
DISSERTATION 

 

DAIRY MANAGEMENT DECISIONS UTILIZING  

AVA ILABLE EVIDENCE AND INFORMATION 

 

Submitted by 

Gerald Poppy 

Department of Clinical Sciences 

 

In partial fulfilment of the requirements  

For the Degree of Doctor of Philosophy 

Colorado State University 

Fort Collins, Colorado 

Spring 2017 

Doctoral Committee:  

Advisor: Paul Morley 

Ashley Hill 
Dave Van Metre 
Dustin Pendell 
Huybert Groenendaal 



Copyright by Gerald Poppy 2017 

All Rights Reserved 



ii  

ABSTRACT 

DAIRY MANAGEMENT DECISIONS UTILIZING  

AVAILABLE EVIDENCE AND INFORMATION. 

Animal agriculture in today’s economic environment is often complex and the uncertainties 

involved in the decision process make being profitable a challenge.  Serving as business consultants, 

veterinarians can aid producers in helping to make profitable decisions by utilizing available 

decision tools that enable a better understanding of the economic risk for decisions.  Scientific 

studies that examine the biological response to health or management interventions on dairy farms, 

while valuable for understanding biology are sometimes limited in their ability to aid in the making 

good decisions for interventions in agriculture.  Adding economics as well as incorporating the 

variance associated with point effect estimates of biological effect may be a way to decrease the 

uncertainty or better understand the risk surrounding a management decision.   

One decision tool available for understanding possible interventions is the use of cross 

sectional surveys and longitudinal observational studies.  A longitudinal study was designed to 

evaluate various management factors and feed additives and their association with undifferentiated 

diarrhea events on dairy farms.  Based on data from 76 farms, our research team found that a 

fermented Saccharomyces cerevisiae yeast culture (SCFP) reduced the risk of a cow having a 

diarrhea event by 30% (IR = 0.707 (P = 0.043, CI = 0.505, 0.989).  In addition, having a herd 

located in the Eastern US versus the Western US was associated with more diarrhea events (IR= 

2.036 P = 0.066, CI = 0.953, 4.39). 

In striving to find the best literature and studies available to help guide the decision 

process, published studies may differ in estimates of the magnitude of herd response to various 
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management inputs (actions).  One key tool that is gaining scientific prominence is the use of 

meta-analytic techniques to combine multiple studies into a single entity to predict the effect of 

certain interventions on certain indices of herd health and productivity.  A meta-analysis of 

thirty-six separate studies on a Saccharomyces cerevisiae yeast culture fermentation product was 

conducted.  A total of 69 comparisons met the criteria for inclusion in a random-effects meta-

analysis and a sub-group analysis of peer reviewed studies of feeding a SCFP showed an 

estimated raw mean difference between treated and untreated cattle of 1.18 kg/d (95% CI, 0.55 to 

1.81), 1.61 kg/d (95% CI, 0.92 to 2.29), and 1.65 kg/d (95% CI, 0.97 to 2.34) for milk yield, 

3.5% fat corrected milk and energy corrected milk, respectively.  Milk fat yield and milk protein 

yield showed an increase in the raw mean difference of 0.06 kg/d (95% CI, 0.01 to 0.10) and 

0.03 kg/d (95% CI, 0.00 to 0.05).  Estimated raw mean difference in dry matter intake during 

early lactation (< 70 DIM) and non-early lactation were 0.62 kg/d (95% CI, 0.21 to 1.02) and a 

decrease of 0.78 kg/d (95% CI, -1.36 to -0.21), respectively from feeding SCFP. 

Another meta-analysis of active dry yeast (ADY) products was performed; this included 22 

papers with 25 comparisons that met the final criteria for inclusion.  These studies, conducted in 13 

different countries, evaluated active dry yeast products from 7 different companies.  This random-

effects meta-analysis, showed there was high heterogeneity in the study outcome for milk yield, 

making it an unreliable outcome to report.  One sub-group analysis identified an area of 

heterogeneity to be study location (in North America versus outside North America).  Milk yield for 

the 7 studies conducted in North American were 0.49 kg/d versus 0.96 kg/d for 13 studies 

conducted outside North America.  The raw mean difference in milk fat yield was 0.05 kg/d and 

there was a numerical difference in milk protein yield of 0.02 kg/d.  No difference in dry matter 

intake was observed.  
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Utilizing the information in meta-analysis of products can be improved by the use of 

stochastic analysis by incorporating the variance from the point estimate parameters into a partial 

budget of the production changes.  Software programs exist that can perform Monte Carlo 

simulations on partial budgets, factoring in both the biological effects and their variance from the 

meta-analysis result as well as the economics of the biological change for the producer’s business.  

ModelRisk 5.1.1 (Vose Software BVBA, Belgium, 2015) was used to generate 10,000 iterations of 

a partial budget, utilizing the mean outcome and variance parameters from the SCFC meta-

analysis.  The resulting stochastic partial budget calculation showed a risk of not having above a 

break-even response as 0.27%; in addition, the cost of making a Type 1 error versus a Type 2 error 

would be less than $0.001 versus $0.38 per cow/d.  This means that based on the information 

contained in the meta-analysis the producer is left with the probability of 0.27% of losing <$0.001 / 

cow /d by feeding SCFP versus the decision to not feed SCFO and have a 99.8% chance of not 

earning  $0.38 per cow/d.  Based on the meta-analysis data, a Monte Carlo simulation of the ADY 

products in early lactation showed a risk of not having a break-even response as 38.87%. 

This dissertation demonstrates the use of direct fed microbials may have a benefit in 

nutrition programs on dairies.  Specifically, the use of SCFP was associated with a decrease in 

diarrhea events as well as increases in milk production when analyzed using meta-analytic 

methodology.  To aid in decision making the use of stochastic analysis utilizing the variance from 

the meta-analysis along with the associated point effects is a useful tool to graphically and 

numerically demonstrate the uncertainty of the outcome.  Integrating the biological variation and it 

associated economic values into a distribution of outcome along with their associated conditional 

probabilities can be used to calculate the cost of Type 1 and Type 2 components of the decision 

helping to frame the decision in quantifiable units possibly more useful to a diary producer.  
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EXECUTIVE SUMMARY 

Dairy Management Decision Making Utilizing Available Evidence and Information 

Animal agriculture in today’s economic environment is often complex and profitability 

can be difficult as indicated by the changing dairy sector.  The dairy industry illustrates these 

problems well.  In 2003, there were 70,375 registered dairy herds in the US, but by 2015 there 

were only 43,584 (Gould 2016b), a reduction of  38%.  Although some dairies may go out of 

business because people retire or no longer wish to farm, many of these dairies cease to exist 

because other, more profitable dairies take their place in producing milk.  As farm numbers have 

declined, dairy cow inventory has increased, changing from 9.08 million cows to 9.32 million 

cows over this time period (Gould 2016a).  During the same time period milk  production per 

cow has climbed from 18,759 lbs. / cow / year to 22,393 lbs. / cow / year (Gould 2016c). Clearly, 

herds have gotten bigger and per-cow milk production is higher in the dairies that remained in 

business over this period.  This suggests that the dairies that left the industry were not all 

voluntary exits from animal agriculture but farms that failed to adapt to a more efficient or 

profitable form of business enterprise. 

Veterinarians can be key advisors to dairies and other animal agricultural enterprises, as 

they often have the ability and training to provide more than simple technical services (e.g. 

pregnancy diagnosis, surgery).  Veterinarians have the opportunity to function in a valuable 

advisory role for making economic decisions that involve herd and enterprise management.  The 

practice of management itself is a discipline similar to practicing medicine, in that decisions are 

made in the face of uncertainty (Drucker 1973).  Being able to make the best informed decision 

based on relevant information is key to being a successful business; this principle includes 
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agriculture.  Many decisions are made using intuition and business people that have been 

successful in business in the past often have had success because they are very good at making 

decisions based on intuition.  As decisions become more complex and the need to make 

economically optimizing decisions consistently increases, the need for business advisors to help 

gather and quantify the needed information becomes more valuable to the business manager in 

the decision-making role.  The best advisor will seek evidence that improves the probability the 

economic decision being made is the best possible.  For veterinarians, these business decisions 

have two key parts: The biological decision (we make a diagnosis based on some type of test or 

we recommend use of a certain product) and the economic decision, which can be simplified to 

be the economic outcome that results from the biological decision.  Both portions of the decision 

have uncertainty associated with them.  For example, we can conduct a physical examination to 

diagnose a health problem in a cow.  Treating the cow has a cost, and the outcome of the 

treatment possesses its own degree of uncertainty.  The cow could die and the farm receives no 

money or has to pay for disposal, or it could be culled at an uncertain price for instance the cull 

cow could sell for $0 or for $2000 or more dollars.  The cow could return to production and 

provide a net return of $300 to $600 per year for the next 10 years or 1 year.  The more we can 

reduce the uncertainty within such scenarios, the less risky becomes the treatment decision.  Risk 

can be defined as the probability of achieving an outcome that is less than the expected (or 

desired) outcome (Backus, Eidman, and Dijkhuizen 1997).  Decision makers must have a grasp 

of the probabilistic nature of the uncertainties in the decisions, as well as the inherent economic 

impact of these uncertainties (Howard 1966) to be able to understand the potential outcomes or 

the true choices of the decision they are making. 
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The purpose for this dissertation is to evaluate several methods for improving our 

understanding of informing decisions, in the context of decision making regarding the use of 

direct fed microbials in dairy cattle.  In Chapter 1, a review of the economic decision models and 

history of their development and use in the agriculture focusing on dairy decision models will be 

discussed.  Because adequate information to describe the potential outcome of decisions is not 

always available and methods for gathering information from populations without the ability to 

conduct a random controlled experiment is often needed, in Chapter 2 the design of an 

observational study is described for one such dairy question.  This chapter involves an 

observational study to estimate the effect of the addition of several common feed additives and 

farm management practices on the risk of the occurrence of herd-level diarrhea in dairy 

operations.  The utilization of cross sectional surveys and observational study designs maybe the 

only methods to find this type of management information out for the farm manager because 

randomly controlled, prospective studies may not be possible due to cost or ethical concerns. 

Randomized, controlled studies often do exist for the purpose of informing decision 

makers about the biological outcome of a farm intervention decision; unfortunately, these studies 

may provide conflicting conclusions or and / or lack significance, the latter of which could be 

due to the lack of power to detect a difference in the intervention owing to small sample size.  In 

Chapter 3, we use meta-analytics to estimate the effects of a yeast culture fermentation product 

on milk production and feed intake on dairy farms.  The use of meta-analysis is a statistical 

method to combine many studies to better inform us of the mean and uncertainty surrounding the 

mean based on all relevant information from the literature (DerSimonian and Laird, 1986; Lean 

et al., 2009).  In Chapter 4 a meta-analysis is again presented but differs in evaluating the 

intervention of adding active live yeast products to feeding programs in dairy cattle.  Because the 
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dairy decision maker is interested in more than just the point estimates of the proposed 

intervention in Chapter 5 we utilize the uncertainties found in the meta-analyses to develop an 

economic model for dairy decision making using a partial budget model that incorporates the use 

of Monte Carlo simulation.  The use of stochastic software to build a Monte-Carlo partial budget 

will allow the use of the point estimates and associated variance to better inform the decision 

maker of the comprehensive view of the possible outcomes for the decision surrounding the 

intervention for yeast culture or active dry yeast in a dairy diet. 
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DECISION ANALYSIS MODELS 

Introduction 

Making decisions in the face of uncertainty is the function of management in any 

enterprise (Drucker, 1973).  Being able to make the best informed decision based on relevant 

information is key to being a successful business.  What tools are available to reduce uncertainty 

around information that goes into making those decisions?  As veterinarians working in animal 

health and agricultural production, there is often a distinction made between risk and uncertainty.  

Risk is often being defined as a situation or state where the decision maker knows the possible 

alternative outcomes and can attach a probability to them, whereas in uncertainty, the decision 

maker has less information on the outcome(s) and cannot attach probabilities to them 

(Dijkhuizen et al., 1997a, Rushton, 2009b). 

Risk can also be defined as the probability of achieving an outcome less than the 

expected (or desired) outcome.  In complex production situations, mathematical decision models 

can help us quantitate multiple linked probabilities together to give us a more accurate estimate 

of the true risk, thereby reducing at least some of the overall uncertainty in decision making.  

The use of a model or some type of simplified mathematical representation of a business 

function has probably been used since the middle ages (DeGroot and Schervish, 2014). This is 

true in agriculture, whether in farming, dairy, or beef operations. 

In veterinary medicine, the outcome of health-related and dairy management decisions 

typically has a biological component coupled with the economics of the outcome.  

Understanding the multiple variables that go into a decision-making process may be harder in 
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agriculture than in other fields of business because many of our decisions are based on biological 

factors that have inherent biological variation typically absent from manufacturing environments.  

Further, measurement errors, sampling errors, or other forms of bias can complicate the decision-

making process.  One of the principle jobs of veterinarians in agricultural practices is to provide 

information to agricultural owners, the client, in which to make informed decisions.  Veterinary 

medicine encourages evidence based medicine (EBM) which can be summarized as locating the 

best available evidence, critically appraising the evidence for validity, impact, and applicability, 

and integrating the findings with the clinical need of the client (Slater, 2010).  In practical terms, 

the clinical needs of the patient in an agricultural environment must include the biological 

outcome; further, the uncertainties inherent in both biological systems and economics must be 

formally included.  Without these, the veterinarian’s clients are left to using intuition. 

Veterinarians, although trained in biological systems, are often less knowledgeable 

regarding data analysis and decision making tools.  While it is common to use intuition, often 

with good results, as valued advisors to the dairies, veterinarians need to help the decision maker 

with the analysis of best evidence available.  A review of the available tools have been available 

and development of new tools can aid practitioners in searching and applying the most current 

analytic methods, thereby fulfilling the concept of EBM. 

Purpose 

The purpose of this literature review is to review mathematical modelling used to support 

decision-making in veterinary medicine.  The review will focus on tools described in the 

literature for production medicine, primarily in dairy production and from 1970 to present.  This 

review will categorize and summarize the common models available in the peer-reviewed 

literature.  First will be a review and critique of the foundational models; subsequently, the 
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review will describe how these models have developed from foundational to contemporary 

models. 

The decision tools reviewed in this chapter are forms of mathematical modeling that 

originally were developed using hand calculations and slide rulers, but as computer technology 

advanced the utilization of computers to rapidly allow alternative variables and their 

mathematical relationship of the underlying disease or  production  system in question to be 

analyzed in a much more complex manner (McGrayne, 2011).  Mathematical modeling is useful 

for the study of complex phenomena, like the population dynamics of infectious agents or 

biological process, because models show how separate measurements can be seen as a 

manifestation of the same underlying processes (deJong, 1995). 

Cost-Benefit Models 

Decision tools had a rapid increase in development in the mid-1970s and the tools 

developed in two primary categories, which were regional or national level models and models 

that were applied at the herd- or individual animal-level.  The regional or national model  

development was driven by animal health and disease eradication such as foot and mouth disease 

(FMD) (Ellis and James, 1978) and classical swine fever (Ellis et al., 1977) that impacted health 

over a large area and multiple farms where implementation at a national level was needed to for 

success.  These researchers adapted and utilized cost-benefit analysis (CBA) developed from 

classical economics used in making public policy decisions, and the benefit they bring to the 

country or region (Ellis, 1972; James and Ellis, 1978).  These models, also often termed benefit-

cost models, were primary deterministic (having only a single input or output value) and were 

extremely complex models.  For instance, the models were built to evaluate changes in disease 

rates, the cost of eradication (McInerney, 1991) impacts at the farm, community, regional and 
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national level (Putt et al., '88), while the benefits that were evaluated were primarily economic.  

Additionally, these models have been used to evaluate issues in food safety, nutrition, or food 

security (McInerney, 1996).  These models continue to be developed today for evaluation of 

surveillance and intervention strategies for BSE, FMD, and anthrax, (Verstegen et al., 1998, 

Tomassen et al., 2002, Kivaria et al., 2007, Rushton, 2009a, Hausermann et al., 2010).  The aim 

of economic analysis is to indicate whether more or fewer resources should be allocated to 

influence the level of disease experienced, in what form, and in which specific combinations.  In 

short, the purpose is to inform decisions on the management of disease, not simply to document 

its frequency of occurrence (McInerney et al., 1992). 

All rational decision-making involves an evaluation of relevant pros and cons so that the 

logic of making a decision between the benefit derived and the cost of implementing the program 

is unarguable.  CBA is simply a formalized technique for doing this, assembling a complicated 

pattern of positive and negative aspects of a decision, expressing them in monetary units, 

summarizing them in two composite values, and then examining the balance between them 

(McInerney, 1991).  Unlike models that are built around individual animal- or herd-level models, 

one of the key distinguishing feature of regional or national cost-benefit models is their 

incorporation of change in supply-demand curves as well as discounted future value calculations 

for changes in productivity at the national or regional level which subsequently induces change 

in prices or costs at the herd level over time (Dijkhuizen et al., 1995; Rushton, 2009c).  While 

these complex cost-benefit models are useful decision making tools at the regional or national 

level, they are not useful for day-to-day decision making on the farm level, the place where field 

veterinary practitioners interface with clients.  This review will focus on the development and 
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availability of models and papers that specifically address individual animal- or herd-level 

decisions.  

Models used on Farm 

Veterinarians and farm advisors are often called on dairy farm managers (or managers of 

other animal agricultural enterprises) on the implementation of herd health or production 

practices.  The dairy owner/manager has typically operated successfully in the past (otherwise 

they would not still be in business) often using intuition without the input of specific decision 

modeling tools.  These managers have had a long period of trial and error and are often able to 

select the optimum use of inputs from information and knowledge from past mistakes and 

successes.  As dairies (or other enterprises) become larger and more complex, the need for 

outside consultants and tools for optimizing decisions and the integration of biological outcomes 

with the economic value of these outcomes increases in importance.  As dairies grow and 

decision inputs change such as new products or disease risk or change in economic markets (i.e. 

change in milk price, coupled with larger cow numbers), these more complex problems lead to 

the need for adoption of decision tools (Rushton,2009c).  The key portions of the decision 

making tools are a consideration of the underlying biological function of the farm process that 

are the underlying drivers of the enterprise, the difference in the mean outcome of the proposed 

change along with the variance and standard error represented in the literature.  These models are 

simplified idealized models of a complex world that involve reductionism – they hold several 

factors constant and abstract from the real world (Tisdell, 1995).  While the simpler the model 

the less it can incorporate all the possible complexities, there is a trade-off to the end user either 

veterinarian or dairy operator to utilize the model for specific use on an enterprise, targeted to 

their unique characteristic variables.   
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As computers developed in the 1970s, decision models developed by individuals 

pioneering these decision analysis tools in all fields.  Decision tools such as decision trees, 

stochastic analysis, Markov chains and Bayesian analysis were first developed for military use 

and paralleled the computer development in the mid-70s (McGrayne, 2011).  As the industry 

developed these decision tools they were also being adopted with increasing frequency into 

parallel business uses, of which agriculture production and business farm enterprise was one 

such business application. 

Partial Budgets 

The first basic model category is the partial budget.  The partial budget is a simple 

comparison of the current economical state of the production or disease state compared to the 

predicted economic state after a proposed intervention.  The partial budget is useful as it states 

the production question in terms of money.  Partial budgets are optimizing models, although the 

output does not intuitively tell us where the change from a positive marginal economic input to a 

negative marginal input occurs, they do show if the change in costs is equal to or greater than the 

increase in profit.  Partial budgets eliminate all input variables - such as fixed costs - that are not 

part of the decision.  While there is no specific time function nor need to define a probability 

distribution for input variables, the partial budget is very useful to making a binomial decision 

(i.e., should we implement the intervention or not?).  It requires a relatively small amount of data 

collection and is useful for making changes in the production system that do not involve several 

simultaneous changing variables (Rougoor et al., 1994, Dijkhuizen et al., 1995).  The simplicity 

of partial budgets makes them especially easy to be used on the farm for specific input output 

problems (Figure 1.1).  The partial budget, while often simple in structure, can be attached to 

much more sophisticated models. Rougoor et al. (1994), in her consideration of Caesarean 
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sections on dairies, used data from the retention payoff model (RPO) to create a partial budget 

for culling animals which uses Markov chain modeling to understand the cost and probabilities 

of culling.  Because partial budgets involve defining costs of input and value of outputs, these are 

inherently built into almost all models other than analytical (inferential) models. 

 

Figure 1.1. A partial budget of the economics of caesarean section in Frisian dairy cattle adapted from Rougoor et al., 94. 
Number (1) is additional returns realized from the change, (2) is the reduced costs as a result of the 
change, (3) returns foregone as a consequence of the change and (4) extra costs incurred due to the 
implementation of the change. The change should be adopted if the sum of (1) and (2) is greater than that 
of (3) and (4).  (A.A. Dijkhuizen, et al., 1995) 

Categorization of Mathematical Models 

Analytical vs. Theoretical Models. 

Many types of models began to develop as computers and their software become more user 

friendly.  The core features of many later decision models were analytical models.  Analytical 

models are used to develop and characterize the underlying process or function and associated 

variance as often observed through the use of random controlled experimentation.  Analytic models 

are built to understand the underlying biological function and incorporate this biological function 

into the model structure.  Analytical models are normally used as data input into theoretical models, 

they would not normally be useful for on farm decision analysis.  One early analytical model that 

has  - and continues to have - a high impact on farm decision models is the Woods lactation curve 

(Wood, 1967) which described mathematically the shape of the lactation curve for the Friesian cow 

(Figure 1.2).  While the analytical model is designed to describe the current state of the working 
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system, the theoretical model is designed to take the current state and compare it to the state after an 

intervention has occurred.  The theoretical model can be an optimization model that looks for what 

point of a series of inputs optimizes or maximizes the output, such as maximizing the marginal 

profit in a partial budget.  A theoretical model can also be a simulation model that is not being used 

to optimize output, but rather simulates the changes that occur in various parameters with changes 

in another parameter.  There are obviously many overlaps between the actual models and 

descriptions, and many models have simulation and optimization components. 

 

Figure 1.2. Regression curve y = 56.62 n0.396 exp(-0.00942 n) fitted to a single Friesian lactation. (Woods, 1967). 

Optimization Models 

The goal of optimization is to identify the best outcome from a variety of options.  The 

assumption made for optimization models is that the desired “optimal state” is known (i.e., it is 

one of a fixed set of choices under consideration).  The assumption is that the farm 
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managers/owner would desire to maximize economic value over a time horizon.  This is not 

always a valid assumption as other payoffs of value as alternatives to money are found 

(Dijkhuizen et al., 1997b).  Normally these models are discrete in time and designed to look at a 

specific event over a specific period. 

Decision Tree Analysis.  Decision tree analysis is one specific type of theoretical model 

that would generally be considered an optimization model.  In 1980, the use of decision tree 

analysis was described for treatment of ovarian cysts in cattle (White and Erb, 1980).  The 

question, “At what day post-partum does it become cheaper to treat a cystic cow rather than to 

wait for spontaneous recovery” was modeled as a series of decisions, each represented by a node 

with a specific decision which each has a probability outcome (Figure 1.3).  The decision tree 

branches left to right.  The branch splits with each branch representing a different possible event 

that has a distinct probability.  The probability related to each decision is written on the branch, 

which is derived from literature or expert opinion.  The point at which decisions branch is called 

a chance node and is represented by a circle on the tree.  The previously calculated outcomes 

(monetary or non-monetary values) are on the right side of the tree.  Probabilities of outcomes at 

chance nodes are multiplied by outcome values.  The total expected value at a chance node is the 

sum of these products.  This sum is written over the chance node and is circled.  A decision can 

then be made at the preceding decision node to choose the path with optimum value.  One moves 

left to right taking the more optimum chance node branch until the outcome value is reached 

(White and Erb, 1980).  The accuracy of the decision tree rests on the probability assumptions 

that the modeler uses in the model.  The practitioner can use local costs and values to enhance 

the model and also use high and low values in a system of sensitivity analysis to look at what key 

probabilities would significantly change the outcome. 
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Figure 1.3. Decision tree; to treat or not treat cystic ovaries. The circles are chance nodes and the square is an 
outcome on the right side of the tree.  Probabilities following a chance node follow a chance on the 
appropriate branch.  The total expected value at a chance node are the sum of the products, probabilities 
multiplied by the outcome values (Erb and White, 1980). 

In 1984, a decision tree model (Madison et al., 1984) was published in which the authors 

built a graphical model that contained lines of indifference created for the probability of success 

versus the cost of treatment.  Using the model the producer or veterinarian could look at the 

salvage value of the animal versus the probability of success and cost of treatment and see if an 

intervention was warranted.  A similar model (Fetrow et al., 1985) was published the following 

year for use in salvage decisions that plotted the choice between 2 different interventions, instead 

of a single choice.  The hyperbole on the chart was the line of indifference between the 

interventions.  One limitation of the Fetrow model was the decision could only take the form of 

two mutually exclusive and exhaustive outcomes, one favorable and one unfavorable.  These 
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papers introduced an indifference curve into the decision making process for animal disease 

interventions graphing the difference in the value of the outcomes and the difference in the 

probabilities of the outcomes (Figure 1.4).  This uses the probability of a correct outcome against 

the difference in the cost of the procedure.  If the intercept point is to the left of the curve that 

procedure would be favored, if to the right of the curve the alternative intervention would be 

favored.  If the intervention falls on the line, the producer would be indifferent as to which 

procedure is used.  

Further expanding the idea of the choice between 2 expected outcomes in a decision tree 

developed by Galligan, Marsh, and Madison (Galligan et al., 1987).  In this paper, the authors 

described how to utilize the standard deviation of the expected outcome to help producers who 

may or may not be risk adverse to be able to choose between 2 procedures that have different 

risks using the decision tree.  Building further on the value of utilizing risk in the decision model, 

Galligan, and his co-authors brought portfolio theory into the decision tree model (Galligan et 

al., 1991b).  Building on a previous model, Galligan and Marsh (1988), describe how they could 

use portfolio theory with a decision tree in which the decision involves selection of one of 3 

different reproductive programs.  Galligan and Marsh adapted this to combinations of 

interventions on the dairy because there are typically combinations of interventions that 

practitioners can employ on dairies.  By using a combination of treating with prostaglandin and 

observing for estrus as well as timed artificial insemination (AI), they showed that there was less 

risk (lower variance) with a higher expected value than prostaglandin and observation alone and 

almost as much expected value with much less risk than timed AI alone (Figure 1.5).  Ngategize 

developed a model to look at the treatment of cystic follicles using 7 different combinations of 

GNRH or HCG combination or no treatment (Ngategize et al., 1987).  Another model developed  
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Figure 1.4. Graphic solution for a hypothetical choice between 2 treatments for left displaced abomasum. 
Treatment 1 minus Treatment 2=$100.  VF-VV is the difference in value for the two outcomes and P1-P2 
is the difference in probabilities Point B is more expensive with higher probability for success.  Point C is 
less expensive but with lower chance of success.  A producer would be indifferent to which surgery is 
used if it falls on the line of indifference (used with permission) (Fetrow et. al, 1985). 

LINE OF INDIFFERENCE 
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Figure 1.5. The expected return and risk (standard deviation) of intervention combination using portfolio theory. 
Point A is using no prostaglandin, Point B is using prostaglandin and observing for estrus and Point C is 
using timed AI.  Point A is less efficient because its expected value is lower although the risk is lower.  
Point B is more optimum because for very little additional risk a much better expected value is obtained 
(used with permission).  (Galligan et al. 1991). 

in 2004 evaluated the potential economic benefits of using intermammary antibiotics or an 

internal teat sealant at dry-off for herds in the UK (Berry et al., 2004).  The use of a 

computerized decision tree analysis was published by Dorhorst as an aid in regarding 

management decisions for Paratuberculosis (Johne’s) in dairy herds.  The program called 

Precision Tree, an add on for Excel (Palisade Corporation, Ithaca, NY) allowed them to evaluate 

960 different decision permutations (Dorshorst et al., 2006).  A different software program called 

TreePlan was used in a model to look at treatment and testing alternative options (Pinzon-

Sanchez et al., 2011) which had 144 terminal values evaluated.  A New Zealand paper (Reichel 
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et al., 2008) was published using TreeAge software for its decision tree to evaluate BVDV 

infections and vaccination protocols.  While simple in concept, the use of personal computers 

have increased the complexity and use of incorporating more decisions into the models than 

originally used in the early 1980’s, facilitating identification of optimal outcomes. 

Linear Programing.  Linear programing is another type of optimization model that is 

specific to the mathematical process for finding the optimal solution.  The essential 

characteristics of a linear program are (1) there is a function to be maximized or minimized, (2) 

there are limited resources that can be used to satisfy the objective and (3) there are several ways 

to use resources (Jalvingh et al., 1997).  While Jalvingh described the linear models very well in 

Animal Health Economics, strictly linear models were not used in any published papers.  They 

were used within sub-models for bigger projects.  

Simulation Models 

Contrasting with optimization models in which there is an optimum solution given the 

objective function with the restrictions, is simulation modeling.  As in other models, the simulation 

model is a mathematical model that can be changed by manipulating a set of predefined input 

variables.  While being able to demonstrate the effect of various interactions of parameters, 

simulation models can also be used to identify a better, or even optimal, solution than the present 

state, if different interventions were implemented.  In Animal Health Economics, a seminal book in 

veterinary decision-making, Dijkhuizen categorizes simulation models into static and dynamic 

models.  Static models do not contain time as a variable, whereas dynamic models do.  The key 

usefulness of dynamic models is to incorporate time as a variable, as opposed to a point in time 

decisions such as in the decision tree.  Most farm systems where models are being applied will 

change over time, and these changes influence decisions affecting optimization (Dijkhuizen et al., 
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1997c).  An example might be changing the health of a heifer operation resulting in fewer heifers 

dying and more heifers making it to the freshening string.  In the long run, this might improve the 

farm’s income by supplying less expensive replacement animals and superior milk production, but 

this effect will not occur for at least 2 years, and in the meantime, will cost more money for feed and 

housing, while at the same time impacting other facets of the system which also impact cash flow. 

Another category of models that can be both static and dynamic is the category of 

deterministic versus stochastic models.  Deterministic models use and predict a specific point 

effect.  For example, 70 pounds of milk or 2.2 pounds per day average daily gain or 52 pounds of 

dry matter intake.  Stochastic models, on the other hand recognize that there is uncertainty 

regarding the specific values for all inputs and outputs, which can frequently be represented as 

probability distributions with standard deviations.  These probability distributions can take 

various statistical forms such as triangle, rectangle, normal, log normal, or gamma distributions 

for continuous variables or binomial, Poisson, or multinomial for discrete variables.  The 

simulation model can sample these distributions at each iteration of the simulation model thereby 

giving a risk distribution for the outcome parameters from the model. 

Dynamic Programming 

Dynamic Programing (DP) (versus Linear programing) takes its name from the fact that the 

functional equation and its associated computational techniques are derived from and adapted to a 

process changing over a discrete or continuous time interval.  The dynamic program is a series of or 

sequence of decisions that are made as the animals or system moves through time (Huirne et al., 

1997).  Each “state” has its own mathematical calculation with its objective function that is defined 

for each stage and all subsequent stages.  If the subsequent outcomes are known for certain, this is a 

deterministic dynamic model whereas a stochastic dynamic program uses a probability distribution 
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to describe the state.  Although linear programing can be adapted to several time periods by the 

addition of a new set of restrictions, reflecting the constraints in each time interval (Dreyfus, 1956), 

limited resources are allocated to various activities.  In comparison, dynamic programming 

resources are allocated at each of several time periods.  In linear programing, the inputs and outputs 

of various actives are assumed to be proportional to the activity.  Because dynamic programing 

divides activities and resources into smaller time intervals it has the ability to model much larger 

and more complex problems than linear programing.  The Markov chain would be considered a type 

of dynamic program.  The Markov chain is a random process that undergoes transitions from one 

state to another state through time.  It must possess a property that is usually characterized as 

"memorylessness" in which the probability distribution of the next state depends only on the current 

state and not on the sequence of events that preceded it.  This specific kind of "memorylessness" in 

the Markov chain is what defines it from other dynamic programing models  

(https://en.wikipedia.org/wiki/Markov_chain). 

One early dynamic programing model analyzed a 10 year planning horizon looking at 

changes in milk, beef and feed prices, replacement costs, and interest rate for changes in 

profitability on the farm (Stewart and Burnside, 1977).  As in the description of dynamic 

programing, they divided the multi-stage problem into a series of independently solvable single-

stage problems or state variables that are a set of parameters such as age and production in the 

case of the dairy cow that consist of a number of distinct values (Vanarendonk, 1984).  They had 

2695 state variables over the 10-year planning horizon, which was very large for computers of 

that day.  Because of the size, they had to condense input.  They assumed that all culling 

decisions were made at 60 days in milk prior to breeding and they used estimated standardized 

305-day milk production for the cumulative production output. 

https://en.wikipedia.org/wiki/Stochastic_process
https://en.wikipedia.org/wiki/Memorylessness
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Dynamic programming was used in a more-narrow sense in several studies wherein 

replacement programs for dairies were evaluated; each model was built on some aspect of the 

earlier models.  Renkema and Stelwagen (1979) produced a model of the economic changes for 

changing culling rates due to improved overall herd health.  Their assumption was that a cow 

should be kept in the herd as long as her expected marginal profit is higher than the expected 

average profit during a replacing young cow’s life.  He teamed up with Korver then with an 

extended model for looking at culling strategies during the first lactation (Korver and Renkema, 

1979), and then with Dijkuhizen (Dijkhuizen et al., 1984; Dijkhuizen et al., 1985b) for a model 

that looked at reproductive failure in the dairy herd.  Notably, Dijkhuizen (Dijkhuizen et al., 

1985b)  modeled the increase in milk production for lengthening lactations for total milk, but also 

that this milk was produced at a lower than average milk production for the herd. This was also 

different for each lactation in the herd.  This was made in 20-day increments as opposed to 

Renkema’s model that made the culling decision once per lactation.  In a follow up article using 

the same model, the authors looked at how long was it profitable to continue to inseminate a cow 

or heifer with poor fertility (Dijkhuizen et al., 1985c).  In 1986 Dikhuzien and coauthors 

developed a similar model for reproduction in swine (Dijkhuizen et al., 1986).  In this model, they 

introduced the concept of the Retention Pay-Off index (RPO).  The key idea behind the RPO was 

to calculate on an individual sow basis, was it profitable to retain the sow and breed her again or 

replace her with an average replacement.  They utilized discounting to compensate for the value 

of time as an investment versus replacement.  This concept was later used in dairy models such as 

DC305 for ranking cows using the ECON command for herd management programs.   

Other early dynamic programming models were constructed (Vanarendonk, '84) that 

incorporated the changes in seasonality in the model.  The Dutch dairy farms use grass grazing 
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during specific parts of the year, so the cost structure changes during this time.  Calving during 

different seasons and the change in labor and feed can have significant changes in the 

profitability of the dairy.  A subsequent model was developed that was extended to allow 

variation in conception.  Three alternatives were looked at: inseminating the cow with some 

calculated probability of success, leaving her open or replacing her immediately on a monthly 

interval from 2 to 7 months. As long as the future value of the cow lactating which depended on 

her production and persistency was greater than the value of a replacement animal the decision 

was made to keep her in the herd.  (Vanarendonk and Dijkhuizen, 1985).  This model appears to 

have been a very foundational model for reproduction to initially developed many of the ideas 

later used to construct the RPO index. 

Stochastic Programing 

Models incorporating stochastic programing versus deterministic programing utilize the 

distributions of possible inputs to incorporate risk or the variance of the parameters into the 

model.  Utilizing computers to sample from a defined distribution allows the modelers to 

determine standard deviations and means of outcomes.  Dijkhuizen et al., (1985a) developed a 

model to stochastically simulate decision models on the farm including reproduction and culling.  

Another early model that incorporated stochastic inputs was a Reed-Frost model (Carpenter, 

1988) that simulated the spread of a generic virus versus immunity from vaccination.  Other 

early examples of  stochastic models that were used were one for optimizing replacement 

selection in dairy herds (Bergner and Hubner, 1981), a model to simulate the yield of a dairy cow 

(Goodall and Sprevak, 1984), the reproductive performance of the dairy herd (Morant, 1985) a 

model to predict rates and the economics of dairy disease in the herd (Hurd and Kaneene, 1987), 

and a model of multiple ovulation and embryo transfer breeding schemes (Jeon et al., 1990). 
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Models using Spreadsheets 

With the development of more sophisticated spreadsheet capabilities on personal 

computers, decision models have been developed that more closely align with the concept of 

on-farm decision tools.  Many of the previously described programs were run on university 

main frames using programing language.  Using spreadsheets for model building made 

models more easily adaptable for in field usage.  One key example of this was a model that 

utilized the concept of RPO originally developed by Dijkhuizen and Renkema to build a 

spreadsheet to make breeding and replacement decisions on farm (Groenendaal et al., 2004).  

This model calculated the RPO values, the future production, revenues, and costs of dairy 

cows at different levels of milk production with different numbers of days open.  This was 

determined, utilizing marginal net revenue instead of dynamic programing.  The optimum 

time for replacement of the dairy cow was determined by comparison of the marginal net 

revenue of the current cow versus the discounted future annuity anticipated from the 

replacement animal.  In Groenendaal (Figure 1.6) one can see how the RPO changes both 

within the lactation, with the future value just prior to calving, and a decrease through around 

7 to 9 months post-calving; the future value then increases as the cow successfully approaches 

the next lactation and the probability of culling decreases.  One can also observe that the 

future value decreases as the lactation number increases, reflecting the decrease in future 

production annuity from the cow.  If a cow would fail to become pregnant, the RPO curve 

would continue downward, eventually becoming a negative value.  Another benefit of the 

model is the ability to calculate the cost of days open compared to replacing or not replacing 

the cow. 
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Figure 1.6. Retention pay-off (RPO) values for different milk production levels (relative to the herd average milk 
production) for cows with an average 15 month calving interval.  (Vetical lines indicate the calving event; 
a successful breeding occurs 9 month before) (used with permission)  (Groenendaal et al., 2004). 

Spreadsheet and HTML Partial Budget Type Interactive Decision Tools 

Many tools are available that target decision making areas of dairy production and dairy 

veterinary production consulting.  The University of Wisconsin Dairy Management Department has 

several tools available on line for download, dealing with a variety of production decisions.  Some 

of these tools are the Optigen Evaluator (Inostroza et al., 2009), a replacement cow model that 

examines the future economic value of a cow (Cabrera, 2010a), the value of sexed semen for heifers 

(Cabrera, 2009 ) and a retention pay-off model on an excel spreadsheet (Shahinfar et al., 2014).   

There are many other decision making tools and papers listed on the University of 

Wisconsin website, Http://dairymgt.info/tools.php along with associated papers for most of the 

models.  A listing of some of these models are, Income over Feed Costs, Dairy Ration Break 

Even Analysis, Heifer Pregnancy Rate, Cost-Benefit of Accelerated Liquid Feeding Programs 

for Dairy Heifers, Heifer Break-even, Herd Structure Simulation, Exploring Timing of 

http://dairymgt.info/tools.php
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Pregnancy Impact on Income Over Feed Cost, Dairy Reproductive Economic Analysis, The 

Economic Value of a Dairy Cow, Value of a Springer, LGM-Dairy Analyzer, Working Capital 

Decision Support Tool, Decision support System Program for Dairy Production and Expansion, 

and many more tools.  Of note in a more tradition model, Cabrera published a Markov linear 

program to optimizing replacement animals (Cabrera, 2010b) and along with Kalantari added 

stochastic analysis (Kalantari and Cabrera, 2015) to the dynamic programing Markov chain 

model to look at changes in economics due to changing 21 day pregnancy rates. 

Other recent decision models that have been published since 2006 that are relevant to 

production medicine are a DP model for understanding how the value of a pregnancy depends on 

lactation number, milk yield, persistency of lactation, prices, breeding and preplacement decisions 

(de Vries, 2006).  The purpose of this model was to maximize the profit per slot per year with the 

cow that is currently being milked versus a possible preplacement animal.  The model had 3 different 

modules: the first module that was used to calculate cow performance data; second, an optimization 

module that used dynamic programing to determine inputs for the replacement program for 

individual cows; and third, a Markov chain module to calculate data for monthly subgroups of cows.  

The key idea of this program was to make culling vs retention decisions, e.g. if the Retention Pay Off 

of the current cow is less than zero, then her slot in the herd should be replaced with a replacement 

heifer.  “The RPO is the discounted future cash flow from trying to keep the cow until the optimal 

time to cull her and her future replacement heifers minus the discounted future cash flow from 

immediately culling the cow and her future replacement heifers” (de Vries, 2006).  de Vries found 

that the value of the pregnancy depended largely on the shape of the lactation curve used to predict 

future milk production for the cow (Figure 1.7).  The cost of losing the pregnancy increased with 

things that would have made the lactation more valuable such as length of gestation, increased 
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persistency, and increased probability of getting pregnant.  Decreasing the purchase price for a heifer 

used to replace the cow greatly decreased the value of the pregnancy. 

 

Figure 1.7. Retention payoffs (RPO) (X) for a non-pregnant cow (0) and a cow that became pregnant on d 61 after 
calving (•) by day after calving. Cows are in their first lactation with average lactation curves. Value of 
pregnancy is equal to the difference between the RPO of the pregnant and non-pregnant cow on the same 
days after calving because both RPO are greater than $0 (de Vries, 2006). 

Within the de Vries model, there is considerable opportunity for consideration of variance 

around the “getting pregnant” factors.  One model (Giordano et al., 2011) that was produced 

looked at the partial budget values and the sensitivities associated with a farm using only estrus 

detection, timed AI and a combination of timed AI and estrus detection.  This model was 

developed using a Markov chain simulation deterministic model with partial budgeting to obtain 

the net present value per cow per year of the different models.  This author found that both timed 

AI programs were superior to estrus detection using values obtained from some representative 

Wisconsin herds.  The 100% timed AI program with a 1% increase in conception rate was 

superior to a less expensive program with shorter interbreeding intervals.  This demonstrated how 
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this model could be used for making targeted changes on the herd.  Contrasting to the Giordano 

study, Galvao developed a model (Galvao et al., 2013) using stochastic dynamic Monte-Carlo 

simulation to look at these same reproduction programs.  This model compared the economic 

outcome of reproductive programs using estrus detection, timed artificial insemination (AI) or a 

combination of both at high and low estrus detection (ED) levels as well as different AI 

compliance levels for injections of drugs to synchronize the cow for AI.  In contrast to Giordano’s 

model, this model found high accuracy of heat detection to result in more pregnancies than 

programs that had low compliance for injecting cows for AI synchronization, demonstrating that 

the variability of the underlying parameters is a valuable tool with in models as well as the model 

outcome is sensitive to the absolute values of the underlying model as in high and low ED.  

Galvao’s group only used stochastic modeling for the animal’s estrus, but used deterministic 

values for all the underlying subgroups losing much of the value of the stochastic modeling to 

incorporate variance that would expect to be seen on the dairy. 

Type 1 and Type 2 Models 

One of the most interesting models for aiding in decision-making on the dairy is one that 

places more emphasis in incorporating the underlying variation of the biological response along with 

our inability to know the true outcomes of research on biological responses.  These are the models that 

incorporate analysis of both the cost to the dairy of Type 1 and Type 2 errors calculated from the 

statistical model.  A Type 1 error would be when a producer decided to use an intervention and found 

out he had made a mistake and his returns were actually below breakeven.  A Type 2 error would be 

when a producer decided not to implement a proposed intervention when doing so would have made 

him an above breakeven return on his investment.  One such model examined the value of accurate 

estrus detection (Williamson, 1975).  Williamson observed that the mean interval in the model of time 



28 

from calving to conception that a change in heat detection might influence is actually a sample of 

observations from a normally distributed variable with a true mean and a standard deviation.  Because 

the true mean is unknown, there is inherent error regarding the observed (estimated) value.  Each of 

the resultant outcomes has a cost or profit to the outcome based on frequency of the outcome.  The 

experimental mean in his study was 99.4 days for the interval.  The true breakeven for using the KMar 

Heat Mount detector (KMAR Inc., Steam Boat Springs, CO) intervention (a pressure-activated marker 

for the backs of cows to visibly show the cow was mounted by another cow indicating estrus) was 

102.2 days, using the dairy-specific value for reduction of calving interval.  The risk of erroneously 

concluding the outcome is less than 102.2 days when it was really greater than that based on the 

sample mean (Type 1 error) or, conversely, concluding the true mean is greater than 102.2 days when 

it was really less.  The resultant cost of this outcome, can be plotted in a risk graph which shows the 

economic cost of the Type 1 and Type 2 error (Figure 1.8).  Galligan et al., (1991a) published a model 

similar to Williamson where he described a more useful method for incorporating many of the 

concepts of the previous paper, but in a model that could be used more easily.  In the Galligan Type 1 

- Type 2 model, the authors summarized the mean and variance for the increase in milk production 

versus the cost of the product from 16 published papers regarding decision for use of bovine 

somatotropin.  Another option in the model was made using 12 papers that modeled the value of 

feeding bicarb in the ration for increased milk production.  Their model produce the same type of risk 

curves as Williamson (Figure 1.9).  Galligan then built a stand-alone model that could be run on a 

personal computer or on a web based program utilizing the concepts in his paper that allowed users to 

input different interventions.  The inputs required were means and variances from random controlled 

trials of the intervention that was being questioned.  This program and other useful tools to aid in 

decision-making are available on Galligan’s website (http://dgalligan.com/; (Galligan,2008). 
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Figure 1.8. Risk curves show the expected opportunity costs of Type 1 and Type 2 errors for the decision to use 
K-Mar heat detectors in a specific farm (Williamson, 1975). 
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Figure 1.9. Risk curves show the expected opportunity costs of Type 1 and Type 2 errors for the use BiCarb or 
the use of Bovine Somatotropin from a literature review with multiple trials. (Used with permission) ( 
D. T. Galligan, et al., 1991). 
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A further development of using the Type 1 and 2 statistical definition to bring clarity to 

decision making at the farm level was brought forth by Overton, wherein he utilized stochastic 

inputs from a commercial Monte Carlo simulation program called @Risk (Overton 2006).  The 

author evaluated a simulated farm that used timed AI vs. a simulated farm that used visual estrus 

detection program and that had a pregnancy rate (PR) of 16%.  The PR used is a calculation of 

the cows that became pregnant divided by the cows that were at risk of becoming pregnant 

during each 21 day period after the cow passes the voluntary wait period for breeding to 

commence.  The farms PR is the average for all cows available for each 21 day period for a 12 

month period.  Overton simulated input distributions for the AI compliance along with milk 

price, milk production, and replacement costs.  The risk curve output from the Monte Carlo 

simulation is the result of the computer sampling each distribution as it calculates the partial 

budget for the change due to the AI intervention.  The output reports showed in this simulation 

there was an 8.6 % chance of the intervention being below break-even and conversely a 91.4% 

chance that a profit would result from this intervention with utilizing this set of variance and cost 

structure.  The difference in this case is the realization in the model that the amount of money 

lost if AI had been used when it should not have been, (Type 1 error) is not a single deterministic 

number.  Instead, the loss might have been barely below break-even, perhaps just losing $0.05 

per/cow/d.  Within the distribution curve, this has a frequency.  Conversely, the AI intervention 

might have lost $1.00 per cow which is less likely in the simulation than losing $0.05 per cow.  

This also has a frequency in the distribution.  Conversely, the AI intervention might have lost 

$20 per cow.  This is not very likely and occupies a point on the frequency distribution far to the 

left tail.  Through repeated sampling, a frequency distribution is obtained, and this frequency 

distribution can be broken down into very small segments with each segment of frequency 
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multiplied by the amount lost at this frequency.  If the categories are broken down into an infinite 

number of categories, the loss becomes a continuous function.  All of these frequencies 

multiplied by the cost of the Type 1 intervention can be added together to account for the total 

estimated cost for the Type 1 error.  The same process can be used for the Type 2 error; the AI 

intervention is not used, when it should have been because mistakenly it is assumed it is of no 

benefit.  This would be the case if the producer was afraid of causing a Type 1 error.  Again, the 

lost income from not using AI is multiplied times the frequency from the sample of the 

hypothetical population.  This lost income (income that wasn’t earned) might have been only 

$0.05.  This would be a fairly high frequency because there is higher probability the AI 

intervention was effective but not greatly effective.  Conversely the lost income opportunity 

might have been $60 per cow, although this is fairly unlikely and occupies a point far to the 

right-hand tail of the Gaussian distribution curve.  Again, as in the Type 1 error calculation, each 

lost income (cost) amount is multiplied by the frequency this is simulated to occur at, and all the 

frequency X costs are added up to come up with a total cost of a Type 2 error.  These 

distributions are possible because the outcome is a sample of an unknown population with an 

unknown true mean, but possessing a set standard deviation based on primary research.  If this 

calculation was made after the program had been used and measured on the farm, we would have 

known the true mean and the true net profit (Figure 1.10). 

Value of Information VOI 

Potentially a new area of analysis that has been developing in the human medical 

literature since the early 1990s is the area of Value Of Information (VOI) (Yokota and 

Thompson, 2004).  This field is directed at the amount of uncertainty in the current research 

around a specific intervention (drug or practice) and then evaluated for the cost of gathering  
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Figure 1.10. Fitted area curve of modeled economic returns and the breakeven point for timed artificial insemination 
(TAI) as compared to an estrus detection-based program with a 16% baseline pregnancy rate (Overton, 
M.W, 2006). 

more information to reduce the uncertainty versus the value or utility of the intervention or 

practice.  The focus on the VOI models targets a theoretical perfect information in which no 

uncertainty exists.  The value of making a decision based on having no uncertainty is called the 

Expected Value of Perfect Information (EVPI).  EPVI can be calculated by having the outcome 

of the model under uncertainty or under prior knowledge in a Bayesian statistical model 

subtracted from the value of the decision under no uncertainty.  In some cases, resolving 

uncertainty before making decisions might have little value to the outcome, while at other times 

resolving the uncertainty with further information might provide great value that is not 

intuitively obvious.  VOI provides guidance on how decision makers might reduce uncertainty 

before selecting a course of action (Keisler et al., 2014 ) The outcomes of the uncertainty can be 
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plotted as Overton (Overton, 2006) and Galligan (Galligan et al., 1987) did in their models of 

uncertainty versus the economic outcomes discussed above and then be plotted into efficient 

frontiers for the values and compared for the best expected utility given the cost of obtaining 

more information (Eckermann et al., 2010).  An early paper in which the author compared the 

bidding for a construction job and the value in obtaining the bid or losing the bid with and 

without “clairvoyance” or perfect knowledge of the other firms bid, demonstrated a method for 

putting a subjective value for improving the knowledge of the outcome or reducing uncertainty 

by decreasing the uncertainty in bidding for the job (Howard, 1966).  His goal was to maximize 

the expected value of his companies profit or value from a contract.  He felt that only when one 

knows what it is worth to reduce uncertainty do we have a basis for allocating resources in 

experimentation designed to reduce the uncertainty.  While this methodology is increasingly 

being used in human medicine, the value or utility of the benefit of additional information is 

difficult to assess.  For example what is the value of decreasing gastro-oesophageal reflux 

disease (GERD) (Eckermann et al., '10) or Alzheimer’s disease (Karl Claxton, 2001) in human 

patients?  In contrast to human medicine, in food animal medicine, because the cost of 

intervention is already taken into account in our decision models, the value of additional 

information could be readily applied.  A literature search in dairy and beef found only one 

manuscript utilizing VOI currently in these fields (Cox et al., 2005).  This model was developed 

to describe the value of further testing on the US cattle herd to find cases of bovine spongiform 

encephalitis (BSE) versus the potential lost income from market loss if additional BSE cases 

were found in the US.  Based on the rise in published models that utilized VOI from 11 between 

1990 to 92 up to over 65 in 2008-10 (Keisler et al., 2014 ), it would be expected to see more of 

these models being developed in animal agriculture in the future.  
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Summary 

Decision analysis is greatly aided by the use of quantitative models that explore the cost-benefit 

and probabilistic outcomes of decision-making.  Prior to the early 1970’s there were few models 

built to explore decisions regarding agriculture.  As computers became more accessible, many 

models were developed.  Pioneer developers such as Van Arendonk, Renkema, Dijkhuizen and 

Galligan along with others originated many of the early models and set the stage for most of the 

modeling that is being explored today.  Many of the early models used rather simplistic, albeit 

useful partial budgets and decision trees.  However, more complex models using dynamic 

models, Markov chains or linear programing were also among the earliest models.  Recent 

published models have included greater sophistication and complexity, but primarily build on the 

early models and use the same underlying concepts.  The newest group of models built using 

spreadsheets are gaining in popularity.  While these newer models have become increasingly 

refined and focus on more specific and precise questions, they are more accessible to the 

decision-makers, as the inputs can be used at the farm level.  Additionally, the most recent 

advancements have benefited from off-the-shelf stochastic programs that aid the decision makers 

in considering uncertainty and variances that are a key to the inputs and outputs of intervention 

questions.  New stochastic methods incorporating VOI models are increasingly being used in 

human medicine and other industrial fields and are just now beginning to be used to reduce 

uncertainty in applying economically justified research in animal agriculture. 
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OBSERVATIONAL LONGITUDINAL STUDY OF 

FEED ADDITIVES AS RISK FACTORS FOR HERD DIARRHEA 

INCIDENTS ON US DAIRY FARMS 

Chapter 2 Executive Summary 

As measures are enacted to reduce antimicrobial use in agriculture, finding management, 

feeding practices, and feedstuffs that could decrease diarrhea on dairy farms would be of benefit 

to animal and human health.  Due to the difficulty in performing randomized controlled trials 

with to test different treatment exposure is difficult in the commercial herd setting, utilizing an 

observational study design technique may be a valuable means to study diarrhea on commercial 

dairies.  A longitudinal observational study was conducted to assess the incident rate of 

undifferentiated diarrhea events by month on the farm and study the impact of exposure to 

different direct fed microbial dietary additives and also to assess the impact of different common 

farm management practices, and farm design to impact the incidence rate of diarrheal disease.  

The study design was stratified by region, to target 150 farms in 10 different regions that 

corresponded to somewhat distinct management and environmental examples.  The regions were 

East, East Plains, Mid-West, Northern California, Northwest, Plains, Southern California, the 

Southeast, the Southwest, and Wisconsin.  A cross sectional survey instrument was administered 

to collect data relating to disease incident risk factors.  Only 76 farms completed both the 

surveys and supplied electronic backups that provided information on incidents of diarrhea 

recorded in the herd records system.  Sixty-nine farms either did not provide electronic dairy 

records with the survey, or there was no evidence they electronically recorded diarrhea events.  
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The remaining 76 herds were analyzed for risk factors for incident of diarrhea using Proc 

Glimmix in SAS (version 9.4, SAS Institute., Cary, NC), both as a Poisson distribution and as a 

negative binomial distribution.  The final multivariable negative binomial included a yeast 

culture fermentation product of Saccharomyces cerevisiae, whether the farm vaccinated for 

BVD, and whether the herd was located in the Eastern or Western US.  Feeding yeast culture had 

an Incident Risk Ratio (IR) of 0.707 (P = 0.043, CI = 0.505, 0.989).  Having a herd in the eastern 

US was associated with an increased IR 2.036 (P = 0.066, CI = 0.953, 4.39).  Vaccinating the 

herd with a BVD vaccine was associated with a decreased IR of 0.213 (P = 0.186, CI = 0.022, 

2.111).  The study shows there is a small association with feeding a yeast culture based additive 

and lower incidence of diarrhea on farms.  This association although small, (a decrease of 2 cases 

per 1000 cows per month), indicates that further research should be conducted in this area. 

Introduction 

Similar to many other animal-based agricultural units, a common problem affecting dairy 

herds is diarrhea.  There are few studies of diarrheal disease published where treatment exposure 

for diarrhea occurrence was a primary outcome of interest in adult dairy cattle.  Some of the 

reasons for this is the relatively low prevalence of acute diarrheal disease (less than 14 days 

duration) in experimental herd settings, making random control trials difficult.  The other issue 

making experimental settings difficult is there are a variety of etiologic causes that can lead to 

symptomatic diarrhea in the adult dairy cow of lactating age. Some of these causes are viral 

(Houe 2003) or bacterial infection (Nielsen 2013), feeding spoiled feed, mycotoxins in the feed 

(Whitlow and Hagler 2008), or an imbalance in the ration (rapidly fermenting starch or too little 

effective fiber) (Plaizier et al. 2008, Dijkstra et al. 2012).  In the National Animal Health 

Monitoring Survey conducted in 2007, herd owners were reported as providing information that 
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35.7% of the dairies had experienced cases of diarrheal disease (lasting longer than 48 hour 

duration) in their dairy herd and that it affected approximately 2.5% of cows over the course of a 

year. (NAHMS, 2007).  Many herd-level risk factors have been identified that are correlated with 

diagnostic testing for a bacterial cause of diarrhea in cattle of all ages, of which Salmonella is 

high on the rule-out list for causative factors (Fossler et al. 2005), (Loneragan et al. 2012).  In the 

author’s experience, diagnostic testing to confirm Salmonella spp. as well as other potentially 

infectious agents as the cause of diarrhea may be conducted inconsistently.  Many dairies have 

treatment protocols for managing diarrheal disease in calves as well as adult cattle, and some 

protocols include the use of antimicrobial drugs.  However, with increasing concerns over 

antimicrobial resistance, alternative methods should be considered to treat and/or prevent 

diarrhea in dairy cattle.  One alternative method that has begun to be used more frequently is the 

use of direct fed microbial products (DFM) which we will group under this title for both 

bacterial derived as well as yeast derived products.  

Direct fed microbial products are often added to dairy rations both adult and young stock 

as an intervention intended to reduce the incidence and severity of diarrheal disease (McAllister 

et al. 2011), although scientific support for this practice is sparse.  In one study calves that were 

fed a particular DFM in a Salmonella challenge study had a reduction in mortality and diarrhea 

(Brewer et al., ‘2014), but there is little published data for adult dairy cows regarding its impact 

on diarrheal incidence.   

Direct fed microbials may be composed of bacteria or products of bacterial growth, as 

well as live yeasts, yeast cultures and yeast cell wall extracts (Brewer et al. 2014, Di Francia et 

al. 2008, Seo et al. 2010).  The use of certain DFM on farm is purported to positively influence 

the microbial environment of the gastrointestinal tract and/or the immune system of dairy cattle.  
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Because the etiology of diarrhea in dairy cattle is not consistently determined, treatment 

protocols for diarrhea differ among farms, and because different dairy farmers may choose to 

add DFM to rations for different reasons, developing and conducting well-controlled prospective 

experiments on the effect of DFM on the incidence and severity of naturally-occurring diarrhea 

would be difficult on commercial dairies.  In addition, misclassification of diarrheal disease by 

farm workers and lack of diagnostics due to the expense of using laboratory testing to confirm a 

specific case definition for diarrheal disease, makes ascertaining both the incidence and therefore 

the treatment effect very difficult. 

Epidemiologic principles using an observational longitudinal design have been used in 

human public health to ascertain risk factors that impact the frequency of many diseases 

(Mahmood et al. 2014).  Applying the use of an observational longitudinal study for diarrheal 

disease may enable detection of changes in the incidence rate of diarrheal disease among dairy 

farms that do or do not include DFM in the ration.  Therefore, an observational longitudinal 

study was conducted to determine if  the use of DFM in the feed rations was associated with the 

incidence of undifferentiated diarrheal disease in adult dairy cows in US dairy farms. 

Materials and Methods 

Overview 

A longitudinal observational study was conducted on herds enrolled from a listframe.  

The farms were stratified by geographical region, and randomly selected from the list using a 

randomized number generated in a spreadsheet and assigned to each herd.  The herds were then 

listed in order by randomized number and the first 30 herds selected.  Herd management was 

characterized by an interview using a standardized questionnaire.  Recorded diarrheal disease 

occurrence was collected from an on-farm computerized commercial management software 
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program (DC305, PCDart, DHI Provo) for two different time windows, retrospectively for 

twelve months prior to the interview and then for six months following the initial interview. The 

population of cows at risk for each month was obtained from the herd management software, and 

the adjusted incident rates were estimated using negative binomial regression and compared 

among cattle exposed to different DFM products. 

Study Population 

The list frame of herds eligible for inclusion in the study was obtained from the CRM 

(Customer Relations Management Software, Microsoft) database established by Diamond V 

(Cedar Rapids, IA).  The database was developed from the list of all dairies in each state with 

grade A milk permits.  It was a large comprehensive database of a majority of the dairy herds in 

the US.  All herds in the database with greater than 500 cows were included in the initial list 

frame for randomization.  The sample size of 150 dairies each accounting for 12 months of cows 

at risk assuming 50% of the farms were exposed to the DFM of interest resulting in a change of 

incidence rate of 2% to 1% or a 50% change due to the exposure of interest was thought to be a 

meaningful biological and economic change to the dairy and to achieve statistical significance 

with the associated variability in the population.  The population was stratified into ten regions 

based on perceived regional differences in management style and production strategies.  The list 

frame consisted of the following regional strata: Northern California, (Fresno area north (North 

of Hwy 180)), Southern California, (Fresno area South of Hwy 180), the Pacific-Northwest, 

(Washington, Oregon, Idaho, Utah), Southwest (New Mexico, Texas, Arizona), East Plains, 

(Iowa, Minnesota, North and South Dakota), Plains (Colorado, Kansas, Oklahoma), East (all 

states east of Ohio and north of Georgia), Southeast, (Florida, Georgia, Alabama, Tennessee, 

Kentucky, Mississippi), Midwest, (Michigan, Ohio, Indiana, Illinois, Missouri), and Wisconsin 
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with a target of enrollment of 15 herds from each region.  The herds within each cluster were 

randomly chosen by electronic randomization and listed in order.   

A cross-sectional survey instrument was reviewed and approved by the Colorado State 

University Institutional Review Board.  The survey instrument was tested on a small group of 

nine farms and changes were made to improve the clarity.  The first 36 herds in each stratum were 

sent a letter from Colorado State University asking for their participation in the survey.  The 

Diamond V Mills technical sales staff was trained to administer a survey instrument (Appendix B) 

in April 2013.  Farm enrollment occurred from June 2013 to August 2013, with a second visit to 

the dairy scheduled to occur between January 2014 and March 2014, but not less than 6 months 

between visits to collect the prospective 6 months’ data.  Each farm was visited by one of the 

technical sales team members from Diamond V within two months starting in June 2013 and 

asked to participate in the survey.  Enrollment was to continue until 15 herds from each region 

agreed to participate.  The survey was conducted verbally with the owner or herdsman.  The 

surveyor made a determination of who the appropriate person was on the farm with sufficient 

knowledge to answer the questions.  A copy of the data recorded in the electronic recording 

system was obtained at the time of the survey on a USB stick and transferred to a central location 

for analysis. 

During the survey visit, first, the owner or herdsman was asked questions that qualified 

the herd as meeting the criteria for the survey and the study goals and methods were explained.  

If  the dairy did not meet the criteria, the interviewer did not collect electronic health event 

information.  To be included in the study, the farm must have used either PC Dart, DC305, or 

DHI-Provo as their management software at the time of enrollment.  Health events must have 

been recorded electronically with the recording of some event for diarrhea incidence.  If  no 
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diarrhea designations were recorded, the farm was asked and the farm had to agree to begin 

recording diarrhea health events up until the next set of records was obtained.  The dairy 

herdsman, owner, or dairy nutritionist must have been able to successful recall if  and when a 

DFM was fed to the herd regime.  A DFM was only designated to having been fed if  greater than 

half the milking cows were being fed the DMF on a continual basis.  If  only the dry cows or 

cows in the fresh pen were fed the additive, the additive was counted as not being fed at the herd 

level.  If the farm representative declined to participate in the survey and data collection, or the 

farm did not meet the criteria, the interviewer moved to the next farm on the random herd list 

and continued to recruit farms until 15 herds were enrolled in a region or the list for the region 

was exhausted, i.e. no further herds were available from the list frame for that region.  The 

enrolled farm was revisited to pick up another record backup 6 months after the first visit which 

would provide a total of 18 months of health events for each farm. 

The purpose of the management questionnaire (cross sectional survey) was primarily to 

characterize the exposure information on DFM products used.  The secondary goal was to 

characterize factors that could affect diarrheal disease occurrence, or could otherwise serve as 

confounding factors in diarrheal disease incident rate.  The DFM categorical variables included in 

the questionnaire were Saccharomyces cerevisiae fermentation products, (SCFP, Diamond V, 

Cedar Rapids, IA), Bovamine, (division of Chr. Hansen Holding A/S, Demark), Celmanax, (Arm 

and Hammer Animal Nutrition, Princeton, New Jersey), Amax, (Arm and Hammer Animal 

Nutrition, Princeton, New Jersey), Amaferm (Biozyme Inc., St. Joseph, MO), Omnigen, (Philbro 

Animal Health Corporation, Teaneck, NJ), and any active dry yeast (ADY), or other DFM 

products.  Other categorical variables captured in the survey included breed, (i.e. Holstein, Jersey 

or other breeds), type of facility, (dry lot, traditional free stall barn, cross ventilated, tunnel 
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ventilated, Saudi style barns or tie stall barn), type of milking parlor, (rotary, parallel, herringbone 

parlor), and diet type, (TMR or grazing), (there were no grazing dairies).  The survey included 

questions to determine what vaccinations were given (yes or no) to the cows that might lead to a 

difference in diarrhea rates.  These included vaccinations for Bovine Viral Diarrhea, (BVD) (any 

brand of vaccine that include BVD), Salmonella Newport Bacterial Extract SRP CattleVaccine, 

(SRP) (Zoetis Animal Health, Parsippany, NJ), Enviracor J-5 E. Coli Bacterin Cattle Vaccine, 

(J5) (Zoetis Animal Health, Parsippany, NJ), Endovac-Bovi, (IMMVAC, Columbia MO), any 

autogenous vaccine for Salmonella or Escherichia coli, or the use of Rumensin, (Elanco, 

Greenfield, ID).  The type of DFM fed on the farm along with the dates the farm started and 

stopped feeding the DFM were documented and included in the analysis.  If the DFM being fed 

was changed, or if the farm started feeding a DFM during the months for which the health events 

were obtained, recorded health events were not used in the study for a period of 4 weeks rounded 

to the nearest month after the change was initiated.  If the farm stopped feeding the DFM, 

recorded health events were also not included in the month the change in feeding took place.  For 

the farm to be considered as feeding a DFM, more than 50% of the herd had to be fed the additive 

for a minimum of one month (30 consecutive days) prior to the date of enrollment  

Analysis 

The case definition was undifferentiated diarrhea severe enough to be recorded in the 

electronic data base.  The assumption was that severe diarrhea would be moved to a hospital pen 

for treatment and therefore be recorded for move and treatment.  The data regarding farm 

management and diarrheal diseases were collated into single database and descriptive statistics 

were analyzed.  The data were analyzed at the herd level, with outcome, population at risk, and 

exposures quantified for each month that herds provided data.  Associations between monthly 
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diarrheal disease occurrence and exposures that may have affected disease incidence were 

analyzed using a mixed linear model (Dohoo, Martin, and Stryhn 2009a).   The model was built 

using Proc Glimmix of SAS (Version 9.4, SAS Institute, Cary, NC, 2002-2012) with both a 

Poisson and negative binomial link function.  If the dispersion parameter generated from the 

Poisson regression was different from 1.0, indicating there was significant over dispersion, then 

the negative binomial model was used.  The outcome variable for these models was the count of 

reported diarrheal disease occurrence per month on a farm; the offset was the natural log of the 

herd population count for the same month.  Farm was analyzed as a random intercept, and data 

for different months were specified as a repeated measure for each farm.  The primary exposure 

variable of interest was exposure to different DFM products.  Each product was specified as a 

different binary (yes/no) variable.  Region was analyzed as a single fixed effect variable with 10 

categories, and also as a binary (East/West) variable.  Month was analyzed as a multivariable 

model with each month separately and then collapsed into Quarters Q1 = January, February, 

March, Q2 = April May June, Q3 = July, August, September, and Q4 = October, November, 

December), to see if  Quarters were significant determinant of a change in frequency of diarrhea.  

Exposure to the nine vaccines of interest were analyzed as separate binary (yes/no) variables.  

Breed was analyzed as two binary (yes/no) variables, one for Holsteins, and another for Jerseys; 

there were no other breeds represented in the study population.  Facility type was analyzed as 

two binary variables for farms that were constructed with dry lots (yes/no) and those with free 

stalls (yes/no). Other management/construction features were also analyzed as binary variables 

for rotary milking parlors (yes/no), parallel parlors (yes/no), herringbone parlors (yes/no), tunnel 

ventilated barns, and cross-ventilated barns (yes/no).  Each of these exposure variables was used 

to create a univariable model.  Variables that had P values < 0.2 were included in multivariable 
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model development, and backward selection was used to remove variables until all variables 

included in the final multivariable model using a critical alpha for retention of 0.1.  Region was 

analyzed as a binary (East/West) variable for multivariable model building.  Variables that were 

removed during multivariable model building were reintroduced singly into the final model to 

identify potential confounding; variables demonstrating substantial confounding were evaluated 

to determine an appropriate method for modelling or removed (Dohoo, Martin, and Stryhn 

2009b). 

If  the farms failed to have diarrhea in their events health table, the farm records were 

analyzed to find if  diarrhea events were recorded under other variables such as “scours”.  Many 

farms did have diarrhea recorded under different names or as comments in the tables.  These 

were manually extracted for each of the farm’s records and coded as diarrhea in the database.  If  

the computer records contained records of at least 1 diarrhea events for the farm, the months 

following the diarrhea event were included in the analysis even if  there were zero (0) incidents 

for subsequent  months.  

The Incidence Rate Ratio (IR) was calculated from the parameter estimate in the 

GLIMMIX model by taking the anti-log of the 2 Res Log Pseudo Likelihood estimate.  The base 

herd with the reference values was calculated from the antilog of the intercept multiplied by 1000 

to calculate the estimated incident rate of diarrheal disease per 1000 cows per month.  The effect 

of the exposure variable on the incident rate was calculated by multiplying the IR of that 

parameter times the IR of the base herd (the intercept parameter).  The change in incidence is the 

difference in these values. 
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Results 

One hundred and forty-five dairies agreed in the study.  Of the 145 dairies, 69 herds 

either did not record diarrhea incidents on their farm or refused to provide the dairy records.  

Only 76 of the dairies provided dairy records that contained diarrhea events for at least 1 month 

in which there was a recorded diarrhea event. 

The strata for the regions did not occur as originally planned.  The original plan was to 

include data from 15 of the 36 herds approached for each region.  However, 8 of the regions still 

did not achieve 15 herds that agreed to participate or qualified to participate prior to exhausting all 

of the herds for that region in the listframe.  Two of the regions, the Southwest and the East Plains 

were able to collect more than the first 15 herds on the list.  Due to the lack of response in some 

regions, the extra records from the regions with extra responses were used in the analysis (Table 

2.1).  Region was analyzed as a multivariable regression using all 10 regions regressed against 

diarrheal events.  Although there were more farms used in some regions than others, there was no 

effect of region with East Plains being the lowest (P < 0.19) for the outcome diarrhea events. 



47 

Table 2.1. Dairy farms responding to a cross sectional survey for the impact of Direct Fed Microbials on incident 
of diarrhea, stratified by region. For each dairy with a response to the survey, this table shows which 
ones provided any diarrhea information and of the farms that provided information, how many months 
of data were included. 

Region1 No Diarrhea2 Diarrhea3 Months of Data 4 

East 24 3 23 

East Plains 6 28 410 

Mid-West 4 8 98 

N. California 16 4 54 

Northwest 1 4 61 

Plains 4 3 39 

S. California 2 1 14 

Southeast 1 0 0 

Southwest 8 24 302 

Wisconsin 3 1 10 

Grand Total 69 76 1019 

 

1  Regions for East = MD, ME NC, NH, NY, PA, SC, VA, VT. East Plains = IA, MN, NE, SD. Mid-West = IL, IN, 
MI, MN, MO, ND, OH. N. California = Fresno addresses north. Northwest = ID, OR, UT, WA. Plains = CO, 
KS, OK, WY. S. California = addresses S of Fresno. Southeast = AL, FL, GA, KY, MS TN. Southwest = AZ, 
NM, NV, TX. Wisconsin = Wisconsin. 

2   Number of dairies by region that responded to the survey but the farm lacked any information in the herd record 
data set that indicated they recorded diarrhea in any form. 

3  Number of dairies by region that responded to the survey questions that had records of diarrhea incident recorded 
for at least 1 month.  

4  Months of incident rate data for each region that contributed information.  The monthly data was a repeated 
measure in the analysis. 

The average size of the dairies participating in the study was 2,886, with the smallest dairy 

having 510 cows in the herd and the largest dairy 12,291 cows (Table 2.2).  The number of months 

of recorded data was very variable due to some farms only providing the previous 12 months of 

records and not records during the follow-up visit (the additional 6 months).  Some of the farms 

were new start-ups and did not have 12 months of data.  Also, some farms started using a new 

record keeping system within the year previous to the initial survey or did not record diarrhea for 
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the entire 12 to 18 month study period.  In addition, not all the surveys had complete sets of 

information for each data point.  Surprisingly, many farms indicated they fed more than one DFM 

at the same time (Table 2.3).  In the statistical analysis, each predictor variable was analyzed as a 

separate variable in the univariable analysis.  No interactions for the different combinations were 

analyzed because there were insufficient numbers of the combinations of additives. 

The dataset was analyzed both as a Poisson distribution and as a negative binomial 

distribution.  The negative binomial distribution was used as a better model fit based on the -2 Res 

Log Pseudo-Likelihood fit of 2870.0 versus 4492.64, and a generalized Chi-Square/Df close to 1 

(1.13). 

Table 2.2 Herd size statistics for herds responding to cross sectional survey and longitudinal study of the impact 
of DFM on diarrheal incident in 2013. 

Number of Dairy Cows 

Min 510 

Max 12,291 

25th Q 1,275 

50th Q 2,245 

75th Q 3,897 

Average 2,886 

Median 2,245 

 

Table 2.3 Number of farms with individual categories of variables from cross sectional survey and longitudinal 
study of the impact of different DFM and their impact on diarrheal disease in dairy herds in the US in 
2013. 

 Number of Farms1 % of Farms 

Breed   

 Holstein 68 89.5% 

 Jersey 12 15.8% 
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 Number of Farms1 % of Farms 

Housing Type    

 DryLot no freestalls 18 23.7% 

 Conventional Freestall 49 64.5% 

 Cross Ventilated 8 10.5% 

 Tunnel Ventilated 3 3.9% 

 Saudi Style 1 1.3% 

Parlor Type   

 Rotary 13 17.1% 

 Parallel 54 71.1% 

 Herringbone 9 11.8% 

Feeding Method   

 Total Mixed Ration 76 100.0% 

 Graze 0 0.0% 

Vaccinations   

 Infectious Bovine Rhinotracheitis 73 96.1% 

 Bovine Viral Diarrhea 73 96.1% 

 Any Diarrhea Vaccine 72 94.7% 

 SRP Salmonella Newport Extract Bacterin 56 73.7% 

 Enviracor J-5 E. Coli Bacterin 57 75.0% 

 Any Autogenous Vaccine 8 10.5% 

 Endovac Bovi 17 22.4% 

 Any Ecoli Scours Vaccine 23 30.3% 

Direct Fed Microbial   

 DV SCFP 48 63.2% 

 Bovamine 11 14.5% 

 Celmanax 11 14.5% 

 Amax 3 3.9% 

 Amaferm 1 1.3% 

 Active Dry Yeast 2 2.6% 

 Omnigen 11 14.5% 

 Any other DFM 5 6.6% 

Rumensin   

  62 81.6% 

 

1 Farms that were analyzed with this variable. 
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In the univariable model, (Table 2.4) each outcome variable reported the effect measure 

which was the Log Pseudo Likelihood estimate of the incident (lnI) of the number of diarrhea 

incident for herd of 1 cow per month.  In each case of the predictor variable for DFM the reference 

case was the control or herds not fed the DFM and the table reports the effect of feeding the product.  

Likewise, in the farm management analysis, not using this particular farm design or parlor type is the 

reference and the effect represents the management in question.  For example, in (Table 2.5), Drylot 

represents herds that primarily used a drylot system versus all other type of systems, (Freestall, Cross 

Ventilated, and Tunnel Ventilated Barns).  Likewise, for vaccination type, the VaccBVD represents 

herds that declared they used some brand of vaccination for BVD. 

Table 2.4. Dairy Farms responding to a cross sectional survey performed in 2013 for diarrheal incident 
relationship to what feed additives (Direct Fed Microbials) were fed.  The responses are broken into 
East and West Region showing how many farms responded for each additive or additive combination, 
whether or not they provided records on diarrhea incident. 

Direct Fed Microbials 1 East 2 West 3 

Amax 4 13 12 

Bovamine 5 27 34 

Celmanax 6 2 0 

DV SCFP 7 242 229 

Other DFM 8 26 0 

Bovamine + Celmanax +_Amax  1 0 

Bovamine + DFM  0 1 

Celmanx + Amax  + Omnigen9  0 10 

Celmanax + Amaferm10 +  Omnigen 12 0 

Celmanax + Omnigen 30 11 

DV SCFP + ADY11  0 18 

DV SCFP + Bovamine  25 36 

DV SCFP + Bovamine + Amax  0 1 

DV SCFP + Bovamine + Amax  1 0 

DV SCFP + Bovamine + Celmanax + ADY + Omnigen  18 0 
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Direct Fed Microbials 1 East 2 West 3 

DV SCFP + Bovamine + Celmanax + Omnigen  20 0 

DV SCFP +  Celmanax  6 1 

DV SCFP + Celmanax + Omnigen  46 12 

DV SCFP +  DFM  13 19 

No Data  0 15 

No Feed Additive  105 103 

 

1.  Direct Fed Microbials reported to be fed for each month of data per farm.  Rows with multiple products indicate 
the farms that reported to feed multiple product simultaneously.  

2. Regions for East = MD, ME NC, NH, NY, PA, SC, VA, VT, IA, MN, NE, SD, IL, IN, MI, MN, MO, ND, OH.  

3. Regions for the West= CA, ID, OR, UT, WA, CO, KS, OK, WY AZ, NM, NV, TX. 

4. Amax is a yeast culture of Saccharomyces cerevisiae fermentation manufactured by Arm and Hammer Animal 
Nutrition of Princeton, NJ. 

5  Bovamine, a bacterium of Lactobacillus acidophius NP51 and Propionibacterium freudenreichii NP24 fed as a 
direct fed microbial is manufactured by Nutrition Physiology Company, a division of Chr. Hansen Holding A/S, 
Demark. 

6  Celmanax is a combination Saccharomyces cerevisiae fermentation product and yeast cell wall carbohydrates 
(MOS). It is manufactured by Arm and Hammer Animal Nutrition, Princeton, NJ. 

7  Diamond V is yeast culture, Saccharomyces cerevisiae fermentation product manufactured by Diamond V, 
Cedar Rapids, IA. 

8  Other DFM is any direct fed microbial, either bacterial or yeast based that was reported fed not included in the 
list of branded products. 

9 Omnigen is manufactured by Phibro Animal Health Corp, Teaneck, NJ. 

10  Amaferm is a fermentation product of Aspergillus oryzae manufactured by BioZyme, St. Joseph, MO. 

11 ADY is Active Dry Yeast by any manufacturer.  
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Table 2.5. Univariable Table.  Direct Fed Microbials fed to dairy farms analyzed as of categorical univariate variables  1 when analyzed for “not treated =(ref)” 
vs. treated on the log of the incidence of diarrhea in an observational longitudinal study. 

Predictor Varialble2 
2 Res Log Pseudo 

Likelihood (Estimate 3) SE P value Lower CL Upper CL Incident Rate Ratio 4 IR Lower CL IR Upper CL 

Direct Fed Microbial        

DV SCFP 5 -0.352 0.172 0.041 -0.691 -0.014 0.703 0.501 0.986 

Bovamine 6 -0.526 0.555 0.343 -1.615 0.562 0.591 0.199 1.755 

Celmanax 7 0.602 0.532 0.257 -0.441 1.645 1.826 0.644 5.183 

Amax 8 -0.639 0.961 0.506 -2.525 1.246 0.528 0.080 3.476 

Amaferm 9 2.160 1.621 0.183 -1.022 5.341 8.669 0.360 208.763 

ADY  10 0.416 1.167 0.722 -1.875 2.707 1.516 0.153 14.984 

OtherDFM 11 1.138 0.763 0.136 -0.360 2.636 3.121 0.698 13.954 

Rumensin 12 0.678 0.484 0.161 -0.271 1.628 1.971 0.763 5.092 

Omnigen 13 0.606 0.547 0.268 -0.467 1.680 1.834 0.627 5.364 

Breed         

Holstein 14 -0.145 0.620 0.816 -1.361 1.072 0.865 0.256 2.920 

Jersey 15 0.441 0.518 0.395 -0.575 1.457 1.554 0.563 4.291 

Facility type         

DryLot 16 -0.471 0.453 0.299 -1.360 0.418 0.625 0.257 1.519 

Freestall 17 0.692 0.394 0.079 -0.081 1.464 1.997 0.923 4.325 

Farm Management      1.000 1.000 

CrossVent 18 -0.278 0.629 0.659 -1.512 0.957 0.758 0.220 2.603 

Tunnel 19 0.245 0.973 0.801 -1.665 2.156 1.278 0.189 8.634 

Rotary 20 0.780 0.494 0.115 -0.189 1.750 2.182 0.828 5.754 

Parallel 21 -0.407 0.418 0.330 -1.226 0.413 0.666 0.293 1.511 
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Predictor Varialble2 
2 Res Log Pseudo 

Likelihood (Estimate 3) SE P value Lower CL Upper CL Incident Rate Ratio 4 IR Lower CL IR Upper CL 

Vaccination         

VaccBVD 22 -1.951 1.159 0.093 -4.225 0.323 0.142 0.015 1.381 

VaccSRP 23 0.555 0.449 0.217 -0.327 1.436 1.742 0.721 4.205 

VaccJ5 24 0.480 0.450 0.287 -0.404 1.363 1.615 0.668 3.906 

EndoVac 25 -0.284 0.462 0.539 -1.191 0.623 0.753 0.304 1.864 

VaccEcoliOther 26 0.192 0.422 0.649 -0.636 1.020 1.212 0.529 2.773 

Anydiavac 27 1.108 0.788 0.160 -0.439 2.654 3.027 0.645 14.207 

Region 28         

East 0.973 1.660 0.558 -2.285 4.230 2.645 0.102 68.731 

East Plains 1.603 1.230 0.193 -0.811 4.016 4.966 0.445 55.473 

Mid-West 1.682 1.321 0.203 -0.910 4.274 5.377 0.403 71.823 

N. California 1.594 1.443 0.270 -1.238 4.427 4.924 0.290 83.647 

Northwest -0.377 1.451 0.795 -3.224 2.469 0.686 0.040 11.814 

Plains 1.745 1.513 0.249 -1.225 4.714 5.724 0.294 111.486 

S. California -0.751 2.055 0.715 -4.784 3.281 0.472 0.008 26.597 

Southwest 0.628 1.236 0.611 -1.797 3.054 1.874 0.166 21.194 

Wisconsin 0.000     1.000   

Catagorical Region 29        

East 0.825 0.376 0.028 0.087 1.564 2.283 1.091 4.776 

West 0.000     1.000   

Quarter 30       1.000 1.000 

1 -0.108 0.068 0.114 -0.242 0.026 0.898 0.785 1.026 

2 -0.052 0.069 0.452 -0.188 0.084 0.949 0.828 1.088 
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Predictor Varialble2 
2 Res Log Pseudo 

Likelihood (Estimate 3) SE P value Lower CL Upper CL Incident Rate Ratio 4 IR Lower CL IR Upper CL 

3 0.004 0.065 0.950 -0.124 0.132 1.004 0.884 1.141 

4 0.000     1.000   

 

1  The coefficients from the negative binomial regression model are given in terms of the log of the incident (lnI).  The coefficient represents the amount (lnI) is 
expected to change with a unit change in the predictor (Dohoo, Martin, and Stryhn 2009b).  Modeled using SAS 9.4 GLIMMIX. SAS Institute Inc., Cary, 
NC.,.  Farm is a random intercept.  This model is a negative binomial model to account for over dispersion in the Poisson model.  The natural log of the herd 
cow numbers is the offset variable.    

2  Categorical treatment variables were modeled as univariable “treated” or “not treated” in the model. 

3  For the estimate coefficient the non-treated effect is the reference.  The coefficient is the lnI for the unit change in cases of for being or using the categorical 
variable.    

4  The incident rate ratio (IR) is the natural antilog of the lnI.  The IR represents the proportional increase in I for a unit change in the predictor. An IR of 1 is no 
change.  An IR of 1.5 would be a 50% increase. In the case of the DFM predictors the proportional change for feeding the product.   

5  Diamond V is yeast culture, Saccharomyces cerevisiae fermentation product manufactured by Diamond V, Cedar Rapids, IA. 

6  Bovamine, a bacterium of Lactobacillus acidophius NP51 and Propionibacterium freudenreichii NP24 fed as a direct fed microbial is manufactured by 
Nutrition Physiology Company, a division of Chr. Hansen Holding A/S, Demark. 

7  Celmanax is a combination Saccharomyces cerevisiae fermentation product and yeast cell wall carbohydrates (MOS). It is manufactured by Arm and 
Hammer Animal Nutrition, Princeton, NJ. 

8  Amax is a yeast culture of Saccharomyces cerevisiae fermentation manufactured by Arm and Hammer Animal Nutrition of Princeton, NJ. 

9  Amaferm is a fermentation product of Aspergillus oryzae manufactured by BioZyme, St. Joseph, MO. 

10  The category ADY is any active dry yeast as identified in the dairy survey.  

11  Any DFM was any DFM not specifically identified in another category in the dairy survey. 

12  Rumensin is monensin a feed additive antibiotic that targets gram positive rumen bacteria manufactured by Elanco, Greenfield, ID. 

13  Omnigen is manufactured by Phibro Animal Health Corp, Teaneck, NJ. 
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14  The categorical predictor variable Holstein is tested against the reference value of any other breed of cows “not Holstein” which would be Jersey, cross-breds 
and others. 

15  The categorical predictor variable Jersey is tested against the reference value of any other breed of cows “not Jersey” which would be cross-breds, Holstein and 
others. 

16  Drylot is farm management system where cows are not kept indoors but are housed out of door in dirt lots, not in pasture with or without shades. 

17  Freestall barns are farm management systems in which the cows are kept indoors with or without access to exercise lots where the cows are bedded in 
freestalls and naturally ventilated.  The reference for this predictor variable would be any other type of management system including drylot, crossvent, or 
tunnel ventilated barns. 

18  Crossvent is a farm management system in which cows are housed in cross ventilated barns.  They are typically in freestalls and the air is moved under 
pressure across the narrow access of the rectangular barn. The reference for this predictor variable would be any other type of management system including 
freestall, drylot, or tunnel ventilated barns. 

19  Tunnel is a farm management system in which cows are housed in tunnel ventilated barns.  They are typically in freestalls and the air is moved under pressure 
down the long axis of the rectangular barn. The reference for this predictor variable would be any other type of management system including freestall, 
drylot, or cross ventilated barns. 

20  Rotary is farm systems in which cows are milked on a rotary platform.  The reference for this predictor variable would be any other type of milking system 
which is herringbone or parallel parlors.  

21  Parallel is farm systems in which cows are milked in a parallel milking parlor.  The reference for this predictor variable would be any other type of milking 
system which is herringbone or rotary parlors. 

22  VaccBVD is a predictor variable yes or no if farm vaccinated cows with vaccine containing any brand with antigens against BVD.   

23  VaccSRP is a predictor variable yes or no if farm vaccinated cows with Salmonella Newport Bacterial Extract SRP CattleVaccine.  It is a vaccine containing 
SRP technology (siderophorne receptors and porins). This vaccine is manufactured by Zoetis Animal Health, Parsippany, NJ.  

24  VaccJ5  is a predictor variable yes or no if farm vaccinated cows with Enviracor J-5 E. Coli Bacterin Cattle Vaccine. This vaccine is specific of ecoli mastitis 
but some people feel it may reduce diarrhea as well. This vaccine is manufactured by Zoetis Animal Health, Parsippany, NJ. 

25 EndoVacc is a predictor variable yes or no if farm vaccinated cows with Endovac-Bovi which is a gram negative mastitis vaccine manufactured by IMMVA C 
of Columbia MO.  Many people feel it may cross protect against diarrhea in the cows as well. 

26  VaccEcoliOther is a predictor variable yes or no if farm vaccinated cows with any other brand of ecoli vaccine as well as bactrins. 

27  Anydiavac is a predictor variable yes or no if farm vaccinated cows with any vaccine directed against a diarrhea type outcome.  

https://www.google.com/aclk?sa=l&ai=DChcSEwjZhNLR2K7PAhWPI4EKHWv-DpcYABAE&sig=AOD64_0sEeaPVLuCqGFeDFGGtvzOBb_Jtg&ctype=5&q=&ved=0ahUKEwiR0s3R2K7PAhUGMSYKHUA4BOsQ9A4IjgE&adurl=
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28  Region was a multivariable predictor variable consisting of the region wherein the farm was located. Regions for East = MD, ME NC, NH, NY, PA, SC, VA, 
VT. East Plains = IA, MN, NE, SD. Mid-West = IL, IN, MI, MN, MO, ND, OH. N. California = Fresno addresses north. Northwest = ID, OR, UT, WA. 
Plains = CO, KS, OK, WY.  S. California = addresses S of Fresno.  Southwest = AZ, NM, NV, TX.  Wisconsin = WI was the reference value. 

29  West or East was a collapsing of the regions into either western herd (N. California, S. California, Pacific NW and Plains), vs the eastern herd (East, East 
Plains, Wisconsin, and the Midwest).  The west was the reference value. 

30  Quarter is a multivariable categorical predictor variable for the quarters of the year.  4th quarter is the reference quarter.  
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The results of the univariable analysis for parameter estimates with P values less than 

0.20 which were included for backward selection using a critical alpha for retention of 0.1 were, 

DV SCFP (IR = 0.703, P = 0.041), Amaferm (IR = 8.669, P = 0.183), Other DFM (IR = 3.121, P 

= 0.136), Rumensin (IR = 1.197, P = 0.161), Freestall (IR = 1.997, P = 0.079), Rotary (IR = 

2.182, P = 0.115), Vaccinate with BVD (VaccBVD) (IR = 0.142, P = 0.093), Any diarrhea 

vaccination (Anydiavac) (IR = 3.027, P = 0.160), East Plains (IR = 4.966, P = 0.193), East 

Region (IR = 2.283, P=0.028), 1st Q (IR = 0.898, P = 0.114).  When region was collapsed into 

East (East, East Plains, SE, Wisconsin, and the Midwest) or West (N. California, S. California, 

Pacific NW, SW, and Plains), the category was significant (P=0.028) with West used as the 

reference region.  A herd in the East had an IR of 2.28 showing an increased risk of >200% for 

diarrhea incidents per month /1000 cows over the base herd in the West region represented by 

the intercept. 

The final model (Table 2.6) results showed feeding DV SCFP had an IR = 0.707 when 

controlling for herds that vaccinated for BVD and if  the herd was in the East or West which 

represents about a 30% decrease in risk versus a herd not feeding DV SCFP or a decrease of 2.03 

diarrhea events / 1000 cows per month when compared to the base (intercept) herd.  The increase 

in diarrhea events for a dairy being in the east while controlling for the other parameters was an 

IR of 2.036 or about a 200 % increase.  This tells us that herds in the east reported about 14 cases 

per 1000 cows per month with a CI of 6 to 30 cases (Dohoo, Martin, and Stryhn 2009b).  

Vaccinating for BVD while not significant in the final model was forced in due to the high IR and 

its near significance in the univariable model (IR = 0.213). 
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Table 2.6. The final multivariable model for the risk due to certain categorical variables on diarrheal incident on US dairy farms from and observational longitudinal 
study. 

Predictor Varialble2 
-2 Res Log Pseudo-

Likelihood (Estimate 3) SE P value Lower CL Upper CL Incident Rate Ratio 4 IR Lower CL IR Upper CL 

Intercept -4.972 1.202 <.0001 -7.370 -2.575 0.007 0.001 0.076 

DV SCFP5 -0.347 0.171 0.043 -0.684 -0.011 0.707 0.505 0.989 

VaccBVD6 -1.545 1.168 0.186 -3.837 0.747 0.213 0.022 2.111 

East7 0.711 0.387 0.066 -0.048 1.470 2.036 0.953 4.349 

 

1  The coefficients from the negative binomial regression model represent the log of I (incident) (lnI) is expected to change with a unit change in the predictor 
(Dohoo, Martin, and Stryhn 2009b). Modeled using SAS 9.4 GLIMMIX. SAS Institute Inc., Cary, NC., 2016.  Farm is a random intercept.  This model is a 
negative binomial model to account for over dispersion in the Poisson model.  The natural log of the herd cow numbers is the offset variable.    

2  Categorical treatment variables were modeled as control or treated with control being the reference.  

3  For the estimate coefficient the non-treated effect is the reference.  The coefficient is the lnI for the unit change in cases of for being or using the categorical 
variable.    

4  The incident rate ratio (IR) is the natural antilog of the lnI.  The IR represents the proportional increase in I for a unit change in the predictor. An IR of 1 is no 
change.  An IR of 1.5 would be a 50% increase.  The control is the reference. 

5  Diamond V is yeast culture, Saccharomyces cerevisiae fermentation product manufactured by Diamond V, Cedar Rapids, IA. 

6  Herd not receiving vaccination for Bovine Viral Diarrhea of any brand. 

7  Herd are located in the east region versus the west. These regions were West equals Northern California (Fresno area north) Southern California, (Fresno area 
south), the Pacific-Northwest, (WA, OR, ID, UT), Southwest (NM, TX, AZ), and Plains (CO, KS, OK).  The East region was East Plains (IA, MN, ND and 
SD), East (MD, ME NC, NH, NY, PA, SC, VA, VT), Midwest (IL, IN, MI, MN, MO, ND, OH. 
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Discussion 

Diarrhea is a major health problem on dairy farms, but the exact extent is not known 

because farms might not always record diarrhea incidents.  According to the 2007 National 

Animal Health Monitoring System (NAHMS 2007) Dairy Study about 10% of cow deaths were 

attributed to diarrhea or other digestive problems and farmers report about 2.5% of all cows have 

diarrhea events per year.  In this survey using dairy records the overall average rate of a recorded 

diarrhea event was 1.1% / month.  This would equate to around 13% / year for of cows in dairy 

herds having at least one case of diarrhea.  In the NAHMS study the actual dairy records are not 

used to analyze the diarrhea rates.  The data in this study may be more a more accurate 

assessment although much higher.  In 2009 looking at herds with clinical diarrhea and 

specifically looking at salmonellosis, Cumming and colleagues found an incident density at the 

animal level of 1.8 cases or cows testing positive for Salmonella per 1000 animal years in the 

Northeastern US (Cummings et al. 2009).  Cummings was reporting only cows that tested 

positive for salmonellosis, while the diarrhea recorded on farm in this study was undifferentiated 

and could have been from a variety of causes.  The incident density in the current study was 83.1 

per 1000 cow years which is 80 times the level in the Cummings study.  This large increase 

might be due to many other causes of diarrhea on farm but also might be due to undifferentiated 

misclassification of the diarrhea event itself. 

While feeding DFMs may decrease diarrhea from infectious causes, (Cernicchiaro et al. 

2014, Magalhaes et al. 2008, Seo et al. 2010), there is evidence that some DFMs may also 

decrease the risk of problems of feed contaminated with mycotoxins (Whitlow and Hagler 2008) 

or decrease the risk of sub-clinical acidosis, both of which can induce diarrhea (Seo et al. 2010).  

Another risk factor examined in this study was immunization for BVD, which is an important 

cause of diarrhea in US dairy herds (Hochsteiner et al. 2002, Houe 2003).  While many risk 
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factors were examined in this survey, only DV SCFP, vaccinating for BVD, being from the East 

region, and freestall barns were close to significant, Fossler (2005) found a decrease of 

Salmonella shedding in herds using freestall barns.  We found more events of diarrhea in 

freestall barns in the univariate model but this was dropped as confounding with the variable 

WestorEast region.  Although shedding of Salmonella and events of diarrhea are related there are 

many other risk factors associated with undifferentiated diarrhea.  Events of diarrhea may be 

more associated with rations, weather, as well as region and some of these factors could be more 

associated with region.  For example feeding higher corn silage rations in the Midwest might be 

more associated with rumen acidosis leading to diarrhea.  We had freestall barns and region 

confounded in our study.  This could be due to more diarrhea in the east and freestall barns are 

more common in the east.  

The finding for some impact on diarrhea events for DV SCFP is in keeping with 

Brewer’s finding that calves had less diarrhea than control after calves were inoculated with 

Salmonella while being fed a Saccharomyces fermentation product (Brewer et al. 2014).  In 

addition SCFP has been shown to decrease ruminal acidosis (Li et al. 2016) which is a possible 

risk factor for diarrhea (Plaizier et al. 2008, Dijkstra et al. 2012).  While this study only showed 

only 1 DFM associated with a decrease in diarrhea events, this is more likely due to the sampling 

size associated with different feeding regimes.  The number of farms targeted in the sample was 

not achieved (76 vs 150) resulting in low power for many of the less commonly fed DFM 

products and therefore could represent a Type 2 error for many other the other products 

variables, therefore no conclusion can be drawn from the lack of significance in the other 

variables. 
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Other possible issues that may lead to bias within this study are possible errors in 

classification.  One large misclassification is what constitutes the case definition of diarrhea in 

the opinion of the dairy, and what gets recorded in the database.  There were many months where 

0 cases diarrhea were reported whereas the maximum incidences of reported diarrhea was 384 

cases per 1000 cows.  It is obvious from the data that some farms record many more incidents of 

all diseases in their data.  Some large farms with 2000 or more cows had fewer than 1 or 2 cases 

of diarrhea per month recorded (these tended to be in the west) whereas some smaller dairies 

with fewer than 1000 cows had more than 100 cases in a month.  This could reflect more 

intensive monitoring depending on farm sizes but could be a management cultural practice in the 

West; in other words, diarrhea may not be considered as a recordable health event on western 

versus eastern dairies.  Overall the higher incident density than for example Cummings could 

represent a much higher specificity for identifying diarrheal disease which could be the result of 

non-differential misclassification.  The effect of non-differential misclassification would be to 

bias the estimated effect toward the null.  This nullifying effect could indicate that in the final 

model what appears as a rather small effect due to DV SCFP could actually be larger than 2 

cases per 1000 cows per month.  

There are many treatments that are used on farm to treat diarrhea (e.g. oral or parenteral 

electrolyte solutions, astringent boluses, antibiotics).  For the dairy industry to provide good 

decision analysis to farms, accurate recording, and standardized case definitions would need to 

become the norm for the dairy industry.  With the exact number of cases being unknown, being 

able to provide good solutions for treating diarrhea while combating antimicrobial resistance 

resulting from treatment of diarrhea incidents will be a difficult undertaking.  Identifying 

possible feed additives or management practices that could lead to lower levels of diarrhea and 
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therefore antibiotic treatments is a possible alternative that holds great promise for the future.  In 

this study, the only feed additive to show improvement in diarrhea incidents was SCFP.  The 

feeding of SCFP only accounted for approximately 2 cases in 1000 cows per month.  Much of 

the qualitative data available on feeding DFM to dairy cattle indicate a milk production effect 

(Poppy et al. 2012) which may be more important to a dairy producer than the economics of a 

reduction in diarrhea cases. 

The study used Diamond V employees to conduct the survey, which could create a 

selection bias in the survey data possible making herds using DV SCFP more likely to answer 

the survey.  A larger proportion of study herds (67%) used DV SCFP alone or in combination 

with another brand of DFM.  Another selection bias was that the survey responders volunteered 

for filling out the survey and providing the herd electronic records.  Surprisingly many herds 

used combinations of 2 to 4 different DFM products at the same time.  If  this is true, it represents 

an opportunity for dairies to limit their choices, as there is no evidence that multiple products 

have an additive effect.  It is possible that the survey responder didn’t actually know what is 

being fed on the farm and answered they fed DV SCFP as one of their feed ingredients because it 

was a DV representative asking them the question. 

It is possible that the Diamond V employees could have inadvertently chosen herds to 

participate that fed Diamond V products and also had low incidents of health events while herds 

that were not fed Diamond V products or herds being fed other products or management 

characteristics such as barn design or parlor design had higher diarrhea incidents, however, this 

was not apparent when the herd information was reviewed.  Also, the farms visited were from a 

list of randomized farms.  Farms were visited according to this list until approximately 15 farms 
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agreed to participate or the list was exhausted.  Having a higher herd participation rate from the 

randomized list of herds would have minimized this possible bias. 

Conclusions Chapter 2 

Utilizing a broad survey of herds across the United States, many different feed additives, 

and management practices were identified.  Of the different management practices surveyed, only 

feeding of DV SCFP was significantly associated with a decrease in recorded diarrhea events.  Due 

to possible misclassification, the result showing a decrease of 2 cases per 1000 cows per month 

could be underreported.  Vaccinating with a BVD vaccine was also associated with a trend toward 

decreased incidents as well as herd location East vs. West.  A lack of accurate records for health 

events being documented on the farm may decrease the ability to accurately make inferences based 

on observational studies.  In order to be able to utilize data collected on farms, data collection 

guidelines may need to be established to make data collection more consistent.  Possibly paying 

farms to participate in a study of this nature where they would see a tangible return for the effort of 

keeping more accurate records could benefit a more accurate assessment of the DFM exposure.  

For this type of study, more farms would need to be included in the study to help minimize the 

inherent variation sometimes seen in smaller studies and to potentially have enrollment of farms 

that utilize a wider variety of DFM products to minimize diarrhea incidents. 
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A META-ANALYSIS OF THE EFFECTS OF FEEDING 

YEAST CULTURE PRODUCED BY ANAEROBIC FERMENTATION 

OF SACCHAROMYCES CEREVISIAE, ON MILK PRODUCTION OF 

LACTATING DAIRY COWS 

Chapter 3 Executive Summary 

The purpose of this study was to use meta-analytic methods to estimate the effect of a 

commercially available yeast culture product on milk production and other production measures in 

lactating dairy cows through the use of a meta-analysis of randomized controlled trials.  A total of 61 

research publications (published journal articles, published abstracts, and technical reports) were 

identified through a review of the literature provided by the manufacturer and search of published 

literature using 6 computer search engines.  Thirty-six separate studies with a total of 69 comparisons 

met the criteria for inclusion in the meta-analysis.  The fixed effect meta-analysis showed substantial 

heterogeneity for milk yield, energy corrected milk, 3.5% fat corrected milk, milk fat yield, and milk 

protein yield.  Sub-group analysis of the data showed much less heterogeneity in peer reviewed 

studies versus non-peer reviewed abstracts and technical reports, and tended to show higher, but not 

significantly different, treatment effects.  A random-effects meta-analysis showed estimated raw 

mean difference between treated and untreated cattle reported in peer reviewed publications were 

1.18 kg/d (95% CI, 0.55 to 1.81), 1.61 kg/d (95% CI, 0.92 to 2.29), and 1.65 kg/d (95% CI, 0.97 to 

2.34) for milk yield, 3.5% fat corrected milk and energy corrected milk, respectively.  Milk fat yield 

and milk protein yield for peer reviewed studies showed an increase in the raw mean difference of 

0.06 kg/d (95% CI, 0.01 to 0.10) and 0.03 kg/d (95% CI, 0.00 to 0.05).  Estimated raw mean dry 
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matter intake of the peer reviewed studies during early lactation (< 70 DIM) and not-early lactation 

were 0.62 kg/d (95% CI, 0.21 to 1.02) and a decrease of 0.78 kg/d (95% CI, -1.36 to -0.21), 

respectively.  These findings provide strong evidence that this commercially available yeast culture 

product provides a significant improvement in several important milk production outcomes as 

evaluated in production settings typical for commercial dairies in North America.  Utilizing meta-

analytic methods to study the complete breadth of information relating to a specific treatment by 

studying multiple overcomes of all eligible studies can reduce the uncertainty often seen in small 

individual studies designed without sufficient power to detect differences in treatments. 

Introduction 

Yeast products are commonly used around the world for inclusion in diets of production 

animals.  It has been suggested that yeast products impact the rumen microbial population 

resulting in changes in ruminal VFA production resulting in increased milk production as well as 

an increase in milk fat (FY) and milk protein (PY) yield from lactating dairy cows (Erasmus, 

Botha, and Kistner 1992, Putnam et al. 1997).  Increased DMI has been observed in some studies 

(Dann et al. 2000) and decreased DMI in other studies (Schingoethe et al. 2004) et al., 2004).  

Despite numerous peer reviewed and non-peer reviewed studies on the effects of feeding yeast 

products, the results of these studies in lactating dairy cows appear to be inconclusive.  Some 

studies have identified significant effects on milk production (Harrison et al. 1988, Hippen et al. 

2007, Lehloenya et al. 2008, Ramsing et al. 2009) others reported a trend in production Williams 

(Williams, Marsh, and Williams 1999, Dann et al. 2000, Wang, Eastridge, and Qiu 2001) or no 

significant differences (Robinson 1997, Schingoethe et al. 2004).  Nutritionists, veterinarians, 

and dairymen need to know the efficacy of these yeast products on milk production measures in 
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order to make appropriate decisions about the use of these products in their management 

systems. 

One possible source of variability in results is that many trials may have lacked sufficient 

sample size and consequently statistical power to demonstrate the differences in the production 

measures.  Lack of statistical power can result in an increased risk of missing a true treatment 

effect and produce a false negative trial result that is a Type 2 statistical error (Freiman et al. 

1978, Egger, Smith, and Altman 2001).  Meta-analysis has been proposed as a method that can 

be used to obtain useful summary estimates of effect, especially when there are numerous small 

studies conducted in different study locations by different researchers using different study 

designs, which when considered individually may not provide conclusive evidence of effect 

(DerSimonian and Laird 1986, Lean et al. 2009). 

Another possible source of variation in response to supplementation of yeast product may 

be the type of yeast products that are used.  There are differences between active ingredients and 

putative modes of action of different products.  There are two main categories of yeast products 

(AAFCO 2011).  Yeast cultures that are produced through yeast fermentation contain 

fermentation by-products and are not dependent on the live yeast for their physiological effects.  

The fermentation products contain compounds that impact the growth of various types of rumen 

bacteria and protozoa (Wiedmeier, Arambel, and Walters 1987, Harrison et al. 1988, Callaway 

and Martin 1997).  In contrast, active dry yeast products (AAFCO 2011) are products that by 

definition must have greater than 15 billion live yeast cells/g.  The effect is assumed to be 

dependent on the yeast cell being alive in the rumen to have a production effect (Dawson, 

Newman, and Boling 1990, Newbold, Wallace, and McIntosh 1996)).  A recent meta-analysis by 

Desnoyers et al. (2009) provides an example of how the lack of differentiation among these 
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products is common in the peer-reviewed literature.  The aim of Desnoyers et al. (2009) meta-

analysis was to estimate the effects of live yeast supplementation on intake, rumen fermentation, 

and milk production, however, the study mistakenly included 13 studies of yeast culture 

mislabeled as live yeast.  Differences in both the manufacturing process of specific yeast 

products and the response of yeast products within different production system of herds may 

contribute to the variability of production responses. 

The purpose of this study was to critically review all relevant research specific only to 

a single manufactured yeast culture product and to estimate the effect of a yeast culture 

product on milk yield (MY), FY, PY, ECM, and DMI of dairy cattle using meta-analytic 

methods.  A secondary objective was to examine the differences in treatment effect and 

heterogeneity of various study designs (i.e. blinding and randomization) or other factors such 

as peer review that commonly lead to publication bias or heterogeneity of effect in other 

meta-analytic studies 

Materials and Methods 

All published and unpublished papers and reports that studied the effect of commercially 

available yeast culture products manufactured by Diamond V (Cedar Rapids, Iowa) that were 

conducted in lactating dairy cattle prior to 2011 were obtained from the manufacturer’s records.  

A comprehensive search of English language published literature was also performed by utilizing 

6 different search engines (Pubmed, scholar Google, Agricola, Sciencedirect, Scirus, and CAB) 

with the words yeast, cows, and lactation, to identify other research papers and reports that may 

not have been published. 
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Inclusion Criteria 

All published and non-published studies in the English language were screened for 

inclusion in the meta-analysis using standardized criteria.  To be included in the meta-analysis, 

studies must have evaluated at least one of the three yeast culture products (YC, XP, XPC) sold 

by a single company (Diamond V, Cedar Rapids, IA).  The three products are equivalent 

products in manufacturing except for the concentration.  The study must have included a 

concurrent negative control group, randomized treatment assignments (Lean and Rabiee 2011), 

must have been conducted in lactating dairy cows (not dry cows or in-vitro studies) and used a 

parallel group design (i.e. not crossover).  Additionally, studies must have reported results of at 

least one of the production outcomes of interest [MY, ECM, % milk fat (F%), FY, % milk 

protein (P%), PY, 3.5% FCM, ECM or DMI], along with a measure of variance (SE or SD) or a 

P value for comparison of effects between treatment and control groups. 

Data Extraction 

Data were collated from the eligible studies reporting the effect of yeast culture on 

production outcomes.  In addition to outcome measures regarding milk production, the following 

data were extracted from the trials for sub-group analysis if  the information was present: location 

of the study (state, country), source of the paper (peer reviewed journal, conference abstract, or 

technical report), published in a peer reviewed journal (yes or no), if  an explicit statement about 

the randomization of treatments was included (yes or no), analytical control for confounders (yes 

or no), if  the treatment application was prior to calving date (yes, before calving vs. no), DIM at 

the start of the trial, stage of lactation for the study period (full lactation, <70 DIM, or ≥70 DIM), 

milking frequency (2X, 3X or unknown), calving season for the dairy (seasonal or all year 

around), diet (pasture or total mixed ration (TMR)), dietary vitamin supplementation (yes or no), 
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ionosphere supplements (yes or no), parity (primiparous only or a mix of multi and primiparous), 

breed (Holstein or other) BST administration (yes or no), type of yeast culture product (YC, XP 

or XPC), dosage of yeast culture (in grams), yeast culture delivery method (mixed or top-

dressed), and how the treatment was delivered to the cow (individually or fed to a pen of cows). 

Statistical Analysis 

Meta-analysis was conducted using the methods described by Higgins and Green 

(2008a).  Statistical analysis was conducted on the extracted production data using 

Comprehensive Meta-Analysis version 2.2.050 (Biostat, Englewood New Jersey 2009).  Studies 

were weighted using the methods of inverse variance (DerSimonian and Laird 1986).  If  the 

selected studies have not reported measures of the variance of the interested outcomes, estimates 

of variability were extracted from the papers using the methods described by Rabiee et al. 

(2010).  If  the trial only reported a Z statistic or P value, the estimates for SE and SD were 

calculated using the difference in the mean and the number of cows for each trial (Higgins and 

Green 2008b).  For studies that only reported significance relative to a given alpha cutpoint (i.e. 

P ≤ 0.05), then this value was used to make a conservative estimate of SE and SD.  For studies 

that only reported a non-significant effect, P values of 0.15, 0.3, and 0.5 were assigned and 

compared numerically to each other.  The P value that produced the smallest (most conservative) 

estimate of the overall treatment effect was selected for the calculation of the SE (Sanchez et al. 

2004).  If  F%, FY, P%, PY, 3.5% FCM (Dairy Records Management Systems, 2006), and ECM 

(Tyrrell and Reid 1965) were not reported, estimates of these parameters were calculated.  The 

variance used for the calculated missing value was the variance for the corresponding outcome 

statistic from the same trial (F% from FY, FY from F%, PY from P%, P% from PY and 3.5% 

FCM and ECM from MY).  Continuous data were analyzed both using the raw mean difference 
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(RMD) for both fixed effect and random effect models as described by Borenstein et al. (2010) 

for each study outcome and as a standardized mean difference (SMD) as described by Lean 

(2009).  Differences in study designs or production system characteristics that were considered a 

priori to influence trial outcomes or where a high level of heterogeneity was observed were 

explored using stratification for comparison of these sub-groups.  Sub-groups with less than 5 

comparisons were not considered appropriate to report statistically as there were not enough 

comparisons to evaluate. 

Multiple Comparison Outcomes 

In studies with complex data structures such as those with multiple comparisons (i.e. one 

control group was compared to two different treatment groups or multiple outcomes were 

compared between groups at different stages of lactation), a synthetic treatment effect was 

calculated along with an adjustment of the variance to compensate for the correlated outcomes 

(Table 3.1).  This was accomplished by first performing a fixed effects meta-analysis of the 

correlated outcomes in the study to obtain a synthetic point effect.  The variance for the synthetic 

point effect was calculated using the variance inflation factor as described.  This fixed effect 

point estimate was entered in the final meta-analysis as one study and the studies that were used 

to estimate the synthetic treatment effect were excluded.  An example of how this was done is 

how Dan et al. (2000) was evaluated.  In this study Dann et al., reported MY from d 1 to 21, 1 to 

42 and 1 to 140.  A correlation factor of 0.33 was estimated for these MY outcomes, as these 

reported MY outcomes are not independent of each other and yet each one has valuable 

information on how yeast culture impacts MY.  The outcomes for MY difference were 1.4 kg/d, 

1.6 kg/d and 0.6 kg/d respectively with an SD of 4.79, 4.70 and 4.36 for each.  The synthetic 

mean difference in MY was calculated by combining these 3 outcomes by using a fixed meta-
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Table 3.1. Descriptors of 61 research papers from 1988-2011 meeting specified selection1 criteria and reporting the effect of Diamond-V yeast culture products on 
production outcomes in dairy cattle that were used in a meta-analysis of the effects of a single yeast culture product on milk production in dairy cows. 
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Alshaikh et al., 2002 Journal Saudi Arabia No Yes Yes After Not Early 3X Mixed Group 1 

Arambel and Kent, 1990 Journal Utah No Yes Yes After Not Early 2X Top Dress Indiv. 1 

Bennett, 2004 Report Australia. No No Yes After Full 2X Top Dress Group 1 

Bernard, 1992 Abstract Tennessee No Yes Yes After Early 2X Mixed Indiv 1 

Braun, 1993 Report Israel No Yes Yes After Not Early Unknown Mixed Group 1 

Cooke et al., 2007 Journal Georgia No Yes Yes After Not Early 2X Mixed Indiv 3 

Dann et al., 2000 Journal Illinois3 Yes 

r=.33 

Yes Yes Before Early 2X Top Dressed Indiv 3 

DV Mills and MW Feed 
Manf. Rrch Farm 1, 1989 

Report Midwest US No No Yes After Not Early Unknown Top Dress Indiv 1 

DV Mills and MW Feed 
Manf. Rrch Farm 2, 1993 

Report Midwest US No Yes Yes After Not Early 2X Mixed Group 1 

DV_Mills and 
Union_Grove_Dairy, 1997 

Report North Carolina Yes 

r=.33 

No No After Not Early Unknown Unknown Group 3 

DV_Mills and 
United_Molasses, 1994 

Report England Yes 

r=.33 

No Yes After Early Unknown Mixed Indiv 3 

Dobos, 1998 Report Australia No No Yes After Early 2X Mixed Group 2 

Erasmus et al., 2005 Journal South Africa No No Yes Before Early 2X Mixed Indiv 2 

Fazenda, 1998 Report Portugal No No Yes After Not Early 3X Mixed Group 1 



72 

Study Name So
ur

ce
2  

L
oc

at
io

n3  

Sy
nt

he
ti

c 
sc

or
e4  

R
an

do
m

iz
ed

5  

C
on

tr
ol

 
co

nf
ou

nd
e6  

St
ar

t 
of

 
tr

ea
tm

en
t7  

St
ag

e 
of

 
la

ct
at

io
n8  

M
ilk

in
g 

fr
eq

ue
nc

y9  

D
el

iv
er

y 
m

et
ho

ds
10

 

F
ee

di
ng

 
m

et
ho

d11
 

C
om

pa
ri

so
ns

12
 

Harris et al., 1992 Journal Florida No Yes No After Not Early 2X Mixed Indiv 1 

Harris, 1988 Abstract Florida No No Yes After Both 3X Mixed Group 2 

Harris, 1990 Abstract Florida No No Yes After Not Early 3X Mixed Group 1 

Kim et al., 1994 Abstract Utah No No No After Not Early Unknown Top Dress Indiv 1 

Korniewicz, 2005 Journal Poland Yes 

r=.32 

Yes Yes Before Early Unknown Top Dress Group 2 

Lehloenya et al., 2008 Journal Oklahoma No Yes Yes Before Both 2X Mixed Group 6 

Luhman, 1997 Abstract Iowa Yes 

r=.21 

No No Before Early Unknown Mixed Group 2 

Mangoni, 1998 Report Argentina No Yes Yes After Both 2X Top Dress Group 3 

Nagy, 1996 Abstract S. Carolina No No No After Not Early Unknown Mixed Group 2 

Oraskovich and Linn, 
1989 

Report Minnesota No No No After Not Early Unknown Top Dress Group 4 

Ramsing et al., 2009 Journal Oregon Yes 

r=.5 

Yes Yes Before Early 2X Top Dress Indiv 2 

Robinson, 1997 Journal Canada No No Yes Before Early 2X Mixed Indiv 1 

Robinson and Garrett, 
1999 

Journal Canada No No Yes Before Early 2X Mixed Group 2 

Sanchez et al., 1997 Abstract Wash. Yes 

r=.5 

Yes Yes Before Early 3X Mixed Group 2 

Schingoethe et al., 2004 Journal S Dakota No Yes Yes After Not Early 3X Mixed Indiv 1 
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Vogel, 2005 Abstract Missouri Yes 

r=.5 

No Yes Before Early 2X Mixed Indiv 2 

Wang et al., 200113 Journal Ohio Yes 

r=.27 

No Yes Before Both 2X Mixed Indiv 4 

Ward and McCormick, 
2001 

Abstract Louisiana No No No Before Early 2X Top Dress Indiv 1 

Williams et al., 1999 Report UK No No Yes After Not Early 2X Top Dress Group 1 

Zhou, 2002 Report China No No No After Early Unknown Top Dress Group 1 

Zilin, 1996 Report China No No Yes After Not Early 3X Mixed Group 1 

Zom, 2000 Report Netherland No Yes Yes Before Early 2X Pellet Indiv 3 

 

1 Inclusion criteria were: the study must have evaluated at least 1 type (concentration) of a commercial product sold by a single company (Diamond V, Cedar 
Rapids, IA), included a concurrent negative control group, randomized treatment assignments, conducted in lactating dairy cows, and used a parallel group 
design (i.e., not crossover).  Additionally, the studies must have reported data regarding at least one of the production outcomes of interest [milk yield, % 
milk fat,, milk fat yield, % milk protein, milk protein yield, 3.5% fat corrected milk, energy corrected milk or DMI], along with a measure of variance (SE or 
SD) or a P value for comparison of effects between treatment and control groups. 

2 Journals represent studies from journals that are peer reviewed. Abstracts are non-peer reviewed published articles and reports are company or industry 
reports. 

3 Location of the studies. 

4 Studies for which the animals within the study were used in more than one comparison and were therefore not independent of each other.  These comparisons 
were combined using a fixed effect meta-analysis. The combined variance was calculated using a variance inflation factor “r” (Borenstein et al., 2009a) to 
account for the correlation between the animals in the study. The synthetic point effect was then entered in the meta-analysis as a single study.  Examples of 
complex data structures are 2 comparisons using the same control group or a reported treatment effect reported in the same animals at different DIM. 

5 Did the author explicitly declare randomization of treatments in the study. 
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6 Did the author declare some type of control for confounding in the study design?. 

7 Did the treatment of yeast culture start before or after calving?. 

8 Studies that were primarily conducted in groups of cows less than 70 DIM are “Early” and ≥70 are “Not Early”. Studies designated Full were comparisons 
that were from calving to the dry off period. 

9 Number of times the study cows were milked in 24 hours. 

10 The method of delivery of the treatments to the cow.  Mixed is mixed in some portion of the feed such as a grain portion or TMR.  Top- dressed was fed on 
top of the feed. Pellets had the treatments included in a pellet fed in the ration. 

11 Feeding Method is Indiv if the cows were randomized and fed at the cow level and the appropriate n was used in the statistical analysis.  Group indicates the 
study appeared to randomize and feed the cows at the group level and use the individual cows in the statistical analysis. 

12 Number of comparisons within the study for which a treatment effect was reported.  

13 Wang et al. had 2 separately correlated data sets on 17% NDF and on 21%NDF all within one paper. An r of 0.27 was used for both combinations. 
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analysis technique which were weights using the inverse of their variance of the data for a mean 

milk difference of 1.16 kg/d and a variance of 18.23 which was entered into the meta-analysis as 

a single study (Borenstein et al. 2009a). 

Assessment of Heterogeneity 

Between study variability compared to within study variability which is called the 

heterogeneity of effect size was evaluated using both the chi-square (Q) test of heterogeneity and 

the I2 statistic (Higgins et al. 2003).  Negative values of I2 were assigned a value of zero.  An I2 

value of >35%, or a chi-square (Q) test with P ≤ 0.1 was considered indicative of substantial 

heterogeneity.  Q is a statistic that is sensitive to the ratio of the observed variation between 

studies to the within study variation.  Under the null hypothesis where all studies share a 

common effect size, the Q statistic follows a central chi-squared distribution with degrees of 

freedom equal to k-1.  A significant P value would lead one to reject the null hypothesis and 

conclude that the studies do not share a common effect size.  Two groups can be evaluated if  

they share a common effect size by the same method.  When two groups are being evaluated, we 

can calculate the Q as the effect sizes of the groups of studies now instead of two studies, and 

test the dispersion of the subgroup about a summary effect with degrees of freedom = 1 

(Borenstein et al. 2009c). 

The data were analyzed using both fixed effect and random effects models.  The random 

effects model was determined more appropriate to report the treatment effects as this accounts 

for the impacts of study design, management and cow variation and other differences in study 

conduct on treatment effects (Borenstein et al. 2010). 
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Publication Bias 

Publication bias was assessed using funnel plots (Light and Pillemer 1984). Trim and fill 

methods were used to assess the best estimate of the unbiased effect size (Duval and Tweedie 

2000). 

Results and Discussion 

Reports Meeting Inclusion Criteria 

A total of 61 research papers (published journal articles, published abstracts, reports, and 

technical reports) were provided by the manufacturer.  The literature search did not find any 

other papers than those provided.  Of the 61 studies, 36 separate studies (Table 3.1) met the 

criteria for inclusion into the meta-analysis.  Papers were excluded if  they only included positive 

treatment control groups (n = 17), used cross-over, Latin square or factorial design (n = 6), or 

failed to report a relevant treatment effect (n = 2) (Appendix Table A.1).  Within the 36 separate 

studies, there were reported 69 separate comparisons.  Correlations of studies (n=9) with 

multiple outcomes and multiple time points were estimated to make synthetic point effects to 

adjust for the change in variance for each of the outcomes (Table 3.1). 

Heterogeneity Analysis 

The analysis of milk yield showed a high level of heterogeneity (I2 = 40.46%) along with 

a highly significant chi-square test of Q (P = 0.003; Table 3.2).  Analysis for heterogeneity is 

important in meta-analysis because it tests the amount of variance within the group of studies 

compared to the within study variation.  The chi-square test of Q is a test of the null hypothesis 

that all the studies share a common effect size. The I2 statistic is the ratio of the between study 

variation or true heterogeneity to the total variance across the observed effect estimates.  A high 

I2 suggests the difference between individual study outcomes is greater (or more variable) than 
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Table 3.2. The estimated effect of yeast culture on milk yield in lactating dairy cows from all studies (sub-group analysis 1)1 from a meta-analysis of yeast 
culture production effects from 1988 to 2011.  

   RMD (95% CI)2 Heterogeneity SMD (95% CI)3 

Milk Yield (kg/d) 
 Trials 

comparisons (n) Random effect P value Chi-square (Q) df P value I2 (%) Random effect P value 

All All trials 57 1.03 (0.73 to 1.34) 0.001 73.90 44 0.003 40.46 0.35 (0.22 to 0.47) 0.001 

Start treatment4 After  35 1.12 (0.73 to 1.50) 0.001 51.80 26 0.002 49.81 0.36 (0.18 to 0.55) 0.001 

Before  22 0.75 (0.36 to 1.14) 0.001 15.85 16 0.464 0.001 0.29 (0.16 to 0.42) 0.001 

Stage of lactation5 Early  27 1.43 (0.89 to 1.96) 0.001 52.76 26 0.001 50.72 0.36 (0.22 to 0.50) 0.001 

Not Early 29 0.95 (0.67 to 1.23) 0.001 15.52 28 0.972 0.001 0.24 (0.12 to 0.35) 0.001 

Delivery method6 Mixed 33 0.99 (0.69 to 1.30) 0.001 0.001 0 1.000 0.001 0.40 (0.22 to 0.57) 0.001 

Top-dress 19 1.30 (0.54 to 2.07) 0.001 24.40 14 0.041 42.63 0.31 (0.10 to 0.51) 0.004 

Milking 
frequency7 

2X 29 1.16 (0.66 to 1.66) 0.001 33.66 22 0.053 34.63 0.33 (0.21 to 0.46) 0.001 

3X 9 0.68 (0.29 to 1.07) 0.001 1.79 7 0.971 0.001 0.18 (0.07 to 0.29) 0.002 

Unknown8 18 1.36 (0.78 to 1.94) 0.001 18.59 12 0.099 35.46 0.43 (0.03 to 0.82) 0.036 

 

1 Studies are stratified by various factors controlled within the study design or reporting. 

2  RMD is the raw mean difference of the treatment effect and its associated 95% confidence interval 

3 SMD is the standardized mean difference of the treatment effect. This is estimated by dividing the mean difference for a study by the standard deviation for that 
study.  A random effects model was then analyzed for the standardized mean difference.  The SMD can be viewed as a measure of overlap between 2 separate 
distributions. 

4 Treatment effect from all studies containing milk yield data included in the meta-analysis stratified by the start of treatment, before or after parturition. 

5 Treatment effect from all studies containing milk yield data included in the meta-analysis stratified by stage of lactation.  Studies that were primarily 
conducted in groups of cows less than 70 DIM (early), and all other studies (not early). 
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6 Treatment effect from all studies with milk yield data stratification by how the treatment was fed either top-dressed (fed separately on top of the feed) on the 
total mixed ration or mixed in the total mixed ration prior to being fed to the cows. 

7 Treatment effect from all studies with milk yield data stratified by how often the study cows were milked in 24 hours. 

8 Studies in which milking frequency for the study animals was not designated within the study. 
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expected.  Excess variation may indicate more than one outcome is being measured and may not 

be appropriate to combine the studies for an average effect.  The difference in treatment response 

may actually be due to differences due to other factors including breed responses such as Jersey 

vs. Holstein, type of ration fed, delivery method of the ration or stage of lactation.  Alternatively 

but not exclusively, the heterogeneity could be due to differences in study designs such as the 

difference in how studies were randomized, how blinding was performed (if at all), how 

confounding was controlled for in the study design, and what to experimental unit did the study 

randomize the treatment?  Stratification and meta-regression are two accepted methods that are 

used to evaluate the presence of heterogeneity and also to examine the impact of specific groups 

of studies on heterogeneity. 

Milk fat yield had a high level of heterogeneity (I2 = 36.69%, Q chi-square, P = 0.009) as 

did PY (I2 = 35.12%, Q chi-square, P = 0.016).  Dry matter intake studies had a moderate level 

of heterogeneity (I2 = 18.33%, Q chi-square, P = 0.185). 

Stratification was used to explore the potential sources of the high level of heterogeneity 

and whether there was a statistical difference between the subgroups.  The following subgroups 

were explored and tested: i) if  the study was reported in peer reviewed journals or not, ii)  studies 

that declared their randomization or not, iii)  studies that stated whether confounders were 

controlled or not, iv) the stage of lactation (less than 70 DIM (early) or later in lactation, 

(insufficient full lactation trials to analyze)), v) unit of feeding was at the individual cow level 

and the unit of allocation was at the cow level vs. having allocated the treatment at the group 

level but used the unit of measure at the cow level, vi) delivery method (top dressed versus 

mixed in the feed), and vii) milking frequency (2x, 3x, or unknown). A univariate regression 

analysis was performed on all subgroup covariates to test if  any of these were with P ≤ 0.2.   No 
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subgroup covariate met this criterion, therefore, no multiple regression model was fitted to 

examine these data.  Subgroup analysis was used to test if  the use of estimated P values used to 

calculate SE had any significant effect on the outcomes.  There was no statistical difference in 

MY for the calculated SE from estimated P values versus all other MY studies (P=0.854), or for 

MY peer reviewed studies (P=0.98).  No difference was also observed in DMI (P=0.511), FY 

(P=0.210), or PY (P=0.703) as well. 

The subgroup analysis of the studies showed that there was no evidence of significant 

heterogeneity in published peer reviewed journals (I2 = 0.001%, Q chi-square, P = 0.904) (Table 

3.2 and Table 3.3 and Table 3.4) compared to the data set that contained all studies.  There was 

no evidence of significant heterogeneity in all the other subgroups used with peer reviewed 

studies (peer reviewed and randomized, peer reviewed by stage of lactation, peer reviewed 3.5% 

FCM, peer reviewed ECM, peer reviewed FY, peer reviewed PY, and peer reviewed DMI by 

stage of lactation). 

In contrast, all other subgroup analysis retained a high level of heterogeneity in at least 

one of the strata.  One possible explanation for the lack of evidence of significant heterogeneity 

when only peer reviewed studies are analyzed is because there may be increased rigor and 

control exercised in a randomized controlled trials targeted for publication against one conducted 

primarily to demonstrate an effect for informational purposes.  Peer review should have the 

impact of requiring better control of experimental units, methods of randomization, errors in the 

data, and general oversight by the investigator.  Some authors have advocated only reporting 

studies that are peer reviewed, relying on the peer review process as a proxy for paper quality 

(Weisz et al. 1995).  Other authors disagree with this approach because non-peer reviewed 

papers, such as those from government, think tanks, consulting firms, or graduate theses, may
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Table 3.3. The estimated effect of yeast culture on milk yield in lactating dairy cows from all studies (sub-group analysis 2) 1 from a meta-analysis of 
studies on the milk production from 1988 to 2011.  

   RMD (95% CI)2 Heterogeneity SMD (95% CI)3 

Milk yield (kg/d) 
 Trials/ 

comparisons (n) Random effect P value Chi-square (Q) df P value I2 (%) Random effect P value 

Peer reviewed4 No 36 1.01 (0.64 to 1.37) 0.001 65.36 28 0.001 57.16 0.36 (0.20 to 0.53) 0.001 

Yes 21 1.18 (0.55 to 1.81) 0.001 8.47 15 0.904 0.001 0.32 (0.14 to 0.50) 0.001 

Randomized5 No 34 1.02 (0.61 to 1.43) 0.001 47.70 26 0.006 45.49 0.35 (0.16 to 0.55) 0.001 

Yes 23 1.04 (0.57 to 1.50) 0.001 24.19 17 0.115 29.70 0.33 (0.20 to 0.45) 0.001 

Randomized and 
peer reviewed6 

Yes 12 1.34 (0.51 to 2.18) 0.002 4.62 8 0.797 0.001 0.32 (0.10 to 0.55) 0.004 

Control 
confounder7 

No 11 1.18 (0.14 to 2.23) 0.027 15.74 10 0.107 36.45 0.28 (-0.02 to 0.57) 0.066 

Yes 45 0.98 (0.66 to 1.30) 0.001 57.27 33 0.005 42.38 0.37 (0.22 to 0.51) 0.001 

Feeding method 
group8 

Group 30 0.88 (0.59 to 1.17) 0.001 28.89 25 0.269 13.46 0.28 (0.18 to 0.38) 0.001 

Individual 27 1.16 (0.57 to 1.74) 0.001 33.75 18 0.014 46.67 0.41 (0.09 to 0.72) 0.011 

Peer reviewed, 
stage of lactation9 

Early  14 1.37 (0.63 to 2.11) 0.001 6.61 13 0.921 0.001 0.36 (0.17 to 0.56) 0.001 

Not Early 9 0.98 (0.01 to 1.95) 0.049 4.24 8 0.835 0.001 0.21 (-0.02 to 0.45) 0.075 

 

1 Studies are stratified by various factors controlled within the study design or reporting. 

2 RMD is the raw mean difference of the treatment effect and its associated 95% confidence interval. 

3 SMD is the standardized mean difference of the treatment effect. This is estimated by dividing the mean difference for a study by the standard deviation for 
that study.  A random effects model was then analyzed for the standardized mean difference. The SMD can be viewed as a measure of overlap between 2 
separate distributions. 



82 

4  Treatment effect from studies with milk yield data that were published in peer reviewed journals (“yes”), and the strata of trials from only abstracts and reports 
(“no”).  

5 Treatment effect from studies that declared some form of randomization of treatments. 

6 Treatment effect from studies that were both from peer reviewed journals and declared some form of randomization of treatments. 

7 Treatment effect from studies that declared some form of control within the study for confounding. 

8 Treatment effect from trials with milk yield data stratified by how the cows were fed.  The “group fed” appeared to have treatments fed to pens of cows but 
individual cow numbers were used in the calculation of n. The individual fed studies appeared to randomized treatments at the cow level and used an 
appropriate n in the statistical calculation. 

9 The treatment effect of comparisons with milk yield data from studies that were published in peer reviewed journals stratified by stage of lactation. Studies 
that were primarily conducted in groups of cows less than 70 DIM (early), and all other studies (not early). 
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Table 3.4. The estimated effect of the yeast culture on 3.5% FCM, ECM and milk components from peer reviewed studies.  from a meta-analysis of studies on 
the milk production from 1988 to 2011. 

  RMD (95% CI)1 Heterogeneity SMD (95% CI)2 

 Trials 
comparisons (n) Random effect P value Chi-square (Q) df P value I2 (%) Random effect P value 

3.5 % FCM3 (kg/d) 18 1.61 (0.92 to 2.29) 0.001 7.66 14 0.906 0.001 0.37 (0.19 to 0.56) 0.001 

ECM4 (kg/d) 18 1.65 (0.97 to 2.34) 0.001 9.53 14 0.795 0.001 0.38 (0.20 to 0.57) 0.001 

Milk fat  (%)5 19 0.04 (-0.07 to 0.14) 0.49 25.59 15 0.043 41.38 0.12 (-0.10 to 0.33) 0.297 

Milk fat yield (kg/d)6 17 0.06 (0.01 to 0.10) 0.009 9.44 44 0.802 0.001 0.24 (0.06 to 0.43) 0.010 

Milk protein (%)7 18 -0.03 (-0.07 to 0.02) 0.216 16.96 14 0.258 17.44 -0.05 (-0.27 to 0.17) 0.672 

Milk protein yield (kg/d)8 16 0.03 (0.00 to 0.05) 0.026 8.40 13 0.817 0.001 0.24 (0.05 to 0.43) 0.014 

 

1 RMD is the raw mean difference of the treatment effect and its associated 95% confidence interval. 

2 SMD is the standardized mean difference of the treatment effect. This is estimated by dividing the mean difference for a study by the standard deviation for 
that study. A random effects model was then analyzed for the standardized mean difference. The SMD can be viewed as a measure of overlap between 2 
separate distributions. 

3 Peer reviewed studies with FCM data or sufficient data to calculate FCM are included in this data set.  3.5% FCM = (Milk lb × 0.432) + (Fat lb × 16.216) 
(Dairy Records Management Systems, 2006). 

4 Peer reviewed studies with ECM data or sufficient data to calculate ECM are included in this data set.  ECM = 0.327 * milk lb + 12.97 × fat lb + 7.21×protein 
lb (Tyrrell and Reid, 1965). 

5 Only trials with milk fat % data or sufficient data to calculate milk fat % from studies published in peer reviewed journals are included in this data set. 

6 Only trials with milk fat yield data or sufficient data to calculate milk fat yield from studies published in peer reviewed journals are included in this data set. 

7 Only trials with milk protein % data or sufficient data to calculate milk protein % from studies published in peer reviewed journals are included in this data set. 

8 Only trials with milk protein yield data or sufficient data to calculate milk protein yield from studies published in peer reviewed journals are included in this 
data set. 
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not be published but could be studies of high quality (Borenstein et al. 2009b).  A further 

contrasting view is that studies published in peer-reviewed journals represent a bias of 

publishing papers with a higher treatment effect.  In this meta-analysis, there was no statistical 

difference in treatment outcome between studies that were peer reviewed versus the non-peer 

reviewed studies (P > 0.20).  However, there was a substantial difference in the level of 

heterogeneity.  A high level of heterogeneity suggests that combining the results of the dataset 

may not be appropriate, therefore only the treatment effects from the studies published in peer-

reviewed journals were reported. 

Production Outcomes 

Adjustments were made in the estimates to account for multiple treatment comparisons to 

a single control group in a trial according to methods described by Borenstein (2009a).  We note 

that there are limitations to this method as the estimates of correlations between groups and 

among groups can be flawed by the lack of essential data to calculate a correlation.  However, it 

was considered that the method should be explored and used rather than ignore the clustering 

effects within study, which would give a less accurate estimate of variance. 

Studies published in peer reviewed journals reported that treatment with yeast culture 

increased the MY 1.18 kg/d (95% CI, 0.55 to 1.81), while studies that were both peer reviewed 

and stated their randomization had a yeast culture treatment effect of 1.34 kg/d (95% CI, 0.51 to 

2.18), (Table 3.3; Figure 3.1). 

Yeast culture supplementation increased 3.5% FCM by 1.61 kg/d (95% CI, 0.92 to 2.29) 

and 1.65 kg/d (95% CI, 0.97 to 2.34) for ECM (Table 3.5).  Milk fat yield and PY results showed 

significant treatment effect with 0.06 kg/d (P = 0.009) and 0.03 kg/d (P = 0.026);
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Figure 3.1. Forest plot of random effects SMD for milk yield.  Only studies published in peer reviewed journals are represented. The black squares in the forest 
plot represent the weighting (by inverse variance) for the represented study. The horizontal bars represent the 95% CI for the study.  The diamond figure 
center represents the standardized mean and the width of the diamond represents the 95% CI of the overall treatment effect.  The outcome to the right of 
an imaginary vertical line through 0 represents an increase in milk fat yield. 

Study name Statistics for each study Sample size Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error limit limit p-Value Control Treated

Arambel and Kent, 1990 -0.316 0.450 -1.198 0.566 0.48210 10
Wang et al., 2001 -  Syn 17% NDF -0.265 0.410 -1.069 0.538 0.518 12 12
Schingoethe et al., 2004 0.101 0.325 -0.535 0.738 0.75519 19
Lehloenya et al., 2008 - Primi 0.114 0.646 -1.152 1.3800.860 4 6
Harris et al., 1992 0.227 0.334 -0.428 0.883 0.49718 18
Cooke et al., 2007 0.241 0.449 -0.639 1.121 0.59110 10
Dann et al., 2000 -Syn 0.272 0.322 -0.359 0.903 0.39819 20
Robinson - Garrett, 1999 - 2 0.279 0.394 -0.493 1.052 0.479 13 13
Erasmus et al., 2005 - 1 0.344 0.368 -0.377 1.065 0.35015 15
Robinson, 1997 0.354 0.388 -0.407 1.115 0.362 13 14
Alshaikh et al., 2002 0.396 0.202 0.001 0.792 0.05050 50
Erasmus et al., 2005 - 2 0.430 0.369 -0.294 1.154 0.24415 15
Wang et al., 2001 -  Syn 21% NDF 0.520 0.415 -0.294 1.333 0.210 12 12
Lehloenya et al., 2008 -Multi 0.572 0.618 -0.638 1.783 0.354 6 5
Robinson - Garrett, 1999 - 1 0.596 0.482 -0.348 1.540 0.216 9 9
Ramsing et al., 2009 - Syn 0.831 0.314 0.215 1.447 0.00822 22

0.321 0.091 0.143 0.499 0.000

-2.00 -1.00 0.00 1.00 2.00

Milk Yield Peer-Reviewed Studies
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Table 3.5, Appendix Figure A.2 and Figure A.3) respectively.  Although individual studies, 

showed non-significance results as demonstrated by the horizontal lines which represent the 95% 

CI within forest plots, the consistency of a positive treatment effect is evident for both summary 

statistics. 

Dry matter intake was considered a priori to be heterogeneous between studies 

conducted in early lactation vs. late lactation.  Sub-group analysis of DMI for studies in peer 

reviewed journals (Table 5) showed significant treatment effects when stratified by the stage of 

lactation.  During the early lactation (< 70 DIM), DMI increased by 0.62 kg/d (95% CI, 0.21 to 

1.02, P = 0.003) and during the late lactation studies, there was a significant decline in average 

DMI (0.78 kg/d; 95% CI -1.36 to -0.21; P = 0.001).  The forest plot of DMI results (Figure 3.2) 

shows evidence of heterogeneity which could be due to the stage of lactation.  The change in 

DMI in early lactation may be an opportunity for nutritionists and farm consultants to modify 

DMI of cows during the critical period of transition to increase intakes and possibly aid in 

transition health (Huzzey et al. 2007).  Decreased DMI in later lactation along with increasing 

milk production will increase the efficiency of milk production.
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Table 3.5. The estimated effect of yeast culture on DMI for peer reviewed studies from a meta-analysis of studies on the milk production from 1988 to 2011.  

   RMD (95% CI) 1 Heterogeneity SMD (95% CI) 2 

Dry matter intake (kg/d) Trials (n) Random effect P value Chi-square (Q) df P value I2 (%) Random effect P value 

Stage of Lactation3 
Early  12 0.62 (0.21 to 1.02) 0.003 7.39 11 0.766 0.001 0.35 (0.15 to 0.55) 0.001 

Not early 7 -0.78 (-1.36 to -0.21) 0.008 5.11 6 0.530 0.001 -0.33 (-0.57 to -0.08) 0.009 

 

1 RMD is the raw mean difference of the treatment effect and its associated 95% confidence interval. 

2 SMD is the standardized mean difference of the treatment effect.  This is estimated by dividing the mean difference for a study by the standard deviation for 
that study.  A random effects model was then analyzed for the standardized mean difference.  The SMD can be viewed as a measure of overlap between 2 
separate distributions. 

3 All trials that are from studies published in peer reviewed journals containing dry matter intake data included in the meta-analysis stratified by stage of 
lactation. Studies that were primarily conducted in groups of cows less than 70 DIM (early), and all other studies (not early). 
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One important bias in meta-analysis studies is the impact of publication bias.  Although a 

meta-analysis will yield a mathematically accurate synthesis of the studies included in the 

analysis, if  these studies are a biased sample of all relevant studies, the mean effect computed by 

the meta-analysis will reflect this bias (Borenstein et al. 2009b).  The reasons for not having all 

relevant studies in the meta-analysis could be the tendency for negative trials and or small 

negative trials not to get published either by editorial bias or authors tending not be interested in 

publishing papers with negative results (Hopewell et al. 2009).  Another reason for publication 

bias could be the tendency for reports produced for or by the “industry” to only be favorable 

thereby increasing the magnitude of publication bias towards the treatment effect of papers in the 

public domain (Rothstein, Sutton, and Borenstein 2005, Wellman and O’Connor 2007).  In this 

study, the treatment effects were studied with and without the industry reports and abstracts.  

Although the industry reports added much more heterogeneity to the analysis, they did not 

increase the reported treatment effects.  It is possible the small non-significant increase in 

treatment effect observed in the published studies could be editorial bias for publishing positive 

studies.  
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Figure 3.2. Forest plot of random effects SMD for DMI. Only studies published in peer reviewed journals are represented. The 
studies are further stratified by studies that were conducted in early lactation, (<70 DIM) versus not early lactation (all others). The black squares in the 
forest plot represent the weighting (by inverse variance) for the represented study.  The horizontal bars represent the 95% CI for the study. The diamond 
figure center represents the standardized mean and the width of the diamond represents the 95% CI of the overall treatment effect. The outcome to the 
right of an imaginary vertical line through 0 represents an increase in DMI and to the left of 0 is a decrease in DMI. 

Group by
Stage of lactation 2

Study name Statistics for each study Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

Early Erasmus et al., 2005 - 1 -0.161 0.366 0.134 -0.878 0.556 -0.441 0.659
Early Wang et al., 2001 -  1- 17% NDF 0.105 0.409 0.167 -0.696 0.906 0.257 0.797
Early Ramsing et al., 2009 - 4X 0.197 0.302 0.091 -0.396 0.789 0.651 0.515
Early Robinson, 1997 0.284 0.387 0.150 -0.475 1.042 0.733 0.464
Early Erasmus et al., 2005 - 2 0.290 0.367 0.135 -0.429 1.010 0.791 0.429
Early Ramsing et al., 2009 - 1X 0.351 0.304 0.092 -0.244 0.947 1.155 0.248
Early Robinson - Garrett, 1999 - 2 0.438 0.397 0.158 -0.340 1.216 1.104 0.270
Early Robinson - Garrett, 1999 - 1 0.477 0.478 0.229 -0.460 1.414 0.999 0.318
Early Dann et al., 2000 - 3 0.496 0.325 0.106 -0.141 1.134 1.526 0.127
Early Wang et al., 2001 -  1- 21% NDF 0.499 0.415 0.172 -0.314 1.311 1.203 0.229
Early Dann et al., 2000 - 2 0.590 0.327 0.107 -0.051 1.232 1.803 0.071
Early Dann et al., 2000 - 1 0.590 0.327 0.107 -0.051 1.232 1.803 0.071
Early 0.350 0.103 0.011 0.148 0.552 3.394 0.001
Not Early Harris et al., 1992 -0.776 0.346 0.119 -1.453 -0.098 -2.245 0.025
Not Early Alshaikh et al., 2002 -0.397 0.202 0.041 -0.793 -0.001 -1.964 0.049
Not Early Wang et al., 2001 -  2- 17% NDF -0.367 0.412 0.169 -1.174 0.439 -0.893 0.372
Not Early Cooke et al., 2007 -0.339 0.450 0.203 -1.222 0.544 -0.753 0.452
Not Early Schingoethe et al., 2004 -0.280 0.326 0.106 -0.919 0.359 -0.859 0.390
Not Early Arambel and Kent, 1990 -0.053 0.447 0.200 -0.929 0.824 -0.118 0.906
Not Early Wang et al., 2001 -  2- 21% NDF 0.341 0.411 0.169 -0.465 1.147 0.830 0.407
Not Early -0.327 0.125 0.016 -0.572 -0.082 -2.617 0.009

-2.00 -1.00 0.00 1.00 2.00

Dry Matter Intake, Peer Reviewed by Stage of Lactation

Meta Analysis
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The funnel plot is an accepted method used to visually investigate if  there is a relationship 

between study size and effect size.  This method plots the treatment effect against the standard 

error.  There should be a normal distribution around the true effect size that is funnel shaped as 

smaller studies are added to the graph.  In addition, combining the funnel plot with the non-

parametric trim and fill procedure allows one to estimate the impact that theoretically missing 

studies could have on the mean difference (Duval and Tweedie 2000) by removing studies that 

are not “balanced” on the opposite side of the funnel plot.  A new treatment effect is calculated 

and then added back along with the hypothetical studies that would balance out the funnel to 

form a new estimate.  The funnel plot of all MY outcomes is shown with the trim and fill in 

(Figure 3.3).  The funnel plot appears to be imbalanced with possibly several smaller studies 

missing suggesting possible publication bias.  The trim and fill method helps visualize these 

missing studies (represented by the black solid dots). Another explanation for asymmetry in the 

funnel plots could be due to the heterogeneity in the studies included in the analysis (Rothstein, 

Sutton, and Borenstein 2005).  If  the treatment effect for the studies represented a distribution of 

studies instead of one true point effect, it could be represented as a distinct grouping of studies 

on the funnel plot, which may indicate the presence of publication bias.  The funnel plots of peer 

reviewed milk results (Figure 3.4) show a more symmetrical outcome with no imputed studies 

(black solid dots), which indicates a lack of evidence for publication bias.
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Figure 3.3. Funnel plot of the standardized mean difference (SMD) of studies (empty circles) from all studies with milk yield data, meeting the criteria to be 
included in the meta-analysis of the treatment effect of yeast culture on milk yield from from 1988 to 2011.. The solid dots are the potentially missing 
studies imputed from the trim and fill method (Duval and Tweedie 2000). The open diamond represents the mean plus confidence interval of the 
existing studies and the solid diamond represents the mean and confidence interval if the theoretically imputed studies were included in the meta-
analysis. The funnel plot represents potentially a bias toward publishing favorable studies.  The black diamond shows with missing studies added, the 
treatment effect is still within the 95% confidence interval of the current data set.  The unbalanced funnel plot may also be indicative of heterogeneity of 
the treatment effects in the data set.  
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Figure 3.4. Funnel plot of the standardized mean difference (SMD) of treatment comparisons (empty circles) from studies published in journals only, 
representing the treatment effect of yeast culture on milk yield from a meta-analysis of studies on the milk production from 1988 to 2011. There 
are no potentially missing studies which would be represented by black dots using the trim and fill method of analysis (Duval and Tweedie 2000). The 
open diamond represents the mean plus confidence interval of the existing studies and the solid diamond represents the mean and confidence interval if 
the imputed studies were included. This funnel plot shows there is no evidence of bias from potentially missing studies.  
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Conclusion Chapter 3 

This meta-analysis over a wide range of studies, designs and sub-group analysis, 

demonstrated feeding of this commercially available yeast culture to lactating dairy cows as 

evaluated in production settings typical for commercial dairies will increase production 

performance of lactating cows.  The results indicate that MY is increased, as well as FY and PY, 

which resulted in higher ECM.  With the increase in the sale of milk based on component 

pricing, this will provide additional options to nutritionists and dairymen in the development of 

feeding programs.  Increased DMI (0.62 kg/d) during early lactation in lactating dairy cows 

supplemented with yeast culture will assist the dairy consultants and farm staff concerned with 

early lactation health, which often associated from declined in DMI of lactating cows.  The 

decrease in DMI in late lactation represents an opportunity to gain efficiency in ration 

formulation in a high feed cost environment.  Furthermore, utilizing meta-analytic methodology, 

specifically on one product, provides animal scientists with an effective tool to better understand 

treatment effects of interventions.  This outcome may not have been achieved using smaller 

single studies or studies that combine dissimilar products into a single review that does not 

examine the heterogeneity attributable to differences in treatments.  The assessment of 

heterogeneity is an important process in meta-analysis and allows us to better understand the 

effects of different study designs and management factors that may alter the inferences derived 

from the study. 
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A META-ANALYSIS OF THE EFFECTS OF FEEDING OF 

COMMERCIALLY AVAILABLE ACTIVE DRY YEAST PRODUCTS 

OF SACCHAROMYCES CEREVISIAE ON MILK PRODUCTION OF 

LACTATING DAIRY COWS 

Chapter 4 Executive Summary 

The purpose of this study was to use meta-analytic methods on previously published 

randomized control trials (RCT) to estimate the effect of commercially available active dry yeast 

products on milk production and other production measures in lactating dairy cows. Four 

hundred ninety-seven published research articles were initially identified through an electronic 

literature search using 5 computerized search engines.  Each paper was evaluated to determine if  

the trials contained the criteria required to be utilized in this study.  Each trial utilized in the 

study had to be a randomized control trial, be published independently, be written in English, and 

be a lactating cow study.  A trial was included if  the product being evaluated was an active dry 

yeast product only (verses a control) and reported milk yield, milk fat, milk protein, fat corrected 

milk, energy corrected milk or dry matter intake.  The trial descriptions had to have enough 

detail to evaluate the experimental methods and have information to evaluate the variance of the 

study.  Trials were not included if  they were cross over design studies.  Twenty-two papers with 

25 comparisons met the final criteria for inclusion in the meta-analysis.  These studies evaluated 

active dry yeast products from 7 different companies and were conducted in 13 different 

countries.  A random-effects meta-analysis showed there was high heterogeneity in the study 

outcome for milk yield making it an unreliable outcome to report.  One sub-group analysis 
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identified an area of heterogeneity to be study location (in North America versus outside North 

America).  Milk yield for the 7 studies conducted in North American was 0.49 kg/d versus 0.96 

kg/d for 13 studies conducted outside North America.  The mean difference in milk fat yield was 

0.05 kg/d and there was a numerical difference in milk protein yield of 0.02 kg/d.  No difference 

in dry matter intake was observed. 

The use of funnel plots indicates possible publication bias in the published studies and 

could account for the large amount of heterogeneity observed in the outcomes of interest, 

particularly when study locations (North America, vs. outside North America) are plotted 

separately in the funnel plots. 

Meta-analysis results show a production effect for active dry yeasts in lactating dairy 

cows, but the high level of heterogeneity indicate a high degree of variance that needs further 

exploration to provide confidence in trial results. 

Key words: Active dry yeast, meta-analysis, lactating dairy cow 

Introduction 

Yeast products are common ingredients in animal feed around the world.  In lactating 

dairy cattle, yeast products have been thought to improve production of milk yield (MY), milk 

fat yield (FY), and milk protein yield (PY).  Yeast products have also been thought to improve 

energy corrected milk (ECM), which is a more representative biologically derived parameter 

that includes the components MY, FY, and PY and would be more representative of an economic 

parameter more closely aligned with value creation to the dairy producer. Although yeast 

products have been fed to dairy cows for more than 70 years, there is inconclusive evidence as to 

their effectiveness. One possible reason for ambiguity is the result of having 2 broad classes of 

yeast products with different putative modes of action that are often not differentiated in the 
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literature (AAFCO 2011) Yeast cultures, a product that is produced through yeast fermentation, 

contain fermentation end products and are not dependent on viability of the yeast for their 

physiological effects.  These fermentation products contain compounds that affect the growth of 

various types of rumen bacteria and protozoa (Wiedmeier, Arambel, and Walters 1987, Harrison 

et al. 1988, Callaway and Martin 1997).  These end products of Saccharomyces cerevisiae 

fermentation could be compared to other similar products in commercial use derived from 

bacteria or fungus, such as Penicillin from Penicillium fungi, Avermectins from Streptomyces 

avermitilis, and Monensin from Streptomyces cinnamonensis.  In contrast, active dry yeast 

products (ADY) are products that by definition must contain greater than 15 billion live yeast 

cells/g (AAFCO, 2011).  The effect of active dry yeast products is assumed to be dependent on 

the yeast cell being alive in the rumen (Dawson, Newman, and Boling 1990, Newbold, Wallace, 

and McIntosh 1996).  The mode of action is an important consideration for the production effect 

of active dry yeast products.  The viability of commercial product containing yeast have been 

shown to be highly variable in viability and to die rapidly in storage in temperatures as moderate 

as 40 degrees centigrade (Sullivan and Bradford 2011). 

A recent meta-analysis of one commercial yeast culture (Poppy et al. 2012) utilized 

meta-analytic methodology to examine 36 separate random controlled trials (RCT) studies with 

69 separate comparisons to examine the production outcomes in lactating dairy cattle.  This 

meta-analysis of yeast culture showed 1.65 kg/d (95% CI = 0.97 to 2.34, P = 0.001) difference in 

ECM over control cows.  Utilizing similar methodology to examine and review a complete 

comprehensive set of published information on active dry yeast would aid in providing for a 

more compete elucidation of yeast products on lactating dairy cattle.  This evaluation would aid 

the animal scientist, nutritionist, and dairy manager in predicting production response to 
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commercial yeast products.  Therefore, the primary purpose of this study was to critically review 

all relevant research of commercially available active dry yeast and to estimate the effect of 

active dry yeast on MY, FY, PY, ECM, and dry matter intake (DMI) of dairy cattle using meta-

analytic methods.  A secondary objective was to examine the differences in treatment effect and 

heterogeneity of various study characteristics that might alter the observed production response. 

Materials and Methods 

Literature Search 

Electronic literature searches in PubMed (1950 to present), CAB (1973 to present), 

AGRICOLA (1970 to present), ScienceDirect (1995 to present), and Web of Science (1900 to 

present) were conducted.  Terms that described the population, outcomes and treatments of 

interest were identified in the PubMed MESH database.  Boolean terms were used to combine 

terms within a string (OR) and between strings (AND) and to exclude terms (NOT). 

The search strings used was as follows: [ruminant* OR cow* OR cattle OR bovine] 

AND [lactati* OR postpartum OR milk OR dairy] AND [yeast OR “yeast culture” OR 

Saccharomyces OR Saccharomyces cerevisiae] AND [“dry matter intake” OR “energy corrected 

milk” OR “milk yield” OR “milk fat” OR “milk protein”] NOT [goat].  Retrieved citations were 

stored in reference management software (EndNoteWeb, version 3.5).  Duplicate citations were 

removed by electronic and hand scanning of the database.  When multiple instances of the same 

citation were identified, the most complete citation was retained. 

Hand searching of the reference lists of relevant papers was conducted as the review 

progressed.  Two reviewers (Poppy and Ruple-Czerniak) evaluated the reference list and 

identified potentially relevant citations.  If  the electronic search did not capture the citation, it 

was added to the reference management software. 
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Relevance Screening 

A relevance screening was conducted to rapidly remove citations not relevant to the 

review, as the literature search process was highly sensitive, with low specificity.  Eligible 

studies were primary research papers (peer reviewed journal articles) that reported the effects of 

feeding live or active dry yeast to lactating dairy cows.  Two levels of relevance screening were 

used.  For level 1 relevance screening, each abstract found in the database search was reviewed 

independently by two reviewers (Poppy and Ruple-Czerniak).  Abstracts advanced to the second 

relevance screening if  both reviewers agreed the abstract described primary research published in 

English pertaining to the effects of live or active dry yeast on milk production in dairy cows or if  

the abstract did not include enough information to determine eligibility.  The second relevance 

screening was conducted by the same reviewers using the full published journal article 

whereupon the study was advanced to the final review utilizing the full manuscript for analysis 

of appropriate methodology for final inclusion (Figure 4.1). 

Inclusion Criteria 

Citations advanced to the final level of the review if  the journal article met all the 

inclusion criteria for the final analysis.  The final inclusion criteria were the study had to: be in 

English, be conducted using lactating dairy cattle, evaluate an active dry yeast product, include a 

concurrent negative control group, utilize randomized treatment assignments and use a parallel 

group design (i.e., no crossover studies).  Additionally, studies must have reported results of at 

least one of the production outcomes of interest: MY, ECM, percent milk fat (F%), FY, percent 

milk protein (P%), PY, 3.5% fat corrected milk (3.5% FCM), or DMI, along with a measure of 

variance (standard error or standard deviation) or a P value for comparison of effects between 

treatment and control groups.  The study had to provide enough information to establish if  it met 
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the criteria for inclusion and be published as an independent study (peer reviewed journal 

article).  Studies published by a commercial company as an internal report or advertisement were 

excluded. 

 

Figure 4.1. Flow diagram of search methodology and results from a review of articles targeting published studies 
on active dry yeast and its effect on milk production and DMI in dairy cows. 

Statistical Analysis 

Meta-analysis was conducted using the methods described by (Higgins and Green 

2008a).  Statistical analysis was conducted on the extracted production data using 

Comprehensive Meta-Analysis version 2.2.050 ( (2008) Biostat, Englewood, New Jersey) and 

Citations identified using search :  • [ruminant* OR cow* OR cattle OR bovine] AND [ • lactati* OR postpartum OR milk OR dairy] AND  • [yeast OR “yeast culture” OR Saccharomyces OR “Saccharomyces cerevisiae”] AND  • [“dry matter intake” OR “energy corrected milk” OR “milk yield” OR “milk fat” OR “milk protein”]  • NOT [goat].   • Total articles retrieved (n=841) 

Full text articles excluded did not meet the 
criteria (n=62) 

Abstracts excluded that did not meet the 
criteria (n=401) 

Duplicate citations excluded (n=345) 

Articles qualified to be included in the review 
(n=22) 

Full text articles reviewed (n=84) 

Abstracts reviewed for assessment of inclusion 
or exclusion (n=496) 
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(Stata/IC 2012); StataCorp V. 12.1 College Station, TX using the metan routine (Sterne 2009) 

Studies were weighted using the methods of inverse variance (DerSimonian and Laird 1986).  If  

the selected studies did not report measures of variance of the interested outcomes, estimates of 

variability were extracted from the papers using the methods described by Rabiee et al. (Rabiee 

et al. 2010).  If  the trial only reported a Z statistic or P value, the estimates for SE and SD were 

calculated using the difference in the mean and the number of cows for each trial (Higgins and 

Green 2008a).  For studies that only reported significance relative to a given alpha cut-point (i.e. 

P ≤ 0.05), the value listed was used to make a conservative estimate of SE and SD.  For studies 

that only reported a non-significant effect, P values of 0.15, 0.3, and 0.5 were assigned and 

compared numerically to each other.  The P value that produced the smallest (most conservative) 

estimate of the overall treatment effect was selected for the calculation of the SE (Sanchez et al. 

2004).  If  F%, FY, P%, PY, 3.5% FCM (Dairy Records Management Systems, 2006), and ECM 

(Tyrrell and Reid 1965) were not reported, estimates of these parameters were calculated.  The 

variance used for the calculated missing value was the variance for the corresponding outcome 

statistic from the same trial (F% from FY, FY from F%, PY from P%, P% from PY and 3.5% 

FCM and ECM from MY).  Continuous data were analyzed both using the raw mean difference 

(RMD) for both fixed effect and random effect models as described by Borenstein et al. 

(Borenstein et al. 2010) for each study outcome and as a standardized mean difference (SMD) as 

described by Lean et al. (Lean et al. 2009).  Differences in study designs or production system 

characteristics that were considered a priori to influence trial outcomes or where a high level of 

heterogeneity was observed were explored using stratification for comparison of these sub-group 

comparisons. Sub-group analysis were conducted only when a minimum of 5 comparisons was 

available for inclusion in the analysis. Meta-regression of the variables was performed utilizing 
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STATA (2012; StataCorp V. 12.1 College Station, TX) with each subgroup first analyzed in a 

univariable analysis. Any variable subsequently found to be statistically related to the outcome 

with a wide threshold (P ≤ 0.20) were entered into a multivariable meta-regression model. The 

variables included in the screening were if  the study was conducted in North America (NA) (yes 

or no), total CFU of ADY fed as a continuous variables, stage of lactation (early < 70 DIM 

versus all studies), average DIM at start of trial as a continuous variable, number of times cows 

were milked per day, fed as a total mixed ration (TMR; yes or no), brand of ADY (brand X; yes 

or no), primiparous cows (yes or no), multiparous (yes or no), Holstein breed (yes or no), 

Friesian breed (yes or no), and if  the ADY was top dressed on the feed (yes or no). 

Assessment of Heterogeneity 

Heterogeneity of effect size (between study variability compared to within study 

variability) was evaluated using both the chi-square test of Q for heterogeneity and the I2 statistic 

(Higgins et al. 2003).  Negative values of I2 were assigned a value of zero.  An I2 value > 35% or 

a chi-square test of Q with P ≤ 0.20 was considered indicative of substantial heterogeneity. 

The Q statistic is a parameter that is sensitive to the ratio of the observed variation to the 

within study variation.  Under the null hypothesis where all studies share a common effect size, 

the Q statistic follows a central chi-squared distribution with degrees of freedom equal to k-1.  A 

significant P value would lead one to reject the null hypothesis and conclude that the studies do 

not share a common effect size and therefore should not be reported as a mean effect.  Two 

groups can be evaluated if  they share a common effect size by the same method.  When two 

groups are being evaluated, Q is calculated as the effect size of the groups of studies instead of 

two studies.  The dispersion of the subgroup about a summary effect can then be tested with 

degrees of freedom = 1 (Borenstein et al. 2009c). 



102 

The data were analyzed using both fixed effect and random effects models. The random 

effects model was determined more appropriate to report the treatment effects as this accounts 

for the impacts of study design, management and cow variation and other differences in study 

conduct on treatment effects (Borenstein et al. 2010). 

Publication Bias 

Publication bias was assessed using funnel plots (Light and Pillemer 1984).  Trim and fill 

methods were used to assess the best estimate of the unbiased effect size (Duval and Tweedie 

2000). 

Results and Discussion 

Reports Meeting Inclusion Criteria 

Four hundred and ninety six papers were initially identified utilizing the search criteria 

and presented for relevance screening.  The initial database search was designed as a highly 

sensitive, low specificity search so all relevant studies would be identified. After both relevance 

screenings were conducted only 22 studies with 25 comparisons remained for comparison.  

Papers were excluded from this study because the study was not written in English, had no 

negative controls, and evaluated yeast products along with another inclusion such as enzymes or 

minerals or protein sources.  Many of the rejected papers were conducted in vitro, were yeast 

culture studies, or were conducted using species other than lactating dairy cows. 

In the initial inclusion criteria, failure to appropriately use pen as an experimental unit in 

the statistical variance calculation when the treatment was fed at the pen level did not disqualify 

the study.  The authors wished to analyze if  using the inappropriate experimental unit biased the 

outcome of the study.  Randomization at the treatment level is a critical criterion of study design 

in RCT.  Even if  the researcher felt that pen would have no confounding effect on the outcome of 
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the study, it is unknown confounders that RCT trials are designed to prevent.  In addition to not 

knowing if  pen produced confounding in the data, in a meta-analysis, the pseudo-replication 

resulting from inappropriately counting of cows as the experimental unit would artificially 

increase the precision of the study.  Meta-analysis weights studies by the inverse variance, 

therefore, cow as the experimental unit would mathematically overweight the value of the study 

in the summarized report.  Of the ADY papers identified in the systematic review, 5 of the 

studies (Garg et al. 2000, Alshaikh et al. 2002, Lethbridge, Margerison, and Parfitt 2007, 

Cakiroglu et al. 2010, Ondarza et al. 2010) calculated the variance at the cow level, but applied 

the treatment at the pen level.  The appropriately designed studies had a mean MY difference of 

0.81 kg/day (95% CI = 0.27 to 1.54).  The 5 group fed studies had a MY difference of 1.20 kg/d 

(95% CI = 0.24 to 2.17). The difference between the group fed and individually fed studies (chi-

square with 1 df) was not significant (P = 0.16).  The studies utilizing the inappropriate variance 

were eliminated from the final analysis leaving 17 studies and 20 comparisons (Table 4.1). 

Heterogeneity and Production Analysis 

The analysis of MY showed substantial heterogeneity (I2 = 40.12%) as well as a highly 

significant chi-square test of Q (P = 0.03).  Within a meta-analysis, the heterogeneity is an 

important evaluation because a high level of heterogeneity (I2 > 35% or a Q test with P ≤ 0.10) is 

an indication that the treatment effect is possibly reporting more than one distribution of 

outcomes within the analysis.  The Q test is a test of the null hypothesis that the studies share a 

common effect size.  Therefore, if  heterogeneity is identified, a subgroup analysis can be used to 

try to identify characteristics of the studies that are contributing the heterogeneity.  It may not be 

appropriate to report treatment effects with heterogeneity as they may misrepresent the true 

treatment effect (Kent 2010).  In this study, the only sub-group that yielded low heterogeneity
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Table 4.1. Estimated effect of active dry yeast on milk yield in lactating dairy cows. Random effects of the raw mean difference and stratified by subgroup 
from a meta-analysis of papers 1991 to 2010. 

   RMD1 Heterogeneity 

Milk Yield (kg/d)  Trials comparisons (n) Random effect (95% CI) P value Chi-square (Q) df P value I2 (%) 
Tau 

Squared 

All All trials 25 0.94 (0.42 to 1.45) 0.001 46.55 24 0.004 48.4 0.65 

Feeding Group2 

Group  5 1.21 (0.25 to 2.16) 0.013 12.83 4 0.012 68.83 0.65 

Individual  20 0.813 (0.19 to 1.46) 0.010 31.78 19 0.033 40.12 0.69 

Difference between Group and Individual   1.93 1 0.164   

North American 
Study3,4 

No  13 0.96 (0.10 to 1.83) 0.029 30.39 12 0.003 59.5 1.24 

Yes 7 0.49 (-0.45 to 1.43) 0.307 1.40 6 0.954 0.0 0.0 

Difference between Location of Study   0.41 1 0.524   

Stage of Lactation3,5 

Early 13 1.10 (0.26 to 1.94) 0.010 19.42 12 0.079 38.2 0.80 

Not Early 7 0.40 (-0.48 to 1.27) 0.374 9.29 6 0.158 35.4 0.45 

Difference between Stage of Lactation  0.25 1 0.610   

Commercial Brand X 
of ADY3,6 

No 10 1.27 (0.72 to 1.80) 0.001 5.66 9 0.773 0.0 0.0 

Yes 10 0.35 (-0.89 to 1.59) 0.577 19.03 9 0.025 52.7 1.72 

Difference between Brand of ADY   1.98 1 0.159   

 

1 RMD is the raw mean difference of the treatment effect and its associated 95% confidence interval. 

2 Studies were grouped for analysis based on if matched the experimental unit to the variance in the statistical analysis. If treatments were fed to pen, data was 
analyzed to pen. If treatments were fed to individual cows, data was analyzed to cow. Studies that fed to pen and analyzed to cow were classified as group 
and removed from subsequent analysis because of the under estimation of variance. 

3 The analysis only contains data from herds which used the proper variance (studies classified as individual studies in the Feeding Group Yes subgroup).  
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4 Analysis classifies subgroup for the study being conducted in North America (Yes or No). 

5 Treatment effect stratified by stage of lactation.  Studies that were primarily conducted in groups of cows less than 70 DIM (early) and all other studies (not early). 

6 There was only one commercial brand of active dry yeast (ADY) with enough trials to analyze for meta-regression (Brand X: yes or no). 
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was the study was conducted NA (Canada or United States) versus not in NA.  Studies 

conducted in NA (7 studies; MY = 0.49 kg/d, P = 0.307) had an I2 = 0.0% and Q chi-squared P = 

0.954.  Studies conducted outside of NA (13 studies; MY = 0.96 kg/d, P = 0.029) had an I2 = 

59.5% and Q chi-squared P = 0.003 (Table 4.1).  The SMD showed a similar result with the 

studies conducted in NA showing low heterogeneity (I2 =0.0 %) and a MY of 0.04 (P = 0.606) 

and those conducted outside of NA high heterogeneity (I2 =45.0 %) with a MY of 0.38 (P = 

0.053) (Table 4.2).  The forest plots for the RMD and the SMD stratified by study location 

visually show the difference in variation between the two subgroups (Figure 4.2 and Figure 4.3). 

While the outcomes for 3.5 % FCM and ECM only had moderate heterogeneity (I2 =19.29 

% and 25.8 % respectively) (Table 4.3 and Table 4.4) the reported outcomes between the different 

subgroup stratifications were very different.  The studies conducted in NA reported no significant 

change in 3.5 % FCM or ECM while the studies conducted outside of NA reported 1.20 kg/d (P = 

0.001) and 1.19 kg/d (P=0.003) for 3.5 % FCM and ECM respectively (Table 4.3 and Table 4.4). 

When MY, 3.5% FCM and ECM were stratified by Early (< 70 DIM) and Not Early (> 

70 DIM) lactation, there was high heterogeneity in all groups (Table 4.1 to Table 4.4) so this 

stratification was not successful in identifying where the variation was originating. 
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Table 4.2. The estimated effect of active dry yeast on milk yield in lactating dairy cow from a meta-analysis performed on studies published from 1991 to 2010. 
Random effects of the standardized mean difference1 and stratified by subgroup. 

 SMD2 Heterogeneity 

Milk Yield (kg/d) 
 

Trials comparisons (n) Random effect (95% CI) P value Chi-square (Q) df P value I2 (%) 
Tau 

Squared 

All All trials 25 0.29 (0.10 to 0.49) 0.003 48.70 23 0.002 50.50 0.09 

Feeding Group2 Group 5 0.53 (0.01 to 1.06) 0.045 18.84 4 0.001 78.40 0.24 

Individual 25 0.21 (0.01 to 0.42) 0.042 29.40 18 0.084 32.10 0.06 

Difference between Group and Individual  0.53 1 0.465   

North American 
Study3,4 

No 13 0.38 (-0.04 to 0.77) 0.053 22.69 12 0.039 45.0 0.20 

Yes 7 0.04 (-0.12 to 0.21) 0.606 2.14 6 0.890 0.0 0.0 

Difference between Location of Study  1.68 1 0.200   

Stage of Lactation3,5 Early 13 0.33 (-0.01 to 0.67) 0.05 16.9 12 0.155 28.8 0.10 

Not Early 7 0.12 (-0.12 to 0.36) 0.33 9.36 6 0.154 35.9 0.03 

Difference between Stage of Lactation  0.77 1 0.380   

Commercial Brand X 
of ADY3,6 

No 10 0.21 (0.01 to 0.63) 0.018 17.39 9 0.043 48.3 0.08 

Yes 10 0.05 (-0.26 to 0.36) 0.751 10.20 9 0.334 11.8 0.029 

Difference between Brand of ADY  1.91 1 0.167   

 

1 SMD is the standardized mean difference of the treatment effect.  This is estimated by dividing the mean difference for a study by the standard deviation for 
that study. A random effects model was then analyzed for the SMD. The SMD can be viewed as a measure of overlap between 2 separate distributions. 

2 Studies were grouped for analysis based on if matched the experimental unit to the variance in the statistical analysis.  If treatments were fed to pen, data was 
analyzed to pen. If treatments were fed to individual cows, data was analyzed to cow. Studies that fed to pen and analyzed to cow were classified as group 
and removed from subsequent analysis because of the under estimation of variance. 

3 The analysis only contains data from herds which used the proper variance (studies classified as individual studies in the Feeding Group Yes subgroup).  

4 Analysis classifies subgroup for the study being conducted in North America (Yes or No). 
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5 Treatment effect stratified by stage of lactation.  Studies that were primarily conducted in groups of cows less than 70 DIM (early) and all other studies (not 
early). 

6 There was only one commercial brand of active dry yeast (ADY) with enough trials to analyze for meta-regression (Brand X: yes or no). 
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Figure 4.2. Forest plot of the Raw Mean Difference of milk yield grouped by study location (in or outside of 
North America). The size of the grey boxes is proportional to the weight of the study, the horizontal line 
represents the 95% CI of the individual study and the black dot represents the mean of the study.  The 
triangles center is the mean of the study and the width represents the se of the study.  The red dashed line 
represents the overall mean of the both subgroups in the meta-analysis of the effects or active dry yeast 
fed to dairy cows from studies between from a meta-analysis performed on studies published from 1991 
to 2010. 
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Figure 4.3. Forest plot of the Standardized Mean Difference of milk yield grouped by study location (in or 
outside of North America). The size of the grey boxes is proportional to the weight of the study, the 
horizontal line represents the 95% CI of the individual study and the black dot represents the mean of the 
study.  The triangles center is the mean of the study and the width represents the se of the study.  The red 
dashed line represents the overall mean of the both subgroups in the meta-analysis from a meta-analysis 
on active dry yeast on milk production and DMI performed on studies published from 1991 to 2010. 

NOTE: Weights are from random effects analysis
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Table 4.3. The estimated effect of active dry yeast on FCM 3.5% and ECM Milk Fat Yield and Milk Protein Yield in lactating dairy cows using random 
effects of the raw mean difference and stratified by subgroup from a meta-analysis performed on studies published from 1991 to 2010. 

 RMD1 Heterogeneity 

Production Effects (kg/d) Trials comparisons (n) Random effect (95% CI) P value Chi-square (Q) df P value I2 (%) 
Tau 

Squared 

FCM 3.5%2, 7 All trials 18 1.04 (0.47 to 1.61) 0.001 21.06 17 0.22 19.29 0.27 

Early 12 1.06 (0.32 to 1.80) 0.005 14.85 11 0.19 25.95 0.42 

Not Early  6 1.02 (0.03 to 2.02) 0.044 6.04 5 0.30 17.23 0.28 

Difference between Early and Not Early   0.02 1 0.90   

FCM 3.5%2, 7 NA No3 11 1.20 (0.51 to 1.89) 0.001 14.05 10 0.17 28.81 0.36 

NA Yes3 7 0.53 (-0.54 to 1.60) 0.334 5.57 6 0.47 0.0 0.0 

Difference between Location of Study   1.02 1 0.31   

Energy Corrected 
Milk 4, 7 

All 17 1.00 (0.40 to 1.59) 0.001 21.56 16 0.16 25.80 0.37 

Early 11 1.05 (0.21 to 1.89) 0.015 15.79 10 0.11 36.65 0.67 

Not Early 6 1.02 (0.16 to 1.88) 0.021 5.73 5 0.33 12.80 0.16 

Difference between Stage of Lactation  0.07 1 0.79   

Energy Corrected 
Milk 4, 7 

NA No3 10 1.19 (0.40 to 1.98) 0.003 15.29 9 0.08 41.15 0.60 

NA Yes3 7 0.54 (-0.40 to 1.48) 0.26 4.58 6 0.60 0.0 0.0 

Difference between study if conducted in North America   1.16 1 0.28   

Milk Fat Yield5, 7 All 18 0.05 (0.02 to 0.07) 0.001 12.32 17 0.78 0.00 0.00 

Early 12 0.05 (0.02 to 0.08) 0.001 8.13 11 0.70 0.00 0.00 

Not Early 6 0.04 (-0.01 to 0.08) 0.134 3.84 5 0.57 0.00 0.00 

Milk Protein Yield6, 7 All 17 0.02 (-0.01 to 0.05) 0.174 3.54 16 1.00 0.00 0.0 

Early 11 0.02 (-0.04 to 0.08) 0.559 1.57 10 1.00 0.00 0.0 

Not Early 6 0.02 (-0.01 to 0.05) 0.219 1.97 5 0.854 0.00 0.0 
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1 RMD is the raw mean difference of the treatment effect and its associated 95% confidence interval. 

2 All studies with FCM data or sufficient data to calculate FCM are included in this data set.  3.5% FCM = (Milk lb × 0.432) + (Fat lb × 16.216) (Dairy 
Records Management Systems, 2006). 

3 Analysis classifies subgroup for the study being conducted in North America (Yes or No). 

4 All studies with ECM data or sufficient data to calculate ECM are included in this data set. ECM = 0.327 * milk lb + 12.97 × fat lb + 7.21×protein lb (Tyrrell 
and Reid, 1965). 

5 Dataset is trials with milk fat yield data or sufficient data to calculate milk fat yield.  

 6 Dataset is trials with milk protein yield data or sufficient data to calculate milk protein.  The analysis only contains data from herds which used the proper 
variance (classified as individual studies in the Feeding Group Yes subgroup).  

7 The analysis only contains data from herds which used the proper variance (classified as individual studies in the Feeding Group Yes subgroup). 
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Table 4.4. The estimated effect of active dry yeast on FCM 3.5%, ECM, Milk Fat Yield, and Milk Protein Yield in lactating dairy cows using random effects 
of the standardized mean difference and stratified by subgroup from a meta-analysis performed on studies published from 1991 to 2010. 

  SMD1 Heterogeneity 

Production Effects (kg/d) Trials comparisons (n) Random effect (95% CI) P value Chi-square (Q) df P value I2 (%) 
Tau 

Squared 

FCM 3.5%2,7 All trials 18 0.30 (0.06 to 0.53) 0.013 28.81 17 0.04 41.00 0.08 

Early 12 0.42 (0.10 to 0.75) 0.012 12.83 11 0.304 14.30 0.05 

Not Early  6 0.19 (-0.12 to 0.49) 0.237 12.22 5 0.032 59.10 .08 

Difference between Early and Not Early   1.19 1 0.26   

FCM 3.5%2,7 NA No3 11 0.56 (0.18 to 0.93) 0.004 13.86 10 0.18 27.90 0.11 

NA Yes3 7 0.03 (-0.14 to 0.20) 0.728 5.81 6 0.445 0.00 0.0 

Difference between Location of Study   5.62 1 0.018   

Energy Corrected Milk4,7 All 17 0.28 (0.04 to 0.52) 0.021 27.47 16 0.037 41.70 0.08 

Early 11 0.39 (0.27 to 0.76) 0.035 12.93 10 0.227 22.70 0.08 

Not Early 6 0.19 (-0.11 to 0.50) 0.220 11.92 5 0.036 58.00 0.07 

Difference between Stage of Lactation  0.72 1 0.395   

Energy Corrected Milk4, 7 NA No3 10 0.55 (0.12 to 0.97) 0.012 14.92 9 0.093 39.69 0.16 

NA Yes3 7 0.03 (-0.14 to 0.20) 0.71 5.38 6 0.500 0.00 0.0 

Difference between study if conducted in North America   4.50 1 0.115   

Milk Fat Yield5, 7 All 18 0.07 (-.07 to 0.23) 0.30 16.93 17 0.49 0.00 0.0 

Early 12 0.21 (-0.09 to 0.50) 0.170 10.30 11 0.50 0.00 0.0 

Not Early 6 0.05 (-0.14 to 0.24) 0.61 5.63 5 0.46 11.16 0.0 

Milk Protein Yield6, 7 All 17 0.05 (-0.01 to 0.19) 0.525 4.86 16 1.00 0.00 0.0 

Early 11 0.09 (-0.21 to 0.39) 0.543 1.51 10 1.00 0.00 0.0 

Not Early 6 0.03 (-0.14 to 0.20) 0.699 3.24 5 0.66 0.00 0.0 
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1 SMD is the standardized mean difference of the treatment effect.  This is estimated by dividing the mean difference for a study by the standard deviation for 
that study. A random effects model was then analyzed for the standardized mean difference. The SMD can be viewed as a measure of overlap between 2 
separate distributions. 

2 All studies with FCM data or sufficient data to calculate FCM are included in this data set. 3.5% FCM = (Milk lb × 0.432) + (Fat lb × 16.216) (Dairy Records 
Management Systems, 2006). 

3 Analysis classifies subgroup for the study being conducted in North America (Yes or No). 

4 All studies with ECM data or sufficient data to calculate ECM are included in this data set. ECM = 0.327 * milk lb + 12.97 × fat lb + 7.21×protein lb (Tyrrell 
and Reid, 1965). 

5 The dataset is trials with milk fat yield data or sufficient data to calculate milk fat yield.  

 6 The dataset is trials with milk protein yield data or sufficient data to calculate milk protein. The analysis only contains data from herds which used the proper 
variance (classified as individual studies in the Feeding Group Yes subgroup).  

7 Analysis only contains data from herds which used the proper variance (classified as individual studies in the Feeding Group Yes subgroup). 
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Milk fat yield and MP had low heterogeneity (I2 = 0.00) for all studies, as well as, for the 

stratification of Early (< 70 DIM) and Not Early (> 70 DIM) lactation (I2 = 0.00).  The RMD for 

FY for cows supplemented with ADY was 0.05 kg/day (95% CI = 0.02 to 0.07, P = 0.001). The 

RMD for PY was 0.02 kg/d, although this value was not significant from 0 (95% CI = -0.01 to 

0.05, P = 0.174, Table 4.3 and Table 4.4). 

Dry matter intake had a high heterogeneity (I2 = 59.66%, Q chi-squared P = 0.00) (Table 

4.5).  It was decided a priori to evaluate DMI by stage of lactation.  There were 12 studies 

conducted for cows less than 70 DIM that included DMI.  These studies had a RMD for cows 

supplemented with ADY of 0.42 kg/d (P = 0.25; 95% CI = -0.30 to 1.15, I2 = 0.0%, Q chi-

squared P = 0.90).  There were insufficient studies containing DMI (n = 4) “not in early 

lactation” (> 70 DIM) to evaluate for heterogeneity or as a separate outcome. 

Meta-regression 

Univariable regression was performed on the variables; NA (yes or no) total CFU of 

ADY fed, stage of lactation, average DIM at start of trial, number of times cows were milked per 

day, fed as a TMR (yes or no), brand of ADY (brand X; yes or no), primiparous cows (yes or 

no), multiparous (yes or no), Holstein breed (yes or no), Friesian breed (yes or no), and if  the 

ADY was top dressed on the feed (yes or no)  Variables with a P value < 0.20 were to be 

included in the meta-regression model.  Because only brand of ADY had a P < 0.20, 

multivariable regression to further examine the cause of heterogeneity was not performed. 

Publication Bias 

Publication bias as viewed in a meta-analysis is the tendency for certain reports 

intentionally or unintentionally to enter the public stream of information for evaluating proposed 
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Table 4.5. The estimated effect of active dry yeast on dry matter intake (DMI) from a meta-analysis performed on studies published from 1991 to 2010.  

   RMD (95% CI)1 Heterogeneity SMD (95% CI) 2 

Dry matter intake (kg/d) Trials (n) Random effect P value Chi-square (Q) df P value I2 (%) Random effect P value 

Stage of Lactation3,4 All Studies  15 0.0 (-0.86 to 0.85) 0.994 37.18 15 0.001 59.66 -0.04 (-0.37 to 0.29) 0.810 

Early 12 0.42 (-0.31 to 1.15) 0.251 5.59 11 0.90 0.00 0.16 (-0.24 to 0.54) 0.42 

 

1 RMD is the raw mean difference of the treatment effect and its associated 95% confidence interval. 

2 SMD is the standardized mean difference of the treatment effect.  This is estimated by dividing the mean difference for a study by the standard deviation for 
that study.  A random effects model was then analyzed for the standardized mean difference.  The SMD can be viewed as a measure of overlap between 2 
separate distributions. 

3 Treatment effect stratified by stage of lactation.  Studies that were primarily conducted in groups of cows less than 70 DIM (early) and all other studies (not 
early). There were not enough studies (4) to report a subgroup analysis for not early DMI.  

4 The analysis only contains data from herds which used the proper variance (classified as individual studies in the Feeding Group Yes subgroup). 
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interventions that may be of interest to the public.  Although a meta-analysis will yield a 

mathematically accurate synthesis of the studies included in the analysis, if  these studies are a 

biased sample of all relevant studies, the mean effect computed by the meta-analysis will reflect 

this bias (Borenstein et al. 2009c).  In the agriculture industry, as opposed to other industries 

such a human pharmaceuticals, there are two classes of studies produced. There are the 

independent produced studies submitted for peer review, which, in theory, conform to a set 

standard of quality.  There are also studies produced specifically to enhance the marketing of a 

product.  Studies produced with the aim of marketing a product may not have the same rigor in 

standards of quality as studies produced for publication, which often has affiliations with third 

parties or Universities.  Since there is no peer review process in place for marketing-driven 

studies, we cannot know if  this is the case.  However, if  this is true, then one would worry about 

poor statistical design and non-control of confounding being present in non-published studies.  If  

such flawed analysis were included in a meta-analysis, the true mean could be biased away from 

the null producing a type I error.  In contrast in human pharmaceuticals, the danger is more likely 

to be that unpublished trials that may not be perceived as “beneficial” to the sponsoring company 

would not get submitted (file drawer bias) for publication (Rothstein, Sutton, and Borenstein 

2005).  In the latter case, the inclusion of all non-published papers would decrease the potential 

bias away from the null and move the effect toward the null.  Due to the inability to validate the 

quality of unpublished reports or reports that are self-published without the benefit of peer 

review, these reports were not included in this meta-analysis. 

No attempt was made by the authors to distinguish if  the journal articles obtained in the 

literature search were truly peer-reviewed journals.  There are many opportunities for papers, 

which do not meet the rigor of acceptable scientific methodology, to be published and enter the 
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journal databases (Bohannon 2013).  All papers that were identified in the literature search that 

had sufficient detail of the experimental design were included in the meta-analysis.  Abstracts 

would not meet this level of criteria as they do not contain materials and methods sections. 

The numerical difference in RMD and SMD between MY for studies conducted in NA 

versus outside of NA, reflected in the high heterogeneity of MY (I 2 = 48.4, Table 4.3 and Table 

4.4), might be due to different feeding and dairy management systems.  It is reasonable to 

assume that the studies conducted under NA conditions and dairy management techniques were 

more similar in variance and outcome than studies conducted elsewhere.  The non-NA studies 

were conducted in Egypt, India, Iran, Ireland, Israel, Korea, Poland, Estonia, and Scotland.  

Whether it can be assumed these dairy management systems would constitute a uniform 

subgroup is not possible to determine with these studies.  In the studies conducted in North 

America, it is possible the dairy management systems are less compatible with the maintenance 

of viable live yeast than in feeding systems in other areas of the world.  How the product is fed 

and the time lag from manufacturing to ingestion could be different in the different subgroups.  

Only three studies (Kung et al. 1997, Al  Ibrahim et al. 2010, Shwartz et al. 2009) measured the 

colony forming units (cfu) of Saccharomyces cerevisiae fed in their studies.  Shwartz et al., 

adjusted their feeding rate for the viable cfu counts in the commercial product to feed the 

recommended rate (Table 4.6).  Al  Ibrahim, et al., 2010 fed the recommended amount of product 

which would have been 1.00 x 1010 cfu but only ended up feeding 6 x 108 cfu/kg fed and Kung et 

al., only reported the actual cfu fed (10 g of 3.5 x 109 cfu of yeast/g of supplement).  All other 

studies fed the recommended dose from the manufacturer with no test of viability.  Publication 

bias may also be a factor if  manufacturers of live yeast products have more influence over what 

papers are published in areas outside of North America, resulting in heterogeneity of the 
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Table 4.6. Studies on active dry yeast products meeting selection1 criteria representing years 1991 to 2010 and used in the meta-analysis.  
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Adams et al,1995 US 5.00E+10 Not Early Early and Mid 84 3X Yea-Sacc 
1026 

Both Holstein Top-Dress Individual 

Alshaikh et al., 2002 Saudi 
Arabia 

3.90E+05 Not Early 118-134 70 3X Yea-Sacc 
1026 

Multi Holstein Mixed Group 

Cakirogiu et al., 2010 Turkey 1.00E+09 Early 45 21 2X Yea-Sacc 
1026 

Multi Jersey Drench Group 

Chiquette et al., 1995 Canada 5.00E+10 Early 42 35 2X Yea-Sacc 
1026 

Multi Holstein Mixed Individual 

Ebtehag et al., 2011 Egypt 1.00E+10 Early 0 75 2 Epix Multi Crossbred Mixed Individual 

Garg et al., 2000 India 5.00E+10 Not Early 80 91 2 Yea-Sacc 
1026 

Multi Holstein 
Friesian 

Mixed Group 

Grochowska et al., 2009 Poland 7.00E+10 Early -21 70 dim UK Biosaf SC 
47 

Multi Unknown Unknown Individual 

Holtshausen, et al., 2010 Canada 5.00E+9 Not Early 51-159 42 2 Levucell 
SC 1077 

Both Holstein Mixed Individual 

Al Ibrahim, et al., 2010 Ireland 3.00E+11 Early -14 70 dim 2 Yea-Sacc 
1026 

Both Holstein 
Friesian 

Mixed Individual 

Khormizi, et al., 2010 Iran 1.00E+11 Early 35-43 75 3 Biosaf SC 
47 

Both Holstein Top-Dress Individual 

Kalmus, et al., 2009 Estonia 5.00E+10 Early -14 98 dim 2 Yea-Sacc 
1026 

Unknown Eastonian 
Holstein 

Top-Dress Individual 
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Kim, et al., 2006 Korea 1.5E+11 Early -21 41 dim UK Yea-Sacc 
1026 

Multi Holstein Mixed Individual 

Kung, et al., 1997 US 1.75E+11 Not Early 130-189 63 2 Biomate Multi Holstein Top-Dress Individual 

Lethbridge, et al.,2007 New 
Zealand 

1.00E+10 Early 0 114 2 Unknown Primi Unknown Mixed Group 

Lopuszanska-Rusek, et 
al., 2011 

Poland 5.00E+10 Early -21 70 dim 2 Yea-Sacc 
1026 

Multi Polish 
Holstein 

Mixed Individual 

Moallem, et al., Israel 6.00E+10 Not Early 60-168 90 3 Biosaf SC 
47 

Both Israeli 
Holstein 

Top-Dress Individual 

Mruthunjaya, et al., 2003 India 5.00E+10 Not Early 67-116 49 UK Yeas-Sacc 
1026 

Multi Crossbred Mixed Individual 

Ondarza et al., 2010 US 5.00E+10 Not Early 21 84 3 ABVista 
Yeast 

Multi Holstein Mixed Group 

Soder et al., 1999 US 7.50E+10 Early -28 91 dim UK Biomate Both Holstein Top-Dress Individual 

Swartz et al., 2009 US 5.03E+10 Not Early 120 98 UK Western Unknown Holstein Top-Dress Individual 

Swartz et al., 2009 US 5.10E+10 Not Early 120 98 Uk Cellcon Unknown Holstein Top-Dress Individual 

Williams et al., 199113  Scotland 5.00E+10 Early 36 36 2 Yea-Sacc 
1026 

Multi Fresian Top-Dress Individual 

 

1 Inclusion criteria were: the study had to be in English, was performed on lactating dairy cattle, evaluated an active dry yeast product, the study included a 
concurrent negative control group, utilized randomized treatment assignments and used a parallel group design, (i.e., not crossover). Additionally, studies must 
have reported results of at least one of the production outcomes of interest (milk yield, % milk fat,, milk fat yield, % milk protein, milk protein yield, 3.5% fat 
corrected milk, energy corrected milk, or DMI), along with a measure of variance (standard error or standard deviation) or a p value for comparison of effects 
between treatment and control groups. The study had to provide enough information in it to establish if it met the criteria for inclusion and be published as an 
independent study, not as a commercial company internal report. 
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2  Country the research was conducted in. 

3  Colony Forming Units of Active Dry Yeast fed to the treated animals in the study if reported. When the CFU fed was not reported this value was calculated 
from the concentration of the product X in grams of product fed.  

4  Studies that were primarily conducted in groups of cows less than 70 DIM are “Early” and ≥70 DIM are “Not Early”.  

5  Average days in milk when cows began receiving Active Dry Yeast.  If the range of days in milk was reported, it is reported here. 

6  Length of trial or DIM when trial was concluded. 

7  Number of times the cows were milked in 24 hours. UK is unknown. The paper did not report milking frequency.  

8  Commercial brand of Active Dry Yeast fed in the trial if reported. 

9  Parity of cows used in the trial. Both includes primiparous and multiparous,   

10  Breed of cow as reported in the trial.  

11  Active Dry Yeast treatment was fed either top-dressed on the feed or mixed into the TMR (total mixed ration). 

12  Treatments were fed either to the group (pen) of animals or individual animals. All the studies calculated the variance at the individual cow level, giving an 
over estimate of the precision to group fed studies. Subsequently, all group fed studies were removed from calculations. 

13  There were 4 separate comparisons by Williams in this paper. They were treated (ADY) versus control (no ADY) comparisons on feed to concentrate feed at 
50/50 using hay in one comparison and straw in a second. The hay and straw were again evaluated using a 60/40 ratio. All 4 outcomes were analyzed as separate 
trials.  
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outcomes.  The use of funnel plots to visually assess if  publication bias is present was utilized 

(Sterne, Becker, and Egger 2005).  Funnel plots are plotted for the SMD against the SE of the 

studies.  The larger studies with the smaller SE are higher on the graph (Figure 4.4).  The funnel 

plot shows asymmetry with several small studies missing showing a bias to higher outcome 

studies that are positive.  To further assess bias, the funnel plot was plotted with the red dots 

representing studies conducted outside NA the black dots representing studies conducted in NA 

(Figure 4.4).  There appears to be much more possible evidence of publication bias as seen by 

the increased asymmetry of the red dot representing studies conducted outside of NA.  The 

symmetry of the studies conducted in NA indicates possibly less publication bias.  The larger 

example demonstrated by the funnel plot is that heterogeneity within a funnel plot can show little 

bias but the outcomes do not represent a consistent understanding of the true point effect 

(Ioannidis 2005). 

Heterogeneity of Milk Yield and Mechanism of Action 

There has been much discussion about how ADY would increase milk production or 

have a biological impact on a lactating cow’s performance.  This meta-analysis shows a high 

degree of heterogeneity in the study outcomes as discussed above.  Another explanation other 

than strictly publication bias for the high level of heterogeneity may lie in the mechanism of 

action of ADY in the rumen.  The function of ADY may depend on the viability of the yeast cells 

and therefore their physiological function in the rumen for example to scavenge oxygen from the 

rumen environment which seems to be the leading theory presently.  Past studies on autoclaved 

yeast cells have shown that dead yeast cells have no effect on ruminal VFA, (Dawson, Newman, 

and Boling 1990).  The difficulty in keeping the yeast alive from manufacture to ingestion by the 

cow could account for much of the variability in the outcomes seen in the meta-analysis.  Further  
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Figure 4.4. Funnel plot of milk yield with pseudo 95% confidence limits. The Standardized Mean Difference is 
plotted against the standard error of the point effect. The central line shows the overall point effect. The 
red dots represent the SMD of studies conducted outside of North America and the black dots represent 
studies conducted in North America.  Overall the symmetry shows a slight bias to the right. When 
observed by location of study, the studies conducted outside of North America appear asymmetrical.  The 
SMD comes from a meta-analysis on active dry yeast on milk production and DMI performed on studies 
published from 1991 to 2010.  

questions of the mode of action of the live yeast once they arrive in the rumen are still present.  

Newbold et al. (Newbold, Wallace, and McIntosh 1996) tested the oxygen scavenging theory 

utilizing an in vitro model that injected oxygen into a simulated rumen environment.  Although 

results showed that three out of five (or 60%) Saccharomyces cerevisiae strains tested stimulated 

oxygen uptake from rumen fluid and dissolved oxygen reached baseline levels within 90 seconds 

of yeast supplementation, this was conducted with a 200 mg yeast in 150 mL buffered rumen 
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fluid equivalent to 126 g yeast for a cow with 95 L rumen liquid volume (more than 100 times 

higher dose of yeast than fed commercially), and the oxygen levels were much higher than seen 

in the rumen of a normal cow (Ellis, Williams, and Lloyd 1989).  Furthermore, the VFA 

concentrations were far outside the normal levels in the rumen, (40mM vs. 117 mM) which 

would have a large impact on the yeast ability to uptake oxygen (Lee et al. 2003)(Lee et al. 

2003).  This leaves the mechanism for ADY to increase milk production and its role in the 

heterogeneity of effect open to further research. 

Conclusion Chapter 4 

Commercially available products of active dry yeast supplementation failed to show a 

significant increase in milk production in studies conducted in North America (0.49 kg/d, P = 

0.307) or in ECM (0.54 kg/d, P = 0.260).  In all studies including studies conducted both in and 

outside of NA, MY increased by 0.81 kg/d, (P = 0.010) and ECM increased 1.0 kg/d (P = 0.001) 

but with high heterogeneity (I2 = 40.10%, I2 = 25.80% respectively).  Publication bias analysis 

indicates that there may be several missing papers from the literature of studies conducted 

outside of NA that would have lower point effects.  Active dry yeast supplementation failed to 

show a significant increase in DMI in early lactation (0.42 kg/d, P = 0.25).  The high 

heterogeneity seen in studies may be due to publication bias, or lack of yeast viability in different 

dairy feeding and management systems.  The mode of action for ADY on milk production in 

dairy cows has not been fully elucidated to understand if  yeast viability is crucial to the 

production effect ADY may have on the lactating dairy cow.  This meta-analysis was done on 

studies (with the exception of Swartz et al.) that did not adjust for possible changes in cfu counts 

in the product.  Caution should be used in interpreting the validity of this study for actual ADY 

effect versus the production effect of commercially available products. 
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PROBABILISTIC MODELING TO SUPPORT DECISIONS  

REGARDING THE USE OF ACTIVE DRY YEAST AND YEAST CULTURE  

Chapter 5 Executive Summary 

The purpose of a veterinary consultant may be to help a business owner to decide 

between multiple mutually exclusive interventions.  As agricultural systems become more 

complex and overlapping, intuition becomes less appropriate and the need for mathematical 

models depicting the possible system before and after the intervention are needed.  One such 

model is the use of deterministic and stochastic partial budgets.  The interventions for addition of 

yeast culture into a dairy cow diet is examined in a meta-analysis (Poppy et al. 2012) that should 

represent an accurate summary of the random controlled yeast culture studies at the time of its 

publication.  Likewise, a meta-analysis of feeding active dry yeast (Poppy et al. 2017) gives us 

the parameters for that intervention.   

Using a deterministic partial budget, utilizing the mean changes for milk yield (MY), fat 

yield (FY), protein yield (PY), and dry matter intake (DMI), the difference of income over feed 

cost (IOFC) for an intervention of feeding yeast culture to dairy cows in early lactation (<70 

DIM) is $0.399 /cow/d, and for mid-to-late lactation dairy cows is $0.584 /cow/d.  Likewise, 

using the meta-analysis for an intervention of feeding active dry yeast (Poppy et al. 2017) using a 

deterministic partial budget is $0.413 /cow/d for early lactation and $0.548 for mid-to-late 

lactation cows.  The use of the deterministic partial budgets show very little differentiation from 

these two mutually exclusive interventions, but the information in the meta-analysis is not fully 

utilized due to the lack of incorporation of the variance measures of uncertainty found in these 
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studies.  Using the standard error and between and within variance to yield the uncertainty 

measures found in the mean and the random effects using stochastic analysis (ModelRisk 5.1.1 

Vose Software BVBA, Belgium, 2015) helps determine the possible risk measures.  The 

stochastic analysis for the partial budget of yeast culture estimates that based on the meta-

analysis (Poppy et al. 2012) the risk of the producer being below breakeven for the intervention 

in early lactation is 0.269% and the probability the returns to the dairy of being between $0 and 

$0.80 /cow/d is 99.46%.  Likewise, the risk of being below breakeven in mid-to-late lactation is 

0.309%.  On the other hand, using the values from the active dry yeast meta-analysis (Poppy et 

al.,2017) the probability of being below breakeven for the intervention is 38.86% for early 

lactation and about 59.78% of being somewhere between $0.00 and $4.00.  Likewise, in mid-to-

late lactation, for ADY, the stochastic partial budget estimates 39.20% probability of being 

below breakeven and a 55.62% probability of being between $0.00 and $4.00.  If one defines risk 

as being unsure of the true outcome, then the interventions based on the published studies in the 

ADY meta-analysis gives little information for dairy operation to utilize in making and informed 

decisions and would constitute a risky decision for the producer.  

Introduction  

A veterinary consultant to an animal enterprise may have as their most important 

contribution that of helping the management team correctly assess the uncertainty surrounding 

the business decision to be made.  Having the correct assessment of the conditional probabilities 

associated with both the biological process as well as the economic uncertainty and correctly 

applying these probabilities to assess the economic outcome and the uncertainty surrounding that 

outcome is the key task in advising the managerial decision maker.  Decreasing the risk of the 

decision is the process of more accurately predicting the outcome with certainty.  Often 
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obtaining accurate information regarding the expected change due to a proposed intervention and 

the uncertainty surrounding that intervention is difficult to obtain.  While making decisions in the 

face of uncertainty is a manager’s job (Drucker 1973), reducing the extent of that uncertainty is 

the key to making fewer decision errors.  Robert Schlaifer states (1959b): 

“When all the facts bearing on a business decision are accurately known-when 
the decision is made “under certainty”-careless thinking is the only reason why 
the decision should turn out, after the fact, to have been wrong.  But when the 
relevant facts are not all known - when the decision is made “under uncertainty, 
it’s impossible to make sure that every decision will turn out to have been right in 
this same sense.  Under uncertainty, the businessman is forced, in effect, to 
gamble.  Under such circumstances, a right decision consists in the choice of the 
best possible bet, whether it is won or lost after the fact”. 

Correctly assessing the uncertainty or assigning the correct conditional probabilities is 

the heart of the business decision and has to be one of the first steps in reducing risk.  The use of 

models or prior research can only inferentially be assigned to a specific business case, and being 

able to assess the strength of that inference for both the mean and variance is difficult.  The 

internal and external validity of the available studies as well as how disagreements in available 

studies can be combined and then applied to the question being asked is a key component in 

decreasing uncertainty for the decision outcome.  Veterinarians, as practitioners of evidenced 

based medicine processes, finding studies, correctly interpreting the relevancy of the studies to 

the current problem and making correct inferences from the studies to the relevant problem is an 

area we have the background education to achieve.  One recent tool to help access the broad 

scope of relevant studies is the use of meta-analysis combined with systematic reviews.  

Although veterinarians may have a broad background in interpreting studies as single point 

outcomes, as agricultural enterprises become more complex, incorporating the multiple impacts 

of a single intervention within the complex agricultural system, and assessing both the biological 
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outcomes as well as financial implications of the interventions becomes more difficult as much 

as it becomes an imperative if one hopes to correctly characterize possible solutions.  

One tool available to the veterinary practitioner to help model the impact of an 

intervention in an agricultural system is the partial budget.  The partial budget is a comparison of 

the current economical state of the production or disease state compared to the predicted 

economic state after the proposed intervention.  Partial budgets are often part of more complex 

models as seen in the Markov chain models (Dijkhuizen, Renkema, and Stelwagen 1984) or 

models using Monte-Carlo simulation (Galvao et al. 2013, Overton 2006).  The simplest partial 

budget, is one that utilizes deterministic values for dairy production and uses a reported 

biological output with no uncertainty from a dairy study coupled with the economic value for 

that output minus the cost of implementing that specific intervention.  More advanced 

deterministic partial budgets could incorporate multiple effects of a single intervention or 

multiple effects from multiple simultaneous interventions still incorporating a single point effect 

with no uncertainty.  The deterministic partial budget gives a mean change which while simple to 

calculate, fails to account for the variability or uncertainty associated with the change in the 

mean value.  Because the complex partial budget change is made up of several parameter 

estimates each with a different variance or confidence interval, neither the biological or 

economic risk for the decision maker can be easily estimated mentally without further analysis.  

The use of stochastic analysis using Monte Carlo simulation can be used to estimate the risk for 

this partial budget.  Monte Carlo simulation is a method for making artificial trials or 

experiments to assess the probabilities on the basis of the relative frequencies that each artificial 

event occurs (Schlaifer 1959a).  The use of stochastic analysis and the incorporation of the 
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uncertainty could give a more accurate picture of the proposed intervention, not recognized 

through the use of deterministic partial budgeting alone.   

Therefore, the purpose of this paper is to develop of partial budget for two different, but 

similar proposed interventions in a commercial dairy herd and compare the risk of the proposed 

interventions using both deterministic and stochastic partial budgets.  

Materials and Methods 

A partial budget (Dijkhuizen et al., 1995) was constructed to model the net change in 

income from an intervention of a feed additive of yeast culture (SCFP) or an intervention of a 

feed additive of active dry yeast (ADY). The input data for the yeast culture was obtained from a 

meta-analysis of the use of yeast culture analysis (Poppy et al. 2012), and the input data for 

active dry yeast was from a similar meta-analysis (Poppy et al. 2017).  The parameter values for 

the mean change, SE and Total Variance (TV) for kg of milk (MY), kg of milk fat (FY), kg of 

protein (PY) and dry matter intake (DMI) for both early lactation, (DIM < 70) or mid-to-late 

lactation were obtained from each meta-analysis.  The values for the economics of each 

parameter in the partial budget include the values from the published federal milk order 33 for 

November 2016 (USDA 2016) converted to the value /100 kg of milk, fat, protein and other 

solids.  The base amount of milk was 39 kg/d for the early lactation cows and 32 kg/d in the mid-

to-late lactation cows.  FY was calculated by 3.5% x MY to obtain FY for the early lactation 

cows and 3.7% x MY for the mid-to-late lactation cows.  PY was calculated as 3.1% x MY to 

obtain PY for the early lactation cows and 3.2% x MY for the mid-to-late lactation cows.  Other 

solids were calculated as 5.7% x MY for both early and mid-to-late lactation cows.  The base 

DMI for early lactation cows was 23.5 kg/d and 23 kg/d for mid-to-late lactation cows.  Dry 

matter cost was $0.22 /kg for early lactation cows and $0.198 /kg/d for mid-to-late lactation 
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cows.  Both yeast culture and active dry yeast cost are $0.05 /cow/d.  The cost of feeding the cow 

each day is (DMI cost/cow/d) calculated by multiplying the DMI and the Cost of DMI.  The 

income generated each day per cow (Income/Cow/d) was obtained by multiplying the sum of 

Class 1 ($4.409), Hauling (-$2.205), Promotion (-$0.331) and Quality ($1.653) $3.527 /100 x 

MY, plus FY x $4.518, plus PY x $5.065, plus kg of other solids x $0.298.  The income per 100 

kg of milk produced (Income/100 kg) is the Income/cow/d divided by MY x 100).   The income 

over feed cost (IOFC) was calculated by subtracting the DMI cost/cow/d from Income/Cow/d.  

Yeast culture or ADY change was calculated by subtracting the IOFC pre-intervention from the 

post intervention partial budget.  

The Monte Carlo stochastic analysis allows one to replicate the experiment of calculating 

the partial budget many iterations, each time using an input for the mean change in the mean 

parameter based on the relative frequency distribution we assigned to each of the variance 

parameters.  For this trial, we assign a normal distribution for the total variation for each of the 

parameters calculated in the partial budget from the meta-analysis to model the uncertainty using 

ModelRisk 5.1.1 (Vose Software BVBA, Belgium, 2015).  The Monte Carlo simulation 

generated 10,000 iterations of the partial budget and plotted these outcomes in a frequency 

histogram.  The parameters that were modeled with uncertainty from values in the two meta-

analysis were MY, FY, PY and DMI.  The parameter values for the deterministic and stochastic 

partial budget modes were found in Poppy et al. (2012) for the YC analysis and Poppy et al. 

(2017) for the ADY analysis (Table 5.1).  The values in the YC analysis were for peer reviewed 

papers only, while the ADY analysis were sub group values for all ADY papers, not North 

American only.  The method for obtaining the stochastic value for each parameter (MY, FY, PY 

and DMI) was to assign a VoseNormal distribution and use of the SE parameter provided from 



131 

the meta-analysis to model the uncertainty surrounding the mean change.  This distribution was 

then used to model each output parameter in the partial budget.  The variance values in the mixed 

model meta-analysis are the uncertainty between studies which is called Tau squared, T2, as well 

as the uncertainty within studies what we would normally think of as variance (V) or the square 

of variance, the standard deviation.  The total variance (TV) for the mixed model is the weighted 

average of all the variances (1/V+ T2), for each study and the standard error (SE) of the mean is 

the square root of the TV (Borenstein et al., 2010).  Because the SE incorporates both the 

between group and the within group variance and the uncertainty around the mean we can 

multiply the SE by the Vose distribution which is the equation parameter to replicate the 

equation each time using a SE and Mean outcome chosen from the chosen distribution in the 

Vose software program ModelRisk.  This develops an output graph which is a histogram of all 

the outcomes.  For example, for MY we use VoseNormal(MY mean change, MY SE) with the 

MY SE representing the total variance for milk yield.  This parameter was used to multiply by 

the base MY early lactation to arrive at the post intervention MY for early lactation.  The partial 

budget then calculated each value for MY, FY, PY, and DMI and arrived at a combined 

histogram, of the variance of the outcome. 

Table 5.1 Parameter values for the Yeast Culture (YC)1 and Active Dry Yeast (ADY2) deterministic and 
stochastic partial budgets.  The variance equals total variance both between and within group. 

 YC1 

 Early Mid/Late 

 Mean SE Variance Mean SE Variance 

MY 1.370 0.3757 0.141 0.980 0.4968 0.247 

FY 0.057 0.028 0.001 0.051 0.030 0.001 

PY 0.025 0.012 0.000 0.039 0.028 0.001 

DMI 0.615 0.2077 0.043 -0.782 0.2938 0.086 
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 ADY2 

 Early Mid/Late 

 Mean SE Variance Mean SE Variance 

MY 1.172 0.0404 0.163 0.439 0.5300 0.281 

FY 0.052 0.016 0.000 0.026 0.019 0.000 

PY 0.039 0.312 0.097 0.029 0.417 0.174 

DMI 0.423 0.3700 0.137 -1.570 0.5770 0.333 

 

1  Parameter values from Poppy et al. (2012) for peer reviewed papers only. 
2  Parameter values from Poppy et al. (2017) for all studies, not restricted to NA only.  

The cost of obtaining a Type 1 error, the estimated amount of money the producer would 

could lose if he implemented an intervention when the true outcome was less than breakeven, 

was obtained by multiplying the value associated with each histogram below break-even bin 

value times its probability or relative frequency and adding them up (the area under the curve 

less than $0).  The cost of the Type 2 error, the estimated money the producer would lose if the 

true outcome was the product worked but the producer failed to implement the intervention, is 

the same procedure for the histogram bins above break-even.   

Results and Discussion 

The values from the meta-analysis for yeast culture and active dry yeast were calculated 

(Table 5.1).  The deterministic partial budget utilizing the values for yeast culture (Table 5.2) 

calculates a change in mean income in early lactation of $0.399/cow/d for the addition of yeast 

culture to early lactation for an investment of $0.05/cow/d.  Likewise using an average mid-to-

late lactation cow for the partial budget yields an advantage for the intervention in mid-to-late 

lactation cows of $0.584 /d.  The deterministic partial budget revels an important aspect of 

incorporating the economic value into understanding the full impact of the biological change.  In 
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this partial budget, while early lactation cows show an increase in DMI from the intervention, the 

mid-to-late lactation cows had a decrease in mean DMI of 0.782 kg / day which improved the 

value of the intervention by $0.15/cow/day.  Modeling only the value of the milk change would 

have missed this important aspect of the economic value of the intervention. 

Table 5.2. Partial Budget for adding yeast culture to early and late lactation dairy cows from meta-analysis (Poppy 
et al. 2012). 

  Early Lactation1 Mid/Late Lactation2 

 Control Meta-analysis Yeast Culture Control Meta-analysis Yeast Culture 

Milk Yield, kg 39.000 1.370 40.370 32.000 0.980 32.980 

Fat % 0.035  0.035 0.037  0.037 

kg of fat 1.365 0.057 1.422 1.184 0.051 1.235 

Protein % 0.031  0.031 0.032  0.032 

kg of Protein 1.209 0.025 1.234 1.008 0.039 1.047 

OS % 0.057  0.057 0.057  0.057 

kg of Other Solids 2.223  2.301 1.824  1.880 

DMI, kg 23.500 0.615 23.543 23.000 -0.782 22.218 

Cost dry matter /kg 0.220  $0.22 0.198  $0.20 

DMI cost/cow/d 5.170  $5.18 4.554  $4.40 

Yeast cost/cow/d   $0.05   $0.05 

Income/Cow/d $14.33  $14.79 $12.13  $12.61 

Income/100 kg $36.74  $36.629 $37.90  $38.223 

IOFC Advantage3  $9.16  $9.557 $7.57  $8.157 

Yeast Culture change     $0.399   $0.584 

       

Value of components in 100* Kg4      

Fat $4.518 Class I $4.409    

Protein $5.065 Hauling $(2.205)    

Other Solids $0.298 Promo $(0.331)    

Total5 $3.527 Quality $1.653    
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1 Results from the meta-analysis for yeast culture for cows less than 70 DIM. 

2 Results from the meta-analysis for yeast culture of cows not less than 70 DIM. 

3 IOFC is Income over feed cost or the revenue from the milk minus the feed cost estimate/cow/d. 

4 From the Federal Order 33 milk pricing for November 2016.  The values paid converted to kg from CWT milk.  
http://www.fmmaclev.com/Releases/ClassPrice/classpr.pdf. 

5 Sum of Class I differential plus and estimated hauling charge, promotion charge and quality bonus. 

The deterministic partial budget for the addition of ADY (Table 5.3) estimates a change 

in income for the early lactation intervention of $0.413 per cow per day and $0.548 for mid-to-

late lactation cows.  Again, as in the yeast culture example a large part of the economic change in 

the estimated value comes from the decrease in DMI for the mid-to-late lactation cows.   

Table 5.3. Partial budget of Active Dry Yeast fed to dairy cattle using the parameter estimates from a meta-
analysis Poppy et al. 2017). 

  Early Lactation1 Mid/Late Lactation2 

Control Meta-analysis 
Active Dry 

Yeast Control Meta-analysis 
Active Dry 

Yeast 

Milk Yield, kg 39.000 1.172 40.172 32.000 0.439 32.439 

Fat % 0.035  0.035 0.037  0.037 

kg of fat 1.365 0.052 1.417 1.184 0.026 1.210 

Protein % 0.031  0.031 0.032  0.032 

kg of Protein 1.209 0.039 1.248 1.008 0.029 1.037 

OS % 0.057  0.057 0.057  0.057 

kg of Other Solids 2.223  2.290 1.824  1.849 

DMI, kg 23.500 0.423 23.640 23.000 -1.570 21.430 

Cost dry matter /kg 0.220  $0.22 0.198  $0.20 

DMI cost/cow/d 5.170  $5.20 4.554  $4.26 

Yeast cost/cow/d   $0.05   $0.05 

Income/Cow/d $14.33  $14.82 $12.13  $12.41 

Income/100 kg $36.74  $36.897 $37.90  $38.269 

IOFC 3 $9.16  $9.571 $7.57  $8.121 

http://www.fmmaclev.com/Releases/ClassPrice/classpr.pdf
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  Early Lactation1 Mid/Late Lactation2 

Control Meta-analysis 
Active Dry 

Yeast Control Meta-analysis 
Active Dry 

Yeast 

ADY change     $0.413   $0.548 

Value of components in 100* Kg4 
    

Fat $4.518  Class I $4.409    

Protein $5.065  Hauling $(2.205)    

Other Solids $0.298  Promotion $(0.331)    

Total5 $3.527  Quality $1.653    

 

1 Results from the meta-analysis for Active Dry Yeast for cows less than 71 DIM. 

2 Results from the meta-analysis for Active Dry Yeast of cows not less than 70 DIM. 

3 IOFC is Income over feed cost or the revenue from the milk minus the feed cost estimate/cow/d. 

4 From the Federal Order 33 milk pricing for November 2016.  The values paid converted to kg from CWT milk.  
http://www.fmmaclev.com/Releases/ClassPrice/classpr.pdf. 

5 Sum of Class I differential plus and estimated hauling charge, promotion charge and quality bonus. 

For an aid in determining a possible intervention both the YC and ADY appear from the 

deterministic partial budget to be of possible value to the dairy, but is not good at distinguishing 

between the interventions if only one can be implemented assuming they are mutually exclusive, 

i.e. you would not get an additive response if both interventions were implemented.  Also, 

neither partial budget helps us know the risk nor how sure are we of achieving the reported 

amount.  More importantly, the producer often wants to know, if I implement this intervention, 

what is the probability I will be below breakeven?  One could also ask what is the cost of making 

the wrong decision when incorporating all the information?  It is readily evident that in the 

deterministic partial budget valuable information from the meta-analysis is not used, the values 

of uncertainty for each parameter.  Stochastic analysis allows the use of the uncertainty in each 

parameter to be added to the model.  The uncertainty around the mean change reported in the 

http://www.fmmaclev.com/Releases/ClassPrice/classpr.pdf
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study is used in each iteration.  The shape of the distribution assigned to the parameter 

determines the relative frequency of the value within the bounds determined by the variance 

parameter.  Although for this analysis we used normal distributions, other distributions were 

possible depending on one’s interpretation of the data and the actual fitting of the raw data. 

The stochastic partial budget for yeast culture utilizes the uncertainty of the various 

parameter estimates used in the partial budget.  For MY in early lactation we see there is an 

estimated mean change of 1.37 kg, with a SE of 0.3757 kg (Table 5.1).  This represents the 

uncertainty we have around the estimated mean change.  In addition to the total variance 

surrounding MY, we also have from the partial budget the economic value for the mean change in 

FY (0.057), PY (0.025) and DMI (0.615) along with the SE for each parameter multiplied together 

to see the true uncertainty surrounding the event of adding yeast culture to early lactation cows.  

Utilizing the values from the meta-analysis, a partial budget was built for both yeast culture and 

active dry yeast (Figures 5.2 and 5.3).  The stochastic partial budget for yeast culture shows a mean 

response of approximately $0.39 as seen in the deterministic partial budget, but now utilizing the 

variance from the meta-analysis we can see there is a very small 0.270% chance the outcome based 

on the biology as well as the economics for the partial budget the producer may actually have an 

income of $0.00 or less (Figure 5.1).  The probability of having an income between $0.00 and 

$0.80 is 99.46%.  There is a 0.27% probability the income resulting from the intervention is greater 

than $0.80.  Similarly, the results of the Monte Carlo simulation for the mid-to-late lactation 

parameters from the yeast culture meta-analysis (MY = 0.980, SE = 0.497), (BF = 0.051, SE = 

0.030), (PY = 0.039, SE = 0.028), (DMI = -0.782, SE = 0.294), predicts a mean of approximately 

$0.59 with a 97.62% probability of being between $0.00 and $1.00 (Figure 5.2). The probability of 

being below breakeven is again very low at 0.31%.  Overlaying the graphs, one can see that while 
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Figure 5.1. Histogram of the risk for the partial budget of the change in income due to adding yeast culture to early lactation cows (<71 DIM).  There is very 
low probability of 0.269 the income for the intervention of yeast culture will be below $0 based on the variance from the meta-analysis (Poppy et al. 
2012) There is a 99.4% chance the income will fall between $0.0 and $0.80/cow/d. 
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Figure 5.2. Histogram of the risk for the partial budget of the change in income due to adding yeast culture to mid-to-late lactation cows (>70 DIM). There is 
near 0.309% probability based on the variance from the meta-analysis (Poppy et al. 2012) the net income will fall below $0.  There is a 97.6% chance 
the income will fall between $0.0 and $1.00/cow/d. 
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the mid-to-late lactation graph lies to the right or has a higher mean income, it is also more risky 

because it has a wider distribution or more uncertainty around the possible outcome (Figure 5.3).  

Overton in a study (2005) looking at implementing AI synchronization, calculated the cost for 

Type 1 and Type 2 in a dairy herd.  Using this same methodology one can see (Figure 5.1 or 5.2) 

that multiplying the bins of the histogram times their probability or relative frequency and 

summing them (the area under the curve less than $0) would provide an estimate of the cost of a 

Type 1 error.  The producer would make a Type 1 error if he gambled and added yeast culture to 

the herd in expectation of a profit when he would actually lose money.  In this case, the cost of 

the Type 1 error would be less than $0.001 /cow/d which is very low.  The cost for a Type 2 

error can be calculated as well by summing the relative frequencies for bins greater than $0.00.  

A Type 2 error would occur when a producer does not use a possible intervention when it would 

make him or her money.  In this stochastic analysis, the estimated cost for the Type 2 error is 

approximately $0.377/cow/d.  The Type 2 error cost for mid-to-late lactation cows on yeast 

culture was 0.564/cow/d.  It is important to note these are the estimated probabilities surrounding 

the decision.  Once the producer actually implements the intervention there is no uncertainty in 

the outcome. 

Building the risk graph using Monte Carlo simulation for the Active Dry Yeast meta-

analysis demonstrates the problem with evaluating tables with parameter estimates without 

calculating the impact of the variance for the same parameters.  Similar to the deterministic 

partial budget for yeast culture, the partial budget for ADY shows a gain in net income for 

adding ADY to the early lactation animals of $0.41/cow/d.  Likewise, the mid-to-late lactation 

partial budget shows $0.55 per cow per day.  Building a risk graph taking into account the 

uncertainty surrounding these parameters (for early lactation cows (MY = 1.172, SE = 0.040), 
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Figure 5.3. Histogram of the risk for the partial budget of the change in income due to adding yeast culture to both early lactation and  mid-to-late lactation 
cows. The mean of the mid-to-late lactation graph while higher than the early lactation graph has more risk as the variance is wider.  The producer can 
choose how much risk versus income to choose.  Parameter estimates are from Poppy et al. 2012. 
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( FY = 0.052, SE = 0.016), (PY = 0.039, SE = 0.312), (DMI = 0.423, SE = 0.370) and for mid-

late lactation cows (MY = 0.439, SE = 0.530), ( FY = 0.026, SE = 0.019), (PY = 0.029, SE = 

0.417), (DMI = -1.570, SE = 0.577) from the meta-analysis for Active Dry Yeast (Table 5.1).  

This stochastic analysis shows less predictive value for making a business decision (Figure 5.4 

and Figure 5.5).  The stochastic analysis shows the probability of the actual net income being 

below $0 as 38.86% for the early lactation active dry yeast intervention.  The intervention has a 

59.78% probability of being between $0 and $4.00/cow/d.  Likewise, the mid-to-late lactation 

cows estimates a 39.20% probability of being less than breakeven and a 55.62% probability of 

being between $0.00 and $4.00/cow/d.  Summing the bin values times their probability for the 

early lactation cows in the ADY partial budget we had an estimated the cost of making a Type 1 

error, the error using the product when you should not is $0.505/cow/d, and the cost of a Type 2 

error (not using the product when you could have made a profit) of $0.828 /cow/d.   Likewise, 

the Type 1 error for mid-to-late lactation ADY interventions was $0.630/cow/d and the Type 2 

error was $1.099/cow/d.  The magnitude of both errors is large compared to a $0.05 investment 

demonstrates a great deal of uncertainty in the outcome of the intervention (Figure 5.6).  If as 

Schlaifer said (1959b) the decision made under certainty is the desired business proposition, then 

these would represent the opposite for the decision-making process.  

Conclusion Chapter 5 

From the addition of adding Monte Carlo simulation to the analysis of the decision, it is 

seen that accurately predicting the variance by using meta-analytic studies and the addition of 

stochastic analysis to partial budgets is a method veterinary consultants can use to improve their 

advice to managerial decision makers on dairy farms and other animal agriculture enterprises.  

Partial budgets can be a valuable aid to the dairy decision maker for understanding the 
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Figure 5.4. Histogram of the risk for the partial budget of the change in income due to adding Active Dry Yeast to early lactation (<70 DIM). The graph shows 
a 38.8% probability the producers income will fall below $0 for a net loss, and a 59.7% probability the income will be between $0 and $4.00.  Parameter 
estimates are from Poppy et al. 2017.     
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Figure 5.5. Histogram of the risk for the partial budget of the change in income due to adding Active Dry Yeast to mid-to-late lactation (>69 DIM). The graph 
shows a 39.2% probability the producer will fall below $0 for a net loss and a 55.6% probability of falling between $0 and $4.00 c/d.  Parameter 
estimates are from.  Poppy et al. 2017.     
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Figure 5.6. Histogram of the risk for the partial budget of the change in income due to adding Active Dry Yeast graph for both early lactation and  mid-to-late 
lactation cows stochastic analysis. The means of the two-different analysis overlay each other with the Early lactation in red being slightly narrower.  
Both graphs show excessive variance of the underlying partial budget.  Parameter estimates are from Poppy et al. 201. 
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complexity of the biological changes and provide a method for attaching the predicted economic 

values to the biological changes in a systematic method.  Pre and post intervention outcomes 

help one to see if the cost of adding the intervention has a predicted net increase or decrease in 

income for the producer.  Where partial budgets, which are normally done as a deterministic 

model, lack the understanding of the extent of the uncertainty and its impact on the parameter 

values in the partial budget that are highlighted in stochastic analysis of the partial budget.  In the 

case of the possible  ADY intervention, if the goal is to help the producer make a decision that 

has low uncertainty, the true outcomes could not be achieved with the use of deterministic partial 

budgets alone.  Using the variance parameters from a meta-analysis as the gold standard for 

combining multiple often conflicting random control trials can aid in better understanding the 

impact of the uncertainty on the risk of the final decision by using stochastic analysis instead of a 

deterministic approach to partial budgets.  Further interpretation of the uncertainty in the 

information and incorporating both biological as well as economic data into the decision models 

will improve the value of the advice and prove an important function of evidence based medicine 

and ultimately better advice to agricultural producers. 
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APPENDIX A 

Table A.1. Studies not included in the meta-analysis Poppy et al. 2012 for yeast culture due to failure to meet the 
inclusion criteria. 

Non Eligible Studies Reason for Exclusion 

Diamond_V_Mills and Calif._Dairy, 2007 No negative control switchback 

Diamond_V_Mills and Comm._Dairy, 2003 No negative control switchback 

Diamond_V_Mills and Florida_Dairy, 2003 No negative control switchback 

Diamond_V_Mills and Idaho_Dairy, 2004 No negative control switchback 

Diamond_V_Mills and Ind._Dairy_1, 2006 No negative control switchback 

Diamond_V_Mills and Ind._Dairy_2, 2006 No negative control switchback 

Diamond_V_Mills and Ind._Dairy_3, 2006 No negative control switchback 

Diamond_V_Mills and Mich._Dairy_1, 2006 No negative control switchback 

Diamond_V_Mills and Mich._Dairy_2, 2005 No negative control switchback 

Diamond_V_Mills and MW_Dairy_1, 2006 No negative control switchback 

Diamond_V_Mills and MW_Dairy_2, 2006 No negative control switchback 

Diamond_V_Mills and NE_Feed_Man., 1983 No treatment effect reported 

Diamond_V_Mills and NW_Dairy, 2005 No negative control 

Diamond_V_Mills and Ohio_Dairy, 2009 No negative control switchback 

Diamond_V_Mills and Wisc._Dairy_1, 2005 No negative control switchback 

Diamond_V_Mills and Wisc._Dairy_2, 2006 No negative control switchback 

Erdman and Sharma, 1989 Cross over  

Hippen et al., 2010 2x2 Factorial 

Longuski et al., 2009 Cross Over 

Miller, 1994 No treatment effects 

Rumenco and Diamond_V_Mills, 1993 Cross-Over 

Sanchez et al., 2005 No negative control switchback 

Shaver and Garrett, 1997 No negative control 

White et al., 2008 Cross-over 

Wiedmeier et al., 1987 Latin Square 
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Figure A.1. Forest plot of random effects SMD for milk yield.  Only studies not published in peer reviewed journals are represented. The black squares in the 
forest plot represent the weighting (by inverse variance) for the represented study.  The horizontal bars represent the 95% CI for the study.  The diamond 
figure center represents the standardized mean and the width of the diamond represents the 95% CI of the overall treatment effect.  The outcome to the 
right of an imaginary vertical line through 0 represents an increase in milk fat yield.  (Poppy et al 2012). 

Study name Statistics for each study Sample size Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error limit limit p-Value Control Treated

Kim et al., 1994 -0.447 0.453 -1.334 0.440 0.324 10 10
Oraskovich and Linn, 1989 -4 -0.267 0.394 -1.040 0.505 0.497 13 13
Zom, 2000 - Lact 2+ -0.227 0.334 -0.883 0.428 0.49718 18
Oraskovich and Linn, 1989 -1 -0.161 0.238 -0.627 0.305 0.497 36 35
Williams et al., 1999 0.000 0.324 -0.636 0.636 1.000 19 19
Nagy, 1996 - 1 0.051 0.471 -0.873 0.975 0.914 9 9
Harris, 1990) 0.082 0.122 -0.157 0.321 0.499 135 134
Harris, 1988 - 1 0.094 0.139 -0.178 0.366 0.499 108 100
Harris, 1988 - 2 0.099 0.147 -0.189 0.387 0.500 96 90
DV Mills - Union Grove Dairy, 1997 -Syn 0.173 0.330 -0.474 0.820 0.601 18 19
Korniewicz, 2005 - Syn 0.195 0.268 -0.330 0.720 0.46728 28
Oraskovich and Linn, 1989 -2 0.218 0.322 -0.413 0.849 0.499 21 18
Mangoni, 1984 - 3 0.232 0.128 -0.019 0.484 0.070 122 123
Vogel, 2005 - Synthetic 0.236 0.137 -0.033 0.505 0.086 107 107
Zilin, 1996 0.272 0.296 -0.308 0.853 0.358 23 23
Sanchez et al., 1997 - Syn 0.275 0.116 0.047 0.502 0.018150 150
Fazenda, 1998 0.292 0.218 -0.135 0.719 0.18039 47
Zom, 2000 - Lact 2 0.346 0.504 -0.641 1.333 0.492 8 8
DV Mills and MF - 2, 1993 0.415 0.270 -0.115 0.944 0.125 28 28
DV Mills and MF 1, 1989 0.443 0.347 -0.238 1.123 0.202 17 17
Braun, 1993 0.534 0.162 0.216 0.853 0.001 79 78
Bennett, 2004 0.570 0.183 0.211 0.929 0.00262 62
Nagy, 1996 - 2 0.588 0.481 -0.356 1.532 0.222 9 9
Oraskovich and Linn, 1989 -3 0.596 0.304 0.001 1.191 0.050 19 28
Ward and McCormick, 2001 0.642 0.363 -0.069 1.352 0.07716 16
Dobos, 1998 - 1 0.714 0.327 0.074 1.354 0.02919 21
Zhou, 2002 1.263 0.323 0.630 1.896 0.000 23 23
Bernard, 1992 1.889 0.567 0.778 3.000 0.001 9 9
DV Mills - United_Molasses, 1994 - Syn 1.972 0.216 1.548 2.396 0.000 63 64

0.365 0.085 0.198 0.531 0.000

-2.00 -1.00 0.00 1.00 2.00

Milk Yield Non Peer-Reviewed Studies
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Figure A.2. Forest plot of random effects SMD for milk fat yield.  Only studies published in peer reviewed journals are represented. The black squares in the 
forest plot represent the weighting (by inverse variance) for the represented study.  The horizontal bars represent the 95% CI for the study.  The diamond 
figure center represents the standardized mean and the width of the diamond represents the 95% CI of the overall treatment effect.  The outcome to the 
right of an imaginary vertical line through 0 represents an increase in milk fat yield (Poppy et al 2012).. 

Study name Statistics for each study Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error limit limit p-Value

Lehloenya et al., 2008 -Multi -0.929 0.678 -2.258 0.4000.171
Erasmus et al., 2005 - 2 -0.200 0.366 -0.917 0.517 0.585
Arambel and Kent, 1990 -0.086 0.447 -0.963 0.791 0.848
Wang et al., 2001 -  Syn 17% NDF -0.018 0.408 -0.818 0.782 0.965
Lehloenya et al., 2008 - Primi 0.118 0.606 -1.070 1.3050.846
Harris et al., 1992 0.136 0.334 -0.518 0.790 0.683
Robinson - Garrett, 1999 - 2 0.139 0.393 -0.631 0.909 0.724
Erasmus et al., 2005 - 1 0.200 0.366 -0.517 0.917 0.585
Robinson - Garrett, 1999 - 1 0.200 0.473 -0.726 1.126 0.672
Schingoethe et al., 2004 0.227 0.325 -0.411 0.865 0.485
Cooke et al., 2007 0.293 0.450 -0.589 1.174 0.515
Alshaikh et al., 2002 0.389 0.202 -0.007 0.785 0.054
Ramsing et al., 2009 - Syn 0.508 0.306 -0.093 1.108 0.097
Wang et al., 2001 -  Syn 21% NDF 0.574 0.417 -0.242 1.391 0.168
Robinson, 1997 0.727 0.398 -0.052 1.507 0.067

0.242 0.094 0.057 0.427 0.010

-2.00 -1.00 0.00 1.00 2.00

Milk Fat Yield Peer Reviewed Studies
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Figure A.3. Forest plot of random effects SMD for milk protein yield.  Only studies published in peer reviewed journals are represented.The black squares in 
the forest plot represent the weighting (by inverse variance) for the represented study.  The horizontal bars represent the 95% CI for the study.  The 
diamond figure center represents the standardized mean and the width of the diamond represents the 95% CI of the overall treatment effect.  The 
outcome to the right of an imaginary vertical line through 0 represents an increase in milk fat yield (Poppy et al 2012).

Study name Statistics for each study Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error limit limit p-Value

Arambel and Kent, 1990 -0.462 0.453 -1.350 0.427 0.308
Lehloenya et al.-Primi -0.100 0.646 -1.366 1.166 0.877
Cooke et al., 2007 0.000 0.447 -0.877 0.877 1.000
Wang et al., 2001 -  Syn 17% NDF 0.000 0.408 -0.800 0.800 1.000
Harris et al., 1992 0.025 0.333 -0.628 0.678 0.940
Erasmus et al., 2005 - 2 0.083 0.365 -0.633 0.799 0.820
Schingoethe et al., 2004 0.176 0.325 -0.461 0.814 0.587
Robinson - Garrett, 1999 - 2 0.273 0.394 -0.500 1.045 0.489
Erasmus et al., 2005 - 1 0.333 0.368 -0.387 1.054 0.365
Robinson - Garrett, 1999 - 1 0.333 0.475 -0.597 1.264 0.483
Alshaikh et al., 2002 0.397 0.202 0.001 0.793 0.049
Ramsing et al., 2009 - Syn 0.401 0.305 -0.196 0.998 0.188
Robinson, 1997 0.500 0.391 -0.267 1.267 0.201
Lehloenya et al.-Multi 1.000 0.642 -0.258 2.258 0.119

0.239 0.097 0.049 0.428 0.014

-2.00 -1.00 0.00 1.00 2.00

Milk Protein Yield Peer Reviewed Studies
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Figure B.1. Survey instrument used for study of the association of various on farm risk factors and direct fed 
microbial products on the incident rate of diarrhea in dairy cattle in the US in 2013 and 2014. 


