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ABSTRACT

This paper presents the study of outflow characteristics affected
by properties of natural lakes when inflows are log-normally distributed.
The general differential equation for water storage, based on the continuity
equation, is used in this study, with properties of inflows and lakes given.
For the purposes of this investigation, lake properties are described by the
storage capacity function and by the outflow rating curve function. Independent
inflows are described by the log-normal distribution function with two para-
meters: the mean, and the standard deviation of logarithms. Moreover,
sequential mathematical models are derived for outflows by integrating the
storage differential equation under the assumption that the average inflow of
a natural lake is equal to the average outflow. Data of inflows generated
on a CDC 3600 computer consisted of 10, 000 independent standard normal
numbers, with mean zero and variance unity. Then these numbers were
transformed to a log-normal distribution with various values of standard
deviation of logarithms, IV.

The digital computer produced the independent log-normal numbers,
solutions of outflow generating equations, parameters of the outflow distribution,
and the first ten serial correlation coefficients of outflow series. Two hundred
and ten outflow sequences were generated. They represented the following
combinations: (1) five values of L the index of variability of inflows (Iv =

0.15, 0.25, 0.40, 0,60, 0.90); (2) Seven values of n, the ratio between the
powers for storage function and the outflow rating function (n = 1/2, 1/3, 3/4,
1, 3/2, 2, 3); and (3) six values of d, a lumped dimensionless parameter
descriptive of inflow, lake properties, and time interval, at, used for the
finite difference integration of the differential equation (d = 0.3, 1.0, 3.0, 10,
30, 100).

The properties of log-normal distribution related to this study are
given in summary form in Chapter II. Chapter III has as its subject the
properties of natural lakes, mathematical model for generation of outflow
sequences and its parameters. Outflow characteristics, analytical solution
for n =1, and the relationship of parameters of outflow and inflow are presented
in Chapter IV. A worthwhile further study would be to find analytically the
exact distribution function of outflow for given lake and inflow conditions, for
any value of n.

Equations for the ratio of statistical parameters of outflow to those
of inflow, as function of d for n equal to the values other than unity, are
empirically found, and are based on the equations for n = 1 which are analyti-
cally obtained. Those empirical equations show that the statistical parameters
of outflows from natural lakes are less than and converge to those of inflows
as the parameter d increases to infinity.

vii



STOCHASTIC PROPERTIES OF LAKE OUTFLOWS

1

By: Raymond I. Jeaflg2 and Vujica M. Ec’evdjevich3

CHAPTER I

INTRODUCTION

In many water resources development problems,
natural storage and the characteristics of the regula-
ted outflow from natural lakes are important assetsin
addition to those of storage by reservoirs or other arti-
ficial controls. The reservoir storage problems have
been extensively studied in the past for variousproba-
bility distributions and for the time dependence of the
inflow variable. Because the reservoir inflow and
outflow sequences are complicated in practice, no
general analytical solutions for reservoir regulation
problems have yet been developed. The regulation
problems of natural lakes look simpler to solve than
those of reservoirs, Unlike outflow from a reservoir
which is regulated by a hydraulic structure and subject
to varying water demand, the outflow from a natural
lake is only governed: by the type of inflow, by the
lake outflow rating curve, and by storage properties
of that lake.

Although a theoretical probability distribution
function and time dependence equation may be used to
describe mathematically the characteristics of obser-
ved outflow for natural lakes, an alternative approach
is used in this study. Characteristics of outflow dis-
tribution and of its time dependence are described in
terms of the most important parameters of inflow,
outflow rating curve, and lake storage. The outflow
sequences are obtained mainly by the data generation
method (Monte Carlo method) starting from inflow and
lake characteristics. In particular, natural lakes with
independent inflows log-normally distributed are
studied. The CDC 3600 computer was used: (a) to
solve the storage differential equation in finite differ-
ence form; (b) to evaluate parameters of the outflow
distribution; and (c) to compute the first ten auto-
correlation coefficients from the generated series of
outflow as the empirical time dependence. Generated
data consisted of 10, 000 independent numbers nor-
mally distributed, with mean zero and variance unity,
which have been transformed to log-normal distribu-
tion with various parameters.

Listed below are the assumptions and approaches
that were used in this study in deriving the outflow
characteristics from given inflow and natural lake
properties:

1. The mathematical model of outflow sequences
was derived from the general storage differential
equation obtained by using the outflow rating curve and
the storage capacity function of a lake for given dis-
tribution of independent inflows. Next, the two rela-
tionships of rating curve and storage capacity were
assumed to be power functions of the water depth
above the level of zero outflow. Last, the average
outflow was assumed to equal to the average inflow.
Therefore, the evaporation and seepage from the lake
were neglected.

2. Seven parameters described inflow, rating
curve and storage function of lakes. They were re-
duced to three parameters and were introduced in the
storage finite difference equation. The ranges of
these parameters were selected to cover the practi-
cal cases.

3, The mathematical functions for variance,
skewness, and excess of the outflow distribution, as
well as for the serial correlation coefficients of out-
flows, for the parameter n (to be defined in later text)
being unity, are theoretically derived from the se-
quential mathematical model for given values of the
other two parameters. The working assumption in
this study was that inflows are mutually independent
and independent of previous outflows.

4. Equations of the same type as for n = 1
are fitted to relationships of outflow parameters for
the values of n different from unity, as obtained
from generated time series.

1A small version of this paper is submitted to Lake Garda Symposium (October 1966) of the International

Association for Scientific Hydrology.
Z Graduate Student at Colorado State University.

3 Professor-in-Charge of the Hydrology Program, Civil Engineering Department, Colorado State University.



CHAPTER IT

SUMMARY OF PROPERTIES OF LOG-NORMAL DISTRIBUTION

i. Definition and expression for log-normal
distribution. The log-normal distribution (1, 2)* here-
in is defined as the distribution of a variable whose
logarithms obey the normal law of probability. It is
the nature of this distribution to allow certain proper-
ties of the log-normal function to be derived immedia-
tely from those of the normal distribution. Neverthe-
less, there are still some features of the log-normal
function which have no analogies in normal theory.
Many hydrologic variables approximately follow the
log-normal distribution.

In this paper, a positive variable X
(0< X< w) - with ¥ = In X normally distributed
with mean u and ¢?® - is log-normally distributed.

Furthermore, the probability density of X is
obtained as:

- ) F 2
1 K (In X M) ;'Zo-n

2w o
n

£(X) ='§

with u  the mean of logarithms of X (or the logarithm
of geometric mean) and crnz the variance of In X. The
range of X is from 0 to + oo, while the mean of X
is u and the variance of X is o2

2. Relationship between parameters. Para-
meters By and L and y and ¢ are moment para-

meters and are usually estimated from samples avail-
able by the method of moments,

The relationship between them is:

and

2.0

Ifone lets e ® -1 =n?, then o=u?n?, and
n=o¢fu, with n the coefficient of variation of the
distribution.

The coefficient of skewness, Yqr is

-Y1=-n3+ 3“1 2.4

and the coefficient of excess, o is
v2=nz(n6+ 6nT + 1502 + 16). 2.5

Similarly, the parameters By and T expressed by

u and o, are
2
= K __ = - 2.6
By In Fo—= ln\/H_z
H o n
and
o =[n(t+ n?)]%. 2.7

3. Properties of log-normal distribution as
related to this study. The following properties of log-
normal distribution were used in this study:

(1) Any log-normal distribution with the two
parameters, u, and T, may be reduced to a log-

normal distribution with one-parameter in the follow-
ing way. By reducing the variable X to a new varia-
ble K = X/X, the modular coefficients are obtained.
If they are log-normally distributed, their standard
deviation of logarithms, or s(ln K), is a sufficient
parameter to describe the distribution. The symbol
Iv’ the index of variability, was used in the following

text as the main parameter of log-normal inflow dis-
tributions.

(2) The independent numbers which are
normally distributed, with mean of zero and variance
of unity, can easily be transformed to modular coeffi-
cients which are log-normally distributed, with mean
of unity and the standard deviation of logarithms of
modular coefficients being the index of variability,

I Therefore, it is easy to obtain by the data gener-

ation method (Monte Carlo method) sequences which
are sufficiently long and are log-normally distributed
with given parameter Iv'

(3) The annual inflows into natural lakes
very often satisfy the two conditions set up for this
study: (a) they are approximately log-normally dis-
tributed; and (b) they are approximately independent
in sequence.

In case the inflows are serially corre-
lated, the new parameters of time dependence of in-
flows must be used besides the three parameters
described in the text below.

* The figures in parentheses ( ) designate the references which are given at the end of the text.



CHAPTER III

GENERATION OF OUTFLOW SEQUENCES

1. Basic storage equation. The characteristics
of outflow from a natural lake depend on the following
three groups of parameters: (a) the outflow rating
curve parameters which depend on the shape of outlet
cross-section, and on the slope and roughness of the
outflowing river reach; (b) the parameters of stor-
age function which relate the storage capacities ofnat-
ural lakes to the lake levels or depths; and (c) the
parameters of inflows. The sequences of outflow are
best derived from the above three types of parameters
by using the continuity equation. It expresses the
basic relation between inflow, outflow and storage,
and is given as (6, 8):

P-q-3 3.1

where P is the inflow discharge, Q is the outflow
discharge, S is storage volume above a given level,
t is time, and dS/dt is the rate of storage change
with time. The dynamic partial differential equation
of unsteady water movement needs not be used for the
patural lakes, because the velocities through lakes
are very small and dynamic effects are negligible.
Therefore, it is sufficient to use the continuity equa-
tion 3.1.

2. Properties of natural lakes. The mostimpor-
tant properties of lakes treated here were the storage
function and the outlet rating function. Both were ex-
pressed as approximations by the same type of
mathematical function of water depth as referred to
the datum of zero outflow.

The relation between the lake volume and
water depth can very often be expressed as a good
approximation by the following power function (6, 8,

S =aH™ . )
with S the storage volume, and H the depth of wa-
ter above the datum of zero outflow. The reference
level of eq. 3.2 can also be the lowest possible level
of the lake. However, the datum of zero outflow has
a big advantage, namely to allow the use of the same
datum as for the rating curve. The parameters a
and m of eq. 3.2 depend on the datum selected.

The outflow rating curve is defined here as
the relation of the outflowing discharge to the water
depth in the lake above the datum of zero outflow. It
can often be fitted by a power function of the type (6,
8)

Q=bH" 3.3
with Q the outflowing discharge and H the depth of
water. The datum of eq. 3. 3 is the level of outlet
cross-section with zero outflow, and it is the same as
the datum selected for-eq. 3.2. Parameters b and
r of eq. 3.3 depend on: the shape of the outlet, chan-
nel roughness, water surface slope of the outflow
river reach, and the type of flow. Whenever the stor-
age function is mentioned in this study, it will be sub-
ject to the condition of the datum being the level of
zero outflow, In some cases, this modified relation
fits the upper points of the storage curve better than

it fits the whole curve from the lowest to the highest
level of a body of water. In practice, owing to exist-
ing problems of sedimentation, the coefficients a and
m of eq. 3.2 change with time. They will be consid-
ered constants for a given lake to make the problem
mathematically tractable. In case the parameters a,
m, b, and r change with time, the ordinary differ-
ential equation, eq. 3.1, becomes a partial differen-
tial equation,

3. Derivation of mathematical model for gener-
ation of outflow sequences. From eq. 3.3, the expres-

sion H = (Q/b)i/r is obtained. Substituting this ex-
pression in eq. 3.2, then

S=al@b)™T=aptQt =L QP
b"/a.
The differentiation of eq. 3.4 gives dS =

n Qn-1 dQ, andusing dS = (P - Q) dt from eq.
1, then

3.4

where n=m/r and c =
B
c
3.

-(!;-n Q*tdq = (P- Q) dt.

The general differential equation for the generation of
outflows is (6)

_g_tg__%q-n-+ip+%Q-n+2=o_ 3.5
This equation can be expressed as a difference equa-

tion by letting:
dQ=aQ=Qi+1'Qi, and dt = at,

where Q =—%— (Qi+1 + Q‘l)’ with Q;, actual outflow

th

at i~ time and Q. at (i+ i)th time, and P =
i+1

1 ; : AHe
5 (Pi-i-L + Pi)’ with Pi actual inflow at i~ time,

and Pi-!-l at (i+1)th time. If the modular coeffi-

cient X, = Pi,"Po and Y, = QifQo were used here
instead of Pi and Qi' then Pi = Xi Po 3 Qi= Ych ,
where P is the average inflow discharge, and QO

is the average outflow discharge. The average inflow
equals the average outflow of a lake for a sufficiently
long term if the evaporation, the precipitation on the
lake, and the water seepage outside the outflowing
river are neglected, so that P 5= Q

(e}
Accordingly, eq. 3.5 becomes:

s . -n+i 1 ,-n+2
Y Y -gatP (2) (Y,

-n+i
i+ )

i1 T Y

(X,

2 -¥.) =0,
1+1+Xi Y ¥;)

i+1 i



In addition, if one lets
1,-n+2
(=)

which is a dimensionless parameter, then the result
becomes

n+1

ca.tPO =d,

PR i 1)

i+1 i

- - A

TP 3.6
This is the mathematical model which was usedinthis
study for the generation of outflow sequences., To sum
up, the difference between eqs. 3.5and 3.6 is in their
dimensions; the latter is dimensionless while the form-
er has dimensions of L*/T2,

4. Description of parameters in the sequential
mathematical model. Originally there were seven
parameters involved in the derivation of sequential
mathematical model: (a) Two parameters, a and
m, which are in the storage function; (b) Two para-
meters, b and r, which are in the outflow rating
curve function; (c) One parameter, At, used for
changing the differential equation to the difference
equation; (d) The parameter, Po’ the average of

streamflow introduced by using the modular coeifi-
cients; and (e) The parameter, IV, the index of

variability of inflow, used for specifying the charac-
teristics of inflow. In case the inflows are time de-
pendent, the additional parameters are those of the
time dependence mathematical models. However,
only the independent inflows are treated in this paper.
As a result, the above seven parameters were re-
duced to only three parameters which were used inthe
mathematical model for the generation of outflow se-
quences. These three basic parameters are: n, Iv’
and d. They are defined as follows:

(a) The parameter n. The parameter n is
defined as m/r, oras the ratioof powers for storage
function and outflow rating curve function. This para-
meter describes the ratio of the rate-of-change of the
lake storage and rate-oi-change of the outflow rating
curve, with the depthofthe lake above the datum of
zero outflow. Its values depend entirely uponthe stor-
age function and outflow rating curve function. They
range from 1/4to4 in nearlyall casesforthe free sur-
face outflow.

The parameter m in eq. 3.2 ranges
within the limits 1 to 5; it depends mostly on the
range of levels, and also on the shape of the natural

lake, For a high reference level and a small range of
levels, m is usually 1.0 to 1.5 and rarely greater
than 2. For the highest range of levels, itis 2 to 5.

The range of the parameter r of eq. 3.3 is usually
small, 1.5 to 3.0. The parameters a and b have
wide ranges of variation, the variation for b depend-
ing on the dimensions used for Q and H, and on the
outlet river reach cross-sections, river water sur-
face slope, and bed roughness.

For n < 1, a natural lake has a larger
value of r than of m. This indicates that the slopes
of lake shores are steep and that the outlet cross-
section has slow rising banks., For n >1,the value of
m is larger than r. This kind of lake has flat lake
banks and steep outlet cross-section banks. Thus,
the value of n, indicating the ratio of the rate-of-
change of lake (storage function) and outlet rating
curve with depth, can be used as an index, whether
the ratio of bank slopes of a natural lake and of its

outflow cross-section is large or small. Table 1
gives values of n for seven lakes in the Unites States,
which are taken as examples. The practical range of
n is between 0,50 - 1,00 in these cases.

(b) The parameter d. This parameter, d =

(*‘;-) n+2 (b™/a) at B R , represents the relation-
ship of average inflow, time unit selected, and the
properties of the storage function and the outflow rat-
ing curve. It is dimensionless. The longer time unit
selected, the larger is the value of d. The effect of
mean inflow, Po’ on the value of d depends on the

value of n.

For the mathematical model of outflow
sequences, when d tends to zero, eq. 3.6 becomes
Yi+1 = Yi' Or, if the outflow is assumed equal to in-
flow initially, the outflow is constant. For a very
small value of d, regardless of the value of n and
the inflow characteristics, the outflow is nearly con-
stant. For large values of d, the characteristics of
the sequence of outflows will be very much influenced
by the value of n and the characteristics of inflows.
For a given value of n, the differences between the
outflow and inflow characteristics depend on the value
of d. The differences will be less as the value of d
increases, Also, the differences increase asthe value
n increases. This dimensionless and always positive
parameter, d, has a relaiively large range of values.
Seven lakes have been analyzed for finding the values
of d, and they are given in Table 1. If At equals a
year, the seven values of d range from 0. 628 to 25, 2.
The range from 0. 3 to 100 is investigated in this
paper.

(¢) The parameter L. This parameter, the

index of variability (3) is the standard deviation of
logarithms of the modular coeificients of inflows.
Therefore, the symbol I\r describes the characteris-

tics of inflow.

Because the modular coefficients were
used in this paper, I,\r has the property of being di-

mensionless. As the coefficient of variation equals
the index of variability, the mean of logarithms of the
modular coefficients of stream flow is equal to one
half of the index of variability, This makes the vari-
ance of the modular coefficients a function of the vari-
ance of the logarithms of modular coefficients only.

From the properties of the log-normal
distribution, the stream flow has large values of vari-
ance, standard deviation, skewness, and excess if I‘r

is a large value. Since these parameters can be ex-
pressed by the index of variability, it is possible to
determine the shape of the inflow distribution and its
characteristics by using the value of the index of varia-
bility only. As soon as the average inflow P and

the index of variability I are known for log-normally

distributed inflows, the inflow conditions are uniquely
defined.

Finally the range of this parameter for
annual river flows is from zero to unity, rarely ex-
ceeding the unity. Figure 1 gives the frequency den-
sity, f(lv)’ and frequency distribution, F(Iv}, for

annual flow of 140 rivers taken from Colorado State
University Hydrology Paper No. 1 (7). For the pur-
poses of this study, five values of I\‘r are studied:



0.15, 0,25, 0.40, 0.60, and 0. 90, covering, thus,
the practical range for annual river flows.

Table 1 Values of parameters n and d for seven lakes in the United States given as examples

Average
No. Name State Discharge n d
(c.f.s.)
1 Flathead Lake Montana 11,620 0.61 5.02
2 Coeur d'Alene Lake Idaho 6,023 0.662 13.4
3 Henry's Lake Idaho 47.2 0.554 2.75
4 Priest Lake Idaho 1, 250 0,778 12.80
5 Pend Oreille Lake Idaho 21,550 0.855 25, 2
6 Bear Lake Utah 300 0.65 0.628
7 Clear Lake California 503 0.733 1. 49!
Clear Lake California 503 0. 64 1.175°
! The 1901-1903 outflow rating curve was used.
2The 1905-1909 outflow rating curve was used.
1.0 ——— 0.5
’/-___’-"'
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Fig. 1 Frequency density (1) and frequency distribution (2) of the index of variability (Iv) for 140 river gaging
stations taken from CSU Hydrology Paper No. 1,



CHAPTER IV

CHARACTERISTICS OF OUTFLOWS

The exact distribution function of outflow for given
inflows and lake characteristics was not arrived at in
this paper. Rather than solve the general differential
equation 3,5 analytically, the difference equation, eq.
3.6, was used to determine the outflows by the data
generation method. First, a total of 10, 000 independ-
ent values of inflow were generated for each run. Then
the distributions of outflow and their dependence in
sequence were determined from the 10, 000 outflows
generated by eq. 3.6. Next, the parameters which
describe the outflow distribution, such as mean, vari-
ance, standard deviation, skewness, excess, coeffi-
cient of variation, and the serial correlation coeffi-
cients for the first ten lags, were computed on a CDC
3600 digital computer. The 10, 000 independent num-
bers used for generation of inflows were normally
distributed with mean zero and variance unity. They
were transformed to log-normal distributions with
various Iv values.

1. Analysis of equation for generating outflow
sequences. The equation for outflow sequences de-
pends partly upon the value of n. Therefore, seven
values of n, 1/3, 1/2, 3/4, 1, 3/2, 2, and 3, were
analyzed as separate cases.

For the value n equals unity, which is the
most simple case, eq. 3.6 becomes linear, or

Vi = [0+ dX % X - B0+ d) 4

it+1
in which Yi+1 can easily be solved since Yi’ Xi+1’
Xi' and d are all known.

For n equals 2, eq. 3.6 becomes

2, 4
Yirg ¥ 7 Yoy

+ X.)=0.
1

vz d . d
et c et
4.2
Equation 4. 2 is quadratic, and Yi+l can be immedi-
ately found in

Y. ,=-%+

1 d? 2 -
+ 5 \/%4— 4Y 5+ 2d{Xi+1+ X, Yi) 4,3
The positive value of the square root was chosen be-
cause the outflows of the natural lake are not negative
in the majority of practical cases.

2. Generation of independent log-normal inflows.
When the inflows are log-normally distributed, the
modular coefficients of inflows are also log-normal.
Hence, a new variable z, = ln}{i is normally dis-

tributed with mean E[InX] = By,

The independent standard normal variable, t:i.’ is
obtained by the transformation:

and the variance IV?‘.

ti=(lnXi-,uz]fIv={Zi-pz}fIv. 4.4

Since Xi. is the modular coefficient, its mean is uni-

ty. By using the relationship between the parameters
of the log-normal distribution and corresponding nor-
mal distribution, eqs. 2.2, 2.3, 2.6, and 2.7 give

1
% - euz+7varZ

and
2u_+ var Z
var X=e °? (evarz_i)

Because X = 1 and var Z = IV2 ,» then p = -% T2

v
If one substitutes these expressions in eq. 4.4, the
values of Xi are

4.5

where Z.i = Ivti gl with ti representing the inde-

pendent standard normal numbers. Similarly

1 2
VarX=e' -1, 4.6
or the variance of modular coefficients of inflows can

be expressed in terms of Iv only.

The 10, 000 independent numbers normally
distributed with mean zero and variance unity, assum-
ing the initial outflow is equal to initial inflow, were
generated on the CDC 3600 computer and were used
as ti numbers in eq. 4.5 to obtain Xi numbers.,

Sequences of inflows were then obtained for five dif-
ferent values of I, 0.15, 0.25, 0.40, 0. 60, 0.890.

Sequences of outflows were obtained by using egs.
4.1 and 4. 3 for the two valuesn =1 and n= 2. For
other values of n, eq. 3.6 was used. Six different
values of d, 0.3, 1, 3, 10, 30, and 100 were used
for generating the outflows. The generated outflow
sequences, each n = 10, 000 long, represent various
combinations of n, Iv, and d, or 7x5x6 = 210

different cases.
3. Determination of outflow characteristics.

Parameters of the outflow, Y., computed from
10, 000 values of outflow are:

(1) The mean

Z

Y = Y. 4.7

1 1

"M

1
N

(2) The variance
N

2_ 1 _ T2
yINE &, -9 4.8
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(3) The coefficient of variation

C =np=—L 4.9

(4) The skewness coefficient

N
= Y. - ¥)?¥/Ns_? 4.10
Yy i=1( ;- Y)/Ns,
(5) The excess coefficient
N

z (v,-7)*
v, = _1..=_£._.4—. -3 4. 11
Ns
y
and
(6) The serial correlation coefficients
N-k N-k N-k
12 (Y; ¥ip) - N-k T 1‘_‘71 Yivk
T B x
N-k ¢ [Nk z| %
2 ¥Aessl B
=1+ Nkl
N-k 5 1 N-k 2| %
X ¥t oL = N
=y K NE D, Tivk 4.12
with Ty the kth-lag serial correlation coefficient and

k the time lag.

4. Analytical solution for n = 1. Only for n
equals unity, the parameters of the outflow distribu-
tion are determined analytically from the equation of
outflow sequences when the inflows are mutually inde-
pendent and independent of previous outflows. For
n =1, eq. 4.1 can be written as:

1 -d d
Yy *17ad Yit1tva G 7 %) Lol
Taking the expected value of both sides,
sak=id
" E(Yiﬂ) Ty d E{Yi) + - -
T+a [EX )+ EX)) or 7/ BY) =g,

so that E(Y) = 1. Thus, the expected value of the
modular coefficients of outflows equals unity. This
result satisfies the assumption that the average out-
flow equals the average inflow. Multiplying eq. 4.13

by Xi+1 and taking the expected values, one finds
that
_1-d
Efxiﬂ i+1] “1+d EX i+1 Y]

d 2
+ied [E(XH_1 )+E(X1+1Xin' 4,14
According to the assumptions that X +i and Yi are
independent, one concludes that E(X1 +1 Y) =
E(X. +1] E[Y ) =1; that X, i+l and X; are independ-
ent, 0 one ccmcludes that E(X.

i+ Xi} =1 and
var X + 1 = E(X?). Then eq. 4. 14 becomes

-d
B Yl =g + 1+d +—T [var X + 2] =

=1+

var X , 4,15

d
1+d
and from eq. 4. 13, the following expression was de-
rived

var Y 1-dz\rar'Y+ g Z[2varX+
it1 \T +d i 1+d

d 1 d
+2c0v(x 12 X)]+2 cov(Y, X1+1X)
4,16

Becausecov.(XiH, Xi) 0 andcov{Y X1+1)d (o 9
then cov (Xi, Yi} = E(X1 Y1 E.‘(Xl) E{Yl) =13gvarX.
By using these relationships, eq. 4. 16 gives

var Y 4. 17
or

a L
= ¥ -
varY-m-(e 1). 418

To find the skewness and excess coefficients
of outflow, the expected values for X2, X3, Xd‘, ¥4

Y3, ¥, XY?, X?Y, XY, and XY® must be determined.
By using the moment generating function, then

t

(InX) t + 1/zlvztz v
E(X") = =e

L2t(t-1)
v ; 4,19

E(X?), E(X?, and E(X?)
from eq. 4.19 as

can be obtained immediately

1?2 31 2 61 2

EX)=e "’ ; EX)=e ' ; E(X43=e v

In a similar way, the following expected values were
determined:

1 I\rz 31\?2
E(XZY:' = T=a (e +de )

Iz 2

31

a_1-d 3de v
EXYY) =352 * T1+c1)"'{1+c1)a &

E(YY) - Il_'-i'-_d)_}_fﬂ'dz)' [3(1 - d) (4 +d? +3d(3-d+

Ivz BIV‘*
+2d) e’ +d¥{4-d+dYe ]
and

2
IV

2 =1+de
.E_(.Ll 1+d

Further, the expression for the skewness coefficient
is

M 12
v, ree = ) (V- 01 TR Ry -
Y

-3E(Y)+2] .



By using the above expecied values for y?
and Y?, the ratio of the skewness coefficient of out-
flows, \ i Yi(Q)‘ and the skewness coefficient of

inflows, vy,(P), becomes

v,(Q . (4-d+d2)ﬁ
1P 3p @i +d

4. 21

with \,fl(P) given as a function of n = C_ by eq. 2.4,
2
1
with n = (e vo- 1)/3. Therefore, the ratio of eq. 4.21
is independent of Iv, and is expressed only in terms

of d.

Similarly, for the coefficient of excess, the
following expected values were needed:

d

z z
3 BIV dz {13 + 3d2) 3Iv
T+d €

(1+ @)3(3+ &

+

BE(XY?) =

2L 3q(1-a)(6-d+dd) v
+ '—)—e +

(1+ a3 (3+ d?

3d?

mrae ©

312 Bl %
S v d
EXYM=trad ¢ *T+d° and

2
SIV

3 s 2
4 _d’(2-d+ d) W

E(Y) ;
(1+ dd (1 + a3

, 4% (4 - 3d+ 7d? - & + dY)
(1+ d*(3+ d® (1 + d?

2
3IV

2L

2 1 2
PO e - .0 o e SN

(1+ d)?(1+ d)

2
L, 6d(1-d (3-2d+ 8d - 2d°+ a v
(1+ a3+ d) (L+ d)

The expression for the excess coefficient is

4, 22

3 E(Y‘f}_-4E(Y’) + 6E(Y?) -3 _ 3
2 3 .

s
y

The ratio of excess coefficients of outflows,
yz{Q), and inflows, YZ(P), versus the parameter d,

for n = 1, is obtained by the solution of eq. 4. 22 and

this ratio is:

¥,(Q) - d2-d+d) SR
B G a (@) ’

The correlogram of outflow for n = { maybe
obtained by using the same method, Equation 4.13
may be written in terms of Yi-k and Xi, Xi-—i'

Xi-z, ST Xi-k as

i i i =dli-i 4
Yi'(IT d) Yi-k+l1+d] T+ d ikt

1t -dlk-2 d 1-d
+(1+d] 1+d1+1+d)Xi—k+i+ """
+ 9 x 4,24
T+d i )

Multiplying eq. 4. 24 by Yi-k and taking expectations,
eq. 4. 24 becomes

[1-alk| a4
B(Y; Yy = (m) (m e Xt ‘] %

1 -dlk-1 d
’-’[1+d] e

i 1 -d|k~-1 d
*Tﬁ“'{m} ) #

1 -alk-1 a4

- {1+ 1T+ d° &ed

var X+ 1 .

The serial correlation coefficient Pk is then

E(Y,Y; ) - B(Y) B(Y,.)

1

Px ;
[var (Yi) var (Yi-k) 1%

| - a) K

d X
T (TFa)2 var

(H-Ld) var X

which expression gives finally

k-1

Pk e

(1 +4q)

fork>1, 4, 26
with Py = 1, for k = 0. Specifically for k = 1, the
first serial correlation coefficient becomes

55 1
PLTTF G

For k = 2, it becomes

_t-d
P2 AT - 4.28



The result given by eq. 4. 26 shows that the
serial correlation coefficients for n = 1 depend on the
value of d and k only; they are independent of the
value Iv. When d is greater than 1, eq. 4. 26 shows

that the serial correlation coefficients become nega-
tive whenever the value of k is even, because d is
always positive.

Equations 4. 17, 4. 21, 4,23 and 4. 26 were
used to compute the ratios of variance, skewness
coefficients, excess coefficient of outflow and inflow,
respectively, as well as the serial correlation coeffi-
cients of outflows for n = 1. The results are given
in Table 2, all as functions of d.

+0
varQ
var P

e
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Fig. 2 Relationship of ratios of variance of lake outflows and lake inflows to the dimensionless parameter d,

for various values of the parameter n.

5. Variance of outflows for various values of n.
Values of the ratio of variances of outflow and inflow
obtained by the data generation method are close to a
constant value for given values of parameters d and
n. Accordingly, these results show that the values of
this ratio are independent of the value of Iv'

The values of this ratio shown in Fig. 2 were
the average values over the various values of I for

given parameters d and n. These average values of
ratio were then used to find the distance of a horizon-
tal transposition of curves of eq. 4. 17 in order to fit
well the points obtained for the values of n different
from unity.

Figure 2 shows the relationship of the ratio
of variances of outflow and inflow, var Q/var P, tothe
dimensionless parameter d, for seven values of the
parameter n. The averages of 210 points, given as
points in Fig. 2, represent the results of the data gen-
eration method. Likewise, the lines represent either
the exact relationship, which is the case only for n=1,
or the fitted curves, which is the case for all other
six values of n. In addition, eq. 4.17 gave forn = 1:
var Qf/var P = d/(1 + d). It was found that horizontal
transpositions of the curve of eq. 4. 17 fit well the
points obtained for the six values of n different from
unity. However, the position of each line for a given
n was obtained by the least square method of fitting
the line of eq. 4. 17 to the points. For var Q/var P =
0.5 and for n = 1, the value of d is unity. This same
value of 0.5 determines the special value of d, de-
noted here by dm‘ with dm then obtained for each six

n values different from unity.

The logarithms of n and d_ (with an arbi-

trarily added value of 2), or (2+ Inn) versus (2+
1n dm}, are plotted in Fig. 3 in log-log paper (for the

double-log relationship). A least square straightline
fit to points in Fig. 3 gives the relationship of dm’

and n. This relationship should be considered only
as an experimental curve which approximates closely

50
4.0

2+Inn

3.0

20

\

1.0
o8

0.6

04 06 0B 10 20 4.0 6.0 80 100

2+Indy

Fig. 3 Relationship of the parameters n and dm
with drn the value of the parameter d for

the ratio of variance of outflow and inflow
being 0. 5.

The fitted curve is
1.78

the true relationship.

2+1Ind_ = 2(1+ 3 1an)" 75 4. 29
The constant 2 is introduced in order to avoid the
negative values in taking the logarithms. The selec-
tion of this constant does not change the results, but
changes the coefficient before Inn (the coefficient is
1. before Inn, for the constant 2). For n> 0.10,

the constant 2 is sufficient to avoid the negative
values. For n< 0.10, a larger constant should be
used. With this value of dm, then

var Q _ d 4. 30

var P
d+0.135 eZ(1+ 14 Inn)

.78 '

_with the variance of X (which is equal to P!Po)
given by eq. 4.6.
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Table 2 Ratios of variance, skewness and excess coefficient of outflow and inflow, and serial correlation coefficients {p1 to Pio) of

outflow, for n=1

and various values of d,

computed from analytical expressions, eqs. 4.17, 4. 21, 4. 23, and 4. 26.

Vi v,(Q) Y,(Q)

d TE37%§% ¥,(P]) v,(P) Py P2 P3 Pyg Ps Pg P7 Pg Pg Pio
0.01 0.010 0.133 0.020 0.990 0.970 . 951 0.932 . 914 0.895 .878 0.860 . 843 0.827
0.03 0.029 0.226 0.057 0.971 0.914 . 861 0.811 .763 0.719 677 0.637 . 600 0. 565
0.05 0. 048 0.287 0.093 0.952 0.862 . 780 0. 706 639 0.578 . 523 0.473 . 428 0. 387
0.07 0. 065 0.335 0.126 0.935 0.812 . 706 0.614 533 0.464 .403 0. 350 . 304 0. 265
0.10 0.091 0.392 0.172 0.909 0. 744 . 609 0.498 . 408 0. 333 295 0.223 . 183 0.149
0. 30 0.231 0.589 0,379 0.769 0,414 .223 0.120 . 065 0.035 .019 0.010 . 005 0.003
0. 50 0. 333 0.666 0.467 0.667 0.222 .074 0.025 . 008 0.003 . 001 0. 000 . 000 0. 000
0.70 0.412 0.698 0.495 0.588 0.104 . 018 0.003 . 001 0.000 . 000 0.000 . 000 0. 000
1.00 0.500 0.707 0.500 0.500 0.000 , 000 0.000 . 000 0.000 . 000 0. 000 . 000 0. 000
3.00 0.750 0.722 0. 600 0,250  -0.125 .063  -0.031 .016  -0.008 .004  -0,002 .00t -0.00t
5. 00 0.833 0.783 0.705 0.167  -0. 111 .074  -0.049 .033  -0.022 015  -0.010 .007  -0.004
7.00 0.875 0.828 0.770 0.125  -0,094 .071  -0.053 .040  -0,030 .022  -0.017 .013  -0.009
10, 00 0. 909 0.870 0.828 0.091  -0.074 .061  -0.050 ,041  -0.033 .027  -0.022 .018  -0.015
30. 00 0. 968 0.952 0. 937 0.032  -0.030 .028  -0.026 .025  -0,023 .022  -0.020 .019  -0,018
50. 00 0. 980 0.970 0. 961 0,020  -0,019 .018  -0.018 .0i7  -0.016 .016  -0.015 .014  -0.014
70. 00 0. 986 0.979 0.972 0.014  -0.014 .014  -0.013 .013  -0.012 L0112 -0.012 .012  -0,011

100. 00 0. 990 0. 984 0. 980 0.010  -0.010 .00 -0.010 .009  -0.009 .009  -0.009 .009  -0.008
150, 00 0.993 0. 990 0. 987 0.007  -0.007 ,007  -0.007 .007  -0.007 ,007  -0,006 .006  -0.006
200. 00 0. 995 0.993 0. 990 0.005  -0.005 .005  -0,005 .005  -0.005 .005  -0.005 .005  -0.005




Table 3

Variance of outflow for various values of n, d, and Iv

\o
d n 0.15

L,
n 0.15

0.25 0.4 0.6 0.9 d 0.25 0.4 0.6 0.9

0.3 1/3  0.014 0.038 0.105 0.249 0.460 10 1/3 0.022 0.063 0.173 0.412 0.862
1/2  0.010 0.030 0.082 0.195 0.359 1/2 0.022 0.062 0.170 0.404 0.868

3/4 0.008 0.021 0.057 0.136 0.231 3/4 0.021 0.061 0.160 0.380 0.708

 § 0.005 0.015 0.039 0.099 0.243 1 0.020 0.056 0.156 0.353 1.020

3/2 0.003 0.008 0.021 0.051 0.087 3/2 0.019 0.053 0.141 0.322 0.571

2 0.002 0.005 0.012 0.029 0.074 2 0.016 0.044 0.121 0.273 0.714

3 0.001 0.002 0.005 0.010 0.020 3 0.010 0.028 0.074 0.164 0.272

1.0 1/3  0.019 0.053 0.135 0.342 0.59 30 1/3 0.022 0.063 0.175 0.417 0.996
1/2  0.017 0.047 0.120 0.308 0.509 1/2 0.023 0.063 0.170 0.413 0.932

3/4 0.014 0.039 0.108 0.242 0.409 3/4 0.020 0.062 0.767 0.396 0.802

1 0.015 0.032 0.084 0.210 0.587 1 0.022 0.061 0.164 0.417 1.155

3/2  0.007 0.020 0.055 0.122 0.206 3/2 0.021 0.059 0.159 0.370 0.649

2 0.005 0.013 0.033 0.080 0.196 2 0.020 0.056 0.151 0.398 1.109

3 0.002 0.005 0.013 0.031 0.058 3 0.016 0.046 0.121 0.260 0.420

3.0 1/3  0.021 0.059 0.163 0.398 0.692 100 1/3 0.022 0.064 0.171 0.422 0.983
1/2 0.020 0.056 0.160 0.373 0.668 1/2 0.022 0.064 0.171 0.434 0.960

3/4 0.019 0.052 0.144 0.327 0.559 3/4 0.022 0.064 0.164 0.417 0.899

1 0.017 0.048 0.126 0.322 0.950 L 0.022 0.063 0.171 0.434 1.316

3/2  0.013 0.037 0.101 0.226 0.391 3/2 0.022 0.063 0.162 0.401 0.702

2 0.010 0.027 0.070 0.167 0.424 2 0.022 0.061 0.168 0.436 1.536

3 0.005 0.013 0.034 0.076 0.143 3 0.020 0.058 0.153 0.365 0.579

For given values of n and d, eq. 4.30 gives| cases, as functions of the parameter d for various

the ratio of variance of outflow and inflow. As ex-
pected, the variance of outflow was always smaller
than the variance of the corresponding inflow. If
another constant, for instance a, is used instead of
2 in eq. 4. 30, this expression becomes

d

a(1 +% lnn]l‘ £

var Q _
var P

T ; 3
d+ e a2

with a selected in such a way that no logarithms will
have negative numbers. The computed values of vari-
ance of outflow, from generated sequences, are pre-
sented in Table 3, as functions of n, d and Iv'

6. Skewness coefficient of outflow for various
values of n. Figure 4 gives the points which are ob-
tained for ratio of the skewness coefficient of outflow
to the skewness coefficient of inflow. They were com-
puted by the data generation method, a total of 210

values of n. All 210 cases are plotted in Fig. 4. For
n = 1, the analytical approach yielded the solution of
eq. 4. 21.

Figure 4 shows a relatively good agreement
for n =1 between the curve of eq. 4. 21, and the
points for n = 1 obtained from 10, 000 generated out-
flows. The simple horizontal transposition of the
curve of eq. 4. 21 was used to fit curves for six values
of n, different from unity. The fit is not especially
good, because the third statistical moment was used
to compute these ratios. Even for n = 10,000 the
third moment is not very accurate. More accurate
estimates of YI{P) and YI(Q}, arrived at by gener-

ating a much larger number of inflows and outflows
than the 10, 000 used in this study, would likely show
that the transposition of the analytical curve for n = 1
would fit much better the points for n different from
unity, than is the case in this study with only 10, 000
numbers,

(o}
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Relationship of ratios of skewness coefficient of lake outflows and lake inflows to the dimensionless

parameter d, for various values of the parameter n,
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Analysis of the relationship of Yi(Q} and the

coefficient of variation of @ shows that the distribu-
tions of outflows do not satisfy eq. 2.4. This means

that the distributions of outflows are not log-normally
distributed when the inflows dre log-normally distri-
buted. The converseisalso true. For example, Table
4 shows a comparison of computed values of yl(Q}

from generated outflow sequences with y‘j(Q) which

is obtained by eq. 2.4, assuming the outflow is log-

v,(Q)
normally distributed. The ratio is either
y d1 Y—r@)'i

greater or smaller than unity, showing that the out-
flows usually are not log-normally distributed when
the inflows are.

Incase d=1, eq. 4.21 gives v,(Q)/y,(P)=

1;‘\/?. The same procedure as used above for the
variance ratio, or the least square fit, was used for
the ratio of skewness coefficients to obtain the empir-
ical relationship. The values of these ratios of skew-
ness coefficient of outflow and inflow obtained by the
data generation method have large sampling fluctua-
tions for different values of Iv and for various values

of n and d. However, eq. 4. 21 shows that the ratio
should be independent of IV.

All 210 values of the ratio are shown in Fig.
4. The simple horizontal transposition of the curve
of eq. 4. 21 was used as the procedure to fit the points
obtained for the values of n different from unity.

10.0

The horizontal transposition and least square
fit to points in Fig. 4 gave the values of dm’ which

are plotted in Fig. 5. A least square straight line fit
to points in Fig. 5 gave the following relationship be-
tween dm and n:

3.812

_ 1
3+ lndm- 3(1+§1nn) 4, 32

The constant a = 3 is used for eq. 4. 32 to
avoid the negative numbers in taking the logarithms.
The ratio of skewness coefficients of outflow and in-
flow is

d d )2
4-_ % 4
v,(Q) T [dm ) 4,

Yi(P] - [3 +[Egu)2] f dm+ d
m d

In addition, the computed values of skewness
coefficients of outflow, from generated sequences,
are presented in Table 5, as functions of n, d, and
I

v

7. Excess coefficient of outflow for various
values of n. The ratio of excess coefficient of outflow
and inilow to the parameter d, for n=1, 1is given
by eq. 4.23. Because the fourth moments of inflow
and outflow used in computing this ratio, even for the
sample size of 10, 000, were not of such accuracy as
to allow a derivation of a sufficiently accurate empir-
ical equation, the values of YZ(Q”"'Z(P) are subject

to very large sampling fluctuation.

8.0

6.0

4.0

2.0 ]

3+Inn
\

1.0

0l 02 04 06 08

1.0 2.0 4.0 6.0 8.0 10.0

3+ In dm
Fig. 5 Relationship of the parameters n and dm with d_ the value of the parameter d for the ratio of

skewness coefficient of outflow and inflow being 1 NZ

The 210 points do not show thatthe ratio v,(Q)/y,(P)
was independent of I_, though the large sampling vari-

ation of the ratio may mask the real relationship which
may be independent of I , as it was shown to be the

case for the ratios of variances and skewness coeffi-
cient, and as it will be showntobe for the serial corre-
lation coefficients of outflows.

Figure 6 gives the computed points of the ratio

12

yz{Q)h Z{P)‘ as well as the theoreticalcurvefor n =1

given by eq. 4.23. In case this ratio is equal to 0. 50,
the value dm = 1, as it was forthe variance ratio,

Similarly as above, a least square straight line fit to
points in Fig. 7 gives the relationship of d | and n:

3. 060

= 1
2+ lndm-2(1+-2-1nn) 4, 34

As a result, eq. 4. 25 becomes



Table 5 Skewness coefficients of outflow For various values of n, d, and Iv
I 1
d o \V 0.15 0.25 0.4 0.6 0.9 d n\ VY 0.15 0.25 0.4 0.6 0.9
0.3 1/3  0.371 0,656 1,120 1,520 1.673 10 1/3 0.404 0,736 1,273 1,865 2.583
1/2 0,352 0.653 1.078 1.467 1.588 1/2 0.393 0.720 1.255 1.809 2,846
3/4 0,289 0.592 0,836 1.417 1.487 3/4 0.371 0.686 1,125 1.788 2.009
1 0.213 0.495 0.719 1.248 1,934 1 0.372 0.635 1.075 1.641 2.878
3/2 0.097 0.318 0.466 0.726 0.683 3/2 0.260 0.505 0,781 1.185 1.339
2 0,018 0.189 0.511 0,410 0.867 2 0.195 0.357 0.586 0,878 1,402
3 =0,054 0.088 1.062 0.037 -0,053 3 0.051 0.139 0.200 0.291 0,456
1.0 1/3 0.375 0.676 1,072 1.678 2,634 30 1/3 0.434 0.703 1.335 2,088 3.950
1/2  0.343 0.626 1.008 1.550  1.925 1/2 0.430 0.698 1,326 2.058 3.818
3/4  0.314 0,58 0,947 1.362 1,557 3/4 0.421 0.687 1.256 1.809 2,762
1 0.294 0.507 0.904 1.499 3.170 1 0.428 0.685 1.111 2,067 4,095
3/2 0.216 0.439 0,645 0.939 1,005 3/2 0.371 0.612 1.072 1.451 1.637
2 0.118 0,224 0.385 0,685 1,186 2 0.339 0.505 0.768 1.174 1.713
3 0,018 0,180 0,08 0.083 =~0.147 3 0.093 0.184 0.318 0.555 0.892
3.0 1/3  0.437 0,678 1,272 1,881 2,170 100 1/3 0.412 0.788 1.177 2.075 3.311
1/2 0.423 0.646 1,224 1,691 2,374 1/2 0.412 0.786 1.174 2.450 3.116
3/4 0,386 0,579 1.087 1.562 1,674 3/4 0.411 0.783 1.211 2.122 2,815
1 0,307 0.521 0.855 1.504 2.991 1 0,409 0.751 1.322 2,102 5.226
3/2 0,272 0,369 0,759 1,058 1.155 3/2 0.398 0.757 1.165 1.768 2.02¢
2 0.169 0.305 0.455 0.865 1.505 2 0.362 0.679 1.154 1.640 2,341
3 0,061 -0,027 0.123 0,079 0.249 3 0.260 0.446 0.632 0.928 0.909
2(Q) cl(chm2 Sl d?) Table 6, as functions of n, d and I_.
= 4, 35
YZ(P) 8. Serial correlation coefficients of outflow for

F4 F
(d + dm) (dm + 4%)
with the value of dm given by eq. 4. 34,

The scatter of points in Fig. 6 is great.
Whether this scatter comes from the sampling errors,
from the use of analogy with the variance ratio for
eq. 4. 34, or from the possibility that the ratio of eq.
4,35 is not truly independent of Iv‘ or from all of

these three factors working simultaneously, it is not
possible to state in this study.

Finally, the computed excess coefficients
of outflow, for generated sequences, are presented in

various values of n. By using the same procedure for
the serial correlation coefficients, p,, of outflow,

as was used for the ratio of variances, the theoretical
curve of Pk for outflow for n = 1, shown in eq. 4.26,

is transposed along the d-axis to fit the points (by the
least square method) for n different from unity.
Figure 8 gives the relationship of (2 + 1nn) and (2 +
lndm}, with dm the value of d for p, = 0.50. The

least square fitted straight line of Fig. 8 gives the
relationship,

L. 84 36

= 1
2+ 1nclm = 2(1 + zlnn

Fig. 6 Relationship of the ratios of excess of lake outflows and lake inflows to the dimensionless parameter

d, for various values of the parameter n.
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Fig. 7 Relationship of the parameter n and d_ with dm the value of the parameter d for the
ratio of excess of outflow and inflow being 0. 5.

Table 6 Excess coefficients of outflow for various values of n, d, and I,

I i
d N\r 0.15 0.25 0.4 0.6 0.9 d n\ 0.15 0.25 0.4 0.6 0.9

0.3 1/3  0.147 0.622 2,299 3,609 3,401 10 ir3 0.226 0.826 2.841 5.444 10,910
1/2  0.123 0.663 1,981 3.317 2.949 1/2 0,223 0.791 2,799 4,998 1.538

3/4  0.067 0,606 1.048 3,204 2,937 3/4 0.215 0.736 2.205 5.654 5.615

1 0.008 0.517 1.080 2.280 6.992 1 0.215 0.775 0.157 4,612 14,034

3/2 -0.085 0,216 0.429 1.021 0.564 3/2 0.166 0.549 1.276 2.281 2.066

2  -0.178 0.041 2.607 0.208 3.150 2 0.031 0.345 0.999 1.518 3.467

3  -0.262 -0.145 6,205 =0,131 0,044 3 0.019 0.124 0.071 -0.113  -0.279

1 1/3  0.214 0,810 1.974 4,355 19.200 30 1/3 0.350 0.637 5,134 8.190 35.843
/2 0,17 0.688 1.803 3.838 7.477 1/2 0.349 0.629 3.107 7.973 3.548

3/4 0.125 0,559 1.598 2.815 3.090 3/4 0.339 0.618 2.957 5.298 14,326

1 0.103 0.445 1,570 3,874 24,536 1 0.292 0.756 1.939 7.725 38.568

3/2 0.067 0.340 0.729 1.270 1.155 3/2 0.267 0.517 2.258 3.203 3.222

2 0.082 0,094 0.370 0.842  3.259 2 0.207 0.420 1.031 3.194 8.671

3 0.297 0,895 0,360 0.068 0,000 3 0.032 0.034 0.299 0.195 -0.070

3 1/3  0.318 0.715 2.925 6.57 6.930 100 1/3 0.250 1.137 2.171 7.957  20.456
1/2  0.312 0.700 2.781 4,751 11.742 1/2 0.252 1.136 2.166 1.520 1.752

3/4 0,270  0.627 2,308 4.155 3.472 3/4 0.257 1.135 2.566 9,361 1.276

1 0.102 0.514 1.435 4.766 19.054 1 0.228 0.923 3.389 7.969  66.721

3/2 0.133 0,218 1.053 1.853 1.322 3f2 0.268 1.099 2.445 4,927 5.705

2  -0.049 0.167 0.287 1.271 3,951 2 0.185 0.764 2.714 5.307 19.960

3 0.085 0.030 0.099 -0.103 0,407 3 0.147 0.460 0.750 1.063 0.414

with the same explanations for the use of the constant

50 2 as were given above for the ratio of variances. It
40 must be noted that the constant 1. 84 is close to 1. 78
Ol 2+inn = which is found for the ratio of variances.
P
39 With eq. 4. 36, eq. 4. 26 for Py becomes
20
‘1 _ . d ) k-1
P Py S 4. 37
A7 1+
L~ d
1.0 — m
P

on with dm given by eq. 4. 36.
as(la 04 06 08 10 20 40 60 80 100 Because the variance and serial correlation

2+ind coefficients are both derived from the second statist-
" ical moments, the relationship of n and dm given

in eqs. 4. 29 and 4. 36 can be combined together and
considered as a unique relationship. A least square
Fig. 8 Relationship ofthe parameter n and d__ withd straight line fitted for both the variance and the serial
g P p m 'm g t
. correlation coefficients as shown in Fig. 9 gives the
the values of the parameter d for the first lationship of d _ and n:
serial correlation coefficient of outflow being relationship ol d , and n:
0
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2+ Ind_ = 2(1 + +1an)"-8! 4.38

Therefore, eq. 4. 38 is recommended for use instead
of eq. 4.29 and 4. 36.

For the special cases, Py (the first ten serial

correlation coefficient), the obtained points by the
generation of 10, 000 outflows are given in Fig. 10, the
uppermost graph. The line for n=1 gives py =

1/(1 + d), andthis line is transposed horizontally to
fit the observed points for six n values different from
unity. The fit in Fig. 10 is very good. For n =1
and k = 2, eq. 4. 38 gives P and the second graph

in Fig. 10 givesthe fit. Similarly, Fig. 10 also gives
the fits for p 3 through Pss and Fig. 11 for Pg through
Pio°

The values of serial correlation coefficients
obtained by the data generation method are very close
to a constant value for given parameters d and n.
According to these results, this value is independent
of Iv, as shown by eq. 4. 26. Moreover, the values

of serial correlation coefficients shown in Figs. 10
and 11 were the average values over the various val-
ues of I . For eq. 4. 26, the distances have been

horizontally transposed for various values of k in
Figs. 10 and 11. This was done according to the re-
lationship between dm and n given by eq. 4. 38. All

fits are good.

In Table 7, the computed values of first seri-
al correlation coefficient of outflow, for generated
sequences, are presented as functions of n, d, and
Iv' The computed average serial correlation coeffi-

cients of outflow, from generated sequences, for all
values of Iv are presented in Table 8, as function

of n and d.

Forany valueof nand I , listed in Table 9

are the maximum negative values of serial correla-
tion coefficients for even lags k, and the second
maximum values for uneven lag k for various values
of d and for n=1. For n equal to the values other
than unity, the corresponding value of d,r‘dm should

be used instead of d only, with dm obtained from
eq. 4. 38.

4.0 //
2.0
= | Variance »
[ | I -]
T | |
+ 1
&y / /
o8
086
02 04 06 08 10 2.0 40 60 80 100
2 +In dm
Fig. 9 A least square line fitted to the relationship

of the parameter n and dm for both vari-

ance and first serial correlation coefficient.

Table 7 First serial correlation coefficient of outflow for various values of n, d, and I,
1 E
a N 0.15 0.25 0.4 0.6 0.9 d n\ 0.15  0.25 0.4 0.6 0.9

0.3 1/3  0.415 0.428 0.395 0.383 0.367 10 1/3 0.008 0.000 0.006 0.010 0.004
1/2  0.541 0.553 0.524 0.513 0,492 1/2 0.022 0.015 0.018 0.026 0.017
3/4 0.676 0.687 0.670 0.681 0.666 3/4 0.047 0.041 0.050 0.049 0.050
1 0.767 0.771 0.763 0.780 0.765 1 0.096 0.106 0.078 0.108 0.078
3/2 0.876 0.881 0.879 0.887 0.881 32 0.166 0.159 0.164 0.165 0.186
2 0.930 0.932 0.933 0,935 0.937 2 0,287 0.296 0.262 0.285 0.284
3 0.975 0.974 0.979 0.974 0.972 3 0.543 0.529 0.535 0.553 0.559
1 1/3  0.179 0,169 0,187 0.174 0,177 30 1/3 0.002 0,007 0.002 0.012 0.004
1/2 0,266 0.255 0,274 0.261 0,273 1/2 0.006 0.012 0.006 0.014 0.002
3/4 0.3% 0.380 0.385 0.382 0.389 34 0.015 0.020 0.014 0.024 0.013
1 0.504 0,501 0.512 0,499 0,508 1 0.039 0.052 0.033 0.056 0.026
3/2 0.686 0,684 0,693 0,702 0.697 3/2 0.060 0.063 0.056 0.066 0.069
2 0.806 0.804 0.810 0,821 0.833 2 0.123 0.132 0.102 0.087 0.016
3 0.925 0,928 0.925 0.925 0.905 3 0.270 0.263 0.241 0.286 0.347
3 1/3 0,072 0.08 0.089 0,050 0,055 100 1/3 0.016 0.005 =-0.007 -0.002 -0.002
1/2 0,112 0.119 0,129 0.086 0.094 1/2 0.018 0,007 =-0.005 -0,000 -0.001
3/4 0.179 0.185 0.179 0.177 0,195 3/4 0.020 0.009 0.021 0.009 -0.000
1 0.260 0.242 0.255 0.251 0,250 1 -0.002 0.006 0.011 -0.003 0.017
3/2  0.416 0.418 0.420 0.423  0.447 3/2 0.034 0.023 0.034 0.016 0.009
2 0.575 0.568 0.581 0.604 0,660 2 0.025 0.034 0.032 0.008 -0.135
3 0.803 0,800 0.806 0,798 0.777 3 0.118 0.093 0.082 0.105 0.181
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Table 8 Average serial correlation coefficients of outflow for various values of n and d.

)

T3

T

T

E

4 5 6 7 8 9 10
0.3 1/3 0.398 =0.077 0.008 =0.004 0.011 0.007 -0.002 -0.002 0. 004 0.004
1/2 0.533 0.037 -0.000 0.002 0.012 0.008 -0.000 -0,003 0.000 0.001
3/4 0.676 0.237 0.080 0.032 0.021 0,012 0.003 -0,002 -0.006 =-0.009
1 0.769 0.414 0.223 0.122 0.066 0.037 0.019 0.008 0.002 -0,000
3/2 0.883 0.668 0.505 0.382 0.289 0.215 0.155 0.109 0.073 0.045
2 0,933 0.809 0.701 0,606 0.524 0.453 0.390 0.336 0,289 0.248
3 0.975 0.926 0.879 0.835 0.793 0.752 0.713 0.675 0.639 0.606
1 1/3 0.177 -0.098 0.077 -0,038 0.025 0,021 0.011 =0.009 0.027 =0.006
1/2 0.266 -0.108 0.066 -0,023 0.011 -0.007 0.003 -0.005 -0.002 -0,003
3/4 0.385 -0.081 0,037 0.006 0.001 0.001 -0.,001 -0,004 -0,006 =-0.003
1 0.505 0.008 0.005 0.002 0,001 0.001 0,000 =-0,001 -0.004 -0.006
3/2 0,692 0.271 0.114 0.050 0.019 0.007 0.000 -0.005 -0,008 -0.004
2 0,815 0.515 0.325 0,204 0.128 0.080 0.049 0.029 0.008 0.002
3 0,926 0.789 0.673 0.573 0.486 0.411 0.347 0.292 0.246 0.208
3 1/3 0.069 -0.023 0.051 -0,036 0.030 -0.030 0.026 -0.019 0.016 -0.016
1/2 0.108 =0.074 0.072 -0.414 0.035 -0,032 0.029 -0.013 0,012 -0.011
3/4 0,183 -0.106 0.084 -0,034 0.051 -0.021 0.019 -0.013 0.004 -0.004
1 0,251 -0.128 0.058 -0.029 0.022 =-0.002 0.005 -0,000 ~-0,003 -0.006
3/2 0.424 -0.055 0.012 0,005 -0.011 -0.007 -0,000 -0.004 -0.003 0.000
2 0.582 0.097 0.012 0,002 0.007 0.009 0,006 0.004 0.008 0.007
3 0.797 0.490 0.307 0.191 0.116 0.07C 0.040 0.020 0.006 -0,002
10 1/3 0.006 -0.025 0,018 -0.015 0.017 -0.016 0,021 -0.009 0.018 -0.018
1/2 0.020 -0.035 0.028 -0.025 0.027 -0.026 0.024% -0.018 0.025 -0.021
3/4 0.048 -0,046 0.038 -0.039 0.037 -0.031 0.027 -0.020 0.039 -0.027
1 0.093 -0.072 0.057 -0.047 0.036 =0.032 0.031 -0.023 0.017 =0.017
3/2 0.168 -0.087 0.075 -0.047 0.039 -0.018 0.016 -0,003 0.C20 -0.012
2 0.283 -0.094 0.046 -0.020 0.005 -0.,009 0.005 -0.002 -0,002 -0.003
3 0.544 0.100 0.034 0.012 0.011 0.008 0.007 0.010 0.01p 0.005
30 1/3 0.005 -0.009 0.008 -0.011 0.013 -0.003 0.005 -0.003 0.015 -0.006
1/2 0.008 -0,010 0.011 =0.016 0.016 -0.005 0.008 -0.007 0.018 -0.007
3/4 -0,017 -0.026 0.023 -0.020 0.018 -0.006 0,016 -0,010 0.024 -0.016
1 0.041 -0,010 0.031 -0.024 0.024 -0.025 0.022 0.025 0.029 -0.012
3/2 0.063 -0.046 0,052 -0.03% 0.039 -0.015 0.029 -0.019 0.032 =~0.017
2 0.119 -0.080 0.066 -0.044 0,040 -0.024 0.024 -0.028 0.020 -0.006
3 0.265 -0,084 0.053 -0.022 0.010 0,007 0.004 -0,001 0.003 0.002
100 1/3 -0.002 -0.003 0.004 -0.000 0,005 -0.004 -0.003 -0.001 0.003 0.001
1/2 0,012 0.011 0,002 ~0.010 0,005 -0.001 -0.003 -0.015 0.001 =0.004
3/4 0.012 -0.017 0.008 -0.010 0.005 -0.008 0.002 -0.016 0.003 -0.006
1 0.006 -0.008 0.019 -0.007 0.015 -0.009 0.005 -0.010 0.017 0.007
3/2 0.023 -0.013 0.016 -0.019 0.015 -0.018 0.012 -0.021 0.012 -0.009
2 0.03C -0.027 0.039 -0,030 0.027 -0.021 0.013 -0,020 0.025 -0.027
3 0.099 -0.033 0.050 -0.029 0.028 =0.016 0,014 -0,019 0.010 -0,007

Table 9 Values of minimum Pi for even k and second maximum of Pk for uneven k, with the

corresponding value of parameter d, for n=1

k d Px

2 3 -0. 1250
3 5 0.0740
4 T -0, 0529
5 9 0. 0410
6 11 -0.0335
7 13 0.0283
8 15 -0. 0247
9 17 0.0217
10 19 -0.0194
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CHAPTER V

DISCUSSIONS AND CONCLUSIONS

1. Discussions of results. Results obtained by
the analytical solution for n =1 and by the data
generation method on a digital computer for n dif-
ferent from unity show that the variance, the skew-
ness, and the excess coefficients of the outflow from
natural lakes are less than those of the inflow for any
value of n and d. These parameters of outflow
distribution increase and converge to those of the in-
flow distribution as the parameter d increases to
infinity. Large values of n give small values of
. ratios of variance, skewness, and excess coefficients
of outflow and inflow, and have a rapid rate of con-
vergence to zero with an increase of n. It canbe
said that the effects of a natural lake, with small
value of d and a large value of n, on the outflow
distribution are such that the outflow is closer to the
normal distribution than the inflow, if the inflow is
log-normally distributed. Hypothetically, it can be
stated that ouflow from a natural lake has a smaller
range of fluctuations than the inflow because of the
storage effect. Therefore, the values of the vari-
ance, the skewness, and excess coefficients of the
outflow distribution tend to be smaller than those of
the inflow distribution.

The method used in this study to obtain the
stochastic properties of lake outflow, for given lake
inflow and lake storage and outlet conditions, was a
combination of analytical and data generation methods,
For n =1, all parameters were obtained by the ana-
lytical approach, becuase in that case the storage
differential equation in finite difference form could
be solved in closed form for the stochastic variables
involved. For n different from unity, even for
integer numbers of n, the parameters could not be
obtained by the analytical approach, because solu-
tions in closed form were not obtained. By analogy
with other differential equations, for which the closed
form solutions are not available, and the numerical
finite differences equations are used for the approxi-
mate solutions, the similar approach was used in
this study. The basic differential equation in this
study was an ordinary differential equation of sto-
chastic variables. The approximate solutions were
obtained by transforming this equation into a finite
differences equation, and by using the data genera-
tion method (Monte Carlo Method) to obtain sequences
of stochastic variables. The combination of these two
approaches produced the solutions in the approximate
form for values of n different from unity. To check
the general correctness of analytical solutions, and

the degree of deviation of approximate solutions from
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exact solutions as obtained by the data generation
method, the solutions for parameters in case n = 1
were obtained also by the data generation method.
The agreement between the exact and the approximate
procedure for parameters in case n =1 was very
good.

2. Conclusions. The following conclusions
were advanced:

(1) By knowing the approximate power func-
tion relationships of lake storage and lake outflow
rating curve to the water depths above the level of
zero outflow, the relationship of outflow to inflow
characteristics and vice versa can be established.

For the limited case of n = 1, it was established ana-
lytically; or for all cases, by the data generation
method (Monte Carlo Method). This allows for simple
determination of outflow characteristics for given
inflow characteristics, or vice versa.

(2) The assumption of independent log-
normally distributed inflows is not necessary for
establishing the inflow-outflow relations, though it
was used in this paper to illustrate the method.

(3) Once the three parameters (n, d, 1) of

the inflow and of the lake characteristics are known,
the relationships given in this paper permit a straight
forward determination of outflow characteristics.
These can be described by the variance, the coeffi-
cient of skewness, and eventually by the coefficient
of excess as well as by the serial correlation
coefficients,

(4) Though the parameters of outflow are
derived theoretically only for n = 1, it may be ex-
pected that they could be derived for the other values
of n, or for any value of n.

(5) For accurate values of the skewness and
excess coefficients of outflow, the sample size of
10, 000 generated outflows seems to be inadequate,
mainly because of serial correlation, but larger
samples may be inexpensively generated to improve
their accuracy.

(6) Simple statistical tests may be performed
to test whether the original generated numbers are
normally distributed and independent. These tests
were not carried out in this study though they were
used in other similar investigations.
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