DISSERTATION

ACCESS CONTROL MODELS FOR PERVASIVE COMPUTING ENVIRONMEIST

Submitted by
Manachai Toahchoodee

Department of Computer Science

In partial fulfillment of the requirements
for the Degree of Doctor of Philosophy
Colorado State University
Fort Collins, Colorado

Summer 2010

COLORADO STATE UNIVERSITY

April 28, 2010

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER (B®J
SUPERVISION BY MANACHAI TOAHCHOODEE ENTITLED ACCESS CONTBL MOD-
ELS FOR PERVASIVE COMPUTING ENVIRONMENTS BE ACCEPTED AS FBILL-
ING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOP

Committee on Graduate work

Ross M. McConnell

Indrajit Ray

Stephen Hayne

Advisor: Indrakshi Ray

Department Chair: L. Darrell Whitley

ABSTRACT OF DISSERTATION

ACCESS CONTROL MODELS FOR PERVASIVE COMPUTING ENVIRONMEIST

With the growing advancement of pervasive computing teldgies, we are moving to-
wards an era where context information will be necessargdoess control. Traditional access
control models like Mandatory Access Control (MAC), Didavaary Access Control (DAC),
and Role-Based Access Control (RBAC) do not work well in tggnario for several rea-
sons. First, unlike traditional applications, pervasieenputing applications usually do not
have well-defined security perimeter—the entities an appbn will interact with or the re-
sources that will be accessed may not be known in advanceon8gthese applications are
also dynamic in nature—the accessing entities may chaegeurces requiring protection may
be created or modified, and an entity’s access to resourceshamge during the course of
the application, which make the resources protection duaipplication execution extremely
challenging. Third, pervasive computing applicationstireeknowledge of surrounding phys-
ical spaces to provide services; security policies desigoesuch applications must therefore
use contextual information. Thus, new access control nsaaled technologies are needed for
pervasive computing applications.

In this dissertation, we propose two types of access comioolels for pervasive computing
environments; one determine the accessibility based ospiduso-temporal constraints, and the
other determine the accesibility based on the trustwoedsrof the entities. The different fea-
tures of access control models may interact in subtle wagdtreg in conflicts. Consequently,
it is important to analyze and understand these models d#fey are widely deployed. The
other contribution of this dissertation is to verify the i@mtness of the model. The results

obtained by analyzing the access control models will entdideusers of the model to make

informed decisions. Toward this end, we propose automagedication techniques for our
access control models.

Manachai Toahchoodee
Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523
Summer 2010

ACKNOWLEDGEMENTS

| would like to take this opportunity to thank my advisor, fxssor Indrakshi Ray for her
constructive criticism, invaluable guidance, patientipgort, and continually encouragement,
which guided me through each step of my graduate studieslatd@io State University. Her
insightful advice and inspiring vision contributed to myrgenal life in the USA, my publica-
tions, and especially this dissertation. | always consmgself fortunate to be accepted as her
advisee and | hope someday | would be able to to mentor, gsaird provide such valuable
guidance to my students.

| would like to thank Professor Indrajit Ray for his continugohelp during my PhD study
and for teaching me the knowledge in computer security esibem the area of the access
control model which constructs the backbone of this dissiert. His invaluable comments
after the presentation of my preliminary results immentelp me to prepare my final presen-
tation. | would like to thank Professor Ross M. McConnell fis continuous kind support,
his unique way of teaching me about the algorithm, and hidribmrion in the graph algo-
rithm used for detecting the conflict in the STARBACD modekduld like to thank Professor
Stephen Hayne for his enthusiastic help, diverse suggestamd constructive comments dur-
ing the presentation of my preliminary results, which callgihelp me to improve the final
version of this dissertation. | also want to thank Profes3warles Anderson for his useful ad-
vice which helps me in preparation for the defense exam. Mykhk also to Professor Yashwant
Malaiya, Professor Robert France, and all faculty membeamputer Science department,
for helping me on subject knowledge and my professional grow

| would like to thank Sharon Van Gorder, Carol Calliham, Kiadith, Wayne Trzyna, and
all Computer Science department staffs, for granting mevarfall the time. Thanks to all

my friends and colleagues here, Geri Georg, Xing Xie, Ramasladunabi, Rinku Dewri,

Vv

HyunChul Joh, and Elliott Forney, for all their encouragetrend support. My special thanks
to all my friends at the Thai Student Association, for allitfseipport and for being my family
here.

To my parents Suith Toahchoodee and Yupha Sae-Khow, | thankor giving me your
appreciation during my study here. To all my brothers anetgsEkachai, Sumitra, Supattra
and Suvimol, | thank you for your inspiration and encouragetmYour unique way of support
is what keep me going through all the tough times here. | am@aike to thank my in-laws,
relatives, and friends for their support.

Last, but not least, | would like to express my deepest lowd gratitude to my wife
Supparat for her unconditional support. This accompligitmmeould not be possible with-
out your love, patience, and sacrifice. Thank you for betigwn me right from the beginning

of this journey. | love you.

Vi

DEDICATION

This dissertation is dedicated to my parents,
to my brother Ekachai,
to my sisters Sumitra, Supattra and Suvimol,

and to my wife Supparat.

Vil

1

TABLE OF CONTENTS

Introduction 1
1.1 Ubiquitous or Pervasive Computing 1
1.1.1 Pervasive ComputingModel 2
1.1.2 Pervasive Computing Environment 4
1.2 Problem Description and Motivation 6
1.3 ResearchGoalsandTasks. 7

1.3.1 Task 1. Investigate and identify the types and chariatits of policies

needed in pervasive computing environment and developyuwoiodels 8

1.3.2 Task 2. Develop a model verification methodology 9
1.4 Significance and Contributions 10
1.5 Dissertation Structure e 10
Related Work 12
2.1 AccessControlModel 12
2.1.1 AccessControl Matrix 21
2.1.1.1 AccessControlList 13
2112 CapabilityList 14
2.1.1.3 HRU System Protection Model 15
2.1.2 Discretionary Access ControlModel 16
2.1.3 Mandatory Access ControlModel 17
2.1.3.1 TheBell-LaPadulaModel 18
2.1.3.2 TheBiba'sIntegrityModel 18
2.1.4 The Clark-WilsonModel 91

2.1.5 Role-Based Access Control Model 20
2.1.5.1 Context Aware Role-Based Access Control Model 23
2.1.5.2 Temporal Role-Based Access Control Model 24
2.1.5.3 Spatial Role-Based Access Control Model 25
2.1.5.4 Spatio-Temporal Role-Based Access Control Model. .. . 25
2.1.6 Other Spatio-Temporal Access Control Models 27
2.2 Access Control Model Analysis 29
2.3 ChapterSummary e 2 3
The Spatio-Temporal Role Based Access Control Model 33
3.1 The Spatio-Temporal Role Based Access Control (STRBAGJel 35
3.1.1 Representing LocationandTime 35
3.1.1.1 RepresentinglLocation. 35
3.1.1.2 RepresentingTime 37
3.1.2 Relationship of Core-RBAC Entities with Time and Loca 38
3.1.21 USers. 38
3.1.22 Objects 38
3.1.23 Roles. 39
3.1.24 SEeSSIONS 40
3.1.25 Permissions 41
3.2 Impact of Time and Location on Role-Hierarchy 42
3.2.0.6 The Spatio-Temporal Permission Inheritance ktésa . . . 43
3.2.0.7 The Spatio-Temporal Role Activation Hierarchy 44
3.3 Impact of Time and Location on Separation Of Duty 46
3.3.0.8 The Spatio-Temporal Static Separation of Duty 46
3.3.0.9 The Spatio-Temporal Dynamic Separation of Duty 49
3.4 Impact of Time and Location on Delegation bl
3.5 ChapterSummary e e 75

4 The ALLOY Specification of STRBAC Model 59

4.1 Alloy Lightweight Modeling System 59
4.2 STRBAC Model in ALLOY 61
4.3 Using Alloy to Analyze the STRBAC-Embedded Application 71
4.3.1 Model Transformation fromUMLto Alloy 71
4.3.2 Mapping Class diagramand OCLtoAlloy 72
4.3.3 UML2Alloy. 73
4.3.4 Example Scenario: Dengue Decision Support System.. 74
4.3.4.1 DDS SecurityPolicies 75
4.3.42 DDSModelAnalysis 76
4.4 ChapterSummary o 3 8
5 A Spatio-Temporal Aware Role-Based Access Control with Oegation (STAR-
BACD) Model 85
5.1 Spatio-TemporalModel 86
5.1.1 Authorization in the Standard Model STARBACD 87
5.1.2 Authorization in the Strong Model STARBACD. 88
5.1.3 Authorization in the Weak Model STARBACD 90
5.2 Separation of Duties Constraints 90
5.3 Delegationin STARBACD 92
5.3.1 Delegation in the Standard Model STARBATD. 93
5.3.2 Delegation in the Weak Model STARBACD. 94
5.3.3 Delegation in the Strong Model STARBACD. 95
54 DynamismAnalysis. e 97
5.4.1 Algorithm for Detecting the Isolated Entity 97
54.1.1 Preliminaries. 97
5.4.1.2 The Detection Algorithm 98
5.4.2 Algorithm for Detecting the Infeasible Path 99
54.2.1 Preliminaries. 99

5.4.2.2 The Detection Algorithm 99

5.4.3 Algorithm for Detecting the SoD Violation 101
54.3.1 Preliminaries. 101
5.4.3.2 The Detection Algorithm 101
55 ExampleScenario 102
5.6 ChapterSummary e 041
The Extended STRBAC Model 105
6.1 OurModel. 105
6.1.1 Representing LocationandTime 105

6.1.2 Relationship of Core-RBAC Entities and Relationshwyith Time and
Location 107
6.1.3 Impact of Time and Location on Role-Hierarchy 111
6.1.4 Impact of Time and Location on Static Separation Ofyianstraints 115
6.1.5 Impact of Time and Location on Dynamic Separation dffiionstraints118

6.1.6 Impact of Time and Location on Delegation120
6.2 Graph-Theoretic Representation of the Model123
6.3 Example Application o . 128
6.3.1 DDS Security Policies o 281
6.4 ChapterSummary 311
The Analysis of an Extended STRBAC Model 133
7.1 ColouredPetriNets 133
7.2 The Extended STRBAC Model Analysis135
7.2.1 Isolated Entity Detection 136
7.2.2 Infeasible Path Detection 140
7.2.3 Delegation Constraint Violation Detection 142
7.2.4 SoD Violation Detection oL 145
7.2.5 Soundness and Completeness 147 .

Xi

7.3

7.4

Improving the Analysis Performance
7.3.1 Privilege AcquisitionGraph oL
7.3.2 DDS Example Privilege Acquisition Graph
7.3.3 Problem Detection using Privilege Acquisition Graph.
7.3.3.1 Infeasible Path Detection
7.3.3.2 SoD Violation Detection.

ChapterSummary e

A Trust-Based Access Control Model for Pervasive Computig Applications

8.1

8.2

8.3
8.4
8.5

Trust Modeling and Computation
8.1.1 Quantifying Properties,
8.1.2 Quantifying Experience
8.1.3 Quantifying Recommendations
8.1.4 Computing Trustworthiness
Our Trust-Based RBACModel
8.2.1 The StandardModel
8.2.2 The StrongModel
8.2.3 TheWeakModel
Separation of Duties Constraints
Example Scenario L

ChapterSummary e

Trustworthy Delegation in Role-Based Access Control Mode

9.1

Trust Modeling and Computation

9.1.1 Quantifying Properties
9.1.1.1 Measuring Necessary Attributgs
9.1.1.2 Measuring Role Attribut®
9.1.1.3 Computing the PropertiesValue

9.1.2 Quantifying Experience

Xii

9.1.3 Quantifying Recommendation 181
9.1.4 Computing Trustworthiness 181
9.2 Using Trust Values in DelegationChains182
9.3 Extrapolating TrustValues 184
9.3.0.1 SpecializationRelation 418
9.3.0.2 CompositionRelation 185
9.3.1 Computing the Degree of Specialization and Compmositi 186
9.4 Trust Computation for Example Application 186
9.5 ModelAnalysis e 88L
9.6 ChapterSummary e e 921
10 Conclusions and Future Work 193
10.1 Contributions 193
10.2 Future Research 196
10.2.1 The Representation of the Location Constraints 196
10.2.2 The Representation of the Time Constraints 197
10.2.3 Extension to Dynamic Workflow 197
10.2.4 ModelAnalysis 819
10.2.5 Dynamism Analysis 919
10.2.6 Implementation 002
A ALLQOY Specification of the Spatio-Temporal Role-Based Acess Control
Model 201

B Specification of the STRBAC Model for the Dengue Decision Siport (DDS) Sys-

tem 221
B.1 OCL Constraints for DDS’'s STRBAC Model 221
B.2 Generated Alloy Model for DDS’s STRBAC Model 223

Xiii

C STARBACD SoD Violation Detection Algorithm 228

C.1 Finding common predecessorsinaDAG228
C.1.1 A naive algorithm for the static and dynamiccases 229

C.1.2 Deleting edges fro® betweenqueries 231
D ALLOQY Specification of the Small Healthcare Organization 236
References 240

XV

11

1.2

1.3

2.1
2.2
2.3

4.1
4.2
4.3
4.4
4.5

5.1

6.1

7.1
7.2
7.3

LIST OF FIGURES

Pervasive computing framework. Middleware mediatésratctions with the net-
working kernel on the user’s behalf and keeps users immendbe pervasive
COMPULING SPACE. o o i e e e e e

Example of pervasive devices. (a) infrared and radiguieacy sensors for locator

badges reside throughout the Elite Care environment; fijleats use badges

as apartment keys and to locate service or summonhelp. 3
Pervasive computing environment e e 5
Access Control Lists 14
Capability Lists e e 15
RBAC Components o e e 20
Counterexample for assertion TestConfligttL 66
Counterexample for assertion TestConflici14. 67
Outline of the transformation method. 73
UML Model for the DDS's STRBAC i .. 77
Counterexample for Assertion NoConflictPermsSTvVC 83
STARBACD Configuration forExample 104
DDS System’s Access Control Graph 130
Simple exampleof CPNmodel 134
CPN Model for Isolated Entity Detection (Type 1) 139
CPN Model for Infeasible Path Detection 141

XV

3

7.4 CPN Model for Delegation Constraint Violation Deteatio. 144
7.5 CPN Model for Separation of Duty Violation Detection 146
7.6 DDS System’s Privilege AcquisitionGraph L. 154
7.7 Subgraph of the related entitiesmf., 157
7.8 Subgraph of the related entities of permission 16 and.17.. 158
8.1 TrustRBACModel 167
8.2 Access Control Model Configuration for Example175
9.1 ExampleofaTrustGraph. 182
10.1 Example of task dependencies in workflow198

XVi

2.1

4.1
4.2
4.3
4.4

5.1
5.2

6.1
6.2
6.3

7.1

8.1
8.2

LIST OF TABLES

Access Control Matrix 12

Informal mapping between UML and Alloy metamodel eleteen. 73
A Subset Of UML2Alloy TransformationRules 74
DDS Tasks List e 75

DDSRoleConstraints e e 76

STARBACD Entities forthe Example 103
STARBACD Relationships and Constraints103
DDS Permissions List. e 128
DDS Role-Permission Assignment Constraints129
DDS Relationshipsand Constraintso 132
New Relationshipsand Constraints 0. 155
Entitiesand TrustValues e 173
Relationships and Trust Constraints 174

XVii

Chapter 1

Introduction

Mark Weiser [88] has given the quote regarding the definiobpervasive computing as
“The most profound technologies are those that disappelaey Weave themselves into the

fabric of everyday life until they are indistinguishablerfn it.”.

1.1 Ubiquitous or Pervasive Computing

What is pervasive computing? Below are some definitions wegea from the Internet.

e “The trend towards an information environment in which gskave access to ICTs
throughout the environment. This trend is particularlyoassted with the growth of
wireless technologies that allow users to access onliernrdtion and services remotely
and synchronize data between different computers.”
(http://www.parliament.vic.gov.au/sarc/E-Democracy/F inal_Report/

Glossary.htm)

¢ “Inexpensive microprocessors embedded in everyday abgeud environments. Char-
acterized by being numerous, casually accessible, oft@sildhe computing devices,
frequently mobile or embedded in the environment and cdedet an increasingly
ubiquitous network structure.”
(http:/[framework.v2.nl/archive/archive/node/text/de fault.xslt/

nodenr-156647)

e “The use of a computing infrastructure that supports infation appliances from which
users can access a broad range of network-based servickesling Internet-based e-
commerce services. Pervasive computing thus provides ugtr the ability to access
and take action on information conveniently.”

(http:/lwww-03.ibm.com/ibm/history/reference/glossar y_p.html)

e “Ubiquitous computing (ubicomp, or sometimes ubigcompggnates computation into
the environment, rather than having computers which atendtobjects. Another term
for ubiquitous computing is pervasive computing. Pron®tdrthis idea hope that em-
bedding computation into the environment would enable [getmpmove around and in-
teract with computers more naturally than they currently ¢dtp://en.wikipedia.

org/wiki/Pervasive_Computing)

In summary, pervasive computing is a technology that relirethe computing and commu-
nication capability. This technology communicates with tiser in such a way that the user

merely recognizes its existence.

1.1.1 Pervasive Computing Model

The technology necessary to build a pervasive computinganwent fall into four broad
areas [70]: devices, networking, middleware, and appéioat Figure 1.1 [70] illustrates their

relationships.

Devices

Pervasive computing environment consists of various @etyipes interacting with each
other to serve common purposes (See Figure 1.2 [81] for thmpbe of pervasive devices).
These devices include traditional input devices, such as or keyboards, and output devices,
such as speakers or light-emitting diodes; wireless mal#lgces, such as pagers, personal
digital assistants, cell phones, palmtops, and so on; aiadlt stavices, such as intelligent ap-
pliances, floor tiles with embedded sensors, and biosenAbioperating together under the

middleware which mediates interactions among them. Inrtheervasive computing should

2

Pervasive
middleware

Applications I

Applications

Pervasive
networking \

Pervasive
device

Pervasive
device

User interface

User interface

Pervasive
device

User interface

Applications
——

Applications

Figure 1.1: Pervasive computing framework. Middleware iaes interactions with the net-
working kernel on the user’s behalf and keeps users immerséie pervasive computing
space.

be applied to all of these intelligent devices.

Figure 1.2: Example of pervasive devices. (a) infrared aébrfrequency sensors for locator
badges reside throughout the Elite Care environment; @jleats use badges as apartment
keys and to locate service or summon help.

Pervasive networking
Since the fundamental of the ubiquitous computing envireminis based on the commu-
nication between various devices in the network, the rapgvth of the number of pervasive

devices causes existing network technologies to be readvan addition to extending the

3

backbone infrastructure to meet the anticipated demanfaghetworks like the Internet also
must modify existing applications to completely integrdtese pervasive computing devices

into existing social systems.

Pervasive middleware

Like distributed computing and mobile computing, pervasiemputing requires a middle-
ware “shell” to interface between the networking kernel grelend-user applications running
on pervasive devices. As Figure 1.1 shows, this pervasidelleware will mediate interac-
tions with the networking kernel on the user’s behalf and Wélep users connected to the
pervasive computing space. The middleware will consisttipag firmware and software
bundles executing in either client-server or peer-to-peede. User interfaces are another as-
pect of middleware. Standard web browsers represent tieemd of interface sophistication.
Nonetheless, the usage of color, graphics, and controlmare than users typically expect on
pervasive devices. As a result, mobile computing has ajredbduced microbrowsers. For
example, phone.com’s UP.Browser is implemented on seeeramercially available digital

phones.

Pervasive applications

The unique property of the pervasive computing is that,liesemore on the surrounding
context than both web-based and mobile computing. The@gpdn will interact based on the
contextual information it perceives. Consider a heargoativearing an implanted monitor that
communicates wirelessly with computers trained to detedtraport anomalies. The monitor
should know when to raise the alarm, based on its knowledgatdabe environment and pa-

tient’s health record. Such scenario requires much moregimaple wireless communication.

1.1.2 Pervasive Computing Environment

Pervasive computing aims to simplify day-to-day life by yding mobile users with the

means to carry out personal and business tasks via portadbkenabedded devices [44]. These

tasks range from the simple—switching on the lights in aeafce room, checking e-mail, and
organizing meetings—to the more complex—booking airliciests, buying and selling stock, or
managing bank accounts. Pervasive computing environroétite near future will involve the
interaction, coordination, and cooperation of numeroasuyally accessible, and often invisible
computing devices and services. As Figure 1.3 [44] shovesedhilevices—whether carried on
our person or located in our homes, businesses, and classr@oll connect via wired and
wireless links to one another as well as to the global netimgrinfrastructure to provide more

relevant information and integrated services.

4—»;—;—-: [User 4 /
" User 2 pi———— |]‘
l/
= /‘?4_

—p Accessing services
= Ad hoc networking

User 1

Figure 1.3: Pervasive computing environment

1.2 Problem Description and Motivation

The growth of pervasive computing technology will spawnleggpions such as, the Aware
Home [22] and CMU’s Aura [27], that will make life easier foe@ple. Pervasive comput-
ing is revolutionary because it provides services and fanatities that use the knowledge of
surrounding physical places. Pervasive computing apgmicgatypically involve many entities
that may span different organizations interacting in car@nd subtle ways. Unconstrained
interactions result in security and privacy breaches. ispgibn design requires understanding
what resources an entity has access to, which entities uldlteract with, what information
can be released to an entity, how to protect the informatsedlor produced by an entity,
which entities can be trusted and to what extent, and hovettrast relationships change over
time.

Security and privacy are major concerns for such applinati€onsider a cardiac patient
living by himself in a smart home. Data collected by senssrsent to a monitoring service
which takes appropriate decisions when necessary. Pregatdta transmission to the moni-
toring service or sending false data may be fatal. Sendiogrtany false alarms can cripple
emergency services. Disclosing the patients health dgtaospective employers may cause
financial hardship and disclosing the data to unapprovedodocauses breach of privacy.
Comparing a patients report to unauthentic reports of gtaéents results in incorrect diag-
nosis. These severe consequences motivate the need tderosscurity and privacy issues
when designing secure pervasive computing applicatioesur8y policies and mechanisms
developed for traditional applications are inadequatg@wasive computing applications for

the following reasons:

1. Unlike traditional applications, pervasive computimpkcations have no definite secu-
rity perimeters —the entities an application will interadth or the resources that will be

accessed may not be known in advance.

2. These applications are also dynamic in nature—the dogesstities may change, re-

sources requiring protection may be created or modified,aandntity’s access to re-

6

sources may change during the course of the applicationted®nog resources during

application execution remains challenging.

3. Pervasive computing applications use the knowledge mbsnding physical spaces to
provide services which requires security policies to usgedual information. For in-
stance, access to a resource may be contingent upon thfochthe user and time of
day. This contextual information can be used to infer theviiets of the user and cause
a privacy breach. Contextual information must, therefbeeprotected by security and

privacy policies.

In the model which supports multiple features, such asahtlical structures, separation
of duties constraints, or delegation of authority, it isgbke that the different features of the
model might result in inconsistencies and conflicts. Couasatly, it is important to analyze
and understand these models before it is widely deployedh Y&spect to this aspect, our

second proposition is motivated by the following obse/adi

1. Nowadays, there are very few verification approachesqs&g for the access control

verification. Most of them are either non-automated, eprone, or hard to use.

2. Interaction between various access control model featoan lead to conflict which
could result in the denial of service, or security breache €kisting researches focus
more on modeling the functionality of access control modelthe best of our knowl-
edge, none of the proposed works deal with the verificatiothefinteraction among

access control model functionalities.

1.3 Research Goals and Tasks

Motivated by the open issues listed in the previous sectrothis Ph.D. dissertation, we

propose access control models for pervasive computingcapipins, which are capable of:

1. Granting or denying an access decision in the pervasinguabtng systems where the
entities an application will interact with or the resourtleat will be accessed may not

be known in advance.

2. Granting or denying an access decision in such dynamitasicewhere the accessing
entities may change, resources requiring protection maydeed or modified, and an

entity’s access to resources may change on the fly.
3. Using the knowledge of space and time to provide accéisgito resources for the user.

To ensure the correctness of the models, the proposed mmdslsalso be analyzed. In
this Ph.D. dissertation, we propose a methodology to véniéycorrectness of access control

models. The proposed methodology can:

1. Automatically detect the existence of conflicts betwea#emrnt features in the proposed

access control model.

2. Detect conflicts taking into account the dynamic aspeidissomodel, when the entities

and interactions between them are modified on the fly.

We decompose the research into three tasks. All these taskhesive and related to
each other, serving the major goals as: (i) to propose theexbaware access control models
for pervasive computing environments; and (ii) to propdseverification methodology for the

access control models. The set of tasks are described itsdatthe following Sections.

1.3.1 Task 1. Investigate and identify the types and charaetistics of
policies needed in pervasive computing environment and delop
policy models

A pervasive computing application typically collects infaation from a wide variety of
sources, aggregates it, processes it, and distributesdiffeyent users. The nature of the
interactions with different sources are not always wellridi Much of the information that
is exchanged is sensitive and must be protected. Sengitmenation is protected by different
kinds of policies. In the first task, first we need to evaluat kinds of policies needed and
develop suitable policy models for use in pervasive conmguaipplications.

A policy model formalizes the syntax and semantics of sugabpolicies and provides

guidelines for their development. Researchers have pegpadidferent kinds of models to for-

8

malize policies, including the Bell-Lapadula (BLP) mod&l] and the Biba model [14]. The

Role-Based Access Control (RBAC) model [23, 24, 40, 75, g6]sed by commercial orga-
nizations and formalizes the access control policies inramercial environment. However,

traditional models cannot be used for pervasive computpgli@tions because they do not
capture the notion of physical context.

Since RBAC model is the de facto standard, flexible, and poleutral, we decided to base
our work on the RBAC model. There are several ways in which RBAust be extended. We
need to explicitly capture the notion of context. We mustgnate the contextual information
to the existing entities in RBAC and formalize the contekt@nstraints to support both au-
thorization and delegation policies. ldentifying the iraptnat the context has on entities and

their relationships is a major concern in this task.

1.3.2 Task 2. Develop a model verification methodology

It is widely known that different features of RBAC such aderoierarchy and SoD, interact
in subtle ways resulting in inconsistencies and confliatgprbper resolution of conflicts may
cause security breaches. Consequently, it is importamatyze and detect the discrepancy
before the model is deployed. In this task, we intend to dgvalverification method to verify
the correctness of the model.

Manual analysis is tedious and error-prone. Analyzersdasgheorem proving are hard
to use, require expertise, and need manual interventionleMzheckers are automated but are
limited by the size of the system they can verify.

We will focus on the properties and interaction betweeneddit features of the access
control model. We will analyze these properties and defineethadology to detect conflicts
that may occur between the features of the access contralmak will classify all kinds of
such conflicts with respect to different context.

Making a thorough analysis and giving a complete list of gotsflis the major challenge
of this task. Developing a verification methodology for thedal is another big challenge in

this part.

1.4 Significance and Contributions

The research conducted in this dissertation is significemnthis research, we address the
need of a novel access control model for pervasive competimgonments. We then develop
access control models to support the security requirenmetitel context-aware environment.
This research is among the earliest works in extending RBASCipport contextual constraints.

Moreover, this research seems to be the first work in anaiythi@ possible conflicts among
the constraints in RBAC model. We show how we can model thessccontrol model, and
automatically check for its consistency. Finally, we shawlour approach can be adapted to
the complicated real-world application which are typigatiodeled as workflows.

Contributions of this research are summarized below:

1. It proposes access control models that use contextuahmation to make access deci-

sions.

2. It proposes access control models that are suitable fardic applications where access

rules may change during the course of the application.
3. Itillustrates how to describe the syntax and semantitisesfe models.

4. It provides techniques for analyzing the interaction afiaus features of the access

control models.
5. It describes approaches for analyzing the interfereheeaess control constraints with

application requirements.

1.5 Dissertation Structure

The rest of the dissertation is organized as follows. Chaptiescribes the related work.
Chapter 3 discusses our Spatio-Temporal Role Based AcaassoCmodel. Chapter 4 dis-
cusses how we can analyze and verify correctness of ourdspatnporal Role Based Access

Control model by using the automated tool called Alloy. Gleap proposes the second model

10

called a Spatio-Temporal Aware Role-Based Access Contitbl Belegation (STARBACD)
model. The development of the model is based on graph repeggm, which is well-formed
semantics. Chapter 6 discusses the extension of the Sfatiporal Role Based Access Con-
trol model and its graph-theoretic representation. Chiaptdescribes how the model can be
transformed into the form of Coloured Petri-Nets to enabéegdutomatic verification. Chapter
8 discusses the other approach of developing the accesslaootel for pervasive computing
environment based on the trustworthiness between theesntiChapter 9 demonstrates how
such trustworthiness can be used in the delegation opeatihhow we can ensure the security

of the system after the delegation was performed. Chapteod@udes the dissertation.

11

Chapter 2
Related Work

Our work consists of two research areas: access controllmaodeaccess control model
analysis. In this chapter, we provide an overview of thevaaiework categorized by the areas

of our research.

2.1 Access Control Model

In the past three decades, various types of access conta#lsbave been proposed. In
this chapter, we review the background and describe diffempproaches of access control

model and access control model analysis.

2.1.1 Access Control Matrix

The access control matrix was defined by Lampson in [47]. 8€centrol matrix [25, 47,
52] is a two-dimensional matrix representing subjects ertlvs and objects on the columns.
Each entry in the matrix contains teecess attributespecifying the access privileges held by

subjectSto objectO. Table 2.1 shows the example of access control matrix.

Table 2.1: Access Control Matrix

Filel File2 | File3 | Processl
Alice Read, Write| Read | Write | —
Bob - - - Suspend
Charlie| Read Read| Read | —

12

From Table 2.1, subjecilice may read or write objedFEilel, since ‘Read’ and ‘Write’
appear in the corresponding access control matrix entrmil&ly, subjectBob may suspend
objectProcessl

In a large system, the access matrix will be enormous in sizéd,most of its entries are
likely to be empty. As a result, the access matrix is verylyaraplemented as a matrix. We
now discuss two common approaches to implementing the accasix in practical systems

[76].
2.1.1.1 Access Control List

In Access Control List (ACL) implementation, each objectassociated with an ACL,
indicating for each subject in the system the accesses thecsus authorized to execute on
the object. This approach corresponds to storing the miagroolumns.

It is easy to determine which access privileges subjectswarently granted for that object
by using the ACLs. In other words, ACLs provide for convenigrcess review with respect to
an object. Itis also easy to revoke all access to an objectacing the existing ACL with
an empty one. However, ACL implementation makes it diffitaltdetermine all the accesses
that a subject has. To do that, it is necessary to examine@heofevery object in the system
to do access review with respect to a subject. Similarly|libecesses of a subject need to
be revoked, all ACLs must be traversed. In practice, revogaif all accesses of a subject
is often done by deleting the user account correspondinigatiosubject. This is acceptable if
a user is leaving an organization. However, if a user is rgasd within the organization it
would be more convenient to retain the account and changeviteges to match the changed
assignment of the user. ACLs corresponding to the accessotbst in Table 2.1 is shown in

Figure 2.1.

13

Filel ———) Alice Charlie
Read

Read
Write

-_ 3 [Alice —| charlie
Read Read

Alice —»| Charlie
Write Read

Process1|—3» Bob

Suspend

Figure 2.1: Access Control Lists
2.1.1.2 Capability List

The dual approach to the ACL is ti@apability List Each subject is associated with a
list, called the capability list, indicating for each obj@tthe system, the access privileges the
subject is authorized to execute on the object. This approagesponds to storing the access
matrix by rows. The capability lists of Table 2.1 are showrFigure 2.2. In this approach,
it is easy to review all accesses that a subject is authotzeérform, by simply examining
the subject’s capability list. On the other hand, detertnomeof all subjects who can access a
particular object is cumbersome. It requires examinati@ach and every subject’s capability
list. Moreover, implementing this approach also causedlitfieulties in adding or removing
protected objects to the system. If such case should hapipeiaccess privileges have to be

updated to all capability lists in the system.

14

Alice f——pp| Filel File2 File3
Read Write
Read

Write

Bob) Processl

Suspend

|Char”e| | Filel —»| File2 —»| File3

Read Read Read

Figure 2.2: Capability Lists
2.1.1.3 HRU System Protection Model

Harrison et al [26] propose a HRU model—-a formal protectigsteam model based on the
access matrix model. To manage the authorization polieythbtection system consists of (1)

a finite set of generic right], and (2) a finite se€ of commands of the form:

commanda (Xg, X, ..., Xk)
if riin (Xs;,%o,) @nd
) in (X527X02> and

Fm in (Xs, Xop)

then
oM
10]9)

opn

end

15

Each command body consists of primitive operatignand the condition as shown above.
The body of the command is allowed to execute only if the sgdgecified in the condition
parts exist in the access control matrix. The authors dssabsut the safety property of the
HRU command which could affect the safety of the system. Ff®p, the formulation of
safety system can be summarized as follow: The system isfehi there exists a command
which causes the leakage of right from one place to anotla&eph the access matrix. It is
later shown in the literature that the safety problem of §stesm is, in generaljndecidable
However, the work shows that the problendiscidablein the mono-operational case, where

the body part of the command consists of only one primitiverapon.

2.1.2 Discretionary Access Control Model

Discretionary Access Control (DAC) Model [26, 52, 76] resB the accessibility to objects
based on the identity of subjects and/or groups to which feégng. Each request of a user to
access an object is checked against the specified authonz#at the access control matrix. If
there exists an authorization stating that the user carsathe object in the specific mode, the
access is granted, otherwise it is denied. As the name isplie controls are discretionary in
the sense that a user or process given discretionary acciegsrimation is capable of passing
that information along to another subject. To provide thézigetionary control, DAC policies
usually include a concept of object ownership, where thealgwner has control permission
to grant access permission to the object for other subjects.

DAC policies are very flexible and widely used in the industdpwever, they do not pro-
vide a high security assurance for two reasons [23, 76]t,Rire granting access is transitive.
For example, a user who is able to read data can pass his ligdegerto other users not au-
thorized to read it unbeknownst to the object owner. SecbAd; policies are vulnerable to
Trojan Horseattacks. ATrojan Horseprogram is the one that appears to be doing one thing on
the surface but actually does something more undernealioutithe cognizance of the user.
Because programs inherit the identity of the invoking udes,intruder can bypass the access

control policies by giving the authorized user ffrejan Horseprogram, which on the surface

16

performs the desirable function for that user, while at #raes time reads the contents of user’s
files and writes them to the reachable location for both thkaized user and the intruder. In
this manner, the intruder can now access the informatiochwas supposed to be protected

from him.

2.1.3 Mandatory Access Control Model

The Mandatory Access Control (MAC) policies are known to béreed to prevent théro-
jan Horseproblem [23]. An important goal of MAC is to enforce infornat flow policies to
ensure confidentiality [11] and integrity [14]. This can lmad by augmenting the discretionary
access control with the mandatory access control. To gnardadcessibility, MAC takes a two-
step approach. First, each subject’s access privilegesdstio the discretionary access control
matrix are checked. These privileges can be modified by stshs mentioned earlier in Sec-
tion 2.1.2. However, having authorizations stored in the=as control matrix is not sufficient
to perform the operation. In addition, the operation musabthorized by the MAC policy,
over which subjects have no control. MAC policies goverreasmn the basis of classification
of subjects and objects in the system. With regard to thisehaecurity levels are assigned
to subjects and objects. The security level associatedamitbbject, also called security clas-
sification, reflects the sensitivity of the information cained in the object, i.e, the potential
damage which could result from unauthorized disclosura@fiformation. The security level
associated with a subject, also called security clearaeflects the subject’s trustworthiness
not to disclose sensitive information to subjects not @ddo see it [74, 76]. Security levels
may related with each other through the dominance relatipnghe dominance relationship
is defined as follow [74]:

Definition 1 (Dominance)
A> B (read afA dominate®3) if and only if the information can flow fror8 to A. The strictly
dominates relation- is defined byA > B if and only if A > B andA # B. We say thaA andB

arecomparablaf A> B or B > A, otherwiseA andB areincomparable

17

Together with the dominance relationship, these secueigls generally form a lattice
structure. Hence, MAC policy is sometimes referred to asteéabased policy [74]. We now

discuss different types of the mandatory access controemod
2.1.3.1 The Bell-LaPadula Model

Bell and LaPadula [11, 74] formalized the model to proteetitifiormation confidentiality.
With respect to the security level of objects and subjedtts, Bell-LaPadula (BLP) model
[11, 23, 74] grants accessibilities based on two propefti¢s

e Simple-Security Propertysubjects can read objeat only if A(s) > A(0) whereA(s) and

A(0) are security level o§ ando (no-readupproperty)

e x-Property (Star-Property)Subjects can write objeco only if A(s) < A(0) (no-writedown

property)

With the simple-security property, we can prevent subj&cis being able to read infor-
mation that dominates their clearance level and«tipeoperty prevents subjects from writing
the information to the lower security level. Satisfactidrboth properties ensure the system
confidentiality. However, the system still lacks the systatagrity because the-property al-
lows the subject at the dominated security level to writetii@mation to an object belonging
to the dominating security level. Hence, the subject carupdthe information at dominating

level.
2.1.3.2 The Biba’s Integrity Model

As the name imply, Biba [14] designed the Biba model to adhtbe information integrity.
Unlike BLP model, the accessibility in Biba model is basedfmmintegrity level. The access

is granted with respect to two properties [74]:

e Simple-Integrity PropertySubjects can read objeab only if w(s) < w(0) wherew(s)

andw(0) are integrity level ot ando (no-readdowrproperty)

18

¢ Integrity x-Property: Subjects can write objecb only if w(s) > w(0) (no-writeupprop-

erty)

Satifying both properties prevent the information fromenpity violation. However, the
model suffers from the confidentiality problem because ttegrity x-property allows the
subject to write his data to the object of the lower integeigssification (lower secrecy). This
can later lead to the Trojan Horse problem.

To overcome those problems discussed in Sections 2.1.8.2.4r8.2, a composite model
which can achieve both confidentiality and integrity is resedSandhu describes in [74] how

to combine the BLP model and the Biba model using latticeshieae such model.

2.1.4 The Clark-Wilson Model

Clark and Wilson described the differences between comalexed military security re-
quirements in [20]. The authors argue that MAC policies ladequate flexibility, and the
primary concern for most commercial applications is thenmfation integrity, rather than se-
crecy. Integrity refers to the accuracy and authenticitynédrmation, as well as the need to
ensure that objects are modified only in authorized ways byosized personnel [23].

To ensure the information integrity, the model relies on priociples [20, 23]:

¢ Well-formed transactionsThis constraint ensures that all data that starts in thelvali

state will remain in valid state after the execution of tfangaction.

e Separation of dutiesThis constraint prevents the authorized subjects from fyiog)
the information in the improper way. This goal is achievedseparating all critical
operations into multiple subparts and requiring differpatson perform each subpart.
For example, to authorize the check, we divide the procaeireck issuing@ndcheck
authorizing Check issuingask has to be done by the clerk, wheleeck authorizingask

has to be done by the account manager.

Unlike the BLP and Biba models, where the accessibilityereln the information flow

controlled at the operating system kernel level. In Clarks@h’s approach, the model ensures

19

that information is modified only in authorized ways by authed people. Such requirement
relies on the application-level controls which yield moexible control that cannot be achieve

from the kernel level controls [23].

2.1.5 Role-Based Access Control Model

Role-based access control model [24] is used for addresisengccess control needs of
commercial organizations. In RBAC permissions are attd¢beoles and users must be as-
signed to roles to get the permissions. Permissions determihat operations can be carried
out on resources under access control. A user must estab$ishsion to activate a subset of
roles to which the user is assigned. Each user can activatglawsessions, however, each
session is associated with only one user. The operatiohsithser can perform in a session
depend on the roles activated in that session and the péomgsassociated with those roles.
RBAC also supports role hierarchies. Role hierarchies dedminheritance relationship be-
tween roles. To prevent conflict of interests that arise irogganization, RBAC allows the
specification of Static and Dynamic Separation of Duty c@msts. The summarization of

RBAC components can be shown in Figure 2.3.

Role Hierarchy

-1: v;
y User h/\, Permission .
Users * Assigiment), Roles < Assignment Operations
4 .]
\ f & Permissions

USer_sessions session_roles

SoD

essions

Figure 2.3: RBAC Components

RBAC approach provides several benefits [23, 24, 40, 75,ntdiding:

20

e Security Managemen®BAC model specifies user authorizations by breaking tlsk ta
into two parts, one which assigns users to roles and one vessigns permissions for
objects to roles. This greatly simplifies security managameor instance, suppose a
user’s responsibilities change, say, due to a promotiore Uder’'s current roles can be
taken away and new roles assigned as appropriate for theasponsibilities. Similarly,
if there are any changes in the permission assignment® tiasges can be done at the
role level without having to apply the changes to all usersd Aince the role structure
of the organization does not change frequently, assignemmissions to role make the

permissions management task easier.

e Data Abstraction:Instead of the read, write, execute permissions typicatbhyided by
the operating systems, RBAC can establish abstract paomgssuch as credit and debit

on an account object.

e Group Objects:RBAC provides a classification of users according to thevdiets they
execute. Similarly, such classification should be proviftedbjects. Objects could be
classified according to their type (letters, manuals) oir éqgplication area (commercial
letters, advertising letters). Access authorization®tEs should then be on the basis of
object classes, not specific objects. For example, a segreti@ can be given the au-
thorization to read and write the entire class of letterstagad of giving it explicit autho-
rization for each single letter. This approach has the adggnof making authorization
administration much easier and better controlled. Moredhe accesses authorized on
each object are automatically determined according toyihe of the object without the

need of specifying authorizations upon each object credii6].

e Least Privilege PrincipleUser is allowed to be assigned to multiple roles. This allows
an user to sign on with the least privilege required for thei@aar task at hand. Users
authorized to powerful roles do not need to exercise thenh tiniose privileges are ac-
tually needed. This minimizes the danger of damage due uveréent errors or by

intruders masquerading as legitimate users [76].

21

e De Facto StandardNowadays, RBAC is widely used as an industrial standard328,

e Support Role HierarchyThe structure of an organization in terms of lines of autiyori
can be modeled as an hierarchy. This organization strucamebe easily reflected in
RBAC in the form of a role hierarchy [75]. Role hierarchy isedation among roles.
Roles higher up in the hierarchy are referred te@sior rolesand those lower down are
junior roles. The major motivation for adding role hierarchy to RBAC wassimplify
role management. Senior roles can inherit the permissibps@r roles, or a senior
role can activate a junior role, or do both depending on theraaof the hierarchy.
This obviates the need for separately assigning the sanmiggons to all members

belonging to a hierarchy.

e Support Separation of DutieSeparation of duties (SoD) enables the protection of the
fraud that might be caused by the user [80]. SoD constramdgsrre that the invoca-
tion of mutually exclusive roles be required to complete asge/e task [75]. Hence,

a deliberate fraud is more difficult to perpetrate becauseqires collusion of two or
more individuals or parties. RBAC supports invoking SoDstoaints both statically and

dynamically.

¢ Policy Neutrality:RBAC is policy neutral. It can be configured to model the sfpeation
of other access control e.g. MAC policies in which system iadstrator maintains the
access matrix or DAC policies in which users create and @kdurity policies for their

devices [53, 59, 60, 73].

The Spatio-Temporal Role-Based Access Control (STRBAC)ehproposed in this dis-
sertation is an extension of NIST RBAC model [23, 24]. Thesastons are with respect to
augmenting the time dimension and location dimension t@d¢ne components of the existing

RBAC model.

22

2.1.5.1 Context Aware Role-Based Access Control Model

With the increase in the growth of wireless networks and @easd mobile devices, re-
searchers have also worked on extending RBAC to recogrezenttitext information to support
the ubiquitous computing applications.

Sampemane et al. [71] present a new access control modealtiee apaces. Active space
denotes the computing environment integrating physiatep and embedded computing soft-
ware and hardware entities. The active space allows inteeagxchange of information be-
tween the user and the space. Environmental aspects aredda the access control model
for active spaces, and the space roles are introduced miomihlementation of the access con-
trol model based on RBAC. The model supports specificatiddAC policies in which system
administrator maintains the access matrix and DAC policieshich users create and update
security policies for their devices.

Covington et al. [22] introduce environment roles in a gaheed RBAC model (GRBAC)
to help control access control to private information armgbtgces in ubiquitous computing
applications. The environments roles differ from the satyjeles in RBAC but do have similar
properties including role activation, role hierarchy argaration of duty. In the access control
framework enabled by environment roles, each element ofilgsion assignment is associated
with a set of environment roles, and environment roles atigadied according to the changing
conditions specified in environmental conditions; in thigywenvironmental properties like
time and location are introduced into the access controidsgork. In a subsequent work [21],
Covington et al. describe the Context-Aware Security Astture (CASA) which is an imple-
mentation of the GRBAC model. The access control is provigethe security services in the
architecture. In CASA, polices are expressed as roles amdgea by the security manage-
ment service, authentication and authorization servicesised to verify user credentials and
determine access to the system resources. The envirorimaatactivation services manage
environmental role activation and deactivation accordiitpe environment variables collected
by the context management services.

Ya-Jun et al. [89] propose Trust Based Access Control (TBAE extension of the Role

23

Based Access Control model (RBAC), for ubiquitous compuapplication where users are
not known in advance. The access privileges of a user deankis trust level which in turn
depend on contextual information. The model is based ondbie IRBAC model and does not
take into account the role hierarchy and separation of domgiraint. Our work also focuses
on such feature of RBAC. Moreover, we also study on the etietust on the operation such
as delegation of authorities.

Chakraborty et al. [17] propose another trust-based atiteon model called TrustBAC.
The model is the extension of the hierarchical RBAC modelthla model, user can activate
the role and invoke the permissions assigned to that roledoas histrust level User’s trust
level can be obtained from the calculation based on thraeraeuser’s past behavior, knowl-
edge about user, and recommendation provided by otherg #imuser. The trust level will
be updated periodically. Chakraborty’s model also intazdthe concept afrust dominance
which is equivalent to the inheritance hierarchy. The mduelever, does not take into ac-
count the activation hierarchy nor the separation of duty. {@ust-based access control model

fills in this gap.
2.1.5.2 Temporal Role-Based Access Control Model

Other extensions to RBAC include the Temporal Role-Baseckss Control Model (TR-
BAC) proposed by Bertino et al. [12]. This work adds the tinraehsion to the RBAC model.
The authors in this paper introduce the concepbtd enablingandrole disabling Temporal
constraints determine when the roles can be enabled orleisab role can be activated only
if it has been enabled. Joshi et al.[40, 41, 43] extend thikWwy proposing the Generalized
Temporal Role Based Access Control Model (GTRBAC). The awtidentify two basic types
of temporal hierarchy. The first is the permission inhea&hierarchy where a senior rote
inherits the permission of a junior role The second is the role activation hierarchy where a
user assigned to a senior role can activate a junior role.alitfeors also propose Time-Based
SoD. In [40, 42, 43], the authors discuss two forms of SSolhhe existing of temporal

information—theWeak Formand Strong Form The Weak Form states that no two conflicting

24

roles can be assigned to the same user at the same time. ©hg Sorm is equivalent to the
non-temporal RBAC i.e. it states that no two conflicting sotan be assigned to the same user
at any time. The same semantics can be applied to the DSoDmdHtel focus on the User-
Role assignment only. The definition of SoD in our proposedi@hds based on the one in
GTRBAC model. However, we enhance the constraints to sugpatial information. More-
over, we fill the gap existing in GTRBAC model by introduciigtdefinition of the other form

of SSoD (Permission-Role assignment).
2.1.5.3 Spatial Role-Based Access Control Model

Researchers have also extended RBAC to incorporate sipditichation [13, 64]. Bertino
etal. propose the GEO-HRBAC-the GEO-RBAC model suppothed@patial Role-Hierarchy
in [13]. In GEO-HRBAC model, role activation is based on tbedtion of the user. Moreover,
the senior role can inherits permissions assigned to it®juonle only when the user of the
senior role is in junior role’s enabled location. The modeés not deal with separation of
duties.

Another work incorporating spatial information is by Rayadt [64]. Here again, the
authors propose how each component of RBAC is influenceddatitmy. The authors define
their formal model using the Z specification language. Radednchy and separation of duties

are not addressed in this paper. None of these works disctiesenpact of time on location.
2.1.5.4 Spatio-Temporal Role-Based Access Control Model

Incorporating both time and location in RBAC is addressedséyeral works [18, 72].
Chandrans work combines the main features of GTRBAC and GBBC. Here again, role
is enabled by time constraints. The user can activate tleeifrthe role is enabled and the
user satisfies the location constraints associated with aotivation. Our Spatio-Temporal
RBAC model is closely related to this work. The similaritytigat in both the models role
activation occurs when temporal and spatial constrairgssatisfied. However, there are a
number of points where we differ. First, in Chandran’s wadte assignment is not dependent

on location or time. A number of motivating examples indéctitat role assignment should be

25

dependent on role and time. Consequently, we incorporadehture in our model. Second,
in Chandran’s work, when a role can be activated all the pEsioms associated with the role
can be invoked. This may not be true in real world. For ingtarcsystem administrator’s
role can be activated from 9:00 a.m. to 9:00 p.m. everydayvdver, he can perform backup
only during 8:00 to 9:00 p.m. on Fridays. Chandran’s modehoaexpress this situation. We
associate a permission with additional location and teadpgmmstraints that must be satisfied
before a permission can be invoked. Third, Chandran’s wodsdot discuss the impact of
location and time on role hierarchy or separation of duty. pMgose different types of time
and location based hierarchy and separation of duty conttrena our model which will be
useful for real-world applications.

Samuel et al. [72] propose GST-RBAC which incorporates lmgioal spatial constraints
to the existing GTRBAC model. The authors do this by augnmenGTRBAC operations,
namely, role enabling, user-role assignment, role-pesigmsassignment, and role-activation
with spatial constraints. The operations are allowed drilyd spatial and temporal constraints
are satisfied. The model also introduces the notion of SpRbtée Hierarchy and Spatial
Separation of Duty (spSoD) constraints. Although the gdahe model is similar to our
work, Samuel’s model is different from our work in variouspaints. First, again the spatial
and temporal constraints are not applied to the permississigned to role. When a role can
be activated all the permissions a ssociated with the raldeanvoked. This may not be true
in the real world as illustrated by the example in the sumnedr€handran’s work. Second,
Samuel’s work only discuss the permission inheritance tfp®le hierarchy. This may not
be sufficient in the real world. For example, a project managay be able to activate the
code developer role but we should not allow him to inherithpissions from the developer
role for the responsibility purpose. To resolve this scenave also include the role activation
hierarchy in our work. Third, in Samuel’s work, the hieraozh relationship mainly focus on
the spatial constraints. The model assume that both seslie@and junior role are temporally
enabled i.e. both roles satisfy the temporal constrairtigs dlso may not be true. For instance,

the account auditor role may inherits all permissions framdccountant role. He can use the

26

inherited permissions at any time and at any place. We assdtie time as well as location
constraints in our model to handle such requirement. FoGdmuel's work discuss only the
dynamic separation of duty. We argue that this might not lugh for the real world. For
instance, we cannot allow the check writer and check awtborole to be assigned to the same
user. Consequently, we include the static separation of subur model. Fifth, Samuel’s
work does not incorporate time constraints into the sewaratf duty. Two conflict roles are
allowed to activate if user is in the different location chgithe same time period when both
roles are enabled. This may not sufficient for the real watichion. For example, if a user has
activated the Graduate Teaching Assistant role in his gffieeshould not be able to activate
the role of Lab Operator at anywhere during the same timegefio handle this situation, we
also incorporate the time constraints into both types oasspn of duties in our work.

Chen and Crampton develop the graph based representatitire fspatio-temporal RBAC
in [19]. All RBAC components are represented by verticeslevthe assignment and hier-
archical relationships are represented by the edges ofitbeted graph. The model can be
categorized into three types i.e. standard, strong, and werlel. For the standard model,
component is said to be authorized to componemtif all vertices along the authorization
path satisfy the spatio-temporal constraints. For thengtimodel, component; is said to
be authorized to componew if all vertices together with the edges along the authoiorat
path satisfy the spatio-temporal constraints. And in thakvaodel, componeny; is said to
be authorized to componewy if both vertices satisfy the spatio-temporal constrainie
model has a well-defined semantics. However, it does noeaddeparation of duty or delega-
tion constraints. It also does not take into account theigpaimporal attributes of the object

before determining access.

2.1.6 Other Spatio-Temporal Access Control Models

Location-based access control has been addressed in aihies mot pertaining to RBAC
[27, 48, 63]. Many researchers have developed the non-RB#ggd access control which

support the usage of spatio-temporal information.

27

Atluri and Chun [5, 6] propose the Geospatial Data AuthdriaModel (GSAM), which
is the authorization model for the Geospatial informatidhe accessibility to the information
is provided based on the relationship between the geospaiect and the credential of the
requester, which is the requester geospatial informaflonaccess the specific geospatial in-
formation of the object, the credential that the user owntbasatch with the corresponding
credential expression defined as an authorisation for thiatb The authorization is valid only
during the specified period which defined by the temporal t&irthe authorization.

Ardagna et al. [4] present the Location-Based Access Cb(itBAC) model. In this
model, the requester can be granted or denied access byirpéek location as well as her
credentials. The examples of the location-based infoonatf the requester used in the model
are: the location of the requester, her velocity, and the bmmof people in that location.
All these information form the location conditions whictidacan be used to determine the
accessibility of the requester.

Yu et al. [90] propose LTAM, a location-temporal authorisatmodel which focuses on
controlling access to the different locations. For exampleess rules may have temporal
constraints that can specify when a user can enter or leaeatdn or how many times a user
can enter a location. However, it does not address the idswbaye and when a subject can
access a given object. And since this model is based on DAiparation management is
non-trivial.

Pu et al. [61] present the context access control modega&IACM, which integrates
the context information to thd CONagc usage control model. To access the resource, the user
must satisfy the predefined combination of authorizatibfigation, and condition constraints.
The value of conditional status can be changed as the emveotal situation is being changed
(e.g. the change of time, location associated with userhelteless, the impacts on the model
components as a result from introducing the context inféionare not mentioned in the work.

Context Sensitive Access Control (CSAC) [29] proposed byselosch et al. focus on
using context information such as time, location, velottgontrol the accessibility of services

while preserving the privacy of user information. Hengartet al. [27] discuss how location

28

information pertaining to a user can be securely accessed.

2.2 Access Control Model Analysis

A lot of work also appears in the area of analysis of securitcpes. Researchers have
used formal logic for specifying authorization policiestbat they can be analyzed. Many
work appears that attempt to analyze RBAC specificationgneSlsave used the Z modeling
language for specifying RBAC [91] and LRBAC [64]. AlthoughlZnguage can represent
RBAC and its constraints in the formal manner, the languéggfilacks the tool to support
the automatic analysis of the formalized model. Others heezl an extension of the Uni-
fied Modeling Language (UML) [65] called parameterized UMLvisualize the properties of
RBAC constraints. The model describes how one can visudizeonflicts that may occur
with RBAC constraints. However, it still lacks the ability perform automatic model analysis.

Researchers have also advocated the use of Alloy for madBBAC specifications. In
[92], Zao et al. model basic features of RBAC, role hierarcnyd static separation of du-
ties. The author briefly illustrates how to use Alloy to mothed Bell-LaPadula access control
model.

Schaad et al. model user-role assignment, role-permisssignment, role hierarchy, and
static separation of duties features of RBAC extensionguéitoy in [77]. The authors do not
model role activation hierarchy, dynamic separation ofedubr the delegation operation. The
authors briefly describe how to analyze conflicts in the cdragéthe model.

Samuel et al. [72] illustrate how GST-RBAC can be specifiedllay. They describe how
the various GST-RBAC functionalities, that is, user-raésignment, role-permission assign-
ment, and user-role activation, can be specified by Alloyweleer, this work does not focus
on how to identify interactions between features that tesudonflicts.

Although Alloy supports automated analysis, it has limatas with respect to the types
of verifications it can perform. For example, analyzing anderstanding the behavior of the
application using Alloy is non-trivial. Such analysis iseded for dynamic systems where

we need to ensure that the system does not enter an undestatd. Towards this end, re-

29

searchers [7, 39, 46, 49, 62] have investigated alterngimaphes, such as, Coloured Petri
Nets (CPNs) [35, 38, 46] for automated analysis. CPN allomesto represent the model in a
graphical language, has a well-defined semantics and hasatgd tools for doing simulation
and verification.

Rasmussen and Singh [62] show how CPN is used in designirgRH&MA C96 intruder
alarm system. The interactions of components were model@dexrified using CPN to detect
if the configurations have any conflicts. CPN has also beed irsaccess control model
verification. Jiang et al. [39] develop a CPN model to verifg security properties of the Bell
LaPadula (BLP) model. Laborde et al. propose the use of ClPldrfalyzing the traditional
RBAC-based policies of network security mechanisms in.[4®j]s work focuses on verifying
confidentiality, integrity, availability, and filtering es.

Lu et al. [49] show how access control properties of workfloass be verified using CPNs.
Specifically, they describe how to formalize the control flauthorization rules, and separation
of duty constraints in a workflow in the presence of role atton hierarchy. The authors first
show how to model each part (namely, control flow, authowratules, and separation of
duty) in isolation. Subsequently, the authors propose anoaggh for producing the integrated
model which allows one to study the interactions of the patsh as RBAC authorization
policy with separation of duty constraints. Reachabilibalgsis is used to detect conflicts
between the features. The size of the integrated modelasesexponentially when new
entities are added. To prevent state explosion during edaldly analysis, the authors introduce
two rules for reducing the size of the model. The model aredyzy the authors do not support
many features which are needed in workflow applicationsmgs=ion inheritance hierarchy,
separation of duty for permission-role assignment, andgidion.

Atluri et al. [8] propose an authorization model to use forkilows. The model specifies
constraints that allows authorized subjects to gain acmeske required objects for the dura-
tion of the task. Subsequently, the authors extend this wdupport task-based separation
of duty constraints and show how this extended model can éeifsgrl using CPN [7]. The

authors then show how to do a reachability analysis to chdeither the given tasks can be

30

executed in the presence of authorization constraints.

Shafiq et al. [78] show how the various constraints of GTRB#&@:h as, cardinality con-
straints, SoD constraints, and role hierarchy can be mddeliemg CPN. The reachability anal-
ysis reveals the presence of infeasible paths where aly eatiinot invoke the privileges as-
signed to him. However, analyzing the interaction of caaists is not discussed in these
works.

Samrat et al. [51] demonstrate how to analyze the propesfi€TRBAC model using
timed automata. The authors propose the methodology teftnan GTRBAC into the state
transition model. The model maps the behavior of the GTRBA@monents such as users,
roles, and permissions. The different behaviors of comptnare captured by creating the
timed automaton corresponding to each types of interagtidrdesirable set of security prop-
erties is constructed from the GTRBAC constraints. Thespgties are later used for the
model verification process. The verification process is matccally done by using a time
automata based verification tool called Uppaal [9, 10]. é&litph, this approach makes it pos-
sible to perform an automated analysis of the model, thexdvem major limitations. First,
because the number of timed automaton is varied by the nuofilsemponents, the approach
is affected by the state space explosion problem. Therebergying the large scale system
by using this approach still remains a challenge. And secoechuse every time the changes
occur to the components of the relationships between thHessdt of the corresponding timed
automatons have to be changed i.e. the existing timed atbos\enust be updated or the new
timed automatons must be added. The process of adding otingdhae timed automatons
requires some time. This makes this approach not suitablthépervasive computing ap-
plication which the configuration is frequently changed.r @ork present a methodology to
reduce the scope of analysis to rectify the former issue.tl@tatter issue, our verification
methodology can handle such changes in the access contdal menfiguration by updating
only the set of relationships or components affected by tbdification of the access control

model configuration while the core part of the verificationdeloremains unchanged.

31

2.3 Chapter Summary

In this chapter, we briefly discuss the work related to tweeaesh areas in which this
dissertation is focusing on, namely, the access controleinmald its analysis. Regarding the
access control model, our research indicated that nonesétivork provide an access control
model which fully support the requirements of the pervasmputing applications discussed
in Chapter 1. In subsequent chapters, we will discuss owsaccontrol models which fulfill

this gap.

32

Chapter 3

The Spatio-Temporal Role Based Access
Control Model

Our preliminary investigation reveals the following: Pasiwe computing applications need
different kinds of policies for protecting sensitive resmes. Authorization policies will be used
to protect resources from unauthorized access. Simpl@adzdtion policies are specified by
subject, object, and permissions, where the permissi@wfgpvhat operations the subject can
perform on the object. More complex authorization poli@éso have conditions specifying
access constraints. Consider our running example the @acgpdtient living by himself in
a smart home. Simple authorization policies may be definatlatiow only the responsible
doctor to be able to monitor the patient’s data collecteddmsers in the smart home. Policies
are needed to prevent unauthorized disclosure or modditafithe data that is transmitted to
the different sensors.

For critical applications, delegation policies are needédlelegation permits subjects to
temporarily transfer some of their privileges to other sgbg. Pervasive computing applica-
tions are dynamic in nature and the set of users and resoaree®t known in advance. It
is possible that a user/role for doing a specific task is teandp unavailable and another
user/role must be granted access during this time to completThis necessitates that the
model be able to support delegation. Moreover, differepésyof delegation needs to be sup-
ported because of the unpredictability of the applicatidrdelegation policy may also have

conditions suggesting the delegation constraints. Famel& a delegation policy will enable

33

the emergency room doctor to temporarily put the cadio paxertoring the cardiac patient’s

heart rate to a sleep mode. If the local hospital does not tpaakfied cardiologists to evaluate
the patient’s condition, the job is delegated to externplegts. The responsible cardiologist
may specify the conditions the experts must satisfy befoegjab can be delegated (for in-
stance, working experience in the area of cardiology).

In pervasive computing applications, the access decisiansot be based solely on the
attributes of users and resources. For instance, we mayagaass to the patient information
be enabled when a doctor enters a patient room and it to bleledsavhen he leaves the room.
Such types of access control can only be provided if we tak@@mmental contexts, such
as, time and location, into account before making accessides. Thus, the access control
model for pervasive computing applications must allow far specification and checking of
environmental conditions.

As a result of our study different access control models, @gded to base our work on the
RBAC model for the following reasons: First, reinventingeankind of access control is the
time consuming process. Since RBAC is widely use as an industandard, developing the
model based on RBAC reduces the complexity in the implentientphase. Second, RBAC
model has powerful access control management. In RBAC, ipsions are assign to roles
not to users, hence, if there are any changes in the permiasgignments, those changes
can be done at the role level without having to apply the charng all users. Since the role
structure of the organization does not change frequergbigaing permissions to role make
managing permissions easier. Furthermore, RBAC supponisept of role hierarchy. In role
hierarchy, the senior role in the hierarchy inherits allhpissions assigned to junior role. This
idea helps us to avoid the redundancy in assigning the sarogmamissions to the senior role.
Third, RBAC supports separation of duty constraints ane@gkgion of authority. Basically,
separation of duty states that no single individual shoakkltontrol over two or more phases
of a transaction or operation. Thus, a deliberate fraud isenddficult to perpetrate because
it requires collusion of two or more individuals or partidsinally, RBAC is policy neutral.

It can model the specification of other access control pedicsuch as MAC or DAC policies

34

[53, 59, 60, 73] as well.
In this chapter, we describe how we incorporate the spatiggbral constraints to the com-

ponents of RBAC model.

3.1 The Spatio-Temporal Role Based Access Control (STR-
BAC) Model

In order to extend the RBAC model to be able to use the spatigoral information to
determine whether a user has access to a given object, wetmesdlerstand how RBAC
components and their relationships are affected by spatnporal information.

From Section 3.1.1 to 3.1.2, we propose the STRBAC modeliesiti Next, we discuss
the spatio-temporal role hierarchies in Section 3.2. Thengescribe the variations of spatio-
temporal separation of duty constraints in 3.3. The prelary version of this model has been

proposed in [67, 83].

3.1.1 Representing Location and Time
3.1.1.1 Representing Location

In order to perform location-based access control, we ne@eétform operations on loca-
tion information and protect the location information. Imstsection, we formalize the concept
of location [13, 18] and propose the location comparisorratoes that are used in our model.

There are two types of locationghysicalandlogical. All users and objects are associated
with locations that correspond to the physical world. Thasereferred to as the physical
locations. A physical location is formally defined by a setpoints in a three-dimensional
geometric space.

Definition 2 (Physical Location)
A physical locationPLog is a non-empty set of point§pi, p;, ..., Pn} Where a pointpy is

represented by three co-ordinates.

Physical locations are grouped into symbolic represetatthat will be used by appli-

cations. We refer to these symbolic representations asdblgications. Examples of logical

35

locations are Fort Collins, Colorado etc.
Definition 3 (Logical Location)

A logical location is an abstract notion for one or more pbgkiocations.

We assume the existence of two translation functionandn, that convert from logical
locations to physical locations and vice-versa.
Definition 4 (Mapping Functions mand n)
mis a total function that converts a physical location int@gital one.n is a total function
that converts a logical location into a physical one. Bdte the set of all possible physical

locations and. be the set of all logical locations. The following formakzde functions.

e m:P—L.
em:L—P
e For any logical locatioh.og, m(m'(Log)) = Log.

e For any physical locatioRLog;, m'(m(PLocg;)) = PLog;.

Different kinds of relationships may exist between a paiooétions. We discuss one such
relationship, known asontainmentthat will be used in this paper. Containment formalizes
the idea whether one location is contained within anotmeuitively, a physical locatiomploc;
is contained in another physical locatiplog,, if all points in ploc; also belong tglog,. This

is formalized as follows.

Definition 5 (Containment Relation)

A physical locationploc; is said to be contained in another physical locatng,, denoted
as, plocj C plog, if the following condition holds:vp; € plocj, pi € plog. The location
plog; is called the contained location aptbg is referred to as the containing or the enclosing
location. A logical locationllocy, is contained inlloc,, denoted asllocy, C llocy, if and
only if the physical location corresponding li@cy, is contained within that oflocy, that is

m' (llocm) € M (llocy).

36

Note that, a physical location may be contained in a logmeiion or vice-versa. In such
cases, we use the mapping functions to convert the logicatitns into physical ones and then
test whether one is contained within the other. We assumexiséence of a logical location
calleduniversethat contains all other locations. In the rest of the sectwom do not discuss

physical locations any more. The locations referred to@gechl locations.
3.1.1.2 Representing Time

Our model uses two kinds of temporal information. It is neeesg to distinguish between
these two kinds of information because they have very diffesemantics. The first is known
as time instant and the other is time interval. Time can beesgmted as a set of discrete points

on the time line.

Definition 6 (Time Instant)

A time instanis one discrete point on the time line.

The exact granularity of a time instant will be applicati@pdndent. For instance, in some
application a time instant may be measured at the nanoséeegichnd in another one it may
be specified at the millisecond level.

Definition 7 (Time Interval)
A time intervalis a set of time instances. When the time instances makingn uipt@rval are
consecutive, we refer to the interval as@ntinuousone. Otherwise, the interval is said to be

non-continuous

Example of a continuous interval is 9:00 a.m. to 3:00 p.m. bthDecember. Example
of a non-continuous interval is 9:00 a.m. to 6:00 p.m. on Maysdo Fridays in the month of
March. Some researchers refer to time intervals as timesegmns. We use the notatipr d
to mean that; is a time instance in the time intenal

Two time intervals can be related by any of the following tiellas: disjoint, equality, and
overlapping Two time intervalsy; andtv; are disjoint if the intersection of the set of time
instances intv; with those oftv; results in the null set. Two time intervalg andtv; are equal

if the set of time instances ity; is equal to those afvj. Two time intervalsy; andtv; are

37

overlapping if the intersection of the set of time instanices/; with those oftv; results in a
non-empty set. A special case of overlapping relation isrretl to asontainment A time
intervalty; is contained in another interval; if the set of time instances itv; is a subset of

those intv;. We formally denote this as; < tv;.

3.1.2 Relationship of Core-RBAC Entities with Time and Locadion

In this section, we discuss how the different entities oEd®BAC, namelylUsers Roles

SessionsPermissionsandObjects are associated with location and time.
3.1.2.1 Users

We assume that each valid user, interested in doing somedoesensitive operation, car-
ries a locating device which is able to track his locatione Tdcation of a user changes with
time. The relatiotJ serLocatiorju, t) gives the location of the user at any given time instant
Since a user can be associated with only one location at &ey gioint of time, we have the

following constraint:

UserLocatioriu,t) = |; AUserLocatioriu,t) = 1; < (I C1j) v (I; C ;)

We define a similar functiob serLocationgu, d) that gives the location of the user during
the time intervald. Note that, a single location can be associated with meltiyslers at any

given point of time.
3.1.2.2 Objects

Objects can be physical or logical. Example of a physicatctig a computer. Files are ex-
amples of logical objects. Physical objects have devicggtansmit their location information
with the timestamp. Logical objects are stored in physibgats. The location and timestamp
of a logical object corresponds to the location and time efghysical object containing the
logical object. We assume that each object is associatédong location at any given instant
of time. Each location can be associated with many objecke flinctionObjLocation(o,t)

takes as input an objectand a time instanceand returns the location associated with the

38

object at time. Similarly, the functionObjLocations(o,d}jakes as input an objeotand time

intervald and returns the location associated with the object.
3.1.2.3 Roles

We have three types of relations with roles. These are wéemssignment, user-role acti-
vation, and permission-role assignment. We begin by fogusn user-role assignment. Often
times, the assignment of user to roles is location and tinpem@ent. For instance, a person
can be assigned the role of U.S. citizen only in certain chedegd locations and at certain times
only. To get the role of conference attendee, a person mgistee at the conference location
during specific time intervals. Thus, for a user to be assignele, he must be in designated
locations during specific time intervals. In our model, arusast satisfy spatial and temporal
constraints before roles can be assigned. We capture tthighéa concept ofole allocation
A role is said to baallocatedwhen it satisfies the temporal and spatial constraints nefte
role assignment. A role can be assigned once it has beeratdtbdRoleAllocLogr) gives
the set of locations where the role can be allocatRdleAllocDugr) gives the time inter-
val where the role can be allocated. Some ®t=An be allocated anywhere, in such cases
RoleAllocLogs) = universe Similarly, if role p can be assigned at any time, we specify
RoleAllocDuKp) = always

Some roles can be activated only if the user is in some spémtitions. For instance, the
role of audience of a theater can be activated only if the issierthe theater when the show
is on. The role of conference attendee can be activated bt iuser is in the conference
site while the conference is in session. In short, the usest satisfy temporal and location
constraints before a role can be activated. We borrow theegrofrole-enabling[12, 43] to
describe this. A role is said to abledif it satisfies the temporal and location constraints
needed to activate it. A role can be activated only if it hasrbenabled RoleEnableLog)
gives the location where rotecan be activated aridoleEnableDufr) gives the time interval
when the role can be activated.

The predicaté) serRoleAssigfu,r,d,|) states that the useris assigned to role during

39

the time intervald and locationl. For this predicate to hold, the location of the user when
the role was assigned must be in one of the locations whemkaallocation can take place.
Moreover, the time of role assignment must be in the interaén role allocation can take

place.

UserRoleAssigh,r,d,)
= (UserLocatioriu,d) =) A (I C RoleAllocLogr)) A (d C RoleAllocDucr))

The predicaté serRoleActivatgy,r,d,|) is true if the useu activated role for the interval
d at locationl. This predicate implies that the location of the user duthmgrole activation
must be a subset of the allowable locations for the activadkdand all time instances when
the role remains activated must belong to the duration whemdle can be activated and the

role can be activated only if it is assigned.

UserRoleActivatgy,r,d,|)
= (I C RoleEnableLog@)) A(d C RoleEnableDufr)) AUserRoleAssigu,r,d,|)

The additional constraints imposed upon the model neeg¢ssithanging the preconditions
of the functionsAssignRoleand ActivateRole The permission role assignment is discussed

later.
3.1.2.4 Sessions

In mobile computing or pervasive computing environments, ivave different types of
sessions that can be initiated by the user. Some of thesersesan be location-dependent,
others not. Thus, sessions are classified into differerestyEach instance of a session is
associated with some type of a session. The type of sesstanes is given by the function
Typds). The type of the session determines the allowable locafidre allowable location
for a session typst is given by the functiorBessionLogt). When a useu wants to create
a sessiorsi, the location of the user for the entire duration of the sessnust be contained
within the location associated with the session. The pegdiessionUséu,s,d) indicates

that a useu has initiated a sessi@Tor durationd.

40

SessionUséun, s,d) = (UserLocatioru,d) C SessionLod yp€s)))

Since sessions are associated with locations, not all calege activated within some ses-
sion. The predicat8essionRol@,r,s,d,|) states that userinitiates a sessiosand activates

a role for duratiord and at location.
SessionRolg,r,s,d,|) = UserRoleActivateu,r,d,|) Al C SessionLo@ yp€s)))
3.1.2.5 Permissions

The goal of our model is to provide more security than thaiditional counterparts. This
happens because the time and location of a user and an olgetetken into account before
making the access decisions. Our model also allows us tolmealevorld requirements where
access decision is contingent upon the time and locaticyceged with the user and the ob-
ject. For example, a teller may access the bank confideng&af ind only if he is in the bank
and the file location is the bank secure room and the accesariteg only during the working
hours. Our model should be capable of expressing such egents.

Permissions are associated with roles, objects, and apesatWe associate three additional
entities with permission to deal with spatial and tempoaaistraints: user location, object lo-
cation, and time. We define three functions to retrieve theegof these entitie®ermRoleLo(p, r)
specifies the allowable locations that a user playing therrolust be in for him to get permis-
sionp. PermObjLo¢p, 0) specifies the allowable locations that the obotust be in so that
the user has permission to operate on the olge®ermDur(p) specifies the allowable time
when the permission can be invoked.

We define another predicate which we td?ParmRoleAcquire(p,r,d,l)This predicate is true
if role r has permissiom for durationd at locationl. Note that, for this predicate to be true,
the time intervatd must be contained in the duration where the permission canbked and
the role can be enabled. Similarly, the locatiomust be contained in the places where the

permission can be invoked and role can be enabled.

PermRoleAcquirg,r,d,)

41

= (I C (PermRoleLogp,r) N"RoleEnableLog)))A
(d C (PermDur(p) "RoleEnableDur)))

The predicaté®ermU serAcquireu, o, p,d,|) means that usar can acquire the permission
p on objecto for durationd at locationl. This is possible only when the permissipns
assigned some rolewhich can be activated durindyand at locatior, the user location and
object location match those specified in the permissiondthrationd matches that specified

in the permission.

PermRoleAcquirg,r,d,|) AUserRoleActivateu,r,d,|)A
(ObjectLocatioffo,d) C PermObjectLogp, 0)) = PermU serAcquireu,o, p,d,)

3.2 Impact of Time and Location on Role-Hierarchy

The structure of an organization in terms of lines of autiyaran be modeled as an hier-
archy. This organization structure is reflected in RBAC ia tbrm of a role hierarchy [75].
Role hierarchy is a relation among roles. This relationassitive, and anti-symmetric. Roles
higher up in the hierarchy are referred to as senior rolestaosk lower down are junior roles.
The major motivation for adding role hierarchy to RBAC wasitmplify role management. A
properly design role hierarchy allows efficient specificatand management of access control
structure of the system.

Senior roles can inherit the permissions of junior roles senior role can activate a junior
role, or do both depending on the nature of the hierarchys @hviates the need for separately
assigning the same permissions to all members belongingierarchy.

In the environment where the accessibility is based on the &nd location, it is necessary
that the role hierarchy should evaluate the spatio-tenhpd@amation before allow the senior
role to inherits the junior role’s permissions or activdte junior role. In our model, each of

these hierarchies may be constrained by location and teahpamstraints.

42

3.2.0.6 The Spatio-Temporal Permission Inheritance Hienehy

In the permission inheritance hierarchy, a senior roleherits the permission of a junior
roley. By incorporating various time and location constraints,a&n have a number of differ-
ent hierarchical relationships in our model that are descrbelow.

Definition 8 (Unrestricted Permission Inheritance Hierarchy)
Let x andy be roles such that >y, that is, senior rolec has an unrestricted permission-
inheritance relation over junior rolg In such a casex inheritsy's permissions but not the

locations and time associated with it. This is formalizedodisws:
(x >y) APermRoleAcquirg,y,d,|) = PermRoleAcquirgp, X, always universe

Here, a senior role inherits the junior roles permissionsnat the spatial and temporal
constraints associated with it. For examplecount auditorole inherits the permissions from
theaccountantole but he can use the permissions at any time and at any. place
Definition 9 (Time Restricted Permission Inheritance Hierachy)

Let x andy be roles such that >; y, that is, senior rolex has a time restricted permission-
inheritance relation over junior role In such a cases inherit'sy's permissions together with

the temporal constraints associated with the permissibris. i$ formalized as follows:
(x >t y) APermRoleAcquir@,y,d,|) = PermRoleAcquirg, X, d, universe

Here, a senior role inherits the junior role’s permissioasthe duration when the permis-
sions are valid are those that are associated with the jusl®r For example, aontact author
can inherit the permissions of tlaeithoruntil the paper is submitted.

Definition 10 (Location Restricted Permission InheritanceHierarchy)
Let x andy be roles such that > y, that is, senior rol& has a location restricted permission-
inheritance relation over junior role In such a cases inherit'sy's permissions together with

the location constraints associated with the permissibis i€ formalized as follows:

(x> y) APermRoleAcquirg,y,d,|) = PermRoleAcquirgp, X, always|)

43

Here, a senior role inherits the junior roles permissiorigheese permissions are restricted
to the locations imposed on the junior roles. For exampl@pasecret scientishherits the
permission otop secret citizewnly when he is in top secret locations.

Definition 11 (Time Location Restricted Permission Inheritance Hierarchy)

Let x andy be roles such that > vy, that is, senior rolex has a time-location restricted
permission-inheritance relation over junior rgleIn such a cases inherit's y's permissions
together with the temporal and location constraints assediwith the permission. This is

formalized as follows:
(x >y y) A PermRoleAcquirg,y,d,|) = PermRoleAcquirg, x,d, 1)

Here, a senior role inherits the junior roles permissiogstioer with the spatial and tempo-
ral constraints imposed upon those of the junior role. Fange,daytime doctorole inherits

permission oflaytime nurseole only when he is in the hospital during the daytime.
3.2.0.7 The Spatio-Temporal Role Activation Hierarchy

In the role activation hierarchy, a user assigned to a sealercan activate a junior role.
By incorporating various time and location constraints, @@ have a number of different
hierarchical relationships in our model that are descriedw.
Definition 12 (Unrestricted Activation Hierarchy)
Let x andy be roles such that =y, that is, senior role has a role-activation relation over
junior roley. Then, a user assigned to role€an activate rolg at any time and at any place.

This is formalized as follows:
(x = y) AUserRoleActivat@, x,d,|) = UserRoleActivat@u, y, always universe

Here, a user who can activate a senior role can also actijatea role at any time and
at any place. For example paoject managecan activate theode developerole at any time

and at any place.

44

Definition 13 (Time Restricted Activation Hierarchy)
Let x andy be roles such that >=; y, that is, senior role has a role-activation relation over
junior roley. Then, a user assigned to ralean activate rolg only at the time when rolg can

be enabled. This is formalized as follows:

(x =t Y)AUserRoleActivate, x,d,l) A (d C RoleEnableDuty))

= UserRoleActivat@,y,d, universe

Here again, a user who can activate a senior role can actvateior role only during
the time when the junior role can be activated. For exampfgpgram chaircan activate a
reviewerrole only during the review period.

Definition 14 (Location Restricted Activation Hierarchy)
Let x andy be roles such that = y, that is, senior role has a role-activation relation over
junior roley. Then, a user assigned to rolean activate rolg only at the places when role

can be enabled. This is formalized as follows:

(X =1 y)AUserRoleActivat@l, x,d,l) Al C RoleEnablelLogy)
= UserRoleActivatg, y,always|)

Here again, a user who can activate a senior role can als@tscé junior role but the acti-
vation is limited to the place where the junior role can bévatéd. For example, Bepartment
Chair can activate &taffrole only when he is in the Department.

Definition 15 (Time Location Restricted Activation Hierarchy)
Let x andy be roles such that = y, that is, senior role has a role-activation relation over
junior roley. Then, a user assigned to rol€an activate rolg only at the places and during

the time when role can be enabled. This is formalized as follows:

(X =11 y)AUserRoleActivat@u, x,d,|) A (d C RoleEnableDufy)) A (I C RoleEnableLoy))
= UserRoleActivat@,y,d,l)

Here again, a user who can activate a senior role can als@ica junior role but must

obey the temporal and spatial constraints imposed on tlieaton of the junior role. For

45

example, user who has a rolerobbile usercan activate theveekend mobile useole only if
he/she is in the US during the weekend.

When a senior role and a junior role are related with both sion inheritance and acti-
vation hierarchies, the application must choose the reduype of inheritance and activation

hierarchies.

3.3 Impact of Time and Location on Separation Of Duty

Separation of Duty (SoD) is a fundamental principle in sggwystems. SoD is basically
states thatritical operations are divided among two or more peopleftsat no single indi-
vidual can compromise securif23]. SoD enables the protection of the fraud that might be
caused by the user. There are two categories of SoD: St&a{sand Dynamic (DSoD) [80].
SSoD constrains the User-Role and Permission-Role assigisnwhile DSoD constrains the
User-Role activation. When SoD constraints are properiyl@mented, collusion of two or
more parties is required to commit a damaging action. Theeethe risk of critical damage
is reduced. Moreover, SoD increases the opportunity foeadielg errors, since two or more
parties are involved in committing the fraud.

Unlike the traditional RBAC, where the SoD constraints gopli@d all the time at any
location, with the existing of the context information, wancincrease the flexibility of the
model by apply the spatio-temporal information into SoDstoaints.

Next, we propose variations of Spatio-Temporal SoD. Thdirpnmeary version of such

constraints has been proposed in [67, 83].
3.3.0.8 The Spatio-Temporal Static Separation of Duty

Due to the presence of temporal and spatial constraints,awéhave different flavors of
separation of duty — some that are constrained by tempodaspatial constraints and others
that are not. In the following, we describe the first form @itst separation of duty constraints.

This form is with respect to user role assignment.

46

Definition 16 (Weak Form of SSoD - User Role Assignment)

Let x andy be two roles such that+# y andx,y € SSOL,(ROLES, that is,x andy are two
distinct roles that are related by t&OL), relation. A usewu assigned to role during timed
and locatiorl cannot be assigned to rojeat the same time and locationkfandy are related

by SSOL),. This is formalized as follows:
(x,y) € SSOLR,(ROLES = (UserRoleAssigh, x,d,|) AUserRoleAssigu,y,d,l) = False)

Here the same user cannot be assigned to two conflicting dol@sg the same time and
at the same location. For example, a user should not be askigeaudiencerole andmobile

phone userole at the same time and location.

Definition 17 (Strong Temporal Form of SSoD - User Role Assigment)

Let x andy be two roles such that# y and(x,y) € SSOR(ROLES, that is,x andy are two
distinct roles that are related by tliSODR relation. A usem assigned to role during time
d and location cannot be assigned to rojeat any timed’ in the same location it andy are

related bySSODR. This is formalized as follows:
(x,y) € SSOR(ROLES = (UserRoleAssigfu, x,d,|) AUserRoleAssigu,y,d’,|) = False

Here the same user cannot be assigned to two conflictingabtee same location at any
time. Theconsultant for oil company Avill never be assigned the role obnsultant for oil

company Bn the same country.

Definition 18 (Strong Spatial Form of SSoD - User Role Assignent)

Let x andy be two roles such that# y and(x,y) € SSOD(ROLES, that is,x andy are two
distinct roles that are related by ti&SOD relation. A userw assigned to role during time
d and locatiorl cannot be assigned to rofeat the same time at any locatidhif x andy are

related bySSOD. This is formalized as follows:
(x,y) € SSOD(ROLES = (UserRoleAssigfu, x,d,|) AUserRoleAssigu,y,d,|’) = False

Here the same user cannot be assigned to two conflicting abl@sy location during the
same time. For example, a person cannot be assigned thefoézdtor andinstructorat the

same time.

47

Definition 19 (Strong Form of SSoD - User Role Assignment)

Let x andy be two roles such that# y and(x,y) € SSOR(ROLES, that is,x andy are two
distinct roles that are related by &S OQR relation. A use assigned to role during time
d and locationl cannot be assigned to rojeat any timed’ or at any locatiorl’ if x andy are

related bySSOR. This is formalized as follows:
(x,y) € SSOR(ROLES = (UserRoleAssigfu, x,d,|) AUserRoleAssig,y,d’,|") = False

Here the same user cannot be assigned to two conflicting. réles example, the same
person cannot be assigned the rolenifiority candidateandregular candidaten a job appli-
cation.

We next consider the second form of static separation of thadeals with permission
role assignment. The idea is that the same role should natraagpnflicting permissions. For
instance, the same manager should not make a request fondussiwell as approve it.
Definition 20 (Weak Form of SSoD - Permission Role Assignmet
Let p andq be two permissions such thpt# g and (p,q) € SSODPRA, that is, p andq
are two distinct permissions that are related by i #DPRA,, relation. A rolex which has
permissionp at timed and location cannot be assigned permissigmat the same time and

location if p andq are related bysSODPRAy,. This is formalized as follows:
(p,q) € SSODPRAy, = (PermRoleAcquirgp, x,d,) A PermRoleAcquir@, x,d,|) = False)

Here the same role cannot be assigned two conflicting paonssluring the same time
and at the same location. For example, a passenger roledshatube assigned the permission
to go aboard the plananduse the cell phonat the same place and time.

Definition 21 (Strong Temporal Form of SSoD - Permission Roléssignment)

Let p andq be two permissions such that# q and (p,q) € SSODPRA, that is, p andq
are two distinct permissions that are related by $IB#DPRA relation. A rolex which has
permissionp at timed and location cannot be assigned permissipat the any timel’ in the

same location i andq are related bysSODPRA. This is formalized as follows:
(p,q) € SSODPRA = (PermRoleAcquir@, x,d,|) A PermRoleAcquirg, x,d’, 1) = False)

48

Here the same role cannot be assigned two conflicting paonsat the same location at
any time. In the top secret base, if any role has a permissiaedess the high confidential
information the permission tetore or distribute informatioshould not be granted to that role.
Definition 22 (Strong Spatial Form of SSoD - Permission Role gsignment)

Let p andq be two permissions such that# q and (p,q) € SSODPRA, that is, p andq
are two distinct permissions that are related by 3&ODPRA relation. A rolex which has
permissionp at timed and locatiorl cannot be assigned permissipat the same time at any

locationl’ if p andq are related bysSODPRA. This is formalized as follows:
(p,q) € SSODPRA = (PermRoleAcquir@, x,d,|) A PermRoleAcquirg, x,d,l’) = False)

Here the same role cannot be assigned two conflicting paonsat any location during
the time. For example, the permissionaocess the exam papandaccess the answer key
should not be assigned for the same time.

Definition 23 (Strong Form of SSoD - Permission Role Assignnme)

Let p andq be two permissions such that# q and (p,q) € SSODPRA,, that is, p andq
are two distinct permissions that are related by $I8#ODPRA; relation. A rolex which has
permissionp at timed and locatiorl cannot be assigned permissipat any timed’ or at any

locationl” if p andq are related bysSODPRA;. This is formalized as follows:
(p,q) € SSODPRA; = (PermRoleAcquirg, x,d,) A PermRoleAcquir@,x,d’,") = False)

Here the same role cannot be assigned two conflicting paongs For example, The
permission tassue checland permission tauthorize checknust not be assign to the same

role.
3.3.0.9 The Spatio-Temporal Dynamic Separation of Duty

We next consider the dynamic separation of duty. Staticregipa of duty ensures that a
user does not get assigned conflicting roles or a role is redged conflicting permissions.
Dynamic separation of duty addresses the problem that asuset able to activate conflicting

roles during the same session.

49

Definition 24 (Weak Form of DSoD)

Let x andy be two roles such that=# y and(x,y) € DSOD;, that is, two distinct roleg and
y are related bypSOD,. If roles x andy are related through weak DSoD and if usehnas
activated rolex in some sessios for durationd and locationl, thenu cannot activate rolg

during the same timd and in the same locatidnn sessiors. This is formalized as follows:
(x,y) € DSODy = (SessionRol@, x, s, d,|) A SessionRol@,y,s,d,|) = False

This allows the same user to activate two conflicting rolée@same session but not during
the same time and in the same location. A user can activatesassistant role and a customer

role in the same session but not during the same time and sathe location.

Definition 25 (Strong Temporal Form of DSoD)

Let x andy be two roles such that# y and(x,y) € DSOR, that is, two distinct roleg andy
are related bypSON. If rolesx andy are related through strong temporal DSoD and if user
has activated rolgin some sessios thenu can never activate roleat any timed’ at the same

location in the same session. This is formalized as follows:
(x,y) € DSOD = (SessionRol@, x,s,d,|) A SessionRol@, y,s,d’,|) = False)

This allows the same user to activate two conflicting rolethamnsame session but not in
the same location at any time. For example, in a teachingoseissa classroom, a user cannot

activate the the grader role and the student role at any time.
Definition 26 (Strong Spatial Form of DSoD)

Let x andy be two roles such that# y and (x,y) € DSOD, that is, two distinct roleg and
y are related bypSOD. If roles x andy are related through strong DSoD and if usdnas
activated role< in some sessiog thenu can never activate rolgin sessiors during the same

time in any location. This is formalized as follows:
(x,y) € DSOD = (SessionRol@, x,s,d,|) A SessionRol@, y,s,d,l’) = False)

This allows the same user to activate two conflicting roldb@&same session but not at the
same time in any location. If a user has activatedGnaduate Teaching Assistardle in his

office, he cannot activate thheb Operatorrole at the same time in any location.

50

Definition 27 (Strong Form of DSoD)
Let x andy be two roles such that# y and(x,y) € DSOD:. If rolesx andy are related through
strong DSoD and if usar has activated rolg in some sessiog, thenu can never activate role

y in the same session. This is formalized as follows:
(x,y) € DSOD; = (SessionRol@, x,s,d,|) A SessionRol@,y,s,d’,|") = False

Here a user can never activate the roles related throughgsBP&oD. For example, a user

cannot be both aode developeand acode testem the same session.

3.4 Impact of Time and Location on Delegation

Many situations require the temporary transfer of acceggsito accomplish a given task.
For example, in a pervasive computing application, a doctay give certain privilege to a
trained nurse, when he is taking a short break. In such sfugtthe doctor can give a subset
of his permission to the nurse for a given period of time. €rae a number of different types
of delegation. The entity that transfers his privilegesgenarily to another entity is often re-
ferred to as the delegator. The entity who receives thelpgegiis known as the delegatee. The
delegator (delegatee) can be either a user or a role. Thusjayehave four types of dele-
gations:user to user(U2U), user to role(U2R), role to role (R2R), androle to user(R2U).
System administrators are responsible for overseeingdetm when the delegator is a role.
Individual users administer delegation when the delegatan user. When a user is the dele-
gator, he can delegate a subset of permissions that he pesd®svirtue of being assigned to
different roles. When a role is the delegator, he can dedegjiter a set of permissions or he
can delegate the entire role. We can therefore classifgdgt on the basis of role delegation
or permission delegation. We identify the following typdsielegation.

Definition 28 (U2U Unrestricted Permission Delegation)
In this type of delegation, the delegatee can invoke thegdébe’s permissions at any time and
at any place where the delegator could invoke those pemnissiLet the predicatBelega-

teU2U_Py(u, v, Perm)be true if the useu is allowed to delegate the permissions in the set

51

Permto userv without any temporal or spatial constraints. This will alle to invoke the

permissions at any time or at any place.

Vp €Perm Delegatel?U _P,(u, v, Perm) A PermU serAcquirgu, o, p,d,|)
= PermUserAcquirgv, 0, p,d,l)

For example, the illness of the company president causeddhd@legate his email reading
privilege to his secretary.
Definition 29 (U2U Time Restricted Permission Delegation)
In this type of delegation, the delegator places time restns on when the delegatee can in-
voke the permissions. However, no special restrictiongptaeed with respect to location—
the delegatee can invoke the permission at any place thadelegator could do so. Let
Delegatel?2U P, (u,v,Permd’) be the predicate that allows useto delegate the permissions

in the setPermto userv for the duratiord’.

Vp ePerm Delegatel?U R (u,v,Permd’) A PermU serAcquirgu,o, p,d,|) A (d' C d)
= PermU serAcquirgv, 0, p,d’,1)

For example, the professor can delegate his permissiorotagsran exam to the teaching

assistant while he is on travel.

Definition 30 (U2U Location Restricted Permission Delegatin)

A delegator can place spatial restrictions on when the débdegcan invoke the permissions.
However, the only temporal restriction is that the delega&i@n invoke the permissions during
the period when the original permission is valid. I¢legatel?U_R (u,v,Perml’) be the
predicate that allows userto delegate the permissions in the Betmto userv in the location

I/

Vp ePerm Delegatel2U _R (u,v,Perm|’) A PermUserAcquir@u, o, p,d,|) A (I’ C 1)
= PermU serAcquiré, 0, p,d,l”)

For example, the teaching assistant can delegate the pgvmiggarding lab supervision

to the lab operator only in the Computer Lab.

52

Definition 31 (U2U Time Location Restricted Permission Delgation)
In this case, the delegator imposes a limit on the time antbttagion where the delegatee can
invoke the permission. Lé&elegatel?U _R; (u,v,Permd’,l’) be the predicate that allows user

u to delegate the permissions in the Betmto userv in the location’ for the duratiord’.

Vp ePerm Delegatel2U _R, (u,v,Permt’ ") A PermUserAcquir@u, o, p,d,|)
A(d" Cd)A (I’ C1) = PermUserAcquires, o, p,d’,1")

For example, a nurse can delegate his permission to ovepsesat while he is resting in

his room to a relative.
Definition 32 (U2U Unrestricted Role Delegation)

The delegator delegates a role to the delegatee. The dedecmt activate the roles at any time
and place where the delegator can activate those rolesDélegatel?U _R,(u,v,r) be the

predicate that allows userto delegate his roleto userv.
Delegatel?U R, (u,v,r) AUserRoleActivat@r,d,|) = UserRoleActivateyr,d,|)

For example, a manager before relocating can delegatelasstmhis successor in order to

train him.
Definition 33 (U2U Time Restricted Role Delegation)

In this case, the delegator delegates a role to the delelgatiéiee role can be activated only for
a more limited duration than the original role. IB¢legatel?U R;(u,v,r,d") be the predicate

that allows useu to delegate his roleto userv for the duratiord’.

Delegatel?U R (u,v,r,d’) AUserRoleActivateu,r,d,|) A (d’ C RoleEnableDufr))
A(d" C d) = UserRoleActivateys,r,d’, 1)

For example, a user can delegate his role as a teacher toamsé@slp student while he is in

a conference.
Definition 34 (U2U Location Restricted Role Delegation)

In this case, the delegator delegates a role to the delelgatéee role can be activated in more
limited locations than the original role. L&elegatel?U R (u,v,r,1") be the predicate that

allows useuw to delegate his roleto userv in the location’.

53

DelegateR (u,v,r,l1") AUserRoleActivat@,r,d,l) A (I’ C RoleEnableLo@)) A (I’ C 1)
= UserRoleActivatgey,r,d,l’)

For example, a student can delegate his lab supervisiona@eother student in a desig-
nated portion of the lab only.
Definition 35 (U2U Time Location Restricted Role Delegatioh
The delegator delegates the role, but the delegatee caatadtie role for a limited duration in
limited places. LeDelegatel?U R (u,v,r,d’,1") be the predicate that allows useto delegate

his roler to userv in locationl’ and timed’.

Delegatel?U R, (u,v,r,d’,I") AUserRoleActivat@,r,d,l) A (I’ C RoleEnableLog))A
(d’ C RoleEnableDufr)) A (d" Cd) A (I’ C 1) = UserRoleActivatgy, r,d’,l")

For example, a student can delegate his lab supervisiona@eother student only in the
lab when he leaves the lab for emergency reasons.
Definition 36 (R2R Unrestricted Permission Delegation)
All users assigned to the delegatee role can invoke the alelegple’s permissions at any time
and at any place where the user of this delegator role coulnkenthose permissions. Let
DelegateRR P,(r1,r2,Perm) be the predicate that allows ralg to delegate the permissions
in the setPermto roler, without any temporal or spatial constraints. This will allasers in

the roler; to invoke the permissions at any time or at any place.

Vp ePerm DelegateRR P,(r1,r2, Perm) A PermRoleAcquirg,r1,d,1)A
(d C RoleEnableDufrz)) A (I € RoleEnableLo@2)) = PermRoleAcquirgp,rz,d,|)

For example, the Smart Home owner role may delegate the ggionito check the status
of security sensors of the home to the police officer role,lspddice officers can detect the
intruder at any time at any place.

Definition 37 (R2R Time Restricted Permission Delegation)
The delegator role can place temporal restrictions on whenusers of the delegatee role

can invoke the permissions. No special restrictions areeplavith respect to location i.e.

54

the delegatee role’s users can invoke the permissions aplacg that the delegator role’s
users could do so. LéelegateRR P (r1,r2,Permd’) be the predicate that allows ralg to

delegate the permissions in the Betmto roler, for the duratiord’.

Vp ePerm DelegateRR R (r1,r2, Permd’) A (d' C d) A PermRoleAcquirg,r1,d,)A
(I"C1)A(d" C RoleEnableDufr2)) A (I C RoleEnableLog?))
= PermRoleAcquirg,r2,d’,1)

For example, CS599 teacher role can grant the permissioocEsa course materials to
CS599 student role for the specific semester.
Definition 38 (R2R Location Restricted Permission Delegatin)
The delegator role places spatial constraints on where gbesof the delegatee role can in-
voke the permissions. No special temporal constraints laeeg, that is, the delegatee role’s
users can invoke the permissions at any time that the delegdé’s users could do so. Let
DelegateRR P (r1,r2,Perml’) be the predicate that allows ralgto delegate the permissions

in the setPermto roler, in the location’.

Vpe Perm DelegateRR R (ry,ro, Perml’) A PermRoleAcquirg,ri,d,I) A (" C1)A
(d C RoleEnableDufr2)) A (I’ C RoleEnableLog)) = PermRoleAcquirg, r2,d,l’)

For example, the librarian role may grant the permissiomexkout the book to the student
role only at the self-checkout station.
Definition 39 (R2R Time Location Restricted Permission Delgation)
The delegator role imposes a limit on the time and the lonatibere the delegatee role’s users
could invoke the permissions. L&elegateRR P (r1,r2,Permd’ l’) be the predicate that
allows roler; to delegate the permissions in the Bermto roler; in the locationl’ for the

durationd’.

Vpe Perm DelegateRR R, (r1,r2, Permd’,1’) A PermRoleAcquirg,r1,d,|)A
(d’ C RoleEnableDufrz)) A (I’ C RoleEnableLo@2)) A (d' Cd)A (' C1)

= PermRoleAcquirg,rp,d’,l")

55

For example, the daytime doctor role may delegate the psiomis$o get his location infor-
mation to the nurse role only when he is in the hospital dutiegdaytime.
Definition 40 (R2R Unrestricted Role Delegation)
All users assigned to the delegatee role can activate tiegakelr role at any time and at any
place where the user of this delegator role could activaedle. LetDelegateRR R,(r1,r2)

be the predicate that allows ralgto be delegated to role.

DelegateRR R,(r1,r2) AUserRoleActivateu, ra,d,|) A (d C RoleEnableDury))A
(I € RoleEnableLo@1)) = UserRoleActivat@i,rq,d,l)

For example, in the case of company reorganization, the geanale can be delegated to
the manager successor role in order to train him.
Definition 41 (R2R Time Restricted Role Delegation)
The delegator places temporal constraints on when the ak#he delegatee role can activate
the delegator role. No special spatial constraints areedlae. the delegatee role’s users
can activate the delegator role at any place that the delegaie’s users could do so. Let
DelegateRR R;(r1,r2,d’) be the predicate that allows ralgeto be delegated to role for the

durationd’.

DelegateRR R;(r1,r2,d’) AUserRoleActivat@, ra,d’,1) A (d C RoleEnableDufrs))A
(I C RoleEnableLo@1)) A (d' C d) = UserRoleActivat@,ri,d’,1)

For example, the permanent staff role can be delegated wotiteact staff role during the
contract period.
Definition 42 (R2R Location Restricted Role Delegation)
The delegator role can place spatial restrictions on whezausers of the delegatee role can
activate the delegator role. No special restrictions aseqa with respect to time i.e. the
delegatee role’s users can activate the delegator roleydtraa that the delegator role’s users
could do so. LeDelegateRR R (r1,r2,l") be the predicate that allows ralgto be delegated

to roler, in the location’.

56

DelegateRR R (r1,r2,1") AUserRoleActivat@l,r,d,l’) A (d C RoleEnableDugr1))A
(I C RoleEnableLog1)) A (I’ C 1) = UserRoleActivat@,rq,d,l’)

For example, the researcher role can be delegated to thessédiaat role at the specific

area of the lab.
Definition 43 (R2R Time Location Restricted Role Delegatioh

In this case, the delegator role imposes a limit on the tingkthe location where the delegatee
role’s users could activate the role. LBelegateRR R (r1,r2,d’,l’) be the predicate that

allows roler; to be delegated to role in the locationl’ for the duratiord’.

DelegateRR Ry (r1,r2,d’,1") AUserRoleActivat@i, ro, d’, I') A (d' Cd)A (" C A
(d C RoleEnableDufry)) A (I € RoleEnableLo@i)) A (d Cd)A (I’ C1)
= UserRoleActivatg,rq,d’, ")

For example, the full-time researcher role can be delegat#te part-time researcher role

only during the hiring period in the specific lab.

3.5 Chapter Summary

Unlike the tradional access control model, in pervasive maing applications, the access
decisions cannot be based solely on the attributes of usersesources. In such applica-
tions, the system might want to grant access base on thextami@mation such as location
and time. In this chapter, we propose our Spatio-Temportd Rased Access Control (STR-
BAC) model. The model determine the accessibility of the bssed on the time and location
constraints. The model also supports various types of rielatcthy and separation of duties
constraints. In a highly dynamic application such as thguibbus computing, it is necessary
for the model to support the transfer of privileges via dateg operations. Our model also
supports different types of delegation.

As mentioned above, our STRBAC model consists of variousifea to support the various
application requirements. These features of the model miyact in subtle ways resulting

in inconsistencies and conflicts. Such inconsistenciescanflicts must be detected before

57

the model can be deployed for real-world application. Mamunalysis of the access control
specifications of complex, real-world applications is ¢edi and error-prone. To resolve this
issue, an automated analysis approach is needed. In CHapterpropose the usage of Alloy

analyzer tool for doing an automated analysis on our STRBAQeh

58

Chapter 4

The ALLOY Specification of STRBAC
Model

Our STRBAC model consists of various features to supporndneus application require-
ments. Such features of the model may interact in subtle wesydting in inconsistencies and
conflicts. The access control constraints of an applicatgng our model must be analyzed to
ensure that such problems, which, in turn, may cause sgdwaaches, do not occur. Manual
analysis of the access control specifications of complet;werld applications is tedious and
error-prone. In this chapter, we propose the use of Alloylyamea tool for doing automated
analysis. The analysis can be done at two different letleésmodel levehndthe application
level Analysing the model at the model level ensures that in ggneur STRBAC model
does not contain any inconsistencies or conflicts. The egipdin level analysis guarantees that
the implementation of our model is fully protect the realrdapplication and does not cause
any security breaches. In this chapter, first we briefly disghe Alloy specification language
we will use to assist our model analysis in Section 4.1. Nextshow how to use Alloy to
analyze the STRBAC model in Section 4.2. And finally, we shaw o analyze the security

properties of the STRBAC—embedded real-world applicatd®ection 4.3.

4.1 Alloy Lightweight Modeling System

ALLOY ([30], [31], [32], [92]), is a textual language devgled at MIT by Daniel Jackson

and his team. Unlike a programming language, an Alloy maosldeiclarative: it can describe

59

the effect of a behavior without giving its mechanism. THlsvas very succinct and partial
models to be constructed and analyzed. It is similar in tsf@rthe formal specification lan-
guages Z, VDM, Larch, B, OBJ, etc, but, unlike all of theseamsenable to fully automatic
analysis in the style of a model checker.

Z was a major influence on Alloy. Very roughly, Alloy can bewed as a subset of Z.
Unlike Z, Alloy is first order, which makes it analyzable (lalso less expressive). Alloys
composition mechanisms are designed to have the flexilofig’s schema calculus, but are
based on different idioms: extension by addition of fieldsilar to inheritance in an object-
oriented language, and reuse of formulas by explicit patanzation, similar to functions in a
functional programming language. Alloy is a pure ASCII riimtia and does not require special
typesetting tools.

An Alloy model consists of a number of signature and relatieslarations. A signature
specifies entities used to model the system, and relatidard¢ions specify the dependencies
between such entities, allowing the designer to captureptmnstructures. Alloy is supported
by a fully automated constraint solver, called Alloy Anadyzthat analyzes system properties
by searching for model instances that violate assertioagtahem. Alloy Analyzer translates
the model into a Boolean expression, and analyzes it usirgpdded SAT-solvers. The user
specifies a scope to the tool, which is an integer number wsbdund the domain of model
elements. Bounding enables the tool to create finite Bodieanulas for evaluation by the
SAT-solver. If Alloy Analyzer produces an instance thatlates the assertion (a counterexam-
ple), we can infer that the specified property is not satistimvever, for a chosen scope, if no
counterexample emerges, itis possible that the propeviglated in a larger scope. The larger
the scope, the more confidence is warranted, but the longartalysis will take [33]. Experi-
ence has shown that design flaws are often discovered in soagiés. This is known as “small
scope hypothesis” [33]. Choosing the right scope, and tigeegeof confidence a given scope
provides, depends on the problem and the security propemglanalyzed. Currently, there
are no generic guidelines on how to choose the scope for a grablem. However, when de-

veloping security-critical systems, where a higher degifesonfidence is required, the Alloy

60

Analyzer can be used as afirst line of defense to discover flathe design of a system. If the
analyzer does not produce a counterexample, other tedsguch as Model Checking and
Theorem Proving can be used to ensure the security progentyt iviolated. Such techniques
are more time consuming and require human intervention apdrgse. Our approach can
therefore save time and resources by using the Alloy Analyreapidly discover a number of
flaws that would otherwise require much more time and ressuicuncover. For more details

on Alloy and its comparison with other formal methods pleader to [31, 32, 33].

4.2 STRBAC Model in ALLOY

An Alloy model consists osignaturedeclarationsfields factsandpredicates Each sig-
nature consists of a set atomswhich are the basic entities in Alloy. Atoms arelivisible
(they cannot be divided into smaller partsjymutable(their properties do not change) and
uninterpretedthey do not have any inherent properties). Each field balém@ signature and
represents a relation between two or more signatures. Aigeldenotes a set of tuples of
atoms. Facts are statements that define constraints onaiimermts of the model. Predicates
are parameterized constraints that can be invoked frommiglets or other predicates.

To represent the STRBAC model, we The basic types in the acoegrol model, such as,
User, Time Location Role PermissiorandObjectare represented as signatures. For instance,
the declarations shown below define a set natdser and a set nameRolethat represents
the set of all users and the set of all roles in the systemdéngieRolesignature body, we
have four relations, namelRRoleAllocLog¢RoleAllocDut RoleEnableLocandRoleEnableDur

which relatedRoleto other signatures.

sig Time{}
sig Location{}
sig User{}
sig Rolef
RoleAllocLoc: Location,

RoleAllocDur: Time,

61

RoleEnableLoc: Location,
RoleEnableDur: Time}

sig Permission{
PermRoleLoc: Role->Location,
PermObjLoc: Object->Location,
PermDur: Time}

sig Object{}

sig TimeLoc{
dur : Time,

loc : Location}

The different relationships between the STRBAC componargsalso expressed as signa-
tures. RoleEnablehas a field calleanemberthat maps to a cartesian product®ble Time
andLocation UserRoleAssignmehgs a field callednemberthat maps to a cartesian product
of User, Role TimeandLocation RolePermissionAssignmedmas a field calleadnemberthat
maps to a cartesian producti®ble Permission TimeandLocation UserLocationhas a field
calledmemberthat maps to a cartesian productidger, TimeandLocation ObjLocationhas
a field calledmemberthat maps to a cartesian product@bject TimeandLocation User-
RoleActivatehas a field calleanemberthat maps to a cartesian productdser, Role Time
andLocation PermRoleAcquirdas a field callednembeithat maps to a cartesian product of
Role PermissionTimeandLocation PermUserAcquirdas a field callethembethat maps to
a cartesian product ddser, Object PermissiorandTimeLoc Note that folPermUserAcquire
instead of declare it as a cartesian product of produtis#r, Object Permission Timeand
Location we have to define a special signature call@deLocwhich consists of two fields
calleddur andloc representing Time and Location, respectively. The ratibehind this indi-
rect declaration is to overcome the limitation of Alloy, whilimits the dimension of cartesian
product to 4. And finallyRoleHierarchyhas a fieldRHmembethat represents a relationship

betweerRoleandRole Note that we use thabstractsignature to represent role hierarchy, and

62

the different types of role hierarchy are modeled as theigobtures ofRoleHierarchy By
this way, the analyzer will recognize that role hierarchpsists of only these different types

of role hierachy, and nothing else.

one sig RoleEnable {member : Role-> Time ->Location}

one sig UserRoleAssignment{member : User -> Role ->Time ->L ocation}

one sig RolePermissionAssignment{member : Role-> Permiss ion ->Time->Location}
one sig UserLocation{member : User->Time->Location}

one sig ObjLocation{member : Object->Time->Location}

one sig UserRoleActivate{member : User-> Role->Time->Loc ation}
one sig PermRoleAcquire{member : Role->Permission->Time ->Location}
one sig PermUserAcquire{member : User->Object->Permissi on->TimeLoc}

abstract sig RoleHierarchy{member : Role -> Role}

sig UPIH, TPIH, LPIH, TLPIH, UAH, TAH, LAH, TLAH extends Role Hierarchy{}

The various invariants in the STRBAC model are represergdalcas in Alloy. For instance,
the factURActivatestates that for userto activate role during the time intervadl and location
[, this user has to be assigned to rol@ locationl during timed. Moreover, the location of
the user must be a subset of the locations where the role dezhand the time must be in
the time interval when role can be enabled. This is specified in Alloy as shown below. Othe

invariants are modeled in a similar manner.

fact URActivate{
all u: User, r: Role, d: Time, I: Location, uras: UserRoleAss ignment,

urac: UserRoleActivate |

((u->r->d->l) in urac.member) => (((u->r->d->I) in uras.m ember) &&
(I in r.RoleEnableLoc) && (d in r.RoleEnableDur))
}

63

To represents the effects of STRBAC hierarchical structwes use Alloy’sfact feature.
The factUPIHFact represents the Unrestricted Permission Inheritance kiey&s property.
The fact states that senior rade can acquire all permission assigned to itself together allth
permissions assigned to junior rgle. Note that to be more specific, we also explicitly state

that the permission assigned to junior role have never besgraed to the senior role.

/lUnrestricted Permission Inheritance Hierarchy
fact UPIHFact{
all sr, jr: Role, p: Permission, d: Time, I: Location, upih: U PIH,
rpa: RolePermissionAssignment, pra: PermRoleAcquire |
((sr->jr in upih.member) && (jr->p->d->I in pra.member) &&
(sr->p lin (rpa.member).Location.Time)) =>

(sr->p->sr.RoleEnableDur->sr.RoleEnableLoc) in pra.me mber}

The separation of duty constraints are modeled as predic&@nsider the Weak form of
Static Separation of Duties User Role Assignment. This ttaimg says that a userassigned
to rolerl du ring timed and locationl cannot be assigned to its conflicts rokeat the same

time and location. The other forms are modeled in a separataer.

pred W_SSoD_URA(u: User, disj rl1, r2: Role,
ura: UserRoleAssignment.member, d: Time, I: Location){

((u->r1->d->l) in ura) => ((u->r2->d->l) not in ura)}

The different types of delegation are also modeled as pmgzic Consider the U2U Un-
restricted Permission Delegation. This type of delegasiays that a useadtr delegates his
permissionp to userdte Userdte can invoke the delegator’'s permission at any time and at
any place where the delegator could invoke the permissibe.other forms are modeled in a

separate manner.

[IU2U Unrestricted Permission Delegation

pred u2uUPD(disj dtr, dte: User, p: Permission){

64

all o: Object, tl: TimeLoc, puacq: PermUserAcquire |
(dtr->0->p->tl in puacg.member) =>

(dte->0->p->tl in puacg.member)}

Finally, we need to verify whether any conflicts occur betwtde features of the model.
We rely on the powerful analysis capability of the ALLOY aya@r for this purpose. We create
anassertionthat specifies the properties we want to check. After we erthet assertion, we
will let ALLOY analyzer validate the assertion by usiosgeckcommand. If our assertion is
wrong in the specified scope, ALLOY analyzer will show the mimuexample.

For instance, to check the interaction of the Weak form of BS@er Role Assignment
and the Unrestricted Permission Inheritance Hierarchymak&e the assertion shown below.

The assertion does not hold as illustrated by the countampbeashown in Figure 4.1.

/I WSSoD_URA violation in the present of UPIH Hierarchy
assert TestConflictl 1{
no u: User, disj x, y: Role, upih: UPIH,

d: Time, I: Location, ura: UserRoleAssignment |
(x->y in “(upih.member)) &&

(u->x->d->| in ura.member)) =>

W_SSoD_URA[u, X, Yy, u->(x+y)->d->I, d, |]
}
check TestConflictl 1

The counterexample shows one possible scenario. In thes dasses the following in-

stances to show the violation.
1. Role= {Rol&,Rol€l, Role2}
2. UPIHO = {RoleO — Rol€el,Role — Role), Role — Role‘L}

3. Time=d, Location=|

65

4. UserRoleAssignment {User— Roléd — Time— LocationUser— Rolel — Time—

LocationUser— Rol& — Time— Location}

Substitutingk andy in W_SSoDURA predicate witlRol€ andRolel respectively, we get the

violation.

/ UPI<O

RHmember[Role0]

/ RHmember[Role2]
l RHmember[Role2]

Rolel
($TestConflictl_1_y) Role0

RoleAllocTime
RoleAllocLoc RoleAllocLoc

/

Location
($TestConflictl_1_1)

RoleAllocTime

Time
($TestConflictl_1_d)

K

member[Role0,Time] f member[Role2,Time] RoleAllocTime

RoleAllocLoc
member[Rolel,Time] A
I Role2
($TestConflictl_1_x)

UserRoleAssignment

Figure 4.1: Counterexample for assertion TestConflictl

We checked the assertion on a HP-xw4400-Core2Duo-SATA twithCore2Duo 1.86Ghz
CPU and 2 Gb memory running Linux 64. We used Version 4.1.8yMnalyzer. The time
taken to check this assertion was 25,916 ms.

Another example, to check the interaction of the Weak forn$800D Permission Role
Assignment and the R2R Unrestricted Permission Delegatvenmake the assertion shown

below. The assertion does not hold as illustrated by theteoexample shown in Figure 4.2.

II' WSSoD_PRA violation in the present of R2R Unrestricted
/I Permission Delegation
assert TestConflictl4_1{

all disj rdtr, rdte: Role, disj p, g: Permission, d: Time,

66

Role0 Rolel

($TestConflictl4_1_rdtr) ($TestConflictl4_1_rdte)
RoleEnableDur RoleEnableDur
Time
($TestConflictld_1_d)
RoleEnableLoc f \ RoleEnableLoc

PermRoleLoc[Role0] PermRoleLoc[Role0]
/ N

Permission0 Permissionl
($TestConflictld 1 q)||($TestConflictld 1 p)

\ /

PermDur PermDur

NS

Location

($TestConflictl4 1 1) X

member[Rolel,Permission0,Time]

& member|Rolel, Permission1, Time]
PermRoleAcquire /

Figure 4.2: Counterexample for assertion TestConflict14

l: Location |
(r2rUPDJrdtr, rdte, p] && r2rUPDIrdtr, rdte, q]) =>
W_SSoD_PRA[rdte, p, q, d, 1]

}
check TestConflict14 1

The counterexample shows one possible scenario. In thes dasses the following in-

stances to show the violation.
1. Role= {Rol&,Rolel}
2. Permission= {Permissio, Permissiond }

3. Time=d, Location=|

67

4. PermRoleAcquire- {Rolel — Permissio® — Time— Location Rolel — Permissiod —

Time— Location}

Substitutingrdtr, rdte, p, g, d, andl in r2rUPD and WSSoDPRA predicates witiRole),
Rolel, Permissio, Permission, d andl respectively, we get the violation. By using the same
setup, the time taken to check this assertion was 20,572 ms.

With the advocate of the STRBAC model in Alloy shown in Appen, we could reveal

the following types of conflict:

1. Conflict of Unrestricted, Time Restricted, Location Ries¢d, and Time Location Re-
stricted Permission Inheritance Hierarchy with the Weakntof Static Separation of
Duties-User Role Assignment (detected by asserfiestConflictll, TestConflict12,

TestConflict13, andTestConflict14, respectively)

2. Conflict of Unrestricted, Time Restricted, Location Riestd, and Time Location Re-
stricted Permission Inheritance Hierarchy with the Stréegporal Form of Static Sep-
aration of Duties-User Role Assignment (detected by asserestConflict21, TestCon-

flict2_2, TestConflictZ3, andTestConflict24, respectively)

3. Conflict of Unrestricted, Time Restricted, Location Riestd, and Time Location Re-
stricted Permission Inheritance Hierarchy with the Str8patial Form of Static Sepa-
ration of Duties-User Role Assignment (detected by assefestConflict3l, TestCon-

flict3_2, TestConflict33, andTestConflict34, respectively)

4. Conflict of each type of Permission Inheritance Hierangith the Strong Form of Static

Separation of Duties-User Role Assignment (detected byrags TestConflictd

5. Conflict of Unrestricted, Time Restricted, Location Riestd, and Time Location Re-
stricted Permission Inheritance Hierarchy with the Weakntof Static Separation of
Duties-Permission Role Assignment (detected by assefisstConflict5l, TestCon-

flict5_2, TestConflict53, andTestConflict™4, respectively)

68

10.

11.

12.

13

Conflict of Unrestricted, Time Restricted, Location Ries¢éd, and Time Location Re-
stricted Permission Inheritance Hierarchy with the Stréegporal Form of Static Sep-
aration of Duties-Permission Role Assignment (detectecgsertionTestConflict6l,

TestConflict62, TestConflict63, andTestConflicté4, respectively)

. Conflict of Unrestricted, Time Restricted, Location Riestd, and Time Location Re-

stricted Permission Inheritance Hierarchy with the Str@pgtial Form of Static Sep-
aration of Duties-Permission Role Assignment (detectecdsertionTestConflict7l,

TestConflictZ2, TestConflictZ3, andTestConflict74, respectively)

Conflict of each type of Permission Inheritance Hierangith the Strong Form of Static

Separation of Duties-Permission Role Assignment (deddayeassertioffestConflict$

Conflict of Unrestricted, Time Restricted, Location Riestd, and Time Location Re-
stricted Activation Hierarchy with the Weak Form of Dynar&ieparation of Duties (de-
tected by assertiofestConflict9l, TestConflict92, TestConflict93, andTestConflictH,

respectively)

Conflict of Unrestricted, Time Restricted, Location ®egd, and Time Location Re-
stricted Activation Hierarchy with the Strong Temporal Foof Dynamic Separation of
Duties (detected by assertidestConflict10l, TestConflictl®, TestConflict1(3, and
TestConflict104, respectively)

Conflict of Unrestricted, Time Restricted, Location fReted, and Time Location Re-
stricted Activation Hierarchy with the Strong Spatial FashBtatic Separation of Duties
(detected by assertidrestConflict111, TestConflict112, TestConflict113, andTestCon-
flictl1 4, respectively)

Conflict of each type of Activation Hierarchy with the &tg Form of Dynamic Separa-

tion of Duties (detected by assertidastConflict1?

. Conflict occurs during the permission role assignmeataton i.e. the spatio-temporal

69

14.

15.

16.

17.

18.

19.

constraints of the permission assigned to the role are ctedliwith the spatio-temporal

constraints of the role (detected by asserfiestConflict13

Conflict of R2R Unrestricted, R2R Time Restricted, R2Ratomn Restricted, and R2R
Time Location Restricted Permission Delegation with theakVeorm of Static Sepa-
ration of Duties-Permission Role Assignment (detected ssedionTestConflict141,

TestConflict142, TestConflict143, andTestConflict144, respectively)

Conflict of R2R Unrestricted, R2R Time Restricted, R2Ra&tomn Restricted, and R2R
Time Location Restricted Permission Delegation with theoi®y Temporal Form of
Static Separation of Duties-Permission Role Assignmeete(@ded by assertiorestCon-

flict15.1, TestConflict132, TestConflict133, andTestConflict154, respectively)

Conflict of R2R Unrestricted, R2R Time Restricted, R2Rat@mn Restricted, and R2R
Time Location Restricted Permission Delegation with th@i&j Spatial Form of Static
Separation of Duties-Permission Role Assignment (detidnt@ssertioffestConflict16l,

TestConflict162, TestConflict163, andTestConflict1&4, respectively)

Conflict of R2R Unrestricted, R2R Time Restricted, R2Ratomn Restricted, and R2R
Time Location Restricted Permission Delegation with theoi®§ Form of Static Sep-
aration of Duties-Permission Role Assignment (detecteddsertionTestConflict171,

TestConflict12, TestConflict173, andTestConflict1 74, respectively)

Conflict of R2R Unrestricted, R2R Time Restricted, R2Ra&t®mn Restricted, and R2R
Time Location Restricted Role Delegation with the Weak FofrDynamic Separation
of Duties (detected by assertidrestConflict18l, TestConflict1®, TestConflict183,

andTestConflict184, respectively)

Conflict of R2R Unrestricted, R2R Time Restricted, R2Ratmn Restricted, and R2R
Time Location Restricted Role Delegation with the Strongperal Form of Dynamic
Separation of Duties (detected by asserfiestConflict19l, TestConflict1®, TestCon-
flict19_3, andTestConflict1H, respectively)

70

20. Conflict of R2R Unrestricted, R2R Time Restricted, R2Rat@mn Restricted, and R2R
Time Location Restricted Role Delegation with the Strongt& Form of Dynamic
Separation of Duties (detected by asserfiestConflict201, TestConflict2®, TestCon-
flict20_3, andTestConflict2(4, respectively)

21. Conflict of R2R Unrestricted, R2R Time Restricted, R2Rdtoon Restricted, and R2R
Time Location Restricted Role Delegation with the Strongnf-of Dynamic Separation
of Duties (detected by assertidrestConflict211, TestConflict212, TestConflict213,

andTestConflict214, respectively)

4.3 Using Alloy to Analyze the STRBAC-Embedded Appli-
cation

The analysis approach we propose in Section 4.2 is perfoah#dte model level, which
means the model in general is free from the inconsistenaéganflicts listed in Section 4.2.
In this section, we propose a methodology that describesvii®wan get assurance that an
application is adequately protected. Since the applinateze generally specified in UML, we
use UML to specify our application and access control cairss as well. UML can be used
in conjunction with OCL which is based on formal logic; thikwas us to formally specify the
constraints in our model. However, in order to get assurémaeour application is adequately
protected, we need to analyze our application together thighaccess control constraints.
Manual analysis is tedious and error-prone, so we need toraié the verification process.
Existing tools for automated analysis of UML models, suclu&E and OCLE, cannot verify
behavioral properties and so are inadequate. We propoggameah that will transform UML

models with OCL constraints into an Alloy specification.

4.3.1 Model Transformation from UML to Alloy

There are clear similarities between Alloy and UML langusageach as class diagrams
and OCL. From a semantic point of view both Alloy and UML canitverpreted by sets of

tuples [34, 69]. Alloy is based on first-order logic and is hgeiited for expressing constraints

71

on object-oriented models. Similarly, OCL has extensivestaicts for expressing constraints
as first order logic formulas. Considering such similasitimodel transformation from UML
class diagrams and OCL to Alloy seems straightforward. HeweUML and Alloy have
fundamental differences, which are deeply rooted in thedeulying design decisions. For
example, Alloy makes no distinction between sets, scatadseations, while the UML makes
a clear distinction between the three. Other examplesdiedhat UML supports a number of
primitive types, whereas Alloy only supports integers. UMlso supports aggregation and
composition, but there is no counterpart in Alloy. All of shinakes the transformation from
UML to Alloy challenging.

Figure 4.3 depicts an outline of our approach. Using the itded Backus-Naur Form
(EBNF) representation of the Alloy grammar [34], we shafitfgenerate a Meta Object Facility
(MOF) compliant [55] metamodel for Alloy. We then select &set of the class diagrams [57]
and OCL [56] metamodels. To conduct the model transformatiset of transformation rules
has been defined. The rules map elements of the metamodééssidiagram and OCL into
the elements of the metamodel of Alloy. The rules have begieimented into a prototype
tool called UML2AIlloy. If a UML class diagram, which confosro the subset of UML we
support, is provided as input to UML2AIlloy, it automatigaienerates an Alloy model. For
lack of space, we do not show how the EBNF representationlof/Algrammar is transformed

into a MOF compliant metamodel but refer the interestedeesml[3].

4.3.2 Mapping Class diagram and OCL to Alloy

The transformation rules map elements of the UML class dimgand OCL metamodels
to the Alloy metamodel. Due to space limitations the UML an@LOmetamodels are not
presented here, but can be found in the respective speafickicuments [57, p.29], [56].

Table 4.1 presents a table which provides an informal mappatween the most important
elements of the UML and OCL metamodels and Alloy. More speddiff a UML Classis
translated to an Alloy signature declaratidex{endsSigDegl| which defines &igld with the

same name. If the class is not a specialization the Alloyadige is not related to arfyigRef

72

Class diagram
metamodel

Transformation
A OCL Ru}es
metamodel
A <<Implements>>
<<ConflormTo>>

Class diagram

<<Confd

OCL
statements

>
>

Allo ¢ EBNF representation
metam()),del of Alloy’s grammar

A

rmTo>> UML2Alloy <<ConflormTo>>

Alloy model

Figure 4.3: Outline of the transformation method.

| UML+OCL metamodel element | Alloy metamodel element|

Class ExtendsSigDecl
Property DeclExp
Operation Predicate

Parameter Decl
Enumeration ExntedsSigDecl
EnumerationLiteral ExtendsSigDecl
Constraint Expression

Table 4.1: Informal mapping between UML and Alloy metamaglements

4.3.3 UML2Alloy

Otherwise it might be related to%igRefwhich references the signature it might extend.

A Propertyis translated to a declaration expressidedlExp, which is used to define a
field in an Alloy model. AnOperationis transformed to ®redicateand theParametersf the
operation are transformed to declaratioDge¢l). An Enumeration [57, p.63] is transformed to
a signature declaratioBigDec| which declares an abstract signature. BmumerationLiteral
is transformed to a sub signature. A more complete transfoom rules from UML to Alloy

and their implementation are explained in our previous W8tk

UML2AIloy is the tool developed to transform the UML enrichaith OCL constraints
to Alloy. UML2AIlloy makes use of Model Driven ArchitecturdDA) [45] techniques to

73

perform this transformation. Both OCL and Alloy are basedficst-order logic. They are
therefore quite similar, and the translation from OCL toolis straightforward when dealing
with first-order logic statements. For example, the forACIOconstruct is translated to all
in Alloy and the exists OCL construct to some in Alloy. Tabl@ 416] shows subset of the

transformation rules which UML2AIlloy uses to transform UMhd its associate OCL to Alloy.

Table 4.2: A Subset Of UML2Alloy Transformation Rules

UML Alloy

Classes Signature Declarations
Attributes Relations of the Signature
Data Types Signature Declarations
OCL Expressions Formula Expressions

If Expressions If Formulas

Operations that return a type | Functions

Operations that return void typePredicates
Operation Parameters Parameters of Predicates or Functions
Associations Relations of a Signature

4.3.4 Example Scenario: Dengue Decision Support System

We illustrate our approach using a real-world Dengue DegiSiupport (DDS) system. The
DDS helps state-level public health officials respond t@alautbreaks of dengue. Response
consists of vector control and vector surveillance, nansgkaying for mosquitoes (control)
and investigating locations where they might be breedirg laving (surveillance) in areas
where the level of confirmed dengue cases has increased alpescribed threshold. Public
health officials are organized in jurisdictions, based opytation, and multiple jurisdictions
are included in a single state. When the threshold is readfidals at both levels respond.
The jurisdiction officer activates vector control and siltaace teams that are local to the ju-
risdiction, with instructions regarding the specific cahttnd surveillance protocols to follow
and the locations where they are to be performed. The stiterafeleases materials for con-
trol to the team, and the local team then performs the can&motl surveillance ordered. The
jurisdiction and state vector control officials are oftendted in different buildings, although

the vector control team is co-located with the jurisdictmfficer. All control materials are

74

Table 4.3: DDS Tasks List

Task Task
1 | Read Premise 10 | Read VControl
2 | Change Premise 11 | Change VControl
3 | Read Case 12 | Read Work Record
4 | Change Case 13 | Change Work Record
5 | Read Patient 14 | Read VC Materials
6 | Change Patient 15 | Change VC Materials
7 | Read Patient Names | 16 | Signal VC Need for DV
8 | Read Schedule Work | 17 | Signal VC Need for DHH
9 | Change Schedule Work

located in warehouses elsewhere, and for coordinatiommnsaae controlled by the state offi-
cer. Information about specific cases of dengue is retamedhat is called an epidemiological
study. This data includes information about the patiemt)adlcation where the patient lives (the
premise), the case, and control and surveillance actiorfigsrpeed at the premise. The patient
and case data are considered private information, and &ewaalable to epidemiologists at
the jurisdiction and state levels. The vector control teageives premise information along
with orders for control and surveillance. However, the tedlso needs to have names asso-
ciated with the premises in order to validate the locatiohe Team therefore needs access to
some of the patient data for a fixed period of time, in orderexdgrm control and surveillance

duties.
4.3.4.1 DDS Security Policies

Entities

DDS system consists of the following roleState Epidemiologisfurisdiction Epidemiologist
Clinic EpidemiologistClinician, State Vector ControUurisdiction Vector ContrglandLocal

Jurisdiction VC TeamTasks user can perform are listed in Table 6.1. Each roleoediorm

their own set of tasks in the designated location and timensanzed in Table 6.2.

Role Hierarchy

Some roles in the DDS are related using unrestricted peionigsheritance hierarchy. Using

75

Table 4.4: DDS Role Constraints
Role Tasks Location Constraint Time Constraint
State Epi 16 A-State Office a—Regular Hours
Juris Epi 1,3 B-Juris Office a—Regular Hours
17 B-Juris Office b—Any Time
Clinic Epi 17 C—Clinic b—Any Time
Clinician 1,2,3,4,56 C—Clinic a—Regular Hours
State VC 11, 15 A-State Office a—Regular Hours
Juris VC 1, 8,9, 10, 12, 14 B-Juris Office a—Regular Hours
Local VC Team| 7 B-Juris Office, E-Emergency Locatiorc—24 Hours Window after signal tp
begin work received
1,913 B—Juris Office, D—Field a—Regular Hours

the STRBAC model, these relationships can be define as folktate Epi> Juris Epi Clinic
Epi > Clinician, andState VC> Juris VC

Separation of Duty
There are two separation of duty constraints in DDS systeath Bre the strong spatial form

of static separation of duty.

1. User should not have permission to change VC protocoleeasame time as he has

permission to change VC materials.
2. User should not have permission to signal DV at the same asrsignal DHF.
These can be represented in STRBAC as foll(iil, 15) € SSODPRA and(16,17) € SSODPRA.

4.3.4.2 DDS Model Analysis

The first step in formal security analysis is to abstract aadsform the STRBAC model
in the context of DDS into a UML class diagram and accompan@&L. The class diagram
depicts the entities that take part in the model, and defimeis attributes related in the ac-
cess control operations, such as the time and locatiomuatitri OCL statements specify the
invariants of the model such as the tasks assigned to rolsemdity constraints that all enti-
ties in the model must satisfy. In the next step, we use UMI@A]15, 16] to automatically
transform the class diagram and OCL statements into an Aflogel, which we subsequently

analyze using Alloy Analyzer.

76

Stage 1: Model Abstraction

The first step of the abstraction is to simplify the originabael by removing non-essential
elements so that the translation to Alloy produces a modeldhly contains items necessary

to reason about its security properties. For example, wevernthe attributes which is not

related with the security such agender birthdate ssid from the Personentity since these

attributes are not related with the access control modeé rébulting UML class diagram is

shown in Figure 4.4.

+uses
Person T

+roles

+roles

+tasks

<<<<enumeration>>>>

Task

StateEpi

0.0

JurisVC

— Role e
> locationCon: Location <
timeCon: Time]
LocalVCTeam JurisEpi ClinicEpi Stateve Clinician
<<<<enumeration>>>>
Location <<<<enumeration>>>>
Time

A:void
B: void
C: void
D: void
E: void

a: void
b: void
c: void

Figure 4.4: UML Model for the DDS’s STRBAC

ONE: void

TWO: void
THREE: void
FOUR: void
FIVE: void

SIX: void
SEVEN: void
EIGHT: void
NINE: void

TEN: void
ELEVEN: void
TWELVE: void
THIRTEEN: void
FOURTEEN: void
FIFTEEN: void
SIXTEEN: void
SEVENTEEN: void

The permission role assignments are expressed as OCL @otstrThe following OCL

depicts the constraints for the permission role assignfeeduris Epirole.

context JurisEpi

inv jurisEpiCon :

(self.tasks = (Task :: ONE ->

including (Task :: THREE)) and

self.location = Location :: B and

self.timeCon = Time :: a) or

(self.tasks = (Task :: SEVENTEEN -> including
(Task :: SEVENTEEN)) and

77

self.location = Location :: B and

self.timeCon = Time :: b)

The effect of permission inheritance hierarchy can alsopesssed as OCL. The following

OCL depicts the constraints for the permission role assegrirfor State Eprole.

context StateEpi

inv stateEpiCon : (self.tasks = (Task :: SIXTEEN ->
including (Task::SIXTEEN)) and

self.location = Location :: A and

self.timeCon = Time :: a) or

(self.tasks = (Task :: ONE -> including

(Task :: THREE)) and self.location = Location :: B and
self.timeCon = Time :: a) or

(self.tasks = (Task :: SEVENTEEN -> including

(Task :: SEVENTEEN)) and self.location = Location :: B

and self.timeCon = Time :: b)

Note that all permissions assigneditois Epi which is the junior role oftate Eprole are
appended to the set of permissions assigneitdte Eprole.

The separation of duty can also be modeled using OCL constriaor instance, the con-
straint said that user should not have permission to cha@pr@tocols at the same time as he

has permission to change VC materials can be modeled aw/follo

context Person

inv no_eleven_fifteen : self.roles ->

forAll (r1 , r2 : Role |

(rl.tasks -> includes (Task :: ELEVEN) implies
(r2.tasks -> excludes (Task :: FIFTEEN))) and
(rl.tasks -> includes (Task :: FIFTEEN) implies
r2.tasks -> excludes (Task :: ELEVEN)))

78

The complete list of the OCL constraints can be refered toefypx B.1.

Stage 2: Model Transformation
The UML2AIloy tool is used to create an Alloy model from thas$ diagram and associated
OCL specification.

When we apply UML2Alloy to the UML class diagram and its OClesiication, the class
diagram will be transformed to the followirglgnaturesn Alloy corresponding to each class

shown in Figure 4.4.

abstract sig Role{
location:one Location,
timeCon:one Time,
tasks:some Task,

uses:set Person}

one sig StateEpi extends Role{}
one sig JurisEpi extends Role{}
one sig ClinicEpi extends Role{}
one sig Clinician extends Role{}
one sig StateVC extends Role{}
one sig JurisVC extends Role{}

one sig LocalVCTeam extends Role{}

some sig Person{roles:some Role}

abstract sig Location{}
one sig A extends Location{}
one sig B extends Location{}

one sig C extends Location{}

79

one sig D extends Location{}

one sig E extends Location{}

sig Time{}
sig a in Timef}
sig b in Time{}

sig ¢ in Time{}

abstract sig Task{}

one sig ONE extends Task{}

one sig TWO extends Task{}

one sig THREE extends Task{}
one sig FOUR extends Task{}

one sig FIVE extends Task{}

one sig SIX extends Task{}

one sig SEVEN extends Task{}
one sig EIGHT extends Task{}

one sig NINE extends Task{}

one sig TEN extends Task{}

one sig ELEVEN extends Task{}
one sig TWELVE extends Task{}
one sig THIRTEEN extends Task{}
one sig FOURTEEN extends Task{}
one sig FIFTEEN extends Task{}
one sig SIXTEEN extends Task{}
one sig SEVENTEEN extends Task{}

The OCL constraint for the permission role assignment welltiansformed tdact and

predicatein Alloy. For example, the OCL constraint for the permissiole assignment of the

80

Juris Epirole will be transformed to the following Alloy code.

fact JurisEpi_jurisEpiCon_fact{
all self: JurisEpi | JurisEpi_jurisEpiCon([self]}

pred JurisEpi_jurisEpiCon[self: JurisEpi){
((self.tasks = ONE+THREE) && (self.location = B) &&
(self.timeCon = a)) || ((self.tasks = SEVENTEEN) &&

(self.location = B) && (self.timeCon in Time))}

The effect of role hierarchy represented in the OCL constraill also be transformed to
fact andpredicatein Alloy. For example, the OCL constraint for the set of pessnons that
assigned to th&tate Epirole through the role hierarchy will be transformed to thikofeing
Alloy code.

fact StateEpi_stateEpiCon_fact{
all self: StateEpi | StateEpi_stateEpiCon[self]}

pred StateEpi_stateEpiCon[self: StateEpi|{
(self.tasks = SIXTEEN + ONE + THREE + SEVENTEEN) &&

(self.location = A) && (self.timeCon = a)}

The OCL constraint for the separation of duty constraint bl transformed teredicate
in Alloy. For instance, the OCL constraint for the consttaiaid that user should not have per-
mission to change VC protocols at the same time as he hasggomito change VC materials

will be transformed to the following Alloy code.

pred Person_no_eleven_fifteen[self: Person){

all r1, r2: selfroles |

((ELEVEN in rl.tasks) => (FIFTEEN lin r2.tasks)) &&
((FIFTEEN in rl.tasks) => (ELEVEN lin r2.tasks))}

The complete Alloy code generated by UML2Alloy is shown inpepdix B.2.

81

Stage 3: Model Analysis

Alloy assertions must be formulated prior to analysis byolRnalyzer. Assertions are state-
ments that capture properties we wish to verify. Alloy Arzgy automatically checks such
assertions and if they fail it produces a counterexample.h®e checked several assertions
regarding the security properties of the example system.ekample, it is crucial to ensure
that no user can change VC protocols (task 11) at the samesime has permission to change

VC materials (task 15). To verify this, we create the follogzassertion:

assert NoConflictPermsSTVCAssigned{
all r: Person.roles, d: Time, I: Location|
((ELEVEN in r.tasks) && (d in r.timeCon) &&

(I'in r.location)) =>

((FIFTEEN lin r.tasks) && (d in r.timeCon) &&

(I'in r.location))}

We chose a value of 8 for the scope of analysis, and the assavis checked for this
scope. A scope of 8 means that the Alloy Analyzer will attetogind an instance that violates
the assertion, using up to 8 instances for each of the entitéined in the class diagram of
Figure 4.4. The assertion produced no counterexample,inge#rat it is valid for the given
scope.

Next, we will check whether the SoD for role permission assignt is maintained. To do

this, we create the following assertion:

assert NoConflictPermsSTVC{
all r. StateVC, d: Time, I: Location|
(ELEVEN in r.tasks) && (d in r.timeCon) &&

(

(I'in r.location)) =>

((FIFTEEN lin r.tasks) && (d in r.timeCon) &&
(

| in r.location))}

82

We chose a value of 8 for the scope of this analysis as well.ddewthis time the analyzer
showed the counterexample, which means these conflictimgipgons can be assigned to the

same role. The counterexample is shown in Figure 4.5.

-

Fila Instance Thema Window
A& & E F
© Viz Dot XML Evaluator Next
- (DDSV2) Check NoConflictPermsSTVC for 8
: o= sig seq/int
i ¢ set $NoConflictPermsSTVC d
: Time
© 4 set fNoConflictPermssTvC |
i A
. ¢ set SNoConflictPermsSTVC r
: 9 StateVC
¢ field locabon
A
¢ field tasks
EIGHT
ELEVEN
FIFTEEN
FOURTEEN
MINE
ONE
TEN
TWELVE
¢ field timeCon
Time
o seta
& sath

Figure 4.5: Counterexample for Assertion NoConflictPeringS

4.4 Chapter Summary

In this chapter, we demonstrate how we can perform autonaatalysis on the STRBAC
model. We propose the usage of Alloy analyzer tool for dougenated analysis. Our analysis
can be done at two different levels—the model level and tipdicgiion level. Analysing the
model at the model level ensures that the different featofesir STRBAC model does not

contain any inconsistencies or conflicts. The applicaterel analysis guarantees that the

83

implementation of our model is fully protect the real-woaldplication and does not cause any
security breaches.

Our STRBAC model is efficient in the aspect that it can reprediee different kind of
constraints and relationships as shown in Chapter 3. Theftramation of the model to do the
automated verification is feasible as demonstrated in @edti3. However, semantically, the
model is extremely complicated. In Chapter 5, we define a aitle well-defined semantics
expressed in graph-theoretic notation. We name this newehastthe Spatio-Temporal Aware

Role-Based Access Control with Delegation (STARBACD) Miode

84

Chapter 5

A Spatio-Temporal Aware Role-Based
Access Control with Delegation
(STARBACD) Model

Chen and Crampton develop the graph based representatitire fspatio-temporal RBAC
in [19]. All RBAC components are represented by verticeslevthe assignment and hier-
archical relationships are represented by the edges ofitbeted graph. The model can be
categorized into three types i.e. standard, strong, and wemlel. For the standard model,
component/ is said to be authorized to componegtif all vertices along the authorization
path satisfy the spatio-temporal constraints. For thengtroodel, componemn; is said to be
authorized to componeny, if all vertices together with the edges along the authowrgpath
satisfy the spatio-temporal constraints. And in the weakiehocomponenv; is said to be
authorized to component, if both vertices satisfy the spatio-temporal constraidtéhough
the authors developed a strong and clear semantics of theljtod model still lack of some
useful functionalities. Firstly, the model does not coesithe spatio-temporal constraint which
may be applied to the object. As we mentioned earlier, thistps critical for the security in
the pervasive computing environment. Secondly, the moales$ ot implement the separation
of duties constraints which is widely known as a useful fiorcof the RBAC model. Thirdly,
the delegation operation which is widely used nowadays issopported in the model. We
borrow the idea of graph representation from both [19] add, [&nd then improve it to rectify

their shortcomings.

85

In this chapter, we propose the second model based on grpm@seatation, which is well-
formed semantics. Based on this model, we will propose thdeinanalysis algorithm in

Section 5.4.

5.1 Spatio-Temporal Model

Our model extends the one proposed by Chen and Cramptonr{1B¢ifollowing ways.
First, we believe that a spatio-temporal access controlainodist also support access control
for moving objects, that is, objects whose physical locatbanges with time. Thus, access
control should not only depend on the spatio-temporal doatd-ordinate of the user but also
of the object. Second, separation of duties must also beostgapby access control models.
Third, the model must also provide support for delegationctviis an absolute necessity for
access control in pervasive computing applications. s dhid the next two sections, we show
how the model by Chen and Crampton can be extended to sugmbroéthese features.

We first propose the model where access is dependent on dit®loof the user as well as
that of the object. We extend the graph-theoretic notatio@leen and Crampton [19] in the
following manner. In our work, the set of verticés=U URUPU O correspond to the RBAC
entities: Usersy), Roles R), PermissionsK), and Objects@). Like Chen and Crampton
[19], our model assumes the existence of the following i@tships of RBAC that constitute

the set of edgeE = UAUPAUPOURH,URH, where

User-Role AssignmentA) =U x R

Permission-Role AssignmerR4) = Rx P

Permission-Object AssignmelRQ) =P x O

Role Hierarchy RH) = Rx Rx {a,u}, which can be categorized to:

— the activation hierarchyRHa) = {(r,r’) : (r,r’,a) € RH}, and

— the permission usage hierarci®H,) = {(r,r’) : (r,r’,u) € RH}

We define the notion of activation path, usage path and apagksn a manner similar to

that proposed by Chen and Crampton. @ctivation path(or act-path betweenv; andv, is

86

defined to be a sequence of vertiegs . ., Vv, such that(vi,v2) € UAand(vi_1,Vi) € RH, for

i =3,...,n. A usage patt{or u-path betweenv; andvy is defined to be a sequence of vertices
V1,...,Vq such that(vi,vi;1) € RH, fori=1,....n—2, and(vy-1,Vn) € PA. An access path
(or acs-path betweenvy; andv, is defined to be a sequence of vertiegs...,V,, such that
(v1,Vi) is an act-path(vi,vh_1) is an u-path, andvn_1,v,) € PO. Note that, our access path
definition is similar to the au-path definition of Chen andi@péon [19], except that we include
the path to the object as part of our definition. This is imaottespecially if we are dealing
with objects whose location varies with time. Following @hend Crampton’s work [19], we
assume the existence of a spatio-temporal doriaife also propose three models, namely,
the standard model, the strong model, and the weak modelmbldels differ with respect to
the spatio-temporal constraints that must be satisfied éhitities for the authorization to be

successful.

5.1.1 Authorization in the Standard Model STARBACD™

In the standard model, the individual entities, namelyrsigeles, permissions, and objects,
are associated with set of points in the spatio-temporakdlonThese points indicate when and
where the individual entities can be activated. The sp@tmoporal points associated with the
user describe when and where the user can create a sessgmatisociated with a role specify
when and where the role can be activated, those associatfee wermission state when and
where a permission can be invoked, and those associate@mibject state when and where
the object can be accessed. The standard model requiratdhateru can access an object
0 at some spatio-temporal poidt thend is contained in the set of spatio-temporal points
associated with all the nodes in the path connealitgo. These ideas are formalized below.

The spatio-temporal constraints in thiandard STARBACD mod@r STARBACD™) are
denoted with a functioh : V — 2. Forve V, A(v) C D denotes the set of points in space-time

at whichv can be invoked.
e if uc U, thenA(u) denotes the set of points in space-time at whichay create a session;
e if r € R, thenA(r) denotes the set of points in space-time at whiahay be activated in

87

a session;
e if pe P, thenA(p) denotes the set of points in space-time at wipchay be granted;
e if 0 € O, thenA(0) denotes the set of points in space-time at whichay be accessible.

Given a pathvy,..., vy in the labeled graps = (V,E,A), whereE = UAU PAUPOU RH; U
RH,, we WriteX(vl,...,vn) = X(vl,vn) C D to denote_;A(Vvi). In other Wordsf\(vl,vn)
is the set of points at which every vertexis enabled. Note that semanticsoRind A are
consistent with those proposed by Chen and Crampton [19].

Authorization in STARBACD ~:

e Auserve U may activate role’ € Rat pointd € D if and only if there exists an act-path

V=V1,Vo,...,Vh =V andd € X(v,v’);

e Aroleve Ris authorized for permissiort € P at pointd € 9 if and only if there exists

an u-pathv=vy,vy,..., v, =V andd X(v,\/);

e A userv e U is authorized for permissiovi € P with respect to object’ € O at point
d € D if and only if there exists an acs-path= vy, Vo, ..., Vi,...,Vh_1 = V,V, = V' such
thatv; € R for somei, vi,...,Vv; is an act-pathy;,...,vy_1 is a u-path(vh_1,n) € PO,

andd € A(v,V');

5.1.2 Authorization in the Strong Model STARBACD™

The strong model is used when not only the individual ersti(iesers, roles, permissions,
objects) involved must satisfy the spatio-temporal camsts, but the different relationships
must also satisfy such constraints. For instance, consgiigerelation(r,p) € PA. In this
case, we not only have to take into account the spatio-temhpoints at which the role can
be activated in a session and the points at which the pewnigstan be invoked, but we also
must consider the spatio-temporal points whean invokep. This requires specifying another

function in the strong model as described below.

88

The spatio-temporal constraints in teeong STARBACD modé¢br STARBACD') are
denoted with a functiop: E — 2P, Fore= (v,V) € E, u(v,V) denotes the set of points in

space-time at which the association betweandV is enabled.

e if (u,r) € UA, thenp(u,r) denotes the set of points in space-time at whiéh assigned

tor;

e if (r',r) € RH,, thenu(r’,r) denotes the set of points in space-time at whidks senior

tor in the activation hierarchy;

e if (r',r) € RH,, thenu(r’,r) denotes the set of points in space-time at whids senior

tor in the permission usage hierarchy;

e if (r,p) € PA thenp(r, p) denotes the set of points in space-time at whpdh assigned

tor.

e if (p,0) € PO, theny(p,0) denotes the set of points in space-time at whichassigned

to p.

Given a pathvy, ..., v, in the labeled grapts = (V,E, A,), whereV =U URUPUO andE =
UAUPAUPOURH,URH, , we write[i(vy, . .., Vn) = f(V1,Vn) C D to denote " 1(Vi, Vi+1)-

The semantics imply that an edge can only be enabled if bath@nts are enabled. Hence,
fi(v1,vn) is the set of points at which every vertex and every edge ipéte is enabled. Here
again the semantics pfandji are consistent with those proposed by Chen and Crampton [19]

Authorization in STARBACD *:

e ausel € U may activate role’ € Rat pointd € 9D if and only if there exists an act-path

V=V1,Vo,...,Vp =V andd € fi(v,V);

e aroleve Ris authorized for permissiort € P at pointd € 9D if and only if there exists

an u-pathv =vi,vy,..., vy =V andd € i(v,V);

e a userv € U is authorized for permissiovi € P with respect to object’ € O at point

d € D if and only if there exists an acs-path= vy, Vo, ..., Vi,...,Vh_1 = V,V, = V' such

89

thatv; € Rfor somei, v1, ...,V is an act-pathy;, ..., v,_1 is an u-path(v,_1,vy) € PO

andd € fi(v,V');

5.1.3 Authorization in the Weak Model STARBACD™

The weak model is derived from the standard model. RecdlltHeastandard model re-
quires that each entity (users, roles, permissions, arett)jin the authorization path be as-
sociated with a set of spatio-temporal points and the iat#iens of all these sets be non-zero.
In the weak model, the entityis authorized for another entity provided there is overlap in
their spatio-temporal points. There is no requirement thatntermediate nodes on the path
satisfy the spatio-temporal constraints. Like STARBACIhe model is based on the labeled
graphG = (V,E,\), whereV =U URUPUO andE = UAUPAUPOURH, URH,.
Authorization in STARBACD ~:

e Auserve U may activate rol&’ € Rat pointd € 9 if and only if there exists an act-path

V=V1,Vo,...,Vp =V andd € A(v) NA(V);

e Aroleve Ris authorized for permissiort € P at pointd € 9 if and only if there exists

a u-pathv=vy,vy,...,vo =V andd € A(v) NA(V);

e A userv e U is authorized for permissiovi € P with respect to object’ € O at point
d € D if and only if there exists an acs-path= vy, Vo, ..., Vi,...,Vh_1 = V,V, = V' such
thatv; € Rfor somei, v1,...,V; is an act-pathy;, ..., v,_1 is an u-path{v,_1,vy) € PO

and andd € A(v) NA(vi) NA (V) NA(V);

5.2 Separation of Duties Constraints

Separation of duties (SoD) prevents the occurrence of feausihg out of conflicts of in-
terests in organizations [80]. Separation of duties enateconflicting roles are not assigned
to the same user or that conflicting permissions are notr@agditp the same role.

Separation of Duty (SoD) comes in two varieties. First oneith respect to the mutual

exclusion relations between two roles. This is to guarattitaeno user can be assigned to two

90

conflicting roles. The second one is with respect to the mxeusion relations between
two permissions. This is to guarantee that no role can bgreditwo conflicting permissions.
We denote these two types of SoD by usBIf andSD” edges, respectively. Since SoD is a
symmetric relationship, th8 DR andSD” edges are bi-directional.

We next define the separation of duties for the standard aakl medels. The SoDs defined
for the standard and weak models are expressed in terms gfdpdG = (V,E,\), where
E = UAUPAUPOURH,URH,USDRUSD andV = U URUPUO. For these cases, the SoD
is similar to the SoD constraints in traditional RBAC. These given below.

SoD Constraints for STARBACD™ and STARBACD=

e User-Role Assignmenif (r,r’) € SDR then there are no two edgés r) and(u,r’) such

that{(u,r),(u,r')} C UA

e Permission-Role Assignmenif (p, p') € SD° then there are no two u-paths of the form

r=vi,Vo,....,Vp=pandr =V}, v,,..., vy =p'

Similar to other associations, we defined the spatio-tealmanstraint for the separation of
duties with a functiomu: E — 2?. Fore= (v,V') € SDRUSDP, (v, V) denotes the set of points
in space-time at which the association betweemdV (in this case, the SoD) is enabled. In

particular,

o if (r,r') € SO}, u(r,r') denotes the set of points in space-time at which the roke-rol

separation of duties constraint is valid;

o if (p,p') € SO, u(p, p') denotes the set of points in space-time at which the peromissi

permission separation of duties constraint is valid.

The strong model is defined over the labeled gr@ph (V,E, A, 1), whereE = UAUPAU
POURH, URH,USDRUSD’ andV = U URUPUO. The strong model allows specification of
weaker forms of SoD constraints than those supported bydld@ibnal RBAC. Specifically, it
allows one to specify the spatio-temporal points at whiehSbD constraints are valid.

SoD Constraints for STARBACD™

91

e User-Role Assignment:if (r,r’) € SDR then there are no two edgés,r) and (u,r’),

corresponding to some userwherep(u,r) N p(u,r’) Np(r,r') #0

e Permission-Role Assignmentif (p, p') € SD” then there are no two u-paths- vy, v,,

Vn = pandr =vy,V,, ...,V = P whereji{vy, vn) N ((vy, Vi) O (P, p) # 0

5.3 Delegation in STARBACD

Many situations require the temporary transfer or grantihgccess rights belonging to a
user/role to another user/role in order to accomplish argiask. For example, a department
chair may delegate his privilege to the assistant chairevhd is traveling. The entity that
transfers or grants his privileges temporarily to anothditeis referred to as the delegator
and the entity who receives the privilege is known as thegd¢ée. The delegator (delegatee)
can be either an user or a role. Thus, we may have four typeslefations:user to user
(U2U), user to role(U2R), role to role (R2R), androle to user(R2U). When a user is the
delegator, he can delegate a subset of permissions thaskegses by virtue of being assigned
to different roles. When a role is the delegator, he can @g¢degjther a set of permissions or he
can delegate the entire role. We can therefore classifgdgt on the basis of role delegation
or permission delegation. In the graphical representati@TARBACD, we define a function
v:(UUR) x (RUP) — (UUR) that maps the delegation to the delegator. We assume the
existence of different types of relationship correspogdothe different types of delegation as

follows:

e Userto User Role DeIegatioDeIegatézu) =U xR, v(u,r') = U denotes the delegator

who is a user authorized for roté

e User to User Permission Delegatiddelegat§ ;) = U x P, v(u,p') = U denotes the

delegator who is a user authorized for permisgbn

e User to Role Role DeIegatiowﬁ)(eIegatéZR) =Rx R, v(r,r") = U denotes the delegator

who is a user authorized for roté

92

e User to Role Permission DelegatioDedlegat§,z) = Rx P, v(r,p') = U denotes the

delegator who is a user authorized for permisgbn

e Role to Role Role DelegatioDglegat&,g) = Rx R, v(r,r”) = r’ denotes the delegator

which is a role authorized for rol¢. Note that’ andr” can be the same role.

e Role to Role Permission DelegatioDdlegat&,z) = Rx P, v(r,p’) = r’ denotes the

delegator which is a role authorized for permisspn

e Role to User Role Delegatiodglegat&,) =U x R, v(u,r”) = r’ denotes the delegator

which is a role authorized for rol¢. Note that’ andr” can be the same role.

¢ Role to User Permission DeIegatioIDe(IegatéZU) =U x P, v(u,p’) = r’ denotes the

delegator which is a role authorized for permisspon

5.3.1 Delegation in the Standard Model STARBACD

To represent delegation in a graph-theoretic manner fostdredard and weak models, we
have the labeled grapgh = (V,E,\), whereE = UAUPAUPOURH;URH, U Delegatc‘ﬁj2U U
Delegat§ ,, UDelegat, UDelegat§ .z U Delegat§,; UDelegat@, U Delegat &, U
Delegatg,, andV = U URUPUO. We use the notatiodsandA as before. The constraints
below describe the situations when delegation is possibtair spatio-temporal model. For
instance, the first constraint gives the spatio-temponastaints that must be satisfied when
useru’ wants to delegate rolg to another useu. It states that this delegation is possible
only if there is some overlap among the set of spatio-tempmiats associated with usef's
activation of roler’ with those of uset’s session creation. The other constraints are specified
in a similar manner.

Delegation in STARBACD™

o If (u,r’) € Delegat§,, andv(u,r’) = U, then there exists an act-path=vi, Vs, ...,V =

r’ such thaf (v, vn) NA(U) 5 0

93

e If (u,p') € Delegat§ ,, andv(u, p') = U, then there exists a path=v1,V2, ..., Vi,...,Vh =
P’ such thaty; € R for somei, vy, ...,V is an act-pathy;.1,...,V, is a u-path such that

A

A(V1,Vn) NA(U) £ 0

o If (r,r') € Delegat ,z andv(r,r’) = U, then there exists an act-path= vy, vy, ..., Vn =

r’ such that (vi, V) NA(r) # 0

o If (r,p') € Delegat§ .z andv(r, p’) = U, then there exists a path=v1,Vy, ..., Vi, ...,V =
p’ such that; € Rfor somei, v1,. ..,V is an act-pathvj, 1, ...,V is a u-path such that

A

A(V1,Vn) NA(r) #0

e If (r,r'") € Delegat&,, andv(r,r") =r’, then there exists a path= v, Vy,...,Vh =1

where(vi,Vi11) € RHyfor 1 <i < (n—1) such thatsx(vl,vn) NA(r) #0

e If (r,p') € Delegat,g andv(r, ') =r’, then there exists a u-path= vy, vy, ...,Vn = p’
such tha\ (vy, vy) NA(r) # 0

o If (u,r'") € Delegat&,, andv(u,r”) =r’, then there exists a path=v1,Vz,...,Vh =T

where(Vi,Vi11) € RHafor 1 <i < (n—1) such thaﬁ(vl,vn) NA(u) #0

o If (u,p') € Delegat&,, andv(u, p’) =r’, then there exists a u-path= vy, vz, ..., Vn = p
such thati(vl,vn) NA(u) #0

5.3.2 Delegation in the Weak Model STARBACD

The weak model is defined on the same graph as the standard gneaein Section 5.3.1.
In the weak model, the entityis authorized for the delegated entityif both entitiesv and
VvV are enabled. There is no requirement that the intermed@ateshon the path are enabled.
The constraints shown below describe when delegation sipesn the weak model. The first
constraint says that the usércan delegate rolg to another useu if the usery’ can activate
the roler’ in the weak model and provided the spatio-temporal poinsnaseru can create a
session and rolg can be activated have some overlap. The other constramtiedined in a

similar manner.

94

Delegation in STARBACD™

o If (u,r') € Delegat@,, andv(u,r’) = U, then there exists an act-path= v, Vs, ..., Vq =

r’ such thai\ (v1) NA(vp) # 0 andA(u) NA(r') #0

e If (u,p') € Delegat§ ,, andv(u, p') = U, then there exists a path=v1,V2, ..., Vi,...,Vh =
P’ such that; € Rfor somei, vy,...,Vv; is an act-pathy;. 1,...,V, is an u-path such that

A(v1) NA(vn) £ 0andA(u)NA(p') #0

o If (r,r') € Delegat§ ,z andv(r,r’) = U, then there exists an act-path= vy, Vy, ..., Vnh =

r’ such that\ (v1) NA(vn) # 0andA(r) NA(r’) # 0

o If (r,p)) € Delegat§ g andv(r, p') = U, then there exists a path= vy, Vz, ..., Vi,...,Vn =
p’ wherev; € R for somei, vi,...,V; is an act-pathy;1,...,Vv, is an u-path such that

A(V2) NA(Vn) # 0 andA (r) NA(P) #£ 0

o If (r,r'") € Delegat&,, andv(r,r”) = r’, then there exists a path= vy,Vvo,...,Vh = r"

where(vi,Vi+1) € RH; for 1 <i < (n—1) such thak (vi) NA(vn) # 0andA(r)NA(r") #0

e If (r,p') € Delegat,g andv(r, ') =r’, then there exists a u-path= vy, vy, ...,Vn = p’
such that\(v1) NA(vp) # 0 andA(r)NA(p') #0

o If (u,r'") € Delegat&,, andv(u,r”) =r’, then there exists a path=vi,Vy,...,Vp = 1"

where(Vi,Viy1) € RHy for 1 <i < (n—1) such thak (v1) NA(vn) Z0andA(u)NA(r") #£0

o If (u,p') € Delegaté,, andv(u, p’) =r’, then there exists a u-path= vy, v, ..., vn = f
such thai\ (v1) NA(vn) # 0 andA(u) NA(p') #0

5.3.3 Delegation in the Strong Model STARBACD

The spatio-temporal constraints enforced in the delegatisthe STARBACD™ model are
denoted with a functiop: E — 2P. Fore= (v,V) € E, u(v,V) denotes the set of points in

space-time at which the association betweandV is activated.

95

The strong model is defined over the labeled gr@ph (V,E, A, 1), whereE = UAUPAU
POURH, URH,UDelegat§,, UDelegat§ ,, UDelegat§ ,, UDelegat§ ,; UDelegat &, U
Delegat, U Delegat&,, UDelegat§,, andV = U URUPUO. The constraints for the
strong model are enumerated below. The first constraintteaysvhen a usar delegates role
r’ to user, then the delegation is possible only if the spatio-temigmsints for activating user
U’s roler’ overlap with those in which the delegation is valid.

Delegation in STARBACD"

e If (u,r') € Delegat@,, andv(u,r’) = U, then there exists an act-path=vi, Vs, ..., Vn =

r’ such thap{vy, vn) N(u,r’) # 0

e If (u,p) € Delegat§,, andv(u, p') = U/, then there exists a path=v1,V2, ..., Vi,...,Vq =
p’ wherev; € R for somei, vi,...,V; is an act-pathy;1,...,Vv, is an u-path such that
F(va, Vo) MY, p') # @

o If (r,r') € Delegat ,z andv(r,r’) = U, then there exists an act-path= vy, Vy, ..., Vn =

r’ such thap(vy, vn) N(r,r’) # 0

o If (r,p') € Delegat§ .z andv(r, p’) = U, then there exists a path=v1,Vy, ..., Vi, ...,V =
P’ such that; € Rfor somei, vy,...,Vv; is an act-pathy;. 1,...,V, is an u-path such that
A(Ve, va) N, ') # O

o If (r,r') € Delegat&,k andv(r,r”) = r’, then there exists a path=vy,Vvo,...,vp =r"
where(vi,Vi;+1) € RH; for 1 <i < (n—1) such thap{vy, vn) N(r,r’') # 0

e If (r,p') € Delegat,g andv(r, p') =r’, then there exists an u-path= v, vz, ..., Vh = p
such thati{vi, va) N (r,) # 0

o If (u,r”) € Delegat&,, andv(u,r”) =r’, then there exists a path=vy,Vy,...,vq =r"

where(vi,Vi;+1) € RH; for 1 <i < (n—1) such thap{vy, vn) Np(u,r’) # 0

o If (u,) € Delegat&,, andv(u, p') =r’, then there exists an u-path= vy, vy, ..., Vh =

o such thai(va, va) O (U, p') # 0

96

5.4 Dynamism Analysis

The pervasive computing applications are dynamic in natheeaccessing entities may
change, resources requiring protection may be created difiesh and an entity’'s access to
resources may change during the course of the applicatiarh &anges may result in the un-
reachable entity or the violation of separation of duty ¢asts. Regarding this, the analysis
is needed to detect the conflicts that may arise in the modeeipresence of such dynamism.

Our study reveals the possible changes which may lead tsHue@ted conflict as follow:

1. Entity Removal The entity could be either user, role, permission, or obj€lts type of

change can cause the isolated entity.

2. Relationship Removal The relationship could be either User-Role Assignment; Per
mission Usage Hierarchy, Role Activation Hierarchy, RBErmission Assignment, or

Permission-Object Assignment. This type of change canectigsisolated entity.

3. Entity and Relationship Creation The new entity together with its corresponding new
relationship can be created. The entity could be either, usks, permission, or ob-
ject. The relationship could be either User-Role AssignimBermission Usage Hier-
archy, Role Activation Hierarchy, Role-Permission Assiggmt, Permission-Object As-
signment, SoD, or Delegation. This type of change can cdues8aD constraints viola-

tion.
In this section, we present the algorithms used to detesetbenflicts.

5.4.1 Algorithm for Detecting the Isolated Entity

5.4.1.1 Preliminaries

In STARBACD model, we define the isolated entity as the entitych cannot be used. The
isolated entity can be determined by consideringitihdegreeandout-degreeof each vertex.
The in-degreeof the vertex can be defined correspond with different typ&SBARBACD

model as follow:

97

Definition 44 (In-degree)

STARBACD™= and STARBACD™ In the labeled grap® = (V,E,\), whereV =U URUPU
O andE = UAUPAUPOURH, URH,, in-degreeof a vertexv is the cardinality of the
set{(V,v)|((V,v) € E) A(A(V) NA(V) # 0)}

STARBACD™ In the labeled grapts = (V,E, A, 1), whereV = U URUPUO andE = UAU
PAUPOURH, URH,, in-degreeof a vertexv is the cardinality of the s€t(V/,v)|((V,v) €
E) AAV)NA(V) NV, V) # 0)}

Definition 45 (Source)

Sources a vertexv whichin-degreg¢v) =0

Similarly, we define theut-degreef the vertex as follow:
Definition 46 (Out-degree)
STARBACD™= and STARBACD™ In the labeled grap® = (V,E,\), whereV =U URUPU
O andE = UAUPAUPOURH; URH,, out-degreeof a vertexv is the cardinality of the
set{(v,v)|((wV) € E) A (A(V) NA(V) # 0)}

STARBACD™ In the labeled grapts = (V,E, A, 1), whereV = U URUPUO andE = UAU
PAUPOURH, URH,, out-degreef a vertexv is the cardinality of the s€t(v,V')|((v,V) €
E)A V) NANV) NU(v,V) # 0)}

Definition 47 (Sink)

Sinkis a vertexv which out-degre¢v) =0

Note that we do not consider neither separation of duty nedgiegation edges since the

modifications of these edges do not result in changes of tihatéesl entity.
5.4.1.2 The Detection Algorithm

By considering the value oh-degreeandout-degreeof each vertex, we can determine the

isolated entity based on different types of vertex as follow

User Forv e U, vis the isolated entity ifbut-degreév) = 0

98

Role and PermissionFor v € RUP, v is the isolated entity iff ih-degre¢v) = 0) v (out-
degreév) = 0)

Object Forv e O, vis the isolated entity iffn-degreév) = 0

To get thein-degreeand out-degregwe have to count the number of edges connected to
each vertex. This could be done@{V E). However, we can improve this by recording the
degreeandout-degreeof each vertex. Each time the vertex or the edge is added enuoved
from the graph, we update tive-degreeandout-degreef the related vertices. Since we do not
allow the existence of multiple edges between each pair iices, this update process could
be done inO(V). After we have such values recorded for every vertex, theatien can be

done inO(V).

5.4.2 Algorithm for Detecting the Infeasible Path

5.4.2.1 Preliminaries

In STARBACD model, a usen is authorized for permissiop through roler with respect
to objecto iff there exists a valicdacs-pathwhich containay, r, p, ando. We define an infea-
sible path as an invalidcs-pathi.e. anacs-pathwhich cannot grant the authorization of any

permission to user.
5.4.2.2 The Detection Algorithm

To detect the infeasible path, we assume that we store aitsmertices in a list. Each
member in the list maintain its own depth-first search (DF&3.t To generate these trees, we
perform DFS from each source. While performing the DFS, weckhf there is any spatio-
temporal conflicts between the nodes (for STARBATBNd STARBACD) or edges (for
STARBACD™"). If there is any conflicts, then there exists an infeasillpThis step could be
done inO(VE). After the process we will have set of the initial DFS treesolfare all consists
of feasible paths. Next for each update operation of thelgrage ensure that the following

conditions are satisfied:
e Only uservertices can be the root of each subtree.

99

¢ Only objectvertices can be the leave node of each subtree.

For each update operation of the graph, we perform the faligw
If any new entityv and its corresponding relationship have been added to ited graph, we

consider the following:

e If vis a new source, we check whether the spatio-temporal @nshretween the source
and its immediate successors is satisfied. If so, wevaddhe source list and maintain
its pointers to its immediate successors. If not, thenutdl create an infeasible path.

This step could be done @(E).

e If vis a new intermediate vertex, we check whether the spatipoeal constraint be-
tweeny, its immediate predecessors, and its immediate succasszassfied. If so, we
create pointer fronv's immediate predecessors¥pand fromv to its immediate suc-
cessors. If not, then thig will create an infeasible path. This step could be done in

O(E).

e If vis a new sink, we check whether the spatio-temporal comstbetweernv and its
immediate predecessors is satisfied. If so, we create pdiota its immediate prede-
cessors to. If not, then thisv will create an infeasible path. This step could be done in

O(E).

If any entity and its corresponding relationship has beemoreed from the graph, we con-

sider the following:

e If the (u,v) € E is removed from the graph, and cause eith@r v to be an isolated

entity, this will create an infeasible path. This detectiould be done ifO(1).

e If veV and its related edges are removed from the graph, we detenvhether this
cause any of its neighbor vertices to become an isolatetyelfiso, then this will create
an infeasible path. Otherwise, we determine whettisrin the source list. If it is in the

list, then we remove it out. This detection could be don®(&).

100

5.4.3 Algorithm for Detecting the SoD Violation

5.4.3.1 Preliminaries

In STARBACD model, the SoD can be violated by two ways. Fifsfri,ro) € SR, and
there existaics-pathgrom u; torg anduy tory. Or, if (p1, p2) € SOP, and there exists-paths

fromrq to p; andrq to po.
5.4.3.2 The Detection Algorithm

Consider the dynamic case where the edge can be add and flefatéhe graph. The
naive algorithm can be done by performing the reverse DFSioh(g,V') € SDRUSD’ of the
modified graph to find the common predecessor. This could he odO(k|E|) time.

Our algorithm which will be proposed next is the special aafséhe algorithm to find the
common predecessors in a Directed Acyclic Graph (DAG) desdrin detail in the Appendix
C. In our algorithm, each entity except users will maintailst of users authorized for it
by performing the DFS from each user. Only users satisfiedplatio-temporal constraints
will be added to the list. To determine whether the Sal¥/) € SD” U SR is violated, we
compare whethan € U is in the authorized users list of bottandV/, andA (u) Np(v, V) # 0.

If this is evaluate to true, then there exists a SoD violati®mce the size of each list cannot
exceeds the number of user vertices, the evaluation tird¢|i$|). Let k be number of SoD

edges, the detection time for the static case where no addirmoving edges allow is equal
to O(k|U|). To label all vertices takeS(|E||U|) time, yields the total running time in the static
graph equal t®((k+ |E|)|U|). However, in case that all edges modifications are of sanee typ
i.e. only either adding edges or deleting edges are allowed;an improve the running time

by applying the following graph specification updating suanized below:

e When only adding edges is allow to be done with the graph, gashthat new edge is
added, we update only the label list of vertices belongetieagraph portion that have
not been reached before by using the Incremental-DFS @eslan the Appendix C. All
updates tak®©(|E||U|) time, and detecting whether the SoD is violated takgJ |) per
SoD edge. This yields the total processing time equél(tk+ [E|)|U).

101

e When only removing edges is allow to be done with the graph,upgate only the
label list of vertices that becomes unreachable by somewaéer the edge removal.
Following the algorithm described in the Appendix C, the osal of an edge takes
O(|E|log|V|) time for relabeling for each user vertex, and detecting twrethe SoD
is violated takeO(|U|) per SoD edge. This yields the total processing time equal to
O((k+[E[log|V[)|U]).

For the detail on graph specification updating algorithm jareebf of correctness. We refer to

the Appendix C.

5.5 Example Scenario

Military application is one scenario which STARBACD can lpphed. The army applica-
tion is dynamic in nature—during the period of war, soldmight be under attack and cannot
continue to pursue thier mission. In such scenario, it isartgnt for the access control to
support the delegation of authority from the soldier whonder attack to another soldier.

In this section, we will demonstrate a scenario where theFBACD™ model can be used
to control the accessibility to the resource. Let assumariiihe battlefield, each troop consists
of military staff with the following responsibilities: Thiatelligent Officerresponsible for the
process of acquiring enemy information then interpretind axploiting it to theSoldierin
his troop in order to perform a suitable attack. And finalhe Clinical Officeris in charge
of monitoring the health information of his troop, evalu#te information to check whether
the trooper’s life is in danger, and send the SOS signal tactimemander to get the proper
help. The list of entities and the spatio-temporal relaiops are shown in Tables 8.1 and 8.2
respectively.

The graph-theoretic representation is shown in Figurea®. MVe will only describe parts
of this configuration. Usehlex(u;1) can create session at any time and at any place as per Row
1 of Table 8.1. He is assigned the roldwtelligence Officefr;) which can be activated at any
place at any time. During this time and at this location, he p@missionf;) to access the

Surveillance Sensor Informatidn;). Sincelntelligence Officers senior toSoldierrole in the

102

NAME | DESCRIPTION SPATIO-TEMPORAL DOMAIN (A)
Up Alex [UniverseAlwaysg
Up Ben [UniverseAlways
uz Charlie [UniverseAlways
ry Intelligence Officer [Universe Alwayg
ro Soldier [Field, Alwayg

rs Clinical Officer [Universe Alwayg
P1 Access Surveillance Sensor | [Universe Alwayg
P2 Manouver the Vehicle [Field, Alwayyg

P3 Access Vital Sensor [Universe Alwayg
01 Surveillance Sensor Informatign[Universe Alwayyg
02 Tank [Field, Alwayg

03 Health Information [Universe Alwayg

Table 5.1: STARBACD Entities for the Example

NAME | DESCRIPTION SPATIO-TEMPORAL DOMAIN ()
(ug,r1) | User-Role Assignment [Universe Alwayg
(uz,r2) | User-Role Assignment [Field, Alwayg

(us,r3) | User-Role Assignment [Universe Alwayg
(r1,r2) | Permission Usage Hierarchy | [Field, Alwayg

() | Permission-Role Assignment| [Universe Alwayg
(r2,p2) | Permission-Role Assignment| [Field, Alwayg
(s, p3)
(
(
(
(
(

Permission-Role Assignment| [Universe Alwayyg

Separation of Duties [Universe Alwayg

)

) | Separation of Duties [Universe Alwayg
p1,01) | Permission-Object Assignmenp{Universe Alwayg

)

)

Permission-Object Assignmen{Field, Alwayg
Permission-Object Assignmen{Universe Alwayg

Table 5.2: STARBACD Relationships and Constraints

permission usage hierarchy, he can also get the permissioranouver th@ank However,
this permission is allowed only when the hierarchy is endilole the battle field. During the
war, Alex gets shot and cannot pursue his mission. So, hdeeto delegate his role to Charlie
for a month until he is fully recovered. This new graphicadresentation is shown in Figure
5.1(b) where the delegation edge is represented by the desk éHowever, this delegation
should not be allowed because our algorithm detects a walat separation of duty constraint

in the existence of this delegation.

103

(a) Configuration before delegation (b) Configuration after delegation

Figure 5.1: STARBACD Configuration for Example

5.6 Chapter Summary

In this chapter, we propose the second spatio-temporasaamtrol model, namely the
Spatio-Temporal Role Based Access Control Model with Degiep (STARBACD) model.
The model is based on graph representation, which is weltdéd semantics. Based on this
model, we develop algorithms to detect the conflicts andnsistencies based on graph theory
as described in Section 5.4. The algorithm can reveal @ifielr types of conflicts, namely,
isolated entity, infeasible path, and separation of dutjation. Nonetheless, this analysis
approach is far from being automated.

In Chapter 6, we will extend our STRBAC model discussed inf@#a3 to support the
delegation chain. To get the well-formed semantics, theehadll be transformed into the
graph representation. The graph will then be transformtedtire Coloured Petri-Nets format,

which can be automately analyzed by using the analysis tl@ccCPN Tool.

104

Chapter 6
The Extended STRBAC Model

In this chapter, we present a comprehensive model with adedihed semantics expressed

in graph-theoretic notation and that can be automaticatified by existing tools.

6.1 Our Model
6.1.1 Representing Location and Time

Representing Location

In order to perform location-based access control, we neddrtnalize the concept of
location [13, 18] and propose the location comparison dpesahat are used in our model.
There are two types of locationghysicalandlogical. All users and objects are associated with
locations that correspond to the physical world. Theseefsened to as the physical locations.
A physical location is formally defined by a set of points inhaee-dimensional geometric
space. Aphysical location PLocis a non-empty set of pointspi, pj, ..., pn} Where a point
pk is represented by three co-ordinates. The granularityaf ea-ordinate is dependent upon
the application. Physical locations are grouped into syimbepresentations that will be used
by applications. We refer to these symbolic representataslogical locations. Examples of
logical locations are Fort Collins, Colorado etcldical locationis an abstract notion for one
or more physical locations. We assume the existence of aim@fymnctionm that converts a

logical location to a physical one.

105

Definition 48 (Mapping Functions m)
mis a total function that converts a logical location into ggbal one. Formallyn: L — P,

whereP is the set of all possible physical location dnds the set of all logical location.

Different kinds of operations can be performed on locatiatad We define two binary
operators, namelgontainmentc, andequality=.A physical locatiorploc; is said to becon-
tained inanother physical locatioplog,, denoted asploc; C plog, if the following condition
holds:Vp; € plocj, pi € ploa.. The locationplog; is called the contained location aptbo is
referred to as the containing or the enclosing locatioruitwely, a physical locatiomploc; is
contained in another physical locatiphog,, if all points in ploc; also belong tglog. Two
physical locationlog and plocs areequalif plocg C plocs and plocs C plog. Note that
these operators are defined on physical locations. Thusaldgcations must be transformed
into physical locations (using mapping functiondefined above) before we can apply these

operators. We define a logical location callgdiversethat contains all other locations.

Representing Time

Our model uses two kinds of temporal information. The firdriswn as time instant and
the other is time interval. Aime instantis one discrete point on the time line. The exact
granularity of a time instant is application dependent. iRstance, in some application a time
instant may be measured at the nanosecond level and in aooth& may be specified at the
millisecond level. Atime intervalis a set of time instants. We use the notation d to mean
thatt; is a time instant in the time intervdl Here again, we define operators containnient
and equality= for operating on time intervals. A time intervd) is said to becontained in
another time intervad, denoted asj; C d, if the following condition holds¥tj € dj, t; € dk.
The intervald; is called the contained interval amfl is referred to as the containing or the
enclosing interval. Two time intervats andd, are said to be equal d; C ds andds C d;. We

define a time interval calledlwaysthat includes all other time intervals.

Representing Time and Location as Spatio-Temporal Points

106

In order to simplify our presentation, we use the conceppatis-temporal points to rep-
resent time and location. A spatio-temporal point is repmésd as a pair of the forrfd, 1)
whered represents the temporal component anepresents the spatial one. Note tlthgnd
| represent time interval and location respectively. We baya spatio-temporal poiidl, 1) is
contained in anotheid’,1’), denoted by(d,I) C (d’,I") iff (d Cd’) A (I CI’). The union of two
spatio-temporal points, denoted(as!) U (d’,1"), is given by(d,l)u(d’,I") = (dud’,lul"). The
intersection of two spatio-temporal points, denoteddak) N (d’,1’), is given by(d,l) N (d’,1")
=(dnd,Inl).

6.1.2 Relationship of Core-RBAC Entities and Relationship with Time
and Location

In this section, we describe how the entities in RBAC, namgders Roles SessiongPer-

missionsandObjects are associated with location and time.

Users

We assume that each valid user, interested in doing somedoesensitive operation, car-
ries a locating device that is able to track his location. Tdoation of a user changes with
time. The relatiorserLocatiorju,t) gives the location of the user at any given time instant
t. Since a user can be associated with only one location at iaey goint of time, the fol-
lowing constraint must be true. Note that, in this and allghbsequent formulae, we omit the

quantification symbols.
(UserLocatiorfu,t) = Ij) A (UserLocationqu,t) =1;) < (Ii C 1) vV (I; C ;)

We define a similar functiobd serLocatiorfu,d) that gives the location of the user during
the time intervald. Note that, a single location can be associated with meltiyslers at any
given point of time.

Objects

107

Objects can be physical or logical. Example of a physicatctbjs a computer. Files are
examples of logical objects. Physical objects have dewutastransmit their location infor-
mation with the timestamp. Logical objects are stored ingtaf objects. The location and
timestamp of a logical object corresponds to the locatiahtane of the physical object con-
taining the logical object. Each location can be associatigdl many objects. The function
ObjLocation(o,t)takes as input an objectand a time instanceand returns the location as-
sociated with the object at tinte Similarly, the functionObjLocation(o,dtakes as input an

objecto and time intervadl and returns the location associated with the object.

Roles

We have three types of relations with roles. These are wdemssignment, user-role acti-
vation, and permission-role assignment. We begin by foguen user-role assignment. Often
times, the assignment of user to roles is location and tinpem@ent. For instance, a person
can be assigned the on-campus student role only when hehis campus during the semester.
Thus, for a user to be assigned a role, he must be in desigloaggtbns during specific time
intervals. In our model, a user must satisfy spatial and tealgonstraints before roles can
be assigned. We capture this with the concepotd allocation A role is said to ballocated
when it satisfies the temporal and spatial constraints reBxteole assignment. A role can
be assigned once it has been allocatdleAllocTimeLog) gives the set of spatio-temporal
points where the role can be allocated.

The predicaté) serRoleAssigfu,r,d,|) states that the useris assigned to role during
the time intervald and locationl. For this predicate to hold, the location of the user when
the role was assigned must be in one of the locations whem@kballocation can take place.
Moreover, the time of role assignment must be in the intemtan role allocation can take

place.
UserRoleAssigi,r,d,l) = (UserLocatioriu,d) =I)A ((d,l) € RoleAllocTimelLog@))

Some roles can be activated only if the user is in some spdodations at given time.

108

For instance, the role of audience of a theater can be astivaily if the user is in the the-
ater when the show is on. The role of conference attendee eactivated only if the user
is in the conference site while the conference is in sesslarshort, the user must satisfy
temporal and location constraints before a role can beatetiv \We borrow the concept of
role-enabling[12, 43] to describe this. A role is said to lkeabledif it satisfies the tempo-
ral and location constraints needed to activate it. A role loa activated only if it has been
enabled.RoleEnableTimeLdc) gives the set of spatio-temporal points where mtan be
activated.

The predicaté serRoleActivatgy,r,d,|) is true if the useu activated role for the interval
d at locationl. This predicate implies that the location of the user anddiln@tion of role
activation must be a subset of the allowable spatio-tentpariats for the activated role and

the role can be activated only if it is assigned.
UserRoleActivat@u,r,d,l) = ((d,I) € RoleEnableTimeLdc)) AUserRoleAssigfu,r,d,)

The permission-role assignment is discussed later.
Sessions

In mobile computing or pervasive computing environments, tvave different types of
sessions that can be initiated by the user. Some of thesmrsessan be time-dependent,
location-dependent, or both. Thus, sessions are classifedifferent types. Each instance of
a session is associated with some type of a session. The ftgession instanceis given by
the functionTyp€s). The type of the session determines the allowable locatidndaration.
The allowable spatio-temporal points where a session & $ypan be created is denoted by
SessionTimeLdst).

When a useu wants to create a sessignthe session duratioth and the location of the
userl must be contained within the spatio-temporal points assediwith the session. The
predicateSessionUséu, s, d, |) indicates that a userhas initiated a sessiafor durationd at

locationl.

SessionUséu, s, d,l) = (d,l) C SessionTimeLd@yp€s))

109

Since sessions are associated with time and locations|Imotes can be activated within
some session. The predic&essionRolés,r,s,d,|) states that userinitiates a sessiosand
activates a role for durationd and at locatiorl. This is possible only if usem can activate
roler for durationd and at locatiort and the session can be created during the same time and

at the same location.
SessionRolg,r,s,d,|) = UserRoleActivatg,r,d,|) A (d,l) C SessionTimeLdGyp€s))

Permissions

Our model allows us to specify real-world requirements wlegcess decision is contingent
upon the time and location associated with the user and tfeetoli-or example, a teller may
access the bank confidential file only if he is in the bank, teeldication is the bank secure
room, and the time of access is during the working hours. Canlehshould be capable of
expressing such requirements.

Permissions are associated with roles, objects, and opesaiVe associate additional enti-
ties with permission to deal with spatial and temporal c@usts: user location, object location,
and time. We define three functions to retrieve the valuebedd entitiesPermRoleLogp, r)
specifies the allowable locations that a user playing trerrolust be in for him to get permis-
sionp. PermOb jLo¢p, 0) specifies the allowable locations that the obfeotust be in so that
the user has permission to operate on the olge®ermDur(p) specifies the allowable time
when the permission can be invoked.

We define another predicate which we tePermRoleAcquir@,r,d,l). This predicate is
true if roler has permissiom for durationd at locationl. Note that, for this predicate to be
true, the spatio-temporal poil,|) must be contained in the point where the rolean be

enabled and where the permissipoan be invoked by.

PermRoleAcquirg,r,d,|) =
(d,]) € RoleEnableTimeLdc) N (PermDur(p) x PermRoleLogp,r))

The predicatd®ermU serAcquireu, o, p,d,|) means that usar can acquire the permission

p on objecto for durationd at locationl. This is possible only when the permissiprtan be

110

acquired by role during timed and at locatiorl, useru can activate role at the same time

and location, and object location matches those specifideeipermission.

PermRoleAcquir@,r,d,|) AUserRoleActivatgu,r,d,)
A(ObjectLocatioffo,d) C PermOb jectLogp,0)) = PermUserAcquiréu, o, p,d,|)

6.1.3 Impact of Time and Location on Role-Hierarchy

The structure of an organization in terms of lines of autlyozan be modeled as a hier-
archy. This organization structure is reflected in RBAC ia tbrm of a role hierarchy [75].
Role hierarchy is a transitive and anti-symmetric relanomong roles. Roles higher up in the
hierarchy are referred to as senior roles and those lowen @o/junior roles. The major mo-
tivation for adding role hierarchy to RBAC was to simplifleananagement. Senior roles can
inherit the permissions of junior roles, or a senior role eativate a junior role, or do both
depending on the nature of the hierarchy. This obviates ¢leel for separately assigning the
same permissions to all members belonging to a hierarchy.

Joshi et al. [43] identify two basic types of hierarchy. Thstfis the permission inheritance
hierarchy where a senior rakd@nherits the permission of a junior roje The second is the role
activation hierarchy where a user assigned to a senior esleactivate a junior role. Each of
these hierarchies may be constrained by location and teaahponstraints. Consequently, we
have a number of different hierarchical relationships inrmodel.

[Unrestricted Permission Inheritance Hierarchy] Sometimes we want a senior role to inherit
permissions of a junior role without any additional spagaiporal constraints. For example, a
contact author can inherit the permissions of the authdrawit any extra spatio-temporal con-
straints. That is, the contact author can invoke the awhp@rmission wherever and whenever
the author can invoke them. Unrestricted permission itduwece hierarchy allows the senior
role to acquire inherited permissions whenever and whetbegunior role can acquire them.
Let x andy be roles such that > ajwaysuniverse s that is, senior role has an unrestricted
permission-inheritance relation over junior rgle In such a casex inheritsy's permissions

without any additional spatio-temporal constraints. Tgifrmalized as follows:

111

(X > (Alwaysuniverse Y) /A PermRoleAcquirg, y,d,|) = PermRoleAcquirg, x,d,)

[Unrestricted Activation Hierarchy] Sometimes a senior role may want to activate a junior
role without placing any additional constraints. For exémnp user who has a role of mobile
user can activate the weekend mobile user role only if hassimethe US during the weekend.
Unrestricted activation hierarchy allows the senior rolé¢ activated whenever and wherever
the junior role can be activated.

Let x andy be roles such that = ajwaysuniverse s that is, senior role has an unrestricted
role-activation relation over junior rolzg Then, a user assigned to rodean activate rolg at

any time and at any place thatan be activated. This is formalized as follows:

(X = (Alwaysuniversg Y)AU serRoleActivat@, x,d, 1) A

((d,]) € RoleEnableTimeLdy)) = UserRoleActivat@,y,d,|)

[Time Restricted Permission Inheritance Hierarchy] Sometimes a senior role can inherit a
junior role only at certain times. For example, a company imaye a policy that allows the
project manager to inherit the permissions of the code deeelrole only when the product
deadline date is less than a given threshold. Time resirpetemission inheritance hierarchy al-
lows the senior role to acquire the permissions of the jurdte when the temporal constraints
associated with the hierarchy hold and the senior rolefeggithe spatio-temporal constraints
that are needed by the junior role to invoke those permission

Let x andy be roles such that > universe ¥, that is, senior rolex has a time restricted
permission-inheritance relation over junior rgle In such a casex inheritsy’'s permissions
together with the temporal constraints associated witlpéreissions and the hierarchy. This

is formalized as follows:
(X >(auniversa ¥) /A PermRoleAcquirgp,y, d,) = PermRoleAcquirgp, x,d N d,l)

[Time Restricted Activation Hierarchy] In some applications, the senior role may need to
be activated only during specific periods. For example, tu®ant auditor role can activate

the accountant role only during the auditing period. Tinggreted activation hierarchy allows

112

the senior role to activate the junior role when the tempoceaistraints associated with the
hierarchy hold and the senior role satisfies the spatio-teahgonstraints that are needed to
activate the junior role.

Letx andy be roles such that’= ¢ universg ¥: that is, senior role has a role-activation relation
over junior roley. Then, a user assigned to rol€an activate rolg only at the location and
time when roley can be enabled and the additional temporal constraintsasisfisd. This is

formalized as follows:

(X = (& universs Y)AUserRoleActivat@l, x,d,|)A
((d,l) € RoleEnableTimeLdg)) = UserRoleActivat@l,y,dnd’,l)

[Location Restricted Permission Inheritance Hierarchy] Sometimes a senior role can inherit
a junior role only in certain locations. For example, a topreenuclear scientist inherits the
permissions of a nuclear scientist only in top secret loceti Location restricted permission
inheritance allows the senior role to acquire the perminssad the junior role when the location
constraints associated with the hierarchy hold and theoseolie satisfies the spatio-temporal
constraints that are needed by the junior role to invokedipgsmissions.

Let x andy be roles such that > awaysi) ¥, that is, senior role has a location restricted
permission-inheritance relation over junior rgle In such a casex inheritsy’s permissions
together with the location constraints associated withp#renission and the hierarchy. This is

formalized as follows:
(X >(awaysl”) Y) A PermRoleAcquirgp, y, d,) = PermRoleAcquirgp,x,d,I N1’)

[Location Restricted Activation Hierarchy] Sometimes we want the senior role to be able to
activate the junior role only at certain locations. For epéna department chair can activate
a staff role only when he is in the department. Location r&si activation hierarchy allows

the senior role to activate the junior role when the locationstraints needed for the hierarchy
activation hold and the senior role satisfies the spatigpteal constraints needed to activate

the junior role.

113

Let x andy be roles such that’=awaysi) Vs that is, senior role has a role-activation relation
over junior roley. Then, a user assigned to ralean activate rolg only at the places when role
y can be enabled and the location constraints of the hieranghgatisfied. This is formalized

as follows:

(X = (Alwaysl’) Y)AUserRoleActivatey, x,d, 1) A
((d,]) C RoleEnableTimeLdg)) = UserRoleActivat@l,y,d,I Nl")

[Time Location Restricted Permission Inheritance Hierardhy] Sometimes we may want to
place additional temporal as well as spatial constrainthemermission inheritance hierarchy.
For instance, a doctor can inherit the daytime nurse rolg whien he is in the hospital at the
daytime. Time-location restricted permission inheriamheerarchy allows the senior role to
invoke the permissions of the junior role provided the serote satisfies the spatio-temporal
constraints of the inheritance hierarchy and also the gfpamporal constraints needed to ac-
quire the permissions of the junior role.

Let X andy be roles such that >4 |,y y, that is, senior role has a time-location restricted
permission-inheritance relation over junior rgle In such a casex inheritsy’'s permissions
together with the temporal and location constraints assediwith the permission together
with the temporal and location constraints associated thigthierarchy. This is formalized as

follows:
(X >, Y) A PermRoleAcquirgp, y, d,|) = PermRoleAcquirgp, x,d N d,Inl’)

[Time Location Restricted Activation Hierarchy] Sometimes additional spatial and temporal
constraints must be satisfied for a senior role to activateey role. Emergency physicians
can activate the role of primary care physicians only wherpttient is in an emergency room.
Time location restricted activation hierarchy allows tleaisr role to activate the junior role
when the spatio-temporal constraints associated with igradchy are satisfied together with
the spatio-temporal constraints associated with the mtvoc of the junior role.

Letx andy be roles such that’= /) y, that is, senior role& has a role-activation relation over

114

junior roley. Then, a user assigned to rod€an activate roleg only at the places and during
the time when roleg can be enabled, and the additional spatio-temporal contsti@ssigned to

the hierarchy are satisfied. This is formalized as follows:

(X’= (@ 1) Y)AUserRoleActivat@l, x,d, 1) A
((d,l) € RoleEnableTimeLdg)) = UserRoleActivat@l,y,dnd’,I NI")

It is also possible for a senior role and a junior role to batesl with both permission
inheritance and activation hierarchies. In such a casegpp&cation will choose the type of

inheritance hierarchy and activation hierarchy needed.

6.1.4 Impact of Time and Location on Static Separation Of Duy Con-
straints

Separation of duty (SoD) protects against the fraud that lneagaused from a user or role
gaining too much power [80]. SoD can be either static or dyinaftatic Separation of Duty
(SSoD) comes in two varieties. The first one, which is refkteeasSSoD - User Role As-
signment (SSoD-URAIs with respect to user-role assignment. SSoD-URA is $igelcas a
relation between roles — the same user cannot be assignied tolés that are related by the
SSoD-URA relation. The second one, which is referred t8 88D - Permission Role Assign-
ment (SSoD-PRA])s with respect to permission-role assignment. SSoD-PRépecified as
a relation between permissions — the same role cannot lgnasisio the permissions that are
related by the SSoD-PRA relation. Due to the presence ofdemhpnd spatial constraints, we
can have different flavors of separation of duties — someatetonstrained by temporal and
spatial constraints and others that are not. In the follgywre describe the different types of

separation of duty constraints.

[Weak Form of SSoD - User-Role Assignment]let x andy be two roles such that #y.
(x,y) € SSODURAy, if the following condition holds:

UserRoleAssigh, x,d,|) = — UserRoleAssigu,y,d,|)

115

The above definition says that a usexrssigned to rolg during timed and locatiori cannot
be assigned to rolg at the same time and locationxfandy are related bysSODU RA,. An
example where this form is useful is that a user should nossbgaed the audience role and

mobile user role at the same time and location.

[Strong Temporal Form of SSoD - User-Role Assignment]
Let x andy be two roles such that#y. (x,y) € SSODURA if the following condition
holds:

UserRoleAssigu, x,d,|) = — (3d’ C alwayse U serRoleAssigu,y,d’, 1))

The above definition says that a usexrssigned to rol& during timed and locatiorl cannot
be assigned to rolg at any time in the same locationxfandy are related bysSODU RA.
The consultant for oil compamwill never be assigned the role of consultant for oil company

B in the same country.

[Strong Spatial Form of SSoD - User-Role Assignment].et x andy be two roles such that

X#Y. (X,y) € SSODURA if the following condition holds:
UserRoleAssigu, x,d,l) = — (31’ C Universes UserRoleAssigu,y,d,l"))

The above definition says that a useassigned to role during timed and locationl,
he cannot be assigned to roJeat the same time at any locationxfandy are related by
SSODURA. A person cannot be assigned the roles of student and it@trotthe same

course at the same time.

[Strong Form of SSoD - User-Role Assignmentlet x andy be two roles such that #y.
(x,y) € SSODURA if the following condition holds:

UserRoleAssigu, x,d,l) = — (31" C Universe3dd’ C alwayse UserRoleAssigu,y,d’,l’))

116

The above definition says that a useassigned to role during timed and location, he
cannot be assigned to rofa@t any time or at any location xandy are related bysSODU RA:.
The same employee cannot be assigned the roles of minodty@mminority employee at any

given corporation.

We next consider the second form of static separation of thatiydeals with permission-

role assignment. The idea is that the same role should natraatpnflicting permissions.

[Weak Form of SSoD - Permission-Role Assignmentlet p andq be two permissions such

thatp # q. (p,q) € SSODPRAy, if the following condition holds:
PermRoleAcquirg, x,d,l) = - PermRoleAcquir@, x,d,)

The above definition says that if permissiopsand q are related through weak SSoD
Permission-Role Assignment amchas permissiom at timed and location, thenx should
not be given permissiogat the same time and location. The same role should not bgnasksi
the permission of chairing the session and presenting therpa the conference at the same

location and at the same time.

[Strong Temporal Form of SSoD - Permission-Role Assignmeht_et p andq be two per-

missions such that # g. (p,q) € SSODPRA if the following condition holds:
PermRoleAcquirg, x,d,|) = — (3d’ C alwayse PermRoleAcquirg, x,d’, 1))

The above definition says that if permissigmandq are related through strong temporal
SSoD Permission-Role Assignment antlas permissiom at timed and locationl, thenx
should not get permissiaat any time in locatioh. The accountant should not get both the
permissions of modifying accounts and auditing accounte@same branch location at any

time.

117

[Strong Spatial Form of SSoD - Permission-Role Assignmentlet p andq be two permis-

sions such thap # g. (p,q) € SSODPRA if the following condition holds:
PermRoleAcquirg, x,d,l) = — (31’ C Universes PermRoleAcquirg, x,d, "))

The above definition says that if permissiom®nd g are related through strong spatial
SSoD Permission-Role Assignment antlas permissiom at timed and locationl, thenx
should not be given permissiapat the same time. The same role should not be given the

permission of grading the exam and taking the exam at the §ameet any location.

[Strong Form of SSoD - Permission-Role Assignmentlet p andq be two permissions such

thatp # g. (p,q) € SSODPRA if the following condition holds:
PermRoleAcquirg, x,d,l) = — (31’ C Universe3dd’ C alwayse PermRoleAcquir@,x,d’,1"))

The above definition says that if permissiogmsand q are related through strong SSoD
Permission-Role Assignment, then the same role shouldr lev/given the two conflicting
permissions. The permission to authorize a check and issheuld not be given to the same

role at any time and at any location.

6.1.5 Impact of Time and Location on Dynamic Separation of Dty Con-
straints

Dynamic separation of duty addresses the problem that aisiget able to activate con-

flicting roles during the same session.

[Weak Form of DSoD] Let x andy be two roles such that #y. (x,y) € DSODy if the
following condition holds:

SessionRol@, x,s,d,|) = — SessionRole,y,s,d,|)

The above definition says that if rolgsandy are related through weak DSoD and if user

u has activated role in some session for durationd and locationl, thenu cannot activate

118

roley during the same time and in the same location in sessidmthe same session, a user
can activate a sales assistant role and a customer role.\doweth these roles should not be

activated at the same time in the same location.

[Strong Temporal Form of DSoD] Let x andy be two roles such that# y. (x,y) € DSOL if

the following condition holds:
SessionRol@, x,s,d,|) = — (3d’ C always eSessionRol@,y,s,d’,1))

The above definition says that if rolesandy are related through strong temporal DSoD
and if useru has activated rol& in some sessiog, thenu can never activate rolgany time
at the same location in the same session. In a teaching sesskoclassroom, a user cannot

activate the the grader role once he has activated the stralen

[Strong Spatial Form of DSoD] Let x andy be two roles such that#y. (x,y) € DSOD if

the following condition holds:
SessionRol@, x,s,d,l) = — (31’ C Universes SessionRol@,y,s,d,l"))

The above definition says that if rolgsandy are related through strong DSoD and if user
u has activated rolg in some sessiog thenu can never activate rolein sessiors during the
same time in any location. If a user has activated the Gradledching Assistant role in his

office, he cannot activate the Lab Operator role at the same ti

[Strong Form of DSoD] Let x andy be two roles such that #y. (x,y) € DSODL; if the

following condition holds:
SessionRol@, x,s,d,l) = — (31’ CUniverse3dd’ C alwayse SessionRol@,y,s,d’,1"))

The above definition says that if rolg@ndy are related through strong DSoD and if user
u has activated rolg in some sessiog thenu can never activate rolgin the same session. A

user cannot be both an code developer and a code tester isntigesgssion.

119

6.1.6 Impact of Time and Location on Delegation

Many situations require the temporary delegation of acdgsds to accomplish a given
task. For example, a doctor may give certain privileges t@méd nurse when he is taking
a break. In such situations, the doctor can give a subsesgidrmissions to the nurse for a
given period of time. This requirement can be fulfilled by tiedegation operation. The entity
who delegates his privileges temporarily to another erngitgferred to as the delegator. The
entity who receives the privilege is known as the delegai@elegation can be eithgrant
or transfer. Granting of privileges allows the delegator to tempoyaasgsign his privileges to
the delegatee without relinquishing his own privilegesaniferring of privileges allows the
delegator to transfer his privileges temporarily to theedatee. Note that, during the period of
delegation the delegator does not have the privileges wiedhas transferred to the delegatee.

The delegator can be either a user or a role. System adnatoigiare responsible for over-
seeing delegation when the delegator is a role. Individs@tsiadminister delegation when the
delegator is an user. The delegator can delegate eitherod getmissions that he possesses
by virtue of being assigned to different roles or he can dekeg set of roles assigned to him
directly by the user-role assignment or indirectly by the@fof the activation hierarchy. We
can therefore classify delegation on the basis of role @gileg or permission delegation. For
role delegation, the delegatee can be either role or usepdfmission delegation, the delega-
tee can be role only. This is to maintain the intent of RBAC #hmssions should be assigned

to user via role, not to user directly.

Role Delegation

A delegator (user or role) can delegate a role to a delegatete that, for a delegator to
delegate a role for time d and at locatiorl, the delegator must have been assigned to the
role r during timed and locationl either directly or indirectly. Depending on the type of
delegation (grant or transfer), the delegator may or maygaootinue to enjoy the privileges he
has delegated.

Let Delegate(dtr,dter, {g,t},d,|) be the predicate that allows the delegatore U UR

120

to grant (g) or transfer (t) a roleto the delegatedte € U UR during timed and at location
I. This will allow individual user (ifdtee U) or all users assigned e (if dtee R) to be
temporary assigned to roleat the specific location and time. The following specifies the
various conditions under which uséracquires role for durationd’ and location’ by virtue

of delegation.

1. Delegate(u,U’,r,g,d’,1") = UserRoleAssign/,r,d’,1")
2. Delegatg(u,u’,r,t,d".l") = UserRoleAssigiv/,r,d’,I") A -UserRoleAssigu,r,d’,1")
3. Delegatg(r’,u,r,g,d’,I") = UserRoleAssigi/,r,d’,1")
4. Delegatg(r’,u,r,t,d',I")AUserRoleAssigfu,r’,d’, ")

= UserRoleAssigi/,r,d’,I") A —-UserRoleAssig,r,d’,l")
5. Delegatg(u,r’,r,g,d’,l") AUserRoleAssigiiu’,r’,d’,1") = UserRoleAssigi/,r,d’,1")
6. Delegatg(u,r’,r,t,d’,I")AUserRoleAssigi{u’,r’,d’,1")

= UserRoleAssigit,r,d’,1") A -UserRoleAssigu,r,d’, ")
7. Delegate(r”,r',r,g,d’,I") AUserRoleAssigiv/,r’,d’,") = UserRoleAssign/,r,d’, ")
8. Delegatg(r”,r’,r,t,d',I")AUserRoleAssigh/,r’,d’,l") = UserRoleAssigh/,r,d’,l")

AUserRoleAssigm,r”,d’,1") A—UserRoleAssigu,r,d’.1")

The above eight conditions describe how ugetan be assigned to rotefor durationd’
and locatiorl’” under user to user, role to user, user to role and role to el&gdtion with the
grant and transfer mode. Note that, the transfer mode c#usédglegator to lose his privileges.
With the effect of role activation hierarchy, the delegatéa delegated role can also activate
all junior roles in the activation hierarchy. Moreover, ttedegatee inherits all permissions that
the delegated role can acquire directly through the perarnis®le assignment and indirectly

through the permission inheritance hierarchy.

Permission Delegation
A delegator (user or role) can delegate a permission to gdtde. Note that, for a delegator
to delegate a permissigmfor time d and at locatior, the delegator must have acquired the

privileger during timed and location either directly or indirectly. Depending on the type of

121

delegation grant or transfer, the delegator may or may natirmee to enjoy the privileges he
has delegated.

Let Delegate(dtr,dte p,{g,t},d,|) be the predicate that allows the delegattme U UR
to grant or transfer a permissignto the delegatedte € R during timed and at locatiori.
The following specifies the various conditions that allowrpissionp to be delegated to role

r’ during timed’ and locatiorl’.

1. Delegate(u,r’,p,g,d’,1") = PermRoleAcquirg,r’,d’,l")
2. Delegate(r,r’, p,g,d’,1") = PermRoleAcquirg,r’,d’,1")
3. Delegate(r,r’, p,t,d’,l1") = PermRoleAcquirg,r’,d’, ") A—=PermRoleAcquirg, r,d’, ")

The first two conditions say that if a useior roler has granted privilege to roler’ for
durationd” and location’, then roler’ acquires permissiop for durationd’ and location’.
The last condition says that if a rote€has transferred privilege to roler’ for durationd’ and
locationl’, then roler’ acquires permissiop for durationd’ and location’, and roler loses
permissionp for durationd’ and locatiorl’. Note that, we have not specified transfer of privi-
lege from useu to roler’. Since privileges are not directly assigned to any usemissions
cannot be removed directly from the user. The only way to repermission from a user is
to revoke the permission from the role assigned to the uskassociated with the permission.
However, this will impact all users assigned to this rolen€exjuently, we do not allow transfer
of permission from user to role. Since privileges are naéatly assigned to the user, we do

not define the permission delegation in which the delegatdesiuser.

Delegation Chains

In some cases, the delegator may allow the delegatee t@fudéhegate the privileges that
he has acquired by virtue of delegation. This could causejaesee of delegations called
the delegation chairor delegation patH41, 93]. Once a delegatee is granted a privilege, he
can grant or transfer this privilege to another delegatéeeifdelegation chain is permitted by
the delegator. However, if a delegatee is transferred alggi, he can only transfer it to an-

other delegatee in the presence of the delegation chains, The transfer operation is more

122

restrictive than grant operatiggrant > trans fer). We now formally define the two delegation
chains that our model supportglonotonic Role Delegation ChasBndMonotonic Permission

Delegation Chain

[Monotonic Role Delegation Chain]Monotonic role delegation chain is the delegation chain

of the form:
n—-1

/\ Delegatex(dte, dte 1, gti+1,dit1,lit1)
i—0

wheredtey represents the original delegatdtg represents the delegatee in tHedelegation,
gt refers to grant or transfed;, |; refers to the time and location where tl%delegation is
valid, andgt; > gt_1, di+1 C d;, andlj;1 Cl;. The above formalism implies that this delegation
will gradually reduce the spatio-temporal points wheredgkegation can be granted or trans-

ferred. We define monotonic permission delegation chainsiméar manner.

[Monotonic Permission Delegation Chain]Monotonic permission delegation chain is the

delegation chain of the form:
n-1

/\ Delegate(dte,dtg 1, p,gti+1,dit1,lit1)
i—0

wheredtey represents the original delegatdtg represents the delegatee in tHedelegation,
gt refers to grant or transfed;, |; refers to the time and location where & delegation is
valid, andgt; > gt_1, di;1 C di, andli 1 C ;.

The delegator may want to define on the length of the delegatiain. LetD(C(dtr,e)
denote the delegation chain starting from the original gitier dtr with respect to delegated
entity e. The functiondepthwhen applied to this delegation chain, thatdepti(DC(dtr,e))

gives the total number of delegation operations that odouf3C(dtr, e).

6.2 Graph-Theoretic Representation of the Model

Although our proposed spatio-temporal model is syntakidtong and can represent the

spatio-temporal access control policies needed in thewedt application, we propose a

123

graph-theoretic representation that accurately refleetsémantics of the model.

Our graph-theoretic representation was inspired by th&wbChen and Crampton [19].
However, we adapt this model to better reflect our semaniticeur work, the set of vertices
V =U URUPUO correspond to the RBAC entities: Usel$)(Roles R), PermissionsK),
and Objects@). The relationships of our spatio-temporal role-basec®sEcontrol model

constitute the edgds = UAUPAUPOURHU SDURDU PD where

User-Role AssignmentA) =U x R

Permission-Role AssignmerR4) = Rx P

Permission-Object AssignmeRQ) =P x O

Role Hierarchy RH) = R x Rwhich can be categorized into

— activation hierarchyrH, consisting of unrestricted activatidtH,,, time restricted
activationRHg, location restricted activatioRH, and time location restricted ac-
tivation RHg;) hierarchies.

— permission inheritance hierarciH consisting of unrestricted permission inheri-
tanceRH,, time restricted permission inheritanBél;, location restricted permis-

sion inheritanc&kH;, and time location permission inheritanRel; hierarchies.
e Separation of DutyD) = (Rx R) U (P x P) which can be categorized into

— static separation of duty for user role assignmé&®&SDconsisting of weak-form
RSSI, strong temporal forniRSSD, strong spatial fornRSS and strong form
RSShk.

— static separation of duty for permission-role assignniRS$Dconsisting of weak-
form PSSL, strong temporal fornPSSD, strong spatial fornPSSD and strong
form PSSR.

— dynamic separation of duSD consisting of weak-fornbSD,,, strong temporal

form DS, strong spatial forrdSD and strong fornDSDs.
¢ Role DelegationRD), which can be categorized into
— Role Delegation to UseRDy) =U xR

124

— Role Delegation to RoleRDgr) =Rx R
e Permission DelegatioiPQ) = Rx P

An activation path(or act-path betweenv,; andv, is defined to be a sequence of vertices
Vi,...,Vn such that(vq,v2) € (UAURDy) and (vi—1,Vi) € (RHRURDR) fori =3,...,n. A
usage patlfor u-path betweerv; andvy, is defined to be a sequence of vertiges . ., v, such
that (vi,vi+1) € RH fori=1,...,n—2, and(vy_1,Vn) € (PAUPD). An access pattor acs-
path) betweenv; andv, is defined to be a sequence of vertiegs . .,Vv,, such thatvy, V) is
an act-path(vi,vn—1) is an u-path, andv,_1,vn) € PO. An access patlvi,vo,...,Vh_1,Vn)
allows usew; to access object, using permissiony,_1 .

We define two functiong andy, on the edgek of the graph, wher& = UAUPAUPOU
RHU SDURDUPD. Functionp represents information associated with delegation edges a
is specified as follows : (RDy URDrRUPD) — (U UR) x N that maps the delegation edge to
the corresponding delegator and delegation depth. If defurther delegates his delegated
entity, the delegation depth of the newly created delegaguyge is calculated by subtracting
one from the delegation depth of its immediate precedinggiglon edgeJ represents the
spatio-temporal constraints associated with all the etlgée graph and is defined as follows.
u: E — 22 whereD denotes the spatio-temporal domain. Eet (v,V) € E, u(v,V') denotes
the set of spatio-temporal points at which the associatewéenv andV is enabled. In the

following, we describe the value gffor each type of edge in our graph.

e if (u,r) e UA thenp(u,r) ={(d,l)|UserRoleActivateu,r,d,|)} denotes the set of spatio-
temporal points in which usercan activate role.

e if (r,p) € PA thenu(r,p) = {(d,l)|PermRoleAcquirg,r,d,|)} denotes the set of spatio-
temporal points in which permissignis assigned to role.

e if (p,0) € PO, thenu(p,0) = PermDur(p) x PermOb jLo¢p, 0) denotes the set of spatio-
temporal points at which objeotcan be accessed by virtue of permissppn

e if (r',r) € RHayyURHy, thenp(r’,r) = RoleEnableTimeLdc) because senior role can
activate the junior role, or inherit permissions of juniote at all the spatio-temporal

points where the junior role can be enabled.

125

if (r',r) € RHyt URH, thenp(r’,r) = (d’,Univers¢ N RoleEnableTimeLdc), where
r’ (& Universa I OF r’ > (@ Universa I, because senior role can activate the junior role, or
inherit permissions of junior role when the junior role candnabled and the hierarchy
constraints are satisfied.

if (r',r) € RHy URH;, thenp(r’,r) = (Alwaysl’) "RoleEnableTimeLdc), wherer’ = awaysi)
rorr’ > (Alwaysl’) I, because senior role can activate the junior role, or ibpermissions
where the junior roles can be enabled and the hierarchyaspatstraints are satisfied.

if (r',r) € RHayy URHy, thenp(r’,r) = (d’,1")NRoleEnableTimeLdc), wherer’ ()
rorr >, I, because senior role can activate the junior role, or ibipermissions
where and when both the roles can be enabled, and the spatpotal constraints of the
hierarchy are satisfied.

if (r';r) € RSSR,UDSDy, thenp(r’,r) = (d,l) denotes the set of points in space-time
where no user should be assigned/allowed to activate raedr’.

if (r',r) € RSSRUDSO, thenp(r’,r) = (Alwaysl) because the same user cannot be
assigned/allowed to activate roleandr’ at specified locatiohat any time.

if (r',r) € RSSPUDSD, thenp(r’,r) = (d,Universe denotes the spatio-temporal points
where the same user cannot be assigned or allowed to aatblasg andr’ from any
location.

if (r',r) € RSSQUDSDs, thenp(r’,r) = (AlwaysUniverse because no user can be
assigned or allowed to activate roleandr’ from any place and at any time.

if (p/,p) € PSSO, thenp(p, p) = (d,l) denotes the set of points in space-time where
no role should be assigned to conflicting permissipasdp’.

if (p/,p) € PSSR, thenp(p’, p) = (Alwaysl) denotes the set of spatio-temporal points
where the same role cannot be assigned to conflicting peonggsandp’ at any time.

if (p/, p) € PSSD, thenp(p', p) = (d,Universe denotes the set of spatio-temporal points
where the same role cannot be assigned to conflicting peéongss andp’ at any loca-
tion.

if (p/,p) € PSSR, thenp(p’, p) = (AlwaysU niverse because no role can be assigned

126

to conflicting permissionp andp’ from any place and at any time.

e if (U,r) € RDy, then
p(u',r) = {(d,l)|Delegate(u,u’,r,{g,t},d,l) v Delegate(r’,u’,r,{g,t},d,l)} denotes
the set of points in space-time where ugenas been delegated rale

e if (r',r) € RDg, then
u(r’,r) = {(d,l)|Delegate(u,r’,r,{g,t},d,l) v Delegate(r”,r’,r,{g,t},d,l)} denotes
the set of points in space-time where roléas been delegated rale

e if (r,p) € PD, then
u(r,p) ={(d,l)|Delegate(u,r, p,g,d,l)vDelegate(r”,r,p,{g,t},d,|)} denotes the set

of points in space-time where raléhas acquired permissign

We write [i(v1, ...,Vn) = i(V1,Vn) € D to denoteﬂir‘;l1 K(Vi,Vi+1). Hence,u{vi,Vvy) is the
set of points at which every edge in the path is enabled. Tti®aration scheme in the access

control graph can be summarized as follows:

e ausen € U may activate role’ € Rat pointd € D if and only if there exists an act-path

V=V1,Vo,...,Vp =V andd € fi(v,V);

e arolev e Ris authorized for permissiovi € P at pointd € D if there exists an u-path

V=V1,Vo,...,Vp =V andd € fi(v,V);

e a userv € U is authorized for permissiovi € P with respect to object’ € O at point
d € D if and only if there exists an acs-path= vy, Vo, ..., Vi,...,Vh_1 = V,V, = V' such
thatv; € Rfor somei, v1, ...,V is an act-pathy;, ..., v,_1 is an u-path{v,_1,vy) € PO

andd € fi(v,V").

Note that, generating the access control graph consistgddteps. First, we have to create
all vertices corresponding to the entities which takg¥) time. Next, we have to create all
edges corresponding to the relationships between erditisonstraints between entities. This

step take®©(E) time. Hence, total time to create the whole grap®(¥ +E).

127

6.3 Example Application

In this section, we present a revised version of the realdnapplication called the Dengue

Decision Support (DDS) system previously discussed ini&eet.3.4 to illustrate our ap-

proach.

6.3.1 DDS Security Policies

Ent

ities

DDS system consists of the following entities

Users:Alice, Bob, Ben Charlie, Claire andDavid
Roles: State EpidemiologisBfate Epj, Jurisdiction Epidemiologistiiris Epj, Clinic

Epidemiologist Clinic Epi), Clinician (Clinic), State Vector ControlState V@, Juris-

diction Vector Control Juris VO, and Local Jurisdiction VC Teanbg¢cal VC Team

Permissionsp; where 1< i < 17 whose descriptions are given in Table 6.1.

Objects are omitted from the example to keep it simple.

Table 6.1: DDS Permissions List

IF)

Task Task
p1 | Read Premise p1o | Read VControl
p2 | Change Premise p11 | Change VControl
p3 | Read Case p12 | Read Work Record
ps | Change Case p13 | Change Work Record
ps | Read Patient p14 | Read VC Materials
ps | Change Patient p1s | Change VC Materials
p7 | Read Patient Names | pig | Signal VC Need for Dengue Virus (DV)
ps | Read Schedule Work | p17 | Signal VC Need for Dengue Hemorrhagic Fever (DH
Po | Change Schedule Wor

Role AssignmentThe user-role assignments and permission-role assigsraenspecified as

follows.

e User-role assignmentstserRoleAssigiflice, State Epib, AUB), UserRoleAssig{Bob,

Clinic Epi,b,C), UserRoleAssigiBen Clinician,a,C), andUserRoleAssigiCharlie,

State VCa,AUB).

128

Table 6.2: DDS Role-Permission Assignment Constraints

Role Tasks | Location Constraint | Time Constraint

State Epi P16 A-State Office, B~ a—Regular Hours
Juris Office

Juris Epi p1,p3 | B-Juris Office a—Regular Hours

p17 B—Juris Office b—Always

Clinic Epi P17 D—Universe b—Always

Clinician p1, P2 | C-Clinic a—Regular Hours

State VC P11, P15 | A—State Office a—Regular Hours

Juris VC P1, Ps B—Juris Office a—Regular Hours

Local VC Team| py B-Juris Office, E- a—Regular Hours, c+
Emergency Location | Emergency Hours

e Permission-role assignments are summarized in Table 6.2.

Role Hierarchy Two pairs of roles are related by the unrestricted permissiberitance hier-

archy. These relationships are specified as follows:

e State Epi>ajwaysuniverse JUris Epi State VC> awaysuniversg Juris VCandJuris VC

Z(Alwaysu niverse Local VC Team
Separation of Duty There are three separation of duty constraints in DDS system

e User should not have permission to change VC protocols asdhee time as he has
permission to change VC materials.

e User should not have permission to signal DV at the same tewsggaal DHF.

e User should not be assigned to both Epidemiologist and Y&xatrol roles at any place

and time.

These can be represented as follows:

e SSODPRA = {(p11, P15), (P16, P17) }
e SSODURA; ={ (State EpjState V@, (Juris Epi State V@, (Clinic Epi, State VG,
(State EpiJuris VO, (Juris Epi, Juris VO), (Clinic Epi, Juris VO }

DelegationOnly one delegation constraint is specified for this appilbca The system ad-

ministrator decided to transfer permissipg; from Clinic Epi role to Clinician role during

129

emergency hours at the clinic. The administrator does noivdahe delegatee to delegate the

permission further. This can be represented in our moded|Esis:

e Delegate(Clinic Epi, Clinician, p17,t,c,C)
e deptH{DC(Clinic Epi, p17)) =1

®Ben ®Alice ®Bob ®Charlie ®Claire ®David

eClinician ostateEp< T SEGE B eStatevC
<o YT

~
L NE
ISEpi<

> e JurisvVe .P11 o @

®| ocalVCTeam
®p, ®ps ®ps *p; P9 ®pig ®*p1>
®pi3 ®p14

Figure 6.1: DDS System'’s Access Control Graph

The graph representation of the DDS security policies aogvshn Figure 6.1. To avoid
crowding the graph, we show the spatio-temporal and detegetnstraints in Table 8.2. The
PD edge is represented by dashed arr&D edges are represented by dotted bi-directional

arrows. The activation paths and their associated spatnpaoral constraints are listed below:
e (Alice, State Epiwhereli(Alice, State Epi= [b,AUB]|
e (Ben, Cliniciar) whereti(Ben, Clinician = [a,C]

130

e (Bob, Clinic Ep) wherel{Bob, Clinic Ep) = [b,C]
e (Charlie, State VEwherel{Charlie, State VE= [a, AU B|
Some examples of usage paths and their associated spapo+ta constraints are given below:
e (Clinician, p1) whereti(Clinician, pp) = [a,C]
e (Juris VC, Local VC Teajrwhereli{Juris VC, Local VC Teajrr [b, A|
e (State VC, Juris VC, 1) whereli{State VC, Juris VC, {) = [a, B]

e (State VC, Juris VC, Local VC Teamy)pvhereli{State VC, Juris VC, Local VC Team,
p7) = [av 0]

Some examples of access paths are as follows:
e (Alice, State Epi, f5) where{Alice, State Epi, {) = [a,AUB]
e (Bob, Clinic Epi, p7) wherepi{Bob, Clinic Epi, p7) = [b,C]

e (Charlie, State VC, JurisVC,1pwherel{Charlie, State VC, JurisVC,1p= [a, B]

6.4 Chapter Summary

In this chapter, we propose the third model, namely, ext@i®¥RBAC model. The model
remove the ambiguities from the first version and improveftimetionality by including the
delegation chains as a new feature. To strengthen the sesahthe model, we propose the
methodology to transform the model into the graph-theorepresentation. From here, we can
use the graph algorithm discussed in Chapter 5 to detecbtiféats and inconsistencies of the
model. However, there is no tool which could advocate thsk ta be done automatically. To
resolve this weakness, in Chapter 7 we introduce the aplprosacansform the access control
graph into the Coloured-Petri Nets (CPNs). By using the CR&lyais application calle@PN
Tools we can automatically analyze the STRBAC model at the agiptin level.

131

NAME DESCRIPTION CONSTRAINTS
H P

(Alice, State Ep) User-Role Assignment [b, AUB]

(Boh Clinic Epi) User-Role Assignment [b, C]

(Ben Clinician) User-Role Assignment [a, C]

(Charlie, State VGQ User-Role Assignment [a, AUB]

(State EpiJuris Epi) Permission Usage Hierarchy|[b, B]

(State VCJuris VO Permission Usage Hierarchy|[a, B]

(Juris VC Local VC Team | Permission Usage Hierarchy[b, A]

(State Epjpie) Permission-Role Assignmenta, AU B]

(Juris Epi p1) Permission-Role Assignmenta, B]

(Juris Epi p3) Permission-Role Assignmenta, B]

(Juris Epi p17) Permission-Role Assignmentb, B]

(Clinic Epi, p17) Permission-Role Assignmentb, D]

(Clinician, p1) Permission-Role Assignmenfa, C]

(Clinician, pz) Permission-Role Assignmen{a, C]

(State VCp11) Permission-Role Assignmenta, A]

(State VCpss) Permission-Role Assignmenta, A]

(Juris VC p1) Permission-Role Assignmenta, B]

(Juris VC ps) Permission-Role Assignmenta, B]

(Local VC Teampy) Permission-Role Assignmentb, BUE]

(Clinician, p17) R2R Permission Delegation [c, C] [Clinic Epi, 1]

(State EpiState VQ Role Static SoD [b, D]

(State EpjJuris VO Role Static SoD [b, D]

(Juris Epi State VG Role Static SoD [b, D]

(Juris Epi Juris VO Role Static SoD [b, D]

(Clinic Epi, State VG Role Static SoD [b, D]

(Clinic Epi,Juris VO Role Static SoD [b, D]

(P11, P15) Permission Static SoD [a, D]

(P16, P17) Permission Static SoD [a, D]

Table 6.3: DDS Relationships and Constraints

132

Chapter 7

The Analysis of an Extended STRBAC
Model

The model that we proposed in Chapter 6 has numerous feditiatesan interact with each
other to produce inconsistencies and conflicts. For exanmderrect spatio-temporal con-
straints may prevent a user from invoking his permissiomil&@rly, incorrect delegation may
cause violation of separation of duty constraints. Thusmwst perform an analysis to ensure
that inconsistencies or security violations do not occuemvh given application is using our
model. Manual analysis is error-prone and tedious. Towdridsnd, we show how Coloured

Petri Nets (CPNs) can be used for detecting problems in tthedmation specifications.

7.1 Coloured Petri Nets

Coloured Petri Nets (CPN) modelling language [35, 37, 38]theen widely used to model
and analyze various domain of real-world applications. RNCthe states of the system are
represented as a set of circles or ellipses calledes The events which cause the change
between states are represented as a rectangles talisdions Between a state and its corre-
sponding transition which leads to the next state will bedohwith a directed arc. Figure 7.1
shows a simple example of coloured petri nets.

Modeling with CPN has a number of benefits. First, with a caghpnsive graphical repre-
sentation and well-defined semantics, CPN allows user fopethe formal analysis. Second,

CPN has a well-defined semantics, which allows us to unansbigjy define the behavior of

133

“"Alice"++
“"Ben"++
“"Bob"++
‘"Charlie"++ | Users
*"Claire"++

AllUsers

T

SN u
David USER <>
u
(u,r,udur,uloc) CheckURA1 AssignedUser
AllURAs USER
LIRA1
"Alice","State Epi",["a"],["A"])++
e

T an
1°("Ben","Clinician",["a"],
1" ("Bob","Clinic Epi",["a®,"c"],["C"])+
+

1 ("

"Charlie","State VC",["a"],["A"])

Figure 7.1: Simple example of CPN model

the model. Third, the Modeling Language (ML) supported byNG® very general and can
be used to describe a large various systems. Fourth, thedgegemantics is built upon true
concurrency processing. Fifth, CPN supports a hierarthliescription, which is helpful to
model in a modular approach, where each system functionmadelled separately as sub
CPNs. Finally, CPN also offers interactive simulation ard kools to support the drawing,
simulation, and formal analysis.

Laborde et al. [46] have nicely described the charactesisti a CPN as follow. The states
of a CPN are represented by thiaces which are drawn as ellipses or circles. Each place
has an associated type, which ternoedbr setto determine the data type that the place may
contain. A state of a CPN is calledmarking A marking consists of a number of tokens
transfered to the individual places. Each token carriesl@ev@olor), which belongs to the
type of the place on which the token resides. The tokens presea particular place are
called the marking of that place. The tokens of a CPN aremdjatshable from each other. The
marking of a place is, in general, a multi-set of token valu&snulti-set is similar to a set,
except that there may be several appearances of the sanenéldrhis means that a place may
have several tokens with the same token value. We can formiefine a CPN as follow [37]:
Definition 49 (A Coloured-Petri Net (CPN))

A CPN is a nine-tuple of the fortP, T,A,Z,V,C,G,E, 1), where

1. Pis afinite set of places.

2. T is afinite set of transitions.

134

3. ACPxTUT x Pis aset of directed arcs from places to transitions and framsttions

to places.

4. ¥ is afinite set of non-empty colour sets, a colour set is coaiparto a data type in the

programming paradigm.
5. V is afinite set of typed variables such tfatpgv| € X for all variablesv € V.
6. C: P — Zis a mapping function that assign colour set to each place.

7. G: T — EXPRy is a guard function that assigns a guard to each tranditsuch that
TypeG(t)] = Boolean The guard isnabledand can bdired if and only if the guard

functionG(t) is evaluate tdrue.

8. E: A— EXPR, is an arc expression function that assigns an arc expresseach arc
asuch thafTypdE(a)] = C(p)ms, whereC(p)ms represents the colour set of the place

connected to the a@

9. 1 : P— EXPR is an initialisation function that assigns an initialisatiexpression (,

which evaluates to a set tdkenssatified the initialisation function) to each plagsuch

thatTypél (p)] = C(p)ms:

For the complete version of the formal definition of Coloufeetri Nets, please refer to
[37]. In this paper, we advocate the use of the coloured pets tool called CPNTools [36, 38]
to develop and analyze the CPN model. CPNTools [38], is a coenggool for creating and
analyzing the CPN models. Using CPNTools allow us to ingesé the behavior of CPN

model using the simulation.

7.2 The Extended STRBAC Model Analysis

We propose to use the CPN Tools [38] to detect problems indtess control specification.

The CPN Tools allow one to perforsiate spacanalysis to identify potential problems. CPN

135

Tools will generate all possible states that are reachalglether with the values of environ-
mental variables that cause the change. Checking all thergiea states is a time consuming
and error-prone task. To solve this problem, we create gs@sing the Standard ML language
[50] to select only those states which have the exact priggetttat we are interested in. To
avoid state explosion, we develop a CPN model for each ofribiglgms that we try to detect.
The models are populated using values from the access tgrduh representing the access
control policies of the organization.

We detect the following problems with the access controtsigation:

¢ Isolated entity occurs when an entity is not connected tocdngr entity.

¢ Infeasible path occurs when a user cannot access a perm@sam object in an access
path.

e Delegation constraint violation occurs when the spatmogeral constraints associated
with delegation or the delegation depth constraint is vexa

e Separation of duty violation occurs when a user is assigoedicting roles, when a
permission is assigned conflicting roles, or when a user les tbactivate conflicting

roles.

7.2.1 Isolated Entity Detection

Isolated entity occurs when an entity is disconnected frtmerentities in the access con-
trol graph, thus making it useless with respect to the acoasgol specification. Consider the
DDS example discussed in Section 9.4. If we look at the gragfigure 6.1 representing the
access control policies of the DDS, we find that usglesre and David are not connected to
any roles or permissions—these are examples of isolatéteentA similar argument can be
made for permissionps and ps. In our model, we can have three types of isolated entities,

corresponding to users, roles, and permissions, as deddrédow.

1. Type 1:User who is not assigned to any role,

2. Type 2:Role which is not assigned to any permission or junior rahe, a

136

3. Type 3:Permission which is not assigned to any role.

We develop CPN models to detect each of these types of idaatéies. In the following,

we describe how to detect isolated users, that is, isolatety ef Type 1.

colset LOCATION = list STRING;

colset DURATION = list STRING;

colset VERTEX = STRING;

colset EDGETYPE = STRING;

colset DEPTH = INT;

colset EDGE = product VERTEX*VERTEX*EDGETYPE*DURATION*L OCATION*
VERTEX*DEPTH;

All types of entities and relationships in our model are espnted using color sets. From
the declaration above, edge is represented by a tuple ate®rt The color set calleED-
GETYPEis used to distinguish between different types of edges.epoesenti function, we
use the product dDURATIONandLOCATION Similarly to represenp function, we use the
product of STRINGandDEPTH

We next model the states of the application that are of istefiehe state of the application
is represented using CPN’s places which are drawn as dlipseircles. Each place has an
associated type, specified using color set, that deterrtiieegata type that the place may con-
tain. In Figure 7.2, we have three places denotetdbgr Assign EdgedJsers andAssigned
Usersthat have data typddSER EDGE andUSERrespectively. Each state of a CPN is called
a marking. The marking of a place is represented by a multoseken values. The initial
markings, representing the initial states, are initiaizsing values from the access control
graph and are shown in the boxes adjoining the places. Fan@grathe initial marking of the
Usersplace, referred to asllUsers consists of six tokens corresponding to the ugdise,
Ben, Bob, Charlie, ClairandDavid in the access control grapAllUsersis described using a
multi-set. Since all users are unique, the number of each-setimember equals one. For ex-

ample, the notatiort,‘("Alice") indicates there is only one user Alice. The union operation

137

(++) is used to represent situations when there are moreai@member, as in our example.
The initial marking of placdJser Assign Edgeseferred to allUserAssignis specified in
a similar manner and are populated using User-Role Assighams Role to User Delegation

edges from the access control graph. Here, we repeat thiicaans of the initial markings.

val AllUsers=1‘("Alice")++1‘("Bob")++1'("Ben")++1 (" Charlie")++
1'("Claire")++1'("David");

val AllUserAssign=1‘("Alice","State Epi","UA"["a","c ", ['A","B"],"™,0)++
1'("Bob","Clinic Epi","UA"["a","c"], ['C"],"",0)++

1'("Ben","Clinician","UA"["a"], ['C"],"™",0)++

1'("Charlie","State VC","UA"["a"], ["A","B"],"",0);

The actions of the CPN are described by transitions, whiehepresented using rectangles.
Arcs connect transitions and places. An activation (firioigd transition removes tokens from
places connected to the transition’s incoming arcs (infadgs) and adds tokens to the places
connected to the transition’s outgoing arcs (output placBsis results in the markings of the
CPN, that symbolizes its state, to change. It is also pass$thhttach a boolean expression,
referred to as a guard, to each transition. In such a casguére function must evaluate to
true before it can be activated. The exact number of tokedsddr removed by the firing
of a transition and their respective data values are deteuinby the arc expressions. The
transitions can be fired repeatedly. When the marking of eeptan no longer be changed, it
is referred to as dead marking.

Figure 7.2, shows one transitibfiove Assigned Usehat is activated when the arc expres-
sions match on the values and the guard function Bove Assigned Usetferifies thatu is not
null. The initial markings cause this transition to be firéithe corresponding, (u, v, etype,
di, 11, dtr, depth get removed fronUsersandUser Assign Edgeglaces respectively and
gets added té\ssigned UsersThe transitions are fired repeatedly until no more stateagha
can take place. In the given example, the transitions are foeusersAlice, Ben, Bolkand

Charlie. The terminal state is reached when no more transitions edindal.

138

AllUserAssign

(u,v,etype,di,l1,dtr,depth)

Move u .
Assigned ASS|gned
User sers

USER

USER
Figure 7.2: CPN Model for Isolated Entity Detection (Type 1)

Query 1

Show all terminal states

SearchNodes (EntireGraph,

fn n => (length(OutArcs(n)) = 0),
NoLimit,

fn n => n,

[,

op =)

We use Query 1, which is the general query to show all ternsitaéés, to detect isolated en-
tity. This query is written using built-in query function tife State Space Tool call&karchN-
odes[36]. The first argument irsearchNodesnamely,EntireGraph , signify that we want
to search the whole graph. The second argunfent, => (length(OutArcs(n)) = 0) ,
states that we want to check all nodes that have no outgoasy trat is, the terminal nodes.
The third argument\oLimit , states that we want the query to return all possible restle
fourth argumentin n => n , states that we do not want to change the value of the search re
sult. The fifth argument states that the initial value of thgult set is equal to empty list. The
last argumenip :: , willcombine all search results into one list. From the exjition above,

Query 1 will return the state where the transition cannoteea anymore. The result is the

139

state number 16 which can be viewed using the commapuht(NodeDescriptor 16)

The content of each place in state number 16 can be shown below

Users=1'("Claire")++1'("David");

User Assign Edges=empty;

Assigned User=1‘("Alice")++1'("Ben")++1‘("Bob")++1'("Charlie™);

The result shows that tokens corresponding to uSéase andDavid are in placedJsers
when the transitions cannot be fired anymore. These user®tha transferred to the next
state Assigned Usgrand they are isolated entities. With trivial modificatieve can develop

the CPN models to detect the other types of isolated entity.

7.2.2 Infeasible Path Detection

Recall that in an access control graph, a usés authorized for permissiop through
roler if there is an access path connecting, andp. The spatio-temporal constraints may
be specified in such a manner that it may not be possible fior invoker resulting in an
infeasible path. Consider the following access path ginefigure 6.1:(BenClinician, p17).
Benis assigned tcClinician role during regular hours at th@linic. However, theClinician
role is delegated permissiqn; only during emergency hours at tBdinic. Thus, the temporal
constraints prohibiBenfrom ever invoking permissiop;7. This is an example infeasible path.

Figure 7.3 shows the CPN model for detecting infeasible gaithis model is developed
to perform a depth first search on the access control graplcaledlate thgufunction of
each acs-path. If there is an acs-path wherguthenction equal to empty set, then this acs-
path is the infeasible path. In this CPN model we have a tianstalledGet Initial Vertex
This transition will get the first token needed to start thalgsis. Moreover, it will prevent
other tokens from being retrieved while the previous toleestill in the analysis process. The

transitionRetrieve Edgevill retrieve the authorization edge which starts/af then add it to

140

the Authorization Patiplace as a record. Then the transiti@alculate Mu Hatwill calculate
the currenfu'value. If either the spatial value or temporal valugu@quals empty set, it will
trigger thelnfeasible Pathransition to fire. This transition will send boolean valugetto the
Infeasible Pathplace, which will notify us that there exists an infeasib&lpin our policy.
The initial marking of theJsersplace, denoted bgllUsers consists of all users in the access
control model. The initial marking of th&uthorization Edgeplace, denoted b&llAuthEdges

consists of all edges except the SoD edges in the accesslognatph.

Authorization

(v1,v2,etype,dl,l1,dtr,depth)

AllAuthEdges

Authorization (v1,v2,etype,d1,l1,dtr,depth) Retrieve (v1,v2,etype,d1,|1,dtr,depth)
Edges Edge

EDGE

Current
Edge

EDGE

if (intersection(d1,d2) <> []) andalso
(intersection(l1,12) <> []) andalso
(etype <> "PA") then

1'v2

(v1,v2,etype,di,l1,dtr,depth)
INextInitVertex=true

AllUsers

u Get
Initial
Vertex

USER

(intersection(d1,d2),
intersection(l1,12))

W else empty Calculate

Mu Hat

VERTEX

input ();

output ();

action
(NextInitVertex:=false);

InitMuHat Current

Mu Hat

MU

(d2,12)

Infeasible
Path

true

Infeasible
Path

BOOL

(d2 = []) orelse
(12=1D

Figure 7.3: CPN Model for Infeasible Path Detection
Query 2

Infeasible Path

fun InfeasiblePath() : Node list
= SearchNodes(

EntireGraph,

fn n=>(

(size(Mark.UserInfeasiblePath’Infeasible_Path 1 n) <> 0)

141

),
NoLimit,
fn n=>n,
[,

op =)

Query 2 checks the infeasible path that may occur due to riecbspecifications in the
spatio-temporal constraints. The second argument in BEates which represents a function
states that we want to check the states where the numberesfsakinfeasible Path place
is not equal to zero. The result shows that states 37 and 4@indhe infeasible path. To
observe the result, we print the content of state number dlovBis part of the content of state

47.

Authorization Path = 1‘("Charlie”,"State VC","UA" ['a"] ;A" BY], ™ 0)++
1/("State VC""Juris VC"'RHI"["a’], ['B"],"0)++
1/("Juris VC""Local VC Team"/'RHI"['a","c’], ["A"]," 0);

The analysis reveals another infeasible path that existgnbDS example:Gharlie, State
VC, Juris VC, Local VC TeanThis infeasible path is caused because no spatial camtstcan
be satisfiedCharlieis assigned the rolgtate Vdn the State OfficendJuris Office However,
the State VCinherits Juris VCs permissions only in thduris Officeand Juris VC inherits
Local VC Tearis permission only irState Office This preventharlie from invoking any of
theLocal VC Tearis permission. State 37 reveals another infeasible @ Clinician, p17

) that exists in our application.

7.2.3 Delegation Constraint Violation Detection

A delegator can delegate only the roles or privileges assiga him. Moreover, the del-
egation duration and location should satisfy the assatispatio-temporal constraints. In the
context of our example, i€linic Epi tried to delegate privileg@s (which he does not pos-

sess), then it would be an example of delegation constralation. Similarly, if the roleJuris

142

Epi delegated permissiopg to Clinician at locationA (State Office) and time (Emergency
Hours), then it would violate the delegation constraintisTib because the roluris Epidoes
not have permissiops in locationA at timec.

The delegation should also not violate the delegation deptistraint. This type of viola-
tion occurs when there is a chain of delegation and the didedarther delegates the privilege
beyond the specified depth. For example, if the delegatipthds specified as one, then a
delegation depth violation will occur if the delegatee arig to further delegate the privileges
he has acquired by virtue of delegation. In the context ofexample, the roleClinic Epi
transfers the permissigm 7 to Clinician at timec and locationC and the delegation depth is
specified as 1. Now, if th€linician further delegates privilege;7 to some other role, then the
delegation depth constraint will be violated.

Figure 7.4 shows the CPN model to detect the delegation @onsviolation. This model
is developed to ensure that both delegation depth constah delegation spatio-temporal
constraint are satisfied by using the guard function of theditionCheck Delegation Depth
andCheck Delegation Constrainespectively. If theCheck Delegation Deptitnansition is ac-
tivated, then there exists a delegation depth violatiomil&rly, if the Check Delegation Con-
straintis activated, then there exists a spatio-temporal del@ganstraint violation, which
will occurs if the delegator delegate the privileges thahlae no accessibility. The model will
send the problematic edge to the place corresponding totgaelof error to notify the error.

The initial markings of th®elegation Edgeplace, denoted biliDelEdges consists of all
delegation edges, that RDUPD. The initial markings of thé®elegator Authorization Edges
place, denoted bglIDtrAuthEdgesconsists of all edges belongingWdA U RHU PA

We then formulate Query 3 and 4 to check the delegation depldition and the delegation
constraint violation states, respectively. Both queratann empty list, which ensures that our
model is free from both types of violation.

Query 3
Delegation Depth Violation

fun DepthViolation() : Node list

143

(depth=0)

5 Clhedt(' (v1,v2,etype,d1,|1,dtr,depth) o Depth
elegation e
(v1,v2,etype,di,l1,dtr,depth) Degpth = Violation

AllDelEdges

Delegation
Edges

E (v1,v2,etype,dl,|1,dtr,depth)

EDGE

(v1,v2,etype,dl,l1,dtr,depth) »/ Constraint

bset(d1,d2)=false) orelse
(Subset(Tts
Check_
(dtr,v2,etypeDtr,d2,12,v,depthDtr) Delegation
Constraint

AlIDtrAuthEdge

Delegator
Authorization
Edges
EDGE

P\ Violation
EDGE

0

Figure 7.4: CPN Model for Delegation Constraint ViolatiortBction

= SearchNodes(

EntireGraph,

fn n=>(
(size(Mark.DelegationConstraint'Depth_Violation 1 n) <
NoLimit,

fn n=>n,

IP

op =)

Query 4

Delegation Constraint Violation

fun ConstraintViolation() : Node list

= SearchNodes(

EntireGraph,

fn n=>(
(size(Mark.DelegationConstraint'Constraint_Violatio
NoLimit,

fn n=>n,

If

144

> 0)),

n1n) <> 0),

op)

7.2.4 SoD Violation Detection

Separation of duty violations can be static or dynamic.iSssparation of duty can be with
respect to the user-role assignment or permission-roigrasgnt. In DDS system we have two
different types of SSoDone with respect to user-role assegit and the other with respect to
permission-role assignment. Let us take the example of S&oermission-role assignment.
No role should have permissiomss (Signal VC for Dengue Virus) ang;7 (Signal VC for
Dengue Hemorrhagic Fever) at the same time. Thus, if a roés ¢have these conflicting
permissions , SSoD will be violated.

Figure 7.5 shows the CPN model to detect the separation givitniation. The model will
perform a reverse depth first search starting from the \e=tassociated with the SoD edge.
The ancestors of the two vertices will be stored in two sdépaitaces calle¥1 Ancestorand
V2 Ancestorsespectively, together with their correspondjngalue. If there exist a common
ancestor and there is an overlap of spatio-temporal pdims SoD is violated. The model
will then send the problematic SoD and its ancestd@®® ViolateandSoD Violate Ancestor
places respectively to notify the error.

The initial marking of theSoD Edgesdenoted byAllISoDEdgess populated by all SoD
edges in the access control model. The initial marking&uthorization Edges VandAutho-
rization Edges V2denoted byAllAuthEdgesconsists of all edges except the SoD edges in the

access control graph. The conten®dfSoDEdgess shown below.

val AllSoDEdges=

1("State Epi""State VC"'RSSD"['a","¢"],['A",'B"," C""E"]",0)++
1("State Epi","Juris VC'"'RSSD" ["a","c"],['A",'B"" C"E"]™0)++
1("Juris Epi""State VC''RSSD"["a","c"],'A",'B"" C"E"]™0)++
1("Juris Epi","Juris VC","RSSD"["a","c"] ['A","B"," C""E"]™,0)++
1("Clinic Epi","State VC''RSSD",['a","c'],['A""B", "C"E"]," O+
1("Clinic Epi","Juris VC""RSSD" ["a","c"],['A","B", "CE"]"0)++

145

1("p11","p15","PSSD" ["a"],['A","B","C","E"],"",0)
1("p16","p17","PSSD" ["a"],['A","B","C","E"],"",0)

AllAuthEdges
‘Authorization
Edges V1

EDGE

(v3,v1,etype,d3,I3,dtr,depth)
if etype <> "UA" then
1'v3

else empty Edge And intersection(13,IMu))

Retrieve (v3,intersection(d3,dMu),

++

Calculate
Mu Hat V1

(intersection(d3,dMu),

(dMu, IMU)|intersection(i3, IMu))

Current
Vertex V1

VERTEX MU

P\ Ancestors
ANCESTOR

(v,d1,11)

vi
(intersection(dSoD, intersection(d1,d2))<>[) gndalso
(INextSoD=trlie) (intersection(ISoD, intersection(I1,12))<>[])
oy o (v,intersection(dSoD, ion(d1,d2)),
sob 1\ (v1,v2,etype,dSoD,ISoD,dtr,depth) Get | (V1,v2,etype,dSoD,ISoD,dtr,depth) _ /Cirrent\(V1,v2,etype,dSoD,ISoD,dtr,depth) [Check | 150D, intersection(l1 12))) oon
Edges ¥l soD InitMuHat i SoD ¥l soD 4 cest
EDGE EDGE A ANCESTOR
input ();
output ();

action
V2 (NextSoD:=false);

Current
Vertex V2

VERTEX

MU

(intersection(dd,dMu),

intersection(14,IMu)) (dMu, M)

(v1,v2,etype,dSoD,TSeR.dtr,depth)

(v,d2,12) EDGE

v Retrieve (v4,intersection(d4,dMu),
Edge And intersection(14,IMu))
if etype <> "UA" then Calculate
: Mu Hat V2

else empty

(v4,v2,etype,da, 4, dtr,depth)
AllAuthEdges

‘Authorization
Edges V2

EDGE

S V2
"_Ancestors

ANCESTOR

Figure 7.5: CPN Model for Separation of Duty Violation Deten

Query 5
SoD Violation

fun SOD() : Node list

= SearchNodes(

EntireGraph,

fn n=>(

(size(Mark.SoD'SoD_Violate 1 n) <> 0)),
NoLimit,

fn n=>n,

[,

op =)

146

We then formulate Query 5 to check the SoD violation. Ourysialreveals various SoD
violations. For example, there is a SoD violation causeddsygaming the roléState VCtwo
conflicting permissiong11 and pis. Similarly, there is another SoD violation caused because
role State Epigets conflicting permissiong;g and p17. Our analysis reveals that there is no

SoD violation caused by any user being assigned conflicalesgr

7.2.5 Soundness and Completeness

The set of problems that we considered in this work are by nanme@xhaustive. For
example, itis quite possible that the spatio-temporal tamgs have been incorrectly specified
but this error does not lead to isolated entities, infeasgath, SoD violation or delegation
constraint violation and will not be detected. Howeverhaespect to the problems that we
do detect, we can make a few comments about the soundnessrapteteness. If the CPN
model has been correctly constructed and populated usengdtess control graph, then we
can prove soundness and completeness properties witlctéslee given problem.

Consider, for example, the problem of detecting isolatextsias shown in Figure 7.2. Let
us recall how this CPN will operate. The initial markiAgUsersare populated using the user
entities in the access control graph. Similarly, the ihimarking AllUserAssigrare initialized
using UA and RDy edges in the access control graph. The transilmve Assigned User
will fire as long as some usermatches the userin the edgeu,v,etypedl,|1,dtr,depth.
This firing results in removing and(u, v, etyped1,11, dtr,depth from UsersandUser Assign
Edgesespectively and addingto Assigned UsersVhen no more transitions can be fired, the
terminal state has been reached and the plssFscontain isolated users.

Suppose there is some isolated ugen the access control graph that is not detected by this
CPN model. In other words, useris not in theUsersplace when the terminal state is reached.
This leads to two possibilities: either usgrs in Assigned Userglace in the terminal state or it
is not. Ifu; is in Assigned Usershen there exists an edge of tye, v,etypedl,|1,dtr,depth
in the initial markingAllUserAssign This is possible only if there is a corresponding or

RDy edge in the access control graph involving this, in turn, precludes; from being an

147

isolated user. I is not in Assigned Users the terminal state and it is also not Users
thenu; was not in the initial markind\lUsers This is possible only if the access control graph
does not contaim;. Since both the cases are not possible, it means thatiuserst be in the
Usersplaces when the terminal state is reached. Thus, all igsblagers are detected by the
CPN model.

Supposay; is detected as an isolated user by the CPN. This implieshiatin the place
Usersin the terminal state. In other words, there is no edge ofdha fu;, v, etyped1,|1,dtr,depth
in the initial markingAllUserAssign In other words, there is ndA edge oRD, edge associ-

ated withu; in the access control graph. This implies thats indeed an isolated user.

7.3 Improving the Analysis Performance

CPN explores the state space to check for violations of aco@strol properties. Our in-
vestigations reveal that even a modest increase in the nuohipdaces and transitions cause
a significant increment to the number of states of the stateesghis substantially raises the
verification time. We looked at the various CPN models thagemerated for detecting prob-
lems with the access control specifications. We observdadhibanumber of states generated
in the CPN model were related to the number of edges traverskd access control graph for
detecting a specific problem. We looked at the number of sgdaerated for each problem.
For detecting delegation constraint violation, the numidfestates generated is of the order
O(|PD| + |RD|), where|PD| and |RD| represent the number of permission delegation edges
and role delegation edges respectively. Since typicadyntlhmber of delegation edges will be
small, we did not think it necessary to produce further optation. We next considered the
problem of detecting infeasible paths. In this case, thebarrof states generated is of the or-
derO(|U||E| + |IP|) where|U | is the number of user&| is the number of edges in the access
path, andIP| is the number of infeasible paths. Next, consider the proldédetecting SoD
violations. Here, the number of states generated is of terafO(|SD||E| + |SoD) where
|SD| is the number of SoD edgel| is the number of edges in the access path, |&od) is

the number of SoD violations. Thus, one way to reduce the mumibstates is to decrease the

148

number of edges in the graph.

One way of reducing the number of edges is to flatten the ldleyaWe did some initial
experiments in order to understand the effect of flattertneghierarchy on the state space. We
created a very simple access control graph consisting olusag one user-role assignment,
one permission-role assignment, and multiple levels afdnady. With 10 levels of hierarchy
the state space reduction was 40%, which is quite significahts motivated us to transform

the access control graph to a smaller graph, which we temprihilege acquisition graph

7.3.1 Privilege Acquisition Graph

In order to generate a smaller number of states in the CPN Intteatedoes efficient veri-
fication, we propose to transform the access control graptthe privilege acquisition graph.
The privilege acquisition graph essentially flattens oatttterarchical structure. It captures the
following relationshipsiUA’, PA, PO andSD whereUA' represents the user-role assignment
that occurs either directly or indirectly via hierarchy atelegation constraint®A’ represents
permission-role assignment that occurs either directlgdirectly due to inheritance and dele-
gation,PO corresponds to the permission-object relationship (spred byPOin the access
control graph), an&D corresponds to separation of duty (represente@byin the access
control graph). Algorithm 1 shows the transformation pssceStep 1 adds all the vertices of
the access control graph to the privilege acquisition gr&ikp 2 converts all the act-path in
the access control graph thA’ edges in the privilege acquisition graph. Step 3 convelts al
the u-path in the access control grapiP® edges in the privilege acquisition graph. Steps 4
and 5 adds all th®O, SD edges in the access control grapiP@’, SD edges in the privilege
acquisition graph respectively. The time complexity toeyare the privilege acquisition graph
isO(VE), whereV is the number of vertices aritlis the number of edges of the original access
control graph.

Theorem 1
The role authorizations and user authorizations are elgmzén the access control graph

G(V,E, ,p) and its corresponding privilege acquisition gra@iVv’,E’,).

149

Proof First, let us consider the case of role authorizations. 8s@polev € R is authorized
for permission/ € P in the access control grafh. This is possible if there exists an u-path
in the access control gragh, v, Vo, ..., vy, V) andi(v,V) # 0. By step 3 of Algorithm 1, if
there exists an u-pattv,vi,Vo,...,vn,V) in the original graphG, it will be transformed to a
PA edge in its corresponding privilege acquisition graghwith the same spatio-temporal
constraint (/ (v,V') = fi(v,V)). Hence, for every u-path i6, there exists #A edge inG' that
authorizess to acquire permissiod ati(v,V). To show the converse, let us consider an edge
(v,v') € PA'in G'. Since edgév,V) € PA'in G’ is created from some u-path @, every role
authorization inG’ has a corresponding u-path@that gives rolev permission/ at the same
spatio-temporal points. Thus, for every edgg/) € PA, there exists an u-path @@ that gives
role v permissiornv'.

Next, let us consider user authorizations. Let userU be authorized for permission
vV € P with respect to objeat’ € O in the access control graggh This is possible if there ex-
ists an acs-patfv, vy, Vvo,...,Vi,...,V,V’') such that; € Rfor somei, (vi,...,V) is an act-path,
(Vi,...,V) is an u-path(V,V’') € PO and}i(v,V’) # 0. Corresponding to this acs-path, the al-
gorithm to generate the privilege acquisition graph cietteee edges in Steps 2, 3, and 4. The
edges created afg v;) € UA wherep! (v,vi) = [i(v, vi), (vi,V') € PA wherep! (vi,V) = [i(v;, V),
and (V,V') € PO where(V,V') = i(v,V'). Moreover, I (v,vi) " (vi;,V) N (V,V') =
f(v,v'). These three edgés vi), (vi,V) and(V,V’) give the usev permission/ to access ob-
jectV’ at pointsi{v,V’) in graphG'. To prove the converse, let us assume that the privilege ac-
quisition graphG’ provides some userpermissiorp for objecto. This implies that there exists
three edges of th@u,r) e UA, (r, p) € PA and(p,0) € PO andp! (u,r) Ny (r, p) N (p, 0) # 0.
The existence of these three edges is possible only if tisema act-pathju, vi, vz, ..., n,r),
an u-path(r,v},Vv,,..., Vi, p), an edge p,0) € PO in the corresponding access control graph.
Moreover, [(u,r) = fi(u,r),f(r,p) = fi(r, p), and/(p,0) = K(p,0). Thus, usem will get
permissionp to access objed at the same spatio-temporal points in gr&ph
Lemma 1l

Each isolated entity that exists in the access control g@iglalso present in the corresponding

150

privilege acquisition grapls’ and vice-versa.

Proof Let u; be an isolated user in the access control graph. This meanth#re is no act-
path starting atij. Consequently, there is no edgeld’ in the privilege acquisition graph of
the form(u;,v). Since the edges DA’ are the only edges joining users to roles in the privilege
acquisition graphy; is also an isolated entity in the privilege graph. Converdet uj be an
isolated user in the privilege acquisition graph. Thusretie no edge of the fornuj,v) in
UA'. This is possible only if there is not act-path startinguain the access control graph,
which implies thatu; is an isolated entity in the access control graph. We can reiskibar
arguments for isolated roles and permissions.

Lemma 2

For each infeasible path that exists in the access coniaphgs, there exists a corresponding

infeasible path in the privilege acquisition grahand vice-versa.

Proof LetP=(v1,vo,...,Vy) be aninfeasible path in the access control graph wiwere. ., v;)

is an act-path(vi,...,vy_1) is an u-path andv,_1,vn) be in PO. SinceP is an infeasible
path, vy, vn) = f(v1, Vi) N (Vi Vh—1) N (Vh—1,Vn) = (d,]) where eithed =0 or| = 0. The
construction of the privilege graph from this acquisitiomgh generates the the following
edges:(v1,Vi), (Vi,Vn—1), and(Vn_1,Vn) where(vy,vi) € UA' (vi,vn—1) € PA and(vp_1,Vn) €
PO and (v1,Vvi) = fi(va, Vi), (Vi, Vn—1) = [A(Vi,Vh—1), andp (Vn—1,Vn) = fi(vn—1,v,). Thus,
f(vi,vi) = f(ve, V) = (v, Vi) N Vi, Vn—1) N V-1, Vn) = (d,1) where eithed =0 or| = 0.
Thus, the path{v1,vi,vn—1,Vn) is an infeasible path in the privilege acquisition graph.eTh
converse can be similarly proved.

Lemma 3

For every SoD violation that exists in the access contrgblgf@, there exists a corresponding

SoD violation in the privilege acquisition graj@i and vice-versa.

Proof Suppose the access control graph has a SSoD role-permigsiation of the form
(r17 rz,...,rn, pi)7 (r17 r/27 sy rén pj) and(pi7 pj) Where(rl7 rz,...,rn, pl) and (r]-? r/27 SRR r:’n pj)

are u-paths andp, p;) is a SoD edge ang(f1, i) N{i(r1, p;) N(pi, py) = (d,1) whered # 0

151

andl # 0. By construction, the following edges are generated forpitiélege acquisition
graph: (r1, pi) and(rq, pj) are edges ifPA' and (p;, p;) is an edge irSD. Sincel/(r1, pi) =
R(ra, pi), K (ra, pj) = (ra, pj), andy (pi, pj) = K(pi, pj), we havar (r1, pi) VK (ra, pj) DK (Pi, pj) =
(d,I). Thus, the edge§ 1, pi), (r1, pj) and(pi, p;) indicate there is a SoD violation. The con-
verse can be proved in a similar manner. We can also provetiee types of SoD constraint
violations similarly.

Theorem 2

The privilege acquisition graph accurately captures tedl@ntities, infeasible paths, and SoD

violations.
Proof The proof follows from Lemmas 1, 2, and 3.

Note that, the privilege acquisition graph contains leésrmation than the corresponding
access control graph. For example, information about tleetierarchy is no longer present
in the privilege acquisition graph. The CPN analysis of ipEye acquisition graphs will detect
the problems, but it may not have enough information to idietite source of the problem.
Thus, if a problem exists, the access control graph or itgrsydh related to the problem must
be analyzed. For instance, if the analysis of the CPN cooredipg to the privilege acquisition
graph identifies that there is an infeasible p@thvi, vn—1,Vn), then to detect where the spatio-
temporal constraints have been violated we need to find thgraph of the access control
graph involving these vertices and analyze it. Similafl{he@ CPN analysis of the privilege ac-
quisition graph reveals a potential SoD violation involyedgesri, pi), (r1, pj), and(pi, pj),
the corresponding subgraph of the access control graphbewstalyzed to identify the source

of the problem.

7.3.2 DDS Example Privilege Acquisition Graph

We use Algorithm 1 to transform the access control graph efdégngue decision support
system into the privilege acquisition graph, shown in Fegédr6. The new spatio-temporal

constraints can be calculated from the/, V) function as described in Algorithm 1. For

152

Algorithm 1 Transform access control graph to privilege acquisitiapr
{Input: Access control grapB(V,E,,p)}
{Output: Privilege acquisition grap®’(V',E’,|/)}
BEGIN
V' —0
E'—0
W0
{Step 1: Add all vertices of the access control graph to the privilagguisition graph
forall veV do
V' —V'Uv
end for
{Step 2: Transform all act-path started at each user vertex of thesaccontrol graph to the set of
edges of the privilege acquisition graph4’)}
forall ve U do
for all act-pathact = (v,...,V) do
EdgeTypév,V) — UserRoleAuth
E' —E'U(wV)
H(WV) — f(wV)
H— UM (wY)
end for
end for
{Step 3: Transform all u-path started at each role vertex and endétegtermission vertex of the
access control graph to the set of edges of the privilegeisiiqn graph PA)}
forall (ve R)A(V € P) do
for all u-pathuy; = (v,...,V) do
EdgeTypév,V') «— PermRoleAuth
E'—E'U(wV)
H(WY) — f(vV)
W= UK (WY)
end for
end for
{Step 4: Add all PO edges from the access control graph to the set of edges ofitilege acquisi-
tion graph PO))}
forall (v,v) e POdo
EdgeTypév,V) «— PermObjAssign
E'—E'U(wV)
H(VV) — H(VV)
W= UK (wY)
end for
{Step 5: Add all SDedges from the access control graph to the set of edges afitilege acquisition
graph D)}
for all SD edgesd = (v,V') do
EdgeTypév,V) «— EdgeTypesd)
E' —E'U(vV)
H(WV) — H(VV)
KUK (wY)
end for
ReturnG'(V/,E’",)
END

153

instance J(State Epip;) in the condensed graph can be calculated fig®tate Epip;) of
the original access control graph, which equalg(tState EpjJuris Epi) N p(Juris Epi p1) =
[b,B]N[a,B] = [bna,BNB| = [a,B]. Note that in this example duratidnmeansAlways
hencepna=a. We compute other spatio-temporal constraints in the saarear. All new

spatio-temporal constraints are shown in Table 7.1.

®Alice ®Bob ®Ben ®Charlie ®Claire ®David
®JurisEpi ®StateEpi<" " ClinicEpi _ Clinician > ®StateVC__ ®JurisVC ®LocalvCTeam
*p ®p3 ®pig <= Opyy *p ®pg Opyg <= Opypg ®p;
®py ®ps ®ps ®pg ®p1o ®p12 ®pi3 ®p14

Figure 7.6: DDS System’s Privilege Acquisition Graph

154

NAME DESCRIPTION SPATIO-TEMPORAL Do-
MAIN (L)
(Alice, State Epj User-Role Authorization [b, AUB]J
(Boh, Clinic Epi) User-Role Authorization [b, C]
(Ben Clinician) User-Role Authorization [a, C]
(Charlie, State VG User-Role Authorization [a, AUB]
(State Epjp1) Permission-Role Authorization[a, B]
(State Epjpz) Permission-Role Authorization[a, B]
(State Epipis) Permission-Role Authorization[a, AU B]
(State Epip17) Permission-Role Authorization[b, B]
(Juris Epi p1) Permission-Role Authorization[a, B]
(Juris Epi p3) Permission-Role Authorization[a, B]
(Juris Epi p17) Permission-Role Authorization[b, B]
(Clinic Epi, p17) Permission-Role Authorizatiop[b, D]
(Clinician, py) Permission-Role Authorization[a, C]
(Clinician, p2) Permission-Role Authorization[a, C]
(Clinician, p17) Permission-Role Authorizatiop|[c, C]
(State VCpz1) Permission-Role Authorization[a, B]
(State VCpy) Permission-Role Authorizatiop[a, 0]
(State VCps) Permission-Role Authorization[a, B]
(State VCp11) Permission-Role Authorization[a, A
(State VCps5) Permission-Role Authorization[a, Al
(Juris VC p1) Permission-Role Authorizatiop[a, B]
(Juris VC p7) Permission-Role Authorizatiop[b, 0]
(Juris VC ps) Permission-Role Authorization[a, B]
(Local VC Teamp7) | Permission-Role Acquisition | [c, BUE]
(State EpjiState V@ | Role Static SoD [b, D]
(State Epiduris VO | Role Static SoD [b, D]
(Juris Epi State VG | Role Static SoD [b, D]
(Juris EpiJuris VO | Role Static SoD [b, D]
(Clinic Epi, State VG | Role Static SoD [b, D]
(Clinic Epi,Juris VO) | Role Static SoD [b, D]
(P11, P15) Permission Static SoD [a, D]
(P16, P17) Permission Static SoD [a, D]

Table 7.1: New Relationships and Constraints

7.3.3 Problem Detection using Privilege Acquisition Graph

In this section, we show how to detect infeasible paths apdrsgion of duty violations

using our modified approach.

155

7.3.3.1 Infeasible Path Detection

We define the types in the model as colorset as shown in Set2oiWe use the privilege
acquisition graph instead of the access control graph talpggthe initial markings of our
previous CPN model shown in Figure 7.3. The initial markiog&uthorization Edgesienoted
asAllAuthEdgess populated by th&/ A’ and thePA' edges of the privilege acquisition graph.
The rest of the initial markings for other places are the sasieefore.

We allow the execution of this model and run the queries teaenfeasible paths. The
analysis result shows that the system contains infeasdile frhe query shows that a set of
states{42,43} suffers from the infeasible path. To check this, we usepifiet command to
check the descriptor (environmental variables) of theestigor instance, let us check the state

43. Below is part of the content of state 43.

Authorization Path = 1‘('Ben","Clinician”,"UA" ['a"], ["C," 0)++
1'("Clinician”,"p17""PA" ['c"], ['C"],""0);

The result shows that the infeasible path occurs becaus8eseannot acquire permission
17 assigned to him via th€linician role. The percentage reduction in the number of states
when using the privilege acquisition graph instead of tleeas control graph is only 8 percent
in this case.

In this analysis, we do not have enough information about Bemwas assigned the&lini-
cianrole, whether through direct assignment or indirect asagmt by hierarchy or delegation.
If we are interested in knowing the source of conflict, we heveerify the original graph.
However, since we know that onlyy7 causes the problem, we can bypass the verification of
other irrelevant entities. To do this, from the access @mgraph, we create a subgraph con-
sists of all entities related with;7 by performing a reverse depth first search starting fpam

The subgraph derived from the access control graph showigumd=7.7.

We then run the same CPN model for the derived subgraph, vibngimilar to Figure 7.3.

156

®Alice ®Bob ®Ben

®StateE pi OClinicE pi ®Clinician
/
/
/
/
') /
® JurisE pi y
/
/
/
I3
®pyi7

Figure 7.7: Subgraph of the related entitieoj.

We observe the state variable, which shown thatis the delegated permission which has

temporal conflict with roleClinician.
7.3.3.2 SoD Violation Detection

We run our previous CPN model for detecting the SoD violasbown in Figure 7.5 on
the privilege acquisition graph. We then create the stadeesgraph and execute the query
to detect conflicts. The percentage reduction in the numbstates obtained by using the
privilege acquisition graph is 25 percent. The tools retariist of possible conflict states
{38,46,48,50,53,55,56,57,58 59}. We run the print command to show the value of environ-
mental variables of state number 46. Below is part of theeraraf state 46 which shows that

the conflict occurs betweegmg andp;7.

SoD Violate Ancestor = 1'("State Epi",['a"], ['B"]);
SoD Violate = 1'("p16","p17","PSSD",["a"],
[”A"1 "B"l "CHI "D", "E"]l ""l O);
Since CPNs based on the privilege acquisition graph caridaaflicts but cannot identify
the source, we create a subgraph from the access contrdl gygperforming a reverse depth

first search starting from node f@rg and then forpy7. The resulting subgraph is shown in

Figure 7.8. This subgraph can be analyzed as described fio®&c2 to reveal the source of

157

conflict. Since the subgraph is much smaller than the origioeess control graph, it will take
significantly less time. We then run the model again on theséérsubgraph. This time the
model indicates thapi7 is the inherited permission which together with the asgigog of

role State Ephave violated the SSoD for permission-role assignment.

®Alice ®Bob ®Ben
®StateE pi ®ClinicE pi ®Clinician
/
/
/
/
® Jurisk pi ®nis , /
A /
) ,
/
Az Y

®p17

Figure 7.8: Subgraph of the related entities of permisstbarid 17.

7.4 Chapter Summary

In this chapter, we investigated how the various featurdb@extended STRBAC model
may interact with each other in subtle ways resulting in ¢atsfland other inconsistencies.
Consequently, we need to analyze the access control constod the application to ensure
that such problems do not occur. Since manual analysis isug@nd error-prone, we show
how the analysis can be automated using Coloured Petri Retdarge complex applications,
the analysis may take a significant amount of time. Towandsathd, we show how to speed up

the analysis by condensing the graph representing thecagiplh and verifying this condensed
graph.

158

Chapter 8

A Trust-Based Access Control Model for
Pervasive Computing Applications

From Chapter 3 to 7, we propose three types of the acces®torddel for the pervasive
computing. These models utilize the location and time caigtto determine the accessibility
of the users. In the highly secure pervasive computing enuient, where uncontrolled dis-
closure of information, unconstrained interaction amontities, or relying on untrustworthy
entities may have very serious consequences, only thevisttsty user should be allowed to
perform a critical operation independent of time and laratonstraints. In such scenario, the
spatio-temporal access control model might not be the dlgbice. In this chapter, we propose
another access control model for pervasive computing enrient—the Trust-Based Access

Control Model.

8.1 Trust Modeling and Computation

In our model, only the user (human users and devices) wittuate trustworthiness can be
authorized to the roles and permissions. Trust values fdr aaer are calculated based on the
role the user performed previously. Trust value of a useicbamge based on her/his activities.
Activities detrimental to the security of the system suchcasnmitting fraud will decrease the
user’s trustworthiness. Other properties of users, sudoeation, signal strength, or stability
factor for sensors, and education level, age, etc for hunsansycan affect the trustworthi-

ness. Finally, recommendations provided by others araiated to compute trustworthiness

159

of users.

In this section, we describe how trust is modeled betweenemidies with respect to a
given context. We adapt the trust model proposed by Ray et 86]. The authors formalize
trust as a relationship between two entities, the trusteerdity that trusts the target entity,
and the trustee, the target entity that is trusted. Inyiah entityA does not trust entityd
completely. EntityA needs to evaluate a trust relationship with enityy some context. The
context in our model is the role to which a user will be assiptoe We will refer to the context
as a role contextc throughout the trust model. The truster is the pervasiveprding system
while the trustee (the user) is either a human user (or itesgmtative treated synonymously)
or a device.

Users can be associated with multiple roles. In order tdyweéne authorization between
a user and a role, a user’s trust value is evaluated basedchrr@a context separately. For
instance, if a human user needs to be assigned asn@eer in pH monitoring rolend
engineer in impeller speed monitoring rptéen two trust values need to be evaluated for each
role in order to make a decision about role assignments. rliserelationship between human
user or device user and a system in the role contediepends on three factorproperties
experienceandrecommendationsThe semantics of these three factors are different for the
human and the device user.

A trustee discloses a set of physical properties to be verfiethe truster. A device may
be associated with a set of properties such as CPU processeagl, memory capacity, trans-
mission rate, signal strength, location of sensor, andipalsecurity (such as is the sensor
placed inside a tamper proof container). The propertiescgsed with a human user could be
age, gender, education level, specialization, credenaald so on.

Experience is based on the set of events that had occurrdee ipast within a certain
period of time in which the trustee was involved and that thister has recollection about.
For a device, this can be incidents like number of defecto@mered, tamper occurrences,
collected data quality, and alarms and control signalsoesipeness. For the human user, this

could be decisions made in the past, task execution time tdkeesse demonstrated, and so

160

on.

Recommendations are provided by trusted third-parties dne knowledge about the
trustee with respect to the role contegt Recommendations in case of a device can be pro-
vided by other organizations that have used the device usidelar circumstances. For a
human user, the recommendations can be provided by an pagi@ni that he was worked with
in the same (or similar) role conterd.

The trustworthiness between a system and a human user isa@a@lin the same way
as between the system and a device user. In our trust moddbrmeally represent a trust
relationship between trustdrand truste® on some role context as a triple(abg ,Adg . AUE),
whereabg is A's belief onB in role contextc, ady is A's disbelief onB in role contextc, and
AlUg is A’s uncertainty orB in role contextc. Each of these components has a value between
[0,1] and sum of these components is 1. In the following, wecdbe how trust relationship
can be evaluated based on properties, experience, andmesnadations factors. Later, we will

use the resulting trust relationship to evaluate the tratstes

8.1.1 Quantifying Properties

Each role in an organization requires certain properties o$er. Some other properties
are desirable. The properties are scored based on infam@atovided by the user to the sys-
tem at the initiation of the access request. Each role in aagtehis associated with a set of
positive properties and negative properties, collecicalled the role properties. Let a set of
positive properties associated with ré&tde denoted bPSs wherePS = {psi, pS, - - -, PS}-
Each of these properties has different weight and dependbeorganization policy. Let
Wps, ; Wps, s - - - ,wpsn be the weights of the positive properties, pS, - . ., PS, respectively, where
Wps € [0,1] and leps = 1. The weights of positive properties indicate their effetess with
respect to the rol& Similarly, let a set of negative properties associateth wote R be de-
noted byNEr whereNEg = {nej,ney, ..., nen}, and the weights of these negative properties
areWne, ; Wne, - - - , Wna,» Wherewng € [0,1] and Zana =1.

Let the set of properties possessed by a Bsée UP = up,upp,...,upy. Let pg =

161

{UPNPS} be the set of positive properties for the user that are ratefiea the role, and
ng = {UPMNER} be the set of negative properties. The contribution of trex'siproper-
ties towards its trust is represented (iy,dp,up) whereby;, d;, u; denotes belief, disbelief,
and uncertainty respectively. Each positive propertyaases the belief factdip, whereas
each negative property increases the disbelief fafiot et wpg be the weight of the positive
property pg, € UP(P&, andwng be the weight of the negative propernty, € UPMNERg,
m= |[UPNPS|, andn = |[UPNNEg|, the values obp,dp andup are computed using the

following formulas:

m n
ZWDS ZWna
bp = m = n ;dp = m = n
_Zles + _Zana _Zles + _Zana
1= 1= 1= 1=

8.1.2 Quantifying Experience

;andup = 1—bp —dp.

Experience constitutes an important factor in this moded.rifédel experience in terms of
a number of events encountered by a trusteegarding truste® in particular context within
a specific period of timéto,ty]. The time periodto,ts] is equally divided into a se§ of n
intervals,§ = {[to,t1], [t1,t2],. .., [th—1,tn]}. The intervals overlap at the boundary points only.
The trusterA keeps a history file of events performed by the truesthin these intervals.
Within each intervalt;,tj+1] € S wherej € N, there exists a (possibly empty) set of events
that transpired between the user and the system.

A user is granted a role based on the recorded events peddiynine user with respect to
the role context within a certain period. The length of timeetiperiod depends on the system
implementation. We assume that the length of the time peasisgecified by the security ad-
ministrator. Intuitively, events far back in time do not cdwas strongly as very recent events
for evaluating trust relationship. We assume that trusteas a log file of the events performed
by trusteeB in the time period betweeg andt,. An event can be positive, negative, or neutral.
Positive events increases the belief component of expjaregative event increase the dis-

belief component of experinece, and netural events equadhgase both belief and disbelief

162

components. In addition, the neutral event contributesitd&/increase in the uncertainty com-
ponent. In the following, we explain how to calculate the@rxgnce that a trustéx has about
trusteeB with respect to the role context in period of tirftg t,]. This formally denoted as
AEg = (be,de,ug) wherebg, de , ug represent belief, disbelief, and uncertainty components
with respect to the experience in the time periigety] in the role contextc.

Let experience acquired from events occured in the at iatewhere 1<i < n be repre-
sented agbj, d;, u;) whereb;,d;,u; denote belief, disbelief, and uncertainly respectiveljnétv
no events occured in the intervialthenu; = 1b; = di = 0. Let P be a set of all positive
eventsQ); is a set of all negative events, ahtlis a set of all neutral events occured in the
intervali. The values ob;,d;, andu; are computed as follows:

Qi+ 5 0.5 1%

R+
= randu; = .
IR+ [Qif +[Ni] "R+ 1Qi] + N

b —
"R Qi+ N

; d

Note that events occured in the distant past has less effentdvents occured recently.
To accomodate this in the trust model, we assign non-negateight to each interval. Let
w; denotes to the weight af" interval such thaty; > w;j wheneverj < i, i,j € N. Recent
intervals in the experience policy are given more weighéstthose far back in time. We use

nx(n+1 :
Nx(N+1) 45 evaluate weights of the

the formulaw; = g forallk=1212,....nwhereS=

intervals. Formally, the experience of trusfeabout truste® with respect to the role context

rc in the time periodto, tn], represented byEg’ is computed agEg” = (be, dg, Ug), where the

values ofbg, dg, andue are given by:bg = iwi x by, dg = iWi x di, andug = iwi X U,
i= i= i=

wheren is the number of intervals.

8.1.3 Quantifying Recommendations

Recommendations play major role on the trust evaluatiormvthe truster does not know
much about the trustee. Truster obtains recommendations éme or more recommender
knowing about the trustee with respect to particular rolEse recommendation is evaluated
based on the recommendations returned by recomméndsyoutB as well as the trust re-

lationship between trusték and the recommendé in providing a recommendation about

163

trusteeB. The trust relationship between trusfeand recommendéV in the context of giving
recommendation about usBrwith respect to particular role effects the weight of theoree
mendation given by the recommender. The trust relationsatpeen trusteA and recom-
menderM to provide recommendation is formally represented as<é@33matrix. The rows
of the matrix correspond to properties, experience, anoimetendation. The columns corre-
spond to belief, disbelief, and uncertainty on each of thas®rs. The matrix is normalized
to (b,d,u) and it will be used to evaluate the recommendation sent bgamwmender.

Let the triples(mbg,m ds,m Us) be the recommendation sent by recommemd@bout user
B to trusterA, and the trust relationship between the trugteand recommendéV is repre-
sented as a triplgabm,adu,aUm), then the recommendation scaigR5 generated by recom-
mendetM about a useB to the trusteA in the role contextc is given by(ambg ,am dg ,aM UE).

, Whereambg =a bv xm bg; amdy =a duv xm dg; andamuy =a dv +a Um +abm XM Us.

Note that trusteA could get recommendations about trudddeom several recommenders.
Therefore,A’s disbelief on the recommendation about uBes the average of the disbelief
values of all recomendations. The same applies to bothflaglteuncertainty values. L&be a
set of recommendations about uBdp trusterA with respect to the role contesd, represented
by triples(acbr,acdr,acURr), Where the belief componeggbg, the disbelief componengdg,

and the uncertainty componeqgur are computed as follow:

n n n
Ic Ic Ic
Aibg Aidg AiUg

randagUp = ——.
AG n

AGPR = ; AGOR =
8.1.4 Computing Trustworthiness

We have determine trust vector for properties, experieand, recommendation compo-
nents of trust relationship between trusdeand trusted with respect to a role contert. The

trust relationship between trus#®&mandB is specified as:

164

bp dp up
ASB) =] be de U
AGPR acdr AcUR

Note that truster may come up with different values for thetdes that influence trust for
the same trustee with respect to different role contextss Wray happen because a truster
may assign different weights to different factors that iefloe trust. A truster may give more
weights to one of the component than others in computing talationship to assign partic-
ular role to the trustee. For example, truster may choosedosf more on experience than
recommendation in computing trust with respect to the rolgextrc;, whereas he may focus
more on recommendation about the trustee in computingwtisrespect to role contexc;.

A truster choose to emphasis on particular component of tihas others based on evaluation
policy of the truster with respect to each role context. Thauwation policy of the truster is
repersented by triple8Wg® = (Wp, W, WR) whereWp +We +Wk = 1 andWe, We, Wk € [0, 1].

The trust relationship between a truséeand trusted for a particular role context is given

by:

bp dp up
= (VVP7VVE7VVR) X bE dE Ue
AGOR ActR AGUR
= (abg’adg",AUE)
where abg = (We x bp) + (We x bg) + (Wk xac br), adg” = (We x dp) + (We x dg) +

(Wk xagdr), andaug = (We x up) + (We X Ug) + (Wk xag UR). The elements of the trust
relationshipabg ,adf,aUE € [0,1], andabg +adf +aug = 1. After evaluating the trust of
the properties, experience, and recommendation factotiseiprevious subsections and the

normalized trust relationship between a truséeand the truste® with respect to the role

contextrc, the trust value is computed as follows:

165

Abg +AUg

Tau=
Abg +adg +aUE

The valueT will be in the range of [0,1]. The value closer to O indicat@s trust value of
userB with respect to roldR, while the value closer to 1 indicates very high trust valtieser

with respect to roldR.

8.2 Our Trust-Based RBAC Model

To represent our model, we adapt the graph-theoretic apprpeoposed by Chen and
Crampton [19] in the following manner. In our work, the sewefticesvV =U URUP corre-

spond to the following RBAC entities:
e Users), which can be either humabf) or intelligent devicey);
e Roles R), which can be categorized to human rdRg)(and device roleRy), and

e PermisssionsR), which can be categorized to human permissigy) and device per-

mission €y).

Our model assumes the existence of the following relatissbf RBAC that constitute

the set of edgeE = UAUPAURH; URH, where

e User-Role Assignment(A) = (Up x Ry) U (Ug X Ry)
e Permission-Role AssignmerRg) = (R, x P,) U (Ryq x Py)
e Role Hierarchy RH) = ((R, x Ry) U(Rg x Rq)) x {a,u}, which can be categorized to:

— the activation hierarchyRHa) = {(r,r’) : (r,r’,a) € RH}, and
— the permission usage hierarci®H,) = {(r,r’) : (r,r’,u) € RH}

In our model, trust values for each user are calculated basettie role he performed
previously. The information of the roles he used to perforith e stored in the User Role
History, which is the history of roles that user used to pened. The values of trust can be

changed from time to time based on user activities. Negattigities such as, committing the

166

fraud in the can decrease his trustworthiness. The cailonlptocess is described in Section
8.1.

The system administrator will assign trust constraintdienform of a correspondinigust
interval to roles, permissions, and other associations betweetiesritased on different char-
acteristics of each model. Trust interval is an inteffV4l], wherel is the lowest trust value
that each role, permission or association is active.

Note that in the organization structure, users of the senlercan perform the same set of
duties as its junior role, hence user who will be assignetiécsenior role require more trust-
worthiness than the user who will be assigned to junior rolly.oBased on this observation,
when we introduce the notion of trust value, we assume tleatrtist value of the senior role

always dominate the trust value of its junior roles. Figudeshows components in our model.

uman uman
oles.
TRUST_VALUES TRUST_CONSTRAINTS
oles

USER_ROLE_HISTORY

Figure 8.1: Trust RBAC Model

We define the notion of activation path, usage path and apagksn a manner similar to
that proposed by Chen and Crampton. #gtivation path(or act-path) betweernvy; andv, is
defined to be a sequence of vertiegs . ., v, such thatvi,v2) € UAand(vi_1,Vi) € RH, for
i =3,...,n. A usage patl{or u-path betweenv; andv, is defined to be a sequence of vertices

Vi,...,Vp such thatvi,vi;1) € RH,fori=1,...,n—2, and(vn_1,Vn) € PA. An access patlfor

167

acs-path betweenv; andvy is defined to be a sequence of vertiggs . ., vy, such thatvy, V)
is an act-path, an@vi,v,) is an u-path. We assume the existence of a trust domaiifhe
value of trust in the domain can be any real number vary fram tweone. Following Chen and
Crampton’s work [19], we also propose three models, nantiedystandard model, the strong
model, and the weak model. The models differ with respediéarust constraints that must

be satisfied by the entities for the authorization to be ssgfaé

8.2.1 The Standard Model

In the standard model, individual entities, namely, us@igs, and permissions are associ-
ated with trust values. The trust values associated witluslee describe how much the user is
trusted to perform each specific role. The trust intervabeissed with a role specify the range
of trust values with respect to that role which user has taigedn order to activate the role.
The trust interval associated with a permission specifyréimge of trust values with respect
to the current role of the user which he has to acquire in dewoke the permission. The
standard model requires that if a usecan invoke a permissiop, then the trust value af is
in the trust interval associated with all other nodes in ththonnectingi to p. These ideas
are formalized below.

The trust values for the user with respect to each role aretddnwith a function? :
((Unx Ry) U (Ug x Ry)) — t € D. The trust interval for role and permission are denoted with

afunction£ : (RUP) — [I,1] C D.
e forueU,r € R 7 (u,r) denotes the trust value afwith respect to;
e forr € R, L(r) denotes the trust interval in whighs active;
e for p € P, L(p) denotes the trust interval in whighis active.

Given a pathv, ..., v, in the labeled grapts = (V,E, 7, L), whereE = UAUPAURHU
n
RH,, we Writei(vz,...,vn) = 2(V2,vn) C Dto denoteﬁL(vi). In other Words,Z(vz,vn) is
=2
the trust interval in which every vertax € RUP is enabled.

Authorization in the Standard Model:

168

e Auservi € U may activate role, € Rif and only if there exists an act-pawh, vo, . . .,V

andT (vi,Vv2) € L(V2);

e Arole v; € Ris authorized for permissiow, € P if and only if there exists an u-path

V1,Vo,...,VpandL(vy) C ﬁ(vl,vn);

e A userv; € U is authorized for permissiow, € P if and only if there exists an acs-path
V1,Vo,...,Vi,...,Vh such thaty; € R for somei, vi,...,Vv; IS an act-pathy;,...,v, is a

u-path,v can activatey;, andy; is authorized fow/'.

8.2.2 The Strong Model

The strong model is used when not only the individual estifiesers, roles, permissions)
involved must satisfy the trust constraints, but the déferelationships must also satisfy such
constraints. For instance, consider the relatiop) € PA. In this case, we not only have to
take into account the trust values at which the mot=mn be activated and the trust values at
which the permissiop can be invoked, but we also must consider the trust values whan
invoke p. This requires specifying another function in the stronglei@s described below.

The trust constraints in th&trong modehre denoted with a functiop: E — [I,1] C D.
Fore= (v,V) € E, u(v,V) denotes the trust interval in which the association betwesmdVv

is active.
o if (u,r) € UA, thenp(u,r) denotes the trust interval in whichis assigned to;

e if (r',r) € RH,, thenp(r’,r) denotes the trust interval in whiat is senior tor in the

activation hierarchy;

e if (r',r) € RH,, thenpu(r’,r) denotes the trust interval in whiat is senior tor in the

permission usage hierarchy;

e if (r,p) € PA thenp(r, p) denotes the trust interval in whighis assigned to.

169

Given a pathvy,...,V, in the labeled grapks = (V,E, 7, L,u), whereV =U URUP and
n—1
E = UAUPAURH, URH,, we write (i(v1,...,Vn) = i(V1,Vn) C D to denoteﬂ M(Vi, Vit1).
i=1
Hence J{v1,Vy) is the trust interval in which every edge in the path is eréble

Authorization in the Strong Model:

e auserv; € U may activate role, € Rif and only if there exists an act-paii, vo, . .., vn
andVi=2,...,ne 7T (vy,Vi) € (L(v1) N L(Vi) N{(V1,W));

e arolevy; € Ris authorized for permissiow, € P if and only if there exists an u-path

N

V1,Vo,...,Vpand L(vq) C (L(V1,Vn) N(V1,Vn));

e Auserv; € U is authorized for permissiow, € P if and only if there exists an acs-path
V1,Vo2,...,Vi,...,Vp such thaty; € R for somei, vi,...,V; is an act-pathy;,...,v, is a

u-path,vi can activatey;, andy; is authorized fow,.

8.2.3 The Weak Model

The weak model is derived from the standard model. Recdlltttmastandard model re-
quires that each entity (users, roles, and permissionsjeirmatithorization path be associated
with a trust value and in order to be authorized to access @thities, the requester’s trust
value must be included in the trust interval of the entity lat8 to access, together with other
entities along the path. In the weak model, the entityauthorized for another entity if the
trust value ofvis included in the trust interval of. There is no requirement that the intermedi-
ate nodes on the path satisfy the trust constraints. Liketdredard model, the model is based
on the labeled grap& = (V,E, 7, L), whereV =U URUP andE = UAUPAURH,URH,.
Authorization in the Weak Model:

e Auservi € U may activate role, € Rif and only if there exists an act-pawh, vo, . . .,V

and7 (vi,Vn) € L(Vn);

e Arole v; € Ris authorized for permissiow, € P if and only if there exists a u-path

V1,V2,...,Vp and L(v1) C L(Vn);

170

e A userv; € U is authorized for permissiow, € P if and only if there exists an acs-path
V1,Vo2,...,Vi,...,Vp such thaty; € R for somei, vi,...,V; is an act-pathy;,...,v, is a

u-path,vi can activatey;, andy; is authorized fow,.

8.3 Separation of Duties Constraints

Separation of duties (SoD) prevents the occurrence of feausihg out of conflicts of in-
terests in organizations [80]. Separation of duties enateconflicting roles are not assigned
to the same user or that conflicting permissions are notr@agditp the same role.

Separation of Duty (SoD) comes in two varieties. First oneith respect to the mutual
exclusion relations between two roles. This is to guarattitaeno user can be assigned to two
conflicting roles. The second one is with respect to the mxeusion relations between
two permissions. This is to guarantee that no role can bgraesgitwo conflicting permissions.
We denote these two types of SoD by usBIf andSD” edges, respectively. Since SoD is a
symmetric relationship, th8DR andSDP edges are bi-directional.

We next define the separation of duties for the standard aakl medels. The SoDs defined
for the standard and weak models are expressed in terms gfdpbG = (V,E, 7, L), where
E = UAUPAURH,URH,USDRUSD" andV = U URUP. For these cases, the SoD is similar
to the SoD constraints in traditional RBAC. These are givelow. SoD Constraints for the
Weak and Standard Model

e User-Role Assignmenitf (r,r’) € SDR then there are no two edgés r) and(u,r’) such

that{(u,r),(u,r')} CUA

e Permission-Role Assignmenif (p, p') € SO then there are no two u-paths of the form

/
rvi,Vo,...,pandr,vy,v,, ..., p

In the organization, sometimes we want the user who gain éng high trust to be able to
bypass the SoDs. To do this, we defined the trust constraithhéoseparation of duties with a
functiond: E — [I,1] € D. Fore= (v,V)) € SDRUSD’, §(v,V) denotes the trust interval in

which the SoD constraint can be ignored. In particular,

171

e if (r,r') € SO}, &(r,1') denotes the trust interval in which the role-role separatit

duties constraint can be ignored;

o if (p,p/) € SOP, 8(p, p') denotes the trust interval in which the permission-periniss

separation of duties constraint can be ignored.

The strong model is defined over the labeled gréph (V,E, T, L,,d), whereE = UAU
PAURH, URH,USDRUSD andV = U URUP. The strong model allows specification of
weaker forms of SoD constraints than those supported byrdlagional RBAC. Specifically,
it allows one to specify the trust interval in which the Sohswaints can be ignoredsoD

Constraints for the Strong Model

e User-Role Assignment:if (r,r’) € SDR then there are no two edgés,r) and (u,r’),
corresponding to some usar where‘Z (u,r) ¢ (L(u) N L(r) N p(u,r)Nd(r,r’)) and
T(u,r") & (L) N L) Np(u,r) Na(rr));

e Permission-Role Assignmentif (p, p’) € SD” then there are no two u-pathsy, Vo, ..., p
andr,V),V,,...,p where £(r) & (Z(r,p) N{i(r,p) N 3(p,p’)) and L(r) € (L(r,p') N
f(r,p’) Nd(p, p')).

8.4 Example Scenario

Consider a typical pervasive computing application—hda@as chemical monitoring and
control in a chemical plant. The general environment withia plant is continuously moni-
tored by various chemical sensors for chemical leaks. Thessors are linked with various
controllers that can regulate the flow of chemicals to vaimachineries. Engineers monitor
variables such as temperature, pH values, liquid levets] flow rates, and speed of impellers
through other sensors. Back end systems analyze the serisadation to actuate different
equipment. Operators in control room oversee various &spéthe plant operating comput-
ers. They can override automatic control or tune differgrgrational parameters.

In this section we will demonstrate how our model can supih@tequirements described

above. We describe a set of entities in the process contpdicagion for the chemical plant

172

with their corresponding trust values in Table 8.1, thettasstraints for each relationship

between entities are shown in Table 8.2, and the configuratithe access control is shown

in Figure 8.2.
NAME | DESCRIPTION TRUST VALUES (7)
U Alice T(up,ry) = 0 95
Uo Bob T (up,r2) =
Uz Charlie T(uz,r3) =
Ug Central Control Server T (Ug,rg) =
Us Sensor Server T (us,rs) =
Ug Actuator Server T (ug,re) = 0.95
NAME | DESCRIPTION TRUST CONSTRAINTS (£)
ri Senior Engineer L(r1) =[0.9,1]
ra Operator L(rp) =[0.7,1]
rs Junior Engineer L(r3) =[0.8,1]
ra Sensors and Actuators Manager (r4) = [0.9,1]
rs Sensor Interface L(r1) =0.8,1]
re Actuator Interface L(r1) =[0.85,1]
P1 Analyze Sensors Data L(p1) =[0.9,1]
P2 Control Actuator L(p2) =[0.8,1]
P3 Observe Sensors Data L(ps3) =[0.7,1]
P4 Update Event Log L(pg) =[0.9,1]
Ps Analyze Sensors Alarm L(ps) =0.6,1]
Pe Retrieve Sensors Data L(ps) =1[0.7,1]
p7 Send Control Signal to Actuatar£(p;7) = [0.9,1]

Table 8.1: Entities and Trust Values

First, let us assume that we use the standard model to sdeuprdcess control. Here,
Alice can activate the senior engineer role since her traistevwith respect to the senior engi-
neer role (0.95) satisfies the trust constraints of the seale ([0.9,1]). She also inherits the
permission assigned to junior engineer role through thension usage hierarchy, and since
her trust value satisfies the trust constraints of pernmsassigned to junior engineer role, she
is allowed to invoke such permission. Moreover, she is alsstéd to activate the operator role
and use the permission assigned to that role. Similarlycéméral control server is trusted to
perform the sensors and actuators manager role. Howeeesgetirer cannot invoke both per-
mission toRetrieve Sensors DatandSend Control Signal to Actuatob®cause it is prohibited

by the SoD. Charlie is assigned to the role of junior role aisdrust value allow him to per-

173

NAME | DESCRIPTION TRUST CONSTRAINTS
(ui,ri) | User-Role Assignment H(ug,rq1) = [0.951]
(uz,r2) | User-Role Assignment H(up,r2) = [0.8,1]
(us,rz) | User-Role Assignment H(uz,r3) =[0.8,1]
(ug,raq) | User-Role Assignment H(ug,ra) =[0.9,1]
(us,rs) | User-Role Assignment H(us,rs) = [0.8,1]
(us,re) | User-Role Assignment H(ue,rs) = [0.9,1]
(r1,rz) | Activation Hierarchy M(ri,r2) =[0.98 1]
(r1,r3) | Permission Usage Hierarchyp(ry,rz) = [0.9,1]
(ra,rs) | Permission Usage Hierarchyp(rgs,rs) = [0.9,1]
(ra,re) | Permission Usage Hierarchyp(rs,rg) = [0.9,1]
(r1,p1) | Permission-Role Assignmentu(ry, p1) = [0.9,1]
(r2,p2) | Permission-Role Assignmentu(ry, p2) = [0.8,1]
(r3,p1) | Permission-Role Assignmentu(rsz, p1) = [0.95,1]
(r3,p3) | Permission-Role Assignmentu(rs, ps) = [0.8,1]
(ra,pa) | Permission-Role Assignmentu(rys, ps) = [0.9,1]
(ra,ps) | Permission-Role Assignmentu(rg, ps) = [0.9,1]
(rs,ps) | Permission-Role Assignmentu(rs, ps) = [0.8,1]
(re,p7) | Permission-Role Assignmentu(rg, p7) = [0.9,1]
(ps, p7) | Separation of Duties d(ps, p7) = [0.9,1]
(p7,pe) | Separation of Duties d(p7, ps) = [0.9,1]

Table 8.2: Relationships and Trust Constraints

form this role. However, he cannot analyze the data bechispérmission requires a higher
trust level ([0.9,1]) than his own (0.8). Charlie can laterduthorized for this permission in
the future after his trust level is at least 0.9.

Later, there is an emergency situation at the chemical plaate the higher trustworthiness
is required for accessibility. Under this circumstance,gistem administrator decide to switch
to the strong model. Now, not only we have to satisfy the tcosistraints assigned to entities,
but the related trust constraints assigned to the reldtipasn Table 8.2 must be satisfied as
well. As a result, now Alice can still perform the role of senengineer and use the junior
engineer’s permission. However, she cannot activate tleeatqr role anymore because her
trust level is not satisfied the trust constraints of the roérarchy. For Bob, now he cannot
perform the operator role which he is allowed to do in theddad model. Next, let us assume
that before this crisis, Charlie has performed a very gobdnadhis junior engineer role, and

his trust value with respect to the role is increased to OL82ng the standard model, now he

174

oy, U, oy
*u; ®r; —— %13 ®us ®r, ®us
®r; *y 3 ®rg ®py ®ps ®rg
*p; ®ps ®p;

Figure 8.2: Access Control Model Configuration for Example

should be able to analyze the data. However, according teaWwepolicy, he is not satisfies for
the permission role assignment’s trust constraint ((AP&nd hence still cannot perform the
data analysis. Next, let us investigate the impact of theehtdthe SoD constraints. Using
the strong model, now the central control server has enaughwtorthiness to bypass the SoD
constraint and invoke the permission Retrieve Sensors Datand Send Control Signal to
Actuators The weak model can be implemented using the similar ideaehel be left out

of discussion.

8.5 Chapter Summary

In this chapter, we proposed a trust based access contralbased on RBAC. First, we
propose the methodology to evaluate the trust worthineiseadiser entity in RBAC. We then
identified the entities and relations in RBAC and invesegaheir dependence on trust. This
dependency necessitates changes in the invariants angeregions of RBAC. The configura-
tion of the model is formalized using graph-theoretic notat

The usage of trust presented in this chapter is just one wajsiofy the trust. We can

175

apply the trustworthiness to the operation in the accessamuch as delegation. Delegation
operation is crucial in the pervasive computing environmigrallows the user to transfer his
privileges to another user in the emergency situation. Algh a lot of research appears in
extending RBAC to support delegation, not much appears owiging a formal basis for

choosing delegatees. However, automatically choosinggdéte is important for pervasive
computing application. In the organization, choosing gatee who is not suitable or not
trustworthy for the task could put that organization busgimto jeopardy. In Chapter 9, we
provide an approach that allows one to assess the trusinesthof potential delegatees in the
context of the task that is to be delegated. Our approacheaisore that the choice of the

delegatee does not cause any security breaches.

176

Chapter 9

Trustworthy Delegation in Role-Based
Access Control Model

The usage of trust to grant or deny the accessibility preseintChapter 8 is just one way
of using the trust. We can apply the trustworthiness to thezatpon in the access control such
as delegation. The need to delegate, which allows the teanpgrant or transfer of access
rights, arise in many applications. Although a lot of resbappears in extending Role-Based
Access Control (RBAC) to support delegation, not much aggea providing a formal basis
for choosing delegatees. In this chapter, we provide anoagprthat allows one to assess the
trustworthiness of potential delegatees in the contexheftask that is to be delegated. It is
also important to ensure that the choice of the delegateg noecause any security policy
violation. Towards this end, we show how to formally analyze application using Alloy

analyzer to get assurance that our choice of delegatee dbeause a security breach.

9.1 Trust Modeling and Computation

Delegatorrefers to the role or user whose privileges are being tramsfeor granted to
another role or user and the recipient of the privilegesriméeldelegatee We show how the
delegator can compute the trustworthiness of variousiesit the context of the task that he
is about to delegate.

Trust is a relationship between a truster and trustee wgpa& to a given context. The

context in the case of delegation is the task for which de¢legas needed. Trust relationship

177

for a given context depends on three factqusoperties experiencesand recommendations

Properties are verifiable characteristics of the trusteeirfstance, it may be the role and cre-
dentials possessed by the trustee. Experiences are thatgaattions that the truster had with
the trustee. Recommendations are provided by third-antfeom the truster trusts about the

capabilities of the trustee. In the following, we describgtihe trust relationship is quantified.

9.1.1 Quantifying Properties
Properties depend on the attributes of the entity and aésoolle associated with it.
9.1.1.1 Measuring Necessary Attributesq

Every task in an organization requires some attributes @fuder. For example, the task
of performing surgery requires the user to be a certifiedesamg A task may require one or
more attributes. The information about user attributesrganed in the credentials belonging
to the user. Credentials are unforgeable and verifiable siMté@ay necessary attributes requires
evaluating what percentage of the necessary attributgsoasessed by the user.

Let the set of attributes needed for tasbe denoted by A whereTA = {aj1, a2, ...,ain}-
Letwaz1, Waj2, ..., Wain be the weights of attributes, ao, ..., an respectively. The weights
of the attributes indicate their relative importance wibpect to task; and z wa; = 1. Each
user profile contains the credentials possessed by thelietdhe set of all attrlbutes possessed
by the usetJ; be given byUA;, whereUA; = {aj1,aj2,...,ajm}. Letp=|TANUA||. The
attribute value for usey with respect to tasK;, denoted byij, is calculated as follows%;; =

p
Z wa, Wherewg, (1 < k < p) is the weight associated with attribudganday, € TA NUA,;.

9.1.1.2 Measuring Role Attribute X

The roles in the organization are arranged in the form of eahtdy. The hierarchy can
be represented as a labeled directed acyclic graph wheretes represent the roles and the
edges denote the hierarchical relationship. Note thate®dge drawn only for direct senior

and junior relationship; transitive edges are not exfpyi@atlded. The edges in the hierarchy

178

are labeled with a number in the range (0,1] which indicdtestoseness relationship between
the roles. A number close to 0 indicates that the two rolevang distant, whereas a number
close to 1 denotes that the roles are very close. We assuttaéhassignment of the numbers
is done by the system administrator who has knowledge aheuttationships between roles.
If there is a path between rol@nd rolej, the closeness relationship, denotedist(ri,r;), is
calculated by taking the product of all the edges constituthis path. Note that, if there are
multiple paths connecting roleand rolej, both the paths should give the same value. Other-
wise, the role graph is said to be inconsistent. The formthidien of the role graph appears

below.

Definition 50 (Weighted Role Hierarchy Graph)

Weighted role hierarchy graph, denotedlRH= (V,A), is a weighted directed acyclic graph
whereV is a set of nodes corresponding to the roles, Ansl a set of arcs corresponding to
the hierarchical relationshigy;,v;j) € A indicates that role; is directly senior to the rols;.
The weight of the edgévi, v;), denoted bywv(vi,vj), is a number in the range (0,1] that gives a

measure of the closeness of the two roles.

Each taskT is associated with a set of rol@dR who are authorized to execute this task.
The roles associated with a task include roles who have teetgpermission to execute those
tasks, as well as those authorized by virtue of role hiesaréach usetJ; also has a set of
rolesUR; assigned to him. We choose the role belonging to the useiditésest to some
role associated with the task. The distance between thesetes gives the role attributg;

of userU; with respect to task;.
9.1.1.3 Computing the Properties Value

Some organizations may give greater importance to the edf, whereas others may
consider attribute factor to be more useful. agtandw; be the weights assigned to attributes
and roles respectively, wheve, w; € [0,1] andw, +w; = 1. The exact values afi; andw,

will be decided by the organization’s policies. We use thesghts to compute the property

179

value#;j of userU; with respect to tasKi: Bj = Wa* 4ij + W * Rij

9.1.2 Quantifying Experience

Experience constitutes an important factor in delegatfodelegator is more likely going
to choose a candidate as a delegatee if the delegatee hagxperience of doing the task.
Two factors contribute towards experience. One factor iswthe task was performed, and the
second factor is how well the task was performed. Note th&drmation about these factors is
stored in the users’ profiléJ P. Events that have occurred in the recent past have more influ-
ence than that occurred in the distant past. To accommduiatente give the most recent slot

has the highest weight and the most distant slot has the t@mes For each time slt, we get

Algorithm 2 Measuring Experience
Input: No. of slotsn, User Profilel P;
Output: 7
Procedure
per formance= 0
forall k:1<k<ndo
weightslot = k
end for
total_weight=n(n+1)/2
forall k:1<k<ndo
Wi = (2+K)/(n(n+1))
end for
forall k:1<k<ndo
experience= experience- Wi * Pk
end for
RETURNexperience

the value for performancpg. Recall that, performance on the task measures how welagie t
has been performed. The performance on the task can be gradedcale of [0,1]. A value
closer to 0 indicates poor performance, while that closdritalicates excellent performance.
Not performing the task in a slot, gives a performance valpseto 0. Algorithm 2 shows
how to assign weights to the various time slots and evalbatexperience. Sometimes the past
experience may not exactly match the the task, but is retatédWe show how to extrapolate

the trust value in such cases in Section 9.3.

180

9.1.3 Quantifying Recommendation

A truster may obtain recommendation from one or more recona®es about the trustee
with respect to its ability to perform the given task. In artle quantify the recommendation
obtained from each recommender, we need to evaluate twor$adtirst, we need to obtain
the trust value that the truster has with respect to the resamder providing recommendation
about the trustee with respect to the given task. If the resender is sufficiently trusted, then
we need to get from him the recommendation value for thedeustlgorithm 3 shows how to

compute the recommendation component.

Algorithm 3 Measuring Recommendation

Input: Sequence of recommendations for usgr=< ryj,rj,...,rmj >, sequence of trust
values for recommenders<ty,ty,t >

Output: R

Procedure:

reco= 0O;total =0

forall k: 1<k<mdo
reCO= reco+ty r;

end for

forall k:1<k<mdo
total = total + ti

end for

reco= reco/total

RETURNreco

9.1.4 Computing Trustworthiness

Trust, with respect to a given takfor userU;, denoted byZj, depends on three factors,
namely, propertieg}j, experiencegj, and recommendationg;j. The exact weight assigned
to each factor will be decided by the organization. Wgf we, andw; be the weights assigned
to the three factors respectively whewg, we, Wy € [0,1] andwp +we +W, = 1. Fj is given
by, 7ij = wp * Bj +We x Ej + W, * Kjj. Note thatZj; will evaluate to some value in the range
[0,1]. The delegator can choose a threshold value for tHusk # < 7j;, then uselJ; can be

a potential delegatee.

181

9.2 Using Trust Values in Delegation Chains

The privilege that a user receives can be further delegatadting in what is known as a
delegation chain. In some cases, we may want to limit thd lgvéelegation. This level of
delegation can be decided by the trustworthiness of thes uisarlved in the delegation chain.
Thus, delegation chain is dependent on the concept of thasts. Trust chains are formalized
using the concept of trust graphs defined below.

Definition 51 (Trust Graph)

Let TG =< N,E > be the directed acyclic graph that represents trust reistip for a given
context. The set of nodes correspond to the entities in the system, and the set of edges
E represent the trust relationship between the nodes. The @) represents the trust
relationship that node; has for noden; with respect to the given task. The weight of the edge,
denoted byw(n;,n;), where O< w(nj,n;) < 1, represents the trust value that negdas with
respect to node;. Note that, the absence of a trust relationship betweensmdandns is

indicated by the missing eddey, ns).

0.2 7@ 0.6 _ @

Figure 9.1: Example of a Trust Graph

Given a trust graph, we define two types of operators to coefpansitive trust. One is the
sequential operator, and the other is the parallel oper&gmuential and parallel operators and
their desirable properties have been proposed by Agudo E&]al
Definition 52 (Sequential Operator)

Sequential operator, denoted &y, is a binary operator that takes as input two trust values and

returns a trust value that is the product of the two inputesliFormally : [0,1] x [0,1] —

182

[0,1].

The sequential operator is used for computing the tramsitivst value in a single path in
the trust graph. Algorithm 4 gives the description of hownsisive trust is computed. For
instance, to compute the transitive trust tBatas abouF with respect to the given context is

the product of 0.2 and 0.6 which equals 0.12.

Algorithm 4 Computing Transitive Trust in a Single Path
Input: Trust Path(ng, ny, ..., Nng)

Output: Transitive trust between nodags andny
Procedure

transtrust=20
foralli:1<i<(k—2)do
transtrust = transtrustw(ni, ni+1) @wW(Ni;1,Ni+2)
end for
RETURNtranstrust

The sequential operator is not adequate for calculatingsitige trust when multiple paths
are involved. For example, in Figure 9.1, computing trawvesitrust thatA has abou€E using
the path(A,B,D, E) gives a different value than that obtained using the patlE,D,E). The
value is 0.07 for the patfA,B,D,E) and it is 0.036 for the patfA,C,D, E). Such differences
are reconciled using the parallel operator. The paralletajor becomes useful when there are
multiple paths from one node to another.
Definition 53 (Parallel Operator)
Parallel operator, denoted Igp, is a binary operator that takes as input two trust values and
returns a trust value that is the minimum of the two input galu~Formally@ : [0,1] x [0,1] —

0,1].

Algorithm 5 shows how to compute transitive trust when th&ee and destination are con-
nected by parallel paths. The transitive trust thdtas forD, computed using this algorithm,
equals 0.18.

The delegator can specify an acceptable level of trust tpatpgelegation chains. Delega-
tion is disallowed if the transitive trust value computeanfrthe chain of delegation is below

this minimum threshold.

183

Algorithm 5 Computing Transitive Trust in the Presence of Multiple Bath

Input: Trust Paths (ng,ng,..., N1y, k), (M1, M2,, -+, Nik— 1,5 Nk), e
(nl,nzj,...,n(k_l)j,nk)
Output: Transitive trust between nodag andny
Procedure
min=1;

forall 1:1<1<jdo
transtrust =0
end for
forall 1 :1<I<jdo
foralli:1<i<(k—2)do
transtrust = transtrust +w(n;,ni;1) @W(ni;1,Ni;2)
end for
end for
forall 1 :1<I<jdo
if transtrusy < minthen
min = transtrusij;
end if
end for
RETURNmMIn

9.3 Extrapolating Trust Values

Sometimes the delegator may not have enough informatiosdesa the trustworthiness
of a user with respect to some given task. Although the useotisassociated with a given
task, it is possible that he has done some related tasks.niehsuch scenarios, we define the

different relationships that can exist among the tasks iorganization.
9.3.0.1 Specialization Relation

Different tasks may be related by the generalization/sieation relationship which is
anti-symmetric and transitive. We use the notatifrC 7; to indicate that taskii (7)) is
a generalization (specialization) of tagk (7). For instanceSurgery Treatment Heart
Bypass Surgery TreatmesmhdHeart Treatment_ Heart Bypass Surgery Treatmehtowever,
the degree of specialization is different in the two casé® degree of specializatiocaptures
this difference. The degree of specialization is denoteifeaction whose value is determined

using domain knowledge.

184

9.3.0.2 Composition Relation

Sometimes tasks can be linked together using the composélation. A task can either
be elementaryr composite An elementary task is one which cannot be subdivided irtterot
tasks, whereas a composite task is one that is composed fitwen tasks. The individual
tasks that form a composite one are referred to astimeponentasks. A component task
can either be composite or elementary. We use the notéfien 7; to indicate that the task
7 is a component of tasi{j. For instance, we may have the component tagleyationand
medicationthat are part of the composite ta€latheter-assisted Procedureshis is denoted
asoperation< Catheter-assisted Procedures

Sometimes a composite tagkmay be composed from the individual tagks 7 and 7,

All these tasks may not contribute equally to fofn Thedegree of compositiocaptures this
idea. A degree of composition is associated with each coitiposelation. Since two tasks
related by composition will not be exactly identical, theyoee of composition is denoted as a
fraction. The sum of all these fractions equals orng it composed off;, 7, andZy, only. If

7; is composed offj, 4, andZ, and also other component contexts, then the sum of fractions
associated witH;, 7k, andZy, must be equal to or less than one. The exact value of thedracti
representing the degree of composition will be determineddmain knowledge.

The generalization/specialization and composition i@tat are formally specified using
the notion oftask graphglefined below.

Definition 54 (Task Graph)
Atask graphT G = (N[, E. U Es) is a weighted directed acyclic graph satisfying the follogvi

conditions.
e A is a set of nodes where each natlés associated with a tagk.

e The set of edges in the graph can be partitioned into two Bgand Es. For each
edge(ni,nj) € ., the taskZ; corresponding to node is a component of the task;
corresponding to nodg. The weight of the edg@;, n;), denoted byv(n;, n;), indicates

the percentage of component task that makes up the compasitéor each edde;,n;)

185

€ ‘Es, the taskZ corresponding to node is a specialization of tast{j corresponding
to noden;. The weight of the edgén;,nj), denoted bywv(n;,n;), indicates the degree of

specialization.

9.3.1 Computing the Degree of Specialization and Composutn

Consider two taskgj andZ; where7; C 7}, that is, 7] is a specialization of;. The degree
of specialization is computed as follows. L&t n; be the nodes corresponding to tasks
and7j in the weighted graph. Let the path framto n; consisting of specialization edges
be denoted asni,ni+1,Niy2,...,Nj—1,Nj). The degree of specialization ﬁi,;ilw(np,npﬂ).
This corresponds to our notion that the similarity decreas® the length of the path from
the generalized node to the specialized node increases. thitt, in real world there may be
multiple paths fromfZ to 7j. In such cases, it is important that the degree of speciaiza
yield the same values when any of these paths are used forutatign.

Consider two taskg; and 7 such that7j is a component offi. Degree of composition
captures what portion ofj is made up of7j. The degree of composition is computed as
follows. Letnj, nj be the nodes corresponding to conteXt&nd 7 in the task graph. Let
there bem paths consisting of composition edges fromto n;. Let thegth path (1< q <
m) from n; to n; be denoted a(sr\i,niq+1,niq+2,...,njq_l,nj). The degree of compositioa

m

jq—2
> (Wi, Mig 1) X W(Njg—1,nj) X ML W(Np, Np 1)),
=1

9.4 Trust Computation for Example Application

Consider a small healthcare organization that has six,ral®ely,senior doctoy junior
doctor, cardiologist surgeon physician’s assistanand patient senior doctoris senior to
junior doctor, andjunior doctoris senior tocardiologistandphysician’s assistantAllen and
Miller are assigned teenior doctor Bell and Nelson are assigned jimior doctor, Cox is
assigned taardiologist and Davis is assigned fhysician’s assistantAllen is also assigned
to surgeonand Evans is assigned patient Allen is the assigned surgeon for performing

Coronary Artery Disease Angioplasty (CAD type A) surgerypatient Evans. Since Allen

186

has to leave town for family emergency, he must delegateutgesn role to another doctor.
He cannot delegate the surgeon role to his two trusted cpliess Miller and Nelson, because
they will be on vacation. The hospital policy requires thateason assigned to a doctor role
or senior can be delegated the role of surgeon. This ruleBawis. Thus, he computes trust
values for the only two viable candidates, Bell and Cox.

Quantifying Properties: To perform the CAD type A surgery, the hospital requires tikebv-
ing attributes from the candidates. First, the candidabveilshbe a doctordy = doctor) and he
should be able to perform a CAD type A surgeay £ Surgery). So,TA= {doctor Surgerw}.
The hospital policy ranks the ability to perform a CAD type égery higher than the doctor
position, so the policy administrator assign@glirgery, = 0.7 andwgoctor = 0.3. The hospital
administrator assigned the value of closeness equal toedvéeln rolesSenior Doctorand
Junior Doctor(dist(Senior Doctor, Junior Doctge=0.6), and that between rol@anior Doctor
andCardiologistequals 0.3dist(Junior Doctor, Cardiologist=0.3). Hence, by using the com-
putation method explained in Section 9.3, we get the valugdasfeness between ro&enior
Doctor and Cardiologistequals to 6« 0.3 = 0.18 (dist(Senior Doctor, Cardiologigt0.18).
The hospital policy ranks the importance of necessarybates and role attributes equally,
hencew, = w; = 0.5.

Now, we quantify the properties of both candidates. Belld®etor who can perform the CAD
type A surgeryl(Age = {doctor Surgery}), and Cox is a cardiologist who can perform a by-
pass surgerydAcox = {cardiologist Surgerg}). So,4gell = Wsurgery, +Wdoctor = 0.7+0.3 =

1 andAcox = Wyoctor = 0.3. Since Bell is a junior doctoge) = dist (Senior Doctor, Junior
Doctor)=0.6. Since Cox is a cardiologigkcx = dist (Senior Doctor, Cardiologidt0.18.

Using this information, we calculate the properties valtihe candidates:

Prell = Wa * Agell +Wr * Rgell = 0.5%x14+0.5%x0.6 = 0.8, and

Prox = Wa * Acox+Wr * Roox = 0.5% 0.3+ 0.5%0.18= 0.24.

Quantifying Experience: Here the experience is quantified based on the number of heart
operations the candidates have done in the past five yearhanuhit of the slot of the time

period is equal to one year. The weight for each time slot ekbst; represents the time

187

period closest to the present time is defined by policy asiols|ot, = 1, Wsjot, = 0.8, Wsjot; =
0.6,Wsot, = 0.4, andwsor, = 0.2. Bell has performed surgery once 300 days ajoty) with
performance 0.7[139”5,0Il = 0.7) and Cox has performed surgery once 700 days sigip ()

with performance 0.8fcoy,,, = 0.8). Thus, the experience value of both candidates can be
calculated as follow:

Fgell = iiwsmﬁ * PBellgo, = 1«0.7+0+0+0+0=0.7,and

5
Feox= Zleloti # Peoryy = 0+0.8%0.8+0+0+0=0.64.
i=

Quantifying Recommendation: Here, we have two recommenders—Miller and Nelson. Ac-
cording to hospital policy, the recommendation coming fisenior doctor is more trustworthy
than the one coming from junior doctor. So, the administragéh the trust value that hospital
has about Millertjyijer) to 0.8 and the trust value that hospital has about Nels@nrn to 0.2.
Miller recommendation for Bellrgiiiersenr) and Cox (milercox) are 0.4 and 0.6, respectively.
Nelson recommendation for Behlngisongel) and Cox (nelsoncoy @re 0.9 and 0.2, respectively.

The computation results yield the recommendation for Badl @ox as follow:
_ Twmiller * I'millerBell T INelson* 'NelsonBell _ 0.8+x0.4+0.2x0.9

= =0.5,and
Aol tmiller + tNelson 0.84+0.2
twmiller * I'millercox + tNelson* INelsoncox 0.8%0.6+0.2x0.2
Reox= = = 0.52.
tmiller +tNelson 0.8+0.2

Computing Trustworthiness: Allen prefers the delegatee with more experience. So, he set
the weights for properties\), experiencewe), and recommendationv) to 0.2, 0.6, and 0.2,
respectively. The trustworthiness of Bell and Cox can bepmaed as follow:

Tell = Wp * Prell + We * Egell + W * Rpell = 0.2%0.8+0.6+0.7+0.2+0.5=0.68 , and

Toox = Wp * Peox+ We * Ecox+ Wr * Roox = 0.2 0.24+ 0.6 0.64+ 0.2+ 0.52= 0.54

Bell is selected to be the delegatee after comparing thésouthiness values between both

candidates.

9.5 Model Analysis

Once we have determined the most trustworthy candidate, egd to formally ensure

that the choice of this delegatee does not cause a secueiighor We do the formal analysis

188

using the Alloy Analyzer. An Alloy model consists signaturedeclarationsfields factsand
predicates Each signature consists of a setatbmswhich are the basic entities in Alloy.
Atoms areindivisible (they cannot be divided into smaller partshmutable(their properties
do not change) anghinterpretedthey do not have any inherent properties). Each field balong
to a signature and represents a relation between two or rigoratsres. A relation denotes a
set of tuples of atoms. Facts are statements that defineramtston the elements of the
model. Predicates are parameterized constraints thatscaawvdiked from within facts or other
predicates.

The basic types in the access control model, suctuasy, andRole are represented as
signatures. For instance, the declarations shown belowealafiset nametlser, and a set
namedRolethat represents the set of all users, and roles in the systene that we use the
abstractsignature to represent these sets, and the different o§,used roles are modeled
as the subsignatures of each signature. The analyzer efilridcognize that users, and roles

consist of only these different types, and nothing else.

abstract sig User{}
one sig Allen, Bell, Cox, Davis, Evans,

Miller, Nelson extends User{}

abstract sig Role{}
one sig SeniorDoctor, JuniorDoctor, Assistant,

Cardiologist, Surgeon, Patient extends Role{}

The different relationships between the RBAC componergsaigso expressed as signa-
tures. Signatur&serRoleAssigwhich represents the roles assigned to user has a field called
URAsmembethat maps to a cartesian productderan dRole SignaturdJserRoleAcquire
which represents the roles user can acquire through thgnassnt and role hierarchy has a
field calledURAcgmembethat maps to a cartesian productd$er and Role We use the

signatureRoleHierarchyto represent role hierarchy relationship.

one sig UserRoleAssign{URAsmember: User -> Role}

189

one sig UserRoleAcquire{URAcgmember: User -> Role}

one sig RoleHierarchy{RHmember : Role -> Role}

The various invariants in the RBAC model are representedds fn Alloy. For instance,
the factURAcqstates that user can acquire all roles assign ed to him tegeith all of his
junior roles. This is specified in Alloy as shown below. Otlmarariants are modeled in a

similar manner.

fact URAcq{
UserRoleAcquire.URAcgmember =
UserRoleAssign.URAsmember +

(UserRoleAssign.URAsmember).”(RoleHierarchy.RHmembe N}

The policy constraints are modeled as predicates. Firsgider the cardinality constraint.

The following constraint says that rolecan be assigned to only one user.
pred Cardinality(r: Role, uracq: User->Role){

(#((uracq).r) >= 1) &&

(#((uracq).r) <= 1)}

Next, consider the prerequisite constraint that says tfeatiseru can acquire rolel, then he

can also acquire role2. The other forms are modeled in a separate manner.

pred Prerequisite(u:User, rl, r2: Role,
uracq: User->Role){

(u->r2 in uracq) => (u->rl in uracq)}

The separation of duty constraint says that if a usEan acquire rolel, then he cannot acquire

the conflicting roler2.

pred SoD(u:User, rl, r2: Role, uracq: User->Role){

(u->rl in uracq) => not (u->r2 in uracq)}

190

The different types of delegation are also modeled as paitsic The grant and transfer

operation can be modeled as follows:

pred Grant[u: User, r: Role,
uracqg, uracq: User->Role|{

uracq’ = uracq + (u->r)}

pred Transfer[ul, u2: User, r: Role,
uracq, uracq’: User->Role){

uracq’ = uracq + (u2->r) - (ul->r)}

Finally, we need to verify whether the selected delegateddotause any security policy
violation. We create aassertiorthat specifies the properties we want to check. After we ereat
the assertion, we will let ALLOY analyzer validate the asiserby usingcheckcommand. If
our assertion is wrong in the specified scope, ALLOY analya#lishow the counterexample.
For example, suppose we want to check whether separatiarty€dnstraint is violated when
Allen delegates his role to Bell. The assertion below wikckwhether the separation of duty
constraint is violated after the transfer operation. Thmas&tion of duty constraint says that
user cannot be assigned bdtesistanandSurgeorroles. The counterexample illustrates that
even though useBell is not assigned téssistantole, he can still acquire it from the effect of

role hierarchy.

assert TestConflict3{
all ul, u2: User, r: Role, uracq, uracq: User->Role|
((ul = Allen) && (u2 = Bell) && (r=Surgeon) &&
(uracqg = UserRoleAcquire.URAcgmember) &&
(ul->r in UserRoleAcquire.URAcgmember) &&
(u2->Assistant not in UserRoleAssign.URAsmember) &&
Transfer[ul, u2, r, uracqg, uracq]) =>

SoD[u2, r, Assistant, uracq]}

191

check TestConflict3

The result shown that, although Bell is the most trustwodéuydidate, we cannot choose him
as Allen’s delegatee. Next, we verify the situation where,Ganother candidate with the
lower trustworthiness, is chosen as the delegatee. Theiasseelow will check whether the

separation of duty constraint is violated after the trangfeeration.

assert TestConflict4{
all ul, u2: User, r: Role, uracq, uracq: User->Role|

((ul = Allen) && (u2 = Cox) && (r=Surgeon) &&
(uracq = UserRoleAcquire.URAcgmember) &&
(ul->r in UserRoleAcquire.URAcgmember) &&
(u2->Assistant not in UserRoleAssign.URAsmember) &&

Transfer[ul, u2, r, uracq, uracq]) =>

SoD[u2, r, Assistant, uracq]}

check TestConflict4

Here, the analyzer cannot find the counterexample, whicmstee separation of duty con-
straint defined in the model is not violated. This indicated Cox is a more suitable delegatee
for Allen. The complete version of the Alloy model of the sitatalthcare organization is

shown in Appendix D.

9.6 Chapter Summary

Delegation gives temporary privilege to one or more usées, allows critical tasks to be
completed. In this chapter, we provide a formal approactchmosing delegatees. The ap-
proach evaluates the trustworthiness of candidates, amdethsures that the chosen candidate
does not cause a security breach. We also illustrate hotwinuhiness can be used to decide

on the length of the delegation chain.

192

Chapter 10

Conclusions and Future Work

10.1 Contributions

Traditional access control models are not sufficient fovagive computing applications
for several reasons. First, unlike traditional applicasiqoervasive computing applications usu-
ally do not have well-defined security perimeter—the ezgitin application will interact with or
the resources that will be accessed may not be known in adv&exrond, these applications
are also dynamic in nature—the accessing entities may ehaagources requiring protection
may be created or modified, and an entity’s access to resoarag change during the course
of the application, which make the resources protectiomdwapplication execution extremely
challenging. Third, pervasive computing applicationstireeknowledge of surrounding phys-
ical spaces to provide services; security policies desigoesuch applications must therefore
use contextual information. Thus, new access control nsaaled technologies are needed for
pervasive computing applications.

With the growing use of wireless networks and mobile deviegsare moving towards an
era where spatial and temporal information will be necgsgaraccess control. The use of
such information can be used for enhancing the security @pglication, and it can also be
exploited to launch attacks. For critical applications,@del for spatio-temporal-based access
control is needed that increases the security of the apigicand ensures that the location
information cannot be exploited to cause harm.

Motivated by this issue, we propose STRBAC model [67, 83]icwhncorporates time

193

and location constraints to the traditional RBAC entitias aelationships. In this model, the
access control is contingent upon the role of the user, bétilon, location of the object and the
time of access. In a highly dynamic system such as the pge/asmputing environment, it
is necessary for the user to be able to transfer his prisléganother user during his absence
to perform a critical task. To rectify this issue, we extend model to incorporate the notion
of delegation [68]. Our STRBAC model is efficient in the adpénat it can represent the
different kind of constraints and relationship in the ascesntrol model. The transformation
of the model to do the automate verification is feasible. H@xesemantically, the model is
extremely complicated. To rectify this, we develop a welirfiled semantic model called the
Spatio-Temporal Role Based Access Control with Delegai®ARBACD) model based on
graph-theoretic notation.

Delegation is needed in pervasive computing environmeheygsome user or role may
be temporarily unavailable to do some tasks. We proposednaafcapproach for choosing
delegatees. Our approach assessed the trustworthinegteafipl delegates in the context of
the task that is to be delegated. It also ensures using rxiS#T-solvers that the choice of
delegatee does not cause any security policy violationuliResf this work appeared in [87].

Our proposed spatio-temporal model has numerous constthat are not orthogonal, but
interact with each other in subtle ways. Thus, it is impdrtarunderstand the interaction of
the constraints before the model can be deployed. Manublsasi@s tedious and error-prone.
Towards this end, we investigated how Alloy can be used ftoraated analysis. Alloy is based
on first-order logic and is supported by tools. The speciboais converted into a boolean
expression that is automatically verified by an embedded$MNier. Our analysis reveals that
the various forms of spatio-temporal hierarchy conflictthwhe numerous forms of spatio-
temporal separation of duty constraints [83]. Subsequent performed the analysis on the
spatio-temporal role-based access control model thatostgpdelegation [84]. The analysis
revealed that the delegation constraints may also confitbtseparation of duty constraints.

Knowing the relationship among constraints is necessaiynbt sufficient if it is to be

used for applications. We need to do application-levelysigalto ensure that the policies for

194

the given application have been correctly specified. Tyjyicapplications are specified using
the Unified Modeling Language (UML), and so are the policiekwever, UML does not
have automated tool support. Towards this end, we invastigaow the policies specified in
UML can be automatically converted to Alloy using UML2Allaynd the resulting specification
verified using Alloy [86].

Although Alloy supports automated analysis, it has limtas with respect to the types
of verification it can perform. For example, analyzing andenstanding the behavior of the
application using Alloy is non-trivial. Such analysis issdled for dynamic systems where we
need to ensure that the system does not enter an undesitatiele ®wards this end, we have
shown how Coloured Petri Nets can be used for analyzing ahcapipn using our spatio-
temporal role-based access control model [85]. We show henSTTRBAC model can be
transformed into a graph-theoretic notation called accessol graph, which will be used as
an inputto create the CPNs. Our investigations reveal tleat @ modest increase in the number
of places and transitions cause a significant incremenetadimber of states of the state space;
this substantially raises the verification time. In ordegémerate a smaller number of states
in the CPN model that does efficient verification, we propasgansform the access control
graph into the privilege acquisition graph, which is esisdigtflattens out the hierarchical
structure.

The entities a pervasive computing application will inttraith, or the resources that it
will access may not always be known in advance. Moreoveathessing entities may change,
resources requiring protection may be created or modifiedi a& entity’s access to resources
may change during the course of the application. Under tteaaio, we need to ensure that
each entity participating in the interaction is trustwgrtifowards this end, we proposed a
class of trust-based access control models and expresseddéimantics using graph theory.
The models differ with respect to the features they provand,the types of the trust constraints

that they can support. This work appeared in [82].

195

10.2 Future Research
10.2.1 The Representation of the Location Constraints

In this dissertation, we have made some simplifying assiompt We have assumed that
the precise locations of subjects and objects are knownyagigan point of time. This might
not be true in the pervasive computing environments, whesetibjects are continually mov-
ing and objects are frequently relocated [79]. For examgpleser might want to access the
system resources while he is traveling on the plane. Heeajdbr's exact location cannot be
determined, and hence our current model cannot grant tlessibdity to the user based on his
location. This motivates the need of the novel represemntatf the location constraints which
could handle the uncertainty of the location.

Ardagna et al [4] propose three types of condition to captiuedocation uncertainty:

e position-based conditiorthis type of condition evaluates whether one entity is inra ce

tain building or city or in the proximity of other entities

e movement-based conditiotigs type of condition evaluates the mobility of the enstie

such as their velocity, acceleration, or direction whesy thre headed

¢ interaction-based conditiorthis type of condition relating multiple entities; for iasice,

the number of entities within a given area

With the advocate of these three types of condition, we cagi§paccess control policy
which supports the uncertainty location constraints. Retance, user may access the infor-
mation about the Golden Gate bridge from the plane only ifptese is headed toward San
Francisco.

Towards this end, we plan to develop a new representatidreddbtation constraints, which

support these three types of condition.

196

10.2.2 The Representation of the Time Constraints

Our time constraints proposed in this dissertation aredaséhe simplifying assumptions
that the time intervals are distinctively defined and they ¢inhe interval relationship supported
in the model is the containment relationship. These assongiay not be valid in the time-
sensitive application such as workflow. Workflow consistai@ket of the related tasks which
must be done sequentially within the specific time. For imstathe time period of theheck
authorizingtask must start after the time period of ttfeeck issuing tasstarted and it must end
within 2 days after the time period of tleeck issuingask ended. Such temporal constraint
cannot be represented by using our current model. Towaisletid, we plan to improve our

representation of the time constraints to handle such doaiptl temporal relationships.

10.2.3 Extension to Dynamic Workflow

Pervasive computing applications are typically modeledgus/orkflow or other advanced
transactions. Typically, a workflow is a representation giveen process that is made up of
well defined collection of activities, referred to as tadkach of these tasks, which is serving
a given function in the overall process represented by thdfleav, has certain information
input requirement and may produce information as part obutgput. Tasks that make up
a workflow are usually related and dependent on one anotheseltask dependencies are
known asintra-workflowdependencies. Task dependencies may also exist acrosBomerk
such dependencies are referred tandesr-workflowdependencies. Control flow dependencies,
value dependencies and external dependencies are typeskafdpendencies [1]. Figure 10.1
demonstrates such dependencies. Here, the control flonndepey states that user cannot
reserve the hotel unless he bought the plane ticket firstt, Ntex value dependency specifies
that the budget he could spend on the hotel depends on how Imeyzdid for the plane ticket.
Finally, the external dependency states that all thess tasist be done during the office hours.

In such applications, security is one of the main concernsnééd to ensure that the user
who executes task is the one who is authorized for that tasso, Ave should not allow any

user to be assigned to two conflicting tasks which permit ter to commit a fraud to the

197

Airfare < 300

YA Y
Purchase Reserve

Airline Ticket A Hotel Airfare 2 300

Tasks are available only during the work
hours

Figure 10.1: Example of task dependencies in workflow

organization or cause the security breaches. Next, thessacomtrol must support the manda-
tory constraints existing in the workflow environment sushtask dependencies, and binding
constraints. With regarding to this, an access control exlad to perform these functions.
In most of the situation, these constraints are unavoidedgted with the time and location
constraints. For example, the tadikeck approvingnust be done at the account manager office
within 10 days after taskheck issuingompleted. To be useful, we not only must fulfill the
requirements mentioned earlier, this access control msitlld be effective in the sense of
policy administration. We believe that our proposed STRBZ@ be implemented to serve
these objectives. Towards this end, we plan to apply the SXRBodel to the workflow

system.

10.2.4 Model Analysis

In addition to the analysis of the interactions betweereddit features in the access control
model, we have to focus on analyzing the properties of wonkflependencies; classify the
dependencies according to different criteria; discussrttezaction and impacts of dependen-
cies on execution of tasks. More importantly, we will fortgalnalyze all kinds of dependency
conflict. Dependency conflict could be either between theddencies themselves or between

the dependency and access control constraints. The cemftiatd take various forms and vary

198

from case to case.

Model analysis is needed to ensure the executability angrisgcompliance of the dy-
namic workflow. Additional work is needed for the model arsidyof the STRBAC-embedded
workflow. We plan to develop the verification methodologythee integrated model for work-
flow.

In this dissertation, we have proven that our analysis nttlogy can be used to analyze

our model. We plan to implement our analysis approach ta¢yfpes of access control model.

10.2.5 Dynamism Analysis

Pervasive computing applications are dynamic in natureiléthe application is execut-
ing, the entities requiring access or the resources negulotgction may change. In the face
of such dynamism, it is essential to ensure that accessat@méaches do not occur. Since the
analysis must be done in real-time, it is important to miziethe verification time. Towards
this end, we provide techniques for incremental analysth good time complexity results.
For example, to detect SoD violations in a dynamic graph, eedrto find whether the nodes
connected by SoD constraints have a common predecessdyi#gp naive algorithm based
on Depth First Search, requir€§kE) time for each change applied to the graph, wheire
the number of SoD constraints aidis the number of edges. We improve upon this result
significantly by proposing a new common predecessor datgatgorithm in a dynamic graph.
However, there still be a limitation to this approach, whishthe changes of access control
configuration must be done in a monotonic fashion. For irt&aifi the access control config-
uration is changed by adding the new relationships to theatéiien the subsequent changes
must be the addition of relationships only, the deletionetdiionship is not allowed. To com-
plete the analysis approach, we plan to improve our appreathat it could analyze the access

control model with a sequence of different types of configaramodification.

199

10.2.6 Implementation

Implementation will require us to investigate additiorsdues, such as, how to store loca-
tion and time information and perform operations involvspatio-temporal constraints in an
efficient manner. The same goes for the trust based accesslanodel. Defining entities’
negative and positive actions which could affect the acb#itg between entities is a chal-
lenging task. Implementing the model for real-world apgiiens will further help refine our

model and make it more useful.

200

Appendix A

ALLOY Specification of the
Spatio-Temporal Role-Based Access

Control
Model

module STRBAC

sig Time{}
sig Location{}

/I For solving the dimension limitation problem
sig TimeLoc{

dur : Time,

loc : Location}

sig User{}

sig Role{
RoleAllocLoc: Location,
RoleAllocDur: Time,
RoleEnableLoc: Location,
RoleEnableDur: Time}

sig Permission{
PermRoleLoc: Role->Location,
PermObjLoc: Object->Location,
PermDur: Time

}
sig Object{}

one sig RoleEnable {member : Role-> Time ->Location}

one sig UserRoleAssignment{member : User -> Role ->Time ->L ocation}

one sig RolePermissionAssignment{member : Role-> Permiss ion ->Time->Location}
one sig UserLocation{member : User->Time->Location}

one sig ObjLocation{member : Object->Time->Location}

one sig UserRoleActivate{member : User-> Role->Time->Loc ation}
one sig PermRoleAcquire{member : Role->Permission->Time ->Location}
one sig PermUserAcquire{member : User->Object->Permissi on->TimeLoc}

201

abstract sig RoleHierarchy{member : Role -> Role}
sig UPIH, TPIH, LPIH, TLPIH, UAH, TAH, LAH, TLAH extends Role

fact ULoc{
all u: User, uloc: UserLocation, d: Time, 11, 12: Location |
(((u=>d->11) in uloc.member) && ((u->d->12) in uloc.membe
(2 in 12) || (12 in 12))}

fact ObjLoc{
all o: Object, oloc: ObjLocation, d: Time, 11, 12: Location |
(((0->d->I1) in oloc.member) && ((0->d->I2) in oloc.membe
(1 in 12) || (2 in 12))}

/I Each user must has role assigned to him
fact UserRole{
all u: User, uras: UserRoleAssignment | some r: Role |
u->r in (uras.member).Location.Time}

fact URAssign{
all u: User, r: Role, d: Time, I: Location, ura: UserRoleAssi
uloc: UserLocation |
((u=>r->d->l) in ura.member) => (((u->d->I) in uloc.membe
(I in r.RoleAllocLoc) && (d in r.RoleAllocDur))}

fact URActivate1{

all u: User, sr, jr: Role, d: Time, I Location, uras: UserRol

urac: UserRoleActivate,

uah: UAH, tah: TAH, lah: LAH, tlah: TLAH |
((u->jr->d->l) in urac.member) && (u->sr in (uras.member)
@r lin sr”((uah + tah + lah + tlah).member)) =>
(((u->jr->d->l) in uras.member) && (I in jr.RoleEnableLoc
(d in jr.RoleEnableDur))}

fact URActivate2{
all u: User, sr, jr: Role, d: Time, I: Location, uras: UserRol
uract: UserRoleActivate, uah: UAH, tah: TAH, lah: LAH, tlah
((u->jr->d->I in uract.member) && (u->sr in (uras.member)
(u->jr lin (uras.member).Location.Time)) =>
(ir in sr.’((uah + tah + lah + tlah).member))}

fact NocycleRH{
all r: Role, RH: RoleHierarchy| r lin r."(RH.member)}

I All types of hierarchy are disjointed

fact ScopeRH{
all rh: RoleHierarchy, upih: UPIH, tpih: TPIH, Ipih: LPIH, t
tah: TAH, lah: LAH, tlah: TLAH |

Hierarchy{}

r)) <=>

r) <=>

eAssignment,

.Location.Time) &&

) &&

eAssignment,

: TLAH |

.Location.Time) &&

Ipih: TLPIH, uah: UAH,

(upih.member = rh.member - (tpih.member + Ipih.member + tlp ih.member +

(tpih.member =

(Ipih.member

uah.member + tah.member + lah.member + tlah.member)) &&
rh.member - (upih.member + Ipih.member + tlp ih.member +

uah.member + tah.member + lah.member + tlah.member)) &&
rh.member - (upih.member + tpih.member + tlp ih.member +

202

uah.member + tah.member + lah.member + tlah.member)) &&

(tlpih.member = rh.member - (upih.member + tpih.member + Ip ih.member +
uah.member + tah.member + lah.member + tlah.member)) &&
(uah.member = rh.member - (upih.member + tpih.member + Ipih .member +
tlpih.member + tah.member + lah.member + tlah.member)) &&
(tah.member = rh.member - (upih.member + tpih.member + Ipih .member +
tlpih.member + uah.member + lah.member + tlah.member)) &&
(lah.member = rh.member - (upih.member + tpih.member + Ipih .member +
tlpih.member + uah.member + tah.member + tlah.member)) &&
(tah.member = rh.member - (upih.member + tpih.member + Ipi h.member +

tlpih.member + uah.member + tah.member + lah.member))}

/I Each role must has at least one permission assigned to it
fact RoleFact{
all r: Role, rpa: RolePermissionAssignment |
r in (rpa.member).Location. Time.Permission}

/I All permissions assigned to roles can be acquired
fact RPAFact{
all disj r: Role, p: Permission, d: Time, | : Location,
rpa: RolePermissionAssignment, pra : PermRoleAcquire |
(r->p->d->I in rpa.member) =>
(r->p->d->l in pra.member)}

/I All roles can acquire only their own assigned or inherited permissions
fact PRAFact{
all disj r1, r2: Role, p: Permission, d1, d2: Time, I1, 12 : Loc ation,

rpa: RolePermissionAssignment, pra : PermRoleAcquire,
upih: UPIH, tpih: TPIH, Ipih: LPIH, tipih: TLPIH |
(r1->p->d1->I1 in pra.member) =>
((r1->p->d1->I1 in rpa.member) ||
((r2->p->d2->12 in rpa.member) &&
(rL->r2 in ((upih + tpih + Ipih + tlpih).member))))}

/I Permission User Acquire
fact PUAFact{
all r. Role, p: Permission, u: User, d: Time, | : Location, 0: O bject,
tl: TimeLoc, pra : PermRoleAcquire, puacg: PermUserAcquir e,
ol: ObjLocation, urac: UserRoleActivate |
((r->p->d->I in pra.member) &&
(u->r->d->l in urac.member) &&
(0->d->l in ol.member) &&
(0->l in p.PermObjLoc) &&
(tdur = d) && (tlloc = 1)) =>
(u->0->p->tl in puacg.member)

}

/lUnrestricted Permission Inheritance Hierarchy
fact UPIHFact{
all sr, jr. Role, p: Permission, d: Time, I: Location, upih: U PIH,
rpa: RolePermissionAssignment, pra: PermRoleAcquire |
((sr->jr in upih.member) && (jr->p->d->I in pra.member) &&
(sr->p lin (rpa.member).Location.Time)) =>

203

(sr->p->sr.RoleEnableDur->sr.RoleEnableLoc) in pra.me

/ITime Restricted Permission Inheritance Hierarchy
fact TPIHFact{
all sr, jr. Role, p: Permission, d: Time, |: Location, tpih: T
rpa: RolePermissionAssignment, pra: PermRoleAcquire |
((sr->jr in tpih.member) && (jr->p->d->I in pra.member) &&
(sr->p lin (rpa.member).Location.Time)) =>
(sr->p->d->sr.RoleEnableLoc) in pra.member}

/ILocation Restricted Permission Inheritance Hierarchy
fact LPIHFact{
all sr, jr. Role, p: Permission, d: Time, . Location, Ipih: L
rpa: RolePermissionAssignment, pra: PermRoleAcquire |
((sr->jr in Ipih.member) && (jr->p->d->I in pra.member) &&
(sr->p lin (rpa.member).Location.Time)) =>
(sr->p->sr.RoleEnableDur->l) in pra.member}

[ITime Location Restricted Permission Inheritance Hierar chy

fact TLPIHFact{
all sr, jr. Role, p: Permission, d: Time, |: Location, tlpih:
rpa: RolePermissionAssignment, pra: PermRoleAcquire |
((sr->jr in tlpih.member) && (jr->p->d->l in pra.member) &
(sr->p lin (rpa.member).Location.Time)) =>
(sr->p->d->I) in pra.member}

/lUnrestricted Activation Hierarchy
fact UAHFact{
all disj sr, jr: Role, u: User, d: Time, |: Location, uah: UAH,
uras: UserRoleAssignment, uract: UserRoleActivate |
((sr->jr in uah.member) && (u->sr->d->I in uract.member) &
(u->jr lin (uras.member).Location.Time) && (d in sr.RoleE
(I in sr.RoleEnableLoc)) =>
(u->jr->d->I) in uract.member}

/ITime Restricted Activation Hierarchy
fact TAHFact{
all disj sr, jr: Role, u: User, d, d: Time, I: Location, tah: T
uras: UserRoleAssignment, uract: UserRoleActivate |
((sr->jr in tah.member) && (u->sr->d->| in uract.member) &
(u->jr lin (uras.member).Location.Time) && (d in sr.RoleE
(0" in jr.RoleEnableDur) && (I in sr.RoleEnableLoc)) =>
(u->jr->d->l) in uract. member}

/ILocation Restricted Activation Hierarchy
fact LAHFact{
all disj sr, jr: Role, u: User, d: Time, |, I Location, lah: L
uras: UserRoleAssignment, uract: UserRoleActivate |
((sr->jr in lah.member) && (u->sr->d->| in uract.member) &
(u->jr lin (uras.member).Location.Time) && (d in sr.RoleE
(I in sr.RoleEnableLoc) && (I' in jr.RoleEnableLoc)) =>
(u->jr->d->I') in uract.member}

/[Time Location Restricted Activation Hierarchy

204

mber}

PIH,

PIH,

TLPIH,

&
nableDur) &&

AH,

&
nableDur) &&

AH,

&
nableDur) &&

fact TLAHFact{
all disj sr, jr: Role, u: User, d, d: Time, |, I Location, tl
uras: UserRoleAssignment, uract: UserRoleActivate |
((sr->jr in tlah.member) && (u->sr->d->| in uract.member)
(u->jr lin (uras.member).Location.Time) && (d in sr.RoleE
(0" in jr.RoleEnableDur) && (I in sr.RoleEnableLoc) &&
(" in jr.RoleEnableLoc)) =>
(u->jr->d’->I') in uract.member}

/IWeak Form of SSoD-User Role Assignment
pred W_SSoD_URA(u: User, disj rl, r2: Role, ura: UserRoleAs
d: Time, I: Location){

((u->r1->d->l) in ura) => ((u->r2->d->l) not in ura)}

/IStrong Temporal Form of SSoD-User Role Assignment
pred ST _SSoD_URA(u: User, disj r1, r2: Role, ura: UserRoleA
d, d Time, I: Location){

((u->r1->d->l) in ura) => ((u->r2->d->l) not in ura)}

/IStrong Spatial Form of SSoD-User Role Assignment
pred SS_SSoD _URA(u: User, disj rl, r2: Role, ura: UserRoleA
d: Time, I, I Location){

((u->r1->d->l) in ura) => ((u->r2->d->I) not in ura)}

/IStrong Form of SSoD-User Role Assignment
pred S_SSoD URA(u: User, disj rl, r2: Role, ura: UserRoleAs
d, d: Time, |, I Location){

((u->r1->d->l) in ura) => ((u->r2->d->I") not in ura)}

[IWeak Form of SSoD-Permission Role Assignment
pred W_SSoD_PRA(r: Role, disj p, q : Permission,
d: Time, I: Location){
all pra: PermRoleAcquire.member |
((r->p->d->l) in pra) => ((r->g->d->I) not in pra)}

/IStrong Temporal Form of SSoD-Permission Role Assignment
pred ST_SSoD_PRA(r: Role, disj p, q : Permission,
d, d: Time, I Location){
all pra: PermRoleAcquire.member |
((r->p->d->I) in pra) => ((r->g->d->l) not in pra)}

/IStrong Spatial Form of SSoD-Permission Role Assignment
pred SS_SSoD_PRA(r: Role, disj p, g : Permission,
d: Time, I, I Location){
all pra: PermRoleAcquire.member |
((r->p->d->l) in pra) => ((r->g->d->I) not in pra)}

/IStrong Form of SSoD-Permission Role Assignment
pred S_SSoD_PRA(r: Role, disj p, g : Permission,
d, d: Time, |, I Location){
all pra: PermRoleAcquire.member |
((r->p->d->I) in pra) => ((r->g->d->I') not in pra)}

//Weak Form of DSoD

205

ah: TLAH,

&&
nableDur) &&

signment.member,

ssignment.member,

ssignment.member,

signment.member,

pred W_DSoD(u: User, disj rl, r2: Role, d: Time, I Location)
all urac: UserRoleActivate.member |
((u->r1->d->l) in urac) => ((u->r2->d->l) not in urac)}

/IStrong Temporal Form of DSoD
pred ST DSoD(u: User, disj rl, r2: Role, d, d: Time, I: Locat
all urac: UserRoleActivate.member |
((u->r1->d->l) in urac) => ((u->r2->d’->l) not in urac)}

/IStrong Spatial Form of DSoD
pred SS_DSoD(u: User, disj r1, r2: Role, d: Time, I, I Locat
all urac: UserRoleActivate.member |
((u->r1->d->l) in urac) => ((u->r2->d->I') not in urac)}

/IStrong Form of DSoD
pred S_DSoD(u: User, disj r1, r2: Role, d, d: Time, I, I Loc
all urac: UserRoleActivate.member |
((u->r1->d->l) in urac) => ((u->r2->d’->I') not in urac)}

/lU2U Unrestricted Permission Delegation
pred u2uUPD(disj dtr, dte: User, p: Permission){
all o: Object, tl: TimeLoc, puacg: PermUserAcquire |
(dtr->0->p->tl in puacq.member) =>
(dte->0->p->tl in puacg.member)}

/lU2U Time Restricted Permission Delegation
pred u2uTPD(disj dtr, dte: User, p: Permission, d: Time){
all o: Object, tl, tI: TimeLoc, puacq: PermUserAcquire |
((@ in tldur) && (d" '= tl.dur) && (t'.dur = d) &&
(tr.loc = tlloc) && (dtr->0->p->tl in puacg.member)) =>
(dte->0->p->tI' in puacgq.member)}

/lU2U Location Restricted Permission Delegation
pred u2uLPD(disj dtr, dte: User, p: Permission, I Locatio
all o: Object, tl, tI: TimeLoc, puacq: PermUserAcquire |
((t'.dur = tl.dur) && (I' in tlloc) && (I' = tlloc) && (tI
(dtr->0->p->tl in puacgq.member)) =>
(dte->0->p->tI' in puacgq.member)}

/lU2U Time Location Restricted Permission Delegation
pred u2uTLPD(disj dtr, dte: User, p: Permission, d: Time, |
all o: Object, tl, tI: TimeLoc, puacq: PermUserAcquire |

((@ in tldur) && (d" != tl.dur) && (I in tlloc) && (I != tl.

(trdur = d) && (t'loc = I) &&
(dtr->0->p->tl in puacg.member)) =>
(dte->0->p->tI" in puacg.member)}

/lU2U Unrestricted Role Delegation
pred u2uURD(disj dtr, dte: User, r: Role){
all d: Time, I: Location, urac: UserRoleActivate |
(dtr->r->d->| in urac.member) =>
(dte->r->d->| in urac.member)}

/lU2U Time Restricted Role Delegation

206

{

ion){

ion){

ation){
X
Joc = I) &&
" Location){
loc) &&

pred u2uTRD(disj dtr, dte: User, r: Role, d": Time){
all d: Time, I: Location, urac: UserRoleActivate |
((dtr->r->d->| in urac.member) && (d" in r.RoleEnableDur) &&
(d in d)) =>
(dte->r->d’->| in urac.member)}

/lU2U Location Restricted Role Delegation
pred u2uLRD(disj dtr, dte: User, r. Role, I Location){
all d: Time, I: Location, urac: UserRoleActivate |
((dtr->r->d->| in urac.member) && (I' in r.RoleEnableLoc) &&
(" in 1) =>
(dte->r->d->I" in urac.member)}

/lU2U Location Restricted Role Delegation

pred u2uTLRD(disj dtr, dte: User, r: Role, d": Time, I Loca tion){
all d: Time, I: Location, urac: UserRoleActivate |
((dtr->r->d->l in urac.member) && (d' in r.RoleEnableDur) &&

(d in d) & (I' in r.RoleEnableLoc) && (I' in I)) =>
(dte->r->d->I" in urac.member)}

/IR2R Unrestricted Permission Delegation
pred r2rUPD(disj rdtr, rdte: Role, p: Permission){
all d: Time, I: Location, pracg: PermRoleAcquire |
((rdtr->p->d->| in pracg.member) && (d in rdte.RoleEnable Dur) &&
(I in rdte.RoleEnableLoc)) =>
(rdte->p->d->| in pracg.member)}

/IR2R Time Restricted Permission Delegation
pred r2rTPD(disj rdtr, rdte: Role, p: Permission, d’: Time) {
all d: Time, I: Location, pracg: PermRoleAcquire |
((rdtr->p->d->l in pracg.member) && (d" in d) &&
(d" in rdte.RoleEnableDur) &&
(I in rdte.RoleEnableLoc)) =>
(rdte->p->d’->l in pracg.member)}

/IR2R Location Restricted Permission Delegation
pred r2rLPD(disj rdtr, rdte: Role, p: Permission, I Locat ion){
all d: Time, I: Location, pracg: PermRoleAcquire |
((rdtr->p->d->| in pracg.member) && (I in l) &&
(d in rdte.RoleEnableDur) &&
(" in rdte.RoleEnableLoc)) =>
(rdte->p->d->I' in pracg.member)}

/IR2R Time Location Restricted Permission Delegation
pred r2rTLPD(disj rdtr, rdte: Role, p: Permission, d: Time , I Location){
all d: Time, I: Location, pracg: PermRoleAcquire |
((rdtr->p->d->| in pracg.member) && (d" in d) && (I in) &&
(d" in rdte.RoleEnableDur) &&
(I" in rdte.RoleEnableLoc)) =>
(rdte->p->d’->I" in pracg.member)}

/IR2R Unrestricted Role Delegation

pred r2rURD(disj rdtr, rdte: Role){
all u: User, d: Time, I: Location, urac: UserRoleActivate |

207

((u->rdte->d->l in urac.member) && (d in rdtr.RoleEnableD ur) &&
(I in rdtr.RoleEnableLoc))=>
(u->rdtr->d->| in urac.member)}

/IR2R Time Restricted Role Delegation
pred r2rTRD(disj rdtr, rdte: Role, d: Time){
all u: User, I: Location, urac: UserRoleActivate |
((u->rdte->d’->l in urac.member) && (d" in rdtr.RoleEnabl eDur) &&
(I in rdtr.RoleEnableLoc))=>
(u->rdtr->d’->l in urac.member)}

IIR2R Location Restricted Role Delegation
pred r2rLRD(disj rdtr, rdte: Role, I Location){
all u: User, d: Time, urac: UserRoleActivate |
((u->rdte->d->I" in urac.member) && (d in rdtr.RoleEnable Dur) &&
(I" in rdtr.RoleEnableLoc))=>
(u->rdtr->d->I" in urac.member)}

/IR2R Time Location Restricted Role Delegation

pred r2rTLRD(disj rdtr, rdte: Role, d: Time, I Location) {
all u: User, urac: UserRoleActivate |
((u->rdte->d’->I" in urac.member) && (d’" in rdtr.RoleEnab leDur) &&

(" in rdtr.RoleEnableLoc))=>
(u->rdtr->d’->I" in urac.member)}

II' Conflicts with the Weak Form of SSOD-User Role Assignment : Condition 1
assert TestConflictl_1{

no u: User, disj X, y: Role, upih: UPIH,

d: Time, I: Location, ura: UserRoleAssignment |

((x->y in “(upih.member)) &&
(u->x->d->| in ura.member)) =>
W_SSoD_URA[u, X, Yy, u->(x+y)->d->I, d, []

}
check TestConflictl_1

II' Conflicts with the Weak Form of SSOD-User Role Assignment . Condition 2
assert TestConflictl_2{
all u: User, disj x, y: Role, tpih: TPIH, d: Time, I: Location,
ura: UserRoleAssignment |
((y in x."(tpih.member)) && (u->x->d->| in ura.member) &&
(d in y.RoleAllocDur)) =>
W_SSoD_URA[Y, X, Y, (u->x->d->l) + (u->y->y.RoleAllocDur ->)), d, 1]
}
check TestConflictl_2

II' Conflicts with the Weak Form of SSOD-User Role Assignment . Condition 3
assert TestConflictl 3{
all u: User, disj x, y: Role, Ipih: LPIH, d: Time, I: Location,
ura: UserRoleAssignment |
((y in x."(lpih.member)) && (u->x->d->| in ura.member) &&
(I in y.RoleAllocLoc)) =>
W_SSoD_URA[u, X, Yy, (u->x->d->l) + (u->y->d->y.RoleAlloc Loc), d, 1]
}
check TestConflictl 3

208

II' Conflicts with the Weak Form of SSOD-User Role Assignment . Condition 4
assert TestConflictl_4{
all u: User, disj x, y: Role, tlpih: TLPIH, d: Time, I: Locatio n,
ura: UserRoleAssignment |
((y in x.(tlpih.member)) && (u->x->d->| in ura.member) &&
(d in y.RoleAllocDur) && (I in y.RoleAllocLoc)) =>

W_SSoD_URA[u, X, Y, (u->x->d->l) + (u->y->y.RoleAllocDur ->y.RoleAllocLoc), d, 1]
}
check TestConflictl 4
/I Conflicts with the Strong Temporal Form of SSOD-User Role Assignment: Condition 1
assert TestConflict2_1{
all u: User, disj x, y: Role, upih: UPIH, d, d: Time, I. Locati on,

ura: UserRoleAssignment |
((y in x."(upih.member)) && (u->x->d->I in ura.member) &&
(I'in y.RoleAllocLoc)) =>
ST_SSoD_URA[u, X, VY, (u->x->d->I) + (u->y->d->I), d, d,]

}
check TestConflict2_1
/I Conflicts with the Strong Temporal Form of SSOD-User Role Assignment: Condition 2
assert TestConflict2_2{
all u: User, disj x, y: Role, tpih: TPIH, d, d Time, I. Locati on,

ura: UserRoleAssignment |
((y in x.(tpih.member)) && (u->x->d->| in ura.member) &&
(I'in y.RoleAllocLoc)) =>

ST_SSoD_URA[u, X, VY, (u->x->d->l) + (u->y->y.RoleAllocDu r->l), d, d',]
}
check TestConflict2_2
/I Conflicts with the Strong Temporal Form of SSOD-User Role Assignment: Condition 3
assert TestConflict2_3{
all u: User, disj x, y: Role, Ipih: LPIH, d, d: Time, I: Locati on,

ura: UserRoleAssignment |
((y in x."(lpih.member)) && (u->x->d->| in ura.member) &&
(I'in y.RoleAllocLoc)) =>

ST_SSoD_URA[U, X, VY, (u->x->d->l) + (u->y->d->y.RoleAllo cLoc), d, d',]
}
check TestConflict2_3
/I Conflicts with the Strong Temporal Form of SSOD-User Role Assignment: Condition 4
assert TestConflict2_4{
all u: User, disj x, y: Role, tlpih: TLPIH, d, d: Time, I: Loca tion,

ura: UserRoleAssignment |
((y in x."(tlpih.member)) && (u->x->d->| in ura.member) &&
(I in y.RoleAllocLoc)) =>
ST_SSoD_URA[u, X, vV,

(u->x->d->I) + (u->y->y.RoleAllocDur->y.RoleAllocLoc) , d,od,
}
check TestConflict2_4
/I Conflicts with the Strong Spatial Form of SSOD-User Role A ssignment: Condition 1

assert TestConflict3_1{

209

all u: User, disj x, y: Role, upih: UPIH, d: Time, I, I Locati on,
ura: UserRoleAssignment |
((y in x."(upih.member)) && (u->x->d->| in ura.member) &&
(d in y.RoleAllocDur)) =>
SS _SSoD_URA[u, X, Yy, (u->x->d->I) + (u->y->d->I), d, I, I]

}
check TestConflict3_1
/I Conflicts with the Strong Spatial Form of SSOD-User Role A ssignment. Condition 2
assert TestConflict3_2{
all u: User, disj x, y: Role, tpih: TPIH, d: Time, I, I Locati on,

ura: UserRoleAssignment |
((y in x."(tpih.member)) && (u->x->d->| in ura.member) &&
(d in y.RoleAllocDur)) =>

SS _SSoD_URA[u, X, Y, (u->x->d->l) + (u->y->y.RoleAllocDu r->l), d, I, I
}
check TestConflict3 2
II' Conflicts with the Strong Spatial Form of SSOD-User Role A ssignment: Condition 3
assert TestConflict3_3{
all u: User, disj x, y: Role, Ipih: LPIH, d: Time, I, I Locati on,

ura: UserRoleAssignment |
((y in x."(lpih.member)) && (u->x->d->| in ura.member) &&
(d in y.RoleAllocDur)) =>

SS_SSoD_URA[u, X, Y, (u->x->d->l) + (u->y->d->y.RoleAllo cLoc), d, I, I
}
check TestConflict3 3
/I Conflicts with the Strong Spatial Form of SSOD-User Role A ssignment: Condition 4
assert TestConflict3_4{
all u: User, disj x, y: Role, tlpih: TLPIH, d: Time, I, I Loca tion,

ura: UserRoleAssignment |
((y in x.(tlpih.member)) && (u->x->d->| in ura.member) &&
(d in y.RoleAllocDur)) =>
SS_SSoD_URA[u, X, Y,

(u->x->d->l) + (u->y->y.RoleAllocDur->y.RoleAllocLoc) ,d L
}
check TestConflict3 4
/I Conflicts with the Strong Form of SSOD-User Role Assignme nt
assert TestConflict4{
all u: User, disj x, y: Role, d, d: Time, I, I Location,

ura: UserRoleAssignment,
upih: UPIH, tpih: TPIH, Ipih: LPIH, tlpih: TLPIH |

((y in x.”(upih.member + tpih.member + Ipih.member + tlpih. member)) &&
(u->x->d->| in ura.member)) =>
S SSoD_URA[Y, X, Y, (u->x->d->l) + (u->y->d->I), d, d’, |]
}
check TestConflict4
II' Conflicts with the Weak Form of SSOD-Permission Role Assi gnment: Condition 1
assert TestConflict5_1{
all x, y: Role, disj p, g: Permission, d, d: Time, I, I Locat ion,

rpa: RolePermissionAssignment.member, upih: UPIH|

210

((x->p->d->) in rpa) && (x->g not in rpa.Location.Time) & &
(y->g->d->I" in rpa) && (y in x."(upih.member))) =>
W_SSoD_PRA[X, p, q, d,]

}
check TestConflict5_1
/I Conflicts with the Weak Form of SSOD-Permission Role Assi gnment: Condition 2
assert TestConflict5_2{
all x, y: Role, disj p, q: Permission, d, d Time, I, I Locat ion,
rpa: RolePermissionAssignment.member, tpih: TPIH|
((x->p->d->) in rpa) && (x->q not in rpa.Location.Time) & &
(y->g->d->I" in rpa) && (y in x."(tpih.member)) &&
(I & I' = none)) =>
W_SSoD_PRA[x, p, g, d, []
}
check TestConflict5_2
II' Conflicts with the Weak Form of SSOD-Permission Role Assi gnment: Condition 3
assert TestConflict5_3{
all x, y: Role, disj p, q: Permission, d, d Time, I, I Locat ion,
rpa: RolePermissionAssignment.member, Ipih: LPIH|
((x->p->d->) in rpa) && (x->g not in rpa.Location.Time) & &
(y->g->d->I" in rpa) && (y in x."(Ipih.member)) &&
(I & I' '= none)) =>
W_SSoD_PRA[X, p, q, d,]
}
check TestConflicts_3
II' Conflicts with the Weak Form of SSOD-Permission Role Assi gnment: Condition 4
assert TestConflict5_4{
all x, y: Role, disj p, g: Permission, d, d: Time, I, I Locat ion,
rpa: RolePermissionAssignment.member, tlpih: TLPIH|
((x->p->d->) in rpa) && (x->q not in rpa.Location.Time) & &

(y->g->d->I" in rpa) && (y in x."(tlpih.member)) &&
(I & I' = none) && (d & d' != none)) =>
W_SSoD_PRA[X, p, q, d,]

}
check TestConflicts5 4
II' Conflicts with the Strong Temporal Form of SSOD-Permissi on Role Assignment:. Condition 1
assert TestConflicte_1{
all x, y: Role, disj p, g: Permission, d, d: Time, I, I Locat ion,
rpa: RolePermissionAssignment.member, upih: UPIH|
((x->p->d->) in rpa) && (x->q not in rpa.Location.Time) & &

(y->g->d->I' in rpa) && (y in x."(upih.member))) =>
ST_SSoD_PRA[x, p, @, d, d, I]

}
check TestConflict6_1
II' Conflicts with the Strong Temporal Form of SSOD-Permissi on Role Assignment. Condition 2
assert TestConflict6_2{
all x, y: Role, disj p, q: Permission, d, d Time, |, I Locat ion,
rpa: RolePermissionAssignment.member, tpih: TPIH|
((x->p->d->) in rpa) && (x->g not in rpa.Location.Time) & &

211

(y->g->d->I" in rpa) && (y in x."(tpih.member))) =>
ST_SSoD_PRA[x, p, g, d, d, I]

}
check TestConflicté_2
/I Conflicts with the Strong Temporal Form of SSOD-Permissi on Role Assignment: Condition 3
assert TestConflict6_3{
all x, y: Role, disj p, q: Permission, d, d Time, I, I Locat ion,
rpa: RolePermissionAssignment.member, Ipih: LPIH|
((x->p->d->l) in rpa) && (x->q not in rpa.Location.Time) & &
(y->g->d->I" in rpa) && (y in x."(pih.member)) &&
(I & I' = none)) =>
ST_SSoD_PRA[x, p, q, d, d', 1]
}
check TestConflict6 3
/I Conflicts with the Strong Temporal Form of SSOD-Permissi on Role Assignment: Condition 4
assert TestConflict6_4{
all x, y: Role, disj p, q: Permission, d, d Time, I, I Locat ion,
rpa: RolePermissionAssignment.member, tlpih: TLPIH|
((x->p->d->) in rpa) && (x->q not in rpa.Location.Time) & &
(y->g->d->I" in rpa) && (y in x."(tlpih.member)) &&
(I & I' '= none)) =>
ST_SSoD_PRA[x, p, q, d, d',]
}
check TestConflicto_4
/I Conflicts with the Strong Spatial Form of SSOD-Permissio n Role Assignment: Condition 1
assert TestConflict7_1{
all x, y: Role, disj p, q: Permission, d, d Time, |, I Locat ion,
rpa: RolePermissionAssignment.member, upih: UPIH|
((x->p->d->) in rpa) && (x->q not in rpa.Location.Time) & &

(y->g->d->I" in rpa) && (y in x."(upih.member))) =>
SS_SSoD_PRA[x, p, g, d, I, I

}
check TestConflict7_1
II' Conflicts with the Strong Spatial Form of SSOD-Permissio n Role Assignment: Condition 2
assert TestConflict7_2{
all x, y: Role, disj p, q: Permission, d, d Time, |, I Locat ion,
rpa: RolePermissionAssignment.member, tpih: TPIH |
((x->p->d->) in rpa) && (x->q not in rpa.Location.Time) & &

(y->g->d->I" in rpa) && (y in x."(tpih.member)) &&
(d & d' != none)) =>
SS_SSoD_PRA[x, p, g, d, I, I

}
check TestConflict7_2
/I Conflicts with the Strong Spatial Form of SSOD-Permissio n Role Assignment: Condition 3
assert TestConflict7_3{
all x, y: Role, disj p, q: Permission, d, d Time, |, I Locat ion,
rpa: RolePermissionAssignment.member, Ipih: LPIH|
((x->p->d->) in rpa) && (x->q not in rpa.Location.Time) & &

(y->g->d->I" in rpa) && (y in x."(Ipih.member))) =>

212

SS_SSoD_PRA[x, p, g, d, I, I]

}
check TestConflict7_3
II' Conflicts with the Strong Spatial Form of SSOD-Permissio n Role Assignment: Condition 4
assert TestConflict7_4{
all x, y: Role, disj p, q: Permission, d, d Time, I, I Locat ion,
rpa: RolePermissionAssignment.member, tlpih: TLPIH|
(((x->p->d->l) in rpa) && (x->q not in rpa.Location.Time) & &

(y->g->d->I" in rpa) && (y in x."(tlpih.member)) &&
(d & d' != none)) =>
SS_SSoD_PRA[x, p, q, d, |, I

}
check TestConflict7_4
II' Conflicts with the Strong Form of SSOD-Permission Role As signment
assert TestConflict8{
all x, y: Role, disj p, q: Permission, d, d Time, |, I Locat ion,

rpa: RolePermissionAssignment.member,
upih: UPIH, tpih: TPIH, Ipih: LPIH, tipih: TLPIH |

((x->p->d->) in rpa) && (x->q not in rpa.Location.Time) & &
(y->g->d->I' in rpa) &&
(y in x.”(upih.member + tpih.member + Ipih.member + tipih.m ember))) =>

S_SSoD_PRA[, p, q, d, d, I, I

}
check TestConflict8

/I Conflicts with the Weak Form of DSOD: Condition 1
assert TestConflict9_1{

all u: User, disj x, y: Role, d: Time, I: Location,

ura: UserRoleActivate.member, uah: UAH|

((u->x->d->) in ura) && (y in x."(uah.member))) =>
W_DSoD[u, X, vy, d,]

}
check TestConflict9_1

II' Conflicts with the Weak Form of DSOD: Condition 2
assert TestConflict9_2{
all u: User, disj x, y: Role, d: Time, I: Location,
ura: UserRoleActivate.member, tah: TAH|
(((u->x->d->l) in ura) && (y in x."(tah.member)) &&
(d in y.RoleEnableDur)) =>
W_DSoD[u, X, y, d,]
}
check TestConflict9_2

/I Conflicts with the Weak Form of DSOD: Condition 3
assert TestConflict9_3{
all u: User, disj x, y: Role, d: Time, I: Location,
ura: UserRoleActivate.member, lah: LAH|
(((u>x->d->l) in ura) && (y in x."(lah.member)) &&
(I in y.RoleEnableLoc)) =>
W_DSoD[u, X, vy, d,]

213

check TestConflictd 3

/I Conflicts with the Weak Form of DSOD: Condition 4
assert TestConflict9_4{
all u: User, disj x, y: Role, d: Time, I: Location,
ura: UserRoleActivate.member, tlah: TLAH|
(((u->x->d->) in ura) && (y in x."(tlah.member)) &&
(d in y.RoleEnableDur) && (I in y.RoleEnableLoc)) =>
W_DSoD[u, X, vy, d,]
}
check TestConflict9 4

/I Conflicts with the Strong Temporal Form of DSOD: Conditio
assert TestConflict10_1{

all u: User, disj x, y: Role, d, d: Time, I: Location,

ura: UserRoleActivate.member, uah: UAH|

((u->x->d->) in ura) && (y in x."(uah.member))) =>
ST _DSoD[u, X, vy, d, d, 1]

}
check TestConflict10_1

II' Conflicts with the Strong Temporal Form of DSOD: Conditio
assert TestConflict10_2{

all u: User, disj x, y: Role, d, d: Time, I: Location,

ura: UserRoleActivate.member, tah: TAH|

(((u->x->d->l) in ura) && (y in x."(tah.member))) =>
ST_DSoD[u, %, y, d, d',]

}
check TestConflictl0_2

II' Conflicts with the Strong Temporal Form of DSOD: Conditio
assert TestConflict10_3{
all u: User, disj x, y: Role, d, d: Time, I: Location,
ura: UserRoleActivate.member, lah: LAH|
(((u->x->d->l) in ura) && (y in x."(lah.member)) &&
(I in y.RoleEnableLoc)) =>
ST_DSoD[u, %, y, d, d', 1]
}
check TestConflict10_3

II' Conflicts with the Strong Temporal Form of DSOD: Conditio
assert TestConflict10_4{
all u: User, disj x, y: Role, d, d: Time, I: Location,
ura: UserRoleActivate.member, tlah: TLAH|
(((u->x->d->) in ura) && (y in x."(tlah.member)) &&
(I in y.RoleEnableLoc)) =>
ST_DSoD[u, %, y, d, d, []
}
check TestConflict10 4

II' Conflicts with the Strong Spatial Form of DSOD: Condition
assert TestConflictl1l 1{
all u: User, disj x, y: Role, d: Time, |, I Location,
ura: UserRoleActivate.member, uah: UAH|

214

((u->x->d->) in ura) && (y in x."(uah.member))) =>
SS DSoD[u, X, vy, d, I, I]

}
check TestConflictll 1
/I Conflicts with the Strong Spatial Form of DSOD: Condition 2
assert TestConflictl1l 2{
all u: User, disj x, y: Role, d: Time, |, I Location,

ura: UserRoleActivate.member, tah: TAH|
(((u->x->d->l) in ura) && (y in x."(tah.member)) &&
(d in y.RoleEnableDur)) =>
SS_DSoD[u, X, y, d, I, I

}
check TestConflictll 2
/I Conflicts with the Strong Spatial Form of DSOD: Condition 3
assert TestConflictll 3{
all u: User, disj x, y: Role, d: Time, |, I Location,

ura: UserRoleActivate.member, lah: LAH|
(((u->x->d->) in ura) && (y in x."(lah.member))) =>
SS_DSoD[u, X, y, d, I, I

}
check TestConflictll 3
II' Conflicts with the Strong Spatial Form of DSOD: Condition 4
assert TestConflict11_4{
all u: User, disj x, y: Role, d: Time, |, I Location,

ura: UserRoleActivate.member, tlah: TLAH|
(((u->x->d->) in ura) && (y in x."(tlah.member)) &&
(d in y.RoleEnableDur)) =>
SS_DSoD[u, x, v, d, I, I
}
check TestConflictl1l_4

/I Conflicts with the Strong Form of DSOD
assert TestConflict12{

all u: User, disj x, y: Role, d, d: Time, I, I Location,
ura: UserRoleActivate.member, uah: UAH, tah: TAH, lah: LAH , tlah: TLAH|
(((u->x->d->) in ura) && (y in x.((uah + tah + lah + tlah).me mber)) &&

(d in y.RoleEnableDur)) =>
S DSoD[u, x, y, d, d, I, I]

}
check TestConflict12

/I Conflicts in Permission Role Assignment
assert TestConflict13{
all p: Permission, r: Role, d: Time, I: Location, rpa: RolePe rmissionAssignment,
re: RoleEnable |
(r->p->d->I in rpa.member) => (r->d->| in re.member)
}
check TestConflict13

/I Conflicts between r2rUPD and the Weak Form of SSOD-PRA

215

assert TestConflict14_1{
all rdtr, rdte: Role, disj p, g: Permission, d: Time, |: Locat
(r2rUPD[rdtr, rdte, p] && r2rUPDIrdtr, rdte, q]) =>
W_SSoD_PRA[rdte, p, q, d,]

}
check TestConflict14 1

/I Conflicts between r2rTPD and the Weak Form of SSOD-PRA
assert TestConflict14 2{
all rdtr, rdte: Role, disj p, q: Permission, d, d: Time, I: Lo
(r2rTPD[rdtr, rdte, p, d] && r2rTPD[rdtr, rdte, q, d7) =>
W_SSoD_PRA[rdte, p, g, d, []
}
check TestConflictl4 2

/I Conflicts between r2rLPD and the Weak Form of SSOD-PRA
assert TestConflict14 3{
all rdtr, rdte: Role, disj p, g: Permission, d: Time, I, I Lo
(r2rLPD[rdtr, rdte, p, I'1 && r2rLPD[rdtr, rdte, g, I]) =>
W_SSoD_PRA[rdte, p, q, d,]
}
check TestConflictl4 3

/I Conflicts between r2rTLPD and the Weak Form of SSOD-PRA
assert TestConflict14_4{
all rdtr, rdte: Role, disj p, g: Permission, d, d": Time, |, I
(r2rTLPD[rdtr, rdte, p, d', Il && r2rTLPD[rdtr, rdte, g, o’
W_SSoD_PRA[rdte, p, g, d, []
}
check TestConflictl4 4

II' Conflicts between r2rUPD and the Strong Temporal Form of S
assert TestConflict15_1{
all rdtr, rdte: Role, disj p, g: Permission, d, d: Time, I: Lo
(r2rUPD[rdtr, rdte, p] && r2rUPDIrdtr, rdte, q]) =>
ST _SSoD_PRA[rdte, p, g, d, d,]
}
check TestConflict15_1

II' Conflicts between r2rTPD and the Strong Temporal Form of S
assert TestConflictl5_2{
all rdtr, rdte: Role, disj p, q: Permission, d, d: Time, I: Lo
(r2rTPD[rdtr, rdte, p, d] && r2rTPD[rdtr, rdte, q, d7) =>
ST_SSoD_PRAJrdte, p, q, d, d, 1]
}
check TestConflictl5_2

II' Conflicts between r2rLPD and the Strong Temporal Form of S
assert TestConflictl5 3{
all rdtr, rdte: Role, disj p, g: Permission, d, d: Time, |, I
(r2rLPD[rdtr, rdte, p, Il && r2rLPD[rdtr, rdte, g, I]) =>
ST_SSoD_PRA[rdte, p, g, d, d,]
}
check TestConflictl5 3

216

ion |

cation |

cation |

. Location |
1) =>

SOD-PRA

cation |

SOD-PRA

cation |

SOD-PRA

. Location |

/I Conflicts between r2rTLPD and the Strong Temporal Form of
assert TestConflictl5_4{
all rdtr, rdte: Role, disj p, g: Permission, d, d: Time, |, I
(r2rTLPD[rdtr, rdte, p, d', Il && r2rTLPD[rdtr, rdte, g, o
ST_SSoD_PRA[rdte, p, q, d, d, 1]
}
check TestConflictl5 4

II' Conflicts between r2rUPD and the Strong Spatial Form of SS
assert TestConflict16_1{
all rdtr, rdte: Role, disj p, g: Permission, d: Time, |, I Lo
(r2rUPD[rdtr, rdte, p] && r2rUPDIrdtr, rdte, q]) =>
SS_SSoD_PRAJrdte, p, q, d, |, I
}
check TestConflict16_1

/I Conflicts between r2rTPD and the Strong Spatial Form of SS
assert TestConflict16_2{
all rdtr, rdte: Role, disj p, g: Permission, d, d: Time, |, I
(r2rTPD[rdtr, rdte, p, d] && r2rTPD[rdtr, rdte, q, d7) =>
SS SSoD_PRA[rdte, p, q, d, I, I
}
check TestConflictl6_2

II' Conflicts between r2rLPD and the Strong Spatial Form of SS
assert TestConflict16 3{
all rdtr, rdte: Role, disj p, g: Permission, d: Time, |, I Lo
(r2rLPD[rdtr, rdte, p, I'1 && r2rLPD[rdtr, rdte, g, I]) =>
SS_SSoD_PRAJrdte, p, q, d, |, I
}
check TestConflict16 3

II' Conflicts between r2rTLPD and the Strong Spatial Form of S
assert TestConflict16_4{
all rdtr, rdte: Role, disj p, g: Permission, d, d: Time, |, I
(r2rTLPD[rdtr, rdte, p, d', Il && r2rTLPD[rdtr, rdte, g, o’
SS_SSoD_PRA[rdte, p, g, d, |, I
}
check TestConflictl6_4

Il Conflicts between r2rUPD and the Strong Form of SSOD-PRA
assert TestConflict17_1{
all rdtr, rdte: Role, disj p, g: Permission, d, d": Time, |, I
(r2rUPD[rdtr, rdte, p] && r2rUPDIrdtr, rdte, q]) =>
S _SSoD_PRA[rdte, p, q, d, o, |, I
}
check TestConflictl7_1

II' Conflicts between r2rTPD and the Strong Form of SSOD-PRA
assert TestConflictl7_2{
all rdtr, rdte: Role, disj p, g: Permission, d, d: Time, |, I
(r2rTPD[rdtr, rdte, p, d] && r2rTPD[rdtr, rdte, g, d]) =>
S_SSoD_PRA[rdte, p, q, d, d, I, I

217

SSOD-PRA

. Location |
1) =

OD-PRA

cation |

OD-PRA

. Location |

OD-PRA

cation |

SOD-PRA

. Location |
1) =

. Location |

. Location |

}
check TestConflictl7_2

II' Conflicts between r2rLPD and the Strong Form of SSOD-PRA
assert TestConflictl7_3{
all rdtr, rdte: Role, disj p, g: Permission, d, d": Time, |, I . Location |
(r2rLPD[rdtr, rdte, p, I'1 && r2rLPD[rdtr, rdte, g, I]) =>
S _SSoD_PRA[rdte, p, q, d, o, |, I
}
check TestConflictl7_3

II' Conflicts between r2rTLPD and the Strong Form of SSOD-PRA
assert TestConflictl7_4{
all rdtr, rdte: Role, disj p, g: Permission, d, d: Time, |, I . Location |
(r2rTLPD[rdtr, rdte, p, d', Il && r2rTLPDJrdtr, rdte, g, d’ ,) =
S_SSoD_PRA[rdte, p, q, d, d, I, I
}
check TestConflictl7_4

/I Conflicts between r2rURD and the Weak Form of DSOD
assert TestConflict18_1{
all u: User, disj rdtr, rdte: Role, d: Time, I: Location |
r2rURD[rdtr, rdte] => W_DSoD[u, rdtr, rdte, d, 1]
}
check TestConflict18 1

II' Conflicts between r2rTRD and the Weak Form of DSOD
assert TestConflict18_2{
all u: User, disj rdtr, rdte: Role, d, d: Time, I: Location |
r2rTRD[rdtr, rdte, d] => W_DSoDJ[u, rdtr, rdte, d,]

}
check TestConflict18 2

II' Conflicts between r2rLRD and the Weak Form of DSOD
assert TestConflict18_3{
all u: User, disj rdtr, rdte: Role, d: Time, I, I Location |
r2rLRD[rdtr, rdte, IT => W_DSoD[u, rdtr, rdte, d,]

}
check TestConflict18 3

II' Conflicts between r2rTLRD and the Weak Form of DSOD
assert TestConflict18_4{
all u: User, disj rdtr, rdte: Role, d, d: Time, I, I Locatio n
r2rTLRD[rdtr, rdte, d’, IT => W_DSoDJ[u, rdtr, rdte, d,]
}
check TestConflict18 4

II' Conflicts between r2rURD and the Strong Temporal Form of D SOD
assert TestConflict19_1{

all u: User, disj rdtr, rdte: Role, d, d: Time, I: Location |

r2rURD[rdtr, rdte] => ST_DSoD[u, rdtr, rdte, d, d’,]

}
check TestConflict19 1

218

II' Conflicts between r2rTRD and the Strong Temporal Form of D
assert TestConflict19_2{
all u: User, disj rdtr, rdte: Role, d, d: Time, I: Location |
r2rTRD[rdtr, rdte, d] => ST_DSoD[u, rdtr, rdte, d, d’, I]

}
check TestConflict19 2

/I Conflicts between r2rLRD and the Strong Temporal Form of D
assert TestConflict19_3{
all u: User, disj rdtr, rdte: Role, d, d: Time, |, I Locatio
r2rLRD[rdtr, rdte, IT => ST_DSoD[u, rdtr, rdte, d, d’, 1]

}
check TestConflict19_3

Il Conflicts between r2rTLRD and the Strong Temporal Form of
assert TestConflict19_4{
all u: User, disj rdtr, rdte: Role, d, d: Time, |, I Locatio
r2rTLRD[rdtr, rdte, d’, I'1 => ST_DSoD[u, rdtr, rdte, d, d',
}
check TestConflict19 4

II' Conflicts between r2rURD and the Strong Spatial Form of DS

assert TestConflict20_1{
all u: User, disj rdtr, rdte: Role, d: Time, I, I Location |
r2rURD[rdtr, rdte] => SS_DSoD[u, rdtr, rdte, d, I, I']

}
check TestConflict20_1

II' Conflicts between r2rTRD and the Strong Spatial Form of DS
assert TestConflict20_2{
all u: User, disj rdtr, rdte: Role, d, d: Time, |, I Locatio
r2rTRD[rdtr, rdte, d] => SS_DSoD[u, rdtr, rdte, d, I, I

}
check TestConflict20_2

II' Conflicts between r2rLRD and the Strong Spatial Form of DS
assert TestConflict20_3{
all u: User, disj rdtr, rdte: Role, d: Time, I, I Location |
r2rLRD[rdtr, rdte, Il => SS_DSoD|u, rdtr, rdte, d, I, I
}
check TestConflict20_3

II' Conflicts between r2rTLRD and the Strong Spatial Form of D
assert TestConflict20_4{
all u: User, disj rdtr, rdte: Role, d, d: Time, |, I Locatio
r2rTLRD[rdtr, rdte, o', Il => SS_DSoDlu, rdtr, rdte, d, I, |

}
check TestConflict20 4

II' Conflicts between r2rURD and the Strong Form of DSOD
assert TestConflict21_1{
all u: User, disj rdtr, rdte: Role, d, d: Time, |, I Locatio
r2rURD[rdtr, rdte] => S_DSoD[u, rdtr, rdte, d, d’, I, I']

219

SOD

SOD

DSOD

oD

oD

oD

SOD

n

check TestConflict21 1

II' Conflicts between r2rTRD and the Strong Form of DSOD
assert TestConflict21_2{
all u: User, disj rdtr, rdte: Role, d, d: Time, I, I Locatio n
r2rTRD[rdtr, rdte, d] => S_DSoD[u, rdtr, rdte, d, d’, I, I
}
check TestConflict21_2

II' Conflicts between r2rLRD and the Strong Form of DSOD
assert TestConflict21_3{
all u: User, disj rdtr, rdte: Role, d, d: Time, I, I Locatio n
r2rLRD[rdtr, rdte, Il => S_DSoDlu, rdtr, rdte, d, d’, I, I]

}
check TestConflict21 3

II' Conflicts between r2rTLRD and the Strong Form of DSOD
assert TestConflict21_4{
all u: User, disj rdtr, rdte: Role, d, d: Time, I, I Locatio n |
r2rTLRD[rdtr, rdte, o', Il => S_DSoD[u, rdtr, rdte, d, d’, | , 1

}
check TestConflict21 4

220

Appendix B

Specification of the STRBAC Model for
the Dengue Decision Support (DDS)
System

B.1 OCL Constraints for DDS’'s STRBAC Model

context JurisEpi

inv jurisEpiCon : (self.tasks = (Task :: ONE ->
including (Task :: THREE)) and

self.location = Location :: B and

self.timeCon = Time :: a) or

(self.tasks = (Task :: SEVENTEEN -> including
(Task :: SEVENTEEN)) and

self.location = Location :: B and

selftimeCon = Time :: b)

context StateEpi

inv stateEpiCon : (self.tasks = (Task :: SIXTEEN ->
including (Task::SIXTEEN)) and

self.location = Location :: A and

selftimeCon = Time :: a)

-- The following OCL excerpt represents that the

-- StateEpi inherits the permissions of the JurisEpi.

or (self.tasks = (Task :: ONE -> including

(Task :: THREE)) and self.location = Location :: B and
selftimeCon = Time :: a) or

(self.tasks = (Task :: SEVENTEEN -> including

(Task :: SEVENTEEN)) and self.location = Location :: B
and selftimeCon = Time :: b)

context LocalVCTeam

inv localVCTeam : (self.tasks = (Task :: SEVEN ->
including (Task :: SEVEN)) and

221

(self.location = Location :: B or
self.location = Location :; E) and
self.timeCon = Time :: c) or
(self.tasks = (Task :: THIRTEEN ->
including (Task :: THIRTEEN)) and
(self.location = Location :: B or
self.location = Location :: D) and
self.timeCon = Time :: a) or
(self.tasks = (Task :: ONE ->
including (Task :: NINE)) and
(self.location = Location :: B or
self.location = Location :: D) and
self.timeCon = Time :: a)

context Clinician

inv clinicialCon : (self.tasks = (Task :: ONE ->
including (Task :: TWO) -> including

(Task :: THREE) -> including (Task :: FOUR) ->
including (Task :: FIVE) -> including

(Task :: SIX)) and self.location = Location :: C
and selftimeCon = Time :: a)

context ClinicEpi

inv clinicEpiCon : (self.tasks = (Task :: SEVENTEEN ->
including (Task :: SEVENTEEN)) and

self.location = Location :: C and

selftimeCon = Time :: b) or

((self.tasks = (Task :: ONE -> including

(Task :: TWOQ) -> including (Task :: THREE) ->
including (Task :: FOUR) -> including (Task :: FIVE) ->
including (Task :: SIX)) and

self.location = Location :: C and

selftimeCon = Time : a))

context JurisVC

inv jurisVCCon : (self.tasks = (Task :: ONE ->
including (Task :: EIGHT) -> including

(Task :: NINE) -> including (Task :: TEN) ->
including (Task :: TWELVE) -> including

(Task :: FOURTEEN)) and

self.location = Location :: B and

selftimeCon = Time :: a)

context StateVC

inv stateVCCon : (self.tasks = (Task :: ELEVEN ->
including (Task :: ELEVEN)) and

self.location = Location :: A and

222

self.timeCon = Time :: a) or

(self.tasks = (Task :: FIFTEEN -> including

(Task :: FIFTEEN)) and self.location = Location :: A and
self.timeCon = Time :: a) or

(self. tasks = (Task :: ONE -> including (Task :: EIGHT) ->
including (Task :: NINE) -> including(Task :: TEN) ->
including (Task :: TWELVE) -> including

(Task :: FOURTEEN)) and self.location = Location :: B and
selftimeCon = Time :: a)

context Person

inv no_eleven_fifteen : self.roles ->

forAll(rl , r2 : Role |

(rl.tasks -> includes (Task :: ELEVEN) implies
(r2.tasks -> excludes (Task :: FIFTEEN))) and
(rl.tasks -> includes (Task :: FIFTEEN) implies
r2.tasks -> excludes (Task :: ELEVEN)))

inv no_sixteen_seventeen : self.roles ->

forAll(rl , r2 : Role |

(rl.tasks -> includes (Task :: SIXTEEN) implies
(r2.tasks -> excludes (Task :: SEVENTEEN))) and
(rl.tasks -> includes (Task :: SEVENTEEN) implies
r2.tasks -> excludes (Task :: SIXTEEN)))

B.2 Generated Alloy Model for DDS’s STRBAC Model

module DDSV2
abstract sig Rolef
location:one Location,
timeCon:one Time,
tasks:some Task,
uses:set Person}

one sig StateEpi extends Role{}
one sig JurisEpi extends Role{}
one sig ClinicEpi extends Role{}
one sig Clinician extends Role{}
one sig StateVC extends Role{}
one sig JurisVC extends Role{}
one sig LocalVCTeam extends Rolef}

some sig Person{roles:some Role}
abstract sig Location{}

one sig A extends Location{}
one sig B extends Location{}

223

one sig C extends Location{}
one sig D extends Location{}
one sig E extends Location{}

sig Time{}

sig a in Timef}
sig b in Time{}
sig ¢ in Time{}

abstract sig Task{}

one sig ONE extends Task{}

one sig TWO extends Task{}

one sig THREE extends Task{}
one sig FOUR extends Task{}

one sig FIVE extends Task{}

one sig SIX extends Task{}

one sig SEVEN extends Task{}
one sig EIGHT extends Task{}

one sig NINE extends Task{}

one sig TEN extends Task{}

one sig ELEVEN extends Task{}
one sig TWELVE extends Task{}
one sig THIRTEEN extends Task{}
one sig FOURTEEN extends Task{}
one sig FIFTEEN extends Task{}
one sig SIXTEEN extends Task{}
one sig SEVENTEEN extends Task{}

fact StateEpi_stateEpiCon_fact{
all self: StateEpi | StateEpi_stateEpiCon[self]}

fact JurisEpi_jurisEpiCon_fact{
all self: JurisEpi | JurisEpi_jurisEpiCon[self]}

fact ClinicEpi_clinicEpiCon_fact{
all self: ClinicEpi | ClinicEpi_clinicEpiCon[self]}

fact Clinician_clinicialCon_fact{
all self: Clinician | Clinician_clinicialCon[self]}

fact StateVC_stateVCCon_fact{
all self: StateVC| StateVC_stateVCCon[self]}

fact JurisVC_jurisVCCon_fact{
all self: JurisVC | JurisVC_jurisVCCon][self]}

224

fact LocalVCTeam_localVCTeam_fact{
all self: LocalVCTeam | LocalVCTeam_localVCTeam[self]}

fact Person_no_eleven_fifteen_fact{
all self: Person | Person_no_eleven_fifteen[self]}

fact Person_no_sixteen_seventeen fact{
all self. Person | Person_no_sixteen_seventeen[self]}

fact Asso_Role_role_tasks_Task{
Role <: tasks in (Role) set->some (Task)}

fact Asso_Person_uses roles Role{
Person <: roles in (Person) set->some (Role) &&
Role <: uses in (Role) some->set (Person)}

fact Person_uses_roles_Role_symmetry{
Role <: uses = "(Person <: roles)}

pred StateEpi_stateEpiCon[self: StateEpil{
(self.tasks = SIXTEEN + ONE + THREE + SEVENTEEN) &&
(self.location = A) && (self.timeCon = a)}

pred JurisEpi_jurisEpiCon[self. JurisEpi{

((self.tasks = ONE+THREE) && (self.location = B) &&
(self.timeCon = a)) || ((self.tasks = SEVENTEEN) &&
(self.location = B) && (self.timeCon in Time))}

pred ClinicEpi_clinicEpiCon[self: ClinicEpil{

((self.tasks = SEVENTEEN) && (self.location = C) &&
(self.timeCon in Time)) ||

((self.tasks = ONE+TWO+THREE+FOUR+FIVE+SIX) &&
(self.location = C) && (self.timeCon = a))}

pred Clinician_clinicialCon[self: Clinician]{
(self.tasks = ONE+TWO+THREE+FOUR+FIVE+SIX) &&
(self.location = C) && (self.timeCon = a)}

pred StateVC_stateVCConl[self: StateVC]{

((self.tasks = ELEVEN+FIFTEEN+ONE+EIGHT+NINE+
TEN+TWELVE+FOURTEEN) &&

(self.location = A) && (self.timeCon = a))}

pred JurisVC_jurisVCCon[self: JurisVC]

((self.tasks = ONE+EIGHT+NINE+TEN+TWELVE+
FOURTEEN) && (self.location = B) &&

225

(selftimeCon = a))}

pred LocalVCTeam localVCTeam[self: LocalVCTeam]{
((self.tasks = SEVEN) && ((self.location = B) ||
(self.location = E)) && (self.timeCon = c)) ||
((self.tasks = THIRTEEN) && ((self.location = B) ||
(self.location = D)) && (self.timeCon = a)) ||
((self.tasks = ONE+NINE) && ((self.location = B) ||
(self.location = D)) && (self.timeCon = a))}

pred Person_no_eleven_fifteen[self: Person){

all r1, r2: self.roles |

((ELEVEN in rl.tasks) => (FIFTEEN lin r2.tasks)) &&
((FIFTEEN in rl.tasks) => (ELEVEN 'lin r2.tasks))}

pred Person_no_sixteen_seventeen[self: Person}{

all r1, r2: self . roles |

((SIXTEEN in rl.tasks) => (SEVENTEEN lin r2.tasks)) &&
((SEVENTEEN in rl.tasks) => (SIXTEEN lin r2.tasks))}

assert NoConflictPermsSTVCAssigned{

all r. Person.roles, d: Time, I: Location|
((ELEVEN in r.tasks) && (d in r.timeCon) &&
(I'in r.location)) =>

((FIFTEEN lin r.tasks) && (d in r.timeCon) &&
(I'in r.location))}

check NoConflictPermsSTVCAssigned for 8

assert NoConflictPermsSTVC{

all r. StateVC, d: Time, |: Location|

((ELEVEN in r.tasks) && (d in r.timeCon) &&
(I'in r.location)) =>

((FIFTEEN lin r.tasks) && (d in r.timeCon) &&
(I'in r.location))}

check NoConflictPermsSTVC for 8

assert NoConflictPermsSTEpiAssigned{

all r. Person.roles, d: Time, I: Location|
((SIXTEEN in r.tasks) && (d in r.timeCon) &&
(I'in r.location)) =>

((SEVENTEEN lin r.tasks) && (d in r.timeCon) &&
(I in r.location))}

check NoConflictPermsSTEpiAssigned for 8

assert NoConflictPermsSTEpi{

all r. StateEpi, d: Time, I: Location|
((SIXTEEN in r.tasks) && (d in r.timeCon) &&

226

(I'in r.location)) =>

((SEVENTEEN lin r.tasks) && (d in r.timeCon) &&
(I in r.location))}

check NoConflictPermsSTEpi for 8

227

Appendix C

STARBACD SoD Violation Detection
Algorithm

C.1 Finding common predecessors in a DAG

LetV ={1,2,...,n}. Given a subséb of V, the characteristic vectoof Sis a bit vector
that has a 1 in positionif and only ifi € S. Representing a subset’s characteristic vector with
a bit array allows one to determine whetherSin O(1) time.

In a directed graplG = (V,E), let thein-degreeof a vertexv be the number of edges
directed intov. That is, the in-degree of is the cardinality of the sef(u,v)|(u,v) € E}.
Similarly, the out-degree of is the number of edges directed outwthat is, the cardinality
of the set{(v,u)|(v,u) € E}.

An undirected graph is a special case of a directed grapheyifi@r every directed edge
(u,v), (v,u) is also a directed edge. In this case, we denote the{paiv), (v,u)} by uv. The
underlying undirected grapbf a directed graph is the graph obtained by addwg) as an
edge wheneveu, v) is an edge.

In a directed graph, anid-neighboris a vertexu that has a directed edda,v) to v, and
anout-neighboiis a vertexw such thatv has a directed edge,w) tow. If G is a DAG, let a
predecessoof vertexv be any vertexv such that there is a directed path frento v. Similarly,

a successopnf v is any vertexu such that there is a directed path franto u. A vertex is a
sourcein a DAG if its in-degree is 0 and sinkif its out-degree is 0. Apath tree rooted at

vertex wis a subset of the edges Gfthat form a tree rooted at, oriented away fromv, and

228

reaching every successorwf (A DFS or BFS tree is a special case of a path tree.)

We consider variants of the following problem: Given a D&G= (V,E) and a paifu, v}
of vertices, determine whetharandv have a common predecessor.

Let us call{u,v} aquery Letn=|V| be the number of verticem)= |E| be the number of
edgesk be the number of queries. Lptdenote the number of sources®f We may assume
that every vertex has either in-degree or out-degree gréae zero, since vertices failing
this property are irrelevant to the problem and can be rechéneen the graph in linear time.
Thereforen = O(m), and a time bound d®(n-+ m) can be simplified t@®(m).

Let G' denote thetransposeof G, which is obtained by reversing the directions of all
edges ofG. That is,G" = (V,E’), whereE’ = {(v,u)|(u,v) € E}. Given an adjacency-list
representation o, it is well known that it take©(n-+ m) time to find the adjacency lists of
the transpos&' by radix sorting the edges using source vertex as the segosdé key and
destination vertex as the primary sort key. An adjacenstyrépresentation of a graph gives,

for each vertex, a list of out-neighbors; this gives, forteaertex, a list of in-neighbors.

C.1.1 Anaive algorithm for the static and dynamic cases

If the numberk of queries is 1, the query can be answere®{m) time by performing
depth-first search from in GT, marking all visited vertices, and then performing deptstfi
search fronvin GT, determining whether any marked vertices are encountered.

A sequence ok queries ork graphs, each witD(m) edges, take®(km) time. This gives
a time bound ofo(km) for the dynamiccase where edges can be added to or deleted Bom

between queries, amdis the maximum number of edges the graph has at any point.

Some improvements wherk is large

Note thatk can be quadratic in the number of verticesGlfs dynamic, then queries may
be repeated a§ changes, and there is no upper boundkoWe consider the possibility of
better bounds tha®(km) in these cases.

In the static case, we observe that two vertices have a conpreatecessor if and only

229

if they have a common predecessor that is a source. For eacbesw, we may label all
successors ok by depth-first search. This gives each vertex at npdsbels. Moreover, if a
source is added to a vertex’s list of labels, we add it to tlek led the list. That way, all lists of
labels are sorted in the order in which the sources were psece This labeling take3(pm)
time, and a query now také3(p) time to determine whether the two query vertices share a
common label. Summarizing, this gives @i(k+ m)p) algorithm to add the labels and then
process th& queries.

If k= o0(p), this isO(mp), which is worse than th®(km) bound we got above. I = o(k)
andk = O(m), the bound is stilD(mp), but this is asymptotically better than t&¢km) bound
we got above, and ifn = o(k), then the bound i©(kp) which is also better tha®(km),

sincep = O(n) = O(m). Summarizing, this approach gives a better asymptotic hovimen

p=0(k).
Adding edges toG between queries

Let us now consider how we might do better tf@fkm) for the dynamic case K is large
and edges may be added, but not deleted. In this case, we matama path tree rooted at
each sourcev. Below, we see that we maintain the invariant that the pa&th is a DFS tree.
Vertices once again carwy in a sorted list of source labels if they are a successu, tiat is,
if they are inw's path tree.

Initially, we compute a path tree from each source using RES(u,v) be an added edge.
For each vertexv in u's list of labels, we extend the DFS tree rootednaby performing a
depth-first search from, retreating whenever a vertex labelds encountered. Let us call
this anincremental DFSUsingO(p) space to store the characteristic bit vector of the set of
labels at each vertex allows us to look up whetheés a label of a vertex if©(1) time, using
a total ofO(m+ np) space. liv was previously a source, we may remove the tree rooted at
since it is no longer a source. It is trivial to do this@in) = O(m) time.

Each edge is traversed once over all incremental DFStw,agiving a bound ofO(m) to

update the path tree rootedvabver all edge insertions. The addition of an edge nevereseat

230

a new source. This therefore gives @imp) bound for all updates to trees, wheapds the
initial number of sources.

Determining whether two vertices lie in a common DFS treeecagain take®(p) time,
for a total ofO((k+ m)p), wherem is the final number of edges @. The analysis of when
this is better than th®(km) bound we obtained above is the same as it is forQfg+ m)p)
bound we got for the static case.

In fact, it is possible to implement this algorithm withogicording the trees, and only
making use of the labels to guide the incremental DFS opersitiHowever, if the trees are
maintained, an interesting observation is that this maist&he invariant that each tree is a
DFS tree. Suppose this is true fois treeT,, before it was extended g, due to the addition
of (u,v), giving a new grapl@'. It is easy to see that in a DFS &f where(u,V) is the last
edge considered at T,y is the state of the depth-first tree @hduring a run of DFS just before

(u,v) is considered, wherg, V) is the last edge in’s adjacency list.

C.1.2 Deleting edges fronGc between queries

Let us now suppose that edges are only deleted fGonfror this, we maintain, for each
source, a path tree rooted at the source. Once again, edek iglabeled with a sorted list of
sources that it is a successor of.

When a new source is created by the removal of an edge, we USeédJfet an initial path
tree for the new source.

It remains to describe how to update an existing path Tyeéor a single sourcev after
deletion of an edge; path trees for all sources are updatibdig same procedure.

When an edgéu,v) is removed fronG, we find whethefu,v) is an edge ofy,. If itis not,
Tw remains a path tree, and we are done.

Definition 55
Let w be a source, IeTy, be the current path tree rootedvatand let(u,v) be an edge o6
that is also an edge ifiy and that is deleted fror®, yielding G'. Removal of(u, V) splits Ty

into two subtrees, the subtr@gof T,, rooted atv, and the remaindex;, of T,,. Thestatusof a

231

vertex of G’ is whether it is reachable fromin G'.

Before the deletion ofu,v) the status of all vertices d& is known: the ones that are
reachable fromwv are just the vertices i, and the remaining vertices are not reachable.
Lemma 4
Deletion of(u,Vv) can only change the status of some verticeg,iftom reachableto unreach-
able If a vertexx of Ty continues to be reachable, then so does every vertex in bieesiy

of T, rooted atx.

Proof Removal of an edge cannot make a vertex reachable famt was not reachable
before, so the status of vertices noflijpdoes not change. The status of vertice§jmoes not
change, since the edges of this tree give path@ iffom w to every vertex irl;,. Lety be a
vertex inx’s subtree ofT,. If x continues to be reachable, then there is a patti G’ from w
to x. Appending the unique tree path fronto y in Ty to P yields a directed path fromw toy,

which implies thaty continues to be reachable.

The goal is to determine the new status of each nadel,. Our strategy is to process the
vertices of unknown status in an order such that when it ie tormake the status of a vertex
x known, the status of all in-neighborsfs known. This reduces the problem of determining
X's status to that of determining whether it has an in-neighbat is known to be a successor

of w.

Lemmab
Let (vq,Vo,...Vn) be a topological sort db. If the status of vertices of unknown status is made
known in the order in which they appear in this sort, then wihentime to make the status of

a vertexv; known, the status of all in-neighbors is known.

Proof By induction on the number of vertices whose status is madevknwhen it is time
to makev;’s status known, the status of all earlier vertices in togaal order is known. All

in-neighbors of a vertex are earlier in topological order.

232

Let us give an overview of our strategy. Before beginning apgrations on our initial
DAG, we assign topological sort numbers to the verticesef@h of an edge does not inval-
idate a topological sort, so this numbering remains a valpblogical sort after any number
of edge deletions. Our strategy for obtaining our time bosrtd take advantage of Lemma 5
by using a priority queue, keyed on topological-sort nurep&r dispense vertices @f in
topological order. By Lemma 5, when a vertexs dispensed from the priority queue, the
reachability status of all in-neighbors is known. We detemwhetheix is reachable fromv
by determining whether it has an in-neighbor that is realehtbm w. Moreover, when an
in-neighbor is found to be unreachable, no subsequent eglgéah will make it reachable,
so after each edge deletion, if a verteis inserted and dispensed from the priority queue, we
may resume the search of its in-neighbor list where we |éfihef last timex was inserted and
dispensed from the priority queue. This ensures that ovexdgle deletions, each element of
X's in-neighbor list is examined only once to determine wkethis reachable.

A critical element for our time bound is to observe the foliogvconstraint on which ver-

tices we can touch:

e Constraint: We touch a vertex of T, only if it becomes unreachable or has no reachable

parent inTy.

We accomplish this by insertingto the priority queue only ik = v or the status of its
parent inTy is found to be unreachable from If a vertexx is determined to have a reachable
in-neighborz, then, by Lemma 4, all vertices ifx are reachable frow, so we can include all
of them in the new path tree rootedTatin O(1) time by adding z x) to the tree. This observes
the constraint by avoiding touching lower verticedin If x is found not to be reachable, then
we can touch the children afin T,. We insert these children in the priority queue.

Lemma 6

Vertices are dispensed from the priority queue in topolagicder.

Proof Whenx is extracted, it has an earlier topological number of anyexein the priority

queue. If it is determined to be a successowpho new vertices are inserted before another

233

extraction. If it is determined not to be a successav,afs children inT, are inserted, and since
there is an edge d& from x to each of these children, they have larger topological remnb
thanx does. In either case, the minimum topological number in tih@&ify queue increases

every time a vertex is extracted.

We can now give the detailed implementation that gives time tbound. A given vertex
X might be inserted to the priority queue any time an edge istdél After the first timexis
inserted to the priority queue, we maintain a poingiinto x’s in-neighbor list. The pointer

initially points to the beginning af’s in-neighbor list, and satisfies the following invariants

¢ All elements ofx’s in-neighbor list that preceds, are known to be non-successorsnof

or have ceased to be in-neighborsof

e After Ty is updated, i is a node ofTy, thenx,, points to its parent iy,

Wheneverx is inserted in the priority queue, it has lost its parenfynor the parent has
ceased to be reachable from In either case, we can advanggwithout violating the first
constraint. We iteratively advanog, until we find an in-neighboe that is known to be a
successor of ofv, or reach the end of the in-neighbor list.zlfs found, we leave, pointing
to z, and makez Xs parent, satisfying the second invariant. If it is not fdumve labelx as
unreachable and insert its children in the priority queue.

Lemma 7
The foregoing algorithm correctly updates the status afiadles as reachable or not reachable

from w after an edge deletion, and modifiggto be a correct path tree.

Proof That the invariants are maintainedxgpfollows from the fact that once an in-neighbor is
labeled as unreachable, it is never relabeled as reacisaiide,edge insertions are not allowed.
That the status of the in-neighbors»oére all correctly labeled wheneveiis extracted from
the priority queue follows from Lemmas 5 and 6. It followsttlas correctly labeled. I«
remains reachable, that the descendanksrefmain correctly labeled and included in a correct

path tree follows from Lemma 4. Sinceis an arbitrary node of, that is inserted to and

234

extracted from the priority queue, and all node3pére either inserted and extracted from the
priority queue, it follows that all vertices @i, are either correctly labeled as non-successors of
w, or are correctly linked into a new path tree rootedvat

Lemma 8

The above algorithm take&3(mlogn) time over all edge deletions.

Proof Every time a node is inserted to the priority queua, is advanced in its adjacency
list. The time spent over all insertionsfn the priority queue i©(logn) times the in-degree
of x. The sum of in-degrees of all vertices@¢m), and the bound follows.

Lemma 9

Let p be the number of sources that appear during edge deletioGs tirntakesO(pmlogn)
time to maintain the data structures for common-predecaegsgries over all edge deletions,

and they support queries @(p) time.

Proof The above algorithm for a given soureeis carried out for each of th®(p) sources
whenever an edge is deleted, in sorted order of sourcesalléngs us to label each vertex with
a sorted list of sources that it has ceased to be a succesasraofesult of the edge deletion.
These can then be removed from its list of sources that itash&ble from inO(p) time. A
common-predecessor query tak&9) time to determine, for the two given vertices, whether

the two sorted lists of sources that they are successorstdioca common element.

235

Appendix D

ALLOY Specification of the Small

Healthcare Organization

module TrustRBACV5

open util/integer

abstract sig User{}

one sig Allen, Bell, Cox, Davis, Evans, Miller, Nelson exten

abstract sig Role{}
one sig SeniorDoctor, JuniorDoctor, Assistant, Cardiolog

Patient extends Role{}

Il User Role assignment

one sig UserRoleAssign{URAsmember: User -> Role}
Il User Role acquire

one sig UserRoleAcquire{URAcgmember: User -> Role}
II' Role Hierarchy

one sig RoleHierarchy{RHmember : Role -> Role}

Il User Role Assignments

236

ds User{}

ist, Surgeon,

fact URAS{
UserRoleAssign.URAsmember =
Allen->(SeniorDoctor + Surgeon) + (Bell+Nelson)->(Junio
Cox->(Cardiologist) +

Davis->(Assistant) + Evans->(Patient) + Miller->(Senior

II' Role Hierarchy
fact RH{
RoleHierarchy.RHmember = SeniorDoctor->JuniorDoctor +

JuniorDoctor->Assistant}

Il User Role Acquire
fact URAcq{
UserRoleAcquire.URAcgmember = UserRoleAssign.URAsmemb

(UserRoleAssign.URAsmember).”(RoleHierarchy. RHmembe

Il Role Hierarchy are acyclic
fact NocycleRH{
all . Role, RH: RoleHierarchy| r !in r."(RH.RHmember)}

/I Cardinality Constraint

pred Cardinality(r: Role, uracq: User->Role){
(#((uracq).r) >= 1) &&
(#((uracq).r) <= 1)}

II' Relation Constraint: Bi Complementary
pred Complement(u:User, rl, r2: Role, uracq: User->Role){

(u->r2 in uracq) <=> (u->rl in uracq)}

237

rDoctor) +

Doctor)}

er +

/I Relation Constraint: Bi Conflict
pred SoD(u:User, rl, r2: Role, uracq: User->Role){

(u->rl in uracq) => not (u->r2 in uracq)}

/IDelegation (Grant)
pred Grant[u: User, r. Role, uracq, uracq: User->Role}{

uracq’ = uracq + (u->r)}

/IDelegation (Transfer)
pred Transferful, u2: User, r: Role, uracq, uracq: User->R
uracq’ = uracq + (u2->r) - (ul->r)}

run Transfer

/IRelation violation in the presence of delegation (Transf
assert TestConflict3{
all ul, u2: User, r: Role, uracq, uracq: User->Role|
((ul = Allen) && (u2 = Bell) && (r=Surgeon) &&
(uracq = UserRoleAcquire.URAcgmember) &&
(ul->r in UserRoleAcquire.URAcgmember) &&
(
Transfer[ul, u2, r, uracq, uracq]) =>
SoD[u2, r, Assistant, uracq’l}
check TestConflict3

/IRelation violation in the presence of delegation (Transf
assert TestConflict4{

all ul, u2: User, r: Role, uracq, uracq User->Role|

238

u2->Assistant not in UserRoleAssign.URAsmember) &&

ole{

er)

er)

(ul = Allen) && (u2 = Cox) && (r=Surgeon) &&

(
(uracqg = UserRoleAcquire.URAcgmember) &&
(ul->r in UserRoleAcquire.URAcgmember) &&
(u2->Assistant not in UserRoleAssign.URAsmember) &&
Transfer[ul, u2, r, uracq, uracql]) =>

SoD[u2, r, Assistant, uracq]}

check TestConflict4

239

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Nabil R. Adam, Vijayalakshmi Atluri, and Wei-Kuang HugnModeling and Analysis of
Workflows Using Petri NetsJournal of Intelligent Information Systenis0(2):131-158,
March-April 1998.

Isaac Agudo, M. Carmen Fernandez Gago, and Javier Lopemodel for trust met-
rics analysis. IrProceedings of the 5th International Conference on Trusydey and
Security in Digital Businespages 28-37, 2008.

Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, anttdkshi Ray. UMLZ2Alloy:
A Challenging Model Transformation. IACM/IEEE 10th International Conference on
Model Driven Engineering Languages and Systems (MoDEL3)2R007. To Appear.

Claudio A. Ardagna, Marco Cremonini, Ernesto Damiarab8na De Capitani di Vimer-
cati, and Pierangela Samarati. Supporting location-baseditions in access control
policies. InProceedings of the ACM Symposium on Information, CompuigiGommu-
nications Securitypages 212-222, Taipei, Taiwan, March 2006.

Vijayalakshmi Atluri and Soon Ae Chun. An authorizatiamodel for geospatial data.
IEEE Transactions on Dependable and Secure Computir{d):238—254, October-
December 2004.

Vijayalakshmi Atluri and Soon Ae Chun. A geotemporalkdiased authorisation system.
International Journal of Information and Computer Secyrit(1/2):143-168, January
2007.

Vijayalakshmi Atluri and Wei-Kuang Huang. A petri nets®d safety analysis of work-
flow authorization modelsJournal of Computer Securit(2,3):209-240, August 2000.

Vijayalakshmi Atluri and Wei kuang Huang. An Authorizah Model for Workflows. In
Proceedings of the 4th European Symposium on Research ip@entecurity pages
44—-64, Rome, Italy, September 1996.

Gerd Behrmann, Alexandre David, and Kim Guldstrand earsA Tutorial on Uppaal. In
4th International School on Formal Methods for the Desig@omputer, Communication
and Software Systensages 200-236, Bertinoro, Italy, September 2004.

240

[10] Gerd Behrmann, Alexandre David, Kim Guldstrand Larssshn Hakansson, Paul Pet-
terson, Wang Yi, and Martijn Hendriks. UPPAAL 4.0. Rroceedings of the 3rd interna-
tional conference on the Quantitative Evaluation of Sysferages 125-126, Riverside,
California, USA, September 2006.

[11] David E. Bell and Leonard J. LaPadula. Secure Compustet: Unified Exposition
and Multics Interpretation. Technical report, The MITREr@aration, March 1976.

[12] Elisa Bertino, Piero Andrea Bonatti, and Elena FerrddiRBAC: a temporal role-based
access control model. IRroceedings of the 5th ACM Workshop on Role-Based Access
Control, pages 21-30, Berlin, Germany, July 2000.

[13] Elisa Bertino, Barbara Catania, Maria Luisa Damianil #aolo Perlasca. GEO-RBAC:
a spatially aware RBAC. IRroceedings of the 10th ACM Symposium on Access Control
Models and Technologigpages 29-37, Stockholm, Sweden, June 2005.

[14] Kenneth J. Biba. Integrity Considerations for Secummputer Systems. Technical re-
port, MITRE Corporation, April 1977.

[15] Behzad Bordbar and Kyriakos Anastasakis. MDA and Asialypf Web Applications.
In Trends in Enterprise Application Architecture (TEAA) 2006lume 3888 oL ecture
notes in Computer Sciengeages 44-55, Trondheim, Norway, August 2005.

[16] Behzad Bordbar and Kyriakos Anastasakis. UML2ALLOYta@bl for lightweight mod-
elling of discrete event systems. Rroceedings of the IADIS International Conference
on Applied Computingpages 209-216, Algarve, Portugal, February 2005.

[17] Sudip Chakraborty and Indrajit Ray. TrustBAC: integng trust relationships into the
RBAC model for access control in open systemsPtaceedings of the 11th ACM sym-
posium on Access control models and technologiages 49-58, Lake Tahoe, California,
USA, 2006. ACM.

[18] Suroop Mohan Chandran and James B. D. JdstiT-RBACA Location and Time-Based
RBAC Model. InProceedings of the 6th International Conference on Welrimédion
Systems Engineeringages 361-375, New York, NY, USA, November 2005.

[19] Liang Chen and Jason Crampton. On Spatio-Temporal i@onts and Inheritance in
Role-Based Access Control. Iroceedings of the 2008 ACM Symposium on Infor-
mation, Computer and Communications Secupigges 205-216, Tokyo, Japan, March
2008.

[20] David D. Clark and David R. Wilson. A Comparison of Conmaial and Military Com-
puter Security Policies. [FEEE Symposium on Security and Privappages 184-194,
Oakland, CA, USA, April 1987.

[21] Michael J. Covington, Prahlad Fogla, Zhiyuan Zhan, Rhgtague Ahamad. A Context-
Aware Security Architecture for Emerging Applications. Pnoceedings of the Annual
Computer Security Applications Conferenqeages 249-260, Las Vegas, NV, USA, De-
cember 2002.

241

[22] Michael J. Covington, Wende Long, Srividhya SrinivasaAnind Dey, Mustaque
Ahamad, and Gregory Abowd. Securing Context-Aware Applices Using Environ-
ment Roles. IrProceedings of the 6th ACM Symposium on Access Control ledel
Technologiespages 10-20, Chantilly, VA, USA, May 2001.

[23] David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy GChamouli. Role-Based Ac-
cess Contral Artech House, Inc., Norwood, MA, USA, 2003.

[24] David F. Ferraiolo, Ravi S. Sandhu, Serban I. GavrilaRizhard Kuhn, and Ramaswamy
Chandramouli. Proposed NIST Standard for Role-Based AdCestrol. ACM Transac-
tions on Information and Systems Secyrt§B):224 — 274, August 2001.

[25] G. Scott Graham and Peter J. Denning. Protection—ptesand Practice. IRroceed-
ings of the Spring Joint Computer Conferenpages 417-429, May 1972.

[26] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. tidkn. Protection in Operating
Systems Communications of the ACM9(8):461-471, August 1976.

[27] Urs Hengartner and Peter Steenkiste. Implementingeds€ontrol to People Location
Information. InProceedings of the 9th ACM Symposium on Access Control Nadel
Technologiespages 11-20, Yorktown Heights, NY, USA, June 2004.

[28] Burkhard Hilchenbach. Observations on the Real-Worldimple-
mentation of Role-Based Access Control, September 1997. At
http://csrc.nist.gov/nissc/1997/proceedings/341.pdf

[29] R. J. Hulsebosch, A. H. Salden, M. S. Bargh, P. W. G. Ebled J. Reitsma. Context
sensitive access control. Rroceedings of the 10th ACM Symposium on Access Control
Models and Technologigpages 111-119, New York, NY, USA, 2005.

[30] Daniel Jackson. Automating first-order relationalitogin Proceedings of the 8th ACM
SIGSOFT international symposium on Foundations of Soéwagineeringpages 130—
139, San Diego, CA, USA, November 2000.

[31] Daniel Jackson.Micromodels of Software: Lightweight Modelling and Anaywith
Alloy. At http://alloy.mit.edu/alloy2website/reference-rmahpdf, 2002.

[32] Daniel Jackson. Alloy 3.0 reference manual At http://alloy.mit.edu/reference-
manual.pdf, 2004.

[33] Daniel Jackson.Software Abstractions: Logic, Language, and AnalysiIT Press,
2006.

[34] Daniel JacksonSoftware Abstractions: Logic, Language, and Analy3$ise MIT Press,
London, England, 2006.

[35] Kurt Jensen.Coloured Petri nets: basic concepts, analysis methods aacktipal use
Springer-Verlag New York, Inc., New York, NY, USA, 1997.

242

[36] Kurt Jensen, Sgren Christensen, and Lars M. Kristens@PN Tools State Space
Manual Last updated: January 2006, 2006. At http://wikidau.dk/cpntools-
help/files/manual.pdf.

[37] Kurt Jensen and Lars M. Kristense@oloured Petri Nets: Modelling and Validation of
Concurrent System$Springer, 2009.

[38] Kurt Jensen, Lars Michael Kristensen, and Lisa WelloloGred Petri Nets and CPN
Tools for modelling and validation of concurrent systetmsernational Journal on Soft-
ware Tools for Technology Transfé&(3):213-254, May 2007.

[39] Yixin Jiang, Chuang Lin, Hao Yin, and Zhangxi Tan. Seguanalysis of mandatory
access control model. IRroceedings of IEEE International Conference on Systems,
Man and Cyberneti¢gsrolume 6, pages 5013-5018 vol.6, October 2004.

[40] James B. D. JoshA Generalized Temporal Role Based Access Control ModeléoebD
oping Secure SystemBhD thesis, Purdue University, August 2003.

[41] James B. D. Joshi and Elisa Bertino. Fine-grained balsed delegation in presence of
the hybrid role hierarchy. IRroceedings of the 11th ACM Symposium on Access Control
Models and Technologigpages 81-90, Lake Tahoe, California, USA, June 2006.

[42] James B. D. Joshi, Basit Shafiq, Arif Ghafoor, and Elisatido. Dependencies and
separation of duty constraints in GTRBAC. Rmoceedings of the 8th ACM Symposium
on Access Control Models and Technologigsges 51-64, New York, NY, USA, 2003.

[43] James B.D. Joshi, Elisa Bertino, Usman Latif, and Arifa®or. A Generalized Tem-
poral Role-Based Access Control ModdEEE Transactions on Knowledge and Data
Engineering17(1):4—-23, January 2005.

[44] Lalana Kagal, Tim Finin, and Anupam Joshi. Trust-BaSedurity in Pervasive Comput-
ing EnvironmentsComputey 34(12):154-157, December 2001.

[45] Anneke Kleppe, Jos Warmer, and Wim BasMDA Explained: The Model Driven
Architecture—Practice and PromiseThe Addison-Wesley Object Technology Series.
Addison-Wesley, 2003.

[46] Romain Laborde, Bassem Nasser, Fredéric Grassancbis Barrere, and Abdelmalek
Benzekri. A Formal Approach for the Evaluation of Networkc&eaty Mechanisms
Based on RBAC PoliciesElectronic Notes in Theoretical Computer Scient21:117—
142, February 2005.

[47] Butler W. Lampson. Protection. IRroceedings of the 5th Princeton Symposium on
Information Sciences and Systemages 437-443, Princeton University, March 1971.
reprinted in ACM SIGOPS Operating Systems Review, 8,1, dani974, pp. 18 - 24.

[48] Ulf Leonhardtand Jeff Magee. Security Consideratmmef Distributed Location Service.
Imperial College of Science, Technology and Medicine, bont/K, 1997.

243

[49] Yahui Lu, Li Zhang, and Jiaguang Sun. Using colored iRedts to model and analyze
workflow with separation of duty constraintsThe International Journal of Advanced
Manufacturing Technology!0(1,2):179-192, January 2009.

[50] Robin Milner, Mads Tofte, Robert Harper, and David Maegn.The Definition of Stan-
dard ML - RevisedThe MIT Press, May 1997.

[51] Samrat Mondal, Shamik Sural, and Vijayalakshmi Atldrowards Formal Security Anal-
ysis of GTRBAC using Timed Automata. Iroceedings of the 14th ACM Symposium
on Access control Models and Technologjesges 3342, Stresa, Italy, June 2009.

[52] National Computer Security Center. A Guide to Underdiag Discretionary Access
Control in Trusted Systems, September 1987.

[53] Matunda Nyanchama and Sylvia Osborn. Modeling Mangata@cess Control in Role-
Based Security Systems. Rroceedings of the 9th annual IFIP TC11 WG11.3 work-
ing conference on Database security IX : status and prosppages 129-144, Rennse-
laerville, NY, USA, August 1995.

[54] Matunda Nyanchama and Sylvia Osborn. The role graphetraad conflict of interest.
ACM Transactions on Information and System Secu2it}):3—33, 1999.

[55] OMG. MOF Core v. 2.0. Document Id: formal/06-01-Oitp://www.omg.org
[56] OMG. OCL Version 2.0. Document id: formal/06-05-0dtp://www.omg.org

[57] OMG. UML: Superstructure. Version 2.0. Document id:rnf@l/05-07-04 http:/
WWW.0mg.org .

[58] Oracle Corporation. Data Sheet Oracle User Managerh&nt October 2004. At
http://www.oracle.com/technology/products/applioat/security/
OracleUserManagementDataSheet.pdf.

[59] Sylvia Osborn. Mandatory Access Control and Role-Ba&ecess Control Revisited.
In Proceedings of the 2nd ACM workshop on Role-Based AccedsoCgages 31-40,
Fairfax, VA, USA, November 1997.

[60] Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuole-based access con-
trol to enforce mandatory and discretionary access copthties. ACM Transactions
on Information and System Securigf2):85-106, May 2000.

[61] Fang Pu, Daogin Sun, Qiying Cao, Haibin Cai, and Fan Yd&egvasive Computing Con-
text Access Control Based &@CONygc Model. InProceedings of the 2nd International
Conference on Intelligent Information Hiding and Multinee&ignal Processingpages
689-692, Pasadena, CA, December 2006.

[62] Jens Linneberg Rasmussen and Mejar Singh. Designimgari8/ System by Means of
Coloured Petri Nets. IRroceedings of the 17th International Conference on Apilha
and Theory of Petri Netpages 400-419, London, UK, June 1996. Springer-Verlag.

244

[63] Indrakshi Ray and Mahendra Kumar. Towards a Locatiasdgi Mandatory Access Con-
trol Model. Computers & Security25(1), February 2006.

[64] Indrakshi Ray, Mahendra Kumar, and Lijun Yu. LRBAC: Ad¢ation-Aware Role-Based
Access Control Model. IfProceedings of the 2nd International Conference on Inferma
tion Systems Securjtgages 147-161, Kolkata, India, December 2006.

[65] Indrakshi Ray, Na Li, Robert France, and Dae-Kyoo Kinsing UML to Visualize Role-
Based Access Control Constraints.Rroceedings of the 9th ACM symposium on Access
Control Models and Technologiepages 115-124, Yorktown Heights, NY, USA, June
2004.

[66] Indrakshi Ray, Indrajit Ray, and Sudip Chakraborty. iAteroperable context sensitive
model of trust.Journal of Intelligent Information Systen82(1):75-104, February 2009.

[67] Indrakshi Ray and Manachai Toahchoodee. A Spatio-teaifRole-Based Access Con-
trol Model. InProceedings of the 21st Annual IFIP WG 11.3 Working Confaremn
Data and Applications Securitpages 211-226, Redondo Beach, CA, July 2007.

[68] Indrakshi Ray and Manachai Toahchoodee. A Spatio-TeaipAccess Control Model
Supporting Delegation for Pervasive Computing Applicasioln Proceedings of the 5th
International Conference on Trust, Privacy & Security irgidal Businesspages 48-58,
Turin, Italy, September 2008.

[69] Mark Richters. A Precise Approach to Validating UML Models and OCL Constisi
PhD thesis, Universitaet Bremen, 2002. Logos Verlag, BeBiISS Monographs, No.
14.

[70] Debashis Saha and Amitava Mukherjee. Pervasive CangunuA Paradigm for the 21st
Century.Computey 36(3):25-31, March 2003.

[71] Geetanjali Sampemane, Prasad Naldurg, and Roy H. Calingfccess Control for Ac-
tive Spaces. IProceedings of the Annual Computer Security Applicatioosf€ence
pages 343-352, Las Vegas, NV, USA, December 2002.

[72] Arjmand Samuel, Arif Ghafoor, and Elisa Bertino. A Freawork for Specification and
Verification of Generalized Spatio-Temporal Role BasedessaControl Model. Techni-
cal report, Purdue University, February 2007. CERIAS TR7208.

[73] Ravi Sandhu and Qamar Munawer. How to do Discretionarge&s Control using Roles.
In Proceedings of the 3rd ACM Workshop on Role-Based AccessaCqrages 47-54,
Fairfax, VA, USA, October 1998.

[74] Ravi S. Sandhu. Lattice-Based Access Control Modétanputey26(11):9-19, Novem-
ber 1993.

[75] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, amarlék E. Youman. Role-based
access control modeld£EE Computer29(2):38—-47, February 1996.

245

[76] Ravi S. Sandhu and Pierangela Samarati. Access CoRtrioiciple and PracticelEEE
Communications Magazingd2(9):40-48, September 1994.

[77] Andreas Schaad and Jonathan D. Moffett. A Lightweighpfach to Specification and
Analysis of Role-Based Access Control Extensions. Pmceedings of the 7th ACM
Symposium on Access Control Models and Technolpgeges 13-22, Monterey, CA,
USA, June 2002.

[78] Basit Shafiq, James B. D. Joshi, and Arif Ghafoor. Pedti-model for verification of
RBAC Policies. Technical report, Purdue University, 2002.

[79] Heechang Shin and Vijayalakshmi Atluri. Spatiotenglgkccess Control Enforcement
under Uncertain Location Estimates. Pnoceedings of the 23rd Annual IFIP WG 11.3
Working Conference on Data and Applications Secypbges 159-174, Montreal, P.Q.,
Canada, 2009.

[80] Richard Simon and Mary Ellen Zurko. Separation of DutyRole-based Environments.
In Proceedings of the 10th Computer Security Foundations St pages 183-194,
Rockport, MA, USA, June 1997.

[81] Vince Stanford. Using pervasive computing to delivielee care.IEEE Pervasive Com-
puting 1(1):10-13, January 2002.

[82] Manachai Toahchoodee, Ramadan Abdunabi, Indrakspidal Indrajit Ray. A Trust-
Based Access Control Model for Pervasive Computing Systdm®&roceedings of the
23rd Annual IFIP WG 11.3 Working Conference on Data and Ajpions Security
pages 307-314, Montreal, Canada, July 20009.

[83] Manachai Toahchoodee and Indrakshi Ray. On the Formalyais of a Spatio-Temporal
Role-Based Access Control Model. Rroceedings of the 22nd Annual IFIP WG 11.3
Working Conference on Data and Applications Secunigges 17-32, London, U.K,,
July 2008.

[84] Manachai Toahchoodee and Indrakshi Ray. Using Allopnalyze a Spatio-Temporal
Access Control Model Supporting DelegatiolET Information Security3(3):75-113,
September 2009.

[85] Manachai Toahchoodee and Indrakshi Ray. On the Foratadn and Analysis of a
Spatio-Temporal Role-Based Access Control Modklurnal of Computer Security (to
appear) 2010.

[86] Manachai Toahchoodee, Indrakshi Ray, Kyriakos Areetes, Geri Georg, and Behzad
Bordbar. Ensuring Spatio-Temporal Access Control for Rgafld Applications. In
Proceedings of the 14th ACM Symposium on Access control Iladd Technologies
pages 13-22, Stresa, Italy, June 2009.

[87] Manachai Toahchoodee, Xing Xie, and Indrakshi Ray. dials Trustworthy Delegation
in Role-Based Access Control Models. Pnoceedings of the 12th Information Security
Conferencepages 379-394, Pisa, Italy, September 2009.

246

[88] Mark Weiser. The computer for the 21st centuBIGMOBILE Mobile Computing and
Communications Review(3):3-11, July 1999.

[89] Guo Ya-Jun, Hong Fan, Zhang Qing-Guo, and Li Rong. Ane&sscControl Model for
Ubiquitous Computing Application. IRroceedings of the 2nd International Conference
on Mobile Technology, Applications and Systepages 1-6, Guangzhou, China, Novem-
ber 2005.

[90] Hai Yu and Ee-Peng Lim. LTAM: A Location-Temporal Authzation Model. InSecure
Data Managementolume 3178 ofecture Notes in Computer Scienpages 172-186,
Toronto, Canada, August 2004.

[91] Chunyang Yuan, Yeping He, Jianbo He, and Zhouyi Zhou.efifiable Formal Specifica-
tion for RBAC Model with Constraints of Separation of Duty. Proceedings of the 2nd
SKLOIS Conference on Information Security and Cryptalqgmages 196-210, Beijing,
China, November 2006.

[92] John Zao, Hoetech Wee, Jonathan Chu, and Daniel Jacksd®BAC Schema
Verification Using Lightweight Formal Model and Constraimnalysis At
http://alloy.mit.edu/publications.php, 2002.

[93] Longhua Zhang, Gail-Joon Ahn, and Bei-Tseng Chu. A-hdsed framework for role-
based delegation and revocatidkCM Transactions on Information and System Security
6(3):404-441, August 2003.

247

