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Rejection and Truth-Value Gaps

FRED JOHNSON

Abstract A theorem due to Shoesmith and Smiley that axiomatizes two-
valued multiple-conclusion logics is extended to partial logics.

Rumfitt [1] extends Smiley’s [3] discussion of rejection by axiomatizing a calculus
where truth values of sentences are given by truth tables that admit truth-value gaps.
“The Smiley multiple-conclusion consequence relation” for the calculus is defined
over assertions and rejections. Rumfitt gives a complex Henkin-style proof of com-
pleteness for this calculus. Our goal is to show that there is a simple procedure for
axiomatizing calculi of the sort that he considers. We do this by imitating Shoesmith
and Smiley’s [2] proof of a similar result (their Theorem 18.1) where truth tables do
not admit truth-value gaps and the consequence relation is defined without using re-
jections.

Let A1, A2, . . . be sentences. And let +p and ∗p be assertions and rejections,
respectively, given that p is a sentence. Assertions and rejections are judgments. We
let +J, . . . ,∗J, . . ., and J, . . . range over sets of assertions, sets of rejections, and sets
of judgments, respectively.

Let a valuation v be a function that maps sentences into {t, n, f } (true, neither
true nor false, and false) and judgments into {c, i} (correct and incorrect), where
v(+p) = c if and only if v(p) = t and v(∗p) = c if and only if v(p) = f . The Smi-
ley multiple-conclusion consequence relation, |=, is defined as follows: J |= K if and
only if, for every valuation v, v assigns i to a member of J or c to a member of K (so
|= preserves correctness).

Assume a language with connectives c1, . . . , cn where valuations are determined
by truth tables for the connectives. To define J � K (K is deducible from J) we use
the following structural rules together with the truth-table rules:

Structural Rules

Overlap: J � K if J and K have a common member .
Dilution: J � K if J ′ � K ′ given that J ′ ⊆ J and K ′ ⊆ K.
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Cut: J � K if for every partition L1, L2 of a set L of
judgments, J, L1 � L2, K.

Ex falso quodlibet (EFQ): +p,∗p � ∅.

Truth-table Rules

t-rules: If v(+cr(p1, . . . , pm)) = t then {+pi : v(pi) = t},
{∗p j : v(p j) = f } � +cr(p1, . . . , pm),

{+pk : v(pk) = n}, {∗pk : v(pk) = n}.
n-rules: If v(+cr(p1, . . . , pm)) = n then {+pi : v(pi) = t},

{∗p j : v(p j) = f },+cr(p1, . . . , pm) �
{+pk : v(pk) = n}, {∗pk : v(pk) = n},
and {+pi : v(pi) = t}, {∗p j : v(p j) = f },∗cr(p1, . . . , pm) �
{+pk : v(pk) = n}, {∗pk : v(pk) = n}.

f-rules: If v(+cr(p1, . . . , pm)) = f then {+pi : v(pi) = t},
{∗p j : v(p j) = f } � ∗cr(p1, . . . , pm),

{+pk : v(pk) = n}, {∗pk : v(pk) = n}.

L � M if and only if the relationship between L and M is generated by using the
structural rules or the truth-table rules.

Theorem 1 J |= K if and only if J � K.

Proof: (If) Straightforward. For example, for EFQ, note that v(+p) = i or
v(∗p) = i.
(Only if) Suppose J �� K. Then, by Cut, there is a partition +L1,∗L2,+L3,∗L4

of the universal set of judgments such that J,+L1,∗L2 �� +L3,∗L4, K. By Overlap,
J ⊆ +L1 ∪ ∗L2 and K ⊆ +L3 ∪ ∗L4. So, it will suffice to show that +L1,∗L2 �|=
+L3,∗L4. �

Let v be a valuation that assigns t, n, or f to an atomic sentence A depending
upon whether +A ∈ +L1, +A ∈ +L3 or ∗A ∈ ∗L4, or ∗A ∈ ∗L2, respectively.

Lemma 2 For any sentence p,

(i) If v(p) = t, then +L1,∗L2 � +p,+L3,∗L4.
(ii) If v(p) = n, then +L1,∗L2,+p � +L3,∗L4.

(iii) If v(p) = n, then +L1,∗L2,∗p � +L3,∗L4.
(iv) If v(p) = f , then +L1,∗L2 � ∗p,+L3,∗L4.

Proof by induction: For the basis step, where p is an atomic sentence, use Over-
lap. For the induction step, use Dilution and Cut. Suppose v(+(ci(p, q, r)) = t,
where p, q, and r may or may not be atomic. Suppose v(p) = n, v(q) = t and
v(r) = f . By the t-rules +q,∗r � +ci(p, q, r),+p,∗p. By the induction hypothesis
+L1,∗L2,+p � +L3,∗L4; +L1,∗L2,∗p � +L3,∗L4; +L1,∗L2 � +q,+L3,∗L4,
and +L1,∗L2 � ∗r,+L3,∗L4. So, by Dilution and Cut, +L1,∗L2 � +c(p, q, r),
+L3,∗L4. �
Lemma 3 For any sentence p,

(i) v(p) = t if and only if +p ∈ +L1;
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(ii) v(p) = n if and only if +p ∈ +L3 or ∗p ∈ ∗L4; and

(iii) v(p) = f if and only if ∗p ∈ ∗L2.

Proof: For (i), suppose v(p) = t. If +p ∈ +L3, then, by Overlap, +L1,∗L2 �
+L3,∗L4. Suppose +p ∈ +L1. Suppose v(p) = f . Then +L1,∗L2 � ∗p,+L3,∗L4

by Lemma 1. If ∗p ∈ ∗L2 then, by EFQ and Dilution, +L1,∗L2 � +L3,∗L4. If
∗p ∈ ∗L4 then +L1,∗L2 � +L3,∗L4. For (iii) use similar reasoning. (ii) follows
given (i) and (iii). So, given valuation v, +L1,∗L2 �|= +L3,∗L4. �

Example 4 We illustrate the above theorem by axiomatizing a partial logic axiom-
atized by Rumfitt. Valuations of sentences are given by the following truth tables.

¬
t f
n n
f t

t-rule: (1.1) +p � ∗¬p.
n-rules: (1.2) +¬p � +p,∗p.
and (1.3) ∗¬p � +p,∗p.
f-rule: (1.4) ∗p � +¬p.

So, for example, Rumfitt’s ‘From +¬p infer ∗p’ is generated as follows. +¬p,

+p � ∗¬p by (1.1) and Dilution. +p,+¬p,∗¬p � ∅ by EFQ and Dilution. So
+p,+¬p � ∗p by Cut and Dilution. +¬p � +p,∗p by (1.3). So +¬p � ∗p by
Cut.

& t n f
t t n f
n n n n
f f n f

t-rule: (2.1) From +p,+q infer +(p&q).
n-rules: (2.2) From +p,+(p&q) infer +q,∗q.

(2.3) From +p,∗(p&q) infer +q,∗q.
(2.4) From +q,+(p&q) infer +p,∗p.
(2.5) From +q,∗(p&q) infer +p,∗p.
(2.6) From +(p&q) infer +p,∗p,+q,∗q.
(2.7) From ∗(p&q) infer +p,∗p,+q,∗q.
(2.8) From ∗q,+(p&q) infer +p,∗p.
(2.9) From ∗q,∗(p&q) infer +p,∗p.

(2.10) From ∗p,+(p&q) infer +q,∗q.
(2.11) From ∗p,∗(p&q) infer +q,∗q.

f-rules: (2.12) From +p,∗q infer ∗(p&q).
(2.13) From ∗p,+q infer ∗(p&q).
(2.14) From ∗p,∗q infer ∗(p&q).

The rules may be simplified by replacing the ten n-rules with the following four rules:
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(2.1′) +(p&q) � +p.
(2.2′) +(p&q) � +q.
(2.3′) ∗(p&q) � +p,∗p.
(2.4′) ∗(p&q) � +q,∗q.

Rumfitt uses the first two of these rules to give his axiomatization.
The proof is simplified by using the following derived meta-rule: (Reversal) If

J � +p, K then J,∗p � K; and if J � ∗p, K then J,+p � K. Prove Reversal by
using EFQ, Dilution, and Cut.

That (2.1′) is a derived rule is shown as follows. +(p&q) � +q,∗q by (2.2),
(2.10), (2.6), Dilution, and Cut. ∗p,+q,+(p&q) � ∅ by (2.13) and Reversal. So,
∗p,+(p&q) � ∗q (α) by Dilution and Cut. +(p&q) � +p,∗p by (2.4), (2.8), (2.6),
Dilution, and Cut. ∗p,∗q,+(p&q) � ∅ by (2.14) and Reversal. So ∗q,+(p&q) �
+p (β) by Dilution and Cut. So, ∗p,+(p&q) � +p by α, β, Dilution, and Cut.
+(p&q) � +p,∗p as noted above. So +(p&q) � +p by Cut.

(2.3′) is derived from (2.5), (2.8), and (2.7) by using Dilution and Cut. Reason-
ing that shows that (2.2′) and (2.4′) are derived rules parallels the reasoning for (2.1′)
and (2.3′), respectively.

By Dilution, the n-rules (2.1) to (2.11) follow from (2.1′) to (2.4′).

T
t t
n f
f f

t-rule: (3.1) From +p infer +Tp.
f-rules: (3.2) From ∅ infer ∗Tp,+p,∗p; and

(3.3) From *p infer *Tp.
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