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Rejection and Truth-Value Gaps

FRED JOHNSON

Abstract A theorem due to Shoesmith and Smiley that axiomatizes two-
valued multiple-conclusion logics is extended to partial logics.

Rumfitt [1] extends Smiley’s [3] discussion of rejection by axiomatizing a calculus
where truth values of sentences are given by truth tables that admit truth-value gaps.
“The Smiley multiple-conclusion consequence relation” for the calculus is defined
over assertions and rejections. Rumfitt gives a complex Henkin-style proof of com-
pleteness for this calculus. Our goal is to show that there is a simple procedure for
axiomatizing calculi of the sort that he considers. We do this by imitating Shoesmith
and Smiley’s [2] proof of a similar result (their Theorem 18.1) where truth tables do
not admit truth-value gaps and the consequence relation is defined without using re-
jections.

Let Ay, Ay, ... be sentences. And let 4+ p and *p be assertions and rejections,
respectively, given that p is a sentence. Assertions and rejections are judgments. We
let+J,...,%J,...,and J, ... range over sets of assertions, sets of rejections, and sets

of judgments, respectively.

Let a valuation v be a function that maps sentences into {z, n, f} (true, neither
true nor false, and false) and judgments into {c, i} (correct and incorrect), where
v(4+p) =cifand only if v(p) =t and v(xp) = c if and only if v(p) = f. The Smi-
ley multiple-conclusion consequence relation, |=, is defined as follows: J = K if and
only if, for every valuation v, v assigns i to a member of J or ¢ to a member of K (so
= preserves correctness).

Assume alanguage with connectives cy, . . ., ¢, where valuations are determined
by truth tables for the connectives. To define J - K (K is deducible from J) we use
the following structural rules together with the truth-table rules:

Structural Rules
Overlap: J + K if J and K have a common member .
Dilution: JEKif J'F K’ giventhat J/ C Jand K’ C K.
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Cut: J = K if for every partition L, L, of a set L of
judgments, J, L, - L,, K.
Ex falso quodlibet (EFQ): +p,xp - @.

Truth-table Rules

t-rules: If v(+cr(p1s .-, pm)) = tthen {+p; 1 v(p;) =1},
{*p] : v(pj) = f} |_ +CI‘(plv L] pm)a
{+pr : v(pr) = n}, (xpi - v(pr) = n.

n-rules: If v(4+c(p1,..., pm)) =nthen {+p; : v(p;) =t},

{xpj:v(pj)) = f}+e(prs-os pm) B
{+pr: v(p) = n}, {xpi - v(pi) = n},
and {+p; : v(pi) = t}, {xp; : v(pj) = fl*xc,(p1, .o pm) =
{+pr : v(p) = n}, (xpi - v(pr) = n}.
f-rules: If v(+c (p1, ..., pm)) = fthen {+p; : v(p;) =t},

{xp;j:v(p)) = f}Exc(p1s-..s Pm)s
{+pr : v(pr) = n}, (xpg : v(pr) = n.

L+ M if and only if the relationship between L and M is generated by using the
structural rules or the truth-table rules.

Theorem1 J E= K ifandonlyifJ - K.

Proof: (If) Straightforward. For example, for EFQ, note that v(4+p) = i or
v(kp) =1.

(Only if) Suppose J I# K. Then, by Cut, there is a partition +L1, Ly, +L3, L4
of the universal set of judgments such that J, +Ly, xL, I/ +Ls, *L4, K. By Overlap,
J C4+LiUxLy and K C +L3 U xL4. So, it will suffice to show that +L1, *L, [~
+L3, xLy. ]

Let v be a valuation that assigns ¢, n, or f to an atomic sentence A depending
upon whether +A € +L1, +A € +L3 or *A € xL4, or xA € xL,, respectively.

Lemma 2 For any sentence p,

(i) If v(p) =t, then +Lq, xLy - +p, +L3, xLy.
(ii) If v(p) =n, then +Ly, %Ly, +p = +L3, xL4.
(iii) If v(p) = n, then +Lq, Ly, *p = 4+L3, xLy.
(iv) If v(p) = f, then +L, %Ly & xp, + L3, *Ly4.

Proof by induction: For the basis step, where p is an atomic sentence, use Over-
lap. For the induction step, use Dilution and Cut. Suppose v(+(c;(p,q,r)) = t,
where p, ¢, and r may or may not be atomic. Suppose v(p) = n,v(qg) = t and
v(r) = f. By the t-rules +q, xr = +c;(p, q, ), +p, *p. By the induction hypothesis
+Ly, %Ly, +p = +L3, xLg; +Ly, %Ly, xp = +L3, xLyg; +Ly, xLy = +q, +L3, xLy4,
and +L, %Ly - *xr, +L3, xL4. So, by Dilution and Cut, +L;, %L, - 4+c(p, q,1),
+L3, xLy. U

Lemma 3 For any sentence p,

(i) v(p) =tifandonlyif+p € +L;;
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(ii) v(p) =nifandonlyif +p € +L3 or xp € xL4, and
(iii) v(p) = fifand only if xp € xL,.

Proof: For (i), suppose v(p) = ¢t. If +p € +Ls, then, by Overlap, +L1, xL, -
+L3, xL4. Suppose +p € +L1. Suppose v(p) = f. Then +L1, *Ly Fxp, +L3, %Ly
by Lemma 1. If «p € %L, then, by EFQ and Dilution, +L, %L, - +L3, xL4. If
#p € L4 then +Ly, %Ly - +L3, xL4. For (iii) use similar reasoning. (ii) follows
given (i) and (iii). So, given valuation v, +L1, %Ly p= +L3, *L4. O

Example 4 We illustrate the above theorem by axiomatizing a partial logic axiom-
atized by Rumfitt. Valuations of sentences are given by the following truth tables.

t| f

n|n

flt
t-rule: (1.1) +pkx—=p.
n-rules: (1.2) 4—=pkE+p,*xp.
and (1.3) x—=pF+p,*xp.
f-rule: (1.4) xpkF4-—p.

So, for example, Rumfitt’s ‘From +—p infer % p’ is generated as follows. +—p,
+p = %= p by (1.1) and Dilution. +p, +—p, *—p - & by EFQ and Dilution. So
+p, +—p F *p by Cut and Dilution. +—p + +p, xp by (1.3). So +—p F xp by
Cut.

=T )
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t-rule: (2.1) From +p, +q infer +(p&q).
n-rules: (2.2) From +p, +(p&q) infer +q, xq.
(2.3) From +p, *(p&q) infer +q, *xq.
(2.4) From +q, +(p&q) infer +p, xp.
(2.5) From +gq, x(p&q) infer +p, *p.
(2.6) From +(p&gq) infer +p, xp, +q, *q.
(2.7) From x(p&gq) infer +p, xp, +q, *q.
(2.8) From xq, +(p&q) infer +p, *p.
(2.9) From xq, *(p&q) infer +p, *p.
(2.10) From xp, +(p&q) infer +q, *q.
(2.11) From *p, *(p&gq) infer +q, *q.
f-rules: (2.12)  From + p, *xq infer x(p&q).
(2.13) From *xp, +q infer *(p&q).
(2.14) From xp, *xq infer *(p&q).

The rules may be simplified by replacing the ten n-rules with the following four rules:
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2.1 +(p&q) - +p.
(2.2) +(p&q) F +q.
2.3) x(p&g) = +p, *p.
24) x(p&qg) F +q, *q.

Rumlfitt uses the first two of these rules to give his axiomatization.

The proof is simplified by using the following derived meta-rule: (Reversal) If
JE+p,Kthen J,xp - K; and if J I xp, K then J, +p - K. Prove Reversal by
using EFQ, Dilution, and Cut.

That (2.1') is a derived rule is shown as follows. +(p&q) F +q, *q by (2.2),
(2.10), (2.6), Dilution, and Cut. *p, +¢q, +(p&q) = @ by (2.13) and Reversal. So,
*p, +(p&q) F *q (@) by Dilution and Cut. +(p&q) - +p, *p by (2.4), (2.8), (2.6),
Dilution, and Cut. *p, xq, +(p&q) - & by (2.14) and Reversal. So xq, +(p&q) F
+p (B) by Dilution and Cut. So, xp, +(p&q) - +p by «, B, Dilution, and Cut.
+(p&q) F +p, xp as noted above. So +(p&q) - +p by Cut.

(2.3) is derived from (2.5), (2.8), and (2.7) by using Dilution and Cut. Reason-
ing that shows that (2.2) and (2.4") are derived rules parallels the reasoning for (2.1)
and (2.3), respectively.

By Dilution, the n-rules (2.1) to (2.11) follow from (2.1") to (2.4").

-t
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t-rule: (3.1) From +p infer +T'p.
f-rules: (3.2) From @ infer xTp, +p, xp; and
(3.3) From *p infer *Tp.
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