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ABSTRACT

THE DYNAMIC EVOLUTION OF ACTIVE-REGION-SCALE MAGNETIC FLUX

TUBES IN THE TURBULENT SOLAR CONVECTIVE ENVELOPE

The Sun exhibits cyclic properties of its large-scale magnetic field on the order of ∼22

years, with a ∼11 year frequency of sunspot occurrence. These sunspots, or active regions,

are the centers of magnetically driven phenomena such as flares and coronal mass ejections.

Volatile solar magnetic events directed toward the Earth pose a threat to human activities

and our increasingly technological society. As such, the origin and nature of solar magnetic

flux emergence is a topic of global concern.

Sunspots are observable manifestations of solar magnetic fields, thus providing a photo-

spheric link to the deep-seated dynamo mechanism. However, the manner by which bundles

of magnetic field, or flux tubes, traverse the convection zone to eventual emergence at the so-

lar surface is not well understood. To provide a connection between dynamo-generated mag-

netic fields and sunspots, I have performed simulations of magnetic flux emergence through

the bulk of a turbulent, solar convective envelope by employing a thin flux tube model sub-

ject to interaction with flows taken from a hydrodynamic convection simulation computed

through the Anelastic Spherical Harmonic (ASH) code. The convective velocity field inter-

acts with the flux tube through the drag force it experiences as it traverses through the

convecting medium.

Through performing these simulations, much insight has been gained about the influence

of turbulent solar-like convection on the flux emergence process and resulting active region
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properties. I find that the dynamic evolution of flux tubes change from convection dominated

to magnetic buoyancy dominated as the initial field strength of the flux tubes increases from

15 kG to 100 kG. Additionally, active-region-scale flux tubes (1021 − 1022 Mx) of 40 kG and

greater exhibit properties similar to those of active regions on the Sun, such as: tilt angles,

rotation rates, and morphological asymmetries. The joint effect of the Coriolis force and

helical motions present in convective upflows help tilt the apex of rising flux tubes toward

the equator in accordance with Joys Law.

Utilizing these simulations, I find that rotationally aligned, columnar convective struc-

tures called giant cells present near the equatorial regions of the ASH simulation organizes

flux emergence into a large-scale longitudinal pattern similar to the active longitude trend

on the Sun and other solar-like stars. The effect of radiative diffusion across the radiation

zone-convection zone interface on the buoyant rise of magnetic flux tubes is also studied.

Incorporating this effect into the flux tube model, flux tubes with magnetic field strengths

of 60 kG or less no longer anchor in the stably stratified overshoot region. These flux tubes

still have average emergence properties that agree with observations of solar active regions,

although tilt angles have a larger scatter about the mean value. Finally, I will discuss possi-

ble future research problems that can be investigated through the thin flux tube approach,

such as convection-induced twisting of the flux tube magnetic field lines and flux emergence

properties on a young Sun rotating at 5 times the current solar rate.
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PREFACE

I believe that the following quote is a very poetic way to describe our unique relationship

with the Sun:

“. . . be not afraid of greatness: some are born great, some achieve greatness,

and some have greatness thrust upon them.”

William Shakespeare, Twelfth Night

The Sun is just one of ∼300 billion stars in the Milky Way galaxy alone, which is only

one of the ∼170 billion galaxies in the entire universe. It is true that the Sun is a rather

unremarkable species compared to the exotic celestial bodies that make up the universal

zoo. So why do we care to study such an ordinary subject? Because it is ours! With a little

bit of chance, and a little bit of physics, our solar system formed, resulting in eight diverse

planets (plus Pluto). One of these was situated at a distance from its star that was just right

to sustain complex life. This Goldilocks planet, known as Earth, has nurtured a plethora

of diverse lifeforms, of which we are one. Our understanding of stellar physics is driven

by what we have learned about the Sun, our own astrophysical laboratory in our celestial

backyard. It is important for us to better understand the volatile nature of our magnetic

star, in particular how it sustains its magnetic field, and how this magnetic field manifests

itself, learning about other stars in the process.

My first formal introduction to the Sun occurred during the summer of 2007 while I

was a REU (Research Experience for Undergraduates) student at the National Solar Ob-

servatory on Sacramento Peak, in quaint Sunspot, NM. Although remote, I found it to be

an extraordinary setting for learning about solar physics. Working and living in an entire
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community devoted to the sole purpose of pursuing the mysteries of our beloved star etched

a lasting impression on me. The Sun and I parted ways for ∼1.5 years while I pursued

teaching and other avenues of physics during graduate school at Colorado State University.

But alas, the universe was determined to make a solar physicist out of me. I found myself

once again studying the Sun at another renowned institution, High Altitude Observatory

(HAO) in Boulder, CO. I am fortunate to have had such wonderful research opportunities

so early in my career, all of which have contributed to this dissertation. The next chapter of

my career will take place at the University of Exeter in Exeter, UK, where I have accepted

a postdoctoral research position. My research will involve investigating flux emergence and

the near surface shear layers of low-mass stars, particularly fully convective M-type stars.

I’m excited to apply what I have learned during the course of my PhD studies to other

solar-like, main sequence stars.
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CHAPTER 1

Motivation and Background

Although the Sun is our closest star and serves as a nearby astrophysical laboratory, there

are still many mysteries regarding its behavior that we have yet to untangle. Foremost among

these is the nature of the solar dynamo mechanism. Rotation, global-scale plasma motions,

and shearing at the convection zone-radiative zone interface all contribute to the generation

of solar magnetic fields. However, the manner by which the dynamo-generated magnetic

field, the progenitors of sunspots, traverse the convection zone to eventual emergence at

the solar surface remains unclear. We provide a connection between the solar dynamo and

sunspots by performing simulations of magnetic flux emergence through the bulk of turbulent

stellar convection zones. This chapter introduces the relevant background and motivation

pertaining to this research.

Section 1.1 discusses the nature of the solar cycle and active region observations, while

Section 1.2 introduces theoretical and phenomenological models of the solar dynamo. Stellar

convection and differential rotation is discussed in Section 1.3, with observations shown to

support the existence of such phenomena on the Sun. Modeling efforts used to address

magnetic flux emergence through the solar interior and above are reviewed in Section 1.4,

and the solar/stellar connection is addressed in Section 1.5. A brief outline of this thesis,

including the methods used and research objectives, can be found in Section 1.6.
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1.1. Active Region Observations and the Solar Cycle

Sunspots serve as a photospheric touchstone of solar magnetic activity, and are the

oldest solar observable. As early as the 4th century B.C., sunspots were observed by one of

Aristotle’s students, Theophrastus of Athens, with his naked eye. By ∼23 B.C., systematic

observations of sunspots began to be recorded by Chinese scholars. It was generally believed

that these sunspots as we know them today were transiting planets, satellites of the Sun, or

even smoky clouds. With the invention of the telescope in the early 1600’s, it became clear to

Galileo that sunspots were indeed affixed to the solar disk, and changed in shape, position,

and number over time. This caused a tremendous uproar, as it contradicted Aristotle’s

beliefs, adopted by the Catholic Church, that heavenly bodies were perfect and unchanging

spheres (e.g. Drake 1957). Eventually the existence of spots on the Sun became a widely

accepted and studied phenomenon. The connection between sunspots and magnetism was

made in 1908 by George Ellery Hale through the use of a device called the spectroheliograph,

and the knowledge that certain spectral lines split into multiple components in the presence

of a static magnetic field, known as the Zeeman Effect (Hale 1908).

The large scale magnetic activity pattern on the solar photosphere is in the form of

bipolar magnetic regions, with the leading magnetic polarity area (leading in the direction

of solar rotation) of opposite polarity sign of the following region (see Figure 1.1, left). A

line drawn between these two polarity areas is often East –West oriented. The strongest

of these regions appear as sunspots when observed in white light (Figure 1.1, right). More

is revealed when the Sun is observed in extreme ultraviolet wavelengths (Figure 1.2). The

bipolar magnetic regions, or active regions, are the source regions of strong solar activity,

such as solar flares, and serve as footprints for coronal loops. Active regions exhibit many
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Figure 1.1. SDO HMI Magnetogram (left), and SDO HMI continuum inten-
sity image (right) of the solar disk on April 21, 2012. For the magnetogram,
white (black) regions indicate the magnetic field direction is out of (into) the
plane. These images show that active regions tend to emerge in latitudinal
belts, illustrating the toroidal nature of the solar dynamo mechanism. The
strongest of these active regions appear as dark spots on the solar photosphere,
which are referred to as sunspots. Images generated using Helioviewer.org.

properties, some of which systematically vary on a timescale of ∼11 years, or ∼22 years, and

some of which tend to remain constant.

In 1843, Schwabe proposed that the frequency of sunspot occurrence varies on a timescale

of ∼11 years (Priest 1982). This pattern is shown in the bottom of Figure 1.3 for longer

than 120 years, covering 11 such sunspot frequency cycles. Indeed, the ∼11 year magnetic

activity cycle of the Sun has been shown to exist for millions of years by using the amount

of radionuclides such as 10Be and 14C present in sedimentary rock layers (Mann et al. 2012),

ice cores (Beer et al. 1990), and tree rings (Steinhilber et al. 2012) as proxies for direct

solar observations. It is known that cosmic ray particles interact with atmospheric nitrogen

and hydrogen to produce so-called cosmogenic radionuclides 10Be and 14C (Steinhilber et al.

2012). The production rates of these nuclides are directly related to the cosmic ray flux,

3



Figure 1.2. SDO AIA 171 Angstrom wavelength channel image on April 21,
2012. This wavelength band images the quiet corona and transition region,
illustrating that coronal loop footprints are associated with active regions.
Image generated using Helioviewer.org.

which is inversely proportional to the solar cycle, as stronger heliospheric magnetic fields

associated with solar maximum prevent cosmic rays from reaching the Earth (see review by

Usoskin 2013). Therefore, the population of radionuclides is largest during solar minimum.

The question as to why the Sun is obliged to have an ∼11 year sunspot cycle is still

a mystery. Regardless of the reason for the Sun’s activity timescale, it exhibits a number

of cyclic traits that never fail to manifest themselves. Firstly, active regions on the Sun

are loosely confined to two toroidal (parallel to lines of latitude) bands, each of which are

roughly equidistant from the solar equator in both hemispheres (see Figure 1.1). Following

Spörer’s Law, these bands migrate steadily from mid-latitudes of ∼40◦ toward the equator

during the course of a sunspot cycle (Spörer 1890). This progression is represented well

in so-called butterfly diagrams (Figure 1.3, top). The maximum of solar magnetic activity

4



Figure 1.3. The butterfly diagram (top) and corresponding sunspot number
(bottom) from Hathaway (2010). Butterfly diagrams depict the equatorward
progression of active regions during a solar cycle, with the maximum sunspot
number varying from cycle to cycle.

occurs when the active region bands reach a latitude of ∼15◦ − 20◦. Known as Hale’s Law,

the magnetic polarity sense (direction of the magnetic field in to or out of the solar surface)

of active regions are of opposite sign in each hemisphere (Hale et al. 1919). With the start of

a new sunspot cycle, the leading polarities of active regions in both hemispheres switch sign.

Therefore, it takes ∼22 years for each hemisphere to complete a full magnetic cycle, although

the progression of the toroidal, active region belts from mid-latitudes to the equator takes

∼11 years. This ∼11 year cycle is typically referred to as the solar cycle.

The magnetic flux of active regions spans a few orders of magnitude, from 1018 Mx for

small, ephemeral regions up to 1022 Mx or even 1023 Mx for the strongest sunspots (Hagenaar,

Schrijver, and Title 2003). Typical values of sunspot magnetic field strengths range from

∼1− 4 kG. With variable lifetimes, active regions can live for a few hours or many months,

long enough to complete more than one rotation on the Sun (see review by Solanki 2003).
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Active regions exhibit some asymmetries between their leading (in the direction of solar

rotation) and following polarities, which have been attributed to the effect of the Coriolis

force on the legs of rising magnetic flux loops. One such property is the systematic tilt

of the active region, with the leading polarity in the direction of solar rotation usually

appearing closer to the equator than the following polarity (D’Silva and Choudhuri 1993;

Caligari, Moreno-Insertis, and Schüssler 1995). Known as Joy’s Law, this tilt is largest

at higher emergence latitudes, and decreases toward being strictly parallel to the East –

West axis as the latitude of active region emergence approaches the equator (Hale et al.

1919). Additionally, the Coriolis force is thought to be responsible for the apparent faster

motion of the leading polarity of an active region as compared to the following (Caligari,

Moreno-Insertis, and Schüssler 1995; van Driel-Gesztelyi and Petrovay 1990), as well as the

observed more coherent morphology of the leading polarity of an active region as compared

to the following (Fan, Fisher, and Deluca 1993; Caligari, Moreno-Insertis, and Schüssler

1995; Caligari, Schüssler, and Moreno-Insertis 1998).

More sophisticated instrumentation has resulted in the ability to decipher the magnetic

field orientation of photospheric active regions. Vector magnetograms of sunspots indicate

that active regions have a small, but significant twist of their associated magnetic field

(Pevtsov, Canfield, and Metcalf 1995; Pevtsov, Canfield, and Latushko 2001). The sign of

this twist is dependent on the hemisphere of sunspot origin, but independent of the solar

cycle, and is usually of a left-handed sense (negative) in the Northern hemisphere, and

right-handed (positive) in the Southern hemisphere. The twisted nature of the emerging

flux tube may be required to maintain the cohesiveness of the flux tube as it rises through

the convection zone (Fan, Abbett, and Fisher 2003; Fan 2008). In addition, the twist and
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associated magnetic helicity of active regions are important for the buildup of free magnetic

energy in the solar corona for driving flares and coronal mass ejection.

It is also noted that individual sunspots rotate faster than the surrounding surface plasma

(Howard and Harvey 1970; Golub and Vaiana 1978). According to inversions of helioseismic

observations, there is an increase in the differential rotation of the Sun from the surface to

∼40 Mm below the photosphere, called the near-surface shear layer (see reviews by Thompson

et al. 2003; Howe 2009). As such, the solar surface plasma has an angular velocity (Ω/2π)

of ∼10 nHz less than the plasma at ∼0.95R⊙. Furthermore, it appears that sunspots tend

to rotate prograde at approximately the same angular velocity as the plasma at a depth of

0.95R⊙ as shown in Figure 1.4, suggesting that perhaps the progenitor magnetic flux tubes

responsible for sunspots may be anchored at a depth of 0.95R⊙, near the surface shear layer

interface (e.g. Zhao, Kosovichev, and Duvall 2004; Hiremath and Lovely 2007).

One more peculiar property of solar active regions is their tendency to emerge near

the location of previous or currently existent magnetic flux (e.g. Bumba and Howard 1965;

Gaizauskas et al. 1983; Harvey and Zwaan 1993). Solar observations show that the emergence

of active features is distributed inhomogeneously in longitude according to sunspot activity

(de Toma, White, and Harvey 2000; Berdyugina and Usoskin 2003), solar flares (Zhang

et al. 2011), and coronal streamers (Li 2011). These preferential longitudes of solar activity

are commonly referred to as active longitudes. The physical mechanism responsible for the

active longitude phenomenon are not well understood, although it may be related to the

dynamo mechanism and/or large-scale convective structures known as giant cells.

The solar cycle also manifests itself in coronagraph images of the Sun. A coronagraph

instrument occults the disk of the Sun, allowing a detailed view of the tenuous corona. Until
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Figure 1.4. Rotation rate of leader, follower, and all sunspots derived from
Gilman and Howard (1985), plotted with the observed azimuthal rotation rate
of the solar plasma at the surface (blue dash-dotted line) as determined from
surface spectroscopic Doppler-velocity measurements (Thompson et al. 2003)
and the rotation rate at r = 0.95R⊙ (red dashed line) as found via inversions
of helioseismic observations (Howe et al. 2000). All values are plotted with
reference to the solid body rotation rate (i.e. rotation rate of solidly rotating
interior) of Ω0 = 2.7×10−6 rad s−1 (∼430 nHz), so that the zero line is the
solid body rotation of the Sun. This image suggests that sunspots rotate at
nearly the same rate as the solar plasma at 0.95R⊙.

the coronagraph was invented in 1930 by Lyot (e.g. Priest 1982), the corona could only be

viewed during a total solar eclipse. The shape of the corona changes throughout the solar

cycle, from a dipolar-like configuration during solar minimum (Figure 1.5, left) to a more

spherically symmetric shape during solar maximum (Figure 1.5, right). At solar minimum,

polar plumes are faintly visible, showing poloidal (parallel to lines of longitude) magnetic

field lines that extend outward, similar to a bar magnet. During this phase, the streamer belt

at mid-latitudes is the prominent feature. Coronal streamers are the result of hot coronal

plasma being held down by a series of closed magnetic field lines over a polarity inversion line

(PIL) on the photosphere (e.g. Low 1996). Pointed peaks at the end of these streamers are

caused by the interaction of the solar wind and magnetic reconnection between the closed
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Figure 1.5. Coronagraphs during solar cycle 23 taken near solar minimum
on January 3, 1996 (left), and near solar maximum on January 2, 2000 (right).
The structure of the corona changes shape drastically between solar maximum
and solar minimum. These images were captured using the Mark-III and Mark-
IV coronameter instruments at High Altitude Observatory’s Mauna Loa Solar
Observatory. Images courtesy of High Altitude Observatory, National Center
for Atmospheric Research, sponsored by the National Science Foundation.

field lines of the streamer and neighboring open field lines (e.g. Koutchmy and Livshits 1992;

Wang, Sheeley, and Rich 2007).

Since the large-scale structure of the magnetic field is dipolar at solar minimum, usually

one continuous, although meandering, PIL may be drawn around the equatorial region of

the Sun. Subsequently, the closely packed magnetic fields lines above the PIL result in the

appearance of an equatorial streamer belt in coronagraphs. As magnetic activity increases,

the emergence of many bipolar active regions creates a more complicated series of polarity

inversion lines, resulting in a more complex coronal structure. Typically the classification

of solar maxima and minima are determined based on sunspot count, but it can also be

determined through the morphology of the corona.

9



The observational properties of solar active regions and their relation to the solar cycle

have been well categorized and studied. While it is still not yet possible to predict the

exact nature of active region emergence on the Sun, we do have general expectations of

the flux emergence trend based on observations. Through some means, the Sun exhibits

an unerring magnetic cycle of distinct order and organization. In a remarkable way, nature

allows a dynamo mechanism and turbulent convective motions to work together in the Sun,

producing active regions with a distinctive pattern of large scale properties. The question

as to how these active regions emerge, and why they behave as they do is a problem best

addressed through theory and computational/numerical modeling, motivated and supported

by observational means.

1.2. The Solar Dynamo

Our Sun is a magnetically active star, exhibiting cyclic properties of its large-scale mag-

netic field and flux emergence behavior. It is perhaps conceivable that the Sun’s magnetic

field is primordial in nature, originating in an earlier epoch of the universe, preserved by the

high electrical conductivity of the solar plasma. In fact, the time it would take for the decay

of the global magnetic field is τ = L2/η, where L in this case is the solar radius and η is

the magnetic diffusivity dependent on the electrical conductivity of the solar plasma, with

τ = 109 years (Priest 1982). This value is comparable to the ∼10 billion years the Sun will

live as a main sequence star. However, τ ∼ 109 years is most likely a severe overestimate.

Given the fact that the solar convection zone is turbulent in nature, a turbulent eddy

magnetic diffusivity (ηt = vl) operating in the bulk of the convection zone would significantly

drop the magnetic diffusion time scale to ∼10 years (Priest 1982). Additionally, it is also the

case that magnetic fields can escape from the Sun by means other than diffusion, depleting
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the primordial solar magnetic field much earlier in its lifetime (Parker 1979). For instance,

strong magnetic fields are susceptible to the magnetic buoyancy instability (see latter part

of this Section), a form of the hydromagnetic Rayleigh-Taylor instability, which can expel

the field from the convection zone on time scales of a few months to a few years depending

on the initial strength of the magnetic field.

The cyclic nature of solar magnetic activity and the ordered appearance of active re-

gions as discussed in Section 1.1 points to the existence of a large-scale, subsurface toroidal

magnetic field maintained by a dynamo mechanism, rather than sustained by a primordial

magnetic field. However, the global solar field is actually weakly poloidal in nature during

solar minimum; roughly dipolar (see Figure 1.5, left). The poloidal field is thought to be

stretched and amplified in a thin shearing region called the tachocline, that exists between the

solidly rotating radiative interior and differentially rotating convective envelope (e.g. Gilman

2000; Charbonneau 2010). At this shearing interface, kinetic energy is effectively converted

in to magnetic energy. Through this mechanism, the toroidal magnetic field suggested by

the latitudinal bands of active regions is born. It may also be the case that magnetic flux can

be pumped downward by turbulent convective downflows and accumulate in the tachocline

or stably stratified overshoot region below the convection zone, where the magnetic field can

then be amplified through the same shearing process (Browning et al. 2006).

In this context, a dynamo loop is referred to as the process by which the global poloidal

magnetic filed is converted to a toroidal magnetic field and back again. The poloidal-to-

toroidal portion of the dynamo is fairly well understood. However, the toroidal-to-poloidal

component of the solar dynamo is more complicated. After the toroidal field amplification

process shown in panels a-b in Figure 1.6, the phenomenological Babcock-Leighton model
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Figure 1.6. Schematic of a solar Babcock-Leighton/Flux-Transport dynamo
process. The red inner sphere represents the Sun’s radiative interior and core,
while the blue mesh indicates the solar surface. (a) The Sun’s differential
rotation, which is prograde fastest at the equator, shears the poloidal field
near the base of the convection zone. (b) A toroidal field is produced due to
shearing by differential rotation, referred to as the Ω-effect in mean-field dy-
namo theory. (c) When the toroidal magnetic field is amplified to a threshold
field strength, buoyant magnetic flux loops rise toward the surface, eventually
emerging through the photosphere to form active regions, twisting and tilting
toward the equator due to rotational influences. A poloidal component of the
magnetic field is thus achieved from helical action in the convection zone, akin
to the α-effect from mean-field theory interface dynamos. (d-f ) Additional
flux emerges (d-e), then spreads (f ) in latitude and longitude from decay-
ing active regions. (g) Meridional flows in the (r, θ) plane (yellow circulation
with arrows) carry surface magnetic flux poleward, eventually inducing a polar
field reversal. (h) Some of the flux is transported downward to the bottom of
the convection zone and toward the equator by meridional circulation. These
poloidal fields have sign opposite to those at the beginning of the sequence in
(a). This action can also account for the equatorial migration of active region
bands during the course of the solar cycle. (i) The reversed poloidal field is
then again sheared near the bottom of the convection zone by differential ro-
tation, producing a toroidal field opposite of that shown in (b), and the solar
cycle marches on. Figure from Dikpati and Gilman (2007).
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(Babcock 1961; Leighton 1964, 1969) suggests that the observed Joy’s and Hale’s laws, active

region decay, and transport of magnetic flux by meridional circulation and turbulent diffusion

results in a net global polar field of opposite polarity from the previous cycle, depicted in

panels c-g of Figure 1.6. Buoyant toroidal loops of magnetic flux rise to the surface and

subsequently form active regions, tilting toward the equator due to rotational influence

provided by the Coriolis force. These tilted bipolar regions possess a poloidal magnetic

component of opposite sign to the existing polar field in each hemisphere. They are then

transported poleward by large-scale circulating cells in the (r,θ) plane known as meridional

circulation, where they then interact with the polar field of opposite polarity. Thereby, the

following polarity portion of active regions in each hemisphere then become the progenitors

for the poloidal field of the next sunspot cycle.

A rigorous study of the solar dynamo process involves solving the full set of three-

dimensional (3D) magnetohydrodynamic (MHD) equations simultaneously for both the mag-

netic field and the form of the turbulent flow field in the convection zone. These numerical

simulations of convective dynamos are both complicated and computationally expensive, al-

though it has been attempted to some degree of success in rotating, fully convective shells

exhibiting self-organized cyclic dynamos (Brown et al. 2011; Nelson et al. 2013). Another

approach is provided by kinematic dynamo models, which specify a priori the convective

velocity field, specifically the mean flows that capture differential rotation and meridional

circulation (see Section 1.3). In this case, the magnetic field evolves solely according to the

magnetic induction equation (as derived in Appendix A):

(1.1)
∂B

∂t
= ∇× (v×B) + η∇2B,
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where v is the fluid velocity, B is the magnetic field, and η is the magnetic diffusivity of the

plasma. The first term on the right-hand side of the equation describes how the magnetic

field is advected by the fluid, with the second term representing diffusion of the magnetic

field.

Early investigations into solar kinematic dynamo theory were performed by the prolific

solar physicist Eugene Parker (1955), and elaborated upon by Krause and Raedler (1980).

Parker proposed that due to the turbulent nature of the solar convection zone, large-scale

magnetic fields can be produced by averaging over fluctuations around the mean magnetic

field:

(1.2)
∂⟨B⟩
∂t

= ∇× (⟨v⟩ × ⟨B⟩) +∇× ε+ η∇2⟨B⟩,

where angular brackets ⟨ ⟩ denote averages over small scales, ε = ⟨v′×B′⟩ is the fluctuating

electromotive force (emf), and primes indicate fluctuations about the mean such that, e.g.

v′ = v − ⟨v⟩. Applying the case of axisymmetric spherical geometry to Equation 1.2 gives

a more instructive look at the various processes involved in the generation of the mean

magnetic field (see e.g. Miesch 2012):

(1.3)
∂⟨B⟩
∂t

= (r sin θ⟨Bp⟩ ·∇Ω)φ̂+∇× (⟨vp⟩ × ⟨B⟩) +∇× ε+ η∇2⟨B⟩,

where r sin θ is the cylindrical radius, Ω is the rotation rate of the plasma, and the vector fields

are broken up in to their toroidal and poloidal components represented by the subscripts t

and p respectively such that, e.g. B = Bt +Bp and Bt = Bφφ̂ and Bp = Brr̂ +Bθθ̂.

Each of the four terms in Equation 1.3 describe a portion of the dynamo process in the

kinematic mean field regime. The first term, which follows from MHD without any additional
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approximations, is known as the Ω-effect. This term indicates that the mean toroidal field

⟨Bφ⟩ is generated from the mean poloidal field ⟨Bp⟩ and rotational shearing provided by

differential rotation. Advection of the magnetic field by meridional circulation is captured

in the second term, and the fourth term of magnetic diffusion remains intact as in Equation

1.2.

Embedded within the fluctuating emf ε in the third term of Equation 1.3 is the so called

α-effect, which is often approximated as ε ∼ α⟨B⟩, where α is a pseudo-tensor that is a

statistical property of the velocity field independent of the magnetic field (e.g. Stix 2002;

Priest 1982). The α-effect is less robust in nature than the Ω-effect, and generally refers to

any process that can close the dynamo loop, transforming the toroidal field to a poloidal field.

However, it is also the case that the α-effect can contribute to both the poloidal-to-toroidal

and toroidal-to-poloidal stages of the dynamo (Miesch 2005). In which case, the process is

referred to as an α2 dynamo.

The α-effect is proportional to the kinetic helicity and kinetic energy of fluctuating fluid

motions, contributing to the transfer of magnetic helicity from fluctuating to mean magnetic

fields. Helical motions, most likely a result of the combination of helical convective upflows

and the tilting action of buoyantly rising magnetic loops toward the equator, act to lift and

twist the mean magnetic field, thereby providing a significant poloidal field component (e.g.

Miesch 2012). In strictly kinematic dynamo models, the α-effect is implicit, as fluctuating

fields do not explicitly appear in Equation 1.3. Through this treatment, the magnetic field is

advected passively by the fluid flows according to Eq. 1.3 such that the Lorentz force J×B

has no feedback on the system. Many mean field dynamo models now include a Lorentz force

feedback loop to modify the α-effect (see review by Miesch 2012), as the Lorentz force (which
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appears in the plasma momentum equation) is capable of suppressing turbulent motions for

a large enough magnetic field.

Often the solar dynamo is referred to as an α-Ω dynamo since both effects act to complete

the dynamo loop as observed on the Sun. The location of the α-effect and Ω-effect can

coincide in the same region near the base of the convection zone, but these models suffer

from a phenomenon called α-quenching. The term α-quenching refers to the suppression

of the α-effect from Lorentz force feedbacks that occur when the magnetic field reaches

a threshold strength (see reviews by Charbonneau 2010; Miesch 2012). Interface dynamo

models solve this problem by spatially separating the Ω-effect in the tachocline or stably

stratified region below the convection zone base from the α-effect somewhere within the

convection zone proper (see Parker 1993; MacGregor and Charbonneau 1997; Zhang, Liao,

and Schubert 2004).

Propagation of the toroidal bands of magnetic field from high latitudes toward the equator

during the course of a solar cycle is also a concern of solar dynamo models. Such cyclic

behavior can arise from a dynamo wave, which is the result of a phase shift between the α-

effect and Ω-effect, allowing for traveling wave solutions to the linear, mean-field induction

equation (Eq. 1.3) (see review by Charbonneau 2010; Miesch 2012). Another set of dynamo

models known as flux transport models advocate the notion that the migration of active

region bands toward the equator is a result of mean field advection by meridional circulation

(see reviews by Dikpati and Gilman 2009; Miesch 2012), illustrated in panel h of Figure 1.6.

Here, large circulating cells set up in the (r, θ) plane in each hemisphere advect magnetic

flux slowly equatorward at the base of the convection zone on the order of a few m s−1.
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Throughout this thesis, it is assumed that the dynamo generated magnetic field is con-

centrated into flux tubes that rise coherently from the base of the convection zone to the

solar surface. Due to the large electrical conductivity of the solar plasma, the magnetic

field is essentially frozen in to the surrounding fluid (e.g. Stix 2002; Priest 1982, and see

Appendix B for a proof of the flux frozen-in condition). Observations indicate that this

fibril form of the magnetic field is ubiquitous on the photosphere (e.g. Spruit and Roberts

1983; Zwaan 1987; Stenflo 1989), and so presumably traverses the convection zone in the

same form. Illustrated especially well by sunspots, magnetic flux manifests itself as intense,

isolated magnetic elements surrounded by plasma with much weaker magnetic fields. The

magnetic energy density of the sunspot’s associated flux tube B2/8π is much greater than

the kinetic energy density ρev2c/2 of the plasma, where ρe is the density of the plasma envi-

ronment external to the flux tube and vc is a representative velocity of the plasma. When

B2/8π = ρev2c/2, we say that the magnetic field is in equipartition with the convective flows.

If the magnetic field of the flux tube is sufficiently large (i.e. super-equipartition), the flux

tube will be less susceptible to distortion and fragmentation by convection.

Once formed in the deep interior, magnetic flux tubes rise to the solar surface due in part

to magnetic buoyancy. If a flux tube is in thermal equilibrium with its environment, it feels a

resulting radially upward directed buoyancy force per unit volume of (ρe−ρi)g = B2/(8πHp),

where ρe is the density of the external plasma environment, ρi is the density of the flux tube

plasma, g is the acceleration due to gravity, B is the magnetic field of the flux tube, and Hp

is the pressure scale height, the distance over which the pressure changes by a factor of e.

In thermal equilibrium, the internal density of the flux tube must necessarily be less than

the density of the external plasma due to the condition of total lateral pressure balance on
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the flux tube Pe = Pi+B2/8π, where Pe and Pi are respectively the pressure of the external

and internal plasma of the flux tube. A flux tube of larger magnetic field will therefore have

a larger buoyancy force. (Note: The buoyancy force per unit volume above is derived from

the equation for lateral pressure balance under thermal equilibrium.) The term B2/8π is the

magnetic energy density, but can also be interpreted as a magnetic pressure. The external

plasma acts to confine the flux tube with a pressure equal to Pi +B2/8π.

Another scenario exists where a magnetic flux tube initially in neutral buoyancy (ρe = ρi)

may become unstable to perturbations. The criterion required for a magnetic buoyancy

instability to ensue is dependent on a number of factors such as initial magnetic field strength

of the flux tube, the temperature gradient of the plasma environment, and the rotation rate

of the star (e.g. Gilman 1970; Ferriz-Mas and Schüssler 1993, 1995; Fan 2009a). Unstable

perturbations cause the flux tube to bend, allowing plasma to drain from the flux tube

apex (higher up in the stratified convection zone) to the flux tube footpoints (lower in

the convection zone), enhancing the buoyancy of the flux tube apex. Magnetic buoyancy

instabilities, in conjunction with convective flows in which the magnetic field is embedded,

are thought to be the means by which the dynamo generated magnetic field makes its journey

from the interior to the solar surface.

On the Sun, there is a hierarchy of magnetic structures in the photosphere ranging from

magnetic flux values of 1018 − 1023 Mx with field strengths of ∼1− 4 kG, and radii of ∼100

km to ∼10 Mm. Once intersecting with the photosphere, these flux tubes extend up into

the solar atmosphere forming structures such as filaments and coronal loops, and can extend

even further out into the solar wind. Many other stars exhibit starspots, therefore the flux

tube phenomenon is not unique to the Sun. Aside from the Sun and solar-like stars, flux
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tubes are observed in the Earth’s magnetosphere (e.g. Pontius and Wolf 1990), between

Jupiter and its moon Io (e.g. Connerney et al. 1998; Bhardwaj and Michael 2002), closely

interacting binary stars (e.g. Lamb et al. 1983), and the interstellar medium of the Milky

Way and other galaxies (e.g. Florinski et al. 2004).

The question as to whether the dynamo process operates entirely as flux tubes in a fibril

form, or a large-scale mean field that subsequently concentrates itself into discrete flux tubes

before rising to the surface is still an unresolved topic (see Charbonneau 2010). In reality,

there is no such thing as an isolated flux tube. The large-scale, dynamo generated toroidal

magnetic field may actually be concentrated into something more like a sheet or wreath that

might develop buoyant portions similar to flux tubes. In fact, recent 3D MHD simulations

of solar-like stars show that concentrated wreaths of magnetic fields can be built from a seed

field within a rotating, turbulently convecting envelope (Brown et al. 2010, 2011). When

portions of these wreaths reach a threshold magnetic field strength, buoyant magnetic loops

develop, which then rise toward the surface (Nelson et al. 2011, 2013). These simulations

also show that the origin of the strong toroidal magnetic field does not need to be in the

tachocline. Rather, the magnetic field could be distributed throughout the bulk convection

zone.

There are a variety of ways to theoretically model solar and stellar cycles. Often, hybrid

models that borrow portions from other dynamo models are used to create more desirable

results, as in the Babcock-Leighton/Flux-Transport model depicted in Figure 1.6. Neverthe-

less, it is generally agreed upon that the toroidal field is generated by differential rotation

which acts to shear and stretch the magnetic field in the deep convection zone. The forma-

tion of the poloidal field from the toroidal field is less well understood, although there are

19



a variety of contributing factors. A solar dynamo model must be able to self-consistently

produce all of the properties of the solar cycle. The construction of a realistic 3D MHD

solar/stellar dynamo is likely years in the future. However, a convergence of the solar dy-

namo problem is slowly taking shape as a variety of methods are sought after, tested, and

compared to observations.

1.3. Convection and Differential Rotation

There are three methods of energy transport in stars: conduction, radiation, and con-

vection (e.g. Hansen and Kawaler 1994). Energy transport by heat conduction occurs in the

presence of degenerate electrons, which is generally only a concern in the deep interior of

white dwarfs, neutron stars, and red supergiants. For low mass main sequence stars such

as the Sun, the most effective means of energy transport is by radiation in the interior of

the Sun, and convection in the outer envelope of the star. Energy generated within the star

must flow from the center to the surface, therefore a temperature gradient exists. The local

steepness or flatness of this temperature gradient dictates the method of energy transport

for various regions within a star (e.g. Stix 2002).

The double-logarithmic gradient, represented by ∇ (unitless), is often used instead of

dT/dr when discussing temperature gradients:

∇ =
d lnT

d lnP
.(1.4)

Here ∇e denotes the actual local temperature gradient of the plasma environment, and ∇ad

is the temperature gradient required for a parcel of gas to evolve adiabatically (i.e. no heat

exchange). There exists a limit to the temperature gradient ∇e inside a star if stability of
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the plasma environment is to be maintained. In a star such as the Sun, when the plasma is

stable to adiabatic perturbations, convection does not occur and radiation is the means of

energy transport within this region. When the local temperature gradient ∇e is steeper than

the adiabatic temperature gradient, the plasma environment becomes unstable, promoting

convection. Therefore, this condition occurs when ∇e > ∇ad. In the outer ∼1/3 of the Sun

in radius, convection is the most efficient means of energy transport. See Appendix D for

the derivation of the Schwarzschild criterion for convective instablility/stability.

Convection in the Sun is driven by the temperature gradient set up between the base

of the convection zone and the solar surface (see review by Nordlund, Stein, and Asplund

2009). Large entropy fluctuations caused by cooling of the plasma at the solar surface

provides most of the buoyancy work to sustain convection. Plasma reaching the surface

subsequently cools as thermal energy is carried away by photons, and the now more dense

fluid is pulled downward by gravity. Heating at the lower boundary of the convection zone

supplied by the radiative interior contributes a smaller amount of entropy fluctuations, and

is primarily the supplier of heat to large-scale global convective motions. The warmer, less

dense plasma then rises buoyantly against gravity toward the surface.

Evidence of the convective nature of the Sun appears as a granular pattern observed on

the solar surface as in Figure 1.7. Each granule, or convective cell, is ∼1,000 km in diameter.

In the center of each granule is a warmer region of upflowing plasma, surrounded by cooler,

dark intergranular lanes. A typical granule has a lifetime of ∼5 − 20 mins (e.g. Alissan-

drakis, Dialetis, and Tsiropoula 1987; Title et al. 1989; Hirzberger et al. 1999), therefore

the granulation pattern on the Sun is constantly changing. Superimposed on the small scale

granulation is the supergranular pattern. Each supergranule is ∼10 − 30 Mm in diameter,
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Figure 1.7. Image depicting convective granulation. Taken in the G-band
continuum around 430 nm, this spectral region images the photosphere show-
ing hot, lighter colored rising fluid surrounded by a network of cooler, dark
intergranular lanes. The very bright regions along the intergranular network
are concentrations of small-scale magnetic field. Image taken with the Swedish
1m Solar Telescope (Nordlund, Stein, and Asplund 2009).

an order of magnitude larger than granulation, and can live for ∼0.5 − 2 days (Wang and

Zirin 1989; Hirzberger et al. 2008). An even larger scale of convection known as giant cells,

which are on the order of ∼100 Mm and have lifetimes of about a month, have been observed

by some groups (Hathaway et al. 1996; Beck, Duvall, and Scherrer 1998; Hathaway, Upton,

and Colegrove 2013). It is believed that these large scale convective structures must exist

to efficiently transport the required heat flux across stellar convection zones (e.g. Simon and

Weiss 1968).

The convection zone is also strongly stratified such that the density contrast across this

region is ∼106 (e.g. Stix 2002). Upper layers of the convection zone are more highly stratified
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than lower layers such that there is a rapid decrease in density approaching the surface. The

size of convective cells is highly dependent on the density scale height (e.g. Nordlund, Stein,

and Asplund 2009), the distance over which the density of a fluid parcel changes by a factor

of e. As a result, a hierarchy of convective scales exist on the Sun, from granules with

shorter density scale heights to giant cells with much larger density scale heights. Smaller

cells are thought to be advected laterally by larger scales of convection (De Rosa, Gilman,

and Toomre 2002). Presumably this occurs due to the fact that downflows from small-scale

cells (i.e. granules) entrain into larger scale downflow structures (i.e. supergranules, giant

cells) deeper in the stratified environment.

To probe the nature of the solar interior, a method known as helioseismology is used.

Helioseismology is the study of propagating acoustic waves in the solar interior, and the in-

version of the obtained data to gather information about the interior structure and dynamics

of the Sun (see for an overview Howe 2009). The direct observable of global helioseismology

are provided by photospheric Doppler velocities taken at a cadence of ∼1 min continuously

for timespans of months to years. These observations are decomposed into their spherical

harmonic components to reveal information about acoustic modes traveling within the con-

vection zone and below. Waves observed through helioseismology are acoustic in nature,

meaning that they are dependent on the speed of sound in the solar interior. For the pur-

poses of measuring the internal solar rotation profile, these waves have frequencies of ∼1.5

to 5 mHz. Thus far, the only acoustic waves observed on the Sun are p-waves, so called

because pressure is their restoring force (Howe 2009). Gravity, or g-waves where gravity is

the restoring force, have been posited to exist in the radiative interior of the Sun, but have

not been observed.
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The solar interior acts like a wave-guide, or cavity, with the solar surface as the upper

boundary and the lower boundary as the wavelength dependent depth at which certain

acoustic waves are refracted back toward the surface. Wave modes with longer horizontal

wavelengths (low spherical harmonic degree ℓ) penetrate deeper in the Sun and are fairly

long-lived (Howe 2009). For measurements of the interior rotation profile, modes of ℓ ≤ 200

are used. Conversely, modes with much shorter horizontal wavelengths, high ℓ where ℓ ≥ 200,

penetrate to shallower depths and are short-lived, so they are used for local helioseismology

rather than global. Local helioseismology is useful for learning about flows in the upper

convection zone related to meridional circulation, active regions, and super-granulation (see

Gizon and Birch 2005). Through this method, it is possible to gain information about active

regions during a small window of time before they are visible on the solar surface (Ilonidis,

Zhao, and Kosovichev 2011; Birch et al. 2013), or about active regions on the far side of

the Sun which we may not be able to observe (Lindsey and Braun 2000; Braun and Lindsey

2001).

The major triumph of global helioseismology is the determination of the solar differential

rotation and the rotation rate of the radiative interior. Figure 1.8 shows the major features

of solar interior rotation as inferred from an average of ∼12 years of MDI (Michelson Doppler

Imager) data, an instrument aboard SOHO (Solar and Heliospheric Observatory). Results

tend to indicate that the radiative interior rotates uniformly, although it is unclear as to

whether the core rotates at a different rate than the upper radiative zone (see Thompson

et al. 2003; Howe 2009). The transition between the solidly rotating radiative interior and

the differentially rotating convection zone is a thin layer of ∼0.05 R⊙ called the tachocline.
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Figure 1.8. Cross-section of the solar interior. Contours of constant rota-
tion show that the plasma in the convection zone rotates faster at the equator
than at the poles, and highlights features such as the near-surface shear layer,
tachocline, and uniformly rotating radiative interior. Cross-hatches indicate
regions where helioseimsology is not yet capable of reliably capturing the in-
terior structure. Figure from Howe (2009).

The discovery of this shearing layer prompted the idea that the tachocline is the seat of the

dynamo’s toroidal magnetic field generation and amplification.

Differential rotation on the solar surface has been known to exist for many years as a

result of sunspot tracking, as sunspots tend to rotate faster in the prograde direction closer to

the equator (e.g. Gilman and Howard 1985). Helioseismic results show that this differential

rotation does indeed extend throughout the entirety of the convection zone. Maintenance

of the solar differential rotation is a result of angular momentum redistribution of non-

axisymmetric motions, particularly convection, through Reynolds stresses (see e.g. Miesch

2005). It may also be the case that the presence of a large-scale magnetic field in the

convention zone could alter the Reynolds stress or redistribute angular momentum through

the Lorentz force.
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As shown in Figure 1.8, contours of constant rotation in the solar convection zone are

conical in shape. In the absence of latitudinal (θ) entropy (S) gradients such that ∂S/∂θ = 0,

the rotation profile will be cylindrical following the Taylor-Proudman theorem (e.g. Miesch

2005), as is the case in a large number of early convection zone simulations (e.g. Gilman

1977; Gilman and Miller 1986; Miesch et al. 2000). However, if the system is in thermal

wind balance and there is a latitudinal entropy variation that increases from low to high

latitudes, a solar-like conical rotation profile can be created. Such conditions would require

the solar poles to be ∼5 K warmer than equatorial regions (e.g. Miesch 2005). Unfortunately,

detecting such small variations of the solar thermal profile is beyond the current capabilities

of helioseismology.

Whether the magnetic field in question resides on the solar surface, the bulk of the

convection zone, or the tachocline, it will interact with surrounding convective motions. The

magnetic field can be advected by convective flows, or stretched and amplified by shearing

motions. Therefore, in the context of this thesis, it is important to understand the nature of

convection and differential rotation in order to study how these fluid motions influence the

dynamic evolution of active-region-scale magnetic flux tubes.

1.4. Simulations of Solar Magnetic Flux Emergence and Convection

Numerical simulations have shed light on the solar flux emergence process and the nature

of fluid motions in the bulk of the solar convection zone. Advances in numerical methods and

high-performance supercomputing have allowed for sophisticated models that make contact

with solar observations. Here some selected models that pertain to solar flux emergence and

convection are reviewed.
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Valuable insights into the nature and evolution of rising magnetic flux loops through a

stably stratified, quiescent solar convective envelope have been gained through the use of the

thin flux tube (TFT) approximation by a plethora of authors (e.g. Spruit 1981a,b; Moreno-

Insertis 1986; Ferriz-Mas and Schüssler 1993; Longcope and Klapper 1997). Such studies

indicate that the Coriolis force is responsible for a variety of active region behavior such as:

tilt angles in accordance with Joy’s Law (D’Silva and Choudhuri 1993; Caligari, Moreno-

Insertis, and Schüssler 1995), the apparent faster proper motion of the leading polarity of an

emerging active region on the solar surface (van Driel-Gesztelyi and Petrovay 1990; Moreno-

Insertis, Caligari, and Schüssler 1994; Caligari, Moreno-Insertis, and Schüssler 1995), and

an asymmetry where the leading polarity shows a more coherent morphology (Fan, Fisher,

and Deluca 1993; Caligari, Moreno-Insertis, and Schüssler 1995; Caligari, Schüssler, and

Moreno-Insertis 1998).

These simulations also help to shed some light on the dynamo generated magnetic field

strength, suggesting that the toroidal magnetic field strength at the base of the convection

zone needs to be between 30− 100 kG for active-region-scale magnetic flux tubes to exhibit

properties similar to those of active regions on the Sun (Choudhuri and Gilman 1987; D’Silva

and Choudhuri 1993; Schüssler et al. 1994; Caligari, Moreno-Insertis, and Schüssler 1995).

The TFT model has also been used to explore the possibility of polar flux emergence on

rapidly rotating Suns (e.g. Schüssler and Solanki 1992), the twist of magnetic field lines

resulting from helical turbulence in the weakly twisted TFT regime (e.g. Longcope and

Klapper 1997; Longcope, Fisher, and Pevtsov 1998), and flux emergence in early-type stars

with convective cores and radiative exteriors (MacGregor and Cassinelli 2003).

27



Equations describing the evolution of the TFT model are derived from ideal MHD by

performing a first order expansion of the governing equation with respect to a/L, where

a is the cross-sectional radius of the flux tube and L is the length scale variation (for a

first formulation see Spruit 1981a,b). All physical quantities of the flux tubes are taken

as averages over the cross-section, and only vary along the flux tube axis, therefore it is

considered to be a one-dimensional (1D) model. As such, TFT models are computationally

inexpensive to perform, providing a useful platform for a parameter space study. Although

useful, the 1D nature of the TFT approximation does not capture the possible fragmentation

of the flux tube and its internal structure, nor does it resolve the interaction of the flux tube

cross-section with its environment. Additionally, the TFT approximation is not satisfied in

the upper ∼0.05R⊙ portion of the convection zone where the radius of the flux tubes is on

the order of the local pressure scale height (e.g. Moreno-Insertis 1992).

An approach to resolving the interaction of the flux tube cross-section with a quiescent

model solar convection zone environment is provided by two-dimensional (2D) MHD studies

(e.g. Fan, Zweibel, and Lantz 1998; Emonet and Moreno-Insertis 1998), followed by 3D MHD

models in Cartesian boxes both with and without rotational effects (e.g. Abbett, Fisher, and

Fan 2000, 2001; Fan 2001), and rotating spherical shells or shell sectors (e.g. Jouve and

Brun 2007; Fan 2008). These studies show that the flux tube cross-section does not remain

coherent, but rather fragments as it rises, and develops trailing magnetic wakes. It is also

found that the fragmentation of the tube can be suppressed by a sufficient twist of the

magnetic field lines comprising the flux tube.

The next step for flux emergence models was then to include the effects of turbulent

solar-like convection on 3D models of buoyantly rising magnetic flux tubes. Using a flux
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tube model in a horizontal convecting box, Fan, Abbett, and Fisher (2003) find that weakly

equipartition and weakly super-equipartition magnetic field strength flux tubes are suscep-

tible to deformations by convective flows. Strong downdrafts pin portions of the flux tube

to the bottom of the domain, while parts of the flux tube within upflows are boosted toward

the surface. Considering that the solar convection zone is highly turbulent, it is likely that

similar processes influence the evolution of flux tubes as they traverse the convection zone.

Early models of rotating, 3D stellar convection were relatively laminar with limited spatial

resolution (e.g. Gilman 1978, 1979; Gilman and Miller 1981; Glatzmaier 1984). However, they

do produce traveling, rotationally aligned convection cells of low order periodic longitudinal

structure (m∼10), as predicted by linear theory (e.g. Busse 1970). Taking advantage of more

recent scalable, massively parallel supercomputers, a numerical model knows as the Anelastic

Spherical Harmonic (ASH) code was developed (e.g. Miesch et al. 2000; Brun, Miesch, and

Toomre 2004). The ASH code solves the 3D anelastic fluid equations, wherein fluid motions

are considered to be subsonic, using a pseudo spectral method with both spherical harmonic

and Chebyshev basis functions.

The ASH code is highly versatile, having been used to great success in the solar regime

(e.g. Brun and Toomre 2002; Miesch et al. 2008), including rapidly rotating young Suns

(Brown et al. 2008, 2010; Nelson et al. 2013), and for other main sequence stars with con-

vective cores (Brun, Browning, and Toomre 2005), convective outer shells (Matt et al. 2011;

Augustson et al. 2012), or M-type stars that are fully convective (Browning 2008). Such

simulations intrinsically capture large scale flows such as differential rotation and meridional

circulation in stars with convective envelopes. Solar convection simulations computed with
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ASH match closely the solar differential rotation profile as found via helioseismology (e.g.

Miesch, Brun, and Toomre 2006; Miesch et al. 2008).

The first 3D MHD simulation of an isolated magnetic flux tube evolving in a spherical,

rotating convective velocity field were performed with the ASH code by Jouve and Brun

(2009), followed by Jouve, Brun, and Aulanier (2013), and then Pinto and Brun (2013)

where the flux tube is embedded in a background dynamo field. Another model investigates

the same phenomenon using a finite-difference spherical anelastic MHD (FSAM) approach

(Fan, Featherstone, and Fang 2013). The objective of these models is to gain a better

understanding of the global interaction between convection and buoyantly rising magnetic

flux tubes.

While these simulations are highly attractive due to their complex 3D nature, they suf-

fer undesirable consequences because of the same reason. Direct MHD simulations must

discretize the three-dimensional domain, and thus are subject to numerical diffusion. To ad-

equately resolve the flux tube such that numerical diffusion is negligible, the spatial extent

of the domain is severely limited. Alternately, the problem can be resolved by increasing

the magnetic flux of the isolated tube such that it does not suffer a significant erosion of its

magnetic buoyancy and magnetic tension due to numerical diffusion (i.e. the flux tube does

not preserve the flux frozen-in condition). Unfortunately this results in unreasonably large

magnetic flux values of ∼1023 Mx, an order of magnitude larger than most sunspot magnetic

flux. In addition, to favor the creation of a buoyantly rising loop in a realistic time frame,

tubes with such large flux are given an ad hoc entropy perturbation to promote a magnetic

buoyancy instability.
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The aforementioned models in this section must introduce an isolated magnetic flux tube

to the computational domain. Recent ASH simulations in solar-like convective domains

rotating at three times the current solar rate are able to self-consistently create wreaths

of magnetism from seed fields (Brown et al. 2010, 2011; Nelson et al. 2013). Such wreaths

exhibit cyclic behavior, and are capable of developing buoyant loops in certain circumstances.

These simulations demonstrate that persistent toroidal fields of moderate strength can be

generated by and coexist with turbulent convection.

Of course the journey of a magnetic flux tube does not stop where the TFT approxi-

mation or anelastic approximation no longer hold. Fully compressible MHD simulations are

required in the upper levels of the convection zone near the solar surface where velocities are

no longer subsonic and active-region-scale flux tubes are no longer thin. Due to the sharp

density stratification in the upper ∼20 Mm of the convection zone, it is not yet computation-

ally possible to perform 3D MHD simulations that span from the base of the convection zone

to the photosphere and above. Also, ionization and radiative processes that occur at the

photosphere are complicated effects not included in global convective models. As a result,

simulations modeling flux emergence through the upper few Mm of the convection zone and

up into the lower solar atmosphere are decoupled from flux emergence simulations in the

convection zone proper (for a few example simulations, see Mart́ınez-Sykora, Hansteen, and

Carlsson 2008; Fan 2009b; Fang et al. 2012). However, the time is ripe to work toward cre-

ative solutions which allow for coupling of these dynamic regimes, covering multiple pressure

scale heights and therefore various scales of required spatial resolution.

None of the methods to numerically model flux emergence presented in this section are

ultimately better than another. They are all complementary, and together paint a more
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coherent picture of the flux emergence process in the Sun. Within the context of this thesis,

the global flux emergence process in the bulk of the convection zone is addressed through a

hybrid approach, employing a thin flux tube model embedded in a rotating spherical shell

of turbulent, solar-like convection computed via the ASH code as described in Chapter 2.

1.5. The Solar/Stellar Connection

In order of decreasing mass, radius, and surface temperature, stars along the main se-

quence are given spectral class designations of: O, B, A, F, G, K, and M, as shown in the

Hertzsprung-Russell diagram of Figure 1.9. Many cool dwarf (main sequence F, G, K, and

M-type) stars exhibit magnetic activity. The Sun, a G2 dwarf, is only one of ∼300 billion

stars in the Milky Way, thus reminding us that the in-depth observations of our magnetic

star represent a negligible portion of the varieties of stellar behavior. Exoplanet hunting tele-

scopes such as ESA’s CoRoT and NASA’s Kepler satellite missions have identified numerous

Earth-like planets orbiting solar-like stars. As such, comparative studies of solar and stellar

magnetism will help to decipher the dynamo mechanism in magnetic stars, and may shed

light on the possible space weather conditions in the vicinity of exoplanets in the habitable

zone.

Modulation in magnetic activity can be detected on cool stars by observing their chro-

mospheres. The chromosphere is the region of a stellar atmosphere directly above the pho-

tosphere, but below the corona. Throughout most of this region, the temperature actually

increases outward from the photosphere, rather than falling off with increasing distance.

Mechanical energy is input into the chromosphere from the underlying photosphere, heating

the decreasingly dense plasma to values above what is expected from radiative equilibrium
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Figure 1.9. Hertzsprung-Russell diagram depicting the relationship between
stellar spectral types, temperature, luminosity, and size.

(e.g. Hall 2008). Stellar chromospheres are best observed in the Ca II H and K emission

lines, which arise from singly ionized calcium.

Böhm-Vitense (2007) compares the activity cycle period (Pcyc) obtained from Ca II emis-

sion fluxes as a function of rotation period (prot) for 25 solar-like (F7V-K7V) stars, and finds

interestingly that the Sun’s position on the graph is between the so-called active sequence

(indicated by A) and the inactive sequence (indicated by I), as shown in the left panel of
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Figure 1.10. (Left) Activity cycle period as a function of rotation period
for 26 F7V-K7V stars. The Sun’s position on this plot is unusual compared
to the other stars. Figure from Böhm-Vitense (2007). (Right) X-ray activity
as a function of rotation period for 259 low mass dwarfs. Activity increases
with increasing rotation rate until reaching a saturation level. Figure from
Pizzolato et al. (2003).

Figure 1.10. As a result, the author states: Clearly the Sun is not a good standard star for

the discussion of stellar activity, thus prompting further studies of the link between stellar

magnetism and rotation, and how the Sun fits into this puzzle. Baliunas et al. (1995) per-

form a similar investigation of 111 F-M spectral type stars over a period of 25 years, and

find that 46% exhibit activity cycles from 2.5 years to at least 25 years. Another 26% show

variability with no periodicity, and the remaining 28% show little to no variability. Most of

the stars with irregular cycle variability tend to be young and rapidly rotating.

Older cool dwarfs rotate much slower than their younger counterparts, as their associated

stellar winds remove angular momentum in a process known as magnetic breaking (e.g. Wood

2004). It is likely that the rapidly rotating young Sun had a much higher level of magnetic

activity and less cyclic, more irregular periods of variability (e.g. Güdel 2007). This trend of
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increasing activity levels with more rapid rotation is seen in other low mass (F through M-

type) dwarfs, as activity levels increase with rotation rate until reaching a saturation point,

as shown in the right panel of Figure 1.10 where X-ray activity is taken as an indicator of

magnetic activity (e.g. Pizzolato et al. 2003; Reiners 2012).

It is difficult to assess the average magnetic field strength of most F through K-type

dwarfs because they have such rapid rotation rates. However, observations of active M-

type dwarfs reveal an average magnetic field strength of around a few kG (e.g. Reiners

2012). Compared to the Sun’s ∼10 − 102 G magnetic field strength (which varies based

on determination methods), this is remarkably large, although it is the case that average

magnetic fields of a few kG have been observed on cool stars of all spectral types (e.g. Reiners

2012). A good estimate for the upper limit of a star’s magnetic field can be obtained by

calculating the expected equipartition (i.e. pressure-balancing) magnetic field as Beq ∝ P 1/2
gas ,

where Pgas is the photospheric gas pressure (Saar 1990). The magnetic field may saturate

when the rotation reaches a critical rate, associated with the rotation rate when the Rossby

number Ro = Prot/τconv ∼ 0.1, where Prot is the rotational period of the star and τconv is the

convective turnover time scale (e.g. Reiners 2012).

Solar-like main sequence stars of F, G, and K-type possess outer convection zones, and

radiative cores where the most efficient means of energy transport is by radiation. As a re-

sult, such stars are all assumed to have tachoclines, shearing interfaces between the radiative

zone and convection zone, where magnetic fields are generated, similar to the solar dynamo

paradigm. Stellar luminosity increases with increasing mass, while the radial fraction of the

outer convective envelope of these stars decreases such that 0.5M⊙ − 1.3M⊙ stars have con-

vection zone depths of ∼44%−14%, respectively, of their total radius. Therefore, convection
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becomes more vigorous with increasing stellar mass, as the amount of required energy flux

transport increases and the convection zone becomes shallower in radius. Indeed, convective

radial velocities increase for simulations of global-scale convection in more massive F-type

stars as compared to solar-like G-type stars (for a comparison, see e.g. Brown et al. 2010;

Augustson et al. 2012). These same simulations indicate that that rapidly rotating stars with

outer convection zones have a stronger differential rotation, weaker meridional circulation,

and more modulated convection in the equatorial regions (e.g. Brown et al. 2008; Matt et al.

2011; Augustson et al. 2012). At very large rotation rates, localized patterns of convection

emerge creating nests of convection (see Brown et al. 2008; Augustson et al. 2012).

The most massive main sequence stars of O, B, and A-types are thought to have con-

vective interiors and radiative outer shells. These stars tend to be less magnetically active,

although ∼10% of A-type stars have observable magnetic fields (see Moss 2001). The ques-

tion as to whether or not their magnetism is the result of a fossil field of primordial origin,

dynamo action in the convective core, or the interaction of the core dynamo with a fossil field

is still not resolved (see Featherstone et al. 2009). These stars also have a shorter lifetime

on the main sequence branch, as the mass loss by stellar winds for massive stars is much

greater than in low mass stars (e.g. Prialnik 2000).

The lowest mass main sequence stars of M-type are fully convective. Although lacking

a tachocline, these stars are magnetically active, and often exhibit strong flaring events,

suggesting that fully convective stars can generate volatile magnetic fields. In fact, it is found

from simulations of rotating, spherical convecting shells in stellar regimes that dynamo action

can be sustained without a tachocline (e.g. Browning 2008; Brown et al. 2010; Augustson

et al. 2012). What is clear is that shearing motions in the stellar interior contributed by
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a tachocline region and/or differential rotation is needed to sustain a dynamo (e.g. Reiners

2012).

Similar to the Sun, most stars with convective outer layers exhibit starspots. There are

a variety of observational tools and techniques that can be used to create maps of stellar

surfaces (for a description of methods, see reviews by Berdyugina 2005; Strassmeier 2009).

One method of starspot detection utilizes high-precision photometry proved by the CoRoT

and Kepler missions. Deviation in stellar light curves during planetary transits can be

identified as signatures of starspots through light curve modeling efforts (e.g. Silva-Valio and

Lanza 2011). Such observations are crucial as they provide constraints on the operation of

the underlying dynamo and subsequent flux emergence process.

Recovered starspot latitudes suggest that some stars may actually have concentrations

of magnetic flux emergence at or near the poles, unlike the current Sun (e.g. Berdyugina

2005; Strassmeier 2009). This behavior could be accounted for by the Coriolis force acting

on rising magnetic flux tubes in rapidly rotating stars (e.g. Schüssler and Solanki 1992;

Schüssler et al. 1996), or by the presence of a deeper convection zone. Some active stars

exhibit spots in multiple latitude ranges simultaneously (e.g. Barnes et al. 1998; Frasca et al.

2011), suggesting perhaps more than two toroidal bands of dynamo activity, deviating from

the generally accepted solar paradigm. Additionally, some stars exhibiting both polar spots

and low latitude spots still show cycles of variation similar to stars without polar spots

(see Strassmeier 2009). This suggests that the low latitude spots follow a cyclic variation

on a separate timescale from the evolution of polar spots. It may also be the case that

starspots can propagate from low latitudes to high latitudes during the course of a stellar
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cycle, opposite of the latitudinal migration pattern for spots on the Sun (Vogt et al. 1999;

Strassmeier and Bartus 2000).

Active longitudes, longitudinal regions of preferred starspot emergence, have been ob-

served on the Sun (e.g. de Toma, White, and Harvey 2000; Berdyugina and Usoskin 2003)

and young solar analogs such as AB Doradus (K0V) (Järvinen et al. 2005), LQ Hydrae

(K2V) (Berdyugina, Pelt, and Tuominen 2002), and Kepler-17 (G2V) (Bonomo and Lanza

2012). Often, stars exhibiting active longitudes, the Sun included, have two preferred re-

gionss of longitudinal flux emergence that tend to be separated by 180◦, and flip-flop such

that one active longitude may be more pronounced than another. The physical mechanisms

responsible for the active longitude phenomenon are not well understood for single, solar-like

stars. Although some theories have been put forward suggesting that active longitudes result

from non-axisymmetries in the dynamo generated magnetic field (Ruzmaikin 1998; Nelson

et al. 2013), simultaneous instabilities in both the tachocline and toroidal magnetic field

band (Dikpati and Gilman 2005), or from large-scale organization of flux emergence by giant

cell convective structures present in the convection zone proper as discussed in this thesis in

Chapter 5.

Stellar flaring events are an explosive result of the release of stored magnetic energy.

Flares, typically associated with the location of active regions, are observed as sudden

brightenings in stellar atmospheres, and are capable of emitting radiation across the en-

tire electromagnetic spectrum. Solar flares were first observed in the white light continuum

in 1859 (e.g. Benz 2008). Detection of flaring events on other stars is done through the iden-

tification of intense, short-lived peaks in the stellar light curve, or enhancements in certain

emission lines (e.g. Pettersen 1989; Maehara et al. 2012). The quintessential flaring stars are
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main-sequence M-type stars, although flaring occurs on a significant portion of stars with

outer convection zones, and has occasionally been observed on A-type stars (e.g. Pettersen

1989).

Finally, starspots are useful in identifying the rotation rate of stars and the differential

rotation of their convective zones (e.g. Berdyugina 2005; Strassmeier 2009). Assuming that

starspots live for several rotations, periodic modulations in the stellar light curve provide

a measurement of the star’s rotation rate (for a large collection of Kepler target stars, see

e.g. Basri et al. 2011; Nielsen et al. 2013). If the approximate latitude of starspots are

known via starspot modeling, tracking their relative rotation rates give an indication of the

star’s differential rotation (e.g. Collier Cameron, Donati, and Semel 2002; Oláh, Jurcsik,

and Strassmeier 2003; Barnes et al. 2005). Astroseismology is also another promising way

to detect differential rotation on solar-like stars, as discussed in Gizon and Solanki (2004).

The difficulty with using astroseismology or starspot tracking to obtain information about

stellar rotation rates and differential rotation is the need for long-term observations of about

a month or longer. As such, available literature on these topics are extremely biased to-

ward rapidly rotating stars, however Lund, Miesch, and Christensen-Dalsgaard (2014) have

made some progress in using astroseismology to investigate differential rotation in stars with

moderate rotation rates closer to that of the Sun.

Our Sun represents one example of the varieties of stellar behavior. In order to understand

the intricacies of the Sun’s dynamo, we must perform comparative studies of a multitude of

main-sequence stars. Such studies will help to sort out the complicated processes involved in

the generation and sustainment of stellar dynamos across the Hertzsprung-Russell diagram.
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1.6. Objectives and Proposed Methods

A large statistical study of the global interaction of convection with rising active-region-

scale magnetic flux tubes in the bulk of the solar convection zone for a variety of initial

parameters has never before been accomplished. Attempting such a study in the fully 3D

MHD regime is not currently computationally viable. We present an alternative by employing

a hybrid flux emergence simulation. We model isolated magnetic flux tubes using the 1D

thin flux tube (TFT) approximation, coupling them to a 3D time-dependent simulation of

solar-like convection in a rotating spherical shell computed separately from the TFT model

via the ASH code, as described in Chapter 2. For each grid point along the flux tube

at every timestep of the flux tube evolution, we retrieve the corresponding velocity field

components from the ASH simulation through an interpolation method. The ASH velocity

field then interacts with the flux tube through the drag force it experiences as it traverses

through the turbulent, convective medium. This scheme eliminates the need to solve for the

interaction of the flux tube cross-section with the surrounding environment, and does not

require the velocity field and evolution of the flux tube to be solved simultaneously. As such,

a simulation run solving for the evolution of an individual flux tube can be performed on a

standard desktop computer with adequate memory and disk space in less than an hour in

most cases.

This method captures the dynamical effects of convection on rising magnetic flux tubes

while circumventing the problem of artificial diffusion. These simulations also develop flux

tube buoyancy instabilities self-consistently, as convective upflows and downflows perturb

rising magnetic loops. As the thin flux tube approximation itself is computationally inex-

pensive, many flux tube simulations can be conducted in a reasonable timeframe, allowing for
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a large statistical study of solar active-region-scale magnetic flux tubes subject to interaction

with flows taken from a hydrodynamic ASH simulation.

Summarized below are the main topics this thesis proposes to address through the use

of our simulation scheme:

• Identify the magnetic-buoyancy-dominated and convection-dominated regimes for

active-region-scale flux tubes of equipartition to super-equipartition magnetic field

strengths (Chapter 3)

• Characterize the influence of large-scale, global convection on flux tube properties

at the simulation upper boundary - a proxy for active regions observed on the solar

surface (Chapter 4 and Chapter 5)

• Better constrain the dynamo generated magnetic field strength by comparing sim-

ulation results to those of active region observations (Chapter 4)

• Address the influence of radiative diffusion through the base of the convection zone

on the dynamic evolution of magnetic flux tubes (Chapter 6)

• A discussion on possible future research using our simulation scheme (Chapter 7)

to (1) determine whether convective motions are capable of inducing a twist of flux

tube magnetic field lines, as seen in observations of sunspots, and (2) investigate

flux emergence properties on the young, rapidly rotating Sun, (3) paving the way

for future simulations of flux emergence across the Hertzsprung-Russell diagram

Through our novel hybrid TFT+ASH approach to address the above topics, we have

shed some light on current solar and stellar physics issues, enriching our understanding of

stellar magnetism and its relation to processes in the convection zone of cool stars.
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CHAPTER 2

Model Description: Flux Emergence Simulations

Starspots are observable manifestations of magnetism on stellar surfaces, thus providing

a photospheric link to the deep-seated dynamo mechanism. The work in this thesis provides

a connection between the solar dynamo and active regions by performing simulations of

magnetic flux emergence through the bulk of the turbulent solar convection zone. This

chapter describes the methods employed to investigate flux emergence in a solar-like star,

which involves taking a hybrid approach by combining a thin flux tube model with a three-

dimensional, rotating spherical shell of turbulent solar-like convection.

2.1. The Thin Flux Tube Model

In the case of ideal MHD where the plasma is treated as a perfectly conducting fluid,

which is a good assumption for the solar interior, magnetic field lines and plasma elements

behave as if they are tied together (see Appendix B). Bundles of magnetic field are confined

by plasma into tubular structures called magnetic flux tubes. The observational existence

of such flux tubes is illustrated especially well by sunspots/starspots, appearing when rising

magnetic flux tubes intersect with the stellar surface.

Valuable insights into the nature and evolution of dynamo-generated, isolated, rising

magnetic flux loops through a quiescent solar convection zone have been gained through the

use of the thin flux tube (TFT) approximation by a plethora of authors (e.g. Spruit 1981a,b;

Moreno-Insertis 1986; Ferriz-Mas and Schüssler 1993; Longcope and Klapper 1997). Spruit

(1981a) develops the basic equations for the motion of a thin flux tube from ideal MHD by
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assuming that the cross-sectional radius of the flux tube a is small compared to both its

total length L and the local pressure scale height, corresponding to an expansion in lowest

order of the MHD equations in powers of a/L. Choudhuri and Gilman (1987) extends the

thin flux tube equations to include the effect of solar rotation and the drag force that the

flux tube experiences as it traverses through the solar plasma. All physical quantities of the

flux tubes are taken as averages over the cross-section, only varying spatially along the flux

tube axis, therefore the TFT approximation is a one-dimensional model.

Using the idealized construction of an isolated thin flux tube, we study the dynamic

evolution of concentrated flux tubes influenced by the integrated forces acting on each seg-

ment of the tube. A derivation of the thin flux tube equations from ideal MHD, and the

subsequent equations derived for use in the computational model, can be found in Appendix

C. For this thesis, the equations that describe the evolution of each segment of the thin flux

tube are:

ρ
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(2.5) P +
B2

8π
= Pe,

where, r, v, B, ρ, P , T , which are functions of the time t and arc length s measured along the

tube, denote respectively the position, velocity, magnetic field strength, gas density, pressure,

and temperature of a Lagrangian tube segment, l ≡ ∂r/∂s is the unit vector tangential to the

flux tube, k ≡ ∂2r/∂s2 is the tube’s curvature vector, subscript ’⊥’ denotes the component

perpendicular to the flux tube, Φ is the constant total flux of the tube, ρe, Pe, and µ, which

are functions of depth only, are respectively the pressure, density, and mean molecular weight

of the surrounding external plasma, g is the gravitational acceleration that is a function of

depth only, Ω0 is the angular velocity of the reference frame co-rotating with the sun, with

Ω0 = 2.7×10−6 rad/s in all Chapters, Cd = 1 is the drag coefficient, γ is the ratio of specific

heats, S is the entropy per unit mass, ∇ad is the adiabatic temperature gradient, and ve(r, t)

(discussed in Chapter 2.2) is a time dependent velocity field (relative to the rotating frame

of reference) that impacts the dynamics of the thin flux tube through the drag force term

(last term in Eq. 2.1). The term ve accounts for both the local convective flows and mean

flows such as differential rotation. In the above equations, we do not introduce an explicit

magnetic diffusion or kinematic viscosity term. The thin flux tube is untwisted (i.e. magnetic

field lines do not twist about the flux tube axis), and is discretized with 800 uniformly spaced

grid points along its arc length s. The numerical methods used to solve for the flux tube

evolution as determined by the above set of equations has been described in detail in Fan,

Fisher, and Deluca (1993) and in Appendix E.

For the stratification of the external field free plasma, namely ρe, Pe, Te, µ, g, γ, and the

super-adiabaticity, we use the reference solar model by Christensen-Dalsgaard et al. (1996)
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for the solar convection zone with an extension of a simple polytropic, sub-adiabatically

stratified thin overshoot layer, as described in Fan and Gong (2000). Profiles of Te, ρe, Pe,

and the super-adiabaticity δ = ∇−∇ad, where ∇ = d lnTe/d lnPe and ∇ad is the value of ∇

one obtains by considering local adiabatic perturbations, are shown in Figure 2.1. We define

the base of the convection zone as 5.026×1010 cm, which is the radius of the reference solar

model where the plasma changes from sub-adiabatic (stably stratified) to super-adiabatic

(unstably stratified). The bottom left panel of Figure 2.1 shows the sub-adiabaticity of the

thin overshoot layer, which extends from 4.8×1010 cm to 5.026×1010 cm. The bottom right

panel shows the logarithm of the super-adiabaticity in the convection zone, which extends

from 5.026×1010 cm to 6.75×1010 cm.

The equation of motion of the flux tube is given by Eq. 2.1. More specifically, the right-

hand side (RHS) of this equation gives the various forces per unit volume experienced by

each mass element along the flux tube length. The first term on the RHS of the equation

represents the Coriolis force. The second term corresponds to the buoyancy force, where

g−Ω0 × (Ω0 × r) is the apparent gravitational acceleration in the rotating reference frame,

taking into account the centrifugal acceleration. The next two terms are related to a pressure

gradient along the flux tube and the magnetic tension, respectively. Finally, the last term in

this equation is the drag force per unit volume that the flux tube experiences as it traverses

through the turbulent convection zone. This describes the interaction of the external fluid

with the flux tube in a high Reynolds number regime (e.g. Batchelor 1967), with the drag

coefficient Cd believed to be ∼1. The drag force is non-zero only when fluid flows relative

to the flux tube are perpendicular to the flux tube, and the relative velocity of the flux tube

element with respect to the surrounding fluid flows (ve) is given by v − ve.
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Figure 2.1. Profiles of Te, ρe, Pe, and adiabaticity factor δ for the entire
simulation domain as a function of solar radius r for the reference solar model.
The bottom left panel shows the sub-adiabaticity in the overshoot region,
whereas the bottom right panel shows the logarithm of the super-adiabaticity
in the convection zone.

Derived from the Walén Equation, which is a combination of the MHD continuity and

Induction Equations, Eq. 2.2 describes the evolution of the magnetic field of the flux tube

with respect to its density for a thin magnetic flux tube where B = Bl (see Appendix C for

a full derivation). More specifically, this equation describes the change in length of a flux

tube segment, as B/ρ = (φ δs)/(π δm), where δm is the mass of the flux tube element and

δs is the length of the flux tube element. Stretching (first term on RHS of Eq. 2.2) and

bending (second tern on RHS) both contribute to the change in length, and therefore change

in B/ρ, of the flux tube.
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It is also assumed that the plasma gas pressure is determined by an equation of state,

which is taken to be the ideal gas law (Eq. 2.4). Due to the thin flux tube limit, the sound

speed crossing time of the flux tube diameter is small compared to other relevant timescales of

the system. As a result, there is an instantaneous lateral pressure balance assumed between

the tube and the external unmagnetized plasma, given by Eq. 2.5.

The energy equation for the flux tube is given by Eq. 2.3. With the exception of Fan and

Fisher (1996), other thin flux tube models assume that the flux tube evolves adiabatically,

such that the entropy per unit mass is dS/dt = 0. However, near the base of the convection

zone, and in the convective overshoot region, there is a non-zero divergence of radiative heat

flux from the solar interior. In the lower ∼1/3 of the convection zone, the contribution from

radiative heating to the buoyancy evolution of the flux tube plays an important role in the

flux emergence process. In this thesis, flux tubes evolving adiabatically with dS/dt = 0

are assumed, with the exception of Chapter 6 where the effect of radiative heating on the

evolution of the flux tube is examined.

2.2. The Convection Simulation

To capture solar-like convection on a global scale, the Anelastic Spherical Harmonic

(ASH) code is used to create a time-varying convective velocity field, performed separately

from the thin flux tube simulations. In the anelastic regime, fluid motions are considered

to be subsonic, which is the case throughout most of the convection zone. Additionally,

thermodynamic perturbations are considered to be small variations about their mean values.

The ASH code solves the 3D anelastic Navier-Stokes fluid equations using a pseudo-spectral

method with both spherical harmonic and Chebyshev basis functions, explicitly resolving
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the largest scales of motion, while treating small turbulent eddies with sub-grid techniques.

Sub-grid techniques refer to the inclusion of an eddy viscosity ν and eddy diffusivity κ.

The ASH hydrodynamic equations are fully nonlinear in velocity variables, linearized in

thermodynamic variables with respect to a spherically symmetric background state taken

from a 1D solar structure model. While this structure model is different from the external

environment the flux tube experiences as discussed in Section 2.1 and shown in Fig. 2.1, the

two deviate little (∼10%). The mean thermodynamic variables are density ρ̄, pressure P̄ ,

temperature T̄ , and specific entropy S̄, with perturbations about the mean state of ρ, P , T ,

and S. The equations describing conservation of mass, momentum, and energy in a rotating

reference frame for the ASH model are given as:

∇ · (ρ̄v) = 0,(2.6)

ρ̄

[

∂v

∂t
+ (v ·∇)v + 2Ω0 × v

]

= −∇P+ ρg −∇ ·D−
[

∇P̄− ρ̄g
]

,(2.7)

ρ̄T̄
∂S

∂t
= ∇ ·

[

κrρ̄cp∇(T̄ + T ) + κρ̄T̄∇(S̄ + S)
]

−ρ̄T̄v ·∇(S̄+ S) + 2ρ̄ν

[

eijeij −
1

3
(∇ · v)2

]

,(2.8)

where v = (vr,vθ,vφ) is the local velocity in spherical coordinates in the rotating frame of

constant angular velocity Ω0, cp is the specific heat at constant pressure, g is the gravita-

tional acceleration, κr is the radiative diffusivity, and D is the viscous stress tensor, with

components:

(2.9) Dij = −2ρ̄ν
[

eij −
1

3
(∇ · v)δij

]

,

48



where eij is the strain rate tensor. In these equations, ν and κ are the effective turbulent

viscosity (eddy viscosity) and thermal diffusivity (eddy diffusivity), respectively, that rep-

resent unresolved subgrid-scale processes. In the simulations conducted for Chapters 3 - 6,

ν = 2×1013 cm2 s−1 and κ = 4×1013 cm2 s−1 at the simulation outer boundary, and each

decreases with depth in proportion to the inverse square root of the background density

ρ̄−1/2. Finally, to close the set of equations, the linearized relations for the thermodynamic

fluctuations are:

(2.10)
ρ

ρ̄
=

P

P̄
−

T

T̄
=

P

γP̄
−

S

cp
,

assuming the ideal gas law:

(2.11) P̄ = Rρ̄T̄ ,

where R is the ideal gas constant.

The computational domain for the ASH simulations in all Chapters except Chapter 7.2

extends from r = 0.69R⊙ to r = 0.97R⊙ (4.8×1010 cm to 6.75×1010 cm), and the density

contrast across the domain is ∼69, which corresponds to 4.2 density scale heights. This yield

a mid-convection zone Rayleigh number Ra of 5×106 and Reynolds number Re of order 50.

The Rayleigh number is defined here as Ra = gr2d∆S/(νκCP ) where g is the gravitational

acceleration and d = r2 − r1 is the depth of the layer. The Reynolds number is given by

vrmsd/ν where vrms is the root mean square velocity relative to the rotating reference frame.

The ASH simulation in all but Chapter 7.2 is resolved by a grid of 129 points in r,

256 points in θ, and 512 points in φ. Horizontal and vertical basis functions are given

by spherical harmonics and Chebyshev polynomials, eached de-aliased by keeping only the
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Figure 2.2. Snapshots of ASH convective radial velocities (left) at a depth of
25 Mm below the solar surface in an orthographic projection, and (right) at a
depth of 23 Mm in a Mollweide projection with the dotted line representing the
solar radius r = R⊙. Strong downflow lanes (blue/purple) at the boundary of
giant convective cells surround upflow regions (yellow). Also known as banana
cells, the structures at low latitudes are rotationally aligned and propagate
prograde.

lowest 2/3 of modes (maximum spherical harmonic degree ℓmax = 170 and Chebyshev degree

nmax = 86). Similar to Case AB3 in Miesch, Brun, and Toomre (2006), a latitudinal entropy

gradient is imposed on the lower boundary in order to implicitly capture thermal coupling

to the tachocline: S(θ, r1) = cp (a2Y20 + a4Y40), where S is the specific entropy per unit

mass, r1 is the inner boundary, cp is the specific heat at constant pressure, Yℓm(θ,φ) is the

spherical harmonic of degree ℓ and order m, a2 = 1.7 × 10−6, and a4 = −0.43 × 10−6. This

helps promote a conical rotation profile. The radial entropy gradient imposed at the outer

boundary is steeper, more in line with solar structure models (e.g. Christensen-Dalsgaard

et al. 1996); ∂S/∂r = −10−5 erg g−1 K−1 cm−1 in this case compared to −10−7 erg g−1 K−1

cm−1 in Case AB3.

Figure 2.2 shows snapshots of the radial velocity of the giant-cell convection at depths

of 25 and 23 Mm below the solar surface, respectively. The convective flow pattern shows

broad upflow cells surrounded by narrow and intense downflow lanes, with a convective
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Figure 2.3. (a) Mean kinetic helicity and (b) angular velocity (with respect
to the inertial frame) of the convection simulation, averaged over longitude and
time (1366 days). Color tables saturate at the values indicated, with extrema
ranging from (a) -.122 to 0.133 cm s−2 and (b) 326 − 468 nHz. This ASH
simulation produces a solar-like, conical differential rotation profile.

turnover timescale of τ ∼ 2×106 s, or about 23 days. The maximum downflow speed in the

convective envelope reaches nearly 600 m s−1 at a depth of about 86 Mm below the surface.

Throughout most of the convection zone, the combined influence of the Coriolis force and

the density stratification induces anti-cyclonic vorticity in expanding upflows and cyclonic

vorticity in contracting downflows. This yields a mean kinetic helicity density Hk = ⟨ω · v⟩

which is negative in the northern hemisphere and postive in the southern hemisphere (Fig.

2.3a), where ω = ∇ × v is the vorticity of the convective flow with velocity v. Vorticity

can be described as the local spinning motion of the fluid, whereas helicity is related to

a corkscrew-like motion. There is a weak sign reversal of Hk in the lower convection zone

where downflows expand and recirculate, inducing anti-cyclonic vorticity. Such a helicity

pattern is typical for rotating, compressible convection (e.g. Miesch and Toomre 2009).

At low latitudes there is a preferential alignment of elongated downflow lanes with the

rotation axis, reflecting the presence of so-called “banana cells” (Fig. 2.2). These features
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propagate in a prograde sense relative to polar regions, due in part to the differential rotation

and in part to an intrinsic phase drift akin to traveling Rossby waves (e.g. Miesch and

Toomre 2009). Such structures dominate the convective Reynolds stress, maintaining a

strong differential rotation comparable to that inferred from helioseismic inversions. In

particular, the total angular velocity Ω/2π (with respect to the inertia frame) decreases

monotonically from about 470 nHz at the equator to about 330 nHz at the poles and exhibits

nearly conical contours at mid latitudes (see Fig. 2.3b), as in the solar convection zone

(Thompson et al. 2003).

2.3. Combining TFT and ASH

The ASH convective velocity field interacts with the thin flux tube through the drag

force it experiences as it traverses through the turbulent convecting plasma, the last term in

Eq. C.35, where ve(r, t) is the temporal and spatially dependent velocity field relative to the

rotating frame of reference. In this way, an isolated flux tube experiences both the local and

mean flows associated with the ASH simulation, however the flux tube has no back reaction

on the external velocity field. For each timestep of the TFT simulation, a four-dimensional

interpolation (three spatial dimensions, and one temporal dimension) is performed to extract

the plasma velocity components from the ASH simulation for each mass element along the

flux tube.

Our simulations start with toroidal magnetic flux rings in mechanical equilibrium (neutral

buoyancy), located at a radial distance to the center of the Sun r = r0 = 5.05 × 1010 cm,

slightly above the base of the solar convection zone at r = rczb = 5.026 × 1010 cm. Figure

2.4 shows a snapshot of the radial velocity at an arbitrary azimuthal angle φ, with the green

dot representing the radius (to scale) of the largest flux tube, which occurs for magnetic field
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Figure 2.4. Snapshot of a slice of the radial velocity field (r = 0.69R⊙ −
0.97R⊙, θ from north pole to equator) at an arbitrary azimuthal angle φ, with
a cross section of a 15 kG flux tube (green, shown to scale), at its initial
starting radius 6◦ above the equator. The dotted line represents the base of
the convection zone at 5.026×1010 cm.

strengths of 15 kG. This figure shows the flux tube at its initial starting position compared to

the base of the convection zone. Note that the convective velocity field is allowed to penetrate

into the overshoot region. To ensure initial neutral buoyancy, the internal temperature of

the flux tube is reduced compared to the external temperature.

We consider a range of initial magnetic field strengths from 15 kG to 100 kG, at initial

latitudes θ0 ranging from 1◦ to 40◦ for the toroidal flux ring. Considering the root mean

square (rms) of the convective downflows from the ASH simulation at the base of the con-

vection zone, which are on the order of 35 m/s, the equipartition magnetic field is on the

order of Beq ∼ 5 kG. In this case, we are investigating flux tubes on the order of 3− 20 Beq.

The flux of the tube is constant, where we use values of 1020, 1021, and 1022 Mx. This range

of magnetic flux is typical of ephemeral regions and pores to large active regions with the

strongest sunspots (Zwaan 1987).
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We perform at least 7 groups of simulations sampling different time ranges of the ASH

convective flow at each magnetic field strength, initial latitude, and magnetic flux in both the

northern and southern hemispheres, considering both adiabatic evolution of the flux tube,

and heating due to radiative diffusion. The flux tubes comprising one group are released

at the base of the convection zone at the same starting time, although they do not interact

with each other (i.e. are isolated) and are allowed to evolve until some portion of the flux

tube reaches the top of the simulation domain. The flux tube release times for the groups

are arbitrarily chosen, but are at least separated by the convective turnover timescale of

the ASH convection simulation, which is ∼30 days. In this way, the flux tubes are able to

sample significantly different portions of the convective velocity field. A snapshot of one of

the simulated flux tubes subject to the ASH convective flow is shown in Figure 2.5. From this

figure, it is clear that convective flows are impacting flux tube evolution. Strong downflows

pin portions of the flux tube down to the base of the convection zone, while convective

upflows aid in pushing the flux tube toward the surface.

The toroidal ring in neutral buoyancy is perturbed with small undular motions which

consist of a superposition of Fourier modes with azimuthal order ranging fromm = 0 through

m = 8 with random phase relations. These perturbations are required to promote magnetic

buoyancy instabilities in thin flux tubes not subjected to convective flows, which are often

used as control cases for comparison to the flux tubes that evolve with the influence of

convective flows. Such perturbations are not needed for flux tubes subjected to convection

because those provided by the convective velocity field are much stronger in amplitude, but

they have been included in the initiation of all flux tube simulations in order to facilitate
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Figure 2.5. Snapshot of a magnetic flux tube evolving in solar-like turbulent
convection. Strong downflows (blue) pin portions of the flux tube to the base
of the convection zone (gray sphere), while strong upflows (red) aid in boosting
the flux tube toward the surface. The flux tubes is color-coded according to
its density deficit ∆ρ = ρe − ρ (teal: 0, yellow: maximum density deficit for
snapshot). Image generated by Tim Sandstrom and Chris Henze of NASA
Advanced Supercomputing (NAS).

comparison between flux tubes properties with and without convection. Removing the ran-

dom phase relations from the thin flux tube model embedded in convection has a negligible

effect on the dynamics and properties of the flux tube at all magnetic field strengths and

magnetic flux.

2.4. Model Advantages and Limitations

The model we have designed to study the interaction of active-region-scale magnetic flux

tubes with a turbulent, solar-like convection zone is advantageous in many regards. However,

we recognize that like all computational models, these simulations have limitations, and are
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unable to capture some aspects of solar flux emergence best addressed by other methods. In

this section, we identify the advantages and limitations of the hybrid TFT+ASH approach.

A triumph of ASH simulations is the attainment of magnetic self-organization in rapidly

rotating stars by solving the 3D MHD equations. Shearing flows provided by differential

rotation generate wreaths of magnetism (e.g. Brown et al. 2010, 2011), with some developing

buoyant loops (Nelson et al. 2011, 2013), thus demonstrating that persistent toroidal fields

of moderate strength can be generated by and coexist with turbulent convection. Due to the

impenetrable upper boundary of these simulations, buoyant portions of the magnetic wreaths

decelerate and disperse as they near the top of the domain. In addition, buoyant loops in

these simulations, as well as 3D MHD simulations of isolated magnetic flux tubes, suffer from

numerical magnetic diffusion, for which the effective diffusion greatly exceeds solar plasma

values. This has undesirable consequences, as the flux tubes therefore suffer erosion of

their magnetic buoyancy and tension forces, and therefore they do not preserve Alfven’s flux

frozen-in condition. This problem is resolved in 3D MHD flux tube simulations by increasing

the the magnetic flux to ∼1023 Mx, an order of magnitude larger than most sunspots. The

problem of numerical diffusion is circumvented through the TFT+ASH formulation, as the

TFT Lagrangian formulation of the motions of individual flux tube segments preserves ideal

flux frozen-in conditions. As such, these simulations can be performed with realistic magnetic

flux values of 1020−1022 Mx, on the same order of magnitude of solar active regions, without

suffering erosion of the magnetic field.

In 3D MHD simulations, to favor the creation of buoyantly rising flux loops in a realistic

timescale, tubes with such large magnetic flux values (∼1023 Mx) are given an ad hoc entropy

perturbation, even when in the presence of turbulent convective flows (e.g. Abbett, Fisher,
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and Fan 2000; Fan, Abbett, and Fisher 2003; Jouve, Brun, and Aulanier 2013). Using the

hybrid flux emergence situations as discussed in this Chapter (1020 − 1022 Mx), magnetic

buoyancy instabilities develop self-consistently as convective upflows and downflows perturb

the flux tubes, instead of imposing an initial ad hoc buoyancy.

Global 3D MHD simulations prove to be both computationally expensive and time con-

suming. However, 1D TFT simulations can be performed on standard desktop computers

with ample memory. Each individual flux tube simulation, as the formulation currently

stands, requires only ∼10 mins to 1 hr to complete depending on the initial conditions of

the flux tube. The ASH hydrodynamic simulation, which does require supercomputing re-

sources, only needs to be performed once to obtain the 3D convective flows, and is stored in

an easily accessible location for use by the TFT code. As such, using this hybrid TFT+ASH

approach, many realizations of flux emergence using a variety of realistic solar parameters

can be computed and used for statistical studies. These statistical studies are useful for

comparison with observations of solar active regions.

While the TFT model is useful in some regards, we acknowledge that it also has funda-

mental limitations. The TFT formulation treats physical quantities as averages over the flux

tube cross section and implicitly assumes that the flux tube does not break up. Simulations

2D and 3D in nature are able to resolve the interaction of the flux tube with its environment,

and can explicitly track the configuration of the magnetic field inside the flux tube. It may

also be the case, especially in upper regions of the convection zone, that flux tubes could

become shredded due to convective flows and weakening of the magnetic field as the flux

tube expands. Additionally, our TFT+ASH model does not allow for the flux tube to react

back on the plasma in which it is effectively embedded. A strong enough magnetic field is
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capable of suppressing convective motions in its vicinity via the Lorentz force. The presence

of a large number of magnetic flux tubes (e.g. a magnetic wreath) of sufficient strength may

alter the differential rotation of the star.

The particular ASH simulation used here is more laminar than some others done with

the ASH code (e.g. Miesch et al. 2008; Jouve and Brun 2009). However, the convection

simulation possesses all the relevant features necessary to investigate global scale interaction

with magnetic flux tubes, including columnar, asymmetric, rotationally-aligned cells at low

latitudes (density-stratified banana cells), a rapidly-evolving downflow network at higher

latitudes in the upper convection zone, dominated by helical plumes, and a strong, solar-

like differential rotation. Since even the highest-resolution simulations exhibit similar basic

features, we do not expect the essential results to change significantly with a more turbu-

lent flow field. The principle effect we expect at higher Rayleigh and Reynolds numbers is

an increase in the random scatter due to stochastic turbulent fluctuations, and perhaps a

stronger anchoring effect of the flux tube due to stronger convective downflows. Decoherence

of large-scale motions and turbulent drag from small-scale motions could also slightly reduce

flux tube rise times, but we expect this effect to be minor since we believe that large-scale,

columnar banana-like cells must persist even in highly turbulent parameter regimes in order

to provide the requisite Reynolds stresses to account for the solar differential rotation.

Finally, these simulations do not extend to the photosphere, but most stop at ∼0.97R⊙,

or∼21 Mm below the solar surface. The ASH simulation is incapable of resolving granule and

supergranule motions due to the sharp density stratification in the upper-most portion of the

convection zone. The ASH model also does not capture ionization and radiative effects at the

simulation upper boundary, which is also important for granulation and super-granulation.
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Additionally, fluid flows are no longer subsonic near the photosphere, therefore the anelastic

approximation breaks down and fully compressible MHD simulations are required. The TFT

approximation is also no longer satisfied when the radius of the flux tube is on the order of

the local pressure scale height, which too occurs in the upper layers of the convection zone.
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CHAPTER 3

Dynamic Properties of Rising Magnetic Flux Tubes

in Turbulent Solar-like Convection

We use a thin flux tube model in a rotating spherical shell of turbulent convective flows

as described in Chapter 2 to study the global and local dynamic evolution of active-region-

scale flux tubes as they traverse the solar-like convective envelope. We investigate toroidal

flux tubes originating at the base of the convection zone with initial magnetic field strengths

ranging from 15 kG (equipartition) to 100 kG (super-equipartition), and initial latitudes

ranging from 1◦ to 40◦ in both hemispheres, assuming in this Chapter that the flux tubes

evolve adiabatically such that dS/dt = 0. These simulations are performed for an ensemble

of flux tubes with a constant magnetic flux of 1020, 1021, and 1022 Mx, on the order of

solar active regions. In this Chapter, we begin with a qualitative discussion of the effects

convection has on the global evolution of magnetic flux tubes (see Section 3.2). The dynamic

evolution of the flux tube changes from being convection dominated to magnetic buoyancy

dominated as the initial field strength and flux of the tube increases (see Section 3.3). The

average time it takes for the flux tube to traverse the convection zone in the presence of a

solar-like convective velocity field is investigated, and it is found that convective flows can

reduce the rise time of a majority of flux tubes from years to months (Section 3.4). The

radial components of the acceleration of a representative flux tube apex are also studied in

order to better understand the contribution of various forces acting on the flux tube during

the emergence process (see Section 3.5).
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3.1. Introduction

Previous thin flux tube studies (e.g. Spruit 1981a,b; Moreno-Insertis 1986; Ferriz-Mas and

Schüssler 1993; Longcope and Klapper 1997; Caligari, Moreno-Insertis, and Schüssler 1995;

Caligari, Schüssler, and Moreno-Insertis 1998; Fan, Fisher, and Deluca 1993) neglect the

effects of turbulent, solar-like convection on buoyantly rising magnetic flux loops. Following

Fan, Abbett, and Fisher (2003), the initial magnetic field strength B0 of a flux tube needs to

be B0 > (Hp/a)1/2Beq for magnetic buoyancy to dominate the hydrodynamic effects on the

flux tube from convective flows, where the pressure scale height is Hp = Pe/ρeg, a is the flux

tube cross-sectional radius, and Beq is the equipartition magnetic field strength. Therefore,

the magnetic field B0 of a flux tube needs to be greater than (Hp/a)1/2Beq for the neglect of

convection on rising magnetic flux tubes to be a valid assumption.

The magnetic field strength of a flux tube is said to be in equipartition when its magnetic

energy density (magnetic pressure) is equal to the kinetic energy density of convection such

that:

(3.1)
B2

8π
=

1

2
ρev

2
c → Beq = 2vc

√
πρe,

where vc is a representative velocity for convective flows and ρe is the density of the external

plasma environment. At the base of the convection zone, taking ρe ∼ 0.17 g cm−3 from the

1D solar structure model by Christensen-Dalsgaard et al. (1996), and vc ∼ 3.5×103 cm s−1

for the root-mean-squared (rms) downflow speed of the ASH simulation, Beq ∼ 5 kG for

our simulation setup. This is slightly smaller than the ∼10 kG equipartition field strength

derived based on the local mixing length description of solar convection (e.g. Fan 2009a),

which may not properly capture the intensity of strong convective downflows compared to
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weaker convective upflows. Also calculated from the 1D solar structure model, Hp ∼ 5.6×109

cm at the base of the convection zone, and the cross-sectional radius of the flux tube ranges

from 1.8×107 cm (Φ = 1022 Mx, B0 = 100 kG) to 4.6×108 cm (Φ = 1020 Mx, B0 = 15

kG). With this in mind, for magnetic buoyancy to dominate convective effects following Fan,

Abbett, and Fisher (2003), B0 must be greater than 55 − 90 kG for 1020 Mx flux tubes,

30− 50 kG for 1021 Mx flux tubes, and 15− 30 kG for 1022 Mx flux tubes.

Results from thin flux tube models without the influence of convective flows suggest that

the field strength of the toroidal magnetic field at the base of the solar convection zone needs

to be in the range of about 30 kG to about 100 kG in order for the latitude of emergence and

the tilt angles of the emerging loops to be consistent with the observed properties of solar

active regions. If the field strength is ≤20 kG, the poleward deflections of the trajectories

of the rising flux tubes by the Coriolis force are too large such that the emerging latitudes

are inconsistent with the observed sunspot latitudes (e.g. Caligari, Moreno-Insertis, and

Schüssler 1995). However, solar cycle dynamo models which take into account the dynamic

effects of the Lorentz force from the large-scale mean fields suggest that the toroidal magnetic

field generated at the base of the convection zone is ∼15 kG, and most likely cannot exceed

30 kG (e.g. Rempel 2006b,a).

It is clear that there still is a debate as to the magnetic field strength at which the solar

dynamo may be operating. Within the range of 15 − 100 kG for the possible values of B0,

there are different convection-dominated and magnetic-buoyancy-dominated regimes for the

dynamic evolution of active-region-scale flux tubes depending on their magnetic flux values.

In this Chapter, we investigate how solar-like convective flows can affect flux tube evolution

62



in relation to other forces (i.e. magnetic buoyancy, magnetic tension, Coriolis force) acting

on the rising flux tubes.

3.2. Flux Tube Morphology

In the absence of convection, rising buoyant loops develop solely as a results of the non-

linear growth of the magnetic buoyancy instability of the initial toroidal flux tube. While

a magnetic flux tube may be in equilibrium in a stratified environment, it may become

unstable to wavelike perturbations if the magnetic field strength decreases sufficiently with

height. Unstable perturbations cause the flux tube to bend, allowing plasma to drain from

the flux tube apex (higher in the stratified convection zone) to the flux tube footpoints (lower

in the convection zone), enhancing the buoyancy of the flux tube apex. This scenario is really

a form of a hydrodynamic Rayleigh-Taylor instability. The stability analysis of toroidal flux

tubes in the solar convection zone have been performed by a number of authors (e.g. Roberts

andWebb 1978; Acheson 1979; Spruit and Zweibel 1979; Spruit and van Ballegooijen 1982b,a;

Ferriz-Mas and Schüssler 1993; Schüssler et al. 1994).

Snapshots of three flux tubes allowed to evolve without the influence of convection are

shown in Figure 3.1. In the bottom panel of Fig. 3.1, which shows an equatorial view of

the flux tubes, it is apparent that the rise of the buoyant loop becomes more radial with

increasing magnetic field strength. As the magnetic field strength of the flux tube decreases,

the Coriolis force acting on the flux tube apex is larger in comparison to the magnetic

buoyancy force, causing the flux tube apex to deflect poleward. In fact, for the flux tubes

in Fig. 3.1, the 15, 40, and 100 kG flux tubes are each deflected 17.3◦, 12.8◦, and 1.8◦

respectively from their initial latitude θ0 of 6◦. When looking upon the flux tube from the

pole, we also note the appearance of predominately m = 2 undular modes for magnetic field
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Figure 3.1. Snapshots of rising flux tubes in the absence of convection, each
with Φ = 1022 Mx and θ0 = 6◦, at a time when its apex has reached the
simulation upper boundary. Initial magnetic field strengths B0 of the flux
tubes are 15, 40, and 100 kG respectively from left to right. The top images
show a polar view, whereas the bottom images show an equatorial view. In all
cases, the image has been rotated such that the flux tube apex is on the right,
and at the 3 o’clock position if looking down from the north solar pole. The
orange sphere has a radius of 4.9×1010 cm.

strengths of 40 kG and 100 kG. The 15 kG flux tube shows a predominately m = 1 mode,

superposed with a very small amplitude m = 3 mode. The results are similar to those in Fan

and Gong (2000), where the toroidal flux ring develops a buoyancy instability (e.g. Caligari,

Moreno-Insertis, and Schüssler 1995), with m = 1 and m = 2 being the dominant unstable

modes, and Ω-shaped rising loops subsequently form.

Snapshots of rising flux tubes with the same initial condition as Fig. 3.1, except subject

to the convective velocity field, are shown in Fig. 3.2. For flux tubes of 1022 Mx with low

initial field strengths of 15 kG, the development of the rising loops are highly susceptible to

convection, and the flux tube no longer resembles its counterpart (see Fig. 3.1) in the absence

of convection. However, at a large magnetic field strength of 100 kG, the development of the
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Figure 3.2. Same as Figure 3.1, except the flux tube is subjected to the
external convective flow. Convection significantly deforms weak magnetic field
strength flux tubes, while only the strongest downflows impact the evolution
of 100 kG flux tubes.

rising loops are still mainly dominated by magnetic buoyancy, with the strongest downdrafts

producing some moderate perturbations to the final emerging loop, and the dominate m = 2

mode is still discernible. The evolution of the 40 kG flux tube shown in Fig. 3.2 falls on

a continuum somewhere between convection-dominated and magnetic-buoyancy dominated

evolution. As we shall see in later sections of this Chapter, magnetic buoyancy effects and

convective effects are of the same magnitude for ∼40 kG field strength flux tubes with

Φ = 1022 Mx.

3.3. Convection vs. Magnetic Buoyancy

To understand the importance of convection on flux tube evolution, we compare the

magnitude of the magnetic buoyancy force with that of the drag force from the external

convective flows, following Fan, Abbett, and Fisher (2003). For the drag force to dominate
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the buoyancy force (which acts in the radial direction):

CDρev2cr
(πΦ/B)1/2

> (ρe − ρ)g(3.2)

CDρev2cr
πa

>
B2

8πHp
,(3.3)

where Hp is the local pressure scale height, a is the flux tube radius (Φ/πB)1/2, vcr is the

component of convective velocity in the radial direction. In addition, the ideal gas law

Eq. 2.4 and the condition for pressure balance Eq. 2.5 have been used to arrive at the

right-hand side (RHS) of Eq. 3.3. Here we will refer to the magnetic buoyancy force as

(ρe − ρ)g ∼ B2/8πHp, assuming thermal equilibrium, where the buoyancy force on a flux

tube unit segment is written in terms of the magnetic field inside the flux tube and the local

pressure scale height of the external plasma. For an order of magnitude estimate of the

magnetic buoyancy, we have assumed thermal equilibrium between the flux tube and the

external fluid. Assuming 2CD/π is of order 1, then equation 3.3 simplifies to

(3.4) vcr > va

(

a

Hp

)1/2

.

i.e. in order for convection to dominate, the convective flow speed vcr needs to be greater

than the Alfvén speed va = B/(4πρe)1/2 multiplied by (a/Hp)1/2.

In Figure 3.3, we have plotted as a function of depth the peak downflows and upflows,

and the root mean square (rms) of the downflows and upflows of the convection velocity field

at each constant r surface. In comparison, we have also plotted the right hand side of Eq.

3.4 evaluated at the apex (portion of flux tube with largest r value) for a selection of flux

tubes with various initial magnetic field strengths and flux. These flux tubes all start with
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Figure 3.3. Peak downflows and upflows, and the root mean square (rms) of
the downflows and upflows of the convective velocity field at each constant r
surface as a function of r. Also plotted is the right-hand side of Eq. 3.4 at the
apex of each flux tube with initial various initial field strengths and magnetic
flux. The dynamic evolution of the flux tube becomes increasingly convection
dominated as the field strength and flux are decreased.

θ0 = 15◦ in the Northern hemisphere, and are subject to the same convective flows. Looking

at all three panels of Fig. 3.3, it is clear that tubes of weaker magnetic field and weaker flux

are more susceptible to convective effects.

For 1022 Mx flux tubes, on the order of magnetic flux associated with the largest sunspots,

tubes of 60− 100 kG are only affected by the strongest upflows and downflows during their

rise toward the surface. Flux tubes of 1022 Mx and near-equipartition field strength of

15 kG are continually buffeted by all convective flows, as the magnetic buoyancy force for

these weak field strength flux tubes is not large enough to overcome convective effects,
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explaining the general morphology of the left-most flux tube in Fig. 3.2. In the case of

40 kG flux tubes of 1022 Mx, all of the convective velocity field (in the radial direction)

contributes to the development of rising loops, except for the rms upflows. Interestingly,

as we will point out in Section 3.4, 40 kG, 1022 Mx flux tubes take the longest time, on

average, to rise toward the surface. This is due to the fact that the RHS of Eq. 3.4 is

nearly equal to the rms downflow velocity of the convection simulation. When the apex of a

loop develops a large enough buoyancy force to rise toward the surface, it is quickly pushed

down again by convective downflows that are nearly the same magnitude as va(a/Hp)1/2.

Therefore, there is a continuous tug-of-war between the magnetic buoyancy of rising loops

and convective downflows in this regime, until one loop eventually overcomes effects from

convective downflows. Often, these loops become caught in broad convective upflows and

are boosted toward the surface.

Flux tubes of 1020 and 1021 Mx and below are severely affected by convection, with

the exception of 100 kG, 1021 Mx flux tubes. Due to the reduced cross-sectional radius

a = (Φ/πB)1/2 of these tubes compared to those of 1022 Mx, the RHS of Eq. 3.4 is reduced

such that flux tube evolution is dominated by convection rather than magnetic buoyancy.

The evolution of the 1021 Mx, 60 kG flux tube plotted in the right upper panel of Fig. 3.3

takes longer to rise than the 15, 40, and 100 kG flux tubes shown on the same graph. Similar

to the 1022 Mx, 40 kG flux tube in the left upper panel, this is a result of the rms downflow

speeds having nearly the same value as the RHS of Eq. 3.4. From the bottom center panel

of Fig. 3.3, it is evident that the evolution of all 1020 Mx flux tubes in the range of 15-100

kG are dominated by convection.
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Note that in Figure 3.3, there are occasionally a concentration of points, especially in the

middle to lower convection zone, for the plot of the RHS of Eq. 3.4 at the apex of the flux

tube. There are also often jumps or discontinuities in the plotted curve. This is due to the

fact that the flux tube is continually buffeted by convection, with strong downflows pushing

downing a flux tube apex such that a new rising loop will then have the greatest distance r

for Sun center, which is the portion of the flux tube we track in Fig. 3.3.

Downflows in the convective velocity field dominate in amplitude, however their spatial

extent is small compared to the upflows as indicated by the narrow downflow lanes shown

in Figure 2.2. Strong downflows can pin the flux tubes to the base of the convection zone at

the beginning of the simulation faster than the Fourier mode perturbations can in the case

without convection (see Chapter 2.3). Especially at low magnetic field strengths where the

tube is highly susceptible to convection deformation, many portions of the tube will become

anchored as compared to the case without convection. Also, rising loops can be significantly

boosted by broad upflows such that they emerge at the top of the simulation domain much

faster than in the case without convection, where only buoyancy aids in driving the tube

to the surface. Convection can also enhance buoyancy instabilities by introducing finite-

amplitude perturbations and subsequent gravity induced draining of fluid from the flux tube

apex.

Figure 3.4 shows snapshots (one individual time instance) of the radial distance r from

Sun center of Φ = 1022 Mx, θ0 = 15◦ flux tubes as a function of the azimuthal angle φ

(black lines), as well as the external radial velocity experienced by the tube at the height r

of each tube segment (red lines). Snapshots are shown at times when the apex of the flux

tube first reaches r = 0.80R⊙, 0.88R⊙, and 0.97R⊙, thereby showing the evolution of these
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flux tubes in time. From this figure, it is evident that at large magnetic field strengths, only

the strongest downflows can perturb the tube. However, at small magnetic field strengths,

all flows are capable of deforming the flux tube, further supporting the findings shown in

Fig. 3.3. As noted in Section 3.2, the dominant m = 2 unstable modes brought on by the

magnetic buoyancy instability are still discernible in the 60 and 100 kG flux tubes. However,

at weaker field strengths, these modes are wiped out as convective flows pummel and deform

the flux tubes due to their weaker magnetic tension and magnetic buoyancy.

The time it takes for the apex of the flux tube to reach 0.80R⊙, 0.88R⊙, and 0.97R⊙ are

also indicated in the heading of each plot in Fig. 3.4. For all cases in this figure, the flux

tube spends the majority of its rise time near the base of the convection zone. Due to the

decreasing density in height of the external plasma environment, the flux tube accelerates

quickly upward (nearly exponentially) due to the buoyancy of the flux tube apex in the

upper level of the convection zone (see Section 3.4). Especially in the 40 kG case, the flux

tube spends a substantial time in the lower ∼1/3 of the convection zone, as buoyantly rising

loops are continually pushed back down by convective downflows. Generally, once the flux

tube apex reaches ∼0.88R⊙, the magnetic buoyancy of the flux tube is strong enough to

overcome the rms velocity of convective downflows, and so will continue to rise buoyantly

toward the surface. At the end of its rise, the apex of the 40 kG flux tube shown in Fig. 3.4

is deformed substantially by a strong downflow lane.

3.4. Flux Tube Rise Times

The drag force term (the last term in Equation 2.1) depends upon the magnetic field B

and the flux Φ through the ratio of (Φ/B)1/2, which is proportional to the cross-sectional

radius of the thin flux tube. As this ratio appears in the denominator of the drag force term,
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Figure 3.4. Flux tube radial distance from Sun center r (black line), plotted with the external radial velocity
experienced by the flux tube at the height r of the flux tube segment (red line), both as functions of the azimuthal
angle φ. These snapshots are for flux tubes with Φ = 1022 Mx, θ0 = 15◦, and the dashed line represents the base
of the convection zone, below which is the stably stratified overshoot region. These plots show the evolution of
the flux tubes in time for various initial magnetic field strengths, and also illustrate how the evolution of flux
tubes can be affected by convection, especially strong downflows.
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thinner tubes will experience more drag. For any given magnetic field, the diameter of the

flux tube can be reduced by decreasing the magnetic flux. In the absence of convection, the

drag force acting on the rising tube reduces the velocity of the flux tube in all directions,

increasing its rise time and reducing its latitude of emergence. The left side of Figure 3.5

shows a trend of increasing rise time of the flux tube simulations for both a decreasing

magnetic field strength and a decreasing magnetic flux in the absence of convection, which

has been found in previous thin flux tube simulations without the influence of convection

(e.g. Moreno-Insertis 1983; Choudhuri and Gilman 1987; D’Silva and Choudhuri 1993; Fan,

Fisher, and Deluca 1993). Taking these effects into consideration, a tube with a reduced flux

and a reduced magnetic field should take the longest to rise, as is shown in the left hand side

of Figure 3.5, with 15 kG, 1020 Mx tubes taking the longest time to rise.

However, with the addition of convection, flux tubes with smaller magnetic flux exhibit

a shorter rise time, except for those with an initial magnetic field strength of 80 and 100

kG, as shown in the right side of Figure 3.5. In this case, the drag force term affects how

strongly the flux tube is coupled with the convective velocity field. Rising flux tubes with

lower magnetic flux are advected strongly by convection. This aids the flux tube in emerging

at the surface faster than it could at a larger magnetic flux, provided the drag force due to

convection is significant compared to the buoyancy force. On the other hand, the magnetic

buoyancy and magnetic tension of flux tubes with an initial magnetic field strength of 100

kG dominate the drag force due to convection. As a result, flux tubes of 1020 Mx still take a

longer time to emerge than those with a flux of 1022 Mx, as is the trend without convection.

Flux tubes with mid-field strengths of 40−60 kG take the longest time to emerge. For these

flux tubes, the average convective downflows and magnetic buoyancy of the flux tube are of
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Figure 3.5. (Left) Avarage rise times for flux tube simulations without the
influence of convection. This figure shows a decrease in emergence time with
an increase in magnetic field strength and flux. (Right) Average rise times for
the flux tube simulations with the influence of convection. With the addition
of convection, rise times of the flux tubes are shorter for tubes with smaller
magnetic flux, except at 100 kG where the trend is reversed, and at 80 kG
where the average rise times are nearly the same. Flux tubes of mid-field
strength now take the longest time to emerge.

similar magnitudes (see Fig. 3.3). A tug − of − war exists between these two effects until

one eventually dominates. At 80 kG, the average rise times for all three of the flux values

converge, between 60 kG and less where 1022 Mx take the longest time to rise, and 100 kG

where 1020 Mx flux tubes take the longest time to rise. Considering the ∼11-year duration

of the solar cycle, for flux tubes originating near the convection zone base, a maximum rise

time of about eight months for flux tubes subject to convective effects is much more realistic

than a maximum rise time of about five years without convection.
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3.5. Flux Tube Radial Acceleration

To gain a better understanding of the flux tube’s rise through the convection zone, it is

instructive to break down the acceleration of the flux tube apex according to the various

forces acting on the flux tube. From Eq. 2.1, the acceleration of a flux tube element can be

written as:

a = −2(Ω0 × v)−
(ρe − ρ)g

ρ
+

(ρe − ρ)

ρ
[Ω0 × (Ω0 × r)] +

1

ρ

∂

∂s

(

B2

8π

)

l(3.5)

+
B2

4πρ
k− Cd

ρe|(v− ve)⊥|(v− ve)⊥
ρ(πΦ/B)1/2

.

In Figure 3.6, the radial components of the acceleration vector a · r̂ are plotted as a

function of distance from Sun center r for a Φ = 1022 Mx, B0 = 60 kG, θ0 = 15◦ flux tube,

both without (left) and with (right) convective effects. For the flux tube evolving through a

stratified convective envelope without the influence of turbulent convective flows (left-hand

side of Fig. 3.6), the radial acceleration is dominated by positive contributions from the

buoyancy force once the tube apex reaches ∼1/3 of the way through the convection zone.

This contribution from the buoyancy force increases nearly exponentially as the apex rises

into increasingly less dense layers of the convection zone. The drag force acts to reduce the

acceleration of the flux tube in the upper ∼1/3 of the convection zone. As the flux tube rises,

the tube develops legs that have a velocity component perpendicular to the flux tube rather

than parallel to the flux tube. This perpendicular motion of the tube segments slows down

the flux tube rise in all directions as it moves through the external plasma. As the apex of

the tube rises and moves away from the rotation axis, conservation of angular momentum

drives a retrograde flow of fluid inside the tube near the apex, which continues to increase in
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Figure 3.6. Radial acceleration of the flux tube apex for a flux tube of
Φ = 1022 Mx, B0 = 60 kG, θ0 = 15◦, without (left) and with (right) con-
vective effects. Components contributing to the radial acceleration following
Eq. 3.5 are plotted as a function of r. Especially in the upper convection zone,
buoyancy is the primary contributing factor to the acceleration of the flux tube
apex.

magnitude as the tube rises toward the surface. The Coriolis force acting on this retrograde

flow also acts to reduce the acceleration of the flux tube in the upper parts of the convection

zone.

In the absence of convection, the magnetic tension force has a minimal negative contri-

bution to the acceleration of the flux tube apex in the radial direction, which is proportional
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to the magnetic field strength and curvature of the flux tube. The contribution from tension

is largest at the bottom of the convection zone where B is greatest. As the tube rises, its

magnetic field at the apex decreases as does the tension force if the flux tube is not sharply

bent. Finally, the third and fourth terms in Eq. 3.5, labeled as additional forces in Fig. 3.6,

contribute almost nothing to the radial component of the flux tube acceleration.

With the addition of convection (see RHS of Fig. 3.6), the buoyancy force is still the

dominate contributor to the radial acceleration of the flux tube. However, now the drag force

and magnetic tension play a larger role in the radial acceleration component. The radial

acceleration curve is not as smooth as it is in the case without convection, a result of strong

convective upflows and downflows impacting the apex’s motion. The most striking feature

of the RHS of Fig. 3.6 is the fact that the drag and tension force components tend to mirror

each other. Strong upflows acting on the flux tube apex result in a positive acceleration

contribution from the drag force. This stretches the rising flux loop, resulting in a larger

tension, which acts to reduce the radial acceleration. This is shown well in the RHS of Fig.

3.6 in the bottom ∼1/3 of the convection zone. Conversely, a strong downflow encountered

at the apex will create a large negative radial acceleration component, while this downflow

flattens out the top of the loop, reducing the magnetic tension component. This is also

depicted well in the RHS of Fig. 3.6 in the upper convection zone.

3.6. Discussion

Convection plays a significant role in the evolution of most active-region-scale flux tubes.

Previous thin flux tube models have neglected the influence of turbulent, solar-like convection

on active-region-scale flux tubes. As we have shown in this Chapter, convective flows have a

non-negligible effect on most of the flux tubes considered in our study, especially for tubes
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of ∼50 kG and less in the range of 1020 − 1022 Mx. Unlike 3D MHD flux tube studies, we

are also able to investigate the global effects convection has on rising magnetic flux tubes

using realistic solar active region flux values, which cannot be done in 3D simulations due

to numerical diffusion.

Taking the results of Sections 3.2-3.4, flux tubes with weak magnetic flux of 1020 Mx

require a large magnetic field strength significantly greater than 100 kG in order for neglecting

the effects of convection to be a valid assumption. However, for flux tubes of 1022 Mx, it is

valid to assume that tubes of field strength ≥80 kG will suffer minimal consequences due

to the presence of convective flows. Convection also decreases the time it takes for flux

tubes to travel the depth of the convection zone, reducing the time from at most ∼4.5 years

in the case without convection to ∼8 months with convection. While the buoyancy force

is the largest contributing factor to the radial acceleration of the flux tube apex, in the

presence of convection, contributions to the flux tube evolution from convective upflows can

act to boost the flux tube apex toward the surface faster than it could in the absence of

convection. Furthermore, convective downflows, especially in the early portion of the flux

emergence process, pin portions of the flux tube to the base of the convection zone and in the

overshoot region, promoting a magnetic buoyancy instability as material drains out of the

rising loop into the loop footprints. As such, flux tubes in our simulations are also capable

of self-consistently developing their own magnetic buoyancy instabilities with the help of

convection, not requiring an ad hoc initiation of the magnetic buoyancy instability.
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CHAPTER 4

Constraining the Solar Dynamo Magnetic Field

Strength: Comparing Simulations to Observations

The magnetic field strength regime at which the solar dynamo mechanism operates is

not well known. However, studying how convection interacts with flux tubes of a wide range

of initial magnetic field strengths (15− 100 kG) for values of magnetic flux representative of

active regions on the Sun (1020 − 1022 Mx) may aid in constraining the dynamo generated

magnetic field strength. In this Chapter, we compare properties of solar active regions

such as emergence latitudes, tilt angle statistics, average rotation rates, and the nature of

the magnetic field at the photosphere to those of an ensemble of flux tube simulations (as

described in Chapter 2) once the flux tube apex has reached the simulation upper boundary.

We discuss how these diagnostic properties (i.e. comparisons between our simulations and

observations) constrain the initial field strength B0 of the active-region-flux tubes at the

bottom of the solar convection zone, and suggest that flux tubes of moderate to strong initial

field strengths of ≥30− 100 kG are good candidates for the progenitors of large (1021 − 1022

Mx) solar active regions. Through this process, we also gain a better understanding of the

role convection plays in the manifestation of active region property observables.

4.1. Introduction

As of yet, the magnetic field strength at which the solar dynamo operates is not well

known, nor is it directly accessible via observations. Previous thin flux tube simulations

have found that the toroidal magnetic field at the base of the convection zone needs to
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be in the range of ∼30 kG to ∼100 kG such that the simulated flux tubes exhibit tilt

angles and latitudes of emergence that agrees well with solar active regions (Choudhuri and

Gilman 1987; Schüssler et al. 1994; D’Silva and Choudhuri 1993; Caligari, Moreno-Insertis,

and Schüssler 1995). However, solar cycle dynamo models that incorporate the Lorentz force

from large scale mean fields indicate that the magnetic field strength generated and amplified

at the base of the convection zone is ∼15 kG, and most likely cannot exceed 30 kG (Rempel

2006b,a).

Recent simulations of solar-like stars that rotate three times the current solar rate have

shown that a rotating convective envelope can generate a dynamo that consists of opposite

polarity magnetic wreaths in two hemispheres, which span the depth of the convection zone

(Brown et al. 2010). When portions of these wreaths become strong enough, ∼35 kG or

greater, a buoyant magnetic loop develops which then rises through the convecting fluid

in which it is embedded (Nelson et al. 2011). While these dynamo-producing convection

simulations are not meant to reproduce the solar dynamo directly, they do demonstrate

that persistent toroidal magnetic fields of moderate strength can coexist with convection.

In light of these studies, it is important to understand how toroidal flux tubes of weak

to moderate field strengths, ∼15 − 50 kG, behave as they rise through a turbulent solar

convective envelope. Some studies have been performed that investigate the buoyant rise

of fully three-dimensional isolated flux tubes in a turbulent convective velocity field (e.g.

Fan, Abbett, and Fisher 2003; Jouve and Brun 2009). However, due in part to the limited

numerical resolution of these simulations, large values of magnetic flux must be used, which

are greater than typical active region flux, in order to keep the tube from dissipating as it

rises.
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We use a thin flux tube model as described in Chapter 2 in an effort to constrain the

magnetic field strength at which the solar dynamo may be operating. This thin flux tube

model is useful because it circumvents the problem of artificial diffusion, includes the effects

of solar-like turbulent flows in a 3D convection zone, and is computationally inexpensive such

that a large ensemble of simulations with various initial parameters can be amassed. In the

process of constraining the dynamo magnetic field strength, we also learn more about the

effect convection plays has on local flux emergence properties, such as: latitude of emergence

(Section 4.2), tilt angle statistics (Section 4.3), and active region rotation rates (Section 4.4).

We also discuss the magnetic field asymmetry of the leading and following portions of the

bipolar emerging region (Section 4.5.1), and the magnetic field strength of the flux tube apex

at the simulation upper boundary (Section 4.5.2).

In this Chapter, we investigate adiabatically evolving (dS/dt = 0) flux tubes specifically

with B0 = 15, 30, 40, 50, 60, 80, and 100 kG; Φ = 1020, 1021, and 1022 Mx; and θ0 = 1◦−40◦

in both hemispheres. Not all results are plotted for each B0, but are included and discussed

where appropriate. In this section, the data set results sample seven different convective

velocity flow fields, for a total of 6927 flux tube simulations in all. See Appendix G for a

breakdown of the number of flux tube simulations considered for each B0, Φ pair.

4.2. Latitude of Emergence

The latitude of emergence of a flux tube apex in dependent on the relative magnitude of

the buoyancy, drag, and Coriolis forces, and to a small degree the magnetic tension force.

The radially directed buoyancy force (directed away from the rotation axis) is proportional

to the magnetic field strength of the flux tube. As discussed in Section 3.4, the drag force is

inversely proportional to magnetic flux, whereas the Coriolis force is proportional to Ωv sin θ.
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An increased drag force with decreasing flux acts to reduce the flux tube motion in all

directions, and therefore reduces the Coriolis force acting on the flux tube.

As a result of the conservation of angular momentum, the initial radial motion of the

flux tube supplied by the buoyancy force drives a motion of the flux tube plasma in the

negative φ direction. The component of the Coriolis force due to this motion in the negative

φ direction is directed inward toward the rotation axis. If the magnetic buoyancy force of

the flux tube apex (directed outward from the rotation axis) is significantly greater than the

Coriolis force, the flux tube will rise more radially. Therefore, flux tubes of 1020 Mx emerge

at lower latitudes than do flux tunes of 1022 Mx, as has been found in previous thin flux

tube calculations in the absence of convection (e.g. Choudhuri and Gilman 1987; D’Silva and

Choudhuri 1993; Fan, Fisher, and Deluca 1993). Our simulations without the addition of

convective flows verify these findings as shown in Figure 4.1.

Also, as shown here and in previous studies, a low latitude zone void of flux emergence

due to poleward deflection is found for magnetic field strengths of 15− 40 kG for flux values

of 1021 − 1022 Mx. As such, these flux tubes suffer from poleward slippage and would not be

able to produce active regions near the equator, unlike what is observed on the Sun. This

phenomenon occurs because the outward directed buoyancy force is not strong enough to

overcome the inward directed Coriolis force component, and the flux tube apex subsequently

drifts less radially, more parallel to the rotation axis.

With convection, the previous problem of poleward slippage for flux tubes of weak initial

field strength is rectified, as shown in Figure 4.2. In Figure 4.2, a latitudinal deflection of

0◦ means that the flux tube emerges at the same latitude as where it originated, while a

positive (negative) deflection indicates the flux tube emerges farther from (closer to) the
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Figure 4.1. Latitudinal deflection (emergence latitude minus initial latitude)
of the flux tube apex as a function of initial latitude for flux tubes with initial
magnetic field strengths of 100, 50, and 15 kG (top to bottom) in the absence
of convection. This is shown for tubes with flux values of 1020 Mx (black
triangles), 1021 Mx (blue diamonds), and 1022 Mx (red crosses). An increased
drag force for tubes with a smaller flux reduces the poleward deflection of the
flux tube.

Equator than where it originated. Convection produces a scatter in the emerging latitude

compared to the cases without convection, which can be either poleward or equatorward.

Especially for flux tubes of low initial field strength, there is a clear trend of reduced poleward

deflection of the flux tube apex compared to the case without convection. In some cases,

especially for flux tubes originating near the equator, it is even possible for flux tubes to

cross into the opposite hemisphere. It is also evident from Fig. 4.2 that there is a greater
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Figure 4.2. Latitudinal deflection of the flux tube apex as a function of
initial latitude for flux tubes with initial magnetic field strengths of 100, 50,
and 15 kG (top to bottom) with magnetic flux of 1020 Mx (left column), 1021

Mx (center column), and 1022 Mx (right column). Red diamonds show the
deflection for flux tubes without convection as plotted in Fig. 4.1, and plus
signs are for flux tubes with convective effects. Both axes are in units of
degrees. Addition of a convective velocity field results in flux tubes that are
able to emerge near the Equator even at low magnetic field strengths.

amount of scatter in the latitudinal deflection at lower magnetic flux, which occurs because

the tube is advected more by convective flows than at larger magnetic flux. Also, as the

magnetic field strength increases for a particular flux, the latitudinal deflection decreases,

as is the case for tubes both with and without convection. This is a result of the buoyancy

force overpowering the Coriolis force at large magnetic fields, forcing the tube to rise more

radially.
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4.3. Tilt Angles

Solar active regions tend to emerge with their leading polarity (in the direction of solar

rotation) closer to the equator than the following, such that a line drawn between the center

of the two bipolar regions will be tilted with respect to the East –West direction (Hale

et al. 1919). The tilt angle is computed as the angle between the tangent vector at the

apex of the emerging loop (once it has reached the top of the simulation domain), and the

local East –West direction. We define a positive sign of tilt as a clockwise (counter-clockwise)

rotation of the tangent vector away from the East –West direction in the Northern (Southern)

hemisphere, consistent with the direction of the observed mean tilt of active regions. If the

magnitude of the tilt angle exceeds 90◦, then the active region violates Hale’s Law (Hale

et al. 1919), possessing the wrong leading polarity in the direction of solar rotation for that

particular hemisphere.

To align our statistical results with those obtained from observations, unless otherwise

stated, tilt angles that do not fall in the range [-90◦, 90◦] are shifted to be brought back into

this interval, thereby losing information about anti-Hale tilt angles. This approach is usually

what is done for tilt angle statistical studies of active regions on the Sun, starting with Hale

et al. (1919) (e.g. Wang and Sheeley 1989; Fisher, Fan, and Howard 1995; Howard 1996;

Dasi-Espuig et al. 2010; Stenflo and Kosovichev 2012; Li and Ulrich 2012; McClintock and

Norton 2013). If the leading bipolar region in the direction of solar rotation, regardless of

polarity, is closer to the equator than the following, it will then be identified as a positive tilt

in the range [0◦, 90◦]. Similarly, if the leading bipolar region is farther from the equator than

the following region, the tilt angle will be identified as negative in the range [-90◦, 0◦]. This

approach is different from what was done in Weber, Fan, and Miesch (2011) and Weber, Fan,
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and Miesch (2013), where tilt angles where in the range of [-180◦, 180◦]. In retrospect, we

feel that shifting the tilt angles to fall in the [-90◦, 90◦] range is probably a better diagnostic

for comparison with observations.

In this Section, we perform numerous diagnostics on tilt angles of our simulated flux

tubes. First, we investigate the Joy’s Law trend following three methods employed by various

authors (Sections 4.3.1.1-4.3.1.3). Next, we investigate the scatter of the tilt angles about the

Joy’s Law trend (Section 4.3.2.1) as well as the average tilt angle (Section 4.3.2.2). Finally,

we calculate the tilt angle distribution from our simulations in Section 4.3.3.

4.3.1. The Joy’s Law Trend. Known as Joy’s Law, the average tilting behavior of

emerging flux regions tends to increase in magnitude as the latitude of emergence increases

(e.g. Hale et al. 1919). Many authors have recovered Joy’s Law from observations, however

there is generally no agreed upon common method to obtain an empirical Joy’s Law equation

(e.g. Fisher, Fan, and Howard 1995; Dasi-Espuig et al. 2010; Stenflo and Kosovichev 2012;

Li and Ulrich 2012; McClintock and Norton 2013). Within this section, we will employ

three different methods in order to compare our simulation results to those of the Joy’s Law

trend recovered from observations. Tilt angles calculated from our flux tube simulations are

plotted as a function of emergence latitude in Figure 4.3 for tubes of Φ = 1020, 1021, and

1022 Mx (left to right) and initial magnetic field strength B0 = 100, 50, and 15 kG (top

to bottom), for flux tubes allowed to evolve both with (plus signs) and without convection

(diamonds symbols).

4.3.1.1. The Joy’s Law Trend: Method 1. For our first method of obtaining an empirical

equation for the Joy’s Law trend from our simulations, we assume that the tilt angle increases

monotonically with increasing emergence latitude. We perform a linear least-squares fit of
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Figure 4.3. Tilt angles as a function of emergence latitude for initial mag-
netic field strengths of 100, 50, and 15 kG (top to bottom) for simulations
both with (plus signs) and without (diamond points) the influence of con-
vection. This is done for magnetic flux of 1020 Mx in the left column, 1021

Mx in the middle column, and 1022 Mx in the right column, with data sets
sampling seven different convective velocity flow fields. The gray line is the
linear best-fit following Method 1 for flux tubes in the absence of convection
(slopes reported in Table 4.1), and the black line is the best-fit line for the
cases subjected to convective flows (slopes reported in Table 4.2). A color bar
indicates the original starting latitude of the flux tube. All axes are in units
of degrees. Convection introduces a scatter of the tilt angle about the best-fit
line, and also aids in increasing the slope of the best-fit line, especially at lower
magnetic field strengths.

the tilt angle as a function of emergence latitude following:

(4.1) α = mAθ,

86



Table 4.1. Slopes mA of the linear best-fit lines (Method 1) to the tilt angle
as a function of emergence latitude for flux tubes without convective effects.
Slopes calculated following Method 1 are unitless. See Appendix H for a
discussion on the least squares fitting method and the determination of the
uncertainties on the fit parameters. At low magnetic field strengths, the slope
of the best-fit line is negative, indicating a departure from the Joy’s Law trend.

B (kG) 1020 Mx 1021 Mx 1022 Mx
without convection

100 0.10 ± 0.01 0.16 ± 0.01 0.25 ± 0.01
80 0.12 ± 0.01 0.20 ± 0.01 0.31 ± 0.01
60 0.18 ± 0.01 0.27 ± 0.01 0.30 ± 0.02
50 0.18 ± 0.01 0.25 ± 0.01 0.22 ± 0.02
40 0.16 ± 0.01 0.16 ± 0.01 0.12 ± 0.01
30 -0.12 ± 0.01 -0.08 ± 0.03 -0.07 ± 0.05
15 -0.50 ± 0.38 -0.24 ± 0.22 -0.13 ± 0.13

where α and θ represent the tilt angle and emergence latitude respectively, both in units

of degrees, of our simulated flux tubes once the apex has reached the simulation upper

boundary, and mA is the slope (unitless) of the best-fit line. For this method, the fit is

forced to go through zero because it is assumed that no tilt is expected for equatorial sunspot

groups. Figure 4.3 shows in gray the best-fit line for the data without convection, and black

for the flux tubes with convection. The slopes mA of these best-fit lines along with their

uncertainties are reported in Table 4.1 for flux tubes without convective effects, and Table

4.2 for flux tubes with convective effects. The uncertainties reported in relation to Eq. 4.1

are uncertainties in the determination of the fit parameter mA, which takes into account both

propagation of error and the variance of the data around the best-fit line. See Appendix H,

Section 8.1.1 for a discussion on our least-squares fitting method and the calculation of the

parameter uncertainties following Method 1. These uncertainties increase with decreasing

magnetic field and flux, as the flux tube is more susceptible to deformation by convective

flows, and the tilt angles exhibit more of a scatter about the best-fit trend.
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Table 4.2. Slopes mA of the linear best-fit lines (Method 1) for flux tubes
with convective effects. Convection aids in increasing the slope of the best-fit
line, and the slope also peaks at mid-field strengths of 40 kG and 50 kG. In
comparison, using white light sunspot group tilt angle data, Dasi-Espuig et al.
(2010) find mA = 0.26 ± 0.05 for Mount Wilson data and mA = 0.28 ± 0.06
for Kodikanal data.

B (kG) 1020 Mx 1021 Mx 1022 Mx
with convection

100 0.36 ± 0.04 0.28 ± 0.02 0.25 ± 0.02
80 0.44 ± 0.04 0.29 ± 0.03 0.29 ± 0.02
60 0.41 ± 0.06 0.37 ± 0.04 0.35 ± 0.02
50 0.48 ± 0.06 0.38 ± 0.04 0.38 ± 0.03
40 0.40 ± 0.07 0.38 ± 0.06 0.40 ± 0.04
30 0.43 ± 0.06 0.33 ± 0.07 0.31 ± 0.06
15 0.31 ± 0.08 0.29 ± 0.07 0.25 ± 0.07

Without the influence of convection, untwisted flux tubes (i.e. B = Bl) tilt in the

appropriate direction for their respective hemispheres (i.e. toward the equator) due to the

Coriolis force acting on the limbs of the emerging loop (e.g. D’Silva and Choudhuri 1993).

However, for weaker initial field strengths of 15 kG and 30 kG, some emerging loops show

negative tilt angles, opposite to the sign of the active region mean tilts. This occurs because

plasma flow along the flux tube near the apex changes from diverging to converging as it

enters the upper convection zone (e.g. Caligari, Moreno-Insertis, and Schüssler 1995; Fan

and Fisher 1996). The Coriolis force acting on the converging flow drives a tilt of the wrong

sign (i.e. with leading polarity away from the equator). Fan, Fisher, and McClymont (1994)

show that for a converging parallel flow to set in, the temperature inside the flux tube has to

be sufficiently higher than the external temperature such that |(β/2)δT/Te| > (1/γ − 1/2),

where β = 8πpe/B2 and γ is the ratio of specific heats. The quantity δT = Te − T becomes

more negative as the flux tube apex rises because the flux tube rises adiabatically, whereas the

external temperature gradient is super-adiabatic (∇e > ∇ad). The quantity β is proportional

to B−2, where as δT/Te is determined mostly by the external stratification. Therefore, the
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converging flow sets in at lower portions of the convection zone for flux tubes of weaker

magnetic field strengths.

This tilting effect opposite the Joy’s Law trend is especially severe for flux tubes of 15

kG, 1020 Mx. The tilt angles of these tubes are so large and of the wrong sign for initial

latitudes of 5◦, 10◦, and 15◦, that they do not appear on the tilt angle plot, however have

been included in the Joy’s Law fit (Fig. 4.3, lower left). Additionally, these tilt angles of the

wrong sign result in a negative slope for the best fit line (see Table 4.1). As such, without

convection, 15 − 30 kG flux tubes would not be capable of producing the observed Joy’s

Law trend. Without convective effects, the tilt angles, and likewise best-fit line slopes, tend

to decrease for decreasing magnetic flux. Similar to the discussion on rise times in Chapter

3.4 and latitudinal deflection in Section 4.2, an increased drag force for weaker flux values

reduces the motion of the flux tube in all directions, therefore suppressing the Coriolis force

acting on the flux tube apex that results in a tilting motion toward the equator.

With convection, flux tubes of all Φ and B0 exhibit a positive best-fit line slope, agreeing

with Joy’s Law (see Table 4.2). Additionally, except for the 1022 Mx, 80 and 100 kG cases

where convection has little effect on the evolution of rising flux tubes, the slope of the best-fit

line increases with convection as compared to the case without convection. This happens in

part because upflows in the convective velocity field have an associated kinetic helicity that

helps to drive the tilt of the flux tube apex in the appropriate Joy’s Law direction for its

respective hemisphere (i.e. toward the equator). Such a mean kinetic helicity corresponds

to a vertical vorticity in upflows that is clockwise in the northern hemisphere, and counter-

clockwise in the southern hemisphere.
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In comparison to the best-fit slope values reported in Table 4.2, from white light sunspot

group data spanning solar cycles 15 – 21, Dasi-Espuig et al. (2010) find an empirical Joy’s

Law equation (following Eq. 4.1) of slope mA = 0.26± 0.05 for Mount Wilson sunspot data,

and mA = 0.28± 0.06 for Kodikanal data. The values we report in Table 4.2 agree well with

Dasi-Espuig et al. (2010) for 1021 − 1022 Mx (on the order of magnetic fiux associated with

sunspots), with the exception of 40− 50 kG flux tubes which show a slightly larger best-fit

slope within the uncertainties.

It is interesting to note that with convection, the mid-field strength flux tubes of 40− 50

kG at all flux values have the largest best-fit slopes mA. This is probably due to the fact

that at these mid-field strengths, the joint effects of magnetic buoyancy and the convective

flows are such that the tubes have a longer rise time (see Chapter 3.4) compared to the other

field strengths. Therefore, the systematic effects from the Coriolis force and kinetic helicity

in convective upflows have a longer time to act on the flux tubes, and the flux tube will likely

encounter multiple convective cells during its evolution. Since the mean kinetic helicity is

obtained by averaging the kinetic helicity of many cells over time, a flux tube which takes

a longer time to emerge will be influenced more by the mean kinetic helicity rather than

stochastic fluctuations.

According to Fan, Fisher, and McClymont (1994), in the absence of convection, the tilt

angle of the flux tube should increase with increasing flux as a result of the Coriolis force

acting on the buoyantly rising flux tube. With convection, given the uncertainties that we

obtain using Method 1, we do not find a statistically significant dependence of the Joy’s

Law slope on magnetic flux (see Table 4.2), which agrees with the results of Stenflo and

Kosovichev (2012). In this section, we have shown that the addition of convection increases
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the empirical Joy’s Law equation slope, regardless of the amount of time the flux tube stays in

the bulk of the convection zone. This indicates that convective effects can have a significant

contribution to the tilt angle of the flux tube throughout its evolution. Therefore, the results

of Stenflo and Kosovichev (2012) do not rule out the paradigm that flux tubes obtain at least

a portion of their tilt angle during their buoyant rise.

4.3.1.2. The Joy’s Law Trend: Method 2. A Joy’s Law fit can also be performed using

the equation:

(4.2) α = mBsinθ,

which is a good choice assuming the origin of the tilt angle is related to the Coriolis force, as

this force varies with latitude as sin(θ). Here, the tilt angle α is again in units of degrees and

mB also has units of degrees. See Appendix H , Section 8.1.2 for a discussion on the least

squares fit and parameter uncertainties for Method 2. Stenflo and Kosovichev (2012) perform

such a fit using 15 years of MDI full-disk magnetograms, finding a slope of mB = 32.1◦ ±

0.7◦. However, using Mount Wilson sunspot group data from 1917-1985, Fisher, Fan, and

Howard (1995) find a best-fit equation slope of mB=15.69◦ ± 0.66◦.

Table 4.3 shows the slope mB of the best-fit equation (Eq. 4.2) applied to our simulation

tilt angles, which exhibit a similar trend to the slopes mA in Table 4.2. For all flux values,

the slopes mB still peak at magnetic field strengths of 40-50 kG, and the uncertainties on the

fit increase with decreasing magnetic field and flux. The values reported in Table 4.3 all fall

between mB = 15.69◦ as found by Fisher, Fan, and Howard (1995) and mB = 32.1◦ as found

by Stenflo and Kosovichev (2012). This large difference in mB obtained from observations

might occur because weaker active regions can be identified in magnetograms, which may not
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Table 4.3. Slopes mB of the best-fit lines following Method 2 for flux tubes
with convective effects. Slopes mB are in units of degrees. Convection aids
in increasing the slope of the best-fit line, and the slope also peaks at mid-
field strengths of 40 kG and 50 kG as in Table 4.2. In comparison, Fisher,
Fan, and Howard (1995) find mB = 15.7◦ ± 0.7 for Mount Wilson sunspot
data and Stenflo and Kosovichev (2012) find mB = 32.1◦ ± 0.7◦ from MDI
magnetograms. Reported uncertainties are uncertainties in the determination
of the fit parameter mB, as described in Appendix H, Section 8.1.2.

B (kG) 1020 Mx 1021 Mx 1022 Mx
with convection

100 22.5◦ ± 2.3◦ 17.5◦ ± 1.4◦ 15.5◦ ± 1.1◦

80 27.6◦ ± 3.3◦ 17.9◦ ± 1.8◦ 17.7◦ ± 1.2◦

60 25.5◦ ± 3.5◦ 22.9◦ ± 2.3◦ 21.6◦ ± 1.5◦

50 29.6◦ ± 3.8◦ 23.6◦ ± 2.7◦ 23.8◦ ± 2.1◦

40 25.2◦ ± 4.1◦ 24.0◦ ± 3.7◦ 25.2◦ ± 2.5◦

30 27.0◦ ± 4.0◦ 20.6◦ ± 4.2◦ 19.6◦ ± 3.5◦

15 19.7◦ ± 5.0◦ 17.8◦ ± 4.7◦ 15.4◦ ± 4.2◦

appear in white light sunspot group images. However, it may also be the result of selection

effects employed by the authors.

4.3.1.3. The Joy’s Law Trend: Method 3. It has been suggested by McClintock and

Norton (2013) that the best-fit line should not be forced to go through zero such that:

(4.3) α = mCθ + λ,

where mC is the slope of the best-fit line (unitless), and λ is the y-intercept value (i.e.

value of tilt angle at θ = 0◦). See Appendix H, Section 8.1.3 for a description of the linear

least-squares fit following Method 3 and the calculated fit parameter uncertainties. When

not forced to go through zero, using Mount Wilson sunspot group tilt angles from 1917-

1985, McClintock and Norton (2013) find that the best-fit equation for the tilt angle as

a function of emergence latitude is α = 0.26θ + 0.58◦ in the Northern hemisphere, and

α = 0.13θ + 1.38◦ in the Southern hemisphere. Joy’s Law trends are usually performed
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by including the Northern and Southern hemispheres together, but McClintock and Norton

(2013) show that the Joy’s Law trend can be substantially different for each hemisphere.

Using Mount Wilson and MDI magnetograms spanning years 1974-2012, Li and Ulrich (2012)

find a best-fit equation of α = (0.5 ± 0.2)θ − (0.9◦ ± 0.3◦). As is evident by the many

different Joy’s Law empirical equations discussed in Sections 4.3.1.1-4.3.1.3, obtaining a

best-fit equation to the observed Joy’s Law trend must be dependent on the choice of data

set and the fitting method. However, it is clear that there is a positive slope associated

with the Joy’s Law best-fit equation such that the tilt angle does increase with increasing

latitude, whether or not the fit is forced to go through zero.

To obtain an equation for the Joy’s Law trend following Eq. 4.3, rather than fitting all

of the tilt angles as a function of the emergence latitude as we have done in Sections 4.3.1.1-

4.3.1.2, we instead compute the average tilt angle in bins of 2.5◦ in latitude, then perform a

least-squares fit following Eq. 4.3 to the average binned tilt angles. This treatment of the

data is more in line with analysis of tilt angles from solar observations (e.g. McClintock and

Norton 2013; Li and Ulrich 2012; Stenflo and Kosovichev 2012; Dasi-Espuig et al. 2010).

Additionally, as the values of the binned average tilt angles observed at high latitudes are

not well fit, the Joy’s Law trend equation is usually only found for emergence latitudes of

≤30◦ − 40◦. For Method 3, we also restrict our fit to emergence latitudes ≤30◦. The results

of the linear least-squares fit following Eq. 4.3 to the binned average tilt angles calculated

from our flux tube simulations for each Φ and B0 considered are shown in Table 4.4.

Using Methods 1 and 2 to arrive at an empirical equation for the Joy’s Law trend derived

from our simulations does not aid in constraining the magnetic field strength at which the

solar dynamo might be operating, as the reported values in Tables 4.2-4.3 agree fairly well

93



with empirical Joy’s Law equations obtained from observations. However, using Method 3,

it is possible to identify some magnetic field strength regimes where Joy’s Law following Eq.

4.3 does not agree closely with those obtained from observations. By analyzing observational

data, McClintock and Norton (2013) and Li and Ulrich (2012) find that while the tilt angle

at the equator (i.e. y-intercept of Eq. 4.3) is not necessarily zero, it is small and close to

zero. For our simulated flux tubes of 1021− 1022 Mx, on the order of magnitude of sunspots,

the tilt angle at the equator begins to deviate substantially from zero as the magnetic field

strength of the flux tube decreases. For our flux tubes of 1020 Mx, which would result

in smaller, ephemeral regions on the solar surface, the best-fit equations exhibition no clear

trend in regard to magnetic field strength, and have larger uncertainties on the fit parameters

than those for 1021 − 1022 Mx. Such behavior in our simulation is a result of the increasing

dominance of convection over magnetic buoyancy on the evolution of the flux tube as the

magnetic field strength decreases. For 1021 − 1022 Mx flux tubes, those of B0 = 60− 100 kG

best match the Joy’s Law empirical equations of McClintock and Norton (2013) and Li and

Ulrich (2012) considering both the tilt angle at the equator and the slope mC of the best-fit

line.

To gain a better idea of how average tilt angles vary with latitude and flux, we find the

average, binned tilt angles for all of the flux tubes in the magnetic field strength range of

60−100 kG, and plot them separately in Fig. 4.4 for the three different magnetic flux values

of 1020, 1021, and 1022 Mx. The Joy’s Law equations following Method 3 are also shown

in Fig. 4.4 for each plot. Average tilt angles in the 1022, 60 − 100 kG regime show well

the expected linear Joy’s Law trend. However, as the magnetic flux decreases, average tilt

angles deviate more from the linear trend. Perhaps the most striking feature of Figure 4.4
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Table 4.4. Slopes mC (unitless) and the y-intercept (units of degrees) of
the Joy’s Law best-fit line following Method 3 for flux tubes with convective
effects. Flux tubes of Φ = 1021 − 1022 Mx and B0 = 40 − 100 kG most
closely agree with the Joy’s Law empirical equations found by McClintock and
Norton (2013) and Li and Ulrich (2012). See Appendix H, Section 8.1.3 for a
description of the fitting method and the calculation of the uncertainties on
the fit parameters.

B (kG) 1020 Mx
100 (0.25±0.16)θ + (7.7◦±2.7◦)
80 (0.60±0.21)θ + (2.3◦±3.6◦)
60 (0.11±0.30)θ + (9.5◦±5.2◦)
50 (0.45±0.20)θ + (1.9◦±3.5◦)
40 (0.03±0.25)θ + (8.7◦±4.4◦)
30 (0.29±0.26)θ + (7.2◦±4.5◦)
15 (-0.03±0.35)θ + (11.7◦±6.1◦)

B (kG) 1021 Mx
100 (0.47±0.07)θ - (0.54◦±1.29◦)
80 (0.34±0.10)θ + (3.9◦±1.7◦)
60 (0.36±0.26)θ + (4.2◦±4.6◦)
50 (0.78±0.25)θ - (0.42◦±4.36◦)
40 (0.67±0.19)θ - (0.61◦±3.34◦)
30 (0.11±0.18)θ + (10.9◦±3.2◦)
15 (-0.55±0.29)θ + (8.6◦±5.0◦)

B (kG) 1022 Mx
100 (0.33±0.04)θ + (0.71◦±0.75◦)
80 (0.26±0.06)θ + (1.9◦±1.1◦)
60 (0.38±0.09)θ + (3.4◦±1.6◦)
50 (0.40±0.17)θ +(6.9◦±2.9◦)
40 (0.90±0.22)θ - (5.0◦±3.8◦)
30 (0.91±0.24)θ - (8.1◦±4.2◦)
15 (-0.27±0.53)θ + (8.5◦±9.1◦)

is the sharp linear increase in average tilt angles of 1020 Mx between latitudes of 0◦ − 17.5◦.

Above 17.5◦, the average tilt angles decrease to ∼12.5◦ where the tilt angle value then

remains fairly steady. A similar behavior is present for 1021 Mx flux tubes, although not as

pronounced. The reason for this behavior may have something to do with the fact that flux

tubes originating at latitudes of ∼15◦−20◦ take the longest time to rise in or simulation. As

a result, these flux tubes will spend a larger amount of time in the convective envelope and
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Figure 4.4. Average binned tilt angles for 60-100 kG flux tubes considered
together. These results are shown for tube with magnetic flux of 1022 Mx (top
left), 1021 Mx (top right), and 1020 Mx (bottom center). Results of the linear
best-fit following Method 3 are also shown for each plot. Error bars are the
standard deviation of the mean for each for each binned average tilt angle (2.5◦

in latitude). The average tilt angle deviates from the best-fit line as the flux
decreases.

will experience the effects of kinetic helicity for a longer amount of time. In all three figures,

the y-intercept and slopes of the best-fit line agree well, within the uncertainties, to those

those reported in McClintock and Norton (2013) and Li and Ulrich (2012). Additionally,

giant cells present in the convection simulation tend to extend to ±15◦ latitude. This may

also contribute to the decline in the average tilt angles at larger emergence latitudes.

McClintock and Norton (2013) do not specifically state a reason why they should expect

the tilt angle at the equator to be non-zero, corresponding to a non-zero y-intercept of the

best-fit line. If tilting of the flux tube toward the equator is an effect due to the Coriolis
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force, then tilt angles should be proportional to sin (θ), corresponding to no tilting motion if

a flux tube emergence near the equator. One possibility for the small, but non-zero tilt at the

equator could be that the flux tube starts with an intrinsic tilt when it is generated by the

dynamo mechanism. Within the uncertainties, the y-intercept values found by McClintock

and Norton (2013) and Li and Ulrich (2012) do not deviate substantially from zero, nor

do our for flux tubes of 1021 − 1022 Mx and magnetic field strengths of ≥40 kG. In our

simulations, this small deviation from λ = 0◦ could be attributed to noise introduced by

convection to the tilt angle trend.

4.3.2. Tilt Angle Scatter. In Figure 4.3, there is a clear scatter of the tilt angle

about the best-fit line (Method 1) for flux tubes subject to convection, which becomes greater

at lower magnetic flux. Again, this trend is the result of stronger coupling between the flux

tube and convective flows at a reduced magnetic flux. We attempt to further constrain the

magnetic field strength at which the solar dynamo might be operating by calculating the

scatter of tilt angles our simulated flux tubes produce about the Joy’s Law trend best fit

equations (Section 4.3.2.1) as well as the mean tilt angle (Section 4.3.2.2).

4.3.2.1. Scatter about the Joy’s Law best-fit equation. To quantify the scatter of the tilt

angles around the best fit line, we calculate the standard deviation of the tilt about its fitted

value following:

(4.4) σfit =

√

∑N
i=1(αi − αfit)2

N
,

where αi is the ith tilt angle, αfit is the ith tilt angle as a result of the fit following Method

1 for which the slopes mA are reported in Table 4.2, N is the number of points considered,

and α is in units of degrees. See Appendix G for the number N of flux tube simulations
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Table 4.5. Standard deviation σfit (units of degrees) of the tilt angle about
the best-fit Joy’s Law equation (Method 1), where tilt angles are shifted to
fall within the range of [-90◦, 90◦]. The standard deviation tends to increase
with decreasing magnetic field and flux.

15 kG 30 kG 40 kG 50 kG 60 kG 80 kG 100 kG
1020 Mx 42◦ 34◦ 34◦ 30◦ 28◦ 20◦ 18◦

1021 Mx 40◦ 35◦ 31◦ 23◦ 19◦ 14◦ 11◦

1022 Mx 39◦ 33◦ 22◦ 18◦ 13◦ 9.1◦ 8.2◦

Table 4.6. Standard deviation σfit (units of degrees) of the tilt angle about
the best-fit Joy’s Law equation (Method 1) where tilt angles fall within the
range of [-180◦, 180◦]. This is different from what is reported in Table 4.5,
where the tilt angles are shifted to fall within the range of [-90◦, 90◦]. In
comparing both Tables 4.5 and 4.6, σfit remains unchanged for 60 − 100 kG
flux tubes for flux values of 1021 − 1022 Mx.

15 kG 30 kG 40 kG 50 kG 60 kG 80 kG 100 kG
1020 Mx 63◦ 58◦ 54◦ 41◦ 40◦ 22◦ 22◦

1021 Mx 73◦ 55◦ 42◦ 30◦ 19◦ 14◦ 10◦

1022 Mx 71◦ 52◦ 35◦ 23 ◦ 13◦ 9.1◦ 8.2◦

used for each B0, Φ combination. We evaluate σfit for each field strength and flux value

considered in this Chapter, where the results are given in Table 4.5. When calculating σfit as

reported in Table 4.5, we have shifted the tilt angles appropriately such that all tilts angles

fall within the range [-90◦, 90◦], and the reported uncertainties are the standard deviation

of the mean. This is unlike what was done in Weber, Fan, and Miesch (2013) where tilt

angles were considered to fall within the range of [-180◦, 180◦], thereby retaining anti-Hale

tilt angle information. The value of σfit assuming tilt angles fall within the [-180◦, 180◦],

range are reported in Table 4.6.

In comparing both Tables 4.5 and 4.6, σfit remains unchanged for 60 − 100 kG flux

tubes of 1021 − 1022 Mx. By retaining the anti-Hale tilt angle information, the scatter of

the tilt angles about the Joy’s Law trend are significantly larger for smaller flux values and

magnetic field strengths than in the case where we shift the tilt angles to fall within [-90◦,
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90◦]. Flux tubes can obtain anti-Hale polarities in our simulation if they emerge in the

opposite hemisphere from which they originated, or as a result of the flux tube becoming

so distorted by convection that the legs of the emerging loop can become reversed. Both

these situations usually occur for weak magnetic field strength cases, while the majority of

anti-Hale flux tubes with moderate magnetic field between 40− 50 kG happen as a result of

hemisphere crossing due to convective flows. The σfit values reported in Tables 4.5 and 4.6

vary little when the best-fit equation following Method 2 is used instead.

Using Mount Wilson white light sunspot group data (1917 – 1985),

Fisher, Fan, and Howard (1995) find that σfit ∼ 30◦. Fisher, Fan, and Howard (1995)

use tilt angles in the range of [-90◦, 90◦], and assume that the tilt angle trend is dependent

on sinθ and the separation of the leading and following polarity spots. A value of σfit ≤ 30◦

following Table 4.5 would definitely exclude 1021 − 1022 Mx flux tubes in the 15 kG range

according to our simulation results as the possible progenitors of solar active regions. Active

regions of flux values of 1020 Mx would appear on magnetograms, but would probably not

be associated with white light sunspot groups. Since we have simulations for 1020 Mx, we

calculate σfit for these values as well in Tables 4.5 and 4.6. We do note that while the Joy’s

Law trend is not statistically dependent on flux (see Section 4.3.1), the scatter of the tilt

angles about their best-fit line tends to increase with decreasing flux.

4.3.2.2. Scatter about the mean tilt angle. Using Mount Wilson Observatory sunspot

data, McClintock and Norton (2013) compute the standard deviation of the tilt angle around

the mean tilt angle value. We also do the same here for flux tubes emerging between ±30◦

in latitude with tilt angles shifted to fall in the range of [-90◦, 90◦], so as to mirror the

treatment of the analysis by McClintock and Norton (2013). In this section, the standard
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Table 4.7. The standard deviation from the mean tilt angle σavg (units of
degrees) for tilt angles in the range of [-90◦, 90◦] and emergence latitude of
±30◦. Similar to σfit, σavg tends to increase with decreasing magnetic field.

15 kG 30 kG 40 kG 50 kG 60 kG 80 kG 100 kG
1020 Mx 42◦ 35◦ 33◦ 31◦ 28◦ 20◦ 17◦

1021 Mx 43◦ 38◦ 36◦ 25◦ 19◦ 13◦ 9◦

1022 Mx 44◦ 41◦ 27◦ 20◦ 12◦ 10◦ 8◦

deviation of the tilt angle is defined as:

(4.5) σavg =

√

∑N
i=1(αi − αavg)2

N
,

where αi is the ith tilt angle, αavg is the mean tilt angle for flux tubes that emerge between

±30◦ in latitude for each value of B0 and Φ, N is the number of points considered, and α

is in units of degrees. See Appendix G for the number N of flux tube simulations used for

each B0, Φ combination. Table 4.7 shows the standard deviation of the tilt angle σavg for

each Φ and B0 considered.

McClintock and Norton (2013) find σavg ∼ 30◦ for both the Northern and Southern

hemispheres over six solar cycles. Using this criteria, we can exclude flux tubes resulting

from our simulations of 1021 − 1022 Mx and magnetic field strength of ≤30 kG as possible

candidates for the progenitors of solar active regions due to their large σavg . We also note

that the spread in the distribution of the tilt angles increases as one goes to smaller regions,

or smaller magnetic flux, as is found in Wang and Sheeley (1989) and Stenflo and Kosovichev

(2012). Especially at moderate to strong magnetic field strengths of ≥50 kG, the values of

σavg are not significantly different from those of σfit as shown in Table 4.5.

McClintock and Norton (2013) report an average tilt angle of ∼6◦ or less regardless of

hemisphere or solar cycle. These results are similar to those reported in Dasi-Espuig et al.

100



Table 4.8. Mean tilt angles (units of degrees) for tilt angles in the range of
[-90◦, 90◦] and emergence latitude of ±30◦. Reported uncertainties are the
standard deviation of the mean (not σavg or σfit). Average tilt angles for flux
tubes of 1021 − 1022 Mx and 40− 60 kG have a large average tilt compared to
the ∼6◦ and less observed on the Sun.

15 kG 30 kG 40 kG 50 kG 60 kG 80 kG 100 kG
1020 Mx 12◦ ± 3◦ 11◦ ± 2◦ 9◦ ± 2◦ 9◦ ± 2◦ 9◦ ± 2◦ 11◦ ± 1◦ 12◦ ± 1◦

1021 Mx 2◦ ± 3◦ 11◦ ± 3◦ 10◦ ± 3◦ 13◦ ± 2◦ 11◦ ± 1◦ 9◦ ± 1◦ 7◦ ± 1◦

1022 Mx 3◦ ± 4◦ 9◦ ± 3◦ 11◦ ± 2◦ 14◦ ± 1◦ 10◦ ± 1◦ 6◦ ± 1◦ 6◦ ± 1◦

(2010). The average tilt angle calculated from our flux tube simulations for each B0 and Φ

are reported in Table 4.8. The average tilt angles in our simulation tend to be larger than

this value, especially at 1020 Mx and moderate magnetic field strengths of 40 − 50 kG. In

our simulations, tilt angles are systematically increased from the value obtained without the

influence of convective flows. Most probably the larger-than-observed average tilt angles we

report in most cases are due to the fact that the kinetic helicity in upflow regions associated

with the convective velocity field may be larger than on the Sun. Taking the average tilt

angles of 1021 − 1022 Mx together, flux tubes of 40 − 60 kG have too large an average tilt

angle to be considered as the progenitors of solar active regions.

4.3.3. Preferred Tilt Angles. Howard (1996) investigated the distribution of sunspot

group tilt angles from a set of Mount Wilson white light photographs (1917 – 1985) as well

as sunspot groups derived from plage in Mount Wilson daily magnetograms (1967 – 1995).

They bin the tilt angles in 2.5◦ increments, and plot the number of occurrances of the tilt

angles in these bins. In this way, they find that sunspot groups tend to form most often with

tilt angles between 2.5◦ – 5◦ for white light data, and between 7.5◦ – 10◦ for magnetogram

data. The tilt angle distribution that we obtain for flux tubes of all magnetic fields and
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Figure 4.5. Distribution of tilt angles in 2.5◦ bins for all flux tubes considered
in this Chapter. The peak of the distribution function is between 10◦ − 12.5◦

(black line), with a non-linear least-squares Gaussian fit (red line) of center
10.2◦ ± 3.6◦, as shown by the gray dash-dotted line.

magnetic flux studied here using tilt angle bins of 2.5◦ is shown in Figure 4.5. In Figure 4.5,

tilt angles in the range of [-180◦, 180◦] are shown.

We find that for all magnetic flux tubes considered in this Chapter, the tilt angle distri-

bution from our simulation peaks between bins of 10◦−12.5◦ (black line), where a non-linear

least-squares Gaussian fit (red line) gives a center, or preferred tilt, of 10.2◦ ± 3.6◦. The

uncertainty on the preferred tilt angle is the standard deviation of the Gaussian fit. If we

shift the tilt angles to a range of [-90◦, 90◦], the preferred tilt angle only changes by 0.1◦.

This is in good agreement with the magnetogram data of Howard (1996) and Stenflo and

Kosovichev (2012), who find a preferred, or most common, tilt of ∼10◦ for all bipolar regions

emerging between a 15◦ − 20◦ latitude range including the largest active regions down to

regions of ∼1020 Mx. If we only consider 60− 100 kG flux tubes, following results from the

previous tilt angle sections, the preferred tilt angle decreases to 9.1◦ ± 3.3◦. Whereas, if we

only consider 80−100 kG flux tubes, this value then decreases even more to 8.1◦±3.2◦. Our

preferred tilt angle results are also in very good agreement with the tilting of buoyantly rising
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portions of magnetic wreaths resulting from global 3D simulations of convective dynamos

(Nelson et al. 2013).

Figure 4.5 represents a total of 6927 flux tubes. Of all these flux tubes, only 6.3% emerge

with anti-Hale tilt angles (i.e. outside the range of ±90◦). The percentage of flux tubes with

anti-Hale tilt angles increases with decreasing magnetic flux and magnetic field values. This

is slightly larger than the ∼4% as found via observations of medium to large-sized active

regions (Wang and Sheeley 1989; Stenflo and Kosovichev 2012).

4.4. Bipolar Region Rotations Rates

Observations show that sunspots tend to rotate faster than the solar surface plasma

(Howard and Harvey 1970; Golub and Vaiana 1978; Gilman and Howard 1985). In addition,

the leading sunspot in a large bipolar region (∼1021 − 1022 Mx) tends to rotate faster than

the following spot (Gilman and Howard 1985; van Driel-Gesztelyi and Petrovay 1990). We

investigate both of these phenomena in our simulations by first observing the asymmetry

of inclination of the flux tube legs in Section 4.4.1, then tracking the rotation rate of the

centroid between the leading and following legs of a rising loop in Section 4.4.2.

4.4.1. Asymmetry of Inclination. When looking down on a flux tube from the pole

at the end of its rise, as in Figure 3.2, it is apparent that there is an asymmetry in the incli-

nation of the leading and following legs with respect to the vertical direction. The following

leg tends to have a steeper slope than the leading leg. This asymmetry is caused by the

Coriolis force and the conservation of angular momentum as the tube rises through the con-

vection zone (Moreno-Insertis, Caligari, and Schüssler 1994; Caligari, Moreno-Insertis, and

Schüssler 1995; Caligari, Schüssler, and Moreno-Insertis 1998), and provides an explanation

for the apparent asymmetric East –West proper motions of the two polarities of an emerging
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active region. Generally, the leading polarity region appears to rotate forward faster than

the following region. One such explanation of this phenomenon is as follows: as the tube

rises above a constant r surface, the inclination of the legs of the loop cause an apparent,

more rapid motion of the leading polarity spot (which has a larger angle of inclination) as

compared to the motion of the following polarity spot (which has a smaller angle of incli-

nation). As the active region develops, it will appear as though the leading spot is moving

away from the following spot, while the active region as a whole rotates forward in longitude.

Here we quantify the steepness of each leg of the emerging loop by calculating what we

call the inclination angle. To do this, first we find the portion of the emerging loop which

is concave downward. Then we find the best fit line for each leg from the flux tube apex

in the concave down portion. The angle between the best fit line for each leg and −r̂ is

the inclination angle. The smaller this angle, the steeper the slope of the leg. In Figure

4.6 we have plotted the average difference of the inclination angles (leading leg minus the

following leg). Only the average inclination difference for each magnetic field strength is

plotted because we find that the inclination difference does not vary systematically with

latitude. Positive inclination difference means the following leg is steeper, consistent with

previous results (Moreno-Insertis, Caligari, and Schüssler 1994; Caligari, Moreno-Insertis,

and Schüssler 1995; Caligari, Schüssler, and Moreno-Insertis 1998). We find that at all field

strengths and magnetic flux, the majority of the emerging loops develop a steeper slope for

the following leg. The inclination angle differences are overall reduced with the inclusion of

convection, and appear to have no clear trend with respect to magnetic field strength or flux

when solar-like convective motions are included.
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Figure 4.6. Average difference of the inclination angles between the leading
and following sides of the emerging loop for cases with (blue) and without
(red) the influence of convection. Bars represent the standard deviation of
the mean. Positive inclination difference means the following leg is steeper.
Inclination angle difference are overall reduced with the inclusion of convection.

4.4.2. Rotation Rate of the Centroid. The azimuthal velocity of leader, follower,

and all sunspots (in the reference frame with a solid body rotation rate of Ω0 = 2.7× 10−6

rad s−1) as derived from Gilman and Howard (1985) are plotted in Figure 1.4, as well as the

observed azimuthal rotation rate of the solar plasma at the surface (blue line) as determined

from surface spectroscopic Doppler-velocity measurements (e.g. Thompson et al. 2003) and

the rotation rate at r = 0.95R⊙ (red line) as found via inversions of helioseismic observations

(Howe et al. 2000). This image suggests that sunspots tend to rotate at nearly the same rate

as the solar plasma at 0.95R⊙, and therefore rotate faster than solar surface plasma.
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In order to quantify the rotation rate of emerging loops from our thin flux tube simulation,

we calculate the apparent azimuthal speed of the center point between the leading and

following intersections of the emerging loop with the constant r surface of 0.95R⊙ during

the last two time steps before the loop apex reaches the top of the simulation domain. This

reflects the apparent azimuthal speed of an emerging active region, and it is not the actual

azimuthal speed of the flux tube plasma at the tube apex. We do this only for flux tubes of

1021 Mx and 1022 Mx, assuming tubes of flux order 1020 Mx do not produce large sunspots.

Caligari, Moreno-Insertis, and Schüssler (1995) compute the azimuthal phase speed of the

summit of an emerging flux loop without convective effects throughout its rise. This phase

motion is related to the wave character of the rising flux loop, which is similar in behavior

to a transversal wave propagating along a string. They find that the azimuthal phase speed

decreases with increasing height of the summit, and that it changes sign at about 50 Mm

below the solar surface such that the angular velocity of the summit is smaller than that of

the external plasma. They suggest that the resulting active region will still show a higher

rotation velocity than the surrounding plasma because of the inclination difference of the

leading and following legs with respect to the local vertical, as discussed in Section 4.4.1.

However, to make comparisons to actual sunspot rotation rates, we feel that the method

presented in this section is a better alternative .

Figure 4.7 Left and Right show the average of the apparent azimuthal speed in 5◦ bins,

for cases with a magnetic flux of 1021 Mx and 1022 Mx respectively, where bars on the points

are the standard deviation of the mean. For comparison, these plots also show the average

azimuthal rotation rate of the ASH simulation at r = 0.95R⊙ (red line), and the azimuthal

flow speed one would expect at the surface (blue line) assuming the differential rotation in
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the top shear layer between the surface and 0.95R⊙ decreases by ∼10 nHz (what we will

subsequently call the inferred surface rate) as found by helioseismology (e.g. Thompson et al.

2003).

In all cases, flux tubes that emerge at high latitudes above 40◦ rotate at a rate that is

close to, or faster than, the ASH rate at r = 0.95R⊙ and hence faster than the inferred

surface rate expected of our simulation. With initial magnetic field strengths of 15 kG and

30 kG, for both magnetic fluxes, the average rotation rates of the majority of flux tubes

that emerge at ≤35◦ are less than the inferred surface rate. However, at mid-magnetic-field

strengths of 40 kG and 50 kG, the rotation rates of the flux tubes roughly follow the inferred

surface rate. Only for initial magnetic field strengths of ≥60 kG are the flux tubes capable

of rotating at or faster than the inferred surface rate for all emergence latitudes, considering

magnetic fluxes of 1021 Mx and 1022 Mx.

We recognize that this method of quantifying the rotation rate of the emerging flux tubes

in our simulation has some limitations. Due to the nature of the ASH convection simulation

and the fact that the thin flux tube simulation breaks down in the upper portion of the

convection zone, it is not possible to allow the thin flux tube to emerge all the way to the solar

surface. Instead, we operate under the assumption that the rotation rate of the emerging

loop at a constant r surface of 0.05R⊙ below the solar surface is a good representation for

how an active region will behave at the solar surface, as is reflected in Figure 1.4 for solar

observations. The discrepancy between the observed and simulated rotation rates could in

part be attributed to the particular ASH simulation that we use, which does not precisely

reproduce the solar Ω-profile. Our simulated flux tubes are effectively anchored at the

convection zone base, whereas real flux tubes may decouple from the deep convection zone
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Figure 4.7. Average rotation rate of emerging flux loops subjected to the
convective flow with magnetic flux of (a) 1021 Mx on the left (leftmost six
panels) and (b) 1022 Mx on the right (rightmost six panels). Averages are
taken in 5◦ bins, with bars representing the standard deviation of the mean.
Red and blue lines correspond to the ASH rotation rate at r = 0.95R⊙ and
inferred solar surface rotation rate respectively, assuming a difference of 10
nHz between the two. All values are plotted with reference to the solid body
rotation rate of Ω0 = 2.7×10−6 rad s−1, so that the zero line is the solid body
rotation of the Sun. Strong flux tubes with initial field strengths of ≥50 kG
rotate faster than or nearly equal to the inferred surface rate.

at some point during their evolution, and become anchored closer to the surface. This is

why we choose to investigate the rotation rate closer to the surface. As our thin flux tube

is a one-dimensional string of mass elements, we cannot address the issue that the flux tube

could lose its coherency and become fragmented (Longcope, Fisher, and Arendt 1996), which

may result in a stronger coupling between the tube and convective fluid motions, and could

be a significant contributing factor to the rotation rate of active regions.

In an attempt to gain a stronger coupling between the flux tube and convective fluid

motions, we perform some simulations where the drag coefficient Cd in the last term of
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Equation 2.1 is increased from unity to the constant values of 1.5 and 2. Also, we perform

simulations where we adjust the drag coefficient such that it exponentially varies from 1 at

the base of the convection zone to 1.5 or 2 at the top of the simulation domain. These tests

were performed for flux tubes with initial field strengths of 40 kG and magnetic flux of 1022

Mx. These efforts to alter the drag coefficient to produce stronger coupling to convection did

not result in faster rotation rates compared to the surface rate for all latitudes less than 25◦.

This indicates that 40 kG flux tubes or less will probably not be able to reproduce sunspot

rotation rates utilizing the thin flux tube model as it currently stands.

4.5. Magnetic Fields

4.5.1. Magnetic Field Asymmetry. A well-known asymmetry of solar active regions

is observed in the morphology of the leading and the following polarities of an active region.

The leading polarity flux tends to be concentrated into a well formed sunspot, whereas

the following polarity flux tends to appear more fragmented and dispersed (e.g. Bray and

Loughhead 1979). The thin flux tube simulations of Fan, Fisher, and Deluca (1993) showed

that the preceding leg of an emerging magnetic flux loop has a stronger magnetic field than

the following leg as a result of the differential stretching of the rising loop due to the Cori-

olis force. This gives an explanation for the observed more coherent and less fragmented

morphology for the leading polarity flux in an active region. However subsequent simula-

tions (e.g. Caligari, Moreno-Insertis, and Schüssler 1995; Fan and Fisher 1996) using the

mechanical equilibrium initial state (which is more physical) as opposed to the tempera-

ture equilibrium as used by Fan, Fisher, and Deluca (1993), found that the leading leg of

the emerging loop has a stronger magnetic field than the following only for flux tubes with
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an initial field strength that is below about 60 kG. For flux tubes with higher initial field

strengths, the field strength asymmetry reverses at the top of the loop.

Here we investigate this magnetic field asymmetry by calculating dB/ds, the derivative

of the magnetic field in the direction of solar rotation, at the apex of the emerging flux loop

as shown in Figure 4.8. If dB/ds is greater (less) than zero, then the leading (following)

leg has a stronger magnetic field. As can be seen in Figure 4.8, at 50 kG and below, the

majority of the emerging loops show stronger field in the leading leg than the following leg in

the presence of convection. However, for flux tubes of 100 kG subject to convection effects,

only some of the emerging flux loops at higher latitudes have stronger field in the preceding

leg. At 60 kG there are about equal number of positive and negative dB/ds cases. Thus with

convection, loops with initial field ≤50 kG tend to emerge with the appropriate magnetic

field asymmetry (i.e. with a stronger field in the preceding leg and therefore can be expected

to result in an emerging active region with a more coherent leading polarity).

Recent three-dimensional radiative MHD simulations of magnetic flux emergence and

sunspot formation in the top layer of the convection zone and the photosphere by Rempel

(private communication, 2012) have suggested that the morphological asymmetry of sunspots

may be caused by a flow of plasma along the emerging tube out of the leading portion of

the active region into the following leg, and is less dependent on the asymmetry in field

strength of the emerging loop. This flow of plasma is related, in part, to the conservation of

angular momentum as the flux tube rises. If this is indeed the case, then we can not rule out

flux tubes with stronger initial magnetic field strengths of >50 kG at the base of the solar

convection zone as the progenitors of solar active regions simply due to their magnetic field

asymmetries.
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Figure 4.8. The quantity dB/ds at the apex of the emerging flux loop as a
function of emergence latitude for cases with (plus signs) and without (dia-
monds) the influence of convection. A color bar indicates the original starting
latitude of the flux tube. With Increasing flux, there quantity dB/ds deviates
less from the values without the influence of convection. At low latitudes for
magnetic field strengths of ≥60 kG, dB/ds is negative, indicating the leading
leg has a smaller magnetic field than the following, unlike observations might
suggest.
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4.5.2. Apex Magnetic Field Strength. The nature of the magnetic field below the

visible surface of the Sun is not well known. Simulations of flux emergence in the upper layers

of the convection zone have been computed in domains that span from the photosphere to

depths of 2 Mm to 20 Mm below the surface (e.g. Cheung, Schüssler, and Moreno-Insertis

2007; Rempel, Schüssler, and Knölker 2009; Stein et al. 2011). The simulations assume a

range of initial magnetic field strengths of the flux tube at the bottom of their simulation

domain anywhere from ∼2 kG to ∼30 kG. We report the average magnetic field strength

at the apex of our thin flux tube simulations, once the tube has reached the top of the

simulation domain at a depth of 21 Mm below the solar surface, for multiple initial magnetic

field strengths and flux in Table 4.9. We have averaged these results for each B0 and Φ

because the magnetic field strength at the apex is not dependent on emergence latitude.

Our results do support average magnetic field strength values of ∼1 kG to ∼15 kG for flux

tubes reaching a height of ∼21 Mm below the solar surface, assuming initial field strengths

of 15 kG to 100 kG at the base of the convection zone for magnetic fluxes of 1020− 1022 Mx.

The magnetic field strength of the flux tube at the apex is largest for larger initial fields,

and the scatter of the magnetic field at the apex for a particular magnetic field strength

tends to increase with decreasing flux. Additionally, for each B0, the magnetic field strength

of the flux tube apex at 21 Mm increases with decreasing flux. The value Φ only effects

the thin flux tube equations through the drag force term. As a result, tubes with a weaker

flux experience a stronger coupling to convection, and will be buffeted more by convective

flows. This increase in the magnetic field strength of the flux tube apex is likely a result of

the increased stretching of the flux tube at weaker magnetic flux, especially by convective
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Table 4.9. Average magnetic field strength of the flux tube apex at 21 Mm
below the solar surface (simulation upper boundary). Uncertainties represent
the standard deviation of the mean. The magnetic field strength at the flux
tube apex increases with decreasing flux, and decreases with decreasing B0.

B 1020 Mx 1021 Mx 1022 Mx
100 kG 15000 ± 400 G 11800 ± 300 G 9300 ± 200 G
80 kG 13000 ± 600 G 8900 ± 300 G 7500 ± 300 G
60 kG 10000 ± 1000 G 6800 ± 400 G 5000 ± 200 G
50 kG 6400 ± 500 G 4800 ± 300 G 4000 ± 200 G
40 kG 4000 ± 400 G 3500 ± 300 G 2800 ± 200 G
30 kG 3200 ± 300 G 2700 ± 300 G 1700 ± 100 G
15 kG 1800 ± 200 G 1400 ± 200 G 1100 ± 100 G

downflows. Even flux tubes of large magnetic field strength with a weak flux of 1020 Mx are

significantly deformed by convective influences.

Typical magnetic field strength of sunspots are in the range of ∼1 kG for small spots to

∼4 kG for very large spots. The values we have reported in Table 4.9 at ∼21 Mm below

the solar surface fall in this range only for flux tubes of B0 ≤ 40 kG. However, this does not

exclude larger magnetic field strength flux tubes as the progenitors of solar active regions.

We cannot model the last ∼21 Mm of the flux emergence process because the thin flux

tube approach no longer holds in this region. Additional processes in the upper convection

zone such as fragmentation of the flux tube and convective collapse (strong intensification of

magnetic field) likely hold the key to understanding how the magnetic field strength of the

flux tube evolves in the last portion of its rise toward the surface.

4.6. Discussion

By embedding the thin flux tube model in a three-dimensional, turbulent, convective ve-

locity field representing the solar convective envelope, we study how convection can influence

the local properties of emerging active region flux tubes. In comparing these properties to

those obtained from solar active region observations, we attempt to constrain the magnetic
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field strengths of dynamo-generated magnetic fields at the base of the solar convection zone.

The thin flux tube approximation, although idealized, allows us to investigate active region

scale flux tubes at near-equipartition to strongly equipartition magnetic field strengths of

15 − 100 kG under perfect frozen-in flux conditions. We find that subjecting the thin flux

tube to turbulent convective flows does indeed alter flux tube dynamics, and that it can have

a significant impact on the properties of the emerging flux loop in comparison to flux tube

simulations performed in the absence of a convective velocity field.

Decreasing the magnetic flux of the tube results in an increase of the drag force acting on

the rising flux loop, thereby flux tubes of 1020 Mx are advected by turbulent convective flows

more strongly than 1022 Mx flux tubes. For all magnetic flux values that we consider here,

flux tubes are able to emerge near the equator with the aid of convective flows, which solves

the previous problem of poleward slippage encountered by thin flux tube simulations for flux

tubes of low magnetic field strengths without convective effects. With convection, flux tubes

are also able to emerge closer to the equator than the latitude where they originated at the

bottom of the convection zone. Such behavior provides a possible explanation for active

regions near the equator (±10◦) that exhibit anti-Hale polarities.

There is no agreed upon empirical Joy’s Law equation, and the results of Joy’s Law best-

fit equations vary widely, presumably a result of the chose data set and selection methods.

However, we attempt to fit the tilt angles from our thin flux tube simulations following three

different methods used by a number of authors to facilitate comparison between our results

and solar observations. Dasi-Espuig et al. (2010) perform a linear best-fit on tilt angles (α)

as a function of latitude (θ) following α = mAθ (Method 1), and obtain a slope mA of the

best-fit line of mA = 0.26 ± 0.05 and mA = 0.28 ± 0.06 for Mount Wilson and Kodikanal
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sunspot data, respectively. Following Method 1, the slopes mA we obtain (Table 4.2) are

significantly boosted from the cases without convection (Table 4.1). This occurs because

helical convective upflows help to drive the tilt angle of the flux tube in the appropriate

Joy’s Law direction for both hemispheres (i.e. toward the equator). The values of the slopes

mA agree well with Dasi-Espuig et al. (2010) for 1021−1022 Mx, with the exception of 40−50

kG flux tubes which show a slightly larger best-fit slope within the uncertainties.

Assuming the origin of the tilt angle is related to the Coriolis force, as this force varies with

latitude as sin(θ), some authors fit tilt angles as a function of sin(θ) following α = mBsin(θ)

(Method 2). Using this method, Stenflo and Kosovichev (2012) find mB = 32.1◦ ± 0.7◦,

whereas Fisher, Fan, and Howard (1995) find mB = 15.69◦ ± 0.66◦. Values of mB obtained

by performing a fit to our simulation tilt angles following Method 2 (see Table 4.3) all fall

within this vary wide spread. Finally, following the suggestion by some authors that the

Joy’s Law empirical equation should not be forced to go through zero, we fit our tilt angles

with the equation α = mCθ+ λ, where λ is the value of the tilt angle at θ = 0◦. Comparing

our results (Table 4.4) to those of McClintock and Norton (2013) and Li and Ulrich (2012),

we could exclude 1021 − 1022 Mx flux tubes of 15− 30 kG as the progenitors of solar active

regions because their tilt angles at the equator are too large within the uncertainties. We

also note that average tilt angles peak at mid-latitudes of ∼15◦ − 20◦ for flux tubes of 1020

Mx. Above 20◦, the average tilt angles relax back to ∼12.5◦. This deviates from the Joy’s

Law trend that tilt angles should increase with increasing latitude. We believe this occurs

in our simulation due to the nature of the giant cell convection pattern in our simulation.

The scatter of the tilt angles around their linear Joy’s Law fit line σfit is shown to be

too large for initial magnetic field strengths of 15 kG with fluxes of 1021 Mx and 1022 Mx,

115



as compared to the observed value of ≤30◦ for white light sunspot group images (Fisher,

Fan, and Howard 1995). While the scatter of the tilt angle increases with decreasing flux

(Table 4.5), we find no statistically significant dependence of the Joy’s Law trend on flux

(see Table 4.2), consistent with the results of Stenflo and Kosovichev (2012). According

to McClintock and Norton (2013), the scatter of the tilt angle about the mean value σavg

should also be ∼30◦, and the average tilt angle should be ≤6◦. From our simulations, flux

tubes of 1021 − 1022 Mx and magnetic field strengths of ≤30 kG have too large a scatter

about the average tilt angle. However, 30− 60 kG flux tubes in the range of 1021 − 1022 Mx

have a larger average tilt angle than is reported from observations. We also find that the

most common tilt angle produced by our study is 10.1◦ for tubes with a flux of 1020 − 1022

Mx, which agrees well with analysis of solar active region observations performed by Howard

(1996) and Stenflo and Kosovichev (2012), and simulation results from Nelson et al. (2013).

Observations show that sunspot groups tend to rotate faster than the surrounding solar

surface plasma (Howard and Harvey 1970; Golub and Vaiana 1978). We investigate this in

two ways, first by examining the asymmetry of inclination of rising flux tubes, and second

by calculating the rotation rate of the centroid between both legs of the emerging magnetic

flux loop. We find that the asymmetry of inclination does not vary systematically with

latitude, nor does it depend on the magnetic field strength for magnetic flux of the tube

when subjected to convective flows. On average, the asymmetry of inclination of all our

flux tube simulations is such that the leading leg would appear to rotate forward faster than

the following leg, mirroring the observed behavior of solar active regions. For tubes with a

flux of 1021 Mx and 1022 Mx, we find that at high emergence latitudes, the average rotation

rate of the emerging loops tends to be greater than the inferred surface rotation rate for
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all field strengths considered. At lower latitudes, below about 35◦, loops with initial field

strength ≥60 kG tend to rotate faster than the inferred surface rate, consistent with the

observed sunspot rotation rate, while loops with initial fields of about 40 − 50 kG tend to

rotate at a similar rate as the surface rate. However, for initial magnetic fields below 40

kG, the rotation rate at low latitudes tends to be slower than the surface rate, contrary

to observations. Thus comparison with the observed sunspot rotation rate seem to favor

stronger fields as the progenitor of solar active regions.

Similar to previous studies (Caligari, Moreno-Insertis, and Schüssler 1995; Fan and Fisher

1996), we find that for magnetic field strengths ≤50 kG, the leading leg of the emerging loop

tends to have a larger magnetic field than the following, which may provide an explanation for

the observed better cohesion of the leading polarity of an emerging active region as compared

to the following polarity. This trend of asymmetry in field strength reverses for tubes with

an initial magnetic field of ≥60 kG. However, it may be the case that the morphological

asymmetry of sunspot regions is less dependent on magnetic field asymmetry, and is rather

a result of the retrograde plasma flow inside the flux tube from the leading leg into the

following leg, and therefore may not be a good diagnostic for constraining the magnetic field

strength at which the solar dynamo may be operating. A study of the magnetic field of the

flux tube at the top of the simulation domain suggests typical values of ∼1−15 kG for tubes

that reach ∼21 Mm below the photosphere.

The results in this Chapter suggest that the initial field strength of active region progen-

itor flux tubes needs to be sufficiently large, probably ≥30 kG, in order for them to satisfy

the Joy’s Law trend for mean tilt angles as well as the observed amount of scatter of the

tilt angles about the mean Joy’s Law behavior. Weaker magnetic fields tend to produce
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too large a scatter to be consistent with the observed results. However, flux tubes of ≥80

kG and 1021 − 1022 Mx agree both with the observed Joy’s Law trends, observed tilt angle

scatter, and average observed tilt angle. Also, only 60 kG or greater magnetic field strength

flux tubes can rotate at or faster than the solar surface rate. So, according to our thin flux

tube approach, magnetic field values need to be of moderate to large field strengths for tubes

with fluxes of 1021 Mx and 1022 Mx to produce sunspot rotation behavior.

Taking all of the results in this Chapter into consideration, according to the results of

our thin flux tube simulations, we can exclude ≤15 kG magnetic field strength flux tubes as

progenitors of solar active regions. It is likely that in order to achieve the appropriate rota-

tion rate and average tilt angle as observed on the Sun, flux tubes of ≥60 kG are required.

Additionally, it is clear that convective flows can alter local flux emergence properties, espe-

cially at weak to moderate magnetic field strengths, and should be considered as a significant

contributing factor in the flux emergence process.
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CHAPTER 5

A Theory on the Convective Origins of Active

Longitudes on Solar-like Stars

Using a thin flux tube model in a rotating spherical shell of turbulent, solar-like convective

flows, we find that the distribution of emerging flux tubes in our simulation is inhomogeneous

in longitude, with properties similar to those of active longitudes on the Sun and other

solar-like stars. The large-scale pattern of flux emergence our simulations produce exhibits

preferred longitudinal modes of low order, drift with respect to a fixed reference system, and

alignment across the Equator at low latitudes between ±15◦. We suggest that these active-

longitude-like emergence patterns are the result of columnar, rotationally aligned giant cells

present in our convection simulation at low latitudes. If giant convecting cells exist in the

bulk of the solar convection zone, this phenomenon, along with differential rotation, could

in part provide an explanation for the behavior of active longitudes.

5.1. Introduction

For longer than half a century, it has been observed that solar active regions tend to

emerge near the location of previous or currently existent magnetic flux (Bumba and Howard

1965; Gaizauskas et al. 1983; Castenmiller, Zwaan, and van der Zalm 1986; Brouwer and

Zwaan 1990; Harvey and Zwaan 1993). Solar observations also show that the emergence

of active features is distributed inhomogeneously in longitude according to sunspot activity,

solar flares, and coronal streamers (Jetsu et al. 1997; Berdyugina and Usoskin 2003; Zhang,

Wang, and Du 2008; Zhang et al. 2011; Olemskoy and Kitchatinov 2009; Li 2011). Periodic
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signals have been observed in the solar wind and geomagnetic activity, which may also be

attributed to an inhomogeneous longitudinal distribution of emerging magnetic flux on the

solar surface (Mursula and Zieger 1996; Neugebauer et al. 2000; Love, Joshua Rigler, and

Gibson 2012). These preferential longitudes of solar activity are commonly referred to as

active longitudes, and have been observed on some cool, active stars and young solar analogs

(Olah, Hall, and Henry 1991; Järvinen et al. 2005; Lanza et al. 2009; Garćıa-Alvarez et al.

2011).

The Sun typically has two active longitudes separated by 180◦ (Usoskin, Berdyugina, and

Poutanen 2005; Zhang et al. 2011), although there may be upwards of four or more active

longitudes per rotation near solar maximum, and even as few as one or none during solar

minimum (de Toma, White, and Harvey 2000). Active longitudes are also fairly long-lived,

with lifetimes of up to seven rotations (de Toma, White, and Harvey 2000), while Berdyugina

and Usoskin (2003) suggest that active longitudes can persist longer than a century. Owing

to the observed North/South asymmetry of solar activity cycles (Verma 1993; Temmer et al.

2006), the Northern and Southern hemispheres often exhibit different magnetic behavior,

although it is not uncommon for both hemispheres to exhibit the same active longitude

(Benevolenskaya et al. 1999; de Toma, White, and Harvey 2000). Furthermore, these bands

of flux emergence migrate with respect to a rigidly rotating frame (Usoskin et al. 2007), and

appear to propagate prograde near the Equator at a rate faster than the Carrington sidereal

rate (Benevolenskaya et al. 1999).

The physical mechanisms which give rise to the active longitude phenomenon still remain

relatively unknown, although there exist a few theories. Ruzmaikin (1998) suggests that the

localization of a non-axisymmetric mean magnetic field at the base of the convection zone
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can result in clustering of active regions at a particular longitude. A fluctuating magnetic

field super-imposed on the non-axisymmetric mean field can experience an amplification of

its field strength at the longitudinal position of the mean field enhancement. Subsequently,

the magnetic flux loop will rise to the surface provided the field strength is large enough for

the onset of the magnetic buoyancy instability. Non-axisymmetric toroidal magnetic fields

that produce buoyant loops have recently been found in convective dynamo simulations by

Nelson et al. (2011, 2013). Conversely, Dikpati and Gilman (2005) show that the toroidal

mean magnetic field does not have to be enhanced at a particular longitudinal position in

order for active regions to appear at preferred longitudes. Using a shallow-water model

of the tachocline, they find that magnetohydrodynamic (MHD) instabilities can simultane-

ously produce tipping instabilities of the toroidal magnetic field bands and variations in the

thickness of the tachocline material. A correlation between the tipped toroidal band and a

bulge of the tachocline material can force magnetic fields in to the less dense layers of the

convection zone, where they will continue to rise because they are more buoyant than the

surrounding medium.

Simon and Weiss (1968) allude to the fact that large convecting cells ∼300,000 km in

diameter may be responsible for what Bumba and Howard (1965) call complexes of activity,

which are clusters of active regions compact spatially in latitude and longitude. These giant

cells were posited by Simon and Weiss (1968) as an efficient mechanism of heat transport

over multiple density scale heights. Their observational existence (e.g. Hathaway et al.

1996; Beck, Duvall, and Scherrer 1998) is supported by giant convecting cellular structures

present in three-dimensional simulations of turbulent stellar convection, which align with

the rotation axis at low latitudes, remain coherent for at least a rotation period or longer,
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and propagate prograde near the equator (Miesch et al. 2008; Bessolaz and Brun 2011).

However, many other attempts to detect giant cells on the Sun have failed (e.g. Labonte,

Howard, and Gilman 1981; Snodgrass and Howard 1984; Chiang, Petro, and Foukal 1987),

as their signature is difficult to extract from those of granulation (∼1,000 km in diameter)

and super-granulation (∼30,000 km in diameter), upon which the giant cell signature may

be super-imposed.

Using a thin flux tube model in a rotating spherical shell of turbulent, solar-like convective

flows as described in Section 5.2, we find evidence which suggests that giant convecting cells

(on the order of ∼50 − 100 Mm in diameter) in the bulk of the solar convection zone can

organize buoyantly rising flux tubes such that large-scale emergence patterns at or near the

solar surface are formed. We describe how we extract large-scale flux emergence patterns

from our simulations in Section 5.3, and properties of the resulting flux emergence patterns

are presented in Section 5.4. In performing our analysis, we find that the large-scale flux

emergence patterns exhibit some similarities to properties of active longitudes on the Sun.

While the actual physical mechanism responsible for the active longitude phenomenon on the

Sun and other stars is most likely a complex process involving contributions from multiple

sources, we discuss in Section 5.5 how convection alone can organize flux emergence in a

large-scale way.

5.2. Model Description

It is believed that magnetic flux emergence at the solar surface is the result of buoyantly

rising magnetic flux tubes generated by a dynamo mechanism at or near the base of the

convection zone (Spiegel and Weiss 1980; Gilman 2000; Charbonneau 2010). The thin flux

tube model has been used by a number of authors to model how thin, isolated magnetic flux
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tubes traverse the solar convection zone (see Chapter 2.1). As described in Chapter 2, we

employ a thin flux tube model subject to a turbulent, time-dependent, solar-like convective

velocity field to investigate longitudinal patterns of flux tube emergence. These simulations

considered a range of flux tube magnetic field strengths from 15 kG (equipartition) to 100 kG

(super-equipartition) (more specifically 15, 30, 40, 50, 60, and 100 kG), at latitudes ranging

from 2◦ to 40◦ around the equator in both hemispheres, with magnetic flux values of 1020

Mx to 1022 Mx. This range of magnetic flux is typical of ephemeral regions and pores to the

strongest sunspots (Zwaan 1987). We perform ten simulation sets sampling different time

ranges of the convective flow field for each initial latitude, field strength, and magnetic flux

we consider, for a total of 8640 flux tubes. Each set of flux tubes are released at the base

of the convection zone at the same starting time, although do not interact with each other

(i.e. are isolated), and are allowed to evolve until some portion of the tube reaches the top

of the simulation domain. The flux tube release times for the ten sets are arbitrary, but are

at least separated by the convective turnover time scale of the convection simulation, which

is ∼30 days. In this way, the flux tubes are able to sample significantly different portions of

the convective velocity field.

The thin flux tube model we use and the associated equations which describe the evolution

of the flux tube have been described in detail in Chapter 2.1. The three-dimensional global

convection simulation in which the flux tube evolves is computed separately from the thin

flux tube simulation using the Anelastic Spherical Harmonic (ASH) code, as described by

Miesch, Brun, and Toomre (2006). This time-dependent convective velocity field, which is

computed relative to the rotating frame of reference with angular velocity Ω0 = 2.7×10−6 rad

s−1 , impacts the thin flux tube through its drag force term. In the anelastic approximation,
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Figure 5.1. Snapshot of convective radial velocity at a depth of 23 Mm below
the solar surface (r = 0.97R⊙) in a Mollweide projection. This figure shows
strong downflow lanes (purple/blue) at the boundary of giant convective cells.
Also known as banana cells, the structures at low latitudes are rotationally
aligned and propagate prograde. The dotted line is the solar radius r = R⊙.
The radial velocity approaches zero at the upper boundary of the simulation,
so the velocity amplitudes shown in this figure are lower than in the middle
convection zone.

the velocity of convective flows is taken to be much slower than the speed of sound in the

fluid, and convective flows and thermal variations are treated as a linear perturbation to

a background state taken from a one-dimensional solar structure model. The computed

convective velocity field captures giant-cell convection, and associated mean flows such as

meridional circulation and differential rotation, in a rotating convective envelope spanning

r = 0.69R⊙ to r = 0.97R⊙ (4.8×1010 cm to 6.75×1010 cm from Sun center). For a more

detailed description of this particular convection simulation, see Chapter 2.2.

A typical giant-cell convection pattern at a depth of 25 Mm below the solar surface is

shown in Figure 5.1. Broad upflow cells are surrounded by narrow downflow lanes, which

can reach maximum downflow speeds of nearly 600 m s−1 at a mid-convection zone depth of

∼86 Mm below the surface. Columnar, elongated downflow lanes associated with these giant

cells align preferentially with the rotation axis at low latitudes, and propagate in a prograde
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Figure 5.2. Radial velocity at the Equator (bottom) and 15◦ latitude (top)
plotted as a function of longitude and time (i.e. (φ,t) diagrams), at a depth
of r = 0.95R⊙ for a 27.4 day period in the reference frame rotating at angular
velocity Ω0/2π (429.72 nHz, left), and in the faster ASH equivalent Carrington
frame ΩAC/2π (461.70 nHz, right). In the Ω0/2π reference frame, the right-
ward tilt of the dark blue downflow lanes indicates a prograde propagation of
the downflow lanes at low latitudes within ±15◦ latitude of the Equator, al-
though their rate of prograde propagation decreases as the latitude increases.
In the faster rotating reference frame ΩAC/2π, downflow lanes still propagate
prograde near the Equator, but at a slower relative rate than in the Ω0/2π
reference frame. At higher latitudes in the ΩAC/2π reference frame, some
downflow lanes no longer appear to propagate prograde, remaining almost
stationary or moving retrograde.

direction relative to the polar regions, due in part to differential rotation and an intrinsic

phase drift similar to traveling Rossby waves (Miesch and Toomre 2009). Such structures

also can remain coherent for at least a rotation period or longer. The prograde propagation

and coherency of the giant-cell-associated downflows is exhibited in the (φ,t) diagrams of

Figure 5.2. This Figure shows a strip of radial velocity at the Equator (bottom) and 15◦ (top)

for ∼27 consecutive days, or about one rotation period. In Figure 5.2, the (φ,t) diagrams are

also shown in two different rotating reference systems, with the two panels on the left shown

in the reference frame co-rotating with the mean angular velocity Ω0/2π = 429.72 nHz of our

simulation, and the two panels on the right in the reference frame rotating at a faster rate

of ΩAC/2π = 461.70 nHz. These features dominate the convective Reynolds stress, aiding

in the maintenance of a strong differential rotation. The total angular velocity Ω/2π (with
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Figure 5.3. (Left) Angular velocity in the convection simulation, averaged
over longitude and time (time interval of 755 days). Color table saturates
at the values indicated, with extrema ranging from 326 − 468 nHz. (Right)
Angular velocity of the convection simulation at specific latitudes as a function
of radius. At 0.95R⊙, the angular velocity Ω/2π is 461.70 nHz at 20◦ latitude,
440.64 nHz at 29◦, and 429.72 nHz at 33◦ latitude.

respect to the inertial frame) is solar-like, and decreases monotonically from ∼470 nHz at the

equator to ∼330 nHz at the poles, and exhibits nearly conical contours at mid-latitudes (see

Figure 5.3), as observed in the solar convection zone via helioseismic inversions (Thompson

et al. 2003).

A spectral decomposition of the velocity variance in terms of azimuthal (longitudinal)

wavenumbers demonstrates the distribution of contributing convective modes in the ASH

simulation. This is shown in Figure 5.4 for three radial levels in the convection zone, only

at the Equator. Peaks in the spectra at m = 0 for the curves in Figure 5.4 are primarily

caused by differential rotation, with a small contribution from the meridional circulation.

Other prominent peaks in the spectra in the upper convection zone at r = 0.95R⊙ are found

at azimuthal wavenumbers of 6, 8 and 9. This reflects the nature of the elongated, periodic,
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Figure 5.4. Spectral decomposition of the velocity variance of the ASH con-
vection simulation in terms of azimuthal (longitudinal) wavenumbers, com-
puted at the Equator for three shells of radii: 0.95R⊙ (black), 0.83R⊙ (red),
and 0.73R⊙ (blue). All curves are averaged over the Northern and Southern
hemisphere for a time interval of 19 rotation periods (26.93 days each). Promi-
nent peaks in the spectra at wavenumbers of m = 6 and m = 9, corresponding
to the gray vertical lines, are representative of the periodic banana-like con-
vective cells present in the simulation.

banana-like downflow structures obvious in Figure 5.1. Signatures of these banana cells are

also evident near the Equator in the mid-convection zone at r = 0.83R⊙.

While this ASH simulation, with a mid-convection zone Raleigh number of 5×106 and

Reynolds number of ∼50, is more laminar than some others (e.g. Miesch et al. 2008; Jouve

and Brun 2009), it still possesses all of the relevant features necessary to explore the fun-

damental interactions between thin flux tubes and the mean flows associated with global

convection. These features include: asymmetric, rotationally aligned cells at low latitudes

(density-stratified banana cells), rapidly-evolving downflows in the upper convection zone

at high latitudes dominated by helical plumes, and a strong, solar-like differential rotation.

We believe that large-scale, columnar banana cells must persist even in highly turbulent

parameter regimes in order to provide the requisite Reynolds stresses to account for the
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solar differential rotation. Therefore, we would not expect the essential results to change

significantly with more turbulent convection.

The coupling of the thin flux tube model with the ASH convection simulation results in

a large-scale longitudinal emergence pattern of the flux tubes at low latitudes, to which we

devote the rest of this Chapter.

5.3. Extracting Large-Scale Flux Emergence Patterns from Simulations

Convective downflows and the growth of the magnetic buoyancy instability anchor por-

tions of the flux tube in the overshoot region, allowing buoyant loops to rise through the

simulation domain (see Chapter 3). When these simulated flux tubes emerge near the sur-

face, we find that they do not emerge randomly during a rotation period, but rather in

distinct longitudinal bands or clusters as depicted in Figure 5.5. For this Chapter, we choose

only to investigate flux tube emergence patterns ±15◦ around the equator, so as to focus

on the low latitude behavior of these longitudinal bands of flux emergence. In Figure 5.5,

we note that there are wide longitudinal regions void of any flux emergence, and particular

longitudinal spans where flux emergence prefers to cluster.

To more quantitatively investigate the longitudinal flux emergence distribution pattern

our simulation produces, we create emergence histograms wherein we count the number

of flux tubes that emerge within one of 180 evenly distributed longitudinal bins during

a particular rotation period. We only count the first portion of each tube that reaches

the simulation upper boundary, therefore we count each flux tube only once. This is done

separately for the Northern and Southern hemispheres for each of the 19 consecutive rotation

periods considered for this study, only for flux emergence within ±15◦ of the Equator. These

histograms are shown in Figure 5.6 for the reference frame rotating at angular velocity Ω0/2π.
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Figure 5.5. Emergence maps for 4 consecutive rotation periods in the refer-
ence frame rotating at angular velocity Ω0/2π. The latitudinal (θ) and longi-
tudinal (φ) position of the flux tube apex is plotted for all flux tubes which
reach the top of our simulation domain within one rotation period of each
other, ±15◦ from the Equator. This figure indicates that our simulation pro-
duces flux tubes which emerge neither randomly nor uniformly.

The choice of 180 bins of each 2◦ in longitude is a rather arbitrary one. We have chosen

to use small longitudinal bins in order to more accurately capture the drift rate of the flux

emergence patterns as discussed in Section 5.4.2.

In Figures 5.5 and 5.6, we have used Ω0/2π = 429.72 nHz as the angular velocity of

the rotating reference frame, with a rotation period of 26.93 days. This corresponds to

129



Figure 5.6. Normalized histograms of flux tube apex longitudinal position
(emergence histograms) once some portion of the flux tube has reach the top
of our simulation domain. For one rotation period of our simulation, we count
the number of flux tubes which emerge within 1 of 180 evenly distributed bins
in longitude. In this Figure, longitudinal coordinates are with respect to a
reference frame rotating at the angular velocity Ω0/2π. This is done for the
Northern (left) and Southern (right) hemispheres for flux tubes that emerge
within ±15◦ of the equator for 19 consecutive rotations.

the angular velocity of fluid flows in the ASH simulation at latitude θ = 33◦ and radius

r = 0.95R⊙. However, when investigating active longitude behavior on the Sun, the sidereal

Carrington rotation rate of 456.03 nHz (25.38 days) is often used as the rotating frame of

reference, because active longitudes drift relative to this reference frame. This rotation rate

corresponds to the rotation of sunspots at ∼20◦ latitude on the solar surface (Thompson

et al. 2003). The observed rotation rate of sunspots at all emergence latitudes also closely

follows the plasma rotation rate of the Sun at a depth of r = 0.95R⊙ for the same latitude
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(see Fig. 1.4). Therefore, we identify what we call the ASH equivalent Carrington rate as

the rotation rate of the convection simulation at latitude θ = 20◦ and radius r = 0.95R⊙,

which is ΩAC/2π = 461.72 nHz (25.07 days). We also identify a third reference frame

that rotates at the average drift rate of the flux emergence patterns, which we identify and

discuss in section 5.4.2. (See the right side of Figure 5.3 for the angular velocity profile of

the convection simulation at specified latitudes.) In order to generate emergence histograms

in the two reference frames which do not rotate at angular velocity Ω0/2π, we translate the

flux emergence longitude coordinates in to the new reference frame, using the new rotation

periods to identify 19 consecutive rotations that all start at the same reference time. We

utilize these histograms in Section 5.4 to characterize the large-scale pattern of flux emergence

generated by our simulations.

Our study is limited to only 19 rotation periods due to the duration of the three-

dimensional volume cube data set of our convection simulation, as well as the rise times

of our flux tubes. It is important to note that the methods used in the context of this thesis

do not produce a solar cycle dynamo simulation. This model allows us to investigate how

convection can alter the rise of many magnetic flux tubes with various initial conditions. As

such, this simulation will not allow us to investigate changes which occur in flux emergence

during the course of a solar cycle. Due to this, our simulation is not capable of producing

the solar butterfly diagram, and we will often have more flux tubes which emerge at the top

of our simulation domain than may actually emerge on the solar surface during a rotation

period.

Throughout the Results section, we adopt a 99.7% confidence level to indicate the sig-

nificance of our results. When our analysis reveals results above this value, we are 99.7%
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confident the results of our simulation are not due to a random (non-uniform) distribution

of flux tube emergence. For each rotation period and hemisphere, a certain number of flux

tubes N emerge within 15◦ of the Equator. We then create a corresponding array of N ele-

ments, representing flux tubes which have random longitudinal emergence positions from 0◦

to 360◦. These arrays representing random longitudinal flux tube emergence are then sub-

jected to the same treatment throughout the Results section as the longitudinal emergence

positions for flux tubes allowed to evolve in convection. Rather than directly plotting the

results from the random emergence position arrays, we compute the standard deviation σ

of the result as well as the average X , then plot X + 3σ as our 99.7% confidence level. See

Appendix H for a more detailed discussion on the determination of confidence levels.

5.4. Active-longitude-like Behavior of Flux Emergence Pattern

5.4.1. Longitudinal Inhomogeneity of Emerging Flux Loops. A distinct lon-

gitudinal pattern of magnetic activity is observed on the Sun not only in terms of sunspot

activity (de Toma, White, and Harvey 2000; Berdyugina and Usoskin 2003), but also in

solar x-ray flares (Zhang et al. 2011) and coronal streamers (Li 2011). Interestingly, this

phenomena is not unique to the Sun, and has been observed on other young solar analogues

such as AB Dor (K0V) (Järvinen et al. 2005) and LQ Hydrae (K2V) (Berdyugina, Pelt,

and Tuominen 2002). To capture the longitudinal inhomogeneity of flux tube emergence in

our simulations, we calculate the variability coefficient V for each rotation period and hemi-

sphere based on Olemskoy and Kitchatinov (2009). We begin by identifying the quantity

Si, which is the longitudinal distribution of relative flux tube emergence over each of nine
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evenly spaced bins in longitude per a particular rotation period:

(5.1) Si =
9ni

N
,

where ni is the number of events in a certain longitudinal interval, and N is the total

number of events. Values of Si = 1 for each of the nine bins per rotation period implies a

homogeneous distribution of flux tube emergence. We consider only the longitudinal position

of the flux tube apex once it has reached the top of our simulation domain. Next the

variability coefficient is computed, which is the sum of absolute deviations of Si from the

average value of unity:

(5.2) V =
9

∑

i=1

|Si − 1|.

The calculated variability coefficient ranges from zero to 16, with the minimum value typical

of a homogenous distribution of events in the longitudinal intervals, and the maximum value

typical of all events falling in one longitudinal interval. The longitudinal variability in the

Northern and Southern hemispheres for each of 19 rotation periods in the reference frame

which rotates at the angular velocity Ω0/2π is shown in Figure 5.7. The dotted line represents

the 99.7% (3σ) confidence level, above which we are 99.7% positive the variability is not the

result of a longitudinally random (non-uniform) distribution of flux tube emergence. All

of the variability coefficients lie above this line, with the exception of rotation 6 for the

Southern hemisphere. As expected, most rotation periods exhibit a variability coefficient

above the 99.7% confidence level regardless of the choice of reference frame. Therefore, we

can reasonably say that the distribution of flux tube emergence in our simulation is not

uniform or random in longitude for the majority of the rotation periods we consider.
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Figure 5.7. Longitudinal variability per rotation period for each hemisphere
in reference frame rotating at the angular velocity Ω0/2π of the simulation.
The dotted line is the level above which we are 99.7% sure the result is not due
to a random longitudinal distribution of flux tube emergence. For the same
rotation period, the longitudinal variability can vary significantly for each
hemisphere.

The above analysis shows that more flux tubes may emerge per a certain longitudinal span

for each hemisphere, i.e. there is a significant non-random clustering of flux tube emergence.

On the Sun, there are typically two active longitudes separated by 180◦ (Usoskin, Berdyugina,

and Poutanen 2005; Zhang et al. 2011), although this number may increase to as many as

four or more near solar maximum (de Toma, White, and Harvey 2000). In order to identify

whether or not our simulation produces flux tubes which emerge with a preferred longitudinal

mode, we perform a power spectrum analysis for each of the emergence histograms in Figure

5.6. We then take the average of these power spectra for both the Northern and Southern

hemispheres separately in order to identify an overall trend for the 19 rotation periods we

consider, which is shown in Figure 5.8 in the reference frame rotating at Ω0/2π.

While we identify relative maxima of the power spectra in the Ω0/2π reference frame

at low spatial frequencies, corresponding to a low order number of longitudinal modes, we

need to compare these results to a random distribution in longitude of flux tube emergence

to assess the significance of these maxima. The dash-dotted line in Figure 5.8 represents

the level above which we are 99.7% positive the result of the averaged power spectrum is
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Figure 5.8. Average power spectrum for the Northern (red) and Southern
(blue) hemispheres for 19 rotation periods in the reference frame rotating at
Ω0/2π, considering all magnetic field strengths and magnetic flux. The power
spectrum peaks for a longitudinal mode of m = 1 in the Northern hemisphere,
and m = 3 in the Southern hemisphere, shown by dashed lines. In addition,
the m = 6 and m = 18 modes are also shown. The dash-dotted line is the
level above which we are 99.7% certain the result is not due to a random
distribution of emerging flux tubes in longitude. The nature of our convection
simulation results in flux emergence at preferred longitudinal modes.

not due to a longitudinally random distribution of emerging flux tubes. The averaged power

spectra for both hemispheres is above the 99.7% confidence level for spatial frequencies of

0.05 deg−1 and less. This spatial frequency corresponds to a longitudinal mode of m = 18,

indicating that lower order modes (m ≤ 18) are the significant modes present in the flux

tube emergence patterns.

Dominant peaks in the averaged power spectra occur at longitudinal modes of m = 1

for the Northern hemisphere, and m = 3 for the Southern hemisphere. This corresponds to

one active longitude in the Northern hemisphere, and three in the Southern hemisphere on

average for a particular rotation period. The different dominant modes in the power spectra

for both hemispheres reflect the fact that the convection pattern is not perfectly symmetric

across the Equator on a short time scale. Additionally, the power spectra of the convection

simulation does not show significant power in any mode below m = 6 (see Fig. 5.4). It is
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likely that there are substantial differences between the Northern and Southern hemisphere

convection at these modes. However, both the Northern and Southern hemispheres do have

corresponding relative maxima at m = 6. This is most likely related to the m = 6 peak in

the power spectra of the convection simulation shown in Fig. 5.4 at r = 0.95R⊙, indicating

that in the upper convection zone, on average six strong, periodic downflow lanes exist.

Using SOHO MDI data, Norton and Gilman (2005) find that longitudinal modes of m = 2

and m = 6 are simultaneously present with the m = 1 mode in observed toroidal bands of

magnetic flux emergence.

Considering the conclusions of Chapter 4, we suggest that the most likely candidate

magnetic field strengths for solar dynamo generated flux tubes is on the order of ≥40 kG,

but most likely not exceeding ∼100 kG. With this in mind, if we perform the power spectrum

analysis considering only 40− 100 kG flux tubes, peaks in the power spectra remain at the

same longitudinal mode as the case where we consider all magnetic field strengths together.

Maximum peaks in the power spectra also remain the same regardless of the choice of

reference frame.

In the absence of convection, flux tubes will emerge randomly distributed in longitude if

they are perturbed with random undular motions to initiate a buoyancy instability. There-

fore, these flux tubes will not rise to create flux emergence patterns with preferred longitu-

dinal modes. The fact that the flux emergence patterns our simulation produces exhibits

low order longitudinal modes suggests that the convective velocity field aides flux tubes in

emerging in preferred longitudinal spans, specifically a result of the discrete azimuthal modes

of convection, corresponding to strong downflow lanes. Additionally, both hemispheres do

not exhibit the same dominant mode in the power spectrum, indicating that the large-scale
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nature of the convection simulation is not identical in both hemispheres, nor would we expect

it to be on the Sun.

For each rising flux tube, only the longitude of the first rising loop that reaches the

simulation upper boundary is included in the analysis. It is perhaps possible that the 180◦

separation of active longitudes on the Sun is in part a result of a non-axisymmetric m = 2

mode which a flux tube of large magnetic field strength (∼60 − 100 kG) may develop due

to the non-linear growth of the magnetic buoyancy instability (see Chapter 3), which we do

not investigate here. In any case, our simulation suggests that convective flows have some

part to play in the preferred modes of active longitude organization.

5.4.2. Propagation of Flux Emergence Patterns. While the exact rotation ve-

locity of active longitudes on the Sun is still being debated, along with the methods used to

determine this value, the general consensus is that active longitudes drift prograde relative to

Carrington longitudes (e.g. Benevolenskaya et al. 1999; Usoskin et al. 2007; Plyusnina 2010).

To identify the drift rate of our longitudinal flux emergence patterns, we cross-correlate the

emergence histograms of consecutive rotation periods for both the Northern and Southern

hemispheres. We average these cross-correlations for each hemisphere separately in order to

identify an overall trend, as shown below in equation form for the Northern hemisphere:

(5.3) CCNh =
1

18

18
∑

i=1

(Nhi ⋆Nhi+1)

where the symbol ⋆ represents the cross-correlation, and Nhi (Shi) represents the ith emer-

gence histogram for the Northern (Southern) hemisphere in a particular rotating reference

frame. Next we apply a 3-point running average to smooth the curve, then fit the curve with

a Gaussian function to identify where a significant lead/lag occurs. Such cross-correlations
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Figure 5.9. Average cross-correlations of emergence histograms for the
Northern (CCNh, left column) and Southern (CCSh, right column) hemi-
spheres between consecutive rotation periods. This has been done for three
different rotating reference frames. A Gaussian fit (blue line) to the maximum
of the cross-correlation curves peak at or above the 99.7% confidence level (3σ,
red dash-dotted line), above which we are 99.7% certain the result is not due
to a random distribution of flux tube emergence. These curves indicate that
the flux emergence pattern propagates at a steady rate and remains coher-
ent between consecutive rotation periods. Depending on the choice of rotating
reference frame, the flux emergence pattern appears to drift prograde (top pan-
els), retrograde (bottom panels), or remain stationary (middle panels). The
values of these drift rates are quoted in columns 2 and 3 of Table 5.1.

are shown in Figure 5.9 using three different rotating reference frames. Values for the centers

of the Gaussian fits in various reference frames are shown in Table 5.1 for both the Northern

and Southern hemispheres in columns 2 and 3, respectively.

In the reference frame rotating with angular velocity Ω0/2π, the Gaussian fit to the cross-

correlation curves produce centers at small negative spatial lags. These results indicate that
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Table 5.1. Centers of the Gaussian fit to the average of the cross-correlations
for 19 consecutive rotation periods are shown in columns 2 (CCNh) and 3
(CCSh). In columns 4 and 5, the cross-correlations for the Northern and
Southern hemispheres are averaged together (CCAvg) for different magnetic
field strength regimes. Uncertainties are the standard deviation of the Gauss-
ian function. This is shown for three different reference frames rotating at
angular velocities given in column 1. Negative values imply prograde propa-
gation, and positive values imply retrograde propagation.

Angular Velocity North South Avg N/S Avg N/S
Ω/2π (nHz) 15 kG - 100 kG 15 kG - 100 kG 15 kG - 100 kG 40 kG - 100 kG
Ω0/2π, 429.72 −4.2◦ ± 3.6◦ −2.9◦ ± 3.1◦ −2.9◦ ± 3.3◦ −9.0◦ ± 3.2◦

ΩAL/2π, 440.64 −0.5◦ ± 3.2◦ 0.7◦ ± 2.4◦ 0.6◦ ± 3.0◦ −1.0◦ ± 3.1◦

ΩAC/2π, 461.70 13.7◦ ± 4.1◦ 12.0◦ ± 3.6◦ 13.0◦ ± 3.7◦ 10.6◦ ± 3.7◦

the longitudinal flux emergence pattern in the Ω0/2π reference frame propagate prograde

at an average rate per rotation period of 4.2◦ in the Northern hemisphere, and 2.9◦ in the

Southern hemisphere. As this reference frame rotates at Ω0/2π, it is most likely the case

that differential rotation present in the convection simulation helps to move the rising flux

tube legs slightly prograde. The prograde motion of the individual tubes contributes to a

large-scale prograde drift of the flux emergence pattern between consecutive rotation periods.

In Chapter 4 we find that with the addition of a time-varying convective velocity field, most

flux tubes that emerge within ±15◦ of the Equator rotate faster than the angular velocity

Ω0/2π of the simulation. Although the large-scale flux emergence pattern in the reference

frame rotating at Ω0/2π does propagate prograde in each hemisphere, the pattern still rotates

slower than the differentially rotating fluid in our convection simulation at a radius of 0.97R⊙

(simulation upper boundary), between latitudes of ±15◦.

Since the propagation rate of flux emergence patterns in the reference frame rotating at

Ω0/2π is only slightly prograde by a few degrees, it stands to reason that this flux emergence

pattern will appear to propagate retrograde in a more rapidly rotating reference frame. In

the reference frame rotating at the ASH equivalent Carrington rate of ΩAC/2π = 461.70 nHz,
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we find that the flux emergence pattern drifts retrograde by 13.7◦ per rotation period in the

Northern hemisphere, and 12.0◦ in the Southern hemisphere between consecutive rotations.

Although this rotation is not prograde, as is most often the case for active longitudues on

the Sun in the Carrington frame, these results show that the flux emergence patterns our

simulation produces remain coherent for at least consecutive rotation periods in all reference

frames. Therefore, it is possible to identify a reference frame in which the flux emergence

pattern appears to remain stationary. We find the angular velocity of this reference frame

to be ΩAL/2π = 440.64 nHz, which corresponds to the ASH rotation rate at a depth of

r = 0.95R⊙ and latitude θ = 29◦. In finding this reference frame, we have also pinpointed

the average drift rate of our flux emergence pattern. It is important to note that the perceived

prograde or retrograde drift rate of the flux emergence pattern depends on the details of the

global differential rotation profile and the choice of reference frame, which are somewhat

different in this ASH simulation relative to the Sun.

In the above analysis, we have included flux tubes of magnetic field strengths from

15− 100 kG. However, taking the results of Chapters 3 and 4 into consideration, we suggest

that the solar dynamo generated magnetic field strength is most likely between 40 − 100

kG. In Figure 5.10, we show the average of all the cross-correlations between consecutive

rotation periods in both the Northern and Southern hemispheres together, in three differ-

ent reference frames for flux tubes of 15 − 100 kG (left), and 40 − 100 kG (right). We

have averaged the cross-correlations for the Northern and Southern hemispheres together

(CCAvg = (CCNh + CCSh)/2) in order to identify whether or not the drift rate of the flux

emergence pattern changes for flux tubes of larger magnetic field strengths. Since the differ-

ence between the centers of the Gaussian fits for the Northern and Southern hemispheres for
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Figure 5.10. Similar to Fig. 5.9, but for the Northern and Southern hemi-
spheres averaged together (CCAvg), with the left column representing initial
magnetic field strength of 15− 100 kG, and the right column for 40− 100 kG
flux tubes. The values of these drift rates are quoted in columns 4 and 5 of
Table 5.1. The center of the Gaussian fit is shifted prograde when flux tubes
of 40− 100 kG are considered.

each reference frame are not statistically significant, we feel it is valid to average the North-

ern and Southern hemisphere cross-correlation curves together for comparison between the

magnetic field strength regimes.

Values for the centers of the Gaussian fits to the average cross-correlation curves CCAvg

are shown in columns 4 and 5 of Table 5.1. In the slowly rotating Ω0/2π reference frame, the

flux emergence pattern for 40− 100 kG flux tubes drifts prograde in longitude an additional

6.1◦ per rotation period compared to the flux emergence pattern of 15− 100 kG flux tubes.

In the much faster ASH equivalent Carrington frame, ΩAC/2π, the flux emergence pattern
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for 40 − 100 kG flux tubes still rotates retrograde, but at a rate of only 10.6◦ per rotation

period compared to the 13.0◦ for flux tubes of all magnetic field strengths. This indicates

that for 40 − 100 kG , the flux emergence pattern in the ΩAC/2π frame moves forward in

longitude faster than the 15 − 100 kG flux tube emergence pattern. In Chapter 4, we find

that ≥60 kG flux tubes are capable of rotating at, or faster than, the inferred surface rate of

our convection simulation at low latitudes of ±15◦. The faster prograde motion of 40− 100

kG individual flux tubes contributed to a flux emergence pattern which rotates prograde

in longitude compared to the 15 − 100 kG case. In the ΩAL/2π reference frame, the flux

emergence pattern still remains relatively stationary for 40 − 100 kG flux tubes. However,

Gaussian fits to the cross-correlation curves are rather broad, resulting in uncertainties which

renders the difference in flux emergence drift rates between 15−100 kG flux tubes and 40−100

kG flux tubes statistically insignificant.

Our simulation produces a flux emergence pattern which rotates forward in longitude with

respect to the reference frame rotating at Ω0/2π = 429.72 nHz. However, we do acknowledge

that this pattern does not move prograde between consecutive rotation periods in the ASH

equivalent Carrington frame ΩAC/2π = 461.72 nHz, unlike active longitudes do on the Sun

relative to the Carrington frame. We attribute this to the fact that while the differential

rotation of the convection simulation is very solar-like, it does not reproduce exactly the

solar differential rotation profile. Additionally, as found in Chapter 4, simulated flux tubes

of ≤50 kG are not capable of rotating at, or faster than, the sunspot rotation rate. The

thin flux tube approximation breaks down near the top of the convection zone, so we cannot

address the fact that the flux tube could lose its coherency and become fragmented in the

upper convection zone. It is possible that in these upper layers, the fragmented flux tube
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exhibits a stronger coupling to the convective fluid motions than is capable in this model,

and could be a significant contributing factor to the rotation rate of flux tubes and their

subsequent large-scale flux emergence pattern.

5.4.3. Alignment of Flux Emergence Patterns Across the Equator. Oc-

casionally an active zone is found on the Sun at the same longitude in both hemispheres

(Benevolenskaya et al. 1999; de Toma, White, and Harvey 2000). A more recent example of

this behavior on the Sun is shown in Figure 5.11. Although the longitudes may be the same,

the activity level of active longitudes in either hemisphere can vary greatly. To identify the

overall alignment trend of flux emergence in our simulation for a rotation period, we cross-

correlate the emergence histograms of the Northern and Southern hemispheres for the same

rotation period, then compute the average as follows:

(5.4) CCNS =
1

19

19
∑

i=1

(Nhi ⋆ Shi)

In this way, common alignment trends will be amplified, and uncommon trends will be

smeared out. A 3-point running average is applied to smooth the cross-correlation result.

We then perform a Gaussian fit to the maximum, with the result of the fits for the three

different reference frames in the 15 − 100 kG and 40 − 100 kG magnetic field strength

regimes shown in Table 5.2. In all reference frames, the flux emergence patterns align very

well across the Equator, regardless of magnetic field strength or rotation period. These

results are significant to the 99.7% confidence level.

All flux tubes in this simulation are perturbed with the exact same undular motions.

Although these perturbations are no longer needed because those provided by the convective
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Figure 5.11. SDO HMI continuum (left), and SDO HMI magnetogram
(right) of the solar disk on October 6, 2013. Two active regions are aligned
across the solar equator. Images generated using Helioviewer.org.

Table 5.2. Centers of the Gaussian fit for cross-correlations of emergence
histograms of the average of the Northern and Southern hemispheres for the
same rotation period (CCNS). Uncertainties are the standard deviation of
the Gaussian function. These are shown for three different reference frames
rotating at angular velocities given in column 1. In all reference frames, the
flux emergence patterns align well across the Equator, regardless of magnetic
field strength or rotation period. These results are significant to the 99.7%
confidence level.

Ω/2π (nHz) 15 kG - 100 kG 40 kG - 100 kG
Ω0/2π, 429.72 1.1◦ ± 2.7◦ −1.5◦ ± 2.1◦

ΩAL/2π, 440.64 1.9◦ ± 2.9◦ −4.1◦ ± 2.6◦

ΩAC/2π, 461.70 0.5◦ ± 2.3◦ 0.1◦ ± 2.0◦

velocity field are much stronger in amplitude, they have been included in order to facili-

tate comparison between flux tube properties with and without convection as presented in

Chapters 3 and 4. Removing the random phase relations from the thin flux tube model

embedded in convection has a negligible effect on the dynamics and properties of the flux

tube at all magnetic field strengths and magnetic flux. Without convective effects, the flux

tubes would emerge randomly distributed in longitude if perturbed initially with random

144



undular motions. Therefore, we would not expect to find a correlation between the North

and South emergence histograms for the same rotation period.

Even though we initiate identical flux tubes in the convection simulation at the same time

in either hemisphere, the flux tubes do not evolve identically as each one is subjected to con-

vective flows that are not symmetric across the Equator. The fact that flux emergence pat-

terns in our simulation align across the Equator suggests that the average near-hemispheric

alignment trend of the longitudinal flux emergence pattern is convection dependent. The

different dominate modes in the power spectra found in Section 5.4.1 for both hemispheres,

m = 1 in the Northern hemisphere and m = 3 in the Southern hemisphere, do not contradict

the findings in this Section. On average, as long as the single active longitude in the Northern

hemisphere aligns with any of the three in the Southern hemisphere, the correlation between

hemispheric flux emergence patterns will be greater than what would be expected from ran-

dom longitudinal flux tube emergence. This effect is most probably related to the elongated

downflow lanes present in our convection simulation, which span across the Equator and are

rotationally aligned at low latitudes (see Fig. 5.1).

5.5. Discussion

By coupling a thin flux tube model with a three-dimensional, solar-like, rotating convec-

tion simulation, we are able to examine the interaction of turbulent convective flows with

buoyantly rising flux tubes. As a result of this interaction, we find that flux tubes emerge

at the upper boundary of our simulation domain in a large-scale longitudinal pattern which

resembles the behavior of active longitudes on the Sun and other solar-like stars. While

the active longitude phenomenon most likely results from a combination of various physical

mechanisms, we suggest that convection also has some part to play.

145



Flux emergence on the Sun and other solar-like stars is often concentrated in distinct

bands with low order longitudinal modes. The large-scale organization of convection in

our simulation produces a flux emergence pattern that does exhibit low order longitudinal

modes present at m ≤ 18, consistently greater than the 99.7% confidence level, above which

we are 99.7% sure the result is not due to a random distribution in longitude of flux tube

emergence (Fig. 5.8). In the Northern hemisphere, the peak in the power spectrum occurs

for longitudinal mode m = 1, and m = 3 in the Southern hemisphere. However, the more

important result is that both hemispheres exhibit secondary peaks in their power spectra for

longitudinal modes of m = 6. This corresponds to the dominant longitudinal wavenumber

of the convection simulation, which is representative of periodic, giant-cell convection. The

maxima in the power spectrum for either hemisphere are independent of reference frame and

magnetic field strength. This is also not the result of a non-axisymmetric (m ̸= 0) mode

which a flux tube might develop due to the non-linear growth of the magnetic buoyancy

instability, as we are only capable of recording the emergence position of the first apex of

any flux tube that reaches the upper boundary of our simulation domain. Rather, these

longitudinal modes are imposed by the strong downflows at the boundaries of the giant cells

in our convection simulation. Additionally, the extent of the upflows determines the window

where flux tubes can emerge.

Active longitudes on the Sun are known to drift prograde relative to a fixed reference

system. The flux emergence patterns in our simulation propagate prograde relative to the

mean angular velocity of our solar-like star, Ω0/2π = 429.72 nHz. Average drift rates are

similar for each hemisphere, rotating at 4.2◦ ± 3.6◦ prograde in the Northern hemisphere,

and 2.9◦ ± 3.1◦ in the Southern hemisphere (Fig. 5.9, top) per rotation period. However, in
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the more rapidly rotating ASH equivalent Carrington frame with ΩAC/2π = 461.72 nHz, the

flux emergence pattern propagates retrograde at 13.7◦ ± 4.1◦ in the Northern hemisphere,

and 12.0◦±3.6◦ in the Southern hemisphere (Fig. 5.9, bottom). We also identify a reference

frame rotating at the angular velocity ΩAL/2π = 440.64 nHz, in which the flux emergence

pattern remains stationary, indicating that the flux emergence pattern in our simulation

has an average angular velocity of ∼441 nHz. This angular velocity corresponds to the

rotation rate of the ASH simulation at r = 0.95R⊙ and a latitude of 29◦. Although the

flux emergence patterns in the ΩAC/2π reference frame do not propagate prograde, they do

have an average rotation rate of ∼441 nHz, which is faster than the mean angular velocity

of the simulation, Ω0/2π. Differential rotation present in the convection simulation helps

to usher the flux emergence pattern forward in longitude. The fact that we are capable of

calculating cross-correlations that peak at or above the 99.7% confidence level means that

the flux emergence pattern persists between at least consecutive rotation periods. We also

note that on average, the flux emergence pattern for any particular rotation period tends to

align very closely across the Equator. This trend is related to the elongated downflow lanes

which span across the Equator in the convection simulation (see Fig. 5.1).

Throughout this Chapter, we highlight the ability of convection to organize flux emer-

gence in a large-scale way. The flux emergence pattern present in our simulations exhibits

properties similar to those of active longitudes on the Sun. We attribute the cause of

these characteristics in our simulation to differential rotation and the columnar, rotationally

aligned giant cells which exist in the equatorial to mid-latitude regions of our ASH convec-

tion simulation. Convective downflows which mark the boundary of giant cells are capable

of deforming even the strongest flux tubes, forcing them to emerge along the boundaries
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Figure 5.12. ASH radial velocity snapshots at a depth of 0.95R⊙ in strips
of longitude (0◦ to 360◦) and latitude (0◦ to +15◦) for 28 consecutive days,
at increments of every 2 days, in the reference frame rotating at the angular
velocity Ω0/2π. The initial starting time is arbitrary. Black asterisks mark the
apex of all flux tubes which emerge within ±1 day of the ASH snapshot. This
figure depicts how the nature of giant cells force flux tubes to emerge along
the giant cell boundaries, and occasionally near the center.
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of the giant cells, and occasionally near the center as depicted in Figure 5.12. These flux

tubes tend to emerge at r = 0.97R⊙ near the giant cell boundaries because the strongest

upflows occur near the downflow lanes (Miesch et al. 2008). Additionally, there is a positive

horizontal divergence of the velocity field within the upflow region of the giant cell, which

helps expel the rising flux tube toward the cell boundary (Miesch et al. 2008).

Rising flux tubes are subject not only to the mean flows of the convection simulation,

such as differential rotation, but also to the prograde propagation of the ever changing giant

cells near the Equator. Although continually evolving, some of the giant cells are capable

of remaining coherent for a rotation period or longer (see Fig. 5.2). The giant cells corral

flux tubes in a sense, forcing them to emerge within the boundaries of a particular cellular

feature. The periodic nature of the giant cells in longitude is most likely the reason why

the flux emergence patterns in our simulation exhibit low order longitudinal modes, as the

downflow lanes can restrict the rise of flux tubes over certain longitudinal spans. Differential

rotation aids these distinct longitudinal bands of flux in rotating prograde in longitude.

Downflow lanes of these giant cells extend across the Equator and are rotationally aligned,

forcing the alignment of the flux emergence pattern across the Equator, which is depicted

well in the flux tube emergence maps for both hemispheres in Figure 5.5. The sum of these

results suggest to us that giant cells may play a significant role in the active longitude

phenomena on the Sun and other solar-like stars.
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CHAPTER 6

Influence of Radiative Diffusion on Rising

Magnetic Flux Tubes

We study the combined effects of convection and radiative diffusion on the evolution of

thin magnetic flux tubes in the solar interior. Radiative diffusion from the interior to the

convection zone is the primary supplier of heat to large scale global convective motions, and

results in a heat input per unit volume of magnetic flux tubes that has been ignored by most

previous thin flux tube studies. We modify the energy equation of the thin flux tube model

to capture the influence of radiative heating on 1022 Mx flux tubes. Our simulations show

that flux tubes of ≤60 kG do not anchor in the overshoot region, but rather drift upward

due to the increased buoyancy of the flux tube earlier in its evolution. These flux tubes have

rise times of ≤0.2 years, and exhibit a positive Joy’s Law tilt angle trend, as is observed

for solar active regions. Our results suggest that radiative heating is an effective mechanism

by which flux tubes can escape from the stably stratified overshoot region, and that flux

tubes do not necessarily need to be anchored in the overshoot region to produce emergence

properties similar to those of active regions on the Sun.

6.1. Introduction

Many previous thin flux tube studies assume that flux tubes evolve adiabatically through-

out the convection zone. This is a valid assumption for the upper ∼2/3 of the solar convection

zone. However, in the lower ∼1/3 of the convection zone, closer to the radiative interior of

the Sun, there is a significant non-zero divergence of radiative heat flux due to the deviation

150



from radiative equilibrium. Radiative diffusion from the interior into the convection zone

is the primary supplier of heat to large-scale global convective motions. It also results in a

heat input per unit volume Qv of magnetic flux tubes, which may have a substantial effect

on their buoyancy, and hence their dynamic evolution.

Due to radiative heating, Fan and Fisher (1996) find that flux tubes of 1021−1022 Mx rise

through the convection zone in ∼2− 4 months, a comparable or shorter timescale compared

to flux tubes allowed to evolve adiabatically, which have rise times of ∼2 − 10 months

(Fan, Fisher, and Deluca 1993). This large spread in rise times for adiabatically evolving

flux tubes is a result of the combined effects of magnetic buoyancy and the drag force at

various initial magnetic field strengths and magnetic flux. When heating due to radiative

diffusion is considered in flux tube evolution, all flux tubes experience the same uniform

heating rate. The effect of radiative diffusion near the base of the convection zone provides

additional growth of the flux tube buoyancy (ρe−ρ)g earlier in its evolution, thereby forcing

the flux tube to begin its rise toward the surface sooner than it would if it were evolving

totally adiabatically. These emerging flux loops subject to radiative diffusion also show

similar qualitative features to solar active regions such as tilt angles and morphological

asymmetries, not significantly different from simulations results where flux tubes evolve

adiabatically (e.g. Fan, Fisher, and Deluca 1993; Caligari, Moreno-Insertis, and Schüssler

1995; Caligari, Schüssler, and Moreno-Insertis 1998).

Fan and Fisher (1996) also find that flux tubes subject to radiative diffusion will rise

quasi-statically (i.e. all forces closely balance) through the convective overshoot region. The

overshoot region is a thin layer in the solar atmosphere between the radiative zone and

convection zone with a thickness of ∼0.01 − 1 pressure scale heights Hp, a few percent of
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the solar radius (e.g. Miesch 2005). Here, convective motions from the unstably stratified

convection zone penetrate into the stably stratified solar interior. It is in this region where

it is thought that magnetic fields are stored until they enter the convection zone, eventually

emerging at the surface to form sunspots. Subject to heating by radiative diffusion, using

typical values for the overshoot region as computed by numerical models, flux tubes take

∼1 year or less to emerge from the overshoot region (e.g. Fan and Fisher 1996; Rempel

2003). This short storage time compared to the ∼11 year solar cycle may have significant

implications for the solar dynamo mechanism.

The purpose of this Chapter is to study the combined effects of turbulent solar-like

convection and heating due to radiative diffusion on the evolution of active-region-scale

magnetic flux tubes. We begin in Section 6.2 with a discussion of temperature gradients and

methods of energy transport for various regions within the Sun, pertinent to our topic of

radiative diffusion in the convection zone and overshoot region. In Section 6.3, we develop a

formulation for the rate of heat input per unit volume (dQv/dt) of the flux tube plasma, which

modifies the thin flux tube energy equation. In Section 6.4, we address how the addition of

radiative diffusion to the energy equation alters the dynamic evolution of flux tubes subject to

solar-like convective flows. Emergence properties of these flux tubes, specifically latitude of

emergence and tilt angle properties, will be compared in Sections 6.5.1 and 6.5.2 respectively,

to those of flux tubes that evolve adiabatically, as reported in Chapter 4. We will briefly

mention the problem of flux storage in Section 6.6, and end with a summary in Section 6.7.

6.2. A Note on Energy Transport and Temperature Gradients ∇

As noted in Chapter 1.3, the method of energy transport for various regions within a

star is dictated by its local temperature gradient dT/dr. Often, we refer to an alternative
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definition for the temperature gradient represented by the symbol ∇, which is defined as a

double-logarithmic derivative of temperature with respect to pressure (see Eq. 1.4), which

varies radially. We will denote ∇e as the local temperature gradient of the plasma environ-

ment, ∇ad as the temperature gradient required for a parcel of gas to evolve adiabatically

(see Appendix section 1.3.4), and ∇rad as the temperature gradient required for energy to

be transported only by radiation, given by (e.g. Hansen and Kawaler 1994):

∇rad ≡
(

d lnT

d lnP

)

rad

=
3

16πacG

κ̃P

T 4

L

M
,(6.1)

where c is the speed of light, G is the gravitational constant, and a is the radiation density

constant. (The energy density of radiation is given by aT 4, where T is temperature and

a = 7.566×10−15 erg cm−3 K−4 (e.g. Prialnik 2000).) Additionally, P is pressure, T is

temperature, κ̃ is the Rosseland mean absorption coefficient (opacity), L is the luminosity

of the star, and M is the mass of the star, all of which are a function of radius.

A region inside a star is said to be in radiative equilibrium when ∇e at that depth is equal

to ∇rad. It is also the value of ∇ required to transport all of the energy generated by the star

out by radiative transport. The magnitude of ∇rad is determined mainly by κ̃ and L/M .

The opacity κ̃ generally increases away from the center of the star, and L/M decreases very

slowly with increasing r in a star such as the Sun. Unlike ∇rad, which increases substantially

in steepness in the outer ∼1/3 of the solar radius, ∇ad ∼ 0.4 throughout most of the solar

interior and convection zone (see Appendix C, Section 1.3.4). However, this value changes

significantly near the solar surface, as the hydrogen and helium that make up the plasma

become partially ionized. The radiative and adiabatic temperature gradients in the solar

interior for our computational domain are shown in Figure. 6.1.
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Figure 6.1. Radiative temperature gradient ∇rad and adiabatic temperature
gradient ∇ad as a function of radius for the computational domain of our
simulations. These gradients are taken from the 1D solar structure model of
Christensen-Dalsgaard et al. (1996). To the right of the vertical dash-dotted
line, ∇rad > ∇ad, therefore the solar plasma becomes convectively unstable.

In order for a stratified plasma to remain stable, the local temperature gradient ∇e must

be less than the local adiabatic temperature gradient ∇ad (see Appendix D). In the deep

interior of a star such as the Sun, ∇e = ∇rad. However, in the overshoot region where

turbulent motions from the convection zone penetrate into the stable stratification of the

interior, convective mixing in this layer brings the local temperature gradient away from

∇rad and closer to ∇ad such that:

∇rad < ∇e < ∇ad.(6.2)

An instability in the plasma sets in when ∇rad becomes greater than ∇ad. At this point,

energy transport by radiation alone demands a temperature gradient that is unstable for

the plasma, so convection sets in to take over some of the energy transport load. Therefore,
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convection occurs when the following condition arises (see also Appendix D):

∇rad > ∇e > ∇ad.(6.3)

The bottom of the convection zone is here defined as the region where ∇rad = ∇ad,

which occurs at r = 5.026×1010 cm as obtained from the reference solar structure model by

Christensen-Dalsgaard et al. (1996) (see Fig. 6.1). The local temperature gradient of the

plasma ∇e remains very close to ∇ad throughout the convection zone domain we consider for

our simulations, such that the quantity δ = ∇e−∇ad is positive but never greater than ∼10−5

in this region. In our model, we incorporate a thin convective overshoot region, just below

the base of the convection zone, where flows from the convection zone proper overshoot into a

stably stratified atmosphere. Such behavior brings the temperature gradient of the plasma in

the overshoot region away from radiative equilibrium, closer to the adiabatic value, although

it still maintains a small sub-adiabaticity such that δ is negative, therefore the overshoot

region still remains stably stratified (see Fig. 2.1 for a graph of δ as a function of radius in

our simulation). Only when reaching the boundary between the overshoot region and the

radiative interior does ∇e jump sharply to the radiative equilibrium value.

In the interior of the Sun, where the plasma is in radiative equilibrium, the divergence

of radiative heat flux is necessarily zero. However, as a result of this abrupt deviation from

radiative equilibrium in the overshoot region and base of the convection zone due to the local

temperature gradient, there is a non-zero divergence of radiative heat flux, which results in

plasma heating by radiative diffusion. Near the photosphere in the upper portion of the

convection zone (above our computational model domain), the divergence of radiative heat

flux acts to cool the plasma.
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6.3. Energy Equation with Radiative Heating

In this Chapter, we perform numerical simulations of flux tubes evolving in an external

convective velocity field as described in Chapter 2. However, we modify the energy equation

such that the flux tube is no longer assumed to evolve adiabtically as in Chapters 3-5. The

modification of the energy equation, and its subsequent effect on the equation d∆ρ/dt, the

evolution of the density deficit ∆ρ = ρe − ρ of the flux tube solved in the numerical model,

are the only changes made to the simulations discussed in Chapters 3-5.

Starting from the thin flux tube energy equation (Eq. 2.3), the rate of heat input per

unit volume (dQv/dt) of the flux tube plasma is given by:

(6.4) ρT
dS

dt
=

dQv

dt
= ∇ · (κ∇T ),

where S is the entropy per unit mass, the right-most expression is a divergence of a radiative

flux κ∇T , and κ is the coefficient of radiative conductivity. (Note that in the adiabatic

regime, dS/dt = 0.) Letting δT = T −Te and δκ = κ−κe represent small difference between

the external quantities and internal quantities introduced due to the presence of a magnetic

field in the flux tube, this expression can be rewritten as the following, where we drop second

order terms of δκδT :

(6.5)
dQ

dt
= ∇ · (κe∇Te) +∇ · (δκ∇Te) +∇ · (κ∇δT ).

The first term in Equation 6.5 represents radiative heating of the flux tube caused by the

divergence of radiative flux in the external plasma, and can be calculated directly from a
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reference solar model. The second and third terms represent perturbations to the radiative

heat flux due to the presence of the magnetic field inside the flux tube.

To evaluate the terms on the RHS of Equation 6.5, we introduce a cylindrical polar

coordinate system (ϖ, φ, s) where s is along the flux tube axis, ϖ is the horizontal radius

of the flux tube cross-section, and φ is the azimuthal angle of the tube cross-section. In this

coordinate system, the gradient vector is written as:

∇ =

(

∂

∂ϖ
,
1

ϖ

∂

∂φ
,
∂

∂s

)

= ∇⊥ +∇||,(6.6)

∇⊥ =

(

∂

∂ϖ
,
1

ϖ

∂

∂φ
, 0

)

,(6.7)

∇|| =

(

0, 0,
∂

∂s

)

.(6.8)

Applying Equations 6.7-6.8 to the last two terms in Equation 6.5:

∇ · (δκ∇Te) =
∂

∂s

(

δκ
∂Te

∂s

)

+ δκ∇2
⊥Te +∇⊥δκ ·∇⊥Te,(6.9)

∇ · (κ∇δT ) =
∂

∂s

(

κ
∂δT

∂s

)

+ κ∇2
⊥δT +∇⊥(κe + δκ) ·∇⊥δT.(6.10)

In the thin flux tube approximation, it is assumed that length scale variations along the

flux tube axis are on the order of the local pressure scale height Hp, which is greater than

the cross-sectional radius a of the flux tube. We also note that for the flux tubes we consider

here, δκ/κ ∼ δT/T ≪ 1. For the background plasma, the magnitudes of the derivatives

of the external quantities ∂Ae/∂s and ∇⊥Ae, where Ae is any thermodynamic quantity of

the external plasma, are expected to be at most ∼Ae/Hp. Derivatives of the perturbation

quantities along the flux tube axis ∂δA/∂s, where A is a thermodynamic quantity of the

flux tube, are also at most ∼δA/Hp. However, derivatives of the perturbation quantities in
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the plane perpendicular to the flux tube axis (in the plane of the flux tube cross-section)

are of magnitude ∇⊥δA ∼ δA/a, such that length scale variations perpendicular to the flux

tube axis are on the order of the cross-sectional radius of the flux tube a. Applying these

estimates for the magnitude of the derivatives in Equations 6.9-6.10:

∇ · (δκ∇Te) ∼
δκTe

H2
p

+
δκTe

H2
p

+
δκTe

aHp
,(6.11)

∇ · (κ∇δT ) ∼
κδT

H2
p

+
κδT

a2
+

(

κe

Hp
+

δκ

a

)

δT

a
.(6.12)

Comparing the magnitudes of the above terms in Equations 6.11-6.12, recalling that the

pressure scale height is much greater than the cross-sectional radius of the flux tube Hp ≫ a,

the dominant contribution comes from the second term in Eq. 6.12, κ∇2
⊥δT ∼ κδT/a2.

Therefore, the equation for the rate of heat input per unit volume can be reduced to:

(6.13)
dQv

dt
≈ ∇ · (κe∇Te) + κ∇2

⊥δT.

The first term in Eq. 6.13, which we will subsequently refer to as (dQ/dt)1, is dependent

only on the external plasma thermodynamic quantities κe and Te, which vary only as a

function of radial distance from Sun center. The second term, subsequently referred to

as (dQ/dt)2, represents a radiative diffusion across the flux tube due to the temperature

difference between the flux tube and the external plasma.

For (dQ/dt)1, the term κe∇Te is simply the radiative energy flux Frad of the background

plasma environment, where Frad can be written in terms of the total energy flux Ftot of the
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Sun (e.g. Spruit 1974):

(6.14) Frad =
∇e

∇rad
Ftot.

Replacing Frad with Eq. 6.14, the term (dQ/dt)1 becomes:

(6.15)

(

dQ

dt

)

1

= ∇ · (κe∇Te) = −∇ · (Frad) = −Ftot
d

dr

(

∇e

∇rad

)

,

where ∇e and ∇rad are radial functions only. In Equation 6.15, we have also used the fact

that ∇ · Ftot = 0. The magnitude of the total energy flux is Ftot = L/(4πr2), where L is

the total luminosity of the Sun. The last expression in Eq. 6.15 is what is evaluated in the

thin flux tube code for (dQ/dt)1, with all relevant quantities provided by the solar structure

model of Christensen-Dalsgaard et al. (1996).

For an order of magnitude estimate of (dQ/dt)1, Ftot = κeTe∇rad/Hp (e.g. Spruit 1974).

We also assume that length scale variations in the quantities ∇e and ∇rad are on the order

of the local pressure scale height Hp. The magnitude of (dQ/dt)1 is then:

(6.16)

∣

∣

∣

∣

−Ftot
d

dr

(

∇e

∇rad

)
∣

∣

∣

∣

∼
(

κe
Te

Hp
∇rad

)(

∇e

∇rad

1

Hp

)

∼ κe∇e
Te

H2
p

.

To compute the second component of the heating rate (dQ/dt)2 = κ∇2
⊥δT , which repre-

sents radiative diffusion across the flux tube due to the temperature difference between the

flux tube and the external plasma, we should express it in terms of the mean temperature

difference δ̄T = T̄ − T̄e. This is in line with the thin flux tube approximation, which assumes

that all relevant quantities are averages over the flux tube cross-section. Following Fan and

Fisher (1996), we assume that the profile of δT over the flux tube cross section follows the
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shape of the Bessel function AJ0(k1ϖ), where A is a constant, α1 = k1a is the first zero

of Bessel function J0(x), and a is the flux tube radius. This corresponds to the slowest

decaying mode of the solution to the thermal diffusion equation (Eq. 6.17) across a cylinder

surrounded by a fixed temperature environment:

(6.17)
∂δT

∂t
+ κ∇2

⊥δT = 0.

Taking the average of κ∇2
⊥δT over the flux tube cross section, and approximating the radia-

tive conductivity of the flux tube to be equal to that of the external plasma, we arrive at an

expression for (dQ/dt)2:

(6.18)

(

dQ

dt

)

2

≃ −κe
α2
1

a2
(T̄ − T̄e),

where α1 ≃ 2.4048 is the first zero of Bessel function J0(x). The quantity (dQ/dt)2 then has

a magnitude of ∼κeα2
1δT/a

2.

Next, we will compare the magnitudes of (dQ/dt)1 and (dQ/dt)2 to determine their

relative contribution to the energy equation:

(6.19)

∣

∣

∣

∣

(

dQ
dt

)

1

∣

∣

∣

∣

∣

∣

∣

∣

(

dQ
dt

)

2

∣

∣

∣

∣

∼
a2

H2
p

∇e

α2
1

Te

δT
.

For a neutrally buoyant flux tube at the base of the convection zone, ρ = ρe. Such that the

conditions of pressure balance (Eq. 2.5) are satisfied, the internal temperature of the flux

tube is less than the surrounding environment. This temperature deficit (δT/Te) ∼ 1/β =

8πpe/B2. The quantity β, a ratio of the plasma pressure to the magnetic pressure, is >>1

in the solar interior, meaning that the environment is plasma dominated and the plasma
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Table 6.1. Ratio of |(dQ/dt)1| to |(dQ/dt)2| following Eq. 6.20. The term
|(dQ/dt)1| is much larger than |(dQ/dt)2| for tubes of 1022 Mx. As the width
of the flux tube decreases, |(dQ/dt)2| increases and becomes comparable to
|(dQ/dt)1|, and even larger than |(dQ/dt)1| in some cases.

B 1020 Mx 1021 Mx 1022 Mx
100 kG 0.083 0.83 8.6
80 kG 0.17 1.7 17
60 kG 0.39 4.0 40
50 kG 0.68 6.9 67
40 kG 1.3 14 130
30 kG 3.4 31 340
15 kG 25 270 2500

influences the magnetic field structure. Additionally, ∇e ≃ 0.4 throughout the convection

zone, so ∇e/α2
1 ∼ 7×10−2. Therefore:

(6.20)

∣

∣

∣

∣

(

dQ
dt

)

1

∣

∣

∣

∣

∣

∣

∣

∣

(

dQ
dt

)

2

∣

∣

∣

∣

∼ 7× 10−2β
a2

H2
p

.

For typical values at the base of the convection zone, the pressure scale height Hp ∼ 5.6×109

cm, and β ranges from 1.2×105 for 100 kG magnetic fields to 5.4×106 for 15 kG magnetic

fields. The cross-sectional radius of the flux tube a = (Φ/Bπ)1/2 decreases with decreasing

flux, but increases with decreasing magnetic field. As a result, a will be largest for B0 = 15

kG, Φ = 1022 Mx, but smallest for flux tubes of B0 = 100 kG, Φ = 1020 Mx. The ratios of

|(dQ/dt)1| to |(dQ/dt)2| following Eq. 6.20 are given in Table 6.1.

The second heating term (dQ/dt)2 acts to reduce the temperature difference between

the flux tube and the external plasma environment, bringing it closer to a state of thermal

equilibrium, enhancing the density deficit of the flux tube in the process. As this term is

inversely proportional to the flux tube cross-section, it will increase in magnitude as the

cross-sectional radius of the flux tube decreases. However, the first heating term (dQ/dt)1 is
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dependent only on properties of the background plasma as a function of distance r from Sun

center. Therefore each flux tube will experience the same heating from (dQ/dt)1 at the same

distance r. Following the results in Table 6.1, it is a valid assumption to neglect (dQ/dt)2

for flux tubes of 1022 Mx in the 15 − 100 kG range. However, for weaker flux and stronger

magnetic field, (dQ/dt)2 becomes comparable to and even larger than the radiative heating

term supplied by (dQ/dt)1. A larger (dQ/dt)2 term will drive the temperature difference δT

between the flux tube and the external plasma to zero, adding to the buoyancy (ρe − ρ)g of

the flux tube, thereby allowing it to become buoyant earlier in its evolution process. We have

chosen in this Chapter to neglect the term (dQ/dt)2 in the thin flux tube energy equation

so as to focus on how radiative heating supplied by (dQ/dt)1 in conjunction with convection

influences the dynamic evolution and emergence properties of 1022 Mx flux tubes. We will

also investigate the rise times of 1020−1022 Mx flux tubes, using the rise times of 1020−1021

Mx flux tubes as an upper limit in the strong magnetic field strength regime.

Combining the thin flux tube energy equation (Eq. 2.3) with equation 6.15, the energy

equation for the thin flux tube model becomes:

1

ρ

dρ

dt
=

1

γP

dP

dt
−

∇ad

P

(

dQ

dt

)

1

,(6.21)

1

ρ

dρ

dt
=

1

γP

dP

dt
+∇ad

Ftot

P

d

dr

(

∇e

∇rad

)

.(6.22)

Incorporating this new energy equation to the thin flux tube model only affects the equation

for the density deficit d∆ρ/dt solved in the thin flux tube code (see Appendix E, Section
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5.2), which is now given by:

d∆ρ

dt
=

[

vrρeg

[

α−
B2

4πρ

(

dρe
dPe

+ α

)

dρe
dPe

]

+
B2

4π

(

∂vl
∂s

− v · k
)(

dρe
dPe

+ α

)]

×
[

1 +
B2

4π

(

dρe
dPe

+ α

)]−1

−
ρe
Pe

∇adFtot
d

dr

(

∇e

∇rad

)

.(6.23)

6.4. Flux Tube Dynamics: Addition of Heating Due to Radiative Diffusion

To study the role of radiative heating in the flux emergence process, we have performed

∼7000 flux tube simulations (see Appendix G for a more detailed description) in the same

way as was done for Chapters 3-5, except the energy equation has been modified following

the discussion in Section 6.3. As mentioned previously, we will only investigate the dynamic

properties of 1022 Mx flux tubes, where it is a valid assumption to neglect the term (dQ/dt)2

in the energy equation. We will only calculate the average rise times of 1020 − 1021 Mx flux

tubes, where (dQ/dt)2 is not always smaller than (dQ/dt)1, for comparison with flux tubes

of 1022 Mx, treating these rise time values as upper limits.

6.4.1. Flux Tube Morphology. When flux tubes from our simulations evolve adia-

batically in the absence of convection, rising buoyant loops develop solely as a result of the

non-linear growth of the magnetic buoyancy instability, as discussed in Chapter 3.2. The

troughs of these rising loops penetrate into the overshoot region where they remain anchored

for the duration of the flux emergence process. However, when heating due to radiative dif-

fusion is considered, flux tubes of ≤60 kG no longer anchor in the overshoot region (see Fig.

6.2).

The term (dQ/dt)1 acts to heat the flux tube uniformly (i.e. uniformly for flux tube

portions at the same distance r), especially near the base of the convection zone where the
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divergence of radiative heat flux from the external plasma environment is the greatest. This

uniform heating increases the flux tube’s density deficit early in its rise, thereby increasing

the buoyancy of the flux tube in the lower convection zone. Flux tubes of ≥80 kG, while

still subject to the same uniform heating, develop undular magnetic buoyancy instabilities

that grow fast enough to allow the troughs of their rising loops to penetrate into the over-

shoot region before their density deficit becomes substantially large. Magnetic buoyancy

instabilities develop more slowly in weak magnetic field strength flux tubes. Therefore, such

flux tubes develop a density deficit (i.e. larger buoyancy) faster than magnetic buoyancy

instabilities can anchor the flux tube in the overshoot region, and consequently the flux tube

drifts away from the lower convection zone. Even though flux tubes of ≥80 kG do anchor in

our simulations, their footpoints continue to drift slowly out of the overshoot region as the

flux tube developes due to the uniform heating supplied by (dQ/dt)1.

Flux tubes that evolve non-adiabatically without convective effects also suffer from pole-

ward slippage of the flux tube as a whole, which is most severe for flux tubes of ≤60 kG,

as they do not anchor (see Fig. 6.2). When the m = 0 unstable magnetic buoyancy mode

grows faster than the higher order modes, the tube slips upward as a whole, a phenomenon

driven by the tension in the magnetic field lines (e.g. Spruit and van Ballegooijen 1982b).

The addition of solar-like convective flows to the thin flux tube model keeps flux tubes

originating at low initial latitudes θ0 from suffering such severe poleward slippage (see Fig.

6.3). Also as shown in Figure 6.3, with convection and radiative heating considered, 15 kG

flux tubes are affected most strongly by convection, whereas 100 kG flux tubes only have

minimal deformations resulting from the strongest convective downdrafts. This trend is the
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Figure 6.2. Polar (top) and equatorial (bottom) view of flux tubes once the
apex has reached the simulation upper boundary. Flux tubes are allowed to
evolve in the absence of convection, but with the addition of heating due to
radiative diffusion. Each tube has a magnetic flux of 1022 Mx and an initial
latitude of θ0 = 8◦. (Figure specifics are the same as in Fig. 3.1.) The addition
of radiative heating forces flux tubes of ≤60 kG to drift upward as a whole
and away from the overshoot region.

Figure 6.3. Same as Figure 6.2, except the flux tube is subjected to the
external convective flow. Convection prevents severe poleward slippage of the
flux tube as depicted in Fig. 6.2.
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same as observed for adiabatically evolving flux tubes in a convective flow field as discussed

in Chapter 3.2.

6.4.2. Convection vs. Magnetic Buoyancy. As in Section 3.3, we compare the

magnitude of the drag force to the magnetic buoyancy force acting on the flux tube to

understand their relative importance on flux tube evolution in the non-adiabatic regime.

Following Equation 3.4, the drag force dominates the magnetic buoyancy of the flux tube

when vcr > va(a/Hp)1/2, where vcr is a representative convective radial velocity, va is the

Alfvén speed, a is the cross-sectional radius of the flux tube, and Hp is the pressure scale

height. In Figure 6.4, we have plotted the right hand side (RHS) of Eq. 3.4 for flux tubes of

Φ = 1022 Mx and θ0 = 15◦ for four different initial magnetic field strengths. For comparison,

the left panel shows the RHS of Eq. 3.4 for adiabatically evolving flux tubes, and the right

panel shows flux tubes subject to radiative heating. Each flux tube is subjected to the same

flow field, and representative radial convective flow speeds are also plotted. Flux tubes of

B0 = 100 kG in both the left and right panels of Fig. 6.4 are only affected by the strongest

downflows, and the plots of va(a/Hp)1/2 at the apex of the loop are very similar. However,

at weaker initial magnetic field strengths, the quantity va(a/Hp)1/2 is decreased in the upper

convection zone for flux tubes subject to radiative heating as compared to flux tubes that

evolve adiabatically. Figure 6.4 shows that flux tubes of ≤60 kG subject to the effects of

radiative heating are affected more strongly by convection than adiabatically evolving flux

tubes of the same initial magnetic field strength. This occurs because the field strength of

the flux tube becomes weaker for the case with radiative heating.

Due to radiative diffusion in the lower convection zone, flux tubes experience an increase

in their internal temperature. The quantity ∆T = Te − Ti at the apex of a flux tube
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Figure 6.4. The RHS of Eq. 3.4 plotted for flux tubes evolving in a convec-
tive velocity field assuming adiabatic evolution (left), and with the addition of
radiative heating (right). Also plotted are representative convective velocity
field radial speeds. Flux tubes of ≤60 kG are more susceptible to convective
influences when heating due to radiative diffusion is included.

evolving adiabatically and non-adiabatically, both subject to the same convective flows, is

shown in Figure 6.5. In the lower portion of the convection zone, heating due to radiative

diffusion brings the temperature inside the flux tube closer to that of the external plasma

environment. This will increase the internal pressure of the flux tube earlier in its rise,

forcing the magnetic field strength of the flux tube to decrease so that the conditions of

pressure balance are fulfilled (Eq. 2.5). The magnetic pressure at the apex of two flux tubes,

one allowed to evolve adiabatically and one subject to radiative diffusion, is also shown in

Fig. 6.5. Indeed, the magnetic pressure, and therefore the magnetic field at the apex of

the flux tube subject to radiative heating are less than the adiabatically evolving flux tube

throughout the bulk of the convection zone. This reduced magnetic field at the flux tube

apex implies that the flux tube will be advected more strongly by convection.

Figure 6.6 shows snapshots of the radial distance r from Sun center of Φ = 1022 Mx,

θ0 = 15◦ flux tubes subject to radiative diffusion as a function of the azimuthal angle φ

(black lines), as well as the external radial velocity experienced by the tube at the height
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Figure 6.5. (Top left) ∆T = Te − T and (Top right) magnetic pressure at
the apex of a flux tube as a function of height, where Φ = 1022 Mx, B0 = 60
kG, and θ0 = 15◦. These quantities are shown for an adiabatically evolving
flux tube (plus symbols), and one subject to heating by radiative diffusion
(diamond symbols), both rising through a turbulent solar-like convection zone.
Heating supplied by radiative diffusion brings the temperature of the flux
tube closer to that of the surrounding environment, increasing its internal gas
pressure, resulting in a decrease of magnetic pressure.

r of each tube segment (red lines), similar to Figure 3.4 in Chapter 3.3. These snapshots

show clearly that flux tubes of ≤60 kG do not anchor in the overshoot region. Rather, these

flux tubes, due to heating from radiative diffusion, develop a density deficit very early in

their evolution and begin to float away from the overshoot region. They reach the middle of

the convection zone, where they are continually buffeted by convection until a buoyant loop

reaches the simulation upper boundary.

6.4.3. Radial Acceleration and Rise Times. Adiabatically evolving flux tubes

spend the majority of their rise times at the base of the convection zone waiting for the

magnetic buoyancy instability to grow. In our simulations, when convection is present,

convective flows provide perturbations to the flux tube that initiate the growth of these

instabilities. However, when radiative heating is included, the flux tube gets a kickstart in

its rise toward the surface, as the flux tube is heated uniformly by the non-zero divergence
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Figure 6.6. Flux tube radial distance from Sun center r (black line), plotted with the external radial velocity
experienced by the flux tube at the height r of the flux tube segment (red line), both as functions of the azimuthal
angle φ. These snapshots are for flux tubes with Φ = 1022 Mx, θ0 = 15◦ subject to radiative heating. The dashed
line represents the base of the convection zone, below which is the stably stratified overshoot region. These plots
show the evolution of the flux tubes in time for various initial magnetic field strengths, indicating that ≤60 kG
flux tubes subject to radiative heating do not anchor in the overshoot region.
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of radiative heat flux in the lower convection zone, thereby increasing its density deficit

∆ρ = ρe−ρ earlier on, helping it to rise in the solar convection zone. The growth of ∆ρ due

to radiative heating is given from Eq. 6.23 by:

(6.24)

(

d∆ρ

dt

)

rad

=
ρe
Pe

∇ad

(

dQ

dt

)

1

,

and an order of magnitude estimate of the growth due to adiabatic expansion of the flux

tube is given by (see Fan and Fisher (1996)):

(6.25)

(

d∆ρ

dt

)

ad

= ρe
vr
Hp

δ,

where δ = ∇e −∇ad and vr is the radial velocity of the flux tube apex.

Figure 6.7 shows the contribution of radiative heating and adiabatic expansion to the

buoyancy evolution of the flux tube. It is clear that in the lower ∼1/3 of the convection

zone, d∆ρ/dt is dominated by contributions from radiative heating. In the remaining ∼2/3

of the convection zone above ∼0.80R⊙, the evolution of the flux tube can be described as

essentially adiabatic, as the heating rate (dQ/dt)1 decreases with height and δ and vr increase

with height.

Components of the radial acceleration at the apex of the flux tube as a function of height

following Eq. 3.5 in Section 3.5 are shown in Figure 6.8 for flux tube subject to radiative

heating, both with and without convection. In comparing these plots to Fig. 3.6 for flux

tubes evolving adiabatically, the total radial acceleration of the flux tubes very near the

simulation upper boundary are not substantially different. However, for flux tube evolution

when heating due to radiative diffusion is considered, the contribution to the acceleration

from buoyancy is larger in the lower ∼1/3 of the convection zone than for adiabatically
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Figure 6.7. Adiabatic (solid line) and radiative heating (dashed line) com-
ponents of d∆ρ/dt as computed by Eqs. 6.25 and 6.24 respectively, for a flux
tube evolving without convective effects where B0 = 60 kG, θ0 = 15◦, and
Φ = 1022 Mx.

evolving flux tubes. This effect is shown best when comparing the left panels of Figure 6.8

to Figure 3.6. When radiative heating is considered, the contribution to radial acceleration

from buoyancy increases steadily with height until reaching the upper ∼1/3 of the convection

zone. Once in the upper convection zone, the evolution of the flux tube becomes essentially

adiabatic, similar to the flux tubes discussed in Chapter 3.

The inclusion of radiative diffusion reduces the flux tube rise time to ≤0.2 years in all

cases, as compared to ≤0.7 years for flux tubes evolving adiabatically (see Fig. 6.9). The

reduction is minimal for 80 and 100 kG flux tubes of all flux values, and for flux tubes of

1020 Mx for all initial magnetic field strengths. In the large magnetic field strength regime

≥80 kG, the average rise times are nearly the same for flux tubes both with and without

radiative diffusion because of their strong magnetic buoyancy and tension, and because their

undular magnetic buoyancy instabilities of order m = 1 to m = 3 grow quickly, facilitating

anchoring in the overshoot region. For flux tubes of Φ = 1020 Mx, adiabatically evolving

flux tubes do have a slightly larger rise time than flux tubes subject to radiative diffusion,
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Figure 6.8. Radial acceleration of the flux tube apex for a flux tube of Φ =
1022 Mx, B0 = 60 kG, θ0 = 15◦, without (left) and with (right) convective
effects, but both subject to radiative heating. Components contributing to
the radial acceleration following Eq. 3.5 are plotted as a function of r: (light
blue) buoyancy, (red) tension, (green) Coriolis force, (orange) drag force, (dark
blue) additional terms, (dotted line) total acceleration.

but only by a few days on average. At small magnetic flux, tubes are coupled more strongly

to convection, so their very similar average rise times in this regime are due to convection

rather than the difference in buoyancy considerations.

There is a large reduction of rise times for flux tubes subject to radiative heating in the

1021−1022 Mx, B0 = 15−60 kG regime as compared to flux tubes that evolve adiabatically:
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Figure 6.9. (Left) Average rise times for adiabatically evolving flux tubes
subject to convection. (Right) average rise times for flux tubes evolving with
the influence of heating due to radiative diffusion, also subject to convection.
Radiative heating reduces the average rise time of the flux tube in most cases.

a difference of ∼0.05− 0.5 years. This reduction is a result of radiative heating contributing

a significant increase to the buoyancy of the flux tube early in its rise, allowing the tubes

to begin their buoyant rise toward the surface earlier than flux tubes with only adiabatic

effects. Radiative diffusion also increases the internal pressure of the tube early on, forcing

a reduction in its magnetic field strength, therefore it is more susceptible to convection.

It should be noted that (dQ/dt)1 is significantly greater than (dQ/dt)2 for all flux tubes

of B0 = 15 − 100 kG and flux of 1022 Mx. As the cross-section of the flux tube decreases,

(dQ/dt)1 is no longer significantly dominant at magnetic flux values of 1021 Mx for tubes

of B0 ≥ 80 kG, and flux values of 1020 Mx for tubes of B0 ≥ 40 kG. Since we have chosen

to neglect (dQ/dt)2 in our treatment of the thin flux tube energy equation, the average rise
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times for flux tubes where (dQ/dt)1 is not significantly dominant should be treated as upper

limits. The addition of (dQ/dt)2 would bring the internal temperature of the flux tube closer

to temperature equilibrium with the outside plasma, thereby increasing the flux tube density

deficit even more, resulting in an even shorter rise time.

6.5. Emergence Properties

In this section, we investigate the latitude of emergence and tilt angle trends of 1022 Mx

flux tubes subject to both convection and heating due to radiative diffusion. As discussed in

Appendix G, the results in this section are drawn from a total of 2293 flux tube simulations.

We will compare these results to those of Chapter 4 for flux tubes that evolve adiabatically.

6.5.1. Latitude of Emergence. In Figure 6.10, we have plotted the emergence lati-

tude (θem) of the flux tube apex as a function of the flux tube’s initial latitude (θ0) at the base

of the convection zone. For comparison, this was done for flux tubes that evolve adiabati-

cally (left panel), and for flux tubes subject radiative heating (right panel). A gray dashed

line indicates where the emergence latitude equals the initial latitude. If convective effects

are ignored, a flux tube would emerge with θem ≈ θ0 if its dynamic evolution is dominated

significantly by the buoyancy force. When flux tubes evolve adiabatically, the values of their

emergence latitudes are primarily the result of a combination of the effects of buoyancy, the

Coriolis force, and convection. Convection introduces a scatter in the emergence latitude

values, which increases as the magnetic field strength of the flux tube decreases, and flux

tubes become more susceptible to deformation by convective flows.

Adiabatically evolving flux tubes of ≥80 kG rise mostly radially as the buoyancy force

acting on the flux tube overpowers the Coriolis force (see Chapter 4.2 for more details).

However, especially at weak magnetic field strengths of≤30 kG, the buoyancy force is reduced
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Figure 6.10. Initial latitude versus emergence latitude of the flux tube apex
for tubes with initial magnetic field strengths of 100, 80, 60, 40, and 15 kG
(top to bottom) with magnetic flux of 1022 Mx. The left column shows the
latitudinal deflection for flux tubes that evolve adiabatically, and the right
column for flux tubes that evolve with the influence of radiative heating. Both
axes are in units of degrees. With the addition of radiative heating, middle-
to-high latitude flux tube of moderate to weak magnetic field strength deflect
poleward.
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compared to the Coriolis force acting on the flux tube, forcing the apex of the flux tube to

deflect poleward. This effect is responsible for the moderate latitudinal deflection of 15 kG

flux tubes, especially at high latitudes (see Fig. 6.10, lower left panel).

When the effects of radiative heating are included in the flux tube energy equation (right

panel of Fig. 6.10), flux tubes of 80 − 100 kG emerge with latitudes similar to flux tubes

that evolve adiabatically. This is not surprising, as flux tubes in this magnetic field strength

regime do anchor in the overshoot region. However, as the magnetic field strength of these

flux tubes decrease, we begin to notice that flux tubes subject to radiative heating tend to

emerge at latitudes larger than adiabatically evolving flux tubes, especially in mid-latitudes.

As discussed previously, this occurs because the heat input to the flux tube supplied by

radiative diffusion in the lower convection zone increases the buoyancy of the flux tube

early in its evolution, forcing it to float away from the convection zone base before undular

magnetic buoyancy instabilities set in to help anchor the flux tube in the overshoot region.

At low latitudes for flux tubes of ≤60 kG, convective flows are able to keep the flux tube

from slipping poleward, and there are no latitudinal zones void of flux emergence, a problem

encountered by previous thin flux tube simulations where B0 ≤30 kG, and flux tubes evolve

adiabatically without convection (e.g. D’Silva and Choudhuri 1993; Caligari, Moreno-Insertis,

and Schüssler 1995).

6.5.2. Tilt Angles. In this section, we present tilt angle trends for 1022 Mx flux tubes

allowed to evolve with the influence of radiative heating and solar-like convection. Except

for our discussion on the preferred tilt angle, all tilt angles have been shifted to fall within

the range of [-90◦, 90◦], as per the discussion in Chapter 4.3. Figure 6.11 shows the tilt angle

as a function of emergence latitude for flux tubes of 1022 Mx that evolve adiabatically (left
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Table 6.2. (Column 2) Slopes mA (unitless) of the best-fit line following
Method 1 for flux tubes of 1022 Mx, and (Column 3) slopes mB (units of
degrees) of the best-fit line following Method 2 for flux tubes of 1022 Mx.
Slopes of the best fit lines following Methods 1 and 2 show a similar trend,
reaching a maximum at 60 kG. (Column 4) Standard deviation σfit (units of
degrees) of the tilt angle about the best-fit Joy’s Law equation (Method 1),
where tilt angles are shifted to fall within the range of [-90◦, 90◦]. For magnetic
field strengths of 40 − 60 kG, the values of σfit are substantially larger than
for 1022 Mx flux tubes that evolve adiabatically, as given in Table 4.5.

B mA mB σfit

100 kG 0.32 ± 0.02 19.8◦ ± 1.0◦ 7.6◦

80 kG 0.40 ± 0.02 25.7◦ ± 1.2◦ 10.4◦

60 kG 0.44 ± 0.04 27.1◦ ± 2.4◦ 23.6◦

50 kG 0.42 ± 0.04 26.2◦ ± 2.6◦ 26.2◦

40 kG 0.27 ± 0.05 16.7◦ ± 3.4◦ 34.8◦

30 kG 0.32 ± 0.05 20.0◦ ± 3.3◦ 33.7◦

15 kG 0.31 ± 0.07 19.1◦ ± 4.3◦ 42.5◦

panel), and those that evolve with the influence of radiative heating included (right panel).

For magnetic field strengths of 100 kG, the tilt angle plots are very similar. However, for

magnetic field strengths of 15 and 50 kG, the tilt angle distribution for flux tubes subject

to radiative heating is spread out more at low latitudes than for flux tubes that evolve

adiabatically. The best-fit lines shown in Figure 6.11 are calculated following Method 1 as

discussed in Chapter 4.3.1.1, and are given in the second column of Table 6.2 for flux tubes

of 1022 Mx subject to radiative heating. Table 6.2 also reports the tilt angle trend following

Method 2 discussed in Chapter 4.3.1.2 (column 3), and the scatter of the tilt angle around

the best-fit line, σfit, following the discussion in Chapter 4.3.2.1 for tilt angles that fall in

the range [-90◦, 90◦] (column 4).

In comparison to the slopes mA and mB for adiabatically evolving flux tubes of 1022 Mx

(see Tables 4.2 and 4.3 in Chapter 4, Section 4.3), the slopes of the best-fit lines we obtain

for flux tubes subject to radiative heating are larger within the reported uncertainties for

flux tubes of 60− 100 kG, and smaller for flux tubes of 40 kG. We expected that the overall
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Figure 6.11. Tilt angles as a function of emergence latitude for initial mag-
netic field strengths of 100, 50, and 15 kG (top to bottom) for simulations with
the influence of convection. This is done for magnetic flux of 1022 Mx for flux
tubes that evolve adiabatically (left column), and those subject to the influ-
ence of radiative heating (right column). The black line is the linear best-fit
following Method 1. A color bar indicates the original starting latitude of the
flux tube. All axes are in units of degrees.

tilt angle best-fit slope would be reduced for flux tubes subject to radiative heating because

the value of δT = Te − T is decreased, initiating a converging parallel flow of mass elements

at the flux tube apex at greater depths (e.g. Fan, Fisher, and McClymont 1994). Due to this

converging flow, the Coriolis force acts to tilt the flux tube apex away from the equator in

either hemisphere (opposite the Joy’s Law trend), thereby reducing the tilt angle (also see

Chapter 4.3.1.1).
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We suggest that the increased tilt angle trend of 60 − 100 kG flux tubes subject to

radiative heating, as compared to adiabatically evolving flux tubes, is related to a decrease

in magnetic field strength, and thus a stronger coupling to helical convective upflows. This

effect is capable of overcoming the Coriolis force induced tilt of the wrong sense (i.e. away

from the equator) due to a converging parallel flow at the flux tube apex. However, this does

not explain why 40 kG flux tubes subject to radiative diffusion show a reduced tilt angle

trend compared to adiabatically evolving flux tubes. While flux tubes of ≤60 kG do not

anchor, one or both of the footpoints of the buoyantly rising loops are usually located within

the lower ∼1/3 of the convection zone (see Fig. 6.6). However, for non-adiabatically evolving

flux tubes of 40 kG, the flux tube as a whole resides in the middle of the convection zone

throughout much of its evolution, where it is continually pummeled by convective upflows

and downflows. Buoyant loops of these flux tubes that reach the simulation upper boundary

tend to have their footpoints located in the middle of the convection zone (see again Fig. 6.6).

Perhaps the fact that in this regime, the flux tube footpoints are higher in the convection

zone also contributes to the reduced tilt angle trend. If stretching of the flux tube loop

contributes to the tilting motion supplied by the Coriolis force (e.g. D’Silva and Choudhuri

1993), then loops with troughs that do not extend to the base of the convection zone will

experience a reduced tilt angle trend. The combined effects of the reduced stretching of the

loop and the increased converging parallel flow at the flux tube apex due to a reduction

in δT may be strong enough at 40 kG magnetic field strengths to overcome the increased

coupling to convective helical upflows in the non-adiabatic regime.

The tilt angle slopes for flux tubes subject to radiative heating peak at 60 kG, whereas

they peak at 40 kG for adiabatically evolving flux tubes of 1022 Mx. In both cases, this peak
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corresponds with the magnetic field strength where the flux tubes take the longest time to

emerge. Owing to the large spread in empirical Joy’s Law equations as discussed in Chapter

4, all of the slopes mA and mB for our Joy’s Law best-fit equations to the simulation data

still fall within those derived from observations (e.g. Dasi-Espuig et al. 2010; Fisher, Fan,

and Howard 1995; Stenflo and Kosovichev 2012).

Figure 6.12 shows the average binned tilt angles for 80 − 100 kG flux tubes of 1022 Mx

that evolve with the influence of radiative heating (i.e. the flux tubes that anchor). The

average tilt angles have been fit following Method 3 in Chapter 4.3.1.3, which assumes that

the fit has not been forced to go through the origin. The best-fit equation obtained is

α = (0.39±0.07)θ+(1.1◦±1.3◦). When 60 kG flux tubes are included, the slope of the best-

fit line increases as do the uncertainties on the fit parameters, but the y-intercept remains

unchanged, with α = (0.47± 0.11)θ+ (1.1◦ ± 1.9◦). For flux tubes of 1022 Mx and magnetic

field strengths of 60− 100 kG that evolve adiabatically, the best-fit line as found in Chapter

4.3.1.3 is α = (0.32±0.04)θ+(2.1◦±0.7◦). While the two best-fit equations derived following

Method 3 for flux tubes subject to radiative heating agree with the equation obtained by

Li and Ulrich (2012), they still show a larger slope than the equation derived from our

adiabatically evolving flux tube simulations. The best-fit line found following Method 3 for

the adiabatically evolving flux tubes in Chapter 4 agrees more closely with McClintock and

Norton (2013), who use Mount Wilson sunspot group tilt angles. However, the best-fit line

for the flux tubes subject to radiative heating agrees more closely with Li and Ulrich (2012),

who use magnetograms to derive active region tilt angles.

The scatter of the tilt angles about the Joy’s Law best-fit equation found using Method

1, denoted as σfit following Eq. 4.4, are shown in the fourth column of Table 6.2 for 1022
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Figure 6.12. Average binned tilt angles for 1022 Mx, 80− 100 kG flux tubes
subject to radiative heating. The result of the linear best-fit following Method
3 is also shown. Error bars are the standard deviation of the mean for each
binned average tilt angle (2.5◦ in latitude).

Mx flux tubes evolving with the addition of radiative heating. Due to the tilt angle scatter

introduced by convection, σfit of the 40− 60 kG flux tubes are larger than in the adiabatic

regime, as reported in Table 4.5 in Chapter 4. Using Mount Wilson white light sunspot

group data, Fisher, Fan, and Howard (1995) found that σfit ∼ 30◦. A value of σfit ≤ 30◦ is

found for flux tubes of ≥50 kG from our simulations when heating due to radiative diffusion

is considered.

Additionally, the most preferred tilt angle for 1022 Mx flux tubes subject to radiative

heating is 12.7◦ ± 3.6◦, as compared to 9.13◦ ± 3.2◦ for 1022 Mx flux tubes that evolve

adiabatically. These values were found by performing a Gaussian fit to a histogram of the

distribution of tilt angles in the range of [-180◦, 180◦], as was done in Chapter 4, Section

4.3.3 for adiabatically evolving flux tubes. The uncertainty on the preferred tilt angle is the

standard deviation of the Gaussian fit. Again, we note an increase in tilt angle for flux tubes

with the inclusion of radiative heating, and also a wider distribution around the mean. When
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heating due to radiative diffusion is included, 9.9% of flux tubes emerge with anti-Hale tilt

angles (i.e. ≥ |90◦|) as compared to 5.0% for 1022 Mx flux tubes that evolve adiabatically,

and ∼4% as found via observations of medium to large-sized active regions (Wang and Zirin

1989; Stenflo and Kosovichev 2012). Such that our simulations of 1022 Mx flux tubes subject

to radiative heating exhibit only ∼4% anti-Hale tilt angles, we would have to exclude flux

tubes with magnetic field strengths of ≤40 kG.

6.6. A Note on Flux Tube Storage in the Overshoot Region

In one solar dynamo paradigm, it is suggested that the dynamo generated magnetic

field is stored in the overshoot region until it becomes buoyant enough to rise toward the

surface (e.g. Spiegel and Weiss 1980; Galloway and Weiss 1981; Miesch 2005). It has been

recognized that while the stable stratification of the overshoot region stabilizes magnetic

flux tubes against buoyancy instabilities, the inflow of heat to the flux tube due to radiative

diffusion forces the flux tube to rise quasi-statically (i.e. all forces closely balance) out of the

overshoot region in ∼1 year or less, short compared to the ∼11 year solar cycle period (e.g.

van Ballegooijen 1982; Rempel 2003; Fan and Fisher 1996).

From the equation for d∆ρ/dt (Eq. 6.23), it is possible to derive an expression for the

radial velocity (rise speed) of the flux tube in the overshoot region, and subsequently a

characteristic rise time for an upward drift of the flux tube out of the overshoot region when

radiative diffusion is considered. For simplicity, we consider a uniform horizontal flux tube

that remains nearly neutrally buoyant (i.e. in quasi-equilibrium) in the overshoot region

such that ∂vl/∂s, v · k, d∆ρ/dt, and ∆ρ are equal to zero. Using these assumptions, and
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only retaining terms to first order in 1/β = B2/8πpe, Equation 6.23 becomes:

(6.26) 0 = ρe
vr
Hp

[

δ +

(

1
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2
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Solving Equation 6.26 for vr:
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,

where δ = ∇e −∇ad, and is referred to as the superadiabaticity in a stably stratified region

where δ takes on a negative value. For typical values in the overshoot region, Hp ∼ 6×109

cm, Pe ∼ 6×1013 g cm−1 s−2, (dQ/dt)1 ∼ 30 erg cm−3 s−1, ∇ad ∼ 0.4, and γ ∼ 5/3. Then

an estimate for the rise speed (cm s−1) of the flux tube in the overshoot region becomes:

(6.28) vr ∼ 1.2× 10−3

[

−δ +
0.12

β

]−1

.

In the overshoot region, β ranges from 1.5×105 for 100 kG magnetic fields to 6.7×106

for 15 kG magnetic fields. The rise speed of the flux tube is highly dependent on the

suparadiabaticity δ of the overshoot region, which has yet to be pinned down, but is most

likely in the range of −10−3 to −10−6 (e.g. Rempel 2003, 2004). As δ gets closer to zero,

the term 0.12/β becomes increasingly important. The quantity 0.12/β is largest for larger

magnetic field strengths. A large magnetic field therefore has a slower upward drift of the

flux tube out of the overshoot region. Using B0 = 100 kG, and for different estimates of the

value δ, the rise speed vr and time τ for a flux tube to escape from the overshoot region are

shown in Table 6.3, assuming the depth of the overshoot region is ∼109 cm. Thus for flux

tubes to remain stored in the overshoot region for the length of the solar cycle, δ needs to be
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Table 6.3. The rise speed vr (Column 2) and rise time τ (Column 3) for
a flux tube to escape from the overshoot region for varying estimates of the
superadiabaticity δ (Column 1). In comparison, the length of the solar cycle
is only ∼11 years.

δ vr (cm s−1) τ
−10−3 1.2 26 years
−10−4 12 2.6 years
−10−5 110 98 days
−10−6 670 17 days

somewhere between −10−4 and −10−3. The value of δ may also change with height in the

overshoot region, so the formation level of the flux tubes is also an important consideration.

It is likely that a strong magnetic field in the overshoot region can suppress the over-

shooting motions into the stably stratified region below the convection zone such that ∇e

deviates more substantially from ∇ad, coming closer to ∇rad (e.g. Fan and Fisher 1996;

Rempel 2003). This would result in a larger value for |δ|, and a longer storage time in the

overshoot region. It has been suggested by van Ballegooijen (1982) that instead, an equa-

torward meridional flow present in the overshoot region may be sufficient to keep flux tubes

stable in the overshoot region for a solar cycle.

It is as of yet not clear whether magnetic flux tubes are generated at a tachocline interface

in the overshoot region of the Sun, however, this is the paradigm we adopt for this study.

If indeed flux tubes are stored in the overshoot region, the superadiabaticity δ in the region

where they are stored is not well known. For the thin flux tube simulations used in this work,

it is assumed that the flux tube has already risen out of the overshoot region. Flux tubes

with footpoints that do anchor in the overshoot region do so because convective motions

initiate buoyancy instabilities and amplify undulations, which cause the flux tube troughs

to penetrate into the stably stratified plasma. In Chapters 3 and 4 where radiative diffusion

is not considered, all flux tubes that evolve with convection have footpoints that penetrate
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into the overshoot region. However, when radiative heating is considered, flux tubes of ≤60

kG do not anchor because their magnetic buoyancy instabilities do not grow fast enough,

and subsequently the flux tube floats away from the base of the convection zone because of

its enhanced buoyancy. When radiative diffusion is considered, flux tubes of ≥80 kG have

anchored footpoints that continue to drift out of the overshoot region.

We have performed some simulations where the flux tube is initiated in the overshoot

region and allowed to evolve with overshooting convective flows and the influence of radiative

diffusion. Regardless of magnetic field strength, magnetic flux, or the superadiabaticity of

the overshoot region, all flux tubes rise quasi-statically through the overshoot region, with

all portion of the toroidal flux tube emerging from the overshoot region at roughly the same

time. Once the toroidal flux tube has emerged as a whole from the overshoot region, the

evolution of the flux tube proceeds in the same way as when we initiate the flux tube at only

2.4 Mm above the base of the convection zone, as is the procedure following the discussion

in Chapter 2. In order to initiate the flux tube in the overshoot region such that the flux

tube always remains anchored except for buoyantly rising loops, we would have to artificially

introduce an entropy perturbation to the flux tube of large amplitude, as was done in Fan

and Fisher (1996), rather than allowing convective flows to provide the perturbations self-

consistently.

6.7. Summary

In this Chapter, we modify the energy equation of our thin flux tube model to include the

effect of flux tube heating due to radiative diffusion. This allows us to study the influence of

radiative diffusion, in conjunction with solar-like convective flows, on the dynamic evolution

of active-region-scale magnetic flux tubes. In our treatment of the heat input per unit volume
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of the flux tube dQv/dt, we only include (dQ/dt)1, the contribution from the deviation of

the mean temperature gradient in the external plasma environment from that of radiative

equilibrium. We have here neglected (dQ/dt)2, the contribution from radiative diffusion

across the flux tube due to the temperature difference between the flux tube and the external

plasma environment. This is only a valid approach for flux tubes in the range of 15 − 100

kG for magnetic flux values of 1022 Mx. In a future study, we will incorporate (dQ/dt)2 to

the energy equation to more accurately capture dQv/dt for all active-region-scale flux tubes.

As a result of the inclusion of radiative diffusion to the thin flux tube energy equation,

we find that flux tubes of ≤60 kG subject to convective flows are no longer able to anchor

in the overshoot region, unlike the flux tubes discussed in Chapters 3, 4, and 5. Heating

of the flux tubes supplied by radiative diffusion brings the internal temperature of the flux

tube closer to that of the external plasma, increasing its density deficit (i.e. buoyancy) in

the process. The flux tube is now more buoyant earlier in its rise, and floats away from the

base of the convection zone before magnetic buoyancy instabilities can set in to anchor the

troughs of the flux tube in the overshoot region. This uniformly increased buoyancy of the

flux tube early in its evolution results in a rise time of ≤0.2 years for all flux tubes, which is

significantly less than the maximum rise times of adiabatically evolving flux tubes by ∼0.5

years. This increased buoyancy does not translate to a faster acceleration of the flux tube

apex, but rather jumpstarts the flux tube’s rise toward the surface. In comparison, a large

portion of the flux tube’s rise time in the adiabatic regime is spent waiting for a magnetic

buoyancy instability to develop such that it can rise toward the surface.

Unlike adiabatically evolving flux tubes of 1022 Mx, flux tubes of ≤60 kG that evolve

with the addition of radiative heating exhibit a larger poleward deflection, especially at mid
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to high latitudes. The drift of ≤60 kG flux tubes from the base of the convection zone and

subsequent lack of anchoring facilitates a poleward slippage, which is especially severe when

convective flows are not included. As flux tubes rise buoyantly due to the uniform heating

supplied by radiative diffusion, conservation of angular momentum drives a retrograde flow

of plasma inside the flux tube. which enhances the Coriolis force acting on the flux tube in

comparison to the buoyancy force. When convective motions are included, the flux tube is

prevented by convective motions from emerging significantly poleward.

Compared to flux tubes that evolve adiabatically, we note that tilt angles of the flux

tubes studied in the Chapter show an increased Joy’s Law best-fit line slope for 60 − 100

kG magnetic field strengths, but a decreased slope for 40 kG flux tubes. We attribute the

increase in tilt angles of the 60−100 kG flux tubes to a stronger coupling to helical convective

upflows than adiabatically evolving flux tubes possess for the same magnetic field strength.

At these magnetic field strengths, this effect is able to overcome the tilting action of the

wrong sense induced by the converging parallel flow of plasma at the flux tube apex, which

sets in at lower depths for flux tubes subject to radiative heating. However, the reduced

tilt angles for 40 kG flux tubes studied in this Chapter as compared to the adiabatically

evolving flux tubes in Chapter 4 is likely due to both the converging parallel flow at the flux

tube apex at lower depths as well as the fact that these flux tubes have their buoyant loop

footpoints in the middle of the convection zone rather than near the base of the convection

zone. As such, a rising loop will not be stretched as much, exacerbating the convergence

rather than divergence of the plasma elements at the flux tube apex, resulting in a tendency

of the Coriolis force to induce a tilting of the flux tube away from, rather than toward, the

equator. Even with radiative heating considered, 1022 Mx flux tubes of all magnetic field
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strengths considered exhibit a Joy’s Law equation in agreement with observations. However,

magnetic field strengths of ≤40 kG exhibit too large a tilt angle scatter as compared to

solar observations and also have too large a percentage of anti-Hale tilt angles, pointing

toward larger magnetic field strengths as the progenitors of solar active regions as reported

in Chapter 4.

We also discuss the problem of flux storage in the overshoot region, suggesting that the

time for flux tubes to escape from the overshoot region is highly sensitive to the value of

the superadiabaticity δ. When we allow flux tubes to originate in the overshoot region, all

magnetic field strength flux tubes rise quasi-statically through the overshoot region. Once

they drift out of the overshoot region, the evolution of the flux tube proceeds in the same

way as when we initiate the flux tube 2.4 Mm above the base of the convection zone.

The simulations performed in the Chapter lead us to a better and more comprehensive

understanding of the processes involved in flux emergence on the Sun and solar-like stars.

It is likely that if flux tubes are generated in the overshoot region by the dynamo process,

that they drift upward out of the overshoot region due to heating of the tube plasma as a

result of the deviation of the temperature gradient from that of radiative equilibrium. Once

out of the overshoot region, flux tubes have a density deficit which allows them to drift

upward without initially requiring a magnetic buoyancy instability. Only when reaching the

middle to upper convection zone does the dynamic evolution of the flux tube apex proceed

adiabatically. Our simulations show that flux tubes do not necessarily need to anchor in the

overshoot region to produce emergence properties similar to those of active regions on the

Sun.
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CHAPTER 7

Future Directions for the TFT+ASH Model

By coupling the thin flux tube (TFT) model to a solar-like convective flow field computed

through the Anelastic Spherical Harmonic (ASH) code, we are able to investigate both

the local and global dynamics evolution properties of active-region-scale flux tubes. This

approach is advantageous, as it incorporates a well-tested stellar convection model with

the computationally inexpensive TFT approximation model. The TFT+ASH approach also

effectively preserves the ideal flux frozen-in condition, unlike three-dimensional simulations

which suffer from artificial diffusion. We foresee some interesting and fruitful future projects

for the TFT+ASH model, a few of which are discussed here.

7.1. The Magnetic Field Twist in Rising Flux Tubes

From photospheric vector magnetograms, it is clear that there is an intrinsic twist as-

sociated with the magnetic field lines of emerging active region flux tubes (e.g. Pevtsov,

Canfield, and Metcalf 1995; Pevtsov, Canfield, and Latushko 2001; Pevtsov, Maleev, and

Longcope 2003). This means that magnetic field lines twist about the flux tube axis rather

than being parallel to the axis of the tube, as is the assumption made in the thin flux tube

model discussed in Chapter 2. The magnetic field twist associated with solar active regions

shows a small, but statistically significant preference of a left-handed twist in the Northern

hemisphere, and a right-handed twist in the Southern hemisphere, which is independent of

the solar cycle. In fact, it is likely that flux tubes require some twist to remain coherent as
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they traverse the convection zone (e.g. Longcope, Fisher, and Arendt 1996; Moreno-Insertis

and Emonet 1996; Fan, Abbett, and Fisher 2003).

To interpret such observations, Longcope and Klapper (1997) and Fan and Gong (2000)

have explicitly included a weak twist in a thin flux tube model. Magnetic helicity is defined

as H =
∫

A · B dV , where A is the vector potential of the magnetic field B. For a closed

flux tube, the magnetic helicity of the tube can be divided into two components: writhe (W )

and twist (T ) (e.g. Berger and Field). The twist represents the twisting of the field lines

about the flux tube axis, and writhe is a measure of the helicalness of the flux tube axis.

Because of the conservation of helicity H = T + W , a reduction in twist will increase the

writhe, and vice versa. As a result, the change in writhe will have the opposite sign as the

change in twist.

A tilting motion of the flux tube apex imparted by the Coriolis force causes a writhing of

the flux tube toward the equator, a motion resulting in a right-handed (left-handed) helix in

the Northern (Southern) hemisphere. Due to the conservation of helicity this motion induces

a local magnetic field twist at the flux tube apex of opposite sense. It has been posited that

tilting of the flux tube provided by the Coriolis force as well as the helical turbulent flows

in the solar convection zone may be sufficient enough to produce the magnetic field twist

associated with solar active regions (e.g. Longcope, Fisher, and Pevtsov 1998; Fan and Gong

2000). Both of these effects are hemispheric dependent, rather than solar cycle dependent.

With our thin flux tube model, it is possible to explore the twist of the magnetic field

lines associated with the writhing of magnetic flux tubes. Similar to Longcope and Klapper

(1997) and Fan and Gong (2000), we can derive an equation that describes the evolution of

the twist rate of the flux tube in response to the helical motion of the flux tube. Incorporating
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this into our currently existing flux tube model, we will be able to shed light on the possible

generation of magnetic field twist imparted by solar-like convective motions. It is not known

whether the solar dynamo mechanism generates flux tubes with an intrinsic twist, or no

twist at all. In particular, we can investigate whether or not untwisted flux tubes originating

at the base of the convection zone are capable of emerging with twist similar to solar active

regions, or if an intrinsic twist of some amplitude is required. This is a promising application

of the thin flux tube model, of importance to our understanding of the operation of the solar

dynamo and the manifestation of active region emergence properties.

7.2. Magnetic Flux Emergence on a Young Sun

Our Sun rotated much more rapidly when it was younger, as is suggested by observations

of rapidly rotating solar-like stars (e.g. Strassmeier 2009) and the influence of the solar wind,

which removes angular momentum from the Sun over time in a process known as magnetic

braking (e.g. Weber and Davis 1967). By studying how flux emergence may have occurred

on the young, rapidly rotating Sun, we are likely to learn more about the nature of the solar

dynamo early in the Sun’s history. This section describes results from some preliminary

simulations of a thin flux tube model as described in Chapter 2 embedded in an Anelastic

Spherical Harmonic (ASH) simulation for a star with the same structure and radius of the

Sun, except the star is rotating at 5 times the current solar rate, with an angular speed

of Ω = 1.3×10−5 s−1. These preliminary simulations assume that the flux tube evolves

adiabatically, however, inclusion of the effect of radiative diffusion on flux tube evolution is

an important component that should be included. In the future, we hope to perform flux

emergence simulations utilizing an ASH convective velocity field for solar-like stars rotating
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at 0.8, 3, 5, and 10 times the current solar rotation rate to obtain a picture of how flux

emergence changes as a function of rotation rate in a star such as the Sun.

7.2.1. Preliminary Simulations. Similar to our simulations discussed in Chapters 3-

6, the time dependent ASH velocity field impacts flux tube evolution through the drag force

the flux tube experiences as it traverses through the turbulent, stratified medium of the

convection zone. Figure 7.1 shows a snapshot of the ASH radial velocity of a solar-like star

rotating at 5 times the current solar rate. This simulation extends from 0.71R⊙ to 0.97R⊙, is

resolved by a grid of 145 points in r, 256 points in θ, and 512 points in φ, and exhibits north-

south rotationally aligned giant cells, with networks of strong downflow lanes surrounded

by weaker upflows. The number of radial grid points is increased by 16 compared to the

ASH simulation used in previous Chapters. The mid-convection zone Reynolds number

Re = vrmsd/ν is of order 200, larger than the Re ∼ 50 of the ASH simulation rotating at the

current solar rate as described in Chapter 2. We assume the same solar structure model as

computed by Christensen-Dalsgaard et al. (1996).

Giant cell convection establishes a solar-like differential rotation with a fast prograde

equator and slow retrograde poles, and a kinetic helicity pattern typical for rotating com-

pressible convection, as described in Chapter 2 for an ASH simulation rotating at the current

solar rate. The angular velocity profile also decreases monotonically from the equator to the

pole, and exhibits a differential profile which is more cylindrical, less conical than on the

Sun and in the ASH simulation we discuss in Chapter 2. Giant cells become increasingly

rotationally aligned as the rotation rate of the star increases, and the number of such struc-

tures tends to increase. This behavior is evident when we compare Figure 7.1 for the rapidly

rotating Sun with Figure 2.2 for our ASH simulation rotating at the current solar rate.
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Figure 7.1. Snapshot of ASH convective radial velocities at a depth of about
26 Mm below the surface for a solar-like star rotating at 5 times the current
solar rate. With more rapid rotation, giant cells become increasingly aligned
with the rotational axis, and increase in number.

It is likely that the rapidly rotating young Sun had a much higher level of magnetic

activity (e.g. Güdel 2007). This trend is seen in other low mass (F through M-type) dwarfs,

as activity levels increase with more rapid rotation until reaching a saturation point (e.g.

Pizzolato et al. 2003; Reiners 2012). As the magnetic field strength at which the solar

dynamo currently operates is not well known, neither is the magnetic field strength of the

Sun’s early dynamo. However, it is likely that a more rapid rotation rate would contribute to

an increase in the dynamo magnetic field strength. It is also known that rapid rotation can

stabilize the flux tube against magnetic buoyancy instabilities (e.g. Gilman 1970; Schüssler

et al. 1996). For a solar-like star rotating at 10Ω⊙, Schüssler et al. (1996) suggests that

in order to develop a magnetic buoyancy instability in less than 300 days at low latitudes

≤40◦, the magnetic field strength of the flux tube needs to be between 200 − 400 kG. For

the 5Ω⊙ ASH simulation used here, the equipartition magnetic field strength at the base of

the convection zone is comparable to the equipartition field strength of the ASH simulation
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rotating at Ω⊙. In Chapter 3.1, we found that 1022 Mx flux tubes must have field strengths

of 15 − 30 kG in order for the flux tube to rise without being significantly pummeled and

perhaps shredded by convection. Such that flux tubes evolving in the 5Ω⊙ ASH simulation

emerge in a reasonable time frame (i.e. ∼ one year), we have here chosen to investigate 1022

Mx magnetic flux tubes of >100 kG.

Following our discussion in Chapter 3.3, we compare the magnitude of the drag force to

the magnetic buoyancy force acting on flux tubes of various initial magnetic field strengths

to understand their relative importance on flux tube evolution. In order for convection to

dominate flux tube evolution as compared to the buoyancy force, vcr > va(a/Hp)1/2 (Eq.

3.4), where vcr is a representative convective radial velocity, va is the Alfvén speed, a is the

cross-sectional radius of the flux tube, and Hp is the pressure scale height. In Figure 7.2, we

have plotted the right hand side (RHS) of Eq. 3.4 for flux tubes of Φ = 1022 Mx and θ0 = 15◦

for three different initial magnetic field strengths of 130, 200, and 300 kG. Representative

convective radial velocities are also plotted. Only the strongest downflows are capable of

impacting the evolution of ≥200 kG flux tubes throughout the bulk of the convection zone,

while strong upflows and downflows can alter the evolution of ≤130 kG flux tubes. Both

ASH simulations rotating at Ω⊙ and 5Ω⊙ have comparable rms upflow and downflow velocity

profiles as a function of radius. However, the maximum upflow velocities for the 5Ω⊙ ASH

simulation are larger in the upper convection zone, while the maximum downflow velocities

are slightly less in the upper convection zone compared to the Ω⊙ case.

Figure 7.3 shows both the polar and equatorial view of a 130 kG flux tube once some

portion has reached the simulation upper boundary. This flux tube originates at 10◦ latitude
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Figure 7.2. Peak downflows and upflows, and the root mean square of the
downflows and upflows of the convective velocity field (5Ω Sun) at each con-
stant r surface as a function of r. Also plotted is the right-hand side of Eq.
3.4 at the apex of a 1022 Mx, θ0 = 15◦ flux tube with various initial magnetic
field strengths.

and emerges at 24.7◦ with a positive tilt angle of 30◦. For flux tubes originating in the North-

ern hemisphere, we expect that the flux tube would emerge with a negative tilt (i.e. towards

the equator), as is the trend for active regions that emerge in the Northern hemisphere on

the Sun. Generally flux tubes of 130 kG that evolve in this convective velocity field emerge

with negative tilt angles in the Northern hemisphere. This flux tube simulation was chosen

to illustrate that flux tubes of this magnetic field strength can emerge with tilt angles of the

wrong sign due to interaction with convective flows.

A variety of observational tools and diagnostic techniques are currently employed for

studying starspots and mapping stellar surfaces (see e.g. Berdyugina 2005). One method

of starspot detection utilizes high-precision photometry provided by the CoRoT and Kepler

missions. Deviations in stellar light curves during planetary transits can be identified as

signatures of starspots through light curve modeling efforts. Recovered starspot latitudes
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Figure 7.3. Snapshots of a 1022 Mx, B0 = 130 kG, θ0 = 10◦ flux tube from
a TFT+ASH simulation rotating at 5 times the current solar rate. The left
image shows a polar view, whereas the right image shows an equatorial view.
The image has ben rotated such that the flux tube apex in on the right, and at
the 3 o’clock position is looking down from the north stellar pole. The orange
sphere has a radius of 4.9×1010 cm. This flux tube suffers from deformation by
convective flows, emerging with a tilt angle of the wrong sign for the Northern
hemisphere.

suggest that some rapidly rotating stars may have concentrations of magnetic flux emergence

at or near the poles. One possible explanation of such behavior is due to the dominance

of the Coriolis force over the magnetic buoyancy force at the flux tube apex for such rapid

rotations (e.g. Schüssler and Solanki 1992; Schüssler et al. 1996).

In Figure 7.4, we have plotted the latitudinal deflection (emergence latitude minus initial

latitude) of the flux tube apex as a function of initial latitude for five different initial magnetic

field strengths. Each symbol on the graph represents one flux tube, with some symbols for the

same magnetic field strength lying directly on top of each other at low latitudes. Flux tubes

of 400− 500 kG exhibit nearly radial emergence, as their magnetic buoyancy is very strong

compared to the Coriolis force acting on the flux tube apex. However, between magnetic field

strengths of 200 to 300 kG, there is a departure from the trend of low latitude emergence.

For magnetic field strengths of ≤200 kG in this rapid rotator, most flux tubes are deflected

by at least 5◦ or more. Therefore, we find that there is a region void of equatorial sunspots
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Figure 7.4. Latitudinal deflection (emergence latitude minus initial latitude)
of the flux tube apex as a function of initial latitude for five different initial
magnetic field strengths. Each symbol represents one flux tube simulation,
and some symbols overlap each other at low latitudes. Between 200 and 300
kG, there is a departure from the trend of low latitude emergence.

for magnetic field strengths of ≤200 kG. The largest latitude at which we initiate a flux tube

in these simulations is 40◦. When θ0 = 40◦, we do not find any flux tubes that emerge at

latitudes of greater than ∼50◦.

For the magnetic field strengths we have consider here, no flux tubes would exhibit polar

starspots. Perhaps an even weaker magnetic field strength flux tube of <150 kG is required

to exhibit polar emergence on a rapid rotator, or the dynamo mechanism operates in a

different way than the picture we have for the current Sun. However, including heating due

to radiative diffusion in this model may facilitate polar flux emergence. As we have shown

in Chapter 6, flux tubes of weak magnetic field strength do not anchor due to the uniform

heating of the flux tube in the lower convection zone. If flux tubes in these rapid rotators do

not anchor, they may be deflected significantly poleward due to the conservation of angular

momentum and the subsequent increase in the Coriolis force acting on the rising flux tube.
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We have no evidence to confirm that the Joy’s Law trend existed on the early Sun,

nor do we have enough observational evidence to confirm that such a trend exists on other

solar-like stars. However, assuming the tilting action of an active region toward the equator

is a result of the Coriolis force acting on the plasma elements of the rising flux tube, we

fit the tilt angles from our simulations according to the equation α = m sin (θ), following

Method 2 in Chapter 4.3.1.2. Figure 7.5 shows a graph of the tilt angle as a function of

emergence latitude for five different initial magnetic field strengths, with the best-fit curve

plotted as well. Table 7.1 shows the slope mB of the best-fit lines for each magnetic field

strength. The tilt angle trend increases significantly as the magnetic field strength of the

flux tube decreases. Presumably, following our discussion in Chapters 4 and 6, this is a

result of weaker magnetic field strength flux tubes essentially becoming more coupled to

convection, and therefore experience more strongly the helical upflows present in the giant

cell convection. This increase in tilt angle is also related to the fact that weaker magnetic

field strength flux tubes are deflected significantly poleward by convection, and the Coriolis

force is proportional to the sine of latitude. However, it may also be related to the fact

that 150 kG flux tubes have an average rise time of ∼200 days as compared to the average

rise time of ∼50 days and less for 300 − 500 kG flux tubes. As such, the Coriolis force will

have a longer time to act on the rising loops of weaker magnetic field strength flux tubes.

In addition, convection introduces a scatter of the tilt angles around the best-fit line, which

increases as the magnetic field strength decreases.

In this Section, we have demonstrated that it is possible to perform flux emergence

simulations utilizing the TFT+ASH model as outlined in Chapter 2 for a solar-like star

with a rotation rate faster than the current Sun. Due to the way we have designed the
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Figure 7.5. Tilt angles plotted as a function of emergence latitude for flux
tube simulations of five different initial magnetic field strengths in a star ro-
tating at five times the current solar rate. The best-fit line to the tilt angles
is also plotted, with the slopes of these best-fit lines shown in Table 7.1. Tilt
angles increase significantly as magnetic field strength decreases.

Table 7.1. Slopes mB of the best-fit line following Method 2 for flux tubes
of 1022 Mx that evolve in a star rotating at five times the current solar rate.
The slope increases as the magnetic field strength decreases, a result of the
poleward deflection of flux tubes at lower magnetic field strengths.

B mB

500 kG 12.1◦ ± 1.1◦

400 kG 14.7◦ ± 1.8◦

300 kG 23.9◦ ± 1.9◦

200 kG 33.4◦ ± 2.2◦

150 kG 39.9◦ ± 3.0◦

TFT+ASH model, the ASH convection simulation as well as the solar structure model can

be easily swapped out and replaced. The simulation results presented in this Section actually

raise more questions than answers about the nature of flux emergence in the young Sun and

other solar-like rapid rotators. We hope to expand on the preliminary study in this Section
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by performing a comparative study of flux emergence properties as a function of rotation

rate in a star similar to the Sun. As the rotation rate of the star increases, the convective

flow properties also change, which adds an extra component to the flux emergence study.

Particularly, as convection becomes increasingly modulated at higher rotation rates, some

ASH simulations exhibit localized patterns of convection, or nests (e.g. Brown et al. 2008)

that may contribute to the active longitude phenomenon observed on young, low mass dwarfs

such as AB Doradus and Kepler-17 (e.g. Järvinen et al. 2005; Bonomo and Lanza 2012).

7.3. Magnetic Flux Emergence Across the Hertzsprung-Russel Diagram

The simulations discussed in Chapters 2-6 and mentioned above in Section 7.2 only

investigate flux emergence for the parameter space of solar-like, G2V stars. However, most

main sequence stars of spectral type F-M exhibit magnetic fields, with ∼10% of A type

stars exhibiting observable magnetic fields as well (e.g. Moss 2001). There is thus a broad

parameter space over which flux emergence simulations can be performed. Additionally,

much work has been documented on the nature of convection in ASH simulations for F, G,

and K dwarfs (e.g. Miesch et al. 2008; Brown et al. 2008, 2010; Matt et al. 2011; Augustson

et al. 2012), as well as low mass M-type stars (e.g. Browning 2008) and high mass A-type

stars (e.g. Featherstone et al. 2009). Coupling such ASH simulations to the thin flux tube

model and a representative stellar structure model appropriate for the star should be a

straight-forward task, and opens up the possibility for the investigation of flux emergence as

a function of rotation rate and spectral type.

Along the main sequence, stellar luminosity increases with increasing mass, while the

radial fraction of the outer convective envelope decreases such that 0.5 − 1.3M⊙ stars (K-

F type) have convection zone depths of ∼44% − 14%, respectively, of their total radius.
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Therefore, convection becomes more vigorous with increasing stellar mass, as the amount of

required energy flux transport increases and the convection zone becomes shallower in radius.

Similar to the picture we have for the solar dynamo paradigm, it is thought that rotation,

global-scale plasma motions, and shearing at the convection zone-radiative zone interface

all contribute to the generation of magnetic fields in stars with outer convection zones.

Since convection becomes less vigorous with decreasing stellar mass, flux tubes subjected to

turbulent fluid motions in stars of 0.5−0.9M⊙ may be less affected by convective downflows.

However, a deeper convection zone and more rapid rotation may favor the emergence of polar

starspots. Conversely, convection becomes more vigorous with increasing stellar mass for

stars in the range of 1.1−1.3M⊙, and may have profound impacts on the dynamic evolution

of magnetic flux tubes as they are pummeled by convective flows. An exploration of magnetic

flux emergence in stars with outer convection zones utilizing the TFT+ASH approach may

help shed light on the nature of the Sun’s flux emergence properties in comparison to other

F-K type dwarf stars.

Main sequence stars of mass ≥1.6M⊙ do not possess convective outer shells, but rather

are comprised of a convective core and a convectively stable radiative outer envelope. The

question as to whether or not their magnetism is a result of a fossil field of primordial origin,

dynamo action in the convective core, or the interaction of the core dynamo with a fossil

field is still not resolved (see Featherstone et al. 2009). If magnetic flux tube structures are

produced by dynamo action in the convective core, then a mechanism for transport of the

field from the convective interior through the outer radiation zone can be studied utilizing

an ASH simulation of an A-type star in concert with a thin flux tube model. Flux emergence
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simulations using a thin flux tube model for an early-type A star have been conducted by

MacGregor and Cassinelli (2003).

Main sequence M-type stars are the most populous dwarf stars in the solar neighbor-

hood. Such stars with masses ≤0.35M⊙ are fully convective and magnetically active despite

lacking a tachocline. As a result, it is unclear whether magnetic fields built in these stars

are fundamentally different from those in stars with tachoclines (i.e. those with a convection

zone-radiative zone interface). Browning (2008) shows that cyclic dynamos with equipar-

tition magnetic field strengths can be generated and sustained in fully convective stars.

However, when the magnetic field reaches sufficiently large values, the differential rotation

of the star is strongly suppressed. It may be interesting to use the TFT+ASH model in fully

convective stars to observe how magnetic flux tubes may be influences by representative

cases of convection in such stars.

The expansive project laid out in this section for the TFT+ASH model will take many

years to conclude and will encounter modifications as computing power increases and more

is learned about the nature of stellar dynamos. However, it is an interesting and worthwhile

endeavor that will shed light on stellar dynamo mechanisms, and will provide information

on the magnetically-driven space weather conditions in the vicinity of exoplanets in the

habitable zone. The recent detection of Kepler-186f, a 1.11 Earth radius planet in the

habitable zone of a 0.47R⊙ M-type main sequence star (Quintana et al. 2014), suggests that

comparative heliophysics will likely be a blossoming branch of astrophysics in the near future.
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CHAPTER 8

Conclusions

Our Sun is a magnetic star, exhibiting a ∼11 year cycle of magnetic activity. The manner

by which dynamo-generated magnetic fields, the progenitors of solar active regions, traverse

the convection zone to eventual emergence at the solar surface still remains unclear. Here

we have proposed a method to provide a connection between the deep-seated solar dynamo

and sunspots by performing simulations of magnetic flux emergence through the bulk of a

turbulent, solar-like convective envelope. To capture the global effects of convection on rising

magnetic flux tubes while circumventing the problem of artificial diffusion encountered by

fully three-dimensional models, we have performed the first large statistical study of active-

region-scale magnetic flux tube simulations in a three-dimensional, rotating spherical shell

of turbulent, solar-like convection by employing a thin flux tube (TFT) model subject to

interaction with flows taken from a hydrodynamic Anelastic Spherical Harmonic (ASH)

simulation (see Chapter 2). The ASH velocity field interacts with the flux tube through the

drag force it experiences as it traverses through the turbulent convective medium.

In the Introduction (Chapter 1), we identified four main topics which we proposed for

the TFT+ASH model to address:

• Identify the magnetic-buoyancy-dominated and convection-dominated regimes for

active-region-scale flux tubes of equipartition to super-equipartition magnetic field

strengths
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• Characterize the influence of large-scale, global convection on flux tube properties

at the simulation upper boundary - a proxy for active regions observed on the solar

surface

• Better constrain the dynamo generated magnetic field strength by comparing sim-

ulation results to those of active region observations

• Address the influence of radiative diffusion through the base of the convection zone

on the dynamic evolution of magnetic flux tubes

We will summarize our findings in response to each of these topics in turn.

Many previous thin flux tube models neglect the effects of turbulent, solar-like convection

on buoyantly rising flux tubes (e.g. Spruit 1981a,b; Moreno-Insertis 1986; Ferriz-Mas and

Schüssler 1993; Longcope and Klapper 1997; Caligari, Moreno-Insertis, and Schüssler 1995;

Caligari, Schüssler, and Moreno-Insertis 1998; Fan, Fisher, and Deluca 1993). Within the

range of 15 − 100 kG (equipartition to super-equipartition) for the possible value B0 at

which the solar dynamo may be operating (e.g. Caligari, Moreno-Insertis, and Schüssler

1995; Rempel 2006b,a), there are different convection-dominated and magnetic-buoyancy-

dominated regimes for the dynamic evolution of active-region-scale flux tubes depending on

their magnetic field strengths. In the absence of convection, rising buoyant loops develop

solely as the result of the non-linear growth of the magnetic buoyancy instability of the initial

toroidal flux tube. However, when we include the effect of solar-like convective flows on flux

tube evolution, we find in Chapter 3 that convective influences are a significant contributing

factor, and should not be neglected except perhaps in the case of ≥80 kG flux tubes of 1021

and 1022 Mx flux.
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Convection also decreases the time it takes for flux tubes to travel the depth of the

convection zone, reducing the time from at most ∼4.5 years in the case without convection

to ∼8 months with convection. For magnetic flux values of 1021 − 1022 Mx, tubes of 30− 60

kG have the longest average rise times, as the average convective downflows and magnetic

buoyancy force acting on the flux tube apex are of similar magnitudes. While the buoyancy

force is the largest contributing factor to the radial acceleration of the flux tube apex, in

the presence of convection, contributions to the flux tube evolution from convective upflows

can act to boost the flux tube apex toward the surface faster than it could in the absence of

convection.

Rotation and the Coriolis force acting on a rising flux loop are responsible for a number

of flux emergence properties such as: emergence latitudes, tilt angle trends, average rotation

rates, and magnetic field asymmetries. We have investigated the effect convection has on

such flux emergence properties in Chapter 4. Thin flux tube simulations of weak magnetic

field strength tend to deflect significantly poleward in the absence of convection, as the

radially directed magnetic buoyancy force acting on the flux tube is reduced compared to

the component of the Coriolis force directed inward toward the rotation axis (e.g. Choudhuri

and Gilman 1987). At weak magnetic field strengths, convective flow fields are able to keep

the flux tube from deflecting poleward. Convection can also force flux tubes to emerge closer

to the equator that the latitude where they initiated at the base of the convection zone,

and can even force them to emerge in the opposite hemisphere from which they originated.

Such behavior provides a possible explanation for active regions near the equator (±10◦)

that exhibit anti-Hale polarities.
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It is generally assumed that the Joy’s Law tilt angle trend of solar active regions arises due

to a tilting motion of the flux tube imparted by the Coriolis force (e.g. D’Silva and Choudhuri

1993). We find that the slope of the best-fit line applied to the tilt angles as a function of

emergence latitude or sin (θ) increases when convection is added in our simulation. This

happens in part because upflows in the convective velocity field have an associated kinetic

helicity that helps to drive the tilt of the flux tube apex in the appropriate Joy’s Law direction

(i.e. toward the equator). Convection also introduces a spread of the tilt angle about the

Joy’s Law trend, which increases with decreasing flux and magnetic field.

To provide an explanation for the apparent asymmetric East –West proper motion of

the two polarities of an emerging region, it is posited that there is an asymmetry in the

inclination of the leading and following legs of a rising flux loop with respect to the vertical

direction (e.g. Moreno-Insertis, Caligari, and Schüssler 1994; Caligari, Moreno-Insertis, and

Schüssler 1995). We find that convection acts to reduce this inclination. The rotation rate

of a rising flux loop, corresponding to the rotation rate of an individual active region, is

dependent on the magnetic field strength of the flux tube, the rotation rate of the system,

and the differential rotation present in the convection simulation. We also find that the

asymmetry of the magnetic field at the flux tube apex does not change significantly with the

addition of convection, although convection does introduce a scatter about the mean trend.

Our simulations exhibit a large-scale pattern of flux emergence at low latitudes of ±15◦,

which may be associated with the observed phenomena called active longitudes (Chapter

5). This large-scale pattern of flux emergence is inhomogenous in longitude and exhibits

low order longitudinal modes. Furthermore, the pattern shows a strong North-South align-

ment and drifts (either prograde or retrograde) with respect to the chosen rotating reference
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frame. We attribute this behavior in our simulation to differential rotation and the colum-

nar, rotationally aligned giant cells which exist in the equatorial to mid-latitude regions of

our convection simulation. These giant cells corral flux tubes in a sense, forcing them to

emerge within boundaries of a particular cellular feature. These results suggest that giant

cells may play a significant role in the observed active longitude phenomenon on the Sun

and other solar-like stars.

The magnetic field strength at which the solar dynamo operates is not well known, nor is

it directly accessible via observations. Previous thin flux tube simulations ignoring the effects

of convection have found that the toroidal magnetic field at the base of the convection zone

needs to be in the range of ∼30 kG to ∼100 kG such that the simulated flux tubes exhibit tilt

angles and latitudes of emergence that agrees well with solar active regions (Choudhuri and

Gilman 1987; Schüssler et al. 1994; D’Silva and Choudhuri 1993; Caligari, Moreno-Insertis,

and Schüssler 1995). However, solar cycle mean field dynamo models that incorporate the

Lorentz force from large scale mean fields indicate that the magnetic field strength generated

and amplified at the base of the convection zone is ∼15 kG, and most likely cannot exceed

30 kG (Rempel 2006b,a). In Chapter 4, we attempt to constrain the magnetic field strength

at which the solar dynamo may be operating by comparing the results of our simulations to

those of solar observations.

The comparisons made between our simulation results and solar observations suggests

that the initial field strength of active region progenitor flux tubes needs to be sufficiently

large, probably ≥30 kG, in order for them to satisfy Joy’s Law for active region mean tilt

angles as well as the observed amount of scatter of the tilt angles about the mean Joy’s Law.

Weaker magnetic fields tend to produce too large a scatter to be consistent with the observed
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results. Flux tubes of ≥80 kG and 1021 − 1022 Mx agree both with the observed Joy’s Law

trends for the mean tilt, and the observed tilt angle scatter. However, only 60 kG or greater

magnetic field strength flux tubes can have an apparent rotation rate at or faster than the

solar surface rate. So, according to our thin flux tube approach, magnetic field values need

to be of moderate to large field strengths for tubes with fluxes of 1021 Mx and 1022 Mx

to produce sunspot rotation behavior. Taking all of our results into consideration, we can

exclude ≤15 kG magnetic field strength flux tubes as progenitors of solar active regions, and

suggest that flux tubes of ≥60 kG are most likely required.

With the exception of Fan and Fisher (1996), all previous thin flux tube studies assume

that the flux tube evolves adiabatically throughout the convection zone. This is a valid

assumption for the upper ∼2/3 of the solar convection zone. However, in the lower ∼1/3 of

the convection zone, radiative diffusion from the interior into the convection zone results in a

heat input per unit volume Qv of magnetic flux tubes, which has a substantial effect on their

buoyancy and dynamic evolution. We modify the thin flux tube energy equation to include

a heating term supplied by the deviation of the background plasma environment from that

of radiative equilibrium. As a result, we find that flux tubes of 1022 Mx with magnetic field

strengths of ≤60 kG no longer anchor at the base of the convection zone, unlike the case

where flux tubes evolve entirely adiabatically. Rather, heating due to radiative diffusion

increases the buoyancy of the flux tube earlier in its evolution, allowing the whole flux tube

to drift upward, away from the overshoot region faster than magnetic buoyancy instabilities

can set in to anchor the flux tube.

Although flux tubes of ≤60 kG do not anchor, they do still exhibit a Joy’s Law tilt

angle trend that falls within the range suggested by statistical analysis of solar active region
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Figure 8.1. Word cloud created from the text of this dissertation. Word
clouds are visual representations of text data, useful for perceiving the most
prominent words used in the text. This word cloud was generated using
www.wordle.net.

observations (e.g. Dasi-Espuig et al. 2010; Stenflo and Kosovichev 2012; Fisher, Fan, and

Howard 1995). However, the scatter of the tilt angles around the Joy’s Law trend is too large

for magnetic field strengths of ≤40 kG, still pointing toward larger magnetic field strengths as

the progenitors of solar active regions. Including the effects of radiative diffusion also reduces

the flux tube rise times to less than 0.2 years, ∼0.5 years less than the average maximum rise

time for completely adiabatically evolving flux tubes. We also find that flux tubes will drift

quasi-statically as a whole out of the overshoot region, and only show anchoring of emerging

flux loop troughs for magnetic field strengths of ≥80 kG because of their fast growing undular

magnetic buoyancy instabilities.

209



There are many more investigations into the nature of solar and stellar magnetic fields

for which we feel the TFT+ASH model is suitable. As outlined in Chapter 7, this model

will hopefully help to shed some light on the nature of the generation of magnetic field

twist in active region flux tubes. Also as demonstrated in Chapter 7, this model can be

applied to stars other than the Sun, most notably rapid rotators and F-K type stars with

convective outer shells. Performing such simulations will bring us to a more comprehensive

understanding of the nature of flux emergence as a function of rotation rate and spectral

type for main-sequence stars, and will help us to paint a picture of the Sun’s unique position

within this parameter space.

Our understanding of stellar magnetism is historically driven by what we have learned

about the Sun, which represents only a small portion of the varieties of stellar behavior. It is

of great importance to observe magnetism in solar-like stars so as to better understand the

intricacies of the stellar dynamo mechanism, thereby deciphering the magnetic mysteries of

our own star in the process. Observations from ESA’s CoRoT and NASA’s Kepler missions

have identified thousands of candidate planets orbiting stars of all spectral types, including

those that are very similar to the Sun. The new Daniel K. Inouye Solar Telescope (DKIST,

formerly the Advanced Technology Solar Telescope), expected to be completed in 2019, will

undoubtedly shed much light on the nature of solar magnetism utilizing its 4 m mirror to

achieve a resolution of ∼0.1 arcsec (70 km) in the photosphere. It is now timely to perform

numerical simulations of magnetic flux emergence on the Sun and similar stars in order

to interpret observations of stellar magnetic activity and prepare for the high resolution

observations of the Sun to come.
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Frasca, A., Fröhlich, H.-E., Bonanno, A., Catanzaro, G., Biazzo, K., Molenda-Żakowicz, J.:
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APPENDIX A

The Fundamental Magnetohydrodynamic Equations

Astrophysical plasmas and magnetic fields are ubiquitous in the Universe. Magnetohy-

drodynamics (MHD) is the study of the dynamics of electrically conducting fluids, such as

plasmas in the realm of astrophysics. This Appendix discusses the assumptions made under

MHD and presents the full set of MHD equations on which the model used in this thesis

research is based.

1.1. Maxwell’s Equations under MHD

First, let us begin with the microscopic version of Maxwell’s Equations in Gaussian units:

∇×B =
4π

c
J+

1

c

∂E

∂t
(A.1)

∇ ·B = 0(A.2)

∇× E = −
1

c

∂B

∂t
(A.3)

∇ ·E = 4πρ,(A.4)

where ρ is the charge density and c is the speed of light. The first equation, Eq. A.1, shows

that either currents or a time-varying electric field can produce magnetic fields. The second

equation, Eq. A.2, states that there are no magnetic monopoles. Equations A.3 and A.4

imply that either time-varying magnetic fields or electric charges may produce electric fields.

A fundamental assumption of MHD is that variations of the electromagnetic field are

quasi-steady, or non-relativistic, such that v20/c
2 ≪ 1, where v0 = ℓ0/t0 is a characteristic
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plasma flow speed, and ℓ0 and t0 are typical length and time scales, respectively. As a

consequence of these assumptions, the displacement current ∂E
∂t can be neglected for MHD

treatments, as it can be shown that ∇×B ≫ 1
c
∂E
∂t in Eq. A.1. In order to arrive at an order

of magnitude estimate for E, we look to Eq. A.3:

(A.5)
E0

ℓ0
∼

1

c

B0

t0
→ E0 ∼

B0

c

ℓ0
t0
.

Applying this relation to the second term on the right hand side of Eq. A.1:

(A.6)

∣

∣

∣

∣

1

c

∂E

∂t

∣

∣

∣

∣

∼
v20
c2

B0

ℓ0
,

whereas,

(A.7)

∣

∣

∣

∣

∇×B

∣

∣

∣

∣

∼
B0

ℓ0
.

Since v20/c
2 ≪ 1 in MHD, the displacement current term is much smaller than ∇ × B,

therefore the displacement current can be neglected. Thus, under MHD, Eq. A.1 becomes:

(A.8) ∇×B =
4π

c
J

In MHD, the magnetic field is regarded as a primary quantity, whereas the electric current

and electric field are secondary. The current density J can be obtained explicitly from Eq.

A.8. The electric field is given by Ohm’s Law:

(A.9) J = σE′ = σ(E+
v

c
×B),
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where E′ is the electric field in the frame of reference stationary to the plasma. Equation

A.4 is generally not used in MHD to obtain E because its magnitude is of order ∼(v0c
B0

ℓ0
),

not quite of order ∼(v
2
0

c2
B0

ℓ0
), which can be neglected in MHD. However, once E is obtained

from Eq. A.9, Eq. A.4 can be used to obtain the charge density in the desired frame as long

as relativistic effects are considered.

1.2. The Magnetic Induction Equation

Combining Ohm’s Law (Eq. A.9) and Equations A.8 and A.3, one obtains what is known

as the Magnetic Induction equation, which describes how the magnetic field of a conducting

plasma changes in time. Starting with Eq. A.3, E and J are replaced using Eq. A.9 and

Eq. A.8, respectively, such that:

∂B

∂t
= ∇× (v ×B)−∇× (η∇×B)(A.10)

where η = c2/4πσ is the magnetic diffusivity. If η is uniform, using ∇ · B = 0 and the

following vector identity:

(A.11) ∇× (∇×B) = ∇(∇ ·B)− (∇ ·∇)B = −∇2B,

the Induction Equation becomes:

(A.12)
∂B

∂t
= ∇× (v×B) + η∇2B.

The first term on the right-hand side of the equation describes how the magnetic field is

advected by the fluid, while the second term represents diffusion of the magnetic field. A

dimensionless parameter known as the magnetic Reynolds number Rm measures the ratio of
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the advection term to the diffusion term:

(A.13) Rm =
ℓ0v0
η

,

where v0 is a typical plasma speed, and ℓ0 is a typical length scale. If Rm ≪ 1, then the

magnetic diffusion dominates. However, in the solar interior Rm ≫ 1, therefore the second

term is negligible compared to the first. In this limit, magnetic field lines behave as if they

move with the plasma. This property is known as Alfvén’s flux frozen-in theorem, and will

be discussed in Appendix B.

It is important to point out that the magnetic Reynolds number Rm is large in the solar

interior because of the large length scale ℓ0. Following Spitzer (1962) and Priest (1982), the

magnetic diffusivity η is given by:

(A.14) η = 5.2× 1011
lnΛ

T 3/2

cm2

s
,

where lnΛ is called the Coulomb logarithm, and T is the temperature of the plasma. The

value Λ is weakly dependent on the electron density and temperature. For the solar interior,

lnΛ is ∼5, and the temperature in the middle of the convection zone is ∼106 K. This results

in a value for η of ∼103 cm2 s−1 and σ of ∼1016 s−1 in the bulk of the solar convection

zone. Considering that the depth of the convection zone is ∼2×1010 cm, which will serve

as ℓ0 for the bulk of the convection zone, and a typical plasma speed due to convection is

v0 ∼ 104 cm s−1 in the middle of the convection zone, an order of magnitude estimate for

the magnetic Reynolds number in the solar interior is ∼1010. This value is very large indeed,

due more to the relatively large length scales in the solar interior considered rather than the

large electrical conductivity (and therefore small magnetic diffusivity).
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1.3. Plasma Equations

The behavior of the magnetic field described by the magnetic induction equation, Eq.

A.12, is coupled to the motion of the plasma through the advection term (first term on the

right hand side). The behavior of the plasma is described by the equations of mass continuity,

motion, equation of state, and a final equation which describes the various processes affecting

the heating/cooling of the plasma.

1.3.1. Equation of Mass Continuity. The first fluid equation is a result of mass

conservation:

(A.15)
dρ

dt
+ ρ(∇ · v) = 0,

where dρ/dt is the material (Lagrangian) derivative, ρ is the density of the plasma, and v is

the velocity of the fluid motions. Using the definition of the material derivative (Eq. E.16)

and some vector identities, the continuity equation can also be written as:

(A.16)
∂ρ

∂t
+∇ · (ρv) = 0.

Following this equation, the local density of the fluid increases (∂ρ∂t > 0) if there is a conver-

gence of mass flux such that ∇ · (ρv) < 0. Conversely, the density of the fluid decreases if

there is a divergence of mass flux such that ∇ · (ρv) > 0.

1.3.2. Equation of Motion. The equation of motion of an electrically neutral plasma

is given by:

(A.17) ρ
dv

dt
= −∇P + ρg +

J

c
×B+ F,
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where P is the plasma pressure and g is the gravitational acceleration. The first and second

terms in Eq. A.17 are respectively the pressure gradient and gravitational force, while the

fourth term F represents all other forces acting on an unionized fluid (i.e. Coriolis force

in a rotating system, drag force). The third term, called the Lorentz Force, is a force

exerted on a conducting fluid due to the presence of a magnetic field. The Lorentz Force can

be decomposed into a magnetic tension force and a magnetic pressure force as mentioned

in Chapter 3.2, which act to shorten the magnetic field lines and compress the plasma,

respectively.

1.3.3. Equation of State. Plasma in the interior of a star is comprised of a mix-

ture of ions, electrons, and photons (radiation). Equations of state must relate the pressure

P (ρ, T, ...) exerted by a system to the so-called state variables such as density ρ and tem-

perature T . In stellar interiors, the total pressure is a sum of the associated ion pressure PI ,

electron pressure Pe, and radiation pressure Prad due to momentum transfer from photons

to gas particles caused by absorption or scattering.

In a star such as the Sun, ions and electrons can be treated as though they are a single

fluid satisfying ideal gas conditions, and quantum effects can be neglected such that:

(A.18) PI+e =
ρRT

µ
,

where P = PI+e is the gas pressure, R is the ideal gas constant, T is temperature, and µ is

the mean molecular weight of the plasma. In very dense stars with low enough temperatures,

electrons can become degenerate, or partially degenerate, thus requiring an adjustment to
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the electron pressure equation. Radiation pressure is given by:

(A.19) Prad =
aT 4

3
,

where a = 7.566×10−15 erg cm−3 K−4 is the radiation constant. Except for stars with

high temperatures and low density, the radiation pressure is negligible. Through the solar

convection zone, the gas pressure and temperature decreases from P ∼ 1013 g s−2 cm−1 and

T ∼ 106 K at the base of the convection zone to P ∼ 104 g s−2 cm−1 and T ∼ 103 K at the

solar surface, corresponding to Prad of ∼109 to 10−3, respectively. Therefore, it is reasonable

to neglect the radiation pressure in the solar case, and the equation of state for the solar

interior is given by the ideal gas law in Eq. A.18.

1.3.4. Energy Equation. The energy equation can be derived by considering the First

Law of Thermodynamics:

(A.20)
de

dt
=

dQ

dt
− P

d

dt

(

1

ρ

)

,

where e is the internal energy per unit mass, Q is the heat per unit mass, and volume has

been replaced with 1/ρ.

For an ideal gas, the internal energy per unit mass is defined as e = cvT , where cv is the

specific heat at constant volume. Specific heat is the amount of heat per unit mass of an

ideal gas needed to raise its temperature, per degree temperature increase. The specific heat

at constant pressure cp is given by cp = cv + kB/m, where m is the mean particle mass and

kB is Boltzmann’s constant. We also define γ as the ratio of specific heats γ = cp/cv. Using

these definitions, the internal energy per unit mass e can be written in terms of γ, ρ, and P
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as:

(A.21) e =
P

(γ − 1)ρ
.

Substituting Eq. A.21 for e in Eq. A.20, we arrive at a general form of the plasma energy

equation:

1

ρ

dρ

dt
=

1

γP

dP

dt
−

ρ

P

(

γ − 1

γ

)

dQ

dt
.(A.22)

The quantity dQ/dt = T dS/dt, where S is the entropy per unit mass and dQ/dt is the rate

of heat loss/gain of the system per unit mass, which may include multiple terms related to

thermal conduction, radiation, viscous heating, wave heating, and nuclear energy generation

depending on the conditions of the plasma. If processes are adiabatic, dS/dt = 0. Further

discussion on defining an expression for dQ/dt can be found in Chapter 6.

Often the quantity (γ − 1)/γ in Equation A.22 is written as ∇ad, which is the double

logarithmic derivative of T with respect to P required for adiabatic evolution of a fluid parcel.

In the following portion of this section, will show that (γ−1)/γ = (d lnT )/(d lnP )|ad ≡ ∇ad.

If an ideal gas evolves adiabatically, Pρ−γ = C, where C is a constant and γ is the ratio of

specific heats. For adiabatic processes then:

(A.23) γ
dρ

ρ
=

dP

P
.
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Using the ideal gas law to replace density with pressure and temperature, and applying the

logarithmic derivative, Equation A.23 can be rewritten as:

γ(d lnP − d lnT ) = d lnP,(A.24)

γ − 1

γ
=

d lnT

d lnP
≡ ∇ad,(A.25)

where γ = 5/3 and ∇ad = 0.4 throughout the majority of the solar convection zone. Thus,

the energy equation can also be written as:

(A.26)
1

ρ

dρ

dt
=

1

γP

dP

dt
−∇ad

ρT

P

dS

dt
.
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1.4. Summary of MHD Equations

The set of MHD Equations, from which the thin flux tube equations are derived, are as

follows:

∂B

∂t
= ∇× (v ×B) + η∇2B(A.27)

dρ

dt
+ ρ(∇ · v) = 0(A.28)

ρ
dv

dt
= −∇P + ρg +

J

c
×B+ F(A.29)

P =
ρRT

µ
(A.30)

1

ρ

dρ

dt
=

1

γP

dP

dt
−∇ad

ρT

P

dS

dt
(A.31)

Note:

(A.32)
d

dt
=

∂

∂t
+ v ·∇
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APPENDIX B

The Flux Frozen-In Theorem

In a perfectly conducting fluid, magnetic field lines move with the fluid such that they

are effectively frozen into the plasma. In this regime Rm ≫ 1, therefore the second term

on the right hand side of the Induction Equation A.12 vanishes, with advection, stretching,

shearing, and expansion of magnetic flux tubes all contributing to the time evolution of the

magnetic field. In 1943, Hannes Alfvén proved that the magnetic flux through any closed

loop moving with the fluid is constant in time, thereafter known as Alfvén’s Flux Frozen-In

Theorem. A detailed layout of the proof will be considered here.

The end goal is to prove that the total magnetic flux, enclosed by a curve P (arbitrary)

bounding a surface F moving with the plasma, is conserved such that dΦ/dt = 0. Consider

Figure B.1. Let F be a surface bounded by a closed loop P at time t, and F ′ be a surface

bounded by a closed loop P ′ in its new position at time t + dt. The area F enclosed by P

Figure B.1. The volume a surface F bounded by loop P sweeps out in time
t+ dt.
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is comprised of the same mass elements as those in F ′ enclosed by P ′, although the shape

of F ′ and P ′ may be different from F and P due to stretching or deformation as a result

of the various paths followed by the mass elements. We want to investigate whether or not

the flux through surface F at time t, represented by Φ(t), is different from the flux through

surface F ′ at some time t+ dt, represented by Φ(t + dt), by calculating the following:

(B.1) dΦ = Φ(t + dt)− Φ(t),

with magnetic flux given by:

(B.2) Φ =

∫

F

B(t) · da,

where F is a surface bounded by a closed loop P . Therefore, Equation B.1 can be rewritten

as:

(B.3) dΦ =

∫

F ′

B(t+ dt) · da−
∫

F

B(t) · da.

Now, by Gauss’ Divergence Theorem and Eq. A.2:

(B.4)

∫

V

(∇ ·B(t))dV =

∫

S

B(t) · da = 0,

where V is a volume and S is the surface enclosing volume V . At time t, the surface enclosing

the volume is only given by the surface F . However, at time t+dt, the total surface enclosing

the volume swept out by the loop P and surface F in time t+ dt is given by the surfaces F ,

F ′, and the Ribbon surface that joins F and F ′. Applying Gauss’ Divergence Theorem at
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time t + dt:

0 =

∫

V

(∇ ·B(t+ dt))dV =

∫

S

B(t+ dt) · da,(B.5)

=

∫

Left

B(t+ dt) · da+

∫

Right

B(t+ dt) · da+

∫

Ribbon

B(t+ dt) · da,(B.6)

=

∫

F

B(t+ dt) · da−
∫

F ′

B(t+ dt) · da+

∫

Ribbon

B(t+ dt) · da,(B.7)

where Left and Right indicate integrals for the flux through surfaces F and F ′, respectively.

The subscript Ribbon on the third term in Eqs. B.6 and B.7 indicates the flux through the

surface joining the perimeters of F and F ′. The vector da = n̂ da, where da is an infinitesimal

area element, and n̂ is the outward directed vector normal to the closed surface comprised

of F , F ′, and the Ribbon. The negative sign on the second term in Eq. B.7 come from

switching the outward da to inward da such that the integration path along the closed loops

P and P ′ are in the same direction. Solving Eq. B.7 for
∫

F ′
B(t+ dt) · da and substituting

it into Eq. B.3 yields:

dΦ =

∫

F

B(t+ dt) · da+

∫

Ribbon

B(t+ dt) · da−
∫

F

B(t) · da,(B.8)

= dt

∫

F

∂B

∂t
· da+

∫

Ribbon

B(t+ dt) · da,(B.9)

where for infinitesimal dt, B(t + dt) − B(t) = ∂B
∂t dt. The area element for the Ribbon is

da = (v × ds)dt (directed outward), which is the area an element ds of the closed loop P

sweeps out during a time dt. To first order in dt, and using the vector identity B · (v×ds) =

−(v ×B) · ds, Eq. B.9 becomes:

(B.10) dΦ = dt

∫

F

∂B

∂t
· da− dt

∫

P

(v ×B) · ds,
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where P is the closed loop around surface F . Now, by Stokes Theorem:

(B.11)

∫

P

A · ds =
∫

F

(∇×A) · da,

where F is a surface bounded by loop P . Therefore, Equation B.10 becomes:

(B.12)
dΦ

dt
=

∫

F

∂B

∂t
· da−

∫

F

∇× (v×B) · da.

Substituting in the Induction Equation for the infinite conductivity limit (or Rm ≫ 1), this

equation becomes:

(B.13)
dΦ

dt
=

∫

F

∇× (v×B) · da−
∫

F

∇× (v ×B) · da = 0,

thereby proving that the magnetic flux through any closed loop (or surface bounded by this

closed loop) moving with the fluid remains constant, as if the magnetic field lines are frozen

into the fluid. Therefore, the concept of a magnetic flux tube is often invoked in MHD to

refer locally to both the bundle of concentrated magnetic flux and the plasma it contains.

The flux tube concept is useful because of (1) the solenoidal nature of magnetic fields, and

(2) the frozen-in condition of the magnetic field in a plasma of high electrical conductivity.
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APPENDIX C

Derivation of the Thin Flux Tube Equations

In this Appendix chapter, I will derive the thin flux tube equations as they appear in

Chapter 2 using Gaussian units. Particularly, I will focus on the equation of motion, energy,

and the equation describing the rate of change of the magnetic field with respect to the

density of the flux tube, sometimes referred to as the Walén Equation.

3.1. Equation of State and Instantaneous Pressure Balance

The equation of state, relating the flux tube pressure to density and temperature, is

given by the ideal gas equation as discussed in Appendix section 1.3.3. The time required

for lateral pressure balance between the flux tube and its surrounding environment is given

by (e.g. Spruit 1981a):

(C.1) t ∼
d

√

v2A + c2s
,

where d is the flux tube diameter, vA = B/(4πρ)1/2 and cs = (γP/ρ)1/2 are respectively the

Alfvén and sound speeds in the external plasma environment, and γ = 5/3 is the adiabatic

constant. At the base of the convection zone, a typical sound speed is cs ∼2.2×107 cm

s−1. Assuming a flux tube of B0 = 100 kG, the Alfvén speed is vA ∼ 6.8×104 cm s−1 and

the diameter of such a flux tube with Φ = 1022 Mx is d ∼ 3.6×108 cm. This results in a

time of t ∼ 20 seconds in order for conditions of lateral pressure balance to be achieved.

Throughout most of the convection zone, this time is small compared to other relevant time

scales associated with the flux tube (e.g. rise time through the convection zone, ∼ months)
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and convective environment (e.g. convective turnover time scale, ∼ one month). As a result,

in the thin flux tube approximation, an instantaneous lateral pressure balance between the

tube and the external plasma environment is assumed:

(C.2) Pe = P +
B2

8π
,

where Pe is the pressure of the external plasma environment, P is the flux tube internal gas

pressure, and the term B2/8π is themagnetic pressure, or magnetic energy density associated

with the magnetic field inside the flux tube.

3.2. Equation of Motion

We begin with the MHD equation of motion (force per unit volume) for an electrically

neutral, non-rotating plasma:

(C.3) ρ
dv

dt
= −∇P + ρg +

J

c
×B,

where ρ is the plasma density, v is the velocity vector, P is the plasma pressure assumed to

be scalar, g is the gravitational acceleration, J is the current density, and B is the magnetic

field of a Lagrangian flux tube element, each of which are a function of arc length s along

the flux tube and time t. The terms on the right hand side of the equation are respectively:

the plasma pressure gradient, gravitational force, and Lorentz force.

We eliminate the current density J from the Lorentz force by replacing it with Eq. A.8

such that:

J

c
×B =

1

4π
(∇×B)×B = −

1

4π
(B× (∇×B)).(C.4)
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Figure C.1. Flux tube coordinate system, showing the unit vector l tangent
to the flux tube, and the curvature vector k. Figure taken from Spruit (1981b).

Using the vector identity 1
2∇(A ·A) = A× (∇×A) + (A ·∇)A, the Lorentz force equation

becomes:

J

c
×B = −

1

4π

(

1

2
∇(B ·B)− (B ·∇)B

)

,(C.5)

= −
1

8π
∇B2 +

1

4π
(B ·∇)B.(C.6)

The first term on the right side of Eq. C.6 represents the effect of a magnetic pressure, acting

to compress the plasma. The second term represents the effect of a tension of magnitude

B2/4π directed parallel to B. Substituting the Lorentz force as derived in Equation C.6 into

Equation C.3:

(C.7) ρ
dv

dt
= −∇

(

P +
B2

8π

)

+
1

4π
(B ·∇)B+ ρg.

We introduce a local cylindrical coordinate system (r,φ,l) oriented along the flux tube as

shown in Figure C.1, with the position vector r of each flux tube element a function of arc

length s and time t only. The magnetic field of the flux tube is untwisted such that Bφ = 0,

and Br is negligible because the flux tube is so thin, therefore the local magnetic field is
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B = Bl, where l is the unit vector tangential to the flux tube. Vectors l and the tube’s

curvature vector k are given by:

l =
∂r

∂s
,(C.8)

k =
∂2r

∂s2
=

∂l

∂s
.(C.9)

Using these relations, next we can rewrite the second term in Eq. C.7 using l and k such

that:

(B ·∇)B = (Bl ·∇)Bl = B
∂(Bl)

∂s
,(C.10)

= B2 ∂l

∂s
+Bl

∂B

∂s
,(C.11)

where in this coordinate system using Lagrangian elements whose properties are a function

of arc length and time only, l ·∇ = ∂
∂s . The second term in Equation C.11 can also be written

as B ∂B
∂s = 1

2
∂B2

∂s , and k = ∂l
∂s , therefore:

(C.12) (B ·∇)B = B2k+
1

2

∂B2

∂s
l,

and Equation C.7 becomes:

(C.13) ρ
dv

dt
= −∇

(

P +
B2

8π

)

+
B2

4π
k+

∂

∂s

(

B2

8π

)

l + ρg.

The first term in Equation C.13 can be replaced with Pe according to the condition of

instantaneous pressure balance as given in Equation C.2. Assuming the external plasma

environment is in hydrostatic pressure balance, as is the case in stellar interiors, then ∇Pe =
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ρeg. As such, Equation C.13 then becomes:

(C.14) ρ
dv

dt
= −(ρe − ρ)g +

B2

4π
k+

∂

∂s

(

B2

8π

)

l,

where the first term on the right hand side now represents the net force per unit volume the

flux tube experiences due to buoyancy. This is the equation of motion of a flux tube in a

non-rotating system without the inclusion of a drag force term.

Mass elements moving in a rotating system will be subject to the Coriolis force, repre-

sented here as −2ρ(Ω × v), where Ω is the angular velocity of the rotating body (i.e. the

Sun). Additionally, there is an outward directed centrifugal force produced by the rotating

body that counteracts the gravitational force due to the rotating body’s mass. This cen-

trifugal acceleration results in a correction to the acceleration due to gravity g such that

g → g−Ω× (Ω× r). This term is often referred to as the effective gravity. Accounting for

a rotating reference system, the equation of motion of the flux tube is now written as:

(C.15) ρ
dv

dt
= −2ρ(Ω0 × v)− (ρe − ρ)[g −Ω0 × (Ω0 × r)] +

∂

∂s

(

B2

8π

)

l+
B2

4π
k.

The final term that needs to be accounted for is the drag force per unit volume that

the flux tube experiences as it travels through the turbulent convective envelope. Following

Batchelor (1967), the drag force experience by a non-streamlined object (i.e. bluff body)

moving through a fluid with a large Reynolds number Re > 100, where the Reynolds number

Re = ℓ0v0/ν gives the ratio of inertial effects to viscous effects and ν is the fluid viscosity, is

given by:

(C.16) FD =
1

2
CDρev

2
⊥d,
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where d is the diameter of the flux tube, v⊥ is the perpendicular component of velocity of

the flux tube with respect to the surrounding plasma, and CD is the drag coefficient which

is ∼1 for large Reynolds numbers. Assuming that the magnetic flux Φ of the tube remains

constant such that Φ = BA, where A = πr2 is the cross-sectional area of the flux tube and

r is the flux tube radius, the drag force per unit volume on the flux tube becomes:

(C.17) fD =
CDρe|(v− ve)|⊥(v − ve)⊥

(πΦ/B)1/2
.

In a rotating reference system, for a flux tube evolving in a turbulent convecting plasma,

the equation of the motion of the flux tube under the thin flux tube approximation becomes:

ρ
dv

dt
= −2ρ(Ω0 × v)− (ρe − ρ)[g −Ω0 × (Ω0 × r)] +

∂

∂s

(

B2

8π

)

l+
B2

4π
k

−
CDρe|(v − ve)|⊥(v − ve)⊥

(πΦ/B)1/2
.(C.18)

3.3. Walén Equation

The Walén Equation combines the continuity equation and Induction equation in the

limit of infinite conductivity to describe the rate of change of the magnetic field with respect

to the density, with the equations in their Lagrangian derivative form given respectively as:

dρ

dt
= −ρ(∇ · v),(C.19)

dB

dt
= ∇× (v ×B) + (v ·∇)B.(C.20)
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Specifically, we want to calculate dB
dt :

d

dt

(

B

ρ

)

=
1

ρ

dB

dt
−

B

ρ2
dρ

dt
,(C.21)

=
1

ρ

[

∇× (∇×B) + (v ·∇)B

]

+
B

ρ
(∇ · v),(C.22)

where Equations C.19 and C.20 have been substituted in Equation C.22. Using the vector

identity ∇× (v×B) = (B ·∇)v− (v ·∇)B+v(∇ ·B)−B(∇ ·v) in Equation C.22 and the

fact that ∇ ·B = 0, the equation becomes:

d

dt

(

B

ρ

)

=

(

B

ρ
·∇

)

v,(C.23)

which is often referred to as the Walén Equation. In the thin flux tube formulation, B = Bl

such that:

d

dt

(

Bl

ρ

)

=

(

Bl

ρ
·∇

)

v,(C.24)

B

ρ

d

dt
(l) + l

d

dt

(

B

ρ

)

=
B

ρ
(l ·∇)v.(C.25)

To remove the unit vector l from the Lagrangian derivative of B/ρ, we can take the dot

product of both sides with l. As l · l = 1, and l · d(l)
dt = 0 because the rate of change of a unit

vector is always perpendicular to itself, the equation becomes:

d

dt

(

B

ρ

)

=
B

ρ
l · (l ·∇)v,(C.26)

=
B

ρ
l ·

∂v

∂s
,(C.27)
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where l ·∇ = ∂
∂s . The right hand side of the equation can also be rewritten in the following

way:

∂

∂s
(v · l) = v ·

∂l

∂s
+ l ·

∂v

∂s
,(C.28)

l ·
∂v

∂s
=

∂

∂s
(v · l)− v ·

∂l

∂s
,(C.29)

=
∂

∂s
(v · l)− v · k,(C.30)

where ∂l
∂s = k. Finally, the thin flux tube equation describing the Lagrangian derivative of

B/ρ can be written as:

(C.31)
d

dt

(

B

ρ

)

=
B

ρ

[

∂(v · l)
∂s

− v · k
]

.

3.4. Energy Equation

A general form of the energy equation for MHD is given as:

1

ρ

dρ

dt
=

1

γP

dP

dt
−∇ad

ρT

P

dS

dt
.(C.32)

If the flux tube does not evolve adiabatically, dS/dt is non-zero. As discussed in more

detail in Chapter 6, radiative diffusion is a significant component of flux tube heating in

approximately the lower third of the convection zone. The heating rate due to radiative

diffusion is given by:

(C.33) ρT
dS

dt
=

dQ

dt
≃ −Ftot

d

dr

(

∇e

∇rad

)

,
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where the total energy flux Ftot = L/(4πr2), with L being the total solar luminosity, the

radiative equilibrium temperature gradient is ∇rad, and the temperature gradient of the

background plasma is ∇e.

In the case where the flux tube evolves adiabatically, as in Chapters 3, 4, and 5, dS/dt =

0. Under adiabatic assumptions, there is no heat transfer between the flux tube and its

surrounding environment, and P/ργ remains a constant, where γ is the ratio of specific

heats. In this case, the energy equation is simply:

(C.34)
1

ρ

dρ

dt
=

1

γP

dP

dt
.
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3.5. List of Thin Flux Tube Equations

ρ
dv

dt
= −2ρ(Ω0 × v)− (ρe − ρ)[g −Ω0 × (Ω0 × r)] +

∂

∂s

(

B2

8π

)

l+
B2

4π
k

−Cd
ρe|(v− ve)⊥|(v− ve)⊥

(πΦ/B)1/2
,(C.35)

(C.36)
d

dt

(

B

ρ

)

=
B

ρ

[

∂(v · l)
∂s

− v · k
]

,

(C.37)
1

ρ

dρ

dt
=

1

γP

dP

dt
−∇ad

ρ

P
T
dS

dt
,

(C.38) P =
ρRT

µ
,

(C.39) P +
B2

8π
= Pe,
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APPENDIX D

The Schwarzschild Criterion for Convective

Stability/Instability and the Brunt-Väisälä

Frequency

There exists a limit to the temperature gradient ∇e inside a star if stability of the

plasma environment is to be maintained, referred to as the Schwarzschild criterion, which

we will derive here. Consider a plasma parcel in a vertically stratified ideal gas environment

that initially has the same density ρ1, temperature T1, and pressure P1 of its surroundings

such that it is in neutral buoyancy. The parcel is then displaced in the radial direction a

distance r upward. We assume that the plasma parcel’s motion is sufficiently fast such that

it evolves adiabatically, but still sufficiently slow such that its pressure adjusts to that of the

external plasma environment (P ′ = P ). At the displacement distance r, the external plasma

environment has density ρ2, pressure P2, and temperature T2. The plasma parcel now has

density of ρ′2, pressure P2, and temperature T ′
2. The net buoyancy force FB on the parcel

per unit volume is then (assuming the acceleration due to gravity g acts downward):

(D.1) FB = −g(ρ′2 − ρ2),

At the location of the vertical displacement r, the density of the external plasma envi-

ronment is given by:

(D.2) ρ2 = ρ1 +
dρe
dr

r,
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where the subscript e denotes the gradient is of the external plasma environment. The

density of the plasma parcel after a displacement r is given by:

(D.3) ρ′2 = ρ1 +
dρi
dr

r,

where the subscript i denotes the gradient is of the plasma parcel’s density. Since the plasma

parcel evolves adiabatically, we take the derivative of P1ρ
−γ
1 = C with respect to r, where C

is a constant and γ is the ratio of specific heats, to obtain an expression for dρi/dr:

(D.4)
dρi
dr

=
1

γ

ρ1
P1

dPe

dr
,

which is written in terms of the external pressure gradient, as we assume the plasma par-

cel evolves such that it remains in pressure equilibrium. Combing Equations D.1-D.4 the

buoyant force of the parcel can now be written as:

(D.5) FB = −gρe

(

1

γ

1

Pe

dPe

dr
−

1

ρe

dρe
dr

)

r,

where the subscript 1 has been replaced with e to put the equation in terms of the thermo-

dynamic quantities of the external plasma environment.

The solutions to the equation:

(D.6) FB = ρe
d2r

dt2
= −ρeN

2r,

where N is referred to as the Brunt-Väisälä frequency:

(D.7) N2 = g

(

1

γ

1

Pe

dPe

dr
−

1

ρe

dρe
dr

)

,
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admit both oscillatory (stable) and unstable solutions to r depending on the sign of N2. If

N2 > 0, then the solutions to Equation D.6 are of form sin (Nt) or cos (Nt), representing

oscillatory motion such that displacements of r are stable. However, if N2 < 0, solutions are

of the form e±
√

|N2|t, which represent run-away or unstable motion, resulting in convective

instabilities.

For convective stability such that N2 > 0:

(D.8) 0 <

(

1

γ

ρ

P

dP

dr
−

dρ

dr

)

,

where the subscript e has been dropped. For an ideal gas P ∝ ρT , therefore:

(D.9)
dρ

dr
=

ρ

P

dP

dr
−

ρ

T

dT

dr
.

After combining Equations D.8 and D.9, and performing some algebra, the criterion for

convective instability becomes:

(D.10)
dT

dr
>

(

γ − 1

γ

)

T

P

dP

dr
.

Both sides of Equation D.10 are negative, as temperature and pressure decrease with increas-

ing radius in a star. Applying absolute values to both sides of the equation, the conditions

necessary for convective stability are:

∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

<

(

γ − 1

γ

)

T

P

∣

∣

∣

∣

dP

dr

∣

∣

∣

∣

,(D.11)

∇e < ∇ad,(D.12)
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where ∇e = d lnT/d lnP is the actual temperature gradient of the plasma environment and

∇ad = (γ − 1)/(γ) is the adiabatic temperature gradient as derived in Equation A.25. A

similar derivation can be used to show that convective instability ensues when ∇e > ∇ad.
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APPENDIX E

Numerical Scheme and Explicit Formulae for the

Thin Flux Tube Numerical Model

The thin flux tube code solves explicitly for eight dependent variables r(u, t), v(u, t),

B(u, t), and ∆ρ(u, t), each of which is discretized in terms of the fractional arc length of the

flux tube u, where r is a position vector and v is a velocity each with x, y, and z components.

The set of thin flux tube equations listed in C.35-C.39 are used to derive explicit formulae

to determine the time evolution of variables r, v, ∆ρ, and B, which are each a function of

time and arc length along the flux tube. However, the equations as they stand in C.35-C.39

are not the explicit equations used for the thin flux tube numerical model. This Appendix

chapter describes the explicit equations solved in the thin flux tube model code.

5.1. Explicit Equation for the Thin Flux Tube Magnetic Field

To solve for the magnetic field B and density of the flux tube ρ, Equation C.36 must

be rearranged such that each quantity is computed in its own equation. To arrive at an

equation for dB/dt, first we start by considering Equation C.36, noting that:

(E.1)
ρ

B

d

dt

(

B

ρ

)

=
d lnB

dt
−

d ln ρ

dt
,

such that:

(E.2)
d lnB

dt
−

d ln ρ

dt
=

[

∂(v · l)
∂s

− v · k
]

.
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The derivative d ln ρ/dt can also be written as:

d ln ρ

dt
=

1

ρ

dρ

dP

dP

dt
(E.3)

=
1

ρ

dρ

dP

(

dPe

dt
−

2B

8π

dB

dt

)

=
1

ρ

dρ

dP

(

dPe

dt
−

2B2

8π

d lnB

dt

)

,(E.4)

and dP/dt has been replaced by the term in the parenthesis, which is a result of taking the

time derivative of Equation C.39.

The external pressure Pe comes from a solar model, and is only a function of radius

r. Additionally, in a state of hydrostatic equilibrium, dPe/dr = −ρeg. As a result, the

derivative dPe/dt is also:

dPe

dt
=

dPe

dr

dr

dt
= −vrρeg.(E.5)

Substituting Eq. E.5 into Eq. E.4, and then Eq. E.4 into Eq. E.2, the equation describing

the time evolution of the magnetic field can be written as:

(E.6)
dB

dt
= B

[

−vrg
ρe
ρ

(

dρe
dPe

+ α

)

+

(

∂vl
∂s

− v · k
)][

1 +
B2

4πρ

(

dρe
dPe

+ α

)]−1

,

where

α ≡
dρ

dP
−

dρe
dPe

.(E.7)

It is numerically advantageous to calculate α as it tracks the difference in dρ/dP and dρe/dPe,

which are both very close to each other in magnitude. The term α can be rewritten in a form

which takes advantage of the external quantities from a solar structure model, ∆ρ calculated
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through Eq. E.14, and P which is easily obtained from the condition of instantaneous

pressure balance:

(E.8) α =
dρ

dP
−

dρe
dPe

=
1

γ

ρ

P
−

dρe
dPe

= −
N2

g2
+

1

γ

(

B2

8πPe
−

∆ρ

ρe

)

ρe
P
,

where,

dρe
dPe

=
1

γ

ρe
Pe

+
N2

g2
,(E.9)

N2 = g

(

1

γ

d lnPe

dr
−

d ln ρe
dr

)

.(E.10)

The quantity N is referred to as the Brunt-Väisälä frequency (see Appendix D), which is

the frequency at which a displaced plasma parcel in a gravitationally stratified atmosphere

will oscillate. Also known as the Schwarzschild criterion for convective stability, if N2 > 0,

the parcel will execute simple harmonic motion with frequency N . However, if N2 < 0,

convective instability ensues, which is the case for stellar convection zones.

5.2. Equation for the Flux Tube Density Deficit ∆ρ

For flux tubes in the solar convection zone, values of the flux tube density ρ and the

external density ρe are very close to each other. To avoid subtracting two very small density

values when computing the buoyancy force (ρe−ρ)/g, the quantity ∆ρ = ρe−ρ is computed

instead to maintain numerical accuracy. (In the convection zone, ∆ρ ≪ ρe and B2/8π ≪ Pe.)

Obtaining the value for ρ is easily done if ∆ρ is known from calculations, and ρe comes from
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the 1D solar structure model. To arrive at an equation for d∆ρ/dt, we start with:

d∆ρ

dt
=

dρe
dt

−
dρ

dt
,(E.11)

=
dρe
dPe

dPe

dt
−

dρ

dP

dP

dt
,(E.12)

= ρegvr

(

dρ

dP
−

dρe
dPe

)

+
2B2

8π

dρ

dP

[

−ρegvr
ρ

dρ

dP
+

(

∂vl
∂t

− v · k
)]

(E.13)

×
[

1 +
1

ρ

2B2

8π

dρ

dP

]−1

,

where between Equations E.12 and E.13, the relation E.5, the time derivative of Eq. C.39,

and Eq. E.6 were used.

After performing some algebra and applying relation E.7, Eq. E.13 becomes the La-

grangian time derivative of ∆ρ we use in the thin flux tube code:

(E.14)

d∆ρ

dt
=

[

vrρeg

[

α−
B2

4πρ

(

dρe
dPe

+ α

)

dρe
dPe

]

+
B2

4π

(

∂vl
∂s

− v · k
)(

dρe
dPe

+ α

)][

1+
B2

4π

(

dρe
dPe

+α

)]−1

.

5.3. Applying the Lagrangian Time Derivative

The derivatives on the left hand side of Equations C.35-C.39 are actually the Lagrangian

time derivative of the flux tube physical quantities, also referred to as the material or con-

vective derivative, which follow the evolution of a mass element’s properties in time as it

moves along a trajectory in a velocity field. As time goes on, motion of the mass elements

along the flux tube will change their distribution, leaving some portions of the flux tube

under-resolved spatially. Therefore in the TFT numerical calculations, we follow the time

evolution of physical quantities at mesh points that are always maintained at a uniform

spacing in arc length along the tube, even as the tube shape is changing. To this end, we
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evaluate the time derivatives following the uniformly spaced mesh points (∂A/∂t)u, where u

denotes the position of each mesh point along the tube in terms of the fractional arc length

such that u ≡ s/L, where L is the total length of the tube. Let A(u, t) denote any one of

the dependent variables, then the Lagrangian derivative is given by:

dA

dt
=

∂A

∂t

⏐

⏐

⏐

⏐

u

+ v ·∇A,(E.15)

=
∂A

∂t

⏐

⏐

⏐

⏐

u

+
∂A

∂u

⏐

⏐

⏐

⏐

t

du

dt
,(E.16)

where the symbol v is the rate of change of position of the Lagrangian element, represented

here as du/dt.

The first term on the right hand side of Eq. E.16 is the time derivative we seek to solve

numerically. The derivative (∂A/∂u)t denotes the variation of A(u, t) along the tube, and

is given by a second order finite difference approximation as discussed in Section 5.4. The

time derivatives dA/dt for each physical quantity can be obtained from the thin flux tube

equations as given specifically by Eq. C.35 for v, Eq. E.6 for B, Eq E.14 for ∆ρ, and the

following for r:

(E.17)
dr

dt
= v.

The derivative du/dt describes the change of position of each mass element in terms of

the fractional arc length along the flux tube, which can be derived by considering Equation
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C.36 and the fact that:

du

dt
=

d

dt

(

s

L

)

,(E.18)

=
1

L

ds

dt
−

u

L

dL

dt
.(E.19)

Turning our attention to Eq. C.36, where δm is the mass and δs is the length of a

single mass element, the quantity B/ρ = (Φ δs)/(π δm). Considering that dΦ/dt = 0 and

dδm/dt = 0, the derivative of B/ρ of a Lagrangian element can be written as:

(E.20)
d

dt

(

B

ρ

)

=
d

dt

(

Φδs

πδm

)

=
Φ

πδm

dδs

dt
,

and Eq. C.36 can then be rewritten as:

(E.21)
dδs

dt
=

(

∂vl
∂s

− v · k
)

δs.

The derivatives ds/dt and dL/dt can then be computed as follows, where δu = δs/L, vl(u)

is the parallel velocity of the mass element at fractional arc length u along the tube, and

vl(0) and vl(1) are the parallel velocities of the mass elements at the beginning of the tube

where u = 0 and the end of the tube where u = 1:

ds

dt
=

∫ s

0

dδs

dt
= vl(u)− vl(0)− L

∫ u

0

v · kδu,(E.22)

dL

dt
=

∫ L

0

dδs

dt
= vl(1)− vl(0)− L

∫ L

0

v · kδu.(E.23)

Substituting Equations E.22 and E.23 into Equation E.19, and noting that due to the periodic

boundary conditions of the flux tube vl(0) = vl(1), the equation for du/dt used in the thin
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flux tube numerical code is:

(E.24)
du

dt
=

1

L
[vl(u)− vl(0)]−

∫ u

0

v · kδu+ u

∫ L

0

v · kδu.

The integrals in the above equation are calculated using the Trapezoid Rule, which will be

discussed in Section 5.4.

To summarize, the system of equations we solve numerically, following (∂A/∂t)u the time

evolution of the desired physical quantities at the uniformly spaced mesh points along the

flux tube, is given by:

∂r

∂t

⏐

⏐

⏐

⏐

u

= v −
∂r

∂u

⏐

⏐

⏐

⏐

t

du

dt
(E.25)

∂v

∂t

⏐

⏐

⏐

⏐

u

= −2(Ω0 × v)−
(ρe − ρ)

ρ
[g −Ω0 × (Ω0 × r)] +

1

ρ

∂

∂s

(

B2

8π

)

l +
B2

4πρ
k

−Cd
ρe|(v − ve)⊥|(v − ve)⊥

ρ(πΦ/B)1/2
−

∂v

∂u

⏐

⏐

⏐

⏐

t

du

dt
,(E.26)

∂∆ρ

∂t

⏐

⏐

⏐

⏐

u

=

[

vrρeg

[

α−
B2

4πρ

(

dρe
dPe

+ α

)

dρe
dPe

]

+
B2

4π

(

∂vl
∂s

− v · k
)(

dρe
dPe

+ α

)]

×
[

1 +
B2

4π

(

dρe
dPe

+ α

)]−1

−
∂∆ρ

∂u

⏐

⏐

⏐

⏐

t

du

dt
(E.27)

∂B

∂t

⏐

⏐

⏐

⏐

u

= B

[

−vrg
ρe
ρ

(

dρe
dPe

+ α

)

+

(

∂vl
∂s

− v · k
)]

×
[

1 +
B2

4πρ

(

dρe
dPe

+ α

)]−1

−
∂B

∂u

⏐

⏐

⏐

⏐

t

du

dt
.(E.28)

5.4. Numerical Algorithms

As the ASH simulation is computed separately from the thin flux tube simulation, the

velocity information needs to be extracted from ASH at each TFT time step. In order to

provide the most accurate convective velocities ve in Eq. E.26 at the spatial position of each
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flux tube element for each time step, the convective flows from ASH (computed at 12 hour

intervals) in the x, y, and z directions are interpolated in four dimensions: three spatial and

one time dimension. The result of the interpolation routine is subsequently the value ve used

for the external flow in Eq. E.26.

The partial differential equations given in E.25 - E.28 are discretized in u by assuming

that each dependent variable Ak(u, t) - (r(u, t), v(u, t), B(u, t), ∆ρ(u, t)) is defined on a

uniform mesh of N points in u such that Ak,j(u, t) = Ak(uj, t), where uj = (j − 1)/(N − 1)

for j = 1...N .

The spatial derivative (∂A/∂u)t is calculated using a second-order, centered finite differ-

ence formula:

∂Ak,j

∂u

⏐

⏐

⏐

⏐

t

=
Ak,j+1(t)−Ak,j−1(t)

2∆u
,(E.29)

where ∆u = 1/(N − 1).

The integrals in Eq. E.24, where fk(uj, t) = v · k, are calculated using the Trapezoid

Rule for numerical integration:

(E.30)

∫ b

a

fk,jdu =
b− a

N − 1

N
∑

j=2

[

1

2
fk,j−1(t) +

1

2
fk,j(t)

]

,

recalling that the flux tube boundary conditions are periodic.

The solutions (dependent variables) to the set of differential equations given by Equations

E.25-E.28 are advanced in time using the fourth-order Runge-Kutta method as presented by

Press et al. (1992). The time step ∆t is given by a modified Courant-Friedrichs-Lewy (CFL)

270



condition:

(E.31) ∆t = 0.1 MIN

(

∆s

max(|va|, |vl|)
,

∆u

max(|du/dt|)

)

,

where ∆s is the grid point spacing in arc-length, ∆u = ∆s/L, and MIN(A,B) is the minimum

value of the two arguments A or B. In the above relation, va is the Alfvén speed, vl is the

velocity of the flux tube mass elements in the direction parallel to the tube, and du/dt is

the change in position of each mass element in terms of the fractional arc length along the

flux tube. The CFL condition is required such that the time step interval is smaller than the

time it takes information to travel with a characteristic speed given by the denominator of

A or B to adjacent grid points in a spatial grid. If the time step is greater than the time it

takes information to travel to adjacent points in a spatial grid, the information that left from

the previous time step will not have made it to its spatial destination before the next time

step is computed, and so divergence, rather than convergence, of the solution will occur.
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APPENDIX F

Model Parameters

Table F.1. Parameters used in the TFT+ASH model (Column 1), name of
each parameter (Column 2), what each parameter is a function of (Column 3),
and the method of calculation for each parameter (Column 4). For a compre-
hensive description of the parameters, see Chapter 2. The ASH simulation for
a solar-like star rotating at the current solar rate was performed by Dr. Mark
Miesch of High Altitude Observatory. The 5Ω⊙ ASH simulation was performed
by Dr. Benjamin Brown of (at the time of computation) the University of Wis-
consin - Madison. KEY: TFT - Calculated by the Thin Flux Tube code. ASH
- Calculated by the Anelastic Spherical Harmonic code. SSM - Calculated by
a 1D solar structure model (Christensen-Dalsgaard et al. 1996). Prescribed -
These values are explicitly input into the code.

Parameter Name Function of: Method of
Calculation:

r position vector (s, t) TFT
v velocity vector (s, t) TFT
B magnetic field (s, t) TFT
∆ρ density (ρe − ρ) (s, t) TFT
ρ density (s, t) TFT
P pressure (s, t) TFT
T temperature (s, t) TFT
l tangential unit vector (s, t) TFT
k curvature vector (s, t) TFT
ve external velocity field (r, θ,φ, t) ASH
ρe external density (r) SSM
Pe external pressure (r) SSM
Te external temperature (r) SSM
µ mean molecular weight (r) SSM
δ adiabaticity (∇e −∇ad) (r) SSM

∇ad adiabatic temperature gradient (r) SSM
S entropy per unit mass (r) SSM
Φ magnetic flux constant Prescribed
B0 initial magnetic field constant Prescribed
θ0 initial latitude constant Prescribed
Ω0 rotation rate constant Prescribed
Cd drag coefficient constant Prescribed
γ ratio of specific heats constant Prescribed
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APPENDIX G

Flux Tube Ensembles For Chapters 3, 4, and 6

The thin flux tube model as outlined in Chapter 2, and Appendices C and E describes

how one isolated, thin flux tube evolves subject to the influences of solar-like convective flows.

For each simulation, we are able to prescribe the initial magnetic field strength B0, magnetic

flux Φ, and initial latitude θ0. We have chosen to use seven magnetic field strength values B0

of 15, 30, 40, 50, 60, 80, and 100 kG. For each magnetic field strength B0, we also perform

simulations where the magnetic flux Φ is 1020, 1021, and 1022 Mx. Additionally, for each B0,

Φ combination, we perform simulations where we vary the initial latitude of the flux tube

θ0 from 1◦ to 40◦, in 2◦ and 5◦ increments for both the Northern and Southern hemispheres

of our simulation. This equates to 24 flux tube simulations in each hemisphere per B0, Φ

combination. In order to sample the entire timespan of our ASH convection simulation,

which has a duration of ∼3 years, we perform multiple simulation groups. The flux tubes

comprising one group are released at the base of the convection zone at the same starting

time, although they do not interact with each other (i.e. are isolated) and are allowed to

evolve until some portion of the flux tube reaches the simulation upper boundary. The

flux tube release times are arbitrary, but are at least separated by the convective turnover

timescale of the ASH convection simulation, which is ∼30 days.

Table G.1 shows the total number of flux tube simulations used for the statistics generated

in Chapters 3 and 4, where the flux tube is allowed to evolve adiabatically. For these

chapters, we have performed seven simulation groups per B0 and Φ, for a total of 336 flux

tube simulations per B0, Φ combination. However, not every flux tube simulation results
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in a flux tube that reaches the simulation upper boundary. Especially at weaker magnetic

field strengths, it is the case that the magnetic field along some portion of the flux tube may

reach zero, and the flux tube’s rise toward the surface is terminated. This occurs when the

internal pressure of the flux tube becomes equal to the pressure of the background fluid. By

the conditions of instantaneous pressure balance (Eq. 2.5), the magnetic field of the flux tube

must then necessarily become zero. In Table G.1 and the statistics generated in Chapters

3 and 4, we only use simulation information from flux tubes that do reach the simulation

upper boundary.

Table G.2 shows the total number of flux tubes simulations used for the statistics gen-

erated in Chapter 6, where the flux tube is allowed to evolve with the influence of radiative

heating. Similar to Chapters 3 and 4, we have performed seven simulation groups per B0, Φ

combination, only using information from flux tubes that reach the simulation upper bound-

ary without the magnetic field at some point dropping to zero. The seven simulation groups

correspond to the same starting time as those used in Chapters 3 and 4.
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Table G.1. Number of flux tubes simulations used in Chapters 3 and 4, where
the flux tube evolves adiabatically. The total number of flux tube simulations
considered for adiabatically evolving flux tubes is 6927.

B0 (kG) 1020 Mx 1021 Mx 1022 Mx
100 336 336 336
80 336 334 334
60 334 336 336
50 332 336 335
40 331 332 335
30 331 333 327
15 312 297 308

total 2312 2304 2311

Table G.2. Number of flux tubes simulations used in Chapter 6, where the
flux tube evolves with the influence of radiative heating. The total number of
flux tube simulations considered for flux tubes evolving with the influence of
radiative heating is 6879.

B0 (kG) 1020 Mx 1021 Mx 1022 Mx
100 334 335 336
80 336 334 334
60 334 335 334
50 334 334 334
40 334 329 327
30 331 327 322
15 296 293 306

total 2299 2287 2293
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APPENDIX H

A Note on Fitting Parameter Uncertainties and

Confidence Levels

8.1. Uncertainties on Fitting Parameters

We perform a least-squares fitting method to obtain the slope and y-intercept parameters

of a function fit to our emergence latitude / tilt angle data pairs (see e.g. Bethea, Duran,

and Boullion 1985; Press et al. 1992). To obtain the uncertainties on the fit parameters,

we will consider the propagation of errors. This Section describes the specifics of the fitting

parameters following Methods 1, 2, and 3 in Section 4.3.1.1-4.3.1.3 of the dissertation. We

have assumed that our emergence latitude / tilt angle data pairs are already a good fit to

our choice of fitting functions.

8.1.1. Joy’s Law Fit: Method 1. In Section 4.3.1.1, we wish to fit the tilt angle α as

a function of latitude θ following the equation: α = mθ (y = mx), where m is the slope of

the best fit line. To obtain a value for the parameter m, we start by minimizing the following

function with respect to m:

(H.1) χ2 =
N
∑

i=1

(yi −mxi)
2,

where N is the number of data point pairs. Taking the derivative of this function with

respect to m, and then solving for m, we obtain the explicit equation used to calculate the
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parameter m:

∂χ2

∂m
= 0 = −2

N
∑

i=1

xi(yi −mxi),(H.2)

0 = −2
N
∑

i=1

xiyi + 2m
N
∑

i=1

x2
i ,(H.3)

(H.4)

therefore,

(H.5) m =

∑N
i=1 xiyi

∑N
i=1 x

2
i

.

For the fit following Method 1, we have used units of degrees for both α and θ.

To obtain the variance of any function f , σ2
f , we consider the propagation of errors,

where:

(H.6) σ2
f = σ2

N
∑

i=1

(

∂f

∂yi

)2

.

For our purposes, σ2 is the variance of yi about the new best fit equation y(xi) using the

value of m calculated above:

(H.7) σ2 =
1

N

N
∑

i=1

[yi − y(xi)]
2.

Using the value of m calculated above in Eq. H.5, the derivative of m with respect to yi is:

(H.8)
∂m

∂yi
=

xi
∑N

i=1 x
2
i

.
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Therefore the variance of m is given by:

(H.9) σ2
m = σ2

N
∑

i=1

(

xi
∑N

i=1 x
2
i

)2

.

The uncertainty on m in Section 4.3.1.1 is therefore m± σm. This uncertainty σm takes

into account the standard deviation of the data around the best fit line, as well as the

uncertainty of the fit parameter. We have assumed that the equation α = mθ is already a

good fit to the data points.

8.1.2. Joy’s Law Fit: Method 2. To perform the fit of α = msin(θ) (y = msin(x)),

we have minimized the following function with respect to m:

(H.10) χ2 =
N
∑

i=1

[yi −m sin (xi)]
2,

resulting in the following expressions for the parameter m and σ2
m, proceeding in the same

way as in the above Appendix section 8.1.1:

m =

∑N
i=1 yi sin (xi)

∑N
i=1 sin

2 (xi)
,(H.11)

σ2
m = σ2

N
∑

i=1

(

sin (xi)
∑N

i=1 sin
2 (xi)

)2

.(H.12)

For Method 2, we have used units of degrees for α and units of radians for θ. Assuming

θ ∼ sin (θ), a simple comparison can be made between the slopes mA following Method

1 and slopes mB following Method 2 by multiplying mB by π/180◦. The resulting slope

approximation is generally less than the calculated value of mA by at most 0.04. This
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Table H.1. (Column 1) angle θ in units of degrees, (Column 2) angle θ in
units of radian, (Column 3) sin (θ), and (Column 4) percent difference between
Columns 2 and 3. The approximation that θ ∼ sin (θ) is only valid for small
angles.

θ degrees θ radians sin (θ) % Difference
0 0 0 0
10 0.175 0.174 ∼0.5 %
20 0.349 0.342 ∼2 %
30 0.524 0.500 ∼5 %
40 0.698 0.643 ∼8 %
50 0.873 0.766 ∼13 %
60 1.047 0.866 ∼19 %

difference occurs because the approximation θ ∼ sin (θ) only holds for small values of θ.

Table H.1 illustrates how θ and sin (θ) vary as θ increases.

8.1.3. Joy’s Law Fit: Method 3. In Section 4.3.1.3, we fit the tilt angle as a function

of emergence latitude, however we no longer force the best fit equation to pass through the

origin such that: α = mθ+λ (y = mx+ b), where m is the slope and λ (b) is the y-intercept.

To perform this fit, we must minimize the following equation with respect to both m and λ:

(H.13) χ2 =
N
∑

i=1

(yi −mxi − λ)2.

Performing the minimization:

∂χ2

∂m
= 0 = −2

N
∑

i=1

xi(yi −mxi − λ),(H.14)

∂χ2

∂λ
= 0 = −2

N
∑

i=1

(yi −mxi − λ).(H.15)
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Solving the above system of equations, we arrive at the explicit equations for the parameters

of the best-fit line:

m =
N

∑N
i=1 xiyi − (

∑N
i=1 xi)(

∑N
i=1 yi)

N
∑N

i=1 x
2
i − (

∑N
i=1 xi)2

,(H.16)

λ =
(
∑N

i=1 x
2
i )(

∑N
i=1 yi)− (

∑N
i=1 xiyi)(

∑N
i=1 xi)

N
∑N

i=1 x
2
i − (

∑N
i=1 xi)2

.(H.17)

To obtain the variance of σ2
m and σ2

λ, we again consider the propagation of errors following

Equation H.6. The derivatives of m and λ with respect to yi are:

∂m

∂yi
=

Nxi −
∑N

i=1 xi

N
∑N

i=1 x
2
i − (

∑N
i=1 xi)2

,(H.18)

∂λ

∂yi
=

∑N
i=1 x

2
i − xi

∑N
i=1 xi

N
∑N

i=1 x
2
i − (

∑N
i=1 xi)2

.(H.19)

8.2. Confidence Levels

In Chapter 5, we a 99.7% confidence level (3σ) to indicate the significance of our results.

The 3σ confidence level indicates that above this value, we are 99.7% confident the results of

our simulations are not due to a random, non-uniform distribution of flux tube emergence.

This section describes more in detail how we calculate the confidence levels for longitudinal

variability, the average power spectrum, and the average cross-correlations. We have broken

this process into three steps.

(1) For each rotation period and hemisphere, a number of flux tubes N emerge within

±15◦ of the equator. A few of these emergence maps are shown in Figure 5.5. We then

create a corresponding array of N elements for each rotation period and hemisphere of our

simulations with random longitudinal emergence positions from 0◦ to 360◦. We will call these
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Table H.2. (Column 1) rotation period with duration of 26.93 days (Ω0/2π =
429.72 nHz), (Column 2) number of emergence events in the Northern Hemi-
sphere, (Column 3) number of emergence events in the Southern Hemisphere.
Note that there is generally an asymmetry in the number of events in both
hemispheres for the same rotation period.

Rotation Number North Hemisphere South Hemisphere
1 8 10
2 44 45
3 35 49
4 20 28
5 89 60
6 74 53
7 135 83
8 83 96
9 61 97
10 71 79
11 69 97
12 38 46
13 31 22
14 58 34
15 44 41
16 15 20
17 17 22
18 50 45
19 62 29

random-longitude emergence arrays. We are only concerned here with the flux emergence

pattern in longitude, we so do not need to create a random-latitude emergence array. Table

H.2 shows the values of N for each rotation period and hemisphere in the reference frame

rotating at Ω0/2π = 429.72 nHz (26.93 days).

(2) Using the random-longitude emergence arrays, we then perform the variability, power

spectrum, and cross-correlation calculations. In the case of the variability calculations, we

average the resulting variabilities over all 19 rotation periods, calling this value xv. For

the power spectrum calculations, we average the results separately for the Northern and

Southern hemispheres over all 19 rotation periods. As these average power spectrums are

distributions over longitudinal mode m, we then average the resulting power spectrums over
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Table H.3. Confidence level calculations in the reference frame with angular
speed Ω0/2π = 429.72 nHz (26.93 days). (Row 1) variability confidence levels,
(Row 2) average power spectrum confidence levels for the Northern hemi-
sphere, which is the same for the Southern hemisphere when the values are
rounded to the first significant digit, and (Row 3) average cross-correlation con-
fidence levels for the Northern hemisphere following Eq. 5.3. Cross-correlation
confidence levels vary between ∼0.09− 0.10 depending on the hemisphere and
choice of reference frame.

Calculation x̄ σ x̄+ 3σ
Variability 3.17 0.19 3.74

Power Spectrum 0.003 0.001 0.006
Cross-Correlation 0.06 0.01 0.09

m to obtain a singular value, which we will refer to as xp. The average power spectrum of the

random-longitude emergence arrays are flat distributions in m (i.e. with no prominent peaks

for any certain longitudinal mode), so averaging the power spectrum over m is reasonable

so that we can obtain a baseline value for the normalized power above which our results are

significant. We do a similar treatment for the cross-correlation calculations, averaging the

cross-correlation calculations from the random-longitude emergence arrays over 19 rotation

periods and lag, calling this value xc. The average cross-correlation is a spatial distribution,

however the distribution is also flat when random-longitude emergence arrays are used.

(3) We perform Steps 1 and 2 a total of 1,000 times, averaging over the 1,000 values of

xv, xp, and xc to obtain x̄v, x̄p, and x̄c. We then calculate the variance σ2 for each quantity:

(H.20) σ2 =
1

N

N
∑

i=1

[xi − x̄]2,

where N = 1, 000. We have assumed that the values x are normally distributed around their

corresponding values x̄. We then arrive at the 3σ confidence level, which takes on a value

of x̄ + 3σ for each quantity x̄v, x̄p, and x̄c. Using the random-longitude emergence arrays,

representative values of x̄+ 3σ are shown in Table H.3.
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