegatees. However, automatically choosing delegatee is important for pervasive

computing application. In the organization, choosing delegatee who is not suitable or not

trustworthy for the task could put that organization business into jeopardy. In Chapter 9, we

provide an approach that allows one to assess the trustworthiness of potential delegatees in the

context of the task that is to be delegated. Our approach alsoensure that the choice of the

delegatee does not cause any security breaches.
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Chapter 9

Trustworthy Delegation in Role-Based
Access Control Model

The usage of trust to grant or deny the accessibility presented in Chapter 8 is just one way

of using the trust. We can apply the trustworthiness to the operation in the access control such

as delegation. The need to delegate, which allows the temporary grant or transfer of access

rights, arise in many applications. Although a lot of research appears in extending Role-Based

Access Control (RBAC) to support delegation, not much appears on providing a formal basis

for choosing delegatees. In this chapter, we provide an approach that allows one to assess the

trustworthiness of potential delegatees in the context of the task that is to be delegated. It is

also important to ensure that the choice of the delegatee does not cause any security policy

violation. Towards this end, we show how to formally analyzethe application using Alloy

analyzer to get assurance that our choice of delegatee does not cause a security breach.

9.1 Trust Modeling and Computation

Delegatorrefers to the role or user whose privileges are being transferred or granted to

another role or user and the recipient of the privileges is termeddelegatee. We show how the

delegator can compute the trustworthiness of various entities in the context of the task that he

is about to delegate.

Trust is a relationship between a truster and trustee with respect to a given context. The

context in the case of delegation is the task for which delegation is needed. Trust relationship
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for a given context depends on three factors:properties, experiencesand recommendations.

Properties are verifiable characteristics of the trustee. For instance, it may be the role and cre-

dentials possessed by the trustee. Experiences are the pastinteractions that the truster had with

the trustee. Recommendations are provided by third-parties whom the truster trusts about the

capabilities of the trustee. In the following, we describe how the trust relationship is quantified.

9.1.1 Quantifying Properties

Properties depend on the attributes of the entity and also the role associated with it.

9.1.1.1 Measuring Necessary AttributesA

Every task in an organization requires some attributes of the user. For example, the task

of performing surgery requires the user to be a certified surgeon. A task may require one or

more attributes. The information about user attributes is contained in the credentials belonging

to the user. Credentials are unforgeable and verifiable. Measuring necessary attributes requires

evaluating what percentage of the necessary attributes arepossessed by the user.

Let the set of attributes needed for taskTi be denoted byTAi whereTAi = {ai1,ai2, . . . ,ain}.

Let wai1, wai2, . . ., wain be the weights of attributesai1, ai2, . . ., ain respectively. The weights

of the attributes indicate their relative importance with respect to taskTi and
n

∑
r=1

wair = 1. Each

user profile contains the credentials possessed by the user.Let the set of all attributes possessed

by the userU j be given byUA j , whereUA j = {a j1,a j2, . . . ,a jm}. Let p = |TAi ∩UA j |. The

attribute value for userj with respect to taskTi , denoted byAi j , is calculated as follows:Ai j =
p

∑
k=1

wak wherewak (1≤ k≤ p) is the weight associated with attributeak andak ∈ TAi ∩UA j .

9.1.1.2 Measuring Role AttributeR

The roles in the organization are arranged in the form of a hierarchy. The hierarchy can

be represented as a labeled directed acyclic graph where thenodes represent the roles and the

edges denote the hierarchical relationship. Note that, edges are drawn only for direct senior

and junior relationship; transitive edges are not explicitly added. The edges in the hierarchy
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are labeled with a number in the range (0,1] which indicates the closeness relationship between

the roles. A number close to 0 indicates that the two roles arevery distant, whereas a number

close to 1 denotes that the roles are very close. We assume that the assignment of the numbers

is done by the system administrator who has knowledge about the relationships between roles.

If there is a path between rolei and rolej, the closeness relationship, denoted bydist(r i, r j), is

calculated by taking the product of all the edges constituting this path. Note that, if there are

multiple paths connecting rolei and role j, both the paths should give the same value. Other-

wise, the role graph is said to be inconsistent. The formal definition of the role graph appears

below.

Definition 50 (Weighted Role Hierarchy Graph)

Weighted role hierarchy graph, denoted byWRH= (V,A), is a weighted directed acyclic graph

whereV is a set of nodes corresponding to the roles, andA is a set of arcs corresponding to

the hierarchical relationship;(vi ,v j) ∈ A indicates that rolev j is directly senior to the rolevi .

The weight of the edge(vi ,v j), denoted byw(vi ,v j), is a number in the range (0,1] that gives a

measure of the closeness of the two roles.

Each taskTi is associated with a set of rolesTRi who are authorized to execute this task.

The roles associated with a task include roles who have the direct permission to execute those

tasks, as well as those authorized by virtue of role hierarchy. Each userU j also has a set of

rolesURj assigned to him. We choose the role belonging to the user thatis closest to some

role associated with the task. The distance between these two roles gives the role attributeRi j

of userU j with respect to taskTi .

9.1.1.3 Computing the Properties Value

Some organizations may give greater importance to the role factor, whereas others may

consider attribute factor to be more useful. Letwa andwr be the weights assigned to attributes

and roles respectively, wherewa,wr ∈ [0,1] andwa + wr = 1. The exact values ofwa andwr

will be decided by the organization’s policies. We use theseweights to compute the property
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valuePi j of userU j with respect to taskTi : Pi j = wa∗Ai j +wr ∗Ri j

9.1.2 Quantifying Experience

Experience constitutes an important factor in delegation.A delegator is more likely going

to choose a candidate as a delegatee if the delegatee has prior experience of doing the task.

Two factors contribute towards experience. One factor is when the task was performed, and the

second factor is how well the task was performed. Note that, information about these factors is

stored in the users’ profile,UP. Events that have occurred in the recent past have more influ-

ence than that occurred in the distant past. To accommodate this, we give the most recent slot

has the highest weight and the most distant slot has the lowest one. For each time slottk, we get

Algorithm 2 Measuring Experience
Input : No. of slotsn, User ProfileUPj

Output : Pi j

Procedure:
per f ormance= 0
for all k : 1≤ k≤ n do

weight slotk = k
end for
total weight= n(n+1)/2
for all k : 1≤ k≤ n do

wk = (2∗k)/(n(n+1))
end for
for all k : 1≤ k≤ n do

experience= experience+wk ∗ pk

end for
RETURNexperience

the value for performancepi . Recall that, performance on the task measures how well the task

has been performed. The performance on the task can be gradedon a scale of [0,1]. A value

closer to 0 indicates poor performance, while that closer to1 indicates excellent performance.

Not performing the task in a slot, gives a performance value equal to 0. Algorithm 2 shows

how to assign weights to the various time slots and evaluate the experience. Sometimes the past

experience may not exactly match the the task, but is relatedto it. We show how to extrapolate

the trust value in such cases in Section 9.3.
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9.1.3 Quantifying Recommendation

A truster may obtain recommendation from one or more recommenders about the trustee

with respect to its ability to perform the given task. In order to quantify the recommendation

obtained from each recommender, we need to evaluate two factors. First, we need to obtain

the trust value that the truster has with respect to the recommender providing recommendation

about the trustee with respect to the given task. If the recommender is sufficiently trusted, then

we need to get from him the recommendation value for the trustee. Algorithm 3 shows how to

compute the recommendation component.

Algorithm 3 Measuring Recommendation
Input : Sequence of recommendations for userU j =< r1 j , r2 j , . . . , rm j >, sequence of trust
values for recommenders =< t1, t2, . . . , tm >
Output : Ri j

Procedure:
reco= 0;total = 0
for all k : 1≤ k≤m do

reco= reco+ tk∗ rk j

end for
for all k : 1≤ k≤m do

total = total+ tk
end for
reco= reco/total
RETURNreco

9.1.4 Computing Trustworthiness

Trust, with respect to a given taskTi for userU j , denoted byTi j , depends on three factors,

namely, propertiesPi j , experiencesEi j , and recommendations,Ri j . The exact weight assigned

to each factor will be decided by the organization. Letwp, we, andwr be the weights assigned

to the three factors respectively wherewp,we,wr ∈ [0,1] andwp + we+ wr = 1. Ti j is given

by, Ti j = wp ∗Pi j +we∗Ei j +wr ∗Ri j . Note thatTi j will evaluate to some value in the range

[0,1]. The delegator can choose a threshold value for trustH . If H ≤ Ti j , then userU j can be

a potential delegatee.
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9.2 Using Trust Values in Delegation Chains

The privilege that a user receives can be further delegated resulting in what is known as a

delegation chain. In some cases, we may want to limit the level of delegation. This level of

delegation can be decided by the trustworthiness of the users involved in the delegation chain.

Thus, delegation chain is dependent on the concept of trust chains. Trust chains are formalized

using the concept of trust graphs defined below.

Definition 51 (Trust Graph)

Let TG=< N,E > be the directed acyclic graph that represents trust relationship for a given

context. The set of nodesN correspond to the entities in the system, and the set of edges

E represent the trust relationship between the nodes. The edge (ni,n j) represents the trust

relationship that nodeni has for noden j with respect to the given task. The weight of the edge,

denoted byw(ni ,n j), where 0< w(ni ,n j)≤ 1, represents the trust value that nodeni has with

respect to noden j . Note that, the absence of a trust relationship between nodes nr andns is

indicated by the missing edge(nr ,ns).
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Figure 9.1: Example of a Trust Graph

Given a trust graph, we define two types of operators to compute transitive trust. One is the

sequential operator, and the other is the parallel operator. Sequential and parallel operators and

their desirable properties have been proposed by Agudo et al. [2].

Definition 52 (Sequential Operator)

Sequential operator, denoted by
N

, is a binary operator that takes as input two trust values and

returns a trust value that is the product of the two input values. Formally,
N

: [0,1]× [0,1]→

182



[0,1].

The sequential operator is used for computing the transitive trust value in a single path in

the trust graph. Algorithm 4 gives the description of how transitive trust is computed. For

instance, to compute the transitive trust thatD has aboutF with respect to the given context is

the product of 0.2 and 0.6 which equals 0.12.

Algorithm 4 Computing Transitive Trust in a Single Path
Input : Trust Path(n1,n2, . . . ,nk)
Output : Transitive trust between nodesn1 andnk

Procedure:
trans trust = 0
for all i : 1≤ i ≤ (k−2) do

trans trust = trans trust∗w(ni ,ni+1)
N

w(ni+1,ni+2)
end for
RETURNtrans trust

The sequential operator is not adequate for calculating transitive trust when multiple paths

are involved. For example, in Figure 9.1, computing transitive trust thatA has aboutE using

the path(A,B,D,E) gives a different value than that obtained using the path(A,C,D,E). The

value is 0.07 for the path(A,B,D,E) and it is 0.036 for the path(A,C,D,E). Such differences

are reconciled using the parallel operator. The parallel operator becomes useful when there are

multiple paths from one node to another.

Definition 53 (Parallel Operator)

Parallel operator, denoted by
L

, is a binary operator that takes as input two trust values and

returns a trust value that is the minimum of the two input values. Formally,
L

: [0,1]× [0,1]→

[0,1].

Algorithm 5 shows how to compute transitive trust when the source and destination are con-

nected by parallel paths. The transitive trust thatA has forD, computed using this algorithm,

equals 0.18.

The delegator can specify an acceptable level of trust to support delegation chains. Delega-

tion is disallowed if the transitive trust value computed from the chain of delegation is below

this minimum threshold.
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Algorithm 5 Computing Transitive Trust in the Presence of Multiple Paths
Input : Trust Paths (n1,n21, . . . ,n(k−1)1

,nk), (n1,n22, . . . ,n(k−1)2
,nk), . . . ,

(n1,n2 j , . . . ,n(k−1) j
,nk)

Output : Transitive trust between nodesn1 andnk

Procedure:
min = 1;
for all l : 1≤ l ≤ j do

trans trustl = 0
end for
for all l : 1≤ l ≤ j do

for all i : 1≤ i ≤ (k−2) do
trans trustl = trans trustl +w(ni ,ni+1)

N

w(ni+1,ni+2)
end for

end for
for all l : 1≤ l ≤ j do

if trans trustl < min then
min= trans trustl

end if
end for
RETURNmin

9.3 Extrapolating Trust Values

Sometimes the delegator may not have enough information to assess the trustworthiness

of a user with respect to some given task. Although the user isnot associated with a given

task, it is possible that he has done some related tasks. To handle such scenarios, we define the

different relationships that can exist among the tasks in anorganization.

9.3.0.1 Specialization Relation

Different tasks may be related by the generalization/specialization relationship which is

anti-symmetric and transitive. We use the notationTi ⊂ T j to indicate that taskTi (T j ) is

a generalization (specialization) of taskT j (Ti). For instance,Surgery Treatment⊂ Heart

Bypass Surgery TreatmentandHeart Treatment⊂ Heart Bypass Surgery Treatment. However,

the degree of specialization is different in the two cases. Thedegree of specializationcaptures

this difference. The degree of specialization is denoted asa fraction whose value is determined

using domain knowledge.
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9.3.0.2 Composition Relation

Sometimes tasks can be linked together using the composition relation. A task can either

beelementaryor composite. An elementary task is one which cannot be subdivided into other

tasks, whereas a composite task is one that is composed from other tasks. The individual

tasks that form a composite one are referred to as thecomponenttasks. A component task

can either be composite or elementary. We use the notationTi ≪ T j to indicate that the task

Ti is a component of taskT j . For instance, we may have the component tasksoperationand

medicationthat are part of the composite taskCatheter-assisted Procedures. This is denoted

asoperation≪ Catheter-assisted Procedures.

Sometimes a composite taskTi may be composed from the individual tasksT j , Tk andTm.

All these tasks may not contribute equally to formTi . Thedegree of compositioncaptures this

idea. A degree of composition is associated with each composition relation. Since two tasks

related by composition will not be exactly identical, the degree of composition is denoted as a

fraction. The sum of all these fractions equals one ifTi is composed ofT j , Tk, andTm only. If

Ti is composed ofT j , Tk, andTm and also other component contexts, then the sum of fractions

associated withT j , Tk, andTm must be equal to or less than one. The exact value of the fraction

representing the degree of composition will be determined by domain knowledge.

The generalization/specialization and composition relations are formally specified using

the notion oftask graphsdefined below.

Definition 54 (Task Graph)

A task graphT G = 〈N ,Ec∪Es〉 is a weighted directed acyclic graph satisfying the following

conditions.

• N is a set of nodes where each nodeni is associated with a taskTi .

• The set of edges in the graph can be partitioned into two setsEc andEs. For each

edge(ni ,nj) ∈ Ec, the taskTi corresponding to nodeni is a component of the taskT j

corresponding to noden j . The weight of the edge(ni,n j), denoted byw(ni ,n j), indicates

the percentage of component task that makes up the compositeone. For each edge(ni ,nj )
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∈ Es, the taskTi corresponding to nodeni is a specialization of taskT j corresponding

to noden j . The weight of the edge(ni,n j), denoted byw(ni,n j), indicates the degree of

specialization.

9.3.1 Computing the Degree of Specialization and Composition

Consider two tasksTi andT j whereTi ⊂ T j , that is,T j is a specialization ofTi . The degree

of specialization is computed as follows. Letni , n j be the nodes corresponding to tasksTi

andT j in the weighted graph. Let the path fromni to n j consisting of specialization edges

be denoted as(ni ,ni+1,ni+2, . . . ,n j−1,n j). The degree of specialization =Π j−1
p=i w(np,np+1).

This corresponds to our notion that the similarity decreases as the length of the path from

the generalized node to the specialized node increases. Note that, in real world there may be

multiple paths fromTi to T j . In such cases, it is important that the degree of specialization

yield the same values when any of these paths are used for computation.

Consider two tasksTi andT j such thatT j is a component ofTi . Degree of composition

captures what portion ofTi is made up ofT j . The degree of composition is computed as

follows. Let ni , n j be the nodes corresponding to contextsTi andT j in the task graph. Let

there bem paths consisting of composition edges fromni to n j . Let theqth path (1≤ q≤

m) from ni to n j be denoted as(ni ,niq+1,niq+2, . . . ,n jq−1,n j). The degree of composition=
m

∑
q=1

(w(ni,niq+1)×w(n jq−1,n j)×Π jq−2
p=iq+1w(np,np+1)).

9.4 Trust Computation for Example Application

Consider a small healthcare organization that has six roles, namely,senior doctor, junior

doctor, cardiologist, surgeon, physician’s assistantand patient. senior doctoris senior to

junior doctor, andjunior doctor is senior tocardiologistandphysician’s assistant. Allen and

Miller are assigned tosenior doctor, Bell and Nelson are assigned tojunior doctor, Cox is

assigned tocardiologist, and Davis is assigned tophysician’s assistant. Allen is also assigned

to surgeonand Evans is assigned topatient. Allen is the assigned surgeon for performing

Coronary Artery Disease Angioplasty (CAD type A) surgery onpatient Evans. Since Allen
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has to leave town for family emergency, he must delegate the surgeon role to another doctor.

He cannot delegate the surgeon role to his two trusted colleagues, Miller and Nelson, because

they will be on vacation. The hospital policy requires that aperson assigned to a doctor role

or senior can be delegated the role of surgeon. This rules outDavis. Thus, he computes trust

values for the only two viable candidates, Bell and Cox.

Quantifying Properties: To perform the CAD type A surgery, the hospital requires the follow-

ing attributes from the candidates. First, the candidate should be a doctor (a1 = doctor) and he

should be able to perform a CAD type A surgery (a2 = SurgeryA). So,TA= {doctor,SurgeryA}.

The hospital policy ranks the ability to perform a CAD type A surgery higher than the doctor

position, so the policy administrator assignedwSurgeryA = 0.7 andwdoctor = 0.3. The hospital

administrator assigned the value of closeness equal to 0.6 between rolesSenior Doctorand

Junior Doctor(dist(Senior Doctor, Junior Doctor)=0.6), and that between rolesJunior Doctor

andCardiologistequals 0.3 (dist(Junior Doctor, Cardiologist)=0.3). Hence, by using the com-

putation method explained in Section 9.3, we get the value ofcloseness between roleSenior

Doctor andCardiologistequals to 0.6∗0.3 = 0.18 (dist(Senior Doctor, Cardiologist)=0.18).

The hospital policy ranks the importance of necessary attributes and role attributes equally,

hencewa = wr = 0.5.

Now, we quantify the properties of both candidates. Bell is adoctor who can perform the CAD

type A surgery (UABell = {doctor,SurgeryA}), and Cox is a cardiologist who can perform a by-

pass surgery (UACox= {cardiologist,SurgeryB}). So,ABell = wSurgeryA +wdoctor = 0.7+0.3=

1 andACox = wdoctor = 0.3. Since Bell is a junior doctor,RBell = dist (Senior Doctor, Junior

Doctor)=0.6. Since Cox is a cardiologist,RCox = dist (Senior Doctor, Cardiologist)=0.18.

Using this information, we calculate the properties value of the candidates:

PBell = wa∗ABell +wr ∗RBell = 0.5∗1+0.5∗0.6= 0.8, and

PCox = wa∗ACox+wr ∗RCox = 0.5∗0.3+0.5∗0.18= 0.24.

Quantifying Experience: Here the experience is quantified based on the number of heart

operations the candidates have done in the past five years andthe unit of the slot of the time

period is equal to one year. The weight for each time slot where slot1 represents the time
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period closest to the present time is defined by policy as follow: wslot1 = 1,wslot2 = 0.8,wslot3 =

0.6,wslot4 = 0.4, andwslot5 = 0.2. Bell has performed surgery once 300 days ago (slot1) with

performance 0.7 (pBellslot1
= 0.7) and Cox has performed surgery once 700 days ago (slot2 )

with performance 0.8 (pCoxslot2
= 0.8). Thus, the experience value of both candidates can be

calculated as follow:

EBell =
5

∑
i=1

wsloti ∗ pBellsloti
= 1∗0.7+0+0+0+0= 0.7, and

ECox =
5

∑
i=1

wsloti ∗ pCoxsloti
= 0+0.8∗0.8+0+0+0= 0.64.

Quantifying Recommendation: Here, we have two recommenders–Miller and Nelson. Ac-

cording to hospital policy, the recommendation coming fromsenior doctor is more trustworthy

than the one coming from junior doctor. So, the administrator set the trust value that hospital

has about Miller (tMiller ) to 0.8 and the trust value that hospital has about Nelson (tNelson) to 0.2.

Miller recommendation for Bell (rMillerBell ) and Cox (rMillerCox) are 0.4 and 0.6, respectively.

Nelson recommendation for Bell (rNelsonBell) and Cox (rNelsonCox) are 0.9 and 0.2, respectively.

The computation results yield the recommendation for Bell and Cox as follow:

RBell =
tMiller ∗ rMillerBell + tNelson∗ rNelsonBell

tMiller + tNelson
=

0.8∗0.4+0.2∗0.9
0.8+0.2

= 0.5, and

RCox =
tMiller ∗ rMillerCox+ tNelson∗ rNelsonCox

tMiller + tNelson
=

0.8∗0.6+0.2∗0.2
0.8+0.2

= 0.52.

Computing Trustworthiness: Allen prefers the delegatee with more experience. So, he set

the weights for properties (wp), experience (we), and recommendation (wr ) to 0.2, 0.6, and 0.2,

respectively. The trustworthiness of Bell and Cox can be computed as follow:

TBell = wp∗PBell +we∗EBell +wr ∗RBell = 0.2∗0.8+0.6∗0.7+0.2∗0.5= 0.68 , and

TCox = wp∗PCox+we∗ECox+wr ∗RCox = 0.2∗0.24+0.6∗0.64+0.2∗0.52= 0.54

Bell is selected to be the delegatee after comparing the trustworthiness values between both

candidates.

9.5 Model Analysis

Once we have determined the most trustworthy candidate, we need to formally ensure

that the choice of this delegatee does not cause a security breach. We do the formal analysis
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using the Alloy Analyzer. An Alloy model consists ofsignaturedeclarations,fields, factsand

predicates. Each signature consists of a set ofatomswhich are the basic entities in Alloy.

Atoms areindivisible (they cannot be divided into smaller parts),immutable(their properties

do not change) anduninterpreted(they do not have any inherent properties). Each field belongs

to a signature and represents a relation between two or more signatures. A relation denotes a

set of tuples of atoms. Facts are statements that define constraints on the elements of the

model. Predicates are parameterized constraints that can be invoked from within facts or other

predicates.

The basic types in the access control model, such as,User, andRoleare represented as

signatures. For instance, the declarations shown below define a set namedUser, and a set

namedRolethat represents the set of all users, and roles in the system.Note that we use the

abstractsignature to represent these sets, and the different of users, and roles are modeled

as the subsignatures of each signature. The analyzer will then recognize that users, and roles

consist of only these different types, and nothing else.

abstract sig User{}

one sig Allen, Bell, Cox, Davis, Evans,

Miller, Nelson extends User{}

abstract sig Role{}

one sig SeniorDoctor, JuniorDoctor, Assistant,

Cardiologist, Surgeon, Patient extends Role{}

The different relationships between the RBAC components are also expressed as signa-

tures. SignatureUserRoleAssignwhich represents the roles assigned to user has a field called

URAsmemberthat maps to a cartesian product ofUseran dRole. SignatureUserRoleAcquire

which represents the roles user can acquire through the assignment and role hierarchy has a

field calledURAcqmemberthat maps to a cartesian product ofUser andRole. We use the

signatureRoleHierarchyto represent role hierarchy relationship.

one sig UserRoleAssign{URAsmember: User -> Role}
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one sig UserRoleAcquire{URAcqmember: User -> Role}

one sig RoleHierarchy{RHmember : Role -> Role}

The various invariants in the RBAC model are represented as facts in Alloy. For instance,

the factURAcqstates that user can acquire all roles assign ed to him together with all of his

junior roles. This is specified in Alloy as shown below. Otherinvariants are modeled in a

similar manner.

fact URAcq{

UserRoleAcquire.URAcqmember =

UserRoleAssign.URAsmember +

(UserRoleAssign.URAsmember).ˆ(RoleHierarchy.RHmembe r)}

The policy constraints are modeled as predicates. First, consider the cardinality constraint.

The following constraint says that roler can be assigned to only one user.

pred Cardinality(r: Role, uracq: User->Role){

(#((uracq).r) >= 1) &&

(#((uracq).r) <= 1)}

Next, consider the prerequisite constraint that says that if a useru can acquire roler1, then he

can also acquire roler2. The other forms are modeled in a separate manner.

pred Prerequisite(u:User, r1, r2: Role,

uracq: User->Role){

(u->r2 in uracq) => (u->r1 in uracq)}

The separation of duty constraint says that if a useru can acquire roler1, then he cannot acquire

the conflicting roler2.

pred SoD(u:User, r1, r2: Role, uracq: User->Role){

(u->r1 in uracq) => not (u->r2 in uracq)}
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The different types of delegation are also modeled as predicates. The grant and transfer

operation can be modeled as follows:

pred Grant[u: User, r: Role,

uracq, uracq’: User->Role]{

uracq’ = uracq + (u->r)}

pred Transfer[u1, u2: User, r: Role,

uracq, uracq’: User->Role]{

uracq’ = uracq + (u2->r) - (u1->r)}

Finally, we need to verify whether the selected delegatee could cause any security policy

violation. We create anassertionthat specifies the properties we want to check. After we create

the assertion, we will let ALLOY analyzer validate the assertion by usingcheckcommand. If

our assertion is wrong in the specified scope, ALLOY analyzerwill show the counterexample.

For example, suppose we want to check whether separation of duty constraint is violated when

Allen delegates his role to Bell. The assertion below will check whether the separation of duty

constraint is violated after the transfer operation. The separation of duty constraint says that

user cannot be assigned bothAssistantandSurgeonroles. The counterexample illustrates that

even though userBell is not assigned toAssistantrole, he can still acquire it from the effect of

role hierarchy.

assert TestConflict3{

all u1, u2: User, r: Role, uracq, uracq’: User->Role|

((u1 = Allen) && (u2 = Bell) && (r=Surgeon) &&

(uracq = UserRoleAcquire.URAcqmember) &&

(u1->r in UserRoleAcquire.URAcqmember) &&

(u2->Assistant not in UserRoleAssign.URAsmember) &&

Transfer[u1, u2, r, uracq, uracq’]) =>

SoD[u2, r, Assistant, uracq’]}
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check TestConflict3

The result shown that, although Bell is the most trustworthycandidate, we cannot choose him

as Allen’s delegatee. Next, we verify the situation where Cox, another candidate with the

lower trustworthiness, is chosen as the delegatee. The assertion below will check whether the

separation of duty constraint is violated after the transfer operation.

assert TestConflict4{

all u1, u2: User, r: Role, uracq, uracq’: User->Role|

((u1 = Allen) && (u2 = Cox) && (r=Surgeon) &&

(uracq = UserRoleAcquire.URAcqmember) &&

(u1->r in UserRoleAcquire.URAcqmember) &&

(u2->Assistant not in UserRoleAssign.URAsmember) &&

Transfer[u1, u2, r, uracq, uracq’]) =>

SoD[u2, r, Assistant, uracq’]}

check TestConflict4

Here, the analyzer cannot find the counterexample, which means the separation of duty con-

straint defined in the model is not violated. This indicates that Cox is a more suitable delegatee

for Allen. The complete version of the Alloy model of the small healthcare organization is

shown in Appendix D.

9.6 Chapter Summary

Delegation gives temporary privilege to one or more users, that allows critical tasks to be

completed. In this chapter, we provide a formal approach forchoosing delegatees. The ap-

proach evaluates the trustworthiness of candidates, and then ensures that the chosen candidate

does not cause a security breach. We also illustrate how trustworthiness can be used to decide

on the length of the delegation chain.

192



Chapter 10

Conclusions and Future Work

10.1 Contributions

Traditional access control models are not sufficient for pervasive computing applications

for several reasons. First, unlike traditional applications, pervasive computing applications usu-

ally do not have well-defined security perimeter–the entities an application will interact with or

the resources that will be accessed may not be known in advance. Second, these applications

are also dynamic in nature–the accessing entities may change, resources requiring protection

may be created or modified, and an entity’s access to resources may change during the course

of the application, which make the resources protection during application execution extremely

challenging. Third, pervasive computing applications usethe knowledge of surrounding phys-

ical spaces to provide services; security policies designed for such applications must therefore

use contextual information. Thus, new access control models and technologies are needed for

pervasive computing applications.

With the growing use of wireless networks and mobile devices, we are moving towards an

era where spatial and temporal information will be necessary for access control. The use of

such information can be used for enhancing the security of anapplication, and it can also be

exploited to launch attacks. For critical applications, a model for spatio-temporal-based access

control is needed that increases the security of the application and ensures that the location

information cannot be exploited to cause harm.

Motivated by this issue, we propose STRBAC model [67, 83], which incorporates time
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and location constraints to the traditional RBAC entities and relationships. In this model, the

access control is contingent upon the role of the user, his location, location of the object and the

time of access. In a highly dynamic system such as the pervasive computing environment, it

is necessary for the user to be able to transfer his privileges to another user during his absence

to perform a critical task. To rectify this issue, we extend our model to incorporate the notion

of delegation [68]. Our STRBAC model is efficient in the aspect that it can represent the

different kind of constraints and relationship in the access control model. The transformation

of the model to do the automate verification is feasible. However, semantically, the model is

extremely complicated. To rectify this, we develop a well-formed semantic model called the

Spatio-Temporal Role Based Access Control with Delegation(STARBACD) model based on

graph-theoretic notation.

Delegation is needed in pervasive computing environments where some user or role may

be temporarily unavailable to do some tasks. We proposed a formal approach for choosing

delegatees. Our approach assessed the trustworthiness of potential delegates in the context of

the task that is to be delegated. It also ensures using existing SAT-solvers that the choice of

delegatee does not cause any security policy violation. Results of this work appeared in [87].

Our proposed spatio-temporal model has numerous constraints that are not orthogonal, but

interact with each other in subtle ways. Thus, it is important to understand the interaction of

the constraints before the model can be deployed. Manual analysis is tedious and error-prone.

Towards this end, we investigated how Alloy can be used for automated analysis. Alloy is based

on first-order logic and is supported by tools. The specification is converted into a boolean

expression that is automatically verified by an embedded SAT-solver. Our analysis reveals that

the various forms of spatio-temporal hierarchy conflicts with the numerous forms of spatio-

temporal separation of duty constraints [83]. Subsequently, we performed the analysis on the

spatio-temporal role-based access control model that supports delegation [84]. The analysis

revealed that the delegation constraints may also conflict with separation of duty constraints.

Knowing the relationship among constraints is necessary, but not sufficient if it is to be

used for applications. We need to do application-level analysis to ensure that the policies for
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the given application have been correctly specified. Typically, applications are specified using

the Unified Modeling Language (UML), and so are the policies.However, UML does not

have automated tool support. Towards this end, we investigated how the policies specified in

UML can be automatically converted to Alloy using UML2Alloyand the resulting specification

verified using Alloy [86].

Although Alloy supports automated analysis, it has limitations with respect to the types

of verification it can perform. For example, analyzing and understanding the behavior of the

application using Alloy is non-trivial. Such analysis is needed for dynamic systems where we

need to ensure that the system does not enter an undesirable state. Towards this end, we have

shown how Coloured Petri Nets can be used for analyzing an application using our spatio-

temporal role-based access control model [85]. We show how the STRBAC model can be

transformed into a graph-theoretic notation called accesscontrol graph, which will be used as

an input to create the CPNs. Our investigations reveal that even a modest increase in the number

of places and transitions cause a significant increment to the number of states of the state space;

this substantially raises the verification time. In order togenerate a smaller number of states

in the CPN model that does efficient verification, we propose to transform the access control

graph into the privilege acquisition graph, which is essentially flattens out the hierarchical

structure.

The entities a pervasive computing application will interact with, or the resources that it

will access may not always be known in advance. Moreover, theaccessing entities may change,

resources requiring protection may be created or modified, and an entity’s access to resources

may change during the course of the application. Under this scenario, we need to ensure that

each entity participating in the interaction is trustworthy. Towards this end, we proposed a

class of trust-based access control models and expressed their semantics using graph theory.

The models differ with respect to the features they provide,and the types of the trust constraints

that they can support. This work appeared in [82].
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10.2 Future Research

10.2.1 The Representation of the Location Constraints

In this dissertation, we have made some simplifying assumptions. We have assumed that

the precise locations of subjects and objects are known at any given point of time. This might

not be true in the pervasive computing environments, where the subjects are continually mov-

ing and objects are frequently relocated [79]. For example,a user might want to access the

system resources while he is traveling on the plane. Here, the user’s exact location cannot be

determined, and hence our current model cannot grant the accessibility to the user based on his

location. This motivates the need of the novel representation of the location constraints which

could handle the uncertainty of the location.

Ardagna et al [4] propose three types of condition to capturethe location uncertainty:

• position-based conditionsthis type of condition evaluates whether one entity is in a cer-

tain building or city or in the proximity of other entities

• movement-based conditionsthis type of condition evaluates the mobility of the entities

such as their velocity, acceleration, or direction where they are headed

• interaction-based conditionsthis type of condition relating multiple entities; for instance,

the number of entities within a given area

With the advocate of these three types of condition, we can specify access control policy

which supports the uncertainty location constraints. For instance, user may access the infor-

mation about the Golden Gate bridge from the plane only if hisplane is headed toward San

Francisco.

Towards this end, we plan to develop a new representation of the location constraints, which

support these three types of condition.
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10.2.2 The Representation of the Time Constraints

Our time constraints proposed in this dissertation are based on the simplifying assumptions

that the time intervals are distinctively defined and the only time interval relationship supported

in the model is the containment relationship. These assumptions may not be valid in the time-

sensitive application such as workflow. Workflow consists ofa set of the related tasks which

must be done sequentially within the specific time. For instance, the time period of thecheck

authorizingtask must start after the time period of thecheck issuing taskstarted and it must end

within 2 days after the time period of thecheck issuingtask ended. Such temporal constraint

cannot be represented by using our current model. Towards this end, we plan to improve our

representation of the time constraints to handle such complicated temporal relationships.

10.2.3 Extension to Dynamic Workflow

Pervasive computing applications are typically modeled using workflow or other advanced

transactions. Typically, a workflow is a representation of agiven process that is made up of

well defined collection of activities, referred to as tasks.Each of these tasks, which is serving

a given function in the overall process represented by the workflow, has certain information

input requirement and may produce information as part of itsoutput. Tasks that make up

a workflow are usually related and dependent on one another. These task dependencies are

known asintra-workflowdependencies. Task dependencies may also exist across workflows,

such dependencies are referred to asinter-workflowdependencies. Control flow dependencies,

value dependencies and external dependencies are types of task dependencies [1]. Figure 10.1

demonstrates such dependencies. Here, the control flow dependency states that user cannot

reserve the hotel unless he bought the plane ticket first. Next, the value dependency specifies

that the budget he could spend on the hotel depends on how muchhe paid for the plane ticket.

Finally, the external dependency states that all these tasks must be done during the office hours.

In such applications, security is one of the main concerns. We need to ensure that the user

who executes task is the one who is authorized for that task. Also, we should not allow any

user to be assigned to two conflicting tasks which permit the user to commit a fraud to the

197



Figure 10.1: Example of task dependencies in workflow

organization or cause the security breaches. Next, the access control must support the manda-

tory constraints existing in the workflow environment such as task dependencies, and binding

constraints. With regarding to this, an access control is needed to perform these functions.

In most of the situation, these constraints are unavoidablyrelated with the time and location

constraints. For example, the taskcheck approvingmust be done at the account manager office

within 10 days after taskcheck issuingcompleted. To be useful, we not only must fulfill the

requirements mentioned earlier, this access control modelshould be effective in the sense of

policy administration. We believe that our proposed STRBACcan be implemented to serve

these objectives. Towards this end, we plan to apply the STRBAC model to the workflow

system.

10.2.4 Model Analysis

In addition to the analysis of the interactions between different features in the access control

model, we have to focus on analyzing the properties of workflow dependencies; classify the

dependencies according to different criteria; discuss theinteraction and impacts of dependen-

cies on execution of tasks. More importantly, we will formally analyze all kinds of dependency

conflict. Dependency conflict could be either between the dependencies themselves or between

the dependency and access control constraints. The conflicts could take various forms and vary
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from case to case.

Model analysis is needed to ensure the executability and security compliance of the dy-

namic workflow. Additional work is needed for the model analysis of the STRBAC-embedded

workflow. We plan to develop the verification methodology forthe integrated model for work-

flow.

In this dissertation, we have proven that our analysis methodology can be used to analyze

our model. We plan to implement our analysis approach to other types of access control model.

10.2.5 Dynamism Analysis

Pervasive computing applications are dynamic in nature. While the application is execut-

ing, the entities requiring access or the resources needingprotection may change. In the face

of such dynamism, it is essential to ensure that access control breaches do not occur. Since the

analysis must be done in real-time, it is important to minimize the verification time. Towards

this end, we provide techniques for incremental analysis with good time complexity results.

For example, to detect SoD violations in a dynamic graph, we need to find whether the nodes

connected by SoD constraints have a common predecessor. Applying a naive algorithm based

on Depth First Search, requiresO(kE) time for each change applied to the graph, wherek is

the number of SoD constraints andE is the number of edges. We improve upon this result

significantly by proposing a new common predecessor detecting algorithm in a dynamic graph.

However, there still be a limitation to this approach, whichis, the changes of access control

configuration must be done in a monotonic fashion. For instance, if the access control config-

uration is changed by adding the new relationships to the model, then the subsequent changes

must be the addition of relationships only, the deletion of relationship is not allowed. To com-

plete the analysis approach, we plan to improve our approachso that it could analyze the access

control model with a sequence of different types of configuration modification.
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10.2.6 Implementation

Implementation will require us to investigate additional issues, such as, how to store loca-

tion and time information and perform operations involvingspatio-temporal constraints in an

efficient manner. The same goes for the trust based access control model. Defining entities’

negative and positive actions which could affect the accessibility between entities is a chal-

lenging task. Implementing the model for real-world applications will further help refine our

model and make it more useful.
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Appendix A

ALLOY Specification of the
Spatio-Temporal Role-Based Access
Control
Model

module STRBAC

sig Time{}
sig Location{}

// For solving the dimension limitation problem
sig TimeLoc{

dur : Time,
loc : Location}

sig User{}
sig Role{

RoleAllocLoc: Location,
RoleAllocDur: Time,
RoleEnableLoc: Location,
RoleEnableDur: Time}

sig Permission{
PermRoleLoc: Role->Location,
PermObjLoc: Object->Location,
PermDur: Time

}
sig Object{}

one sig RoleEnable {member : Role-> Time ->Location}
one sig UserRoleAssignment{member : User -> Role ->Time ->L ocation}
one sig RolePermissionAssignment{member : Role-> Permiss ion ->Time->Location}
one sig UserLocation{member : User->Time->Location}
one sig ObjLocation{member : Object->Time->Location}
one sig UserRoleActivate{member : User-> Role->Time->Loc ation}
one sig PermRoleAcquire{member : Role->Permission->Time ->Location}
one sig PermUserAcquire{member : User->Object->Permissi on->TimeLoc}
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abstract sig RoleHierarchy{member : Role -> Role}
sig UPIH, TPIH, LPIH, TLPIH, UAH, TAH, LAH, TLAH extends Role Hierarchy{}

fact ULoc{
all u: User, uloc: UserLocation, d: Time, l1, l2: Location |

(((u->d->l1) in uloc.member) && ((u->d->l2) in uloc.membe r)) <=>
((l1 in l2) || (l2 in l1))}

fact ObjLoc{
all o: Object, oloc: ObjLocation, d: Time, l1, l2: Location |

(((o->d->l1) in oloc.member) && ((o->d->l2) in oloc.membe r)) <=>
((l1 in l2) || (l2 in l1))}

// Each user must has role assigned to him
fact UserRole{

all u: User, uras: UserRoleAssignment | some r: Role |
u->r in (uras.member).Location.Time}

fact URAssign{
all u: User, r: Role, d: Time, l: Location, ura: UserRoleAssi gnment,
uloc: UserLocation |

((u->r->d->l) in ura.member) => (((u->d->l) in uloc.membe r) &&
(l in r.RoleAllocLoc) && (d in r.RoleAllocDur))}

fact URActivate1{
all u: User, sr, jr: Role, d: Time, l: Location, uras: UserRol eAssignment,
urac: UserRoleActivate,
uah: UAH, tah: TAH, lah: LAH, tlah: TLAH |

((u->jr->d->l) in urac.member) && (u->sr in (uras.member) .Location.Time) &&
(jr !in sr.ˆ((uah + tah + lah + tlah).member)) =>
(((u->jr->d->l) in uras.member) && (l in jr.RoleEnableLoc ) &&
(d in jr.RoleEnableDur))}

fact URActivate2{
all u: User, sr, jr: Role, d: Time, l: Location, uras: UserRol eAssignment,
uract: UserRoleActivate, uah: UAH, tah: TAH, lah: LAH, tlah : TLAH |

((u->jr->d->l in uract.member) && (u->sr in (uras.member) .Location.Time) &&
(u->jr !in (uras.member).Location.Time)) =>
(jr in sr.ˆ((uah + tah + lah + tlah).member))}

fact NocycleRH{
all r: Role, RH: RoleHierarchy| r !in r.ˆ(RH.member)}

// All types of hierarchy are disjointed
fact ScopeRH{

all rh: RoleHierarchy, upih: UPIH, tpih: TPIH, lpih: LPIH, t lpih: TLPIH, uah: UAH,
tah: TAH, lah: LAH, tlah: TLAH |

(upih.member = rh.member - (tpih.member + lpih.member + tlp ih.member +
uah.member + tah.member + lah.member + tlah.member)) &&

(tpih.member = rh.member - (upih.member + lpih.member + tlp ih.member +
uah.member + tah.member + lah.member + tlah.member)) &&

(lpih.member = rh.member - (upih.member + tpih.member + tlp ih.member +
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uah.member + tah.member + lah.member + tlah.member)) &&
(tlpih.member = rh.member - (upih.member + tpih.member + lp ih.member +

uah.member + tah.member + lah.member + tlah.member)) &&
(uah.member = rh.member - (upih.member + tpih.member + lpih .member +

tlpih.member + tah.member + lah.member + tlah.member)) &&
(tah.member = rh.member - (upih.member + tpih.member + lpih .member +

tlpih.member + uah.member + lah.member + tlah.member)) &&
(lah.member = rh.member - (upih.member + tpih.member + lpih .member +

tlpih.member + uah.member + tah.member + tlah.member)) &&
(tlah.member = rh.member - (upih.member + tpih.member + lpi h.member +

tlpih.member + uah.member + tah.member + lah.member))}

// Each role must has at least one permission assigned to it
fact RoleFact{

all r: Role, rpa: RolePermissionAssignment |
r in (rpa.member).Location.Time.Permission}

// All permissions assigned to roles can be acquired
fact RPAFact{

all disj r: Role, p: Permission, d: Time, l : Location,
rpa: RolePermissionAssignment, pra : PermRoleAcquire |

(r->p->d->l in rpa.member) =>
(r->p->d->l in pra.member)}

// All roles can acquire only their own assigned or inherited permissions
fact PRAFact{

all disj r1, r2: Role, p: Permission, d1, d2: Time, l1, l2 : Loc ation,
rpa: RolePermissionAssignment, pra : PermRoleAcquire,
upih: UPIH, tpih: TPIH, lpih: LPIH, tlpih: TLPIH |

(r1->p->d1->l1 in pra.member) =>
((r1->p->d1->l1 in rpa.member) ||
((r2->p->d2->l2 in rpa.member) &&
(r1->r2 in ((upih + tpih + lpih + tlpih).member))))}

// Permission User Acquire
fact PUAFact{

all r: Role, p: Permission, u: User, d: Time, l : Location, o: O bject,
tl: TimeLoc, pra : PermRoleAcquire, puacq: PermUserAcquir e,
ol: ObjLocation, urac: UserRoleActivate |

((r->p->d->l in pra.member) &&
(u->r->d->l in urac.member) &&
(o->d->l in ol.member) &&
(o->l in p.PermObjLoc) &&
(tl.dur = d) && (tl.loc = l)) =>

(u->o->p->tl in puacq.member)
}

//Unrestricted Permission Inheritance Hierarchy
fact UPIHFact{

all sr, jr: Role, p: Permission, d: Time, l: Location, upih: U PIH,
rpa: RolePermissionAssignment, pra: PermRoleAcquire |
((sr->jr in upih.member) && (jr->p->d->l in pra.member) &&
(sr->p !in (rpa.member).Location.Time)) =>
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(sr->p->sr.RoleEnableDur->sr.RoleEnableLoc) in pra.me mber}

//Time Restricted Permission Inheritance Hierarchy
fact TPIHFact{

all sr, jr: Role, p: Permission, d: Time, l: Location, tpih: T PIH,
rpa: RolePermissionAssignment, pra: PermRoleAcquire |
((sr->jr in tpih.member) && (jr->p->d->l in pra.member) &&
(sr->p !in (rpa.member).Location.Time)) =>

(sr->p->d->sr.RoleEnableLoc) in pra.member}

//Location Restricted Permission Inheritance Hierarchy
fact LPIHFact{

all sr, jr: Role, p: Permission, d: Time, l: Location, lpih: L PIH,
rpa: RolePermissionAssignment, pra: PermRoleAcquire |
((sr->jr in lpih.member) && (jr->p->d->l in pra.member) &&
(sr->p !in (rpa.member).Location.Time)) =>

(sr->p->sr.RoleEnableDur->l) in pra.member}

//Time Location Restricted Permission Inheritance Hierar chy
fact TLPIHFact{

all sr, jr: Role, p: Permission, d: Time, l: Location, tlpih: TLPIH,
rpa: RolePermissionAssignment, pra: PermRoleAcquire |
((sr->jr in tlpih.member) && (jr->p->d->l in pra.member) & &
(sr->p !in (rpa.member).Location.Time)) =>

(sr->p->d->l) in pra.member}

//Unrestricted Activation Hierarchy
fact UAHFact{

all disj sr, jr: Role, u: User, d: Time, l: Location, uah: UAH,
uras: UserRoleAssignment, uract: UserRoleActivate |
((sr->jr in uah.member) && (u->sr->d->l in uract.member) & &
(u->jr !in (uras.member).Location.Time) && (d in sr.RoleE nableDur) &&
(l in sr.RoleEnableLoc)) =>

(u->jr->d->l) in uract.member}

//Time Restricted Activation Hierarchy
fact TAHFact{

all disj sr, jr: Role, u: User, d, d’: Time, l: Location, tah: T AH,
uras: UserRoleAssignment, uract: UserRoleActivate |
((sr->jr in tah.member) && (u->sr->d->l in uract.member) & &
(u->jr !in (uras.member).Location.Time) && (d in sr.RoleE nableDur) &&
(d’ in jr.RoleEnableDur) && (l in sr.RoleEnableLoc)) =>

(u->jr->d’->l) in uract.member}

//Location Restricted Activation Hierarchy
fact LAHFact{

all disj sr, jr: Role, u: User, d: Time, l, l’: Location, lah: L AH,
uras: UserRoleAssignment, uract: UserRoleActivate |
((sr->jr in lah.member) && (u->sr->d->l in uract.member) & &
(u->jr !in (uras.member).Location.Time) && (d in sr.RoleE nableDur) &&
(l in sr.RoleEnableLoc) && (l’ in jr.RoleEnableLoc)) =>

(u->jr->d->l’) in uract.member}

//Time Location Restricted Activation Hierarchy
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fact TLAHFact{
all disj sr, jr: Role, u: User, d, d’: Time, l, l’: Location, tl ah: TLAH,

uras: UserRoleAssignment, uract: UserRoleActivate |
((sr->jr in tlah.member) && (u->sr->d->l in uract.member) &&
(u->jr !in (uras.member).Location.Time) && (d in sr.RoleE nableDur) &&
(d’ in jr.RoleEnableDur) && (l in sr.RoleEnableLoc) &&
(l’ in jr.RoleEnableLoc)) =>

(u->jr->d’->l’) in uract.member}

//Weak Form of SSoD-User Role Assignment
pred W_SSoD_URA(u: User, disj r1, r2: Role, ura: UserRoleAs signment.member,
d: Time, l: Location){

((u->r1->d->l) in ura) => ((u->r2->d->l) not in ura)}

//Strong Temporal Form of SSoD-User Role Assignment
pred ST_SSoD_URA(u: User, disj r1, r2: Role, ura: UserRoleA ssignment.member,
d, d’: Time, l: Location){

((u->r1->d->l) in ura) => ((u->r2->d’->l) not in ura)}

//Strong Spatial Form of SSoD-User Role Assignment
pred SS_SSoD_URA(u: User, disj r1, r2: Role, ura: UserRoleA ssignment.member,
d: Time, l, l’: Location){

((u->r1->d->l) in ura) => ((u->r2->d->l’) not in ura)}

//Strong Form of SSoD-User Role Assignment
pred S_SSoD_URA(u: User, disj r1, r2: Role, ura: UserRoleAs signment.member,
d, d’: Time, l, l’: Location){

((u->r1->d->l) in ura) => ((u->r2->d’->l’) not in ura)}

//Weak Form of SSoD-Permission Role Assignment
pred W_SSoD_PRA(r: Role, disj p, q : Permission,
d: Time, l: Location){

all pra: PermRoleAcquire.member |
((r->p->d->l) in pra) => ((r->q->d->l) not in pra)}

//Strong Temporal Form of SSoD-Permission Role Assignment
pred ST_SSoD_PRA(r: Role, disj p, q : Permission,
d, d’: Time, l: Location){

all pra: PermRoleAcquire.member |
((r->p->d->l) in pra) => ((r->q->d’->l) not in pra)}

//Strong Spatial Form of SSoD-Permission Role Assignment
pred SS_SSoD_PRA(r: Role, disj p, q : Permission,
d: Time, l, l’: Location){

all pra: PermRoleAcquire.member |
((r->p->d->l) in pra) => ((r->q->d->l’) not in pra)}

//Strong Form of SSoD-Permission Role Assignment
pred S_SSoD_PRA(r: Role, disj p, q : Permission,
d, d’: Time, l, l’: Location){

all pra: PermRoleAcquire.member |
((r->p->d->l) in pra) => ((r->q->d’->l’) not in pra)}

//Weak Form of DSoD
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pred W_DSoD(u: User, disj r1, r2: Role, d: Time, l: Location) {
all urac: UserRoleActivate.member |

((u->r1->d->l) in urac) => ((u->r2->d->l) not in urac)}

//Strong Temporal Form of DSoD
pred ST_DSoD(u: User, disj r1, r2: Role, d, d’: Time, l: Locat ion){

all urac: UserRoleActivate.member |
((u->r1->d->l) in urac) => ((u->r2->d’->l) not in urac)}

//Strong Spatial Form of DSoD
pred SS_DSoD(u: User, disj r1, r2: Role, d: Time, l, l’: Locat ion){

all urac: UserRoleActivate.member |
((u->r1->d->l) in urac) => ((u->r2->d->l’) not in urac)}

//Strong Form of DSoD
pred S_DSoD(u: User, disj r1, r2: Role, d, d’: Time, l, l’: Loc ation){

all urac: UserRoleActivate.member |
((u->r1->d->l) in urac) => ((u->r2->d’->l’) not in urac)}

//U2U Unrestricted Permission Delegation
pred u2uUPD(disj dtr, dte: User, p: Permission){

all o: Object, tl: TimeLoc, puacq: PermUserAcquire |
(dtr->o->p->tl in puacq.member) =>

(dte->o->p->tl in puacq.member)}

//U2U Time Restricted Permission Delegation
pred u2uTPD(disj dtr, dte: User, p: Permission, d’: Time){

all o: Object, tl, tl’: TimeLoc, puacq: PermUserAcquire |
((d’ in tl.dur) && (d’ != tl.dur) && (tl’.dur = d’) &&
(tl’.loc = tl.loc) && (dtr->o->p->tl in puacq.member)) =>

(dte->o->p->tl’ in puacq.member)}

//U2U Location Restricted Permission Delegation
pred u2uLPD(disj dtr, dte: User, p: Permission, l’: Locatio n){

all o: Object, tl, tl’: TimeLoc, puacq: PermUserAcquire |
((tl’.dur = tl.dur) && (l’ in tl.loc) && (l’ != tl.loc) && (tl’ .loc = l’) &&
(dtr->o->p->tl in puacq.member)) =>

(dte->o->p->tl’ in puacq.member)}

//U2U Time Location Restricted Permission Delegation
pred u2uTLPD(disj dtr, dte: User, p: Permission, d’: Time, l ’: Location){

all o: Object, tl, tl’: TimeLoc, puacq: PermUserAcquire |
((d’ in tl.dur) && (d’ != tl.dur) && (l’ in tl.loc) && (l’ != tl. loc) &&
(tl’.dur = d’) && (tl’.loc = l’) &&
(dtr->o->p->tl in puacq.member)) =>

(dte->o->p->tl’ in puacq.member)}

//U2U Unrestricted Role Delegation
pred u2uURD(disj dtr, dte: User, r: Role){

all d: Time, l: Location, urac: UserRoleActivate |
(dtr->r->d->l in urac.member) =>

(dte->r->d->l in urac.member)}

//U2U Time Restricted Role Delegation
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pred u2uTRD(disj dtr, dte: User, r: Role, d’: Time){
all d: Time, l: Location, urac: UserRoleActivate |

((dtr->r->d->l in urac.member) && (d’ in r.RoleEnableDur) &&
(d’ in d)) =>

(dte->r->d’->l in urac.member)}

//U2U Location Restricted Role Delegation
pred u2uLRD(disj dtr, dte: User, r: Role, l’: Location){

all d: Time, l: Location, urac: UserRoleActivate |
((dtr->r->d->l in urac.member) && (l’ in r.RoleEnableLoc) &&
(l’ in l)) =>

(dte->r->d->l’ in urac.member)}

//U2U Location Restricted Role Delegation
pred u2uTLRD(disj dtr, dte: User, r: Role, d’: Time, l’: Loca tion){

all d: Time, l: Location, urac: UserRoleActivate |
((dtr->r->d->l in urac.member) && (d’ in r.RoleEnableDur) &&
(d’ in d) && (l’ in r.RoleEnableLoc) && (l’ in l)) =>

(dte->r->d->l’ in urac.member)}

//R2R Unrestricted Permission Delegation
pred r2rUPD(disj rdtr, rdte: Role, p: Permission){

all d: Time, l: Location, pracq: PermRoleAcquire |
((rdtr->p->d->l in pracq.member) && (d in rdte.RoleEnable Dur) &&
(l in rdte.RoleEnableLoc)) =>

(rdte->p->d->l in pracq.member)}

//R2R Time Restricted Permission Delegation
pred r2rTPD(disj rdtr, rdte: Role, p: Permission, d’: Time) {

all d: Time, l: Location, pracq: PermRoleAcquire |
((rdtr->p->d->l in pracq.member) && (d’ in d) &&
(d’ in rdte.RoleEnableDur) &&
(l in rdte.RoleEnableLoc)) =>

(rdte->p->d’->l in pracq.member)}

//R2R Location Restricted Permission Delegation
pred r2rLPD(disj rdtr, rdte: Role, p: Permission, l’: Locat ion){

all d: Time, l: Location, pracq: PermRoleAcquire |
((rdtr->p->d->l in pracq.member) && (l’ in l) &&
(d in rdte.RoleEnableDur) &&
(l’ in rdte.RoleEnableLoc)) =>

(rdte->p->d->l’ in pracq.member)}

//R2R Time Location Restricted Permission Delegation
pred r2rTLPD(disj rdtr, rdte: Role, p: Permission, d’: Time , l’: Location){

all d: Time, l: Location, pracq: PermRoleAcquire |
((rdtr->p->d->l in pracq.member) && (d’ in d) && (l’ in l) &&
(d’ in rdte.RoleEnableDur) &&
(l’ in rdte.RoleEnableLoc)) =>

(rdte->p->d’->l’ in pracq.member)}

//R2R Unrestricted Role Delegation
pred r2rURD(disj rdtr, rdte: Role){

all u: User, d: Time, l: Location, urac: UserRoleActivate |
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((u->rdte->d->l in urac.member) && (d in rdtr.RoleEnableD ur) &&
(l in rdtr.RoleEnableLoc))=>

(u->rdtr->d->l in urac.member)}

//R2R Time Restricted Role Delegation
pred r2rTRD(disj rdtr, rdte: Role, d’: Time){

all u: User, l: Location, urac: UserRoleActivate |
((u->rdte->d’->l in urac.member) && (d’ in rdtr.RoleEnabl eDur) &&
(l in rdtr.RoleEnableLoc))=>

(u->rdtr->d’->l in urac.member)}

//R2R Location Restricted Role Delegation
pred r2rLRD(disj rdtr, rdte: Role, l’: Location){

all u: User, d: Time, urac: UserRoleActivate |
((u->rdte->d->l’ in urac.member) && (d in rdtr.RoleEnable Dur) &&
(l’ in rdtr.RoleEnableLoc))=>

(u->rdtr->d->l’ in urac.member)}

//R2R Time Location Restricted Role Delegation
pred r2rTLRD(disj rdtr, rdte: Role, d’: Time, l’: Location) {

all u: User, urac: UserRoleActivate |
((u->rdte->d’->l’ in urac.member) && (d’ in rdtr.RoleEnab leDur) &&
(l’ in rdtr.RoleEnableLoc))=>

(u->rdtr->d’->l’ in urac.member)}

// Conflicts with the Weak Form of SSOD-User Role Assignment : Condition 1
assert TestConflict1_1{

no u: User, disj x, y: Role, upih: UPIH,
d: Time, l: Location, ura: UserRoleAssignment |

((x->y in ˆ(upih.member)) &&
(u->x->d->l in ura.member)) =>

W_SSoD_URA[u, x, y, u->(x+y)->d->l, d, l]
}
check TestConflict1_1

// Conflicts with the Weak Form of SSOD-User Role Assignment : Condition 2
assert TestConflict1_2{

all u: User, disj x, y: Role, tpih: TPIH, d: Time, l: Location,
ura: UserRoleAssignment |

((y in x.ˆ(tpih.member)) && (u->x->d->l in ura.member) &&
(d in y.RoleAllocDur)) =>

W_SSoD_URA[u, x, y, (u->x->d->l) + (u->y->y.RoleAllocDur ->l), d, l]
}
check TestConflict1_2

// Conflicts with the Weak Form of SSOD-User Role Assignment : Condition 3
assert TestConflict1_3{

all u: User, disj x, y: Role, lpih: LPIH, d: Time, l: Location,
ura: UserRoleAssignment |

((y in x.ˆ(lpih.member)) && (u->x->d->l in ura.member) &&
(l in y.RoleAllocLoc)) =>

W_SSoD_URA[u, x, y, (u->x->d->l) + (u->y->d->y.RoleAlloc Loc), d, l]
}
check TestConflict1_3
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// Conflicts with the Weak Form of SSOD-User Role Assignment : Condition 4
assert TestConflict1_4{

all u: User, disj x, y: Role, tlpih: TLPIH, d: Time, l: Locatio n,
ura: UserRoleAssignment |

((y in x.ˆ(tlpih.member)) && (u->x->d->l in ura.member) &&
(d in y.RoleAllocDur) && (l in y.RoleAllocLoc)) =>
W_SSoD_URA[u, x, y, (u->x->d->l) + (u->y->y.RoleAllocDur ->y.RoleAllocLoc), d, l]

}
check TestConflict1_4

// Conflicts with the Strong Temporal Form of SSOD-User Role Assignment: Condition 1
assert TestConflict2_1{

all u: User, disj x, y: Role, upih: UPIH, d, d’: Time, l: Locati on,
ura: UserRoleAssignment |

((y in x.ˆ(upih.member)) && (u->x->d->l in ura.member) &&
(l in y.RoleAllocLoc)) =>

ST_SSoD_URA[u, x, y, (u->x->d->l) + (u->y->d->l), d, d’, l]
}
check TestConflict2_1

// Conflicts with the Strong Temporal Form of SSOD-User Role Assignment: Condition 2
assert TestConflict2_2{

all u: User, disj x, y: Role, tpih: TPIH, d, d’: Time, l: Locati on,
ura: UserRoleAssignment |

((y in x.ˆ(tpih.member)) && (u->x->d->l in ura.member) &&
(l in y.RoleAllocLoc)) =>

ST_SSoD_URA[u, x, y, (u->x->d->l) + (u->y->y.RoleAllocDu r->l), d, d’, l]
}
check TestConflict2_2

// Conflicts with the Strong Temporal Form of SSOD-User Role Assignment: Condition 3
assert TestConflict2_3{

all u: User, disj x, y: Role, lpih: LPIH, d, d’: Time, l: Locati on,
ura: UserRoleAssignment |

((y in x.ˆ(lpih.member)) && (u->x->d->l in ura.member) &&
(l in y.RoleAllocLoc)) =>

ST_SSoD_URA[u, x, y, (u->x->d->l) + (u->y->d->y.RoleAllo cLoc), d, d’, l]
}
check TestConflict2_3

// Conflicts with the Strong Temporal Form of SSOD-User Role Assignment: Condition 4
assert TestConflict2_4{

all u: User, disj x, y: Role, tlpih: TLPIH, d, d’: Time, l: Loca tion,
ura: UserRoleAssignment |

((y in x.ˆ(tlpih.member)) && (u->x->d->l in ura.member) &&
(l in y.RoleAllocLoc)) =>

ST_SSoD_URA[u, x, y,
(u->x->d->l) + (u->y->y.RoleAllocDur->y.RoleAllocLoc) , d, d’, l]

}
check TestConflict2_4

// Conflicts with the Strong Spatial Form of SSOD-User Role A ssignment: Condition 1
assert TestConflict3_1{
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all u: User, disj x, y: Role, upih: UPIH, d: Time, l, l’: Locati on,
ura: UserRoleAssignment |

((y in x.ˆ(upih.member)) && (u->x->d->l in ura.member) &&
(d in y.RoleAllocDur)) =>

SS_SSoD_URA[u, x, y, (u->x->d->l) + (u->y->d->l), d, l, l’]
}
check TestConflict3_1

// Conflicts with the Strong Spatial Form of SSOD-User Role A ssignment: Condition 2
assert TestConflict3_2{

all u: User, disj x, y: Role, tpih: TPIH, d: Time, l, l’: Locati on,
ura: UserRoleAssignment |

((y in x.ˆ(tpih.member)) && (u->x->d->l in ura.member) &&
(d in y.RoleAllocDur)) =>

SS_SSoD_URA[u, x, y, (u->x->d->l) + (u->y->y.RoleAllocDu r->l), d, l, l’]
}
check TestConflict3_2

// Conflicts with the Strong Spatial Form of SSOD-User Role A ssignment: Condition 3
assert TestConflict3_3{

all u: User, disj x, y: Role, lpih: LPIH, d: Time, l, l’: Locati on,
ura: UserRoleAssignment |

((y in x.ˆ(lpih.member)) && (u->x->d->l in ura.member) &&
(d in y.RoleAllocDur)) =>

SS_SSoD_URA[u, x, y, (u->x->d->l) + (u->y->d->y.RoleAllo cLoc), d, l, l’]
}
check TestConflict3_3

// Conflicts with the Strong Spatial Form of SSOD-User Role A ssignment: Condition 4
assert TestConflict3_4{

all u: User, disj x, y: Role, tlpih: TLPIH, d: Time, l, l’: Loca tion,
ura: UserRoleAssignment |

((y in x.ˆ(tlpih.member)) && (u->x->d->l in ura.member) &&
(d in y.RoleAllocDur)) =>

SS_SSoD_URA[u, x, y,
(u->x->d->l) + (u->y->y.RoleAllocDur->y.RoleAllocLoc) , d, l, l’]

}
check TestConflict3_4

// Conflicts with the Strong Form of SSOD-User Role Assignme nt
assert TestConflict4{

all u: User, disj x, y: Role, d, d’: Time, l, l’: Location,
ura: UserRoleAssignment,
upih: UPIH, tpih: TPIH, lpih: LPIH, tlpih: TLPIH |

((y in x.ˆ(upih.member + tpih.member + lpih.member + tlpih. member)) &&
(u->x->d->l in ura.member)) =>

S_SSoD_URA[u, x, y, (u->x->d->l) + (u->y->d’->l’), d, d’, l , l’]
}
check TestConflict4

// Conflicts with the Weak Form of SSOD-Permission Role Assi gnment: Condition 1
assert TestConflict5_1{

all x, y: Role, disj p, q: Permission, d, d’: Time, l, l’: Locat ion,
rpa: RolePermissionAssignment.member, upih: UPIH|
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(((x->p->d->l) in rpa) && (x->q not in rpa.Location.Time) & &
(y->q->d’->l’ in rpa) && (y in x.ˆ(upih.member))) =>

W_SSoD_PRA[x, p, q, d, l]
}
check TestConflict5_1

// Conflicts with the Weak Form of SSOD-Permission Role Assi gnment: Condition 2
assert TestConflict5_2{

all x, y: Role, disj p, q: Permission, d, d’: Time, l, l’: Locat ion,
rpa: RolePermissionAssignment.member, tpih: TPIH|

(((x->p->d->l) in rpa) && (x->q not in rpa.Location.Time) & &
(y->q->d’->l’ in rpa) && (y in x.ˆ(tpih.member)) &&
(l & l’ != none)) =>

W_SSoD_PRA[x, p, q, d, l]
}
check TestConflict5_2

// Conflicts with the Weak Form of SSOD-Permission Role Assi gnment: Condition 3
assert TestConflict5_3{

all x, y: Role, disj p, q: Permission, d, d’: Time, l, l’: Locat ion,
rpa: RolePermissionAssignment.member, lpih: LPIH|

(((x->p->d->l) in rpa) && (x->q not in rpa.Location.Time) & &
(y->q->d’->l’ in rpa) && (y in x.ˆ(lpih.member)) &&
(l & l’ != none)) =>

W_SSoD_PRA[x, p, q, d, l]
}
check TestConflict5_3

// Conflicts with the Weak Form of SSOD-Permission Role Assi gnment: Condition 4
assert TestConflict5_4{

all x, y: Role, disj p, q: Permission, d, d’: Time, l, l’: Locat ion,
rpa: RolePermissionAssignment.member, tlpih: TLPIH|

(((x->p->d->l) in rpa) && (x->q not in rpa.Location.Time) & &
(y->q->d’->l’ in rpa) && (y in x.ˆ(tlpih.member)) &&
(l & l’ != none) && (d & d’ != none)) =>

W_SSoD_PRA[x, p, q, d, l]
}
check TestConflict5_4

// Conflicts with the Strong Temporal Form of SSOD-Permissi on Role Assignment: Condition 1
assert TestConflict6_1{

all x, y: Role, disj p, q: Permission, d, d’: Time, l, l’: Locat ion,
rpa: RolePermissionAssignment.member, upih: UPIH|

(((x->p->d->l) in rpa) && (x->q not in rpa.Location.Time) & &
(y->q->d’->l’ in rpa) && (y in x.ˆ(upih.member))) =>

ST_SSoD_PRA[x, p, q, d, d’, l]
}
check TestConflict6_1

// Conflicts with the Strong Temporal Form of SSOD-Permissi on Role Assignment: Condition 2
assert TestConflict6_2{

all x, y: Role, disj p, q: Permission, d, d’: Time, l, l’: Locat ion,
rpa: RolePermissionAssignment.member, tpih: TPIH|

(((x->p->d->l) in rpa) && (x->q not in rpa.Location.Time) & &

211



(y->q->d’->l’ in rpa) && (y in x.ˆ(tpih.member))) =>
ST_SSoD_PRA[x, p, q, d, d’, l]

}
check TestConflict6_2

// Conflicts with the Strong Temporal Form of SSOD-Permissi on Role Assignment: Condition 3
assert TestConflict6_3{

all x, y: Role, disj p, q: Permission, d, d’: Time, l, l’: Locat ion,
rpa: RolePermissionAssignment.member, lpih: LPIH|

(((x->p->d->l) in rpa) && (x->q not in rpa.Location.Time) & &
(y->q->d’->l’ in rpa) && (y in x.ˆ(lpih.member)) &&
(l & l’ != none)) =>

ST_SSoD_PRA[x, p, q, d, d’, l]
}
check TestConflict6_3

// Conflicts with the Strong Temporal Form of SSOD-Permissi on Role Assignment: Condition 4
assert TestConflict6_4{

all x, y: Role, disj p, q: Permission, d, d’: Time, l, l’: Locat ion,
rpa: RolePermissionAssignment.member, tlpih: TLPIH|

(((x->p->d->l) in rpa) && (x->q not in rpa.Location.Time) & &
(y->q->d’->l’ in rpa) && (y in x.ˆ(tlpih.member)) &&
(l & l’ != none)) =>

ST_SSoD_PRA[x, p, q, d, d’, l]
}
check TestConflict6_4

// Conflicts with the Strong Spatial Form of SSOD-Permissio n Role Assignment: Condition 1
assert TestConflict7_1{

all x, y: Role, disj p, q: Permission, d, d’: Time, l, l’: Locat ion,
rpa: RolePermissionAssignment.member, upih: UPIH|

(((x->p->d->l) in rpa) && (x->q not in rpa.Location.Time) & &
(y->q->d’->l’ in rpa) && (y in x.ˆ(upih.member))) =>

SS_SSoD_PRA[x, p, q, d, l, l’]
}
check TestConflict7_1

// Conflicts with the Strong Spatial Form of SSOD-Permissio n Role Assignment: Condition 2
assert TestConflict7_2{

all x, y: Role, disj p, q: Permission, d, d’: Time, l, l’: Locat ion,
rpa: RolePermissionAssignment.member, tpih: TPIH |

(((x->p->d->l) in rpa) && (x->q not in rpa.Location.Time) & &
(y->q->d’->l’ in rpa) && (y in x.ˆ(tpih.member)) &&
(d & d’ != none)) =>

SS_SSoD_PRA[x, p, q, d, l, l’]
}
check TestConflict7_2

// Conflicts with the Strong Spatial Form of SSOD-Permissio n Role Assignment: Condition 3
assert TestConflict7_3{

all x, y: Role, disj p, q: Permission, d, d’: Time, l, l’: Locat ion,
rpa: RolePermissionAssignment.member, lpih: LPIH|

(((x->p->d->l) in rpa) && (x->q not in rpa.Location.Time) & &
(y->q->d’->l’ in rpa) && (y in x.ˆ(lpih.member))) =>
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SS_SSoD_PRA[x, p, q, d, l, l’]
}
check TestConflict7_3

// Conflicts with the Strong Spatial Form of SSOD-Permissio n Role Assignment: Condition 4
assert TestConflict7_4{

all x, y: Role, disj p, q: Permission, d, d’: Time, l, l’: Locat ion,
rpa: RolePermissionAssignment.member, tlpih: TLPIH|

(((x->p->d->l) in rpa) && (x->q not in rpa.Location.Time) & &
(y->q->d’->l’ in rpa) && (y in x.ˆ(tlpih.member)) &&
(d & d’ != none)) =>

SS_SSoD_PRA[x, p, q, d, l, l’]
}
check TestConflict7_4

// Conflicts with the Strong Form of SSOD-Permission Role As signment
assert TestConflict8{

all x, y: Role, disj p, q: Permission, d, d’: Time, l, l’: Locat ion,
rpa: RolePermissionAssignment.member,
upih: UPIH, tpih: TPIH, lpih: LPIH, tlpih: TLPIH |

(((x->p->d->l) in rpa) && (x->q not in rpa.Location.Time) & &
(y->q->d’->l’ in rpa) &&
(y in x.ˆ(upih.member + tpih.member + lpih.member + tlpih.m ember))) =>

S_SSoD_PRA[x, p, q, d, d’, l, l’]
}
check TestConflict8

// Conflicts with the Weak Form of DSOD: Condition 1
assert TestConflict9_1{

all u: User, disj x, y: Role, d: Time, l: Location,
ura: UserRoleActivate.member, uah: UAH|

(((u->x->d->l) in ura) && (y in x.ˆ(uah.member))) =>
W_DSoD[u, x, y, d, l]

}
check TestConflict9_1

// Conflicts with the Weak Form of DSOD: Condition 2
assert TestConflict9_2{

all u: User, disj x, y: Role, d: Time, l: Location,
ura: UserRoleActivate.member, tah: TAH|

(((u->x->d->l) in ura) && (y in x.ˆ(tah.member)) &&
(d in y.RoleEnableDur)) =>

W_DSoD[u, x, y, d, l]
}
check TestConflict9_2

// Conflicts with the Weak Form of DSOD: Condition 3
assert TestConflict9_3{

all u: User, disj x, y: Role, d: Time, l: Location,
ura: UserRoleActivate.member, lah: LAH|

(((u->x->d->l) in ura) && (y in x.ˆ(lah.member)) &&
(l in y.RoleEnableLoc)) =>

W_DSoD[u, x, y, d, l]
}
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check TestConflict9_3

// Conflicts with the Weak Form of DSOD: Condition 4
assert TestConflict9_4{

all u: User, disj x, y: Role, d: Time, l: Location,
ura: UserRoleActivate.member, tlah: TLAH|

(((u->x->d->l) in ura) && (y in x.ˆ(tlah.member)) &&
(d in y.RoleEnableDur) && (l in y.RoleEnableLoc)) =>

W_DSoD[u, x, y, d, l]
}
check TestConflict9_4

// Conflicts with the Strong Temporal Form of DSOD: Conditio n 1
assert TestConflict10_1{

all u: User, disj x, y: Role, d, d’: Time, l: Location,
ura: UserRoleActivate.member, uah: UAH|

(((u->x->d->l) in ura) && (y in x.ˆ(uah.member))) =>
ST_DSoD[u, x, y, d, d’, l]

}
check TestConflict10_1

// Conflicts with the Strong Temporal Form of DSOD: Conditio n 2
assert TestConflict10_2{

all u: User, disj x, y: Role, d, d’: Time, l: Location,
ura: UserRoleActivate.member, tah: TAH|

(((u->x->d->l) in ura) && (y in x.ˆ(tah.member))) =>
ST_DSoD[u, x, y, d, d’, l]

}
check TestConflict10_2

// Conflicts with the Strong Temporal Form of DSOD: Conditio n 3
assert TestConflict10_3{

all u: User, disj x, y: Role, d, d’: Time, l: Location,
ura: UserRoleActivate.member, lah: LAH|

(((u->x->d->l) in ura) && (y in x.ˆ(lah.member)) &&
(l in y.RoleEnableLoc)) =>

ST_DSoD[u, x, y, d, d’, l]
}
check TestConflict10_3

// Conflicts with the Strong Temporal Form of DSOD: Conditio n 4
assert TestConflict10_4{

all u: User, disj x, y: Role, d, d’: Time, l: Location,
ura: UserRoleActivate.member, tlah: TLAH|

(((u->x->d->l) in ura) && (y in x.ˆ(tlah.member)) &&
(l in y.RoleEnableLoc)) =>

ST_DSoD[u, x, y, d, d’, l]
}
check TestConflict10_4

// Conflicts with the Strong Spatial Form of DSOD: Condition 1
assert TestConflict11_1{

all u: User, disj x, y: Role, d: Time, l, l’: Location,
ura: UserRoleActivate.member, uah: UAH|
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(((u->x->d->l) in ura) && (y in x.ˆ(uah.member))) =>
SS_DSoD[u, x, y, d, l, l’]

}
check TestConflict11_1

// Conflicts with the Strong Spatial Form of DSOD: Condition 2
assert TestConflict11_2{

all u: User, disj x, y: Role, d: Time, l, l’: Location,
ura: UserRoleActivate.member, tah: TAH|

(((u->x->d->l) in ura) && (y in x.ˆ(tah.member)) &&
(d in y.RoleEnableDur)) =>

SS_DSoD[u, x, y, d, l, l’]
}
check TestConflict11_2

// Conflicts with the Strong Spatial Form of DSOD: Condition 3
assert TestConflict11_3{

all u: User, disj x, y: Role, d: Time, l, l’: Location,
ura: UserRoleActivate.member, lah: LAH|

(((u->x->d->l) in ura) && (y in x.ˆ(lah.member))) =>
SS_DSoD[u, x, y, d, l, l’]

}
check TestConflict11_3

// Conflicts with the Strong Spatial Form of DSOD: Condition 4
assert TestConflict11_4{

all u: User, disj x, y: Role, d: Time, l, l’: Location,
ura: UserRoleActivate.member, tlah: TLAH|

(((u->x->d->l) in ura) && (y in x.ˆ(tlah.member)) &&
(d in y.RoleEnableDur)) =>

SS_DSoD[u, x, y, d, l, l’]
}
check TestConflict11_4

// Conflicts with the Strong Form of DSOD
assert TestConflict12{

all u: User, disj x, y: Role, d, d’: Time, l, l’: Location,
ura: UserRoleActivate.member, uah: UAH, tah: TAH, lah: LAH , tlah: TLAH|

(((u->x->d->l) in ura) && (y in x.ˆ((uah + tah + lah + tlah).me mber)) &&
(d in y.RoleEnableDur)) =>

S_DSoD[u, x, y, d, d’, l, l’]
}
check TestConflict12

// Conflicts in Permission Role Assignment
assert TestConflict13{

all p: Permission, r: Role, d: Time, l: Location, rpa: RolePe rmissionAssignment,
re: RoleEnable |

(r->p->d->l in rpa.member) => (r->d->l in re.member)
}
check TestConflict13

// Conflicts between r2rUPD and the Weak Form of SSOD-PRA
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assert TestConflict14_1{
all rdtr, rdte: Role, disj p, q: Permission, d: Time, l: Locat ion |

(r2rUPD[rdtr, rdte, p] && r2rUPD[rdtr, rdte, q]) =>
W_SSoD_PRA[rdte, p, q, d, l]

}
check TestConflict14_1

// Conflicts between r2rTPD and the Weak Form of SSOD-PRA
assert TestConflict14_2{

all rdtr, rdte: Role, disj p, q: Permission, d, d’: Time, l: Lo cation |
(r2rTPD[rdtr, rdte, p, d’] && r2rTPD[rdtr, rdte, q, d’]) =>

W_SSoD_PRA[rdte, p, q, d, l]
}
check TestConflict14_2

// Conflicts between r2rLPD and the Weak Form of SSOD-PRA
assert TestConflict14_3{

all rdtr, rdte: Role, disj p, q: Permission, d: Time, l, l’: Lo cation |
(r2rLPD[rdtr, rdte, p, l’] && r2rLPD[rdtr, rdte, q, l’]) =>

W_SSoD_PRA[rdte, p, q, d, l]
}
check TestConflict14_3

// Conflicts between r2rTLPD and the Weak Form of SSOD-PRA
assert TestConflict14_4{

all rdtr, rdte: Role, disj p, q: Permission, d, d’: Time, l, l’ : Location |
(r2rTLPD[rdtr, rdte, p, d’, l’] && r2rTLPD[rdtr, rdte, q, d’ , l’]) =>

W_SSoD_PRA[rdte, p, q, d, l]
}
check TestConflict14_4

// Conflicts between r2rUPD and the Strong Temporal Form of S SOD-PRA
assert TestConflict15_1{

all rdtr, rdte: Role, disj p, q: Permission, d, d’: Time, l: Lo cation |
(r2rUPD[rdtr, rdte, p] && r2rUPD[rdtr, rdte, q]) =>

ST_SSoD_PRA[rdte, p, q, d, d’, l]
}
check TestConflict15_1

// Conflicts between r2rTPD and the Strong Temporal Form of S SOD-PRA
assert TestConflict15_2{

all rdtr, rdte: Role, disj p, q: Permission, d, d’: Time, l: Lo cation |
(r2rTPD[rdtr, rdte, p, d’] && r2rTPD[rdtr, rdte, q, d’]) =>

ST_SSoD_PRA[rdte, p, q, d, d’, l]
}
check TestConflict15_2

// Conflicts between r2rLPD and the Strong Temporal Form of S SOD-PRA
assert TestConflict15_3{

all rdtr, rdte: Role, disj p, q: Permission, d, d’: Time, l, l’ : Location |
(r2rLPD[rdtr, rdte, p, l’] && r2rLPD[rdtr, rdte, q, l’]) =>

ST_SSoD_PRA[rdte, p, q, d, d’, l]
}
check TestConflict15_3
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// Conflicts between r2rTLPD and the Strong Temporal Form of SSOD-PRA
assert TestConflict15_4{

all rdtr, rdte: Role, disj p, q: Permission, d, d’: Time, l, l’ : Location |
(r2rTLPD[rdtr, rdte, p, d’, l’] && r2rTLPD[rdtr, rdte, q, d’ , l’]) =>

ST_SSoD_PRA[rdte, p, q, d, d’, l]
}
check TestConflict15_4

// Conflicts between r2rUPD and the Strong Spatial Form of SS OD-PRA
assert TestConflict16_1{

all rdtr, rdte: Role, disj p, q: Permission, d: Time, l, l’: Lo cation |
(r2rUPD[rdtr, rdte, p] && r2rUPD[rdtr, rdte, q]) =>

SS_SSoD_PRA[rdte, p, q, d, l, l’]
}
check TestConflict16_1

// Conflicts between r2rTPD and the Strong Spatial Form of SS OD-PRA
assert TestConflict16_2{

all rdtr, rdte: Role, disj p, q: Permission, d, d’: Time, l, l’ : Location |
(r2rTPD[rdtr, rdte, p, d’] && r2rTPD[rdtr, rdte, q, d’]) =>

SS_SSoD_PRA[rdte, p, q, d, l, l’]
}
check TestConflict16_2

// Conflicts between r2rLPD and the Strong Spatial Form of SS OD-PRA
assert TestConflict16_3{

all rdtr, rdte: Role, disj p, q: Permission, d: Time, l, l’: Lo cation |
(r2rLPD[rdtr, rdte, p, l’] && r2rLPD[rdtr, rdte, q, l’]) =>

SS_SSoD_PRA[rdte, p, q, d, l, l’]
}
check TestConflict16_3

// Conflicts between r2rTLPD and the Strong Spatial Form of S SOD-PRA
assert TestConflict16_4{

all rdtr, rdte: Role, disj p, q: Permission, d, d’: Time, l, l’ : Location |
(r2rTLPD[rdtr, rdte, p, d’, l’] && r2rTLPD[rdtr, rdte, q, d’ , l’]) =>

SS_SSoD_PRA[rdte, p, q, d, l, l’]
}
check TestConflict16_4

// Conflicts between r2rUPD and the Strong Form of SSOD-PRA
assert TestConflict17_1{

all rdtr, rdte: Role, disj p, q: Permission, d, d’: Time, l, l’ : Location |
(r2rUPD[rdtr, rdte, p] && r2rUPD[rdtr, rdte, q]) =>

S_SSoD_PRA[rdte, p, q, d, d’, l, l’]
}
check TestConflict17_1

// Conflicts between r2rTPD and the Strong Form of SSOD-PRA
assert TestConflict17_2{

all rdtr, rdte: Role, disj p, q: Permission, d, d’: Time, l, l’ : Location |
(r2rTPD[rdtr, rdte, p, d’] && r2rTPD[rdtr, rdte, q, d’]) =>

S_SSoD_PRA[rdte, p, q, d, d’, l, l’]
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}
check TestConflict17_2

// Conflicts between r2rLPD and the Strong Form of SSOD-PRA
assert TestConflict17_3{

all rdtr, rdte: Role, disj p, q: Permission, d, d’: Time, l, l’ : Location |
(r2rLPD[rdtr, rdte, p, l’] && r2rLPD[rdtr, rdte, q, l’]) =>

S_SSoD_PRA[rdte, p, q, d, d’, l, l’]
}
check TestConflict17_3

// Conflicts between r2rTLPD and the Strong Form of SSOD-PRA
assert TestConflict17_4{

all rdtr, rdte: Role, disj p, q: Permission, d, d’: Time, l, l’ : Location |
(r2rTLPD[rdtr, rdte, p, d’, l’] && r2rTLPD[rdtr, rdte, q, d’ , l’]) =>

S_SSoD_PRA[rdte, p, q, d, d’, l, l’]
}
check TestConflict17_4

// Conflicts between r2rURD and the Weak Form of DSOD
assert TestConflict18_1{

all u: User, disj rdtr, rdte: Role, d: Time, l: Location |
r2rURD[rdtr, rdte] => W_DSoD[u, rdtr, rdte, d, l]

}
check TestConflict18_1

// Conflicts between r2rTRD and the Weak Form of DSOD
assert TestConflict18_2{

all u: User, disj rdtr, rdte: Role, d, d’: Time, l: Location |
r2rTRD[rdtr, rdte, d’] => W_DSoD[u, rdtr, rdte, d, l]

}
check TestConflict18_2

// Conflicts between r2rLRD and the Weak Form of DSOD
assert TestConflict18_3{

all u: User, disj rdtr, rdte: Role, d: Time, l, l’: Location |
r2rLRD[rdtr, rdte, l’] => W_DSoD[u, rdtr, rdte, d, l]

}
check TestConflict18_3

// Conflicts between r2rTLRD and the Weak Form of DSOD
assert TestConflict18_4{

all u: User, disj rdtr, rdte: Role, d, d’: Time, l, l’: Locatio n |
r2rTLRD[rdtr, rdte, d’, l’] => W_DSoD[u, rdtr, rdte, d, l]

}
check TestConflict18_4

// Conflicts between r2rURD and the Strong Temporal Form of D SOD
assert TestConflict19_1{

all u: User, disj rdtr, rdte: Role, d, d’: Time, l: Location |
r2rURD[rdtr, rdte] => ST_DSoD[u, rdtr, rdte, d, d’, l]

}
check TestConflict19_1
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// Conflicts between r2rTRD and the Strong Temporal Form of D SOD
assert TestConflict19_2{

all u: User, disj rdtr, rdte: Role, d, d’: Time, l: Location |
r2rTRD[rdtr, rdte, d’] => ST_DSoD[u, rdtr, rdte, d, d’, l]

}
check TestConflict19_2

// Conflicts between r2rLRD and the Strong Temporal Form of D SOD
assert TestConflict19_3{

all u: User, disj rdtr, rdte: Role, d, d’: Time, l, l’: Locatio n |
r2rLRD[rdtr, rdte, l’] => ST_DSoD[u, rdtr, rdte, d, d’, l]

}
check TestConflict19_3

// Conflicts between r2rTLRD and the Strong Temporal Form of DSOD
assert TestConflict19_4{

all u: User, disj rdtr, rdte: Role, d, d’: Time, l, l’: Locatio n |
r2rTLRD[rdtr, rdte, d’, l’] => ST_DSoD[u, rdtr, rdte, d, d’, l]

}
check TestConflict19_4

// Conflicts between r2rURD and the Strong Spatial Form of DS OD
assert TestConflict20_1{

all u: User, disj rdtr, rdte: Role, d: Time, l, l’: Location |
r2rURD[rdtr, rdte] => SS_DSoD[u, rdtr, rdte, d, l, l’]

}
check TestConflict20_1

// Conflicts between r2rTRD and the Strong Spatial Form of DS OD
assert TestConflict20_2{

all u: User, disj rdtr, rdte: Role, d, d’: Time, l, l’: Locatio n |
r2rTRD[rdtr, rdte, d’] => SS_DSoD[u, rdtr, rdte, d, l, l’]

}
check TestConflict20_2

// Conflicts between r2rLRD and the Strong Spatial Form of DS OD
assert TestConflict20_3{

all u: User, disj rdtr, rdte: Role, d: Time, l, l’: Location |
r2rLRD[rdtr, rdte, l’] => SS_DSoD[u, rdtr, rdte, d, l, l’]

}
check TestConflict20_3

// Conflicts between r2rTLRD and the Strong Spatial Form of D SOD
assert TestConflict20_4{

all u: User, disj rdtr, rdte: Role, d, d’: Time, l, l’: Locatio n |
r2rTLRD[rdtr, rdte, d’, l’] => SS_DSoD[u, rdtr, rdte, d, l, l ’]

}
check TestConflict20_4

// Conflicts between r2rURD and the Strong Form of DSOD
assert TestConflict21_1{

all u: User, disj rdtr, rdte: Role, d, d’: Time, l, l’: Locatio n |
r2rURD[rdtr, rdte] => S_DSoD[u, rdtr, rdte, d, d’, l, l’]

}
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check TestConflict21_1

// Conflicts between r2rTRD and the Strong Form of DSOD
assert TestConflict21_2{

all u: User, disj rdtr, rdte: Role, d, d’: Time, l, l’: Locatio n |
r2rTRD[rdtr, rdte, d’] => S_DSoD[u, rdtr, rdte, d, d’, l, l’]

}
check TestConflict21_2

// Conflicts between r2rLRD and the Strong Form of DSOD
assert TestConflict21_3{

all u: User, disj rdtr, rdte: Role, d, d’: Time, l, l’: Locatio n |
r2rLRD[rdtr, rdte, l’] => S_DSoD[u, rdtr, rdte, d, d’, l, l’]

}
check TestConflict21_3

// Conflicts between r2rTLRD and the Strong Form of DSOD
assert TestConflict21_4{

all u: User, disj rdtr, rdte: Role, d, d’: Time, l, l’: Locatio n |
r2rTLRD[rdtr, rdte, d’, l’] => S_DSoD[u, rdtr, rdte, d, d’, l , l’]

}
check TestConflict21_4
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Appendix B

Specification of the STRBAC Model for
the Dengue Decision Support (DDS)
System

B.1 OCL Constraints for DDS’s STRBAC Model

context JurisEpi
inv jurisEpiCon : (self.tasks = (Task :: ONE ->
including (Task :: THREE)) and
self.location = Location :: B and
self.timeCon = Time :: a) or
(self.tasks = (Task :: SEVENTEEN -> including
(Task :: SEVENTEEN)) and
self.location = Location :: B and
self.timeCon = Time :: b)

context StateEpi
inv stateEpiCon : (self.tasks = (Task :: SIXTEEN ->
including (Task::SIXTEEN)) and
self.location = Location :: A and
self.timeCon = Time :: a)
-- The following OCL excerpt represents that the
-- StateEpi inherits the permissions of the JurisEpi.
or (self.tasks = (Task :: ONE -> including
(Task :: THREE)) and self.location = Location :: B and
self.timeCon = Time :: a) or
(self.tasks = (Task :: SEVENTEEN -> including
(Task :: SEVENTEEN)) and self.location = Location :: B
and self.timeCon = Time :: b)

context LocalVCTeam
inv localVCTeam : (self.tasks = ( Task :: SEVEN ->
including (Task :: SEVEN)) and
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(self.location = Location :: B or
self.location = Location :: E ) and
self.timeCon = Time :: c) or
(self.tasks = (Task :: THIRTEEN ->
including (Task :: THIRTEEN)) and
(self.location = Location :: B or
self.location = Location :: D) and
self.timeCon = Time :: a) or
(self.tasks = (Task :: ONE ->
including (Task :: NINE)) and
(self.location = Location :: B or
self.location = Location :: D ) and
self.timeCon = Time :: a )

context Clinician
inv clinicialCon : (self.tasks = (Task :: ONE ->
including (Task :: TWO) -> including
(Task :: THREE) -> including (Task :: FOUR) ->
including (Task :: FIVE) -> including
(Task :: SIX)) and self.location = Location :: C
and self.timeCon = Time :: a)

context ClinicEpi
inv clinicEpiCon : (self.tasks = (Task :: SEVENTEEN ->
including (Task :: SEVENTEEN)) and
self.location = Location :: C and
self.timeCon = Time :: b ) or
((self.tasks = ( Task :: ONE -> including
(Task :: TWO) -> including (Task :: THREE) ->
including (Task :: FOUR) -> including (Task :: FIVE) ->
including (Task :: SIX)) and
self.location = Location :: C and
self.timeCon = Time :: a))

context JurisVC
inv jurisVCCon : (self.tasks = (Task :: ONE ->
including (Task :: EIGHT) -> including
(Task :: NINE ) -> including (Task :: TEN) ->
including (Task :: TWELVE) -> including
(Task :: FOURTEEN)) and
self.location = Location :: B and
self.timeCon = Time :: a)

context StateVC
inv stateVCCon : (self.tasks = (Task :: ELEVEN ->
including (Task :: ELEVEN)) and
self.location = Location :: A and
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self.timeCon = Time :: a) or
(self.tasks = (Task :: FIFTEEN -> including
(Task :: FIFTEEN)) and self.location = Location :: A and
self.timeCon = Time :: a ) or
(self. tasks = ( Task :: ONE -> including (Task :: EIGHT) ->
including (Task :: NINE) -> including(Task :: TEN) ->
including (Task :: TWELVE) -> including
(Task :: FOURTEEN)) and self.location = Location :: B and
self.timeCon = Time :: a)

context Person
inv no_eleven_fifteen : self.roles ->
forAll(r1 , r2 : Role |
(r1.tasks -> includes (Task :: ELEVEN) implies
(r2.tasks -> excludes (Task :: FIFTEEN))) and
(r1.tasks -> includes (Task :: FIFTEEN) implies
r2.tasks -> excludes (Task :: ELEVEN)))

inv no_sixteen_seventeen : self.roles ->
forAll(r1 , r2 : Role |
(r1.tasks -> includes (Task :: SIXTEEN) implies
(r2.tasks -> excludes (Task :: SEVENTEEN))) and
(r1.tasks -> includes (Task :: SEVENTEEN) implies
r2.tasks -> excludes (Task :: SIXTEEN)))

B.2 Generated Alloy Model for DDS’s STRBAC Model

module DDSV2
abstract sig Role{
location:one Location,
timeCon:one Time,
tasks:some Task,
uses:set Person}

one sig StateEpi extends Role{}
one sig JurisEpi extends Role{}
one sig ClinicEpi extends Role{}
one sig Clinician extends Role{}
one sig StateVC extends Role{}
one sig JurisVC extends Role{}
one sig LocalVCTeam extends Role{}

some sig Person{roles:some Role}

abstract sig Location{}
one sig A extends Location{}
one sig B extends Location{}
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one sig C extends Location{}
one sig D extends Location{}
one sig E extends Location{}

sig Time{}
sig a in Time{}
sig b in Time{}
sig c in Time{}

abstract sig Task{}
one sig ONE extends Task{}
one sig TWO extends Task{}
one sig THREE extends Task{}
one sig FOUR extends Task{}
one sig FIVE extends Task{}
one sig SIX extends Task{}
one sig SEVEN extends Task{}
one sig EIGHT extends Task{}
one sig NINE extends Task{}
one sig TEN extends Task{}
one sig ELEVEN extends Task{}
one sig TWELVE extends Task{}
one sig THIRTEEN extends Task{}
one sig FOURTEEN extends Task{}
one sig FIFTEEN extends Task{}
one sig SIXTEEN extends Task{}
one sig SEVENTEEN extends Task{}

fact StateEpi_stateEpiCon_fact{
all self: StateEpi | StateEpi_stateEpiCon[self]}

fact JurisEpi_jurisEpiCon_fact{
all self: JurisEpi | JurisEpi_jurisEpiCon[self]}

fact ClinicEpi_clinicEpiCon_fact{
all self: ClinicEpi | ClinicEpi_clinicEpiCon[self]}

fact Clinician_clinicialCon_fact{
all self: Clinician | Clinician_clinicialCon[self]}

fact StateVC_stateVCCon_fact{
all self: StateVC| StateVC_stateVCCon[self]}

fact JurisVC_jurisVCCon_fact{
all self: JurisVC | JurisVC_jurisVCCon[self]}
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fact LocalVCTeam_localVCTeam_fact{
all self: LocalVCTeam | LocalVCTeam_localVCTeam[self]}

fact Person_no_eleven_fifteen_fact{
all self: Person | Person_no_eleven_fifteen[self]}

fact Person_no_sixteen_seventeen_fact{
all self: Person | Person_no_sixteen_seventeen[self]}

fact Asso_Role_role_tasks_Task{
Role <: tasks in ( Role) set->some ( Task)}

fact Asso_Person_uses_roles_Role{
Person <: roles in ( Person) set->some ( Role) &&
Role <: uses in ( Role) some->set ( Person)}

fact Person_uses_roles_Role_symmetry{
Role <: uses = ˜(Person <: roles)}

pred StateEpi_stateEpiCon[self: StateEpi]{
(self.tasks = SIXTEEN + ONE + THREE + SEVENTEEN) &&
(self.location = A) && (self.timeCon = a)}

pred JurisEpi_jurisEpiCon[self: JurisEpi]{
((self.tasks = ONE+THREE) && (self.location = B) &&
(self.timeCon = a)) || ((self.tasks = SEVENTEEN) &&
(self.location = B) && (self.timeCon in Time))}

pred ClinicEpi_clinicEpiCon[self: ClinicEpi]{
((self.tasks = SEVENTEEN) && (self.location = C) &&
(self.timeCon in Time)) ||
((self.tasks = ONE+TWO+THREE+FOUR+FIVE+SIX) &&
(self.location = C) && (self.timeCon = a))}

pred Clinician_clinicialCon[self: Clinician]{
(self.tasks = ONE+TWO+THREE+FOUR+FIVE+SIX) &&
(self.location = C) && (self.timeCon = a)}

pred StateVC_stateVCCon[self: StateVC]{
((self.tasks = ELEVEN+FIFTEEN+ONE+EIGHT+NINE+
TEN+TWELVE+FOURTEEN) &&
(self.location = A) && (self.timeCon = a))}

pred JurisVC_jurisVCCon[self: JurisVC]{
((self.tasks = ONE+EIGHT+NINE+TEN+TWELVE+
FOURTEEN) && (self.location = B) &&
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(self.timeCon = a))}

pred LocalVCTeam_localVCTeam[self: LocalVCTeam]{
((self.tasks = SEVEN) && ((self.location = B) ||
(self.location = E)) && (self.timeCon = c)) ||
((self.tasks = THIRTEEN) && ((self.location = B) ||
(self.location = D)) && (self.timeCon = a)) ||
((self.tasks = ONE+NINE) && ((self.location = B) ||
(self.location = D)) && (self.timeCon = a))}

pred Person_no_eleven_fifteen[self: Person]{
all r1, r2: self.roles |
((ELEVEN in r1.tasks) => (FIFTEEN !in r2.tasks)) &&
((FIFTEEN in r1.tasks) => (ELEVEN !in r2.tasks))}

pred Person_no_sixteen_seventeen[self: Person]{
all r1, r2: self . roles |
((SIXTEEN in r1.tasks) => (SEVENTEEN !in r2.tasks)) &&
((SEVENTEEN in r1.tasks) => (SIXTEEN !in r2.tasks))}

assert NoConflictPermsSTVCAssigned{
all r: Person.roles, d: Time, l: Location|
((ELEVEN in r.tasks) && (d in r.timeCon) &&
(l in r.location)) =>
((FIFTEEN !in r.tasks) && (d in r.timeCon) &&
(l in r.location))}
check NoConflictPermsSTVCAssigned for 8

assert NoConflictPermsSTVC{
all r: StateVC, d: Time, l: Location|
((ELEVEN in r.tasks) && (d in r.timeCon) &&
(l in r.location)) =>
((FIFTEEN !in r.tasks) && (d in r.timeCon) &&
(l in r.location))}
check NoConflictPermsSTVC for 8

assert NoConflictPermsSTEpiAssigned{
all r: Person.roles, d: Time, l: Location|
((SIXTEEN in r.tasks) && (d in r.timeCon) &&
(l in r.location)) =>
((SEVENTEEN !in r.tasks) && (d in r.timeCon) &&
(l in r.location))}
check NoConflictPermsSTEpiAssigned for 8

assert NoConflictPermsSTEpi{
all r: StateEpi, d: Time, l: Location|
((SIXTEEN in r.tasks) && (d in r.timeCon) &&
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(l in r.location)) =>
((SEVENTEEN !in r.tasks) && (d in r.timeCon) &&
(l in r.location))}
check NoConflictPermsSTEpi for 8
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Appendix C

STARBACD SoD Violation Detection
Algorithm

C.1 Finding common predecessors in a DAG

Let V = {1,2, . . . ,n}. Given a subsetS of V, thecharacteristic vectorof S is a bit vector

that has a 1 in positioni if and only if i ∈ S. Representing a subset’s characteristic vector with

a bit array allows one to determine whetheri ∈ S in O(1) time.

In a directed graphG = (V,E), let the in-degreeof a vertexv be the number of edges

directed intov. That is, the in-degree ofv is the cardinality of the set{(u,v)|(u,v) ∈ E}.

Similarly, the out-degree ofv is the number of edges directed out ofv, that is, the cardinality

of the set{(v,u)|(v,u)∈ E}.

An undirected graph is a special case of a directed graph where, for every directed edge

(u,v), (v,u) is also a directed edge. In this case, we denote the pair{(u,v),(v,u)} by uv. The

underlying undirected graphof a directed graph is the graph obtained by adding(v,u) as an

edge whenever(u,v) is an edge.

In a directed graph, andin-neighboris a vertexu that has a directed edge(u,v) to v, and

anout-neighboris a vertexw such thatv has a directed edge(v,w) to w. If G is a DAG, let a

predecessorof vertexv be any vertexw such that there is a directed path fromw to v. Similarly,

a successorof v is any vertexu such that there is a directed path fromv to u. A vertex is a

sourcein a DAG if its in-degree is 0 and asink if its out-degree is 0. Apath tree rooted at

vertex wis a subset of the edges ofG that form a tree rooted atw, oriented away fromw, and
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reaching every successor ofw. (A DFS or BFS tree is a special case of a path tree.)

We consider variants of the following problem: Given a DAGG = (V,E) and a pair{u,v}

of vertices, determine whetheru andv have a common predecessor.

Let us call{u,v} aquery. Let n = |V| be the number of vertices,m= |E| be the number of

edges,k be the number of queries. Letp denote the number of sources ofG. We may assume

that every vertex has either in-degree or out-degree greater than zero, since vertices failing

this property are irrelevant to the problem and can be removed from the graph in linear time.

Thereforen = O(m), and a time bound ofO(n+m) can be simplified toO(m).

Let GT denote thetransposeof G, which is obtained by reversing the directions of all

edges ofG. That is,GT = (V,E′), whereE′ = {(v,u)|(u,v) ∈ E}. Given an adjacency-list

representation ofG, it is well known that it takesO(n+m) time to find the adjacency lists of

the transposeGT by radix sorting the edges using source vertex as the secondary sort key and

destination vertex as the primary sort key. An adjacency-list representation of a graph gives,

for each vertex, a list of out-neighbors; this gives, for each vertex, a list of in-neighbors.

C.1.1 A naive algorithm for the static and dynamic cases

If the numberk of queries is 1, the query can be answered inO(m) time by performing

depth-first search fromu in GT , marking all visited vertices, and then performing depth-first

search fromv in GT , determining whether any marked vertices are encountered.

A sequence ofk queries onk graphs, each withO(m) edges, takesO(km) time. This gives

a time bound ofO(km) for thedynamiccase where edges can be added to or deleted fromG

between queries, andm is the maximum number of edges the graph has at any point.

Some improvements whenk is large

Note thatk can be quadratic in the number of vertices. IfG is dynamic, then queries may

be repeated asG changes, and there is no upper bound onk. We consider the possibility of

better bounds thanO(km) in these cases.

In the static case, we observe that two vertices have a commonpredecessor if and only
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if they have a common predecessor that is a source. For each source w, we may label all

successors ofw by depth-first search. This gives each vertex at mostp labels. Moreover, if a

source is added to a vertex’s list of labels, we add it to the back of the list. That way, all lists of

labels are sorted in the order in which the sources were processed. This labeling takesO(pm)

time, and a query now takesO(p) time to determine whether the two query vertices share a

common label. Summarizing, this gives anO((k+m)p) algorithm to add the labels and then

process thek queries.

If k = o(p), this isO(mp), which is worse than theO(km) bound we got above. Ifp= o(k)

andk = O(m), the bound is stillO(mp), but this is asymptotically better than theO(km) bound

we got above, and ifm = o(k), then the bound isO(kp) which is also better thanO(km),

sincep = O(n) = O(m). Summarizing, this approach gives a better asymptotic bound when

p = o(k).

Adding edges toG between queries

Let us now consider how we might do better thanO(km) for the dynamic case ifk is large

and edges may be added, but not deleted. In this case, we may maintain a path tree rooted at

each sourcew. Below, we see that we maintain the invariant that the path tree is a DFS tree.

Vertices once again carryw in a sorted list of source labels if they are a successor ofw, that is,

if they are inw’s path tree.

Initially, we compute a path tree from each source using DFS.Let (u,v) be an added edge.

For each vertexw in u’s list of labels, we extend the DFS tree rooted atw by performing a

depth-first search fromv, retreating whenever a vertex labeledw is encountered. Let us call

this anincremental DFS. UsingO(p) space to store the characteristic bit vector of the set of

labels at each vertex allows us to look up whetherw is a label of a vertex inO(1) time, using

a total ofO(m+np) space. Ifv was previously a source, we may remove the tree rooted atv,

since it is no longer a source. It is trivial to do this inO(n) = O(m) time.

Each edge is traversed once over all incremental DFS’s onw, giving a bound ofO(m) to

update the path tree rooted atw over all edge insertions. The addition of an edge never creates
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a new source. This therefore gives anO(mp) bound for all updates to trees, wherep is the

initial number of sources.

Determining whether two vertices lie in a common DFS tree once again takesO(p) time,

for a total ofO((k+ m)p), wherem is the final number of edges inG. The analysis of when

this is better than theO(km) bound we obtained above is the same as it is for theO((k+m)p)

bound we got for the static case.

In fact, it is possible to implement this algorithm without recording the trees, and only

making use of the labels to guide the incremental DFS operations. However, if the trees are

maintained, an interesting observation is that this maintains the invariant that each tree is a

DFS tree. Suppose this is true forw’s treeTw before it was extended toT ′w due to the addition

of (u,v), giving a new graphG′. It is easy to see that in a DFS ofG′ where(u,v) is the last

edge considered atu, Tw is the state of the depth-first tree onG′ during a run of DFS just before

(u,v) is considered, where(u,v) is the last edge inu’s adjacency list.

C.1.2 Deleting edges fromG between queries

Let us now suppose that edges are only deleted fromG. For this, we maintain, for each

source, a path tree rooted at the source. Once again, each vertex is labeled with a sorted list of

sources that it is a successor of.

When a new source is created by the removal of an edge, we use DFS to get an initial path

tree for the new source.

It remains to describe how to update an existing path treeTw for a single sourcew after

deletion of an edge; path trees for all sources are updated with the same procedure.

When an edge(u,v) is removed fromG, we find whether(u,v) is an edge ofTw. If it is not,

Tw remains a path tree, and we are done.

Definition 55

Let w be a source, letTw be the current path tree rooted atw, and let(u,v) be an edge ofG

that is also an edge inTw and that is deleted fromG, yielding G′. Removal of(u,v) splitsTw

into two subtrees, the subtreeTv of Tw rooted atv, and the remainderT ′w of Tw. Thestatusof a
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vertex ofG′ is whether it is reachable fromw in G′.

Before the deletion of(u,v) the status of all vertices ofG is known: the ones that are

reachable fromw are just the vertices inTw, and the remaining vertices are not reachable.

Lemma 4

Deletion of(u,v) can only change the status of some vertices inTv from reachableto unreach-

able. If a vertexx of Tv continues to be reachable, then so does every vertex in the subtreeTx

of Tv rooted atx.

Proof Removal of an edge cannot make a vertex reachable fromw if it was not reachable

before, so the status of vertices not inTw does not change. The status of vertices inT ′w does not

change, since the edges of this tree give paths inG′ from w to every vertex inT ′w. Let y be a

vertex inx’s subtree ofTv. If x continues to be reachable, then there is a pathP of G′ from w

to x. Appending the unique tree path fromx to y in Tx to P yields a directed path fromw to y,

which implies thaty continues to be reachable.

The goal is to determine the new status of each nodex in Tv. Our strategy is to process the

vertices of unknown status in an order such that when it is time to make the status of a vertex

x known, the status of all in-neighbors ofx is known. This reduces the problem of determining

x’s status to that of determining whether it has an in-neighbor that is known to be a successor

of w.

Lemma 5

Let (v1,v2, . . .vn) be a topological sort ofG. If the status of vertices of unknown status is made

known in the order in which they appear in this sort, then whenit is time to make the status of

a vertexvi known, the status of all in-neighbors is known.

Proof By induction on the number of vertices whose status is made known, when it is time

to makevi ’s status known, the status of all earlier vertices in topological order is known. All

in-neighbors of a vertex are earlier in topological order.
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Let us give an overview of our strategy. Before beginning anyoperations on our initial

DAG, we assign topological sort numbers to the vertices. Deletion of an edge does not inval-

idate a topological sort, so this numbering remains a valid topological sort after any number

of edge deletions. Our strategy for obtaining our time boundis to take advantage of Lemma 5

by using a priority queue, keyed on topological-sort numbers, to dispense vertices ofTv in

topological order. By Lemma 5, when a vertexx is dispensed from the priority queue, the

reachability status of all in-neighbors is known. We determine whetherx is reachable fromw

by determining whether it has an in-neighbor that is reachable from w. Moreover, when an

in-neighbor is found to be unreachable, no subsequent edge deletion will make it reachable,

so after each edge deletion, if a vertexx is inserted and dispensed from the priority queue, we

may resume the search of its in-neighbor list where we left off the last timex was inserted and

dispensed from the priority queue. This ensures that over all edge deletions, each element of

x’s in-neighbor list is examined only once to determine whether it is reachable.

A critical element for our time bound is to observe the following constraint on which ver-

tices we can touch:

• Constraint: We touch a vertexx of Tv only if it becomes unreachable or has no reachable

parent inTv.

We accomplish this by insertingx to the priority queue only ifx = v or the status of its

parent inTv is found to be unreachable fromw. If a vertexx is determined to have a reachable

in-neighborz, then, by Lemma 4, all vertices inTx are reachable fromw, so we can include all

of them in the new path tree rooted atTw in O(1) time by adding(z,x) to the tree. This observes

the constraint by avoiding touching lower vertices inTx. If x is found not to be reachable, then

we can touch the children ofx in Tv. We insert these children in the priority queue.

Lemma 6

Vertices are dispensed from the priority queue in topological order.

Proof Whenx is extracted, it has an earlier topological number of any vertex in the priority

queue. If it is determined to be a successor ofw, no new vertices are inserted before another
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extraction. If it is determined not to be a successor ofw, its children inTv are inserted, and since

there is an edge ofG from x to each of these children, they have larger topological numbers

thanx does. In either case, the minimum topological number in the priority queue increases

every time a vertex is extracted.

We can now give the detailed implementation that gives the time bound. A given vertex

x might be inserted to the priority queue any time an edge is deleted. After the first timex is

inserted to the priority queue, we maintain a pointerxw into x’s in-neighbor list. The pointer

initially points to the beginning ofx’s in-neighbor list, and satisfies the following invariants:

• All elements ofx’s in-neighbor list that precedexw are known to be non-successors ofw

or have ceased to be in-neighbors ofx.

• After Tw is updated, ifx is a node ofTw, thenxw points to its parent inTw.

Wheneverx is inserted in the priority queue, it has lost its parent inTw or the parent has

ceased to be reachable fromw. In either case, we can advancexw without violating the first

constraint. We iteratively advancexw until we find an in-neighborz that is known to be a

successor of ofw, or reach the end of the in-neighbor list. Ifz is found, we leavexw pointing

to z, and makez x’s parent, satisfying the second invariant. If it is not found, we labelx as

unreachable and insert its children in the priority queue.

Lemma 7

The foregoing algorithm correctly updates the status of allnodes as reachable or not reachable

from w after an edge deletion, and modifiesTw to be a correct path tree.

Proof That the invariants are maintained onxw follows from the fact that once an in-neighbor is

labeled as unreachable, it is never relabeled as reachable,since edge insertions are not allowed.

That the status of the in-neighbors ofx are all correctly labeled wheneverx is extracted from

the priority queue follows from Lemmas 5 and 6. It follows that x is correctly labeled. Ifx

remains reachable, that the descendants ofx remain correctly labeled and included in a correct

path tree follows from Lemma 4. Sincex is an arbitrary node ofTv that is inserted to and

234



extracted from the priority queue, and all nodes ofTv are either inserted and extracted from the

priority queue, it follows that all vertices ofTv are either correctly labeled as non-successors of

w, or are correctly linked into a new path tree rooted atw.

Lemma 8

The above algorithm takesO(mlogn) time over all edge deletions.

Proof Every time a nodex is inserted to the priority queue,xw is advanced in its adjacency

list. The time spent over all insertions ofx in the priority queue isO(logn) times the in-degree

of x. The sum of in-degrees of all vertices isO(m), and the bound follows.

Lemma 9

Let p be the number of sources that appear during edge deletions onG. It takesO(pmlogn)

time to maintain the data structures for common-predecessor queries over all edge deletions,

and they support queries inO(p) time.

Proof The above algorithm for a given sourcew is carried out for each of theO(p) sources

whenever an edge is deleted, in sorted order of sources. Thisallows us to label each vertex with

a sorted list of sources that it has ceased to be a successor ofas a result of the edge deletion.

These can then be removed from its list of sources that it is reachable from inO(p) time. A

common-predecessor query takesO(p) time to determine, for the two given vertices, whether

the two sorted lists of sources that they are successors of contain a common element.
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Appendix D

ALLOY Specification of the Small
Healthcare Organization

module TrustRBACV5

open util/integer

abstract sig User{}

one sig Allen, Bell, Cox, Davis, Evans, Miller, Nelson exten ds User{}

abstract sig Role{}

one sig SeniorDoctor, JuniorDoctor, Assistant, Cardiolog ist, Surgeon,

Patient extends Role{}

// User Role assignment

one sig UserRoleAssign{URAsmember: User -> Role}

// User Role acquire

one sig UserRoleAcquire{URAcqmember: User -> Role}

// Role Hierarchy

one sig RoleHierarchy{RHmember : Role -> Role}

// User Role Assignments
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fact URAs{

UserRoleAssign.URAsmember =

Allen->(SeniorDoctor + Surgeon) + (Bell+Nelson)->(Junio rDoctor) +

Cox->(Cardiologist) +

Davis->(Assistant) + Evans->(Patient) + Miller->(Senior Doctor)}

// Role Hierarchy

fact RH{

RoleHierarchy.RHmember = SeniorDoctor->JuniorDoctor +

JuniorDoctor->Assistant}

// User Role Acquire

fact URAcq{

UserRoleAcquire.URAcqmember = UserRoleAssign.URAsmemb er +

(UserRoleAssign.URAsmember).ˆ(RoleHierarchy.RHmembe r)}

// Role Hierarchy are acyclic

fact NocycleRH{

all r: Role, RH: RoleHierarchy| r !in r.ˆ(RH.RHmember)}

// Cardinality Constraint

pred Cardinality(r: Role, uracq: User->Role){

(#((uracq).r) >= 1) &&

(#((uracq).r) <= 1)}

// Relation Constraint: Bi Complementary

pred Complement(u:User, r1, r2: Role, uracq: User->Role){

(u->r2 in uracq) <=> (u->r1 in uracq)}
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// Relation Constraint: Bi Conflict

pred SoD(u:User, r1, r2: Role, uracq: User->Role){

(u->r1 in uracq) => not (u->r2 in uracq)}

//Delegation (Grant)

pred Grant[u: User, r: Role, uracq, uracq’: User->Role]{

uracq’ = uracq + (u->r)}

//Delegation (Transfer)

pred Transfer[u1, u2: User, r: Role, uracq, uracq’: User->R ole]{

uracq’ = uracq + (u2->r) - (u1->r)}

run Transfer

//Relation violation in the presence of delegation (Transf er)

assert TestConflict3{

all u1, u2: User, r: Role, uracq, uracq’: User->Role|

((u1 = Allen) && (u2 = Bell) && (r=Surgeon) &&

(uracq = UserRoleAcquire.URAcqmember) &&

(u1->r in UserRoleAcquire.URAcqmember) &&

(u2->Assistant not in UserRoleAssign.URAsmember) &&

Transfer[u1, u2, r, uracq, uracq’]) =>

SoD[u2, r, Assistant, uracq’]}

check TestConflict3

//Relation violation in the presence of delegation (Transf er)

assert TestConflict4{

all u1, u2: User, r: Role, uracq, uracq’: User->Role|
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((u1 = Allen) && (u2 = Cox) && (r=Surgeon) &&

(uracq = UserRoleAcquire.URAcqmember) &&

(u1->r in UserRoleAcquire.URAcqmember) &&

(u2->Assistant not in UserRoleAssign.URAsmember) &&

Transfer[u1, u2, r, uracq, uracq’]) =>

SoD[u2, r, Assistant, uracq’]}

check TestConflict4
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