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On the Implementation of Velocity Control for
Kinematically Redundant Manipulators

James D. English and Anthony A. Maciejewski

Abstract—The velocity control of kinematically redundant
manipulators has been addressed through a variety of approaches.
Though they differ widely in their purpose and method of im-
plementation, most are optimizations that can be characterized
by Liégeois’s method. This characterization is used in this ar-
ticle to develop a single framework for implementing different
methods by simply selecting a scalar, a function of configuration,
and a joint-rate weighting matrix. These quantities are used
to form a fully constrained linear system by row augmenting
the manipulator Jacobian with a weighted basis of its nullspace
and augmenting the desired hand motion with a vector function
of the nullspace basis. The framework is shown to be flexible,
computationally efficient, and accurate.

Index Terms—Control, kinematically redundant, kinematics,
manipulators, redundant robots/manipulators, velocity control.

I. INTRODUCTION

FOR a given manipulator’s vector of joint valuesand a
given representation of hand motion, a corresponding

manipulator Jacobian exists such that

(1)

When the dimension of the task space (the dimension of), ,
is less than the number of joints,, (1) is underdetermined and
the manipulator is kinematically redundant.

A well-known general method for resolving this redundancy
was presented by Liégeois [1]. His method is to cast a secondary
desideratum in the form of a vector of joint rates, then find
joint rates that approximate while producing a prescribed
using

(2)

where and are generalized inverses of.
Liégeois’s method will be used as the foundation for the

implementation framework suggested in this article. It will be
shown that many well-known velocity-control techniques can
be cast using a particular representation of (2) (exceptions are
methods which do not give the exact prescribed, such as
damped least-squares methods [2], [3] and Jacobian transpose
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schemes [4]). This will allow easy implementation and evalua-
tion of the various velocity-control techniques.

II. THE FRAMEWORK

Let be a symmetric positive-definite weighting matrix
defining a joint-rate measure through , be a func-
tion (or measure) of the joint values, andbe a scalar. Then
Liégeois’s method can be restricted without changing its ability
to represent most velocity-control methods by assigningas

(3)

where is the gradient of , and by assigning and as

(4)

a -weighted generalized inverse.1

Weighted generalized inverses have been applied to robotics
for some time [6], and recent coverage is given in [7] and [8].
Provided the Jacobian has full row rank, the unique-weighted
generalized inverse can be calculated using

(5)

When has full row rank, the solution from (2)–(5) is equal
to that from the following:

(6)

where is any matrix whose columns are a
spanning set of the null space of. This is established through
(1) and left-multiplying (2) by .

Equation (6) is a framework for velocity control, and its ap-
plication extends beyond simple imitation of (2)–(5). Provided

(7)

i.e., is positive definite, (6) can be used even when
is not positive definite. This is the strength of (6) that allows

it to be applied to many existing methods.
When (7) holds and has full row rank, it follows from the

Lagrange Multiplier Theorem that (6) gives athat minimizes
while satisfying .2 Thus, (6) makes a

tradeoff based on between minimizing the joint-ratemeasure
and extremizing the derivative of the joint-valuemeasure.

1A WWW -weighted generalized inverseGGG satisfies the following: IfJJJ _qqq = _xxx has
a solution for_qqq, the unique solution minimizing_qqq WWW _qqq is given byGGG _xxx [5].

2Similarly,rf could be replaced by any vector function ofqqq to optimize a
general quadratic criterion function subject to_xxx = JJJ _qqq.
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TABLE I
FORn DEGREES OFFREEDOM ANDm DEGREES OFTASK SPACE, n > m, THE COMPUTATIONAL COST OF THEMETHODSGIVEN BY (2)–(5)AND BY (6) ONCEJJJ ,
WWW , AND rf ARE KNOWN. VALUES ARE GIVEN FORWWW = III AND FOR GENERALWWW . THESECOSTSARE BASED ON THEEFFICIENCIESMENTIONED IN THE TEXT

III. ESTABLISHED VELOCITY-CONTROL METHODS

The last section presented a framework for velocity control.
Its generality will be demonstrated here by casting existing ve-
locity-control methods into its form.

For set numerically to the Moore–Penrose pseudoinverse
, Liégeois’s method has been used for joint-limit avoidance

[1], [9]; singularity avoidance [10]; torque minimization [11];
obstacle avoidance [12], [13]; fault tolerance [14], [15]; and
many other applications. A discussion is given in [16]. For these,
(6) can be used with and the respective choice ofand

. Note that , though useful for examples and conceptual
experiments, in practice is rarely ideal. It implies an equality be-
tween the effects of the joints that a practical manipulator design
usually precludes.

The augmented Jacobian technique [17], [18], for which the
gradients of functions are augmented toand their de-
sired derivatives are augmented to, can be cast for functions

with desired derivatives of as

(8)

(9)

and

(10)

where the ’s are any positive scalars. Using of the form
given in (8) with gives an algorithm that inherits the re-
peatability properties of the corresponding augmented Jacobian
forms [19].

Baillieul’s extended Jacobian technique [20] ([21] for general
redundancy), which maintains a function at an extremum,
can be cast as

(11)

e.g., for a single degree of re-
dundancy, and

(12)

where is an function of configuration whose
columns are differentiable and form a spanning set of the null
space of . This need not equal as used in (6). Setting

to a nonzero value and allows a feedback term to
be introduced that will drive specifically to a minimum or a
maximum.

Other weightings amenable to (6) include ; a joint
compliance matrix [22] ; the manipulator inertia matrix
[ measures kinetic energy] [6], [23], [24]; and

, where measures the kinetic energy of a virtual load
[25]. The modified Moore–Penrose solution of Mussa-Ivaldi
and Hogan [26] uses where is a compliance
matrix and is a matrix of second derivatives of the transfor-
mation from configuration values to end-effector coordinates.
These are just a few of the joint-rate weightings that have been
proposed and can be used in (6).

A strength of (6) is its ability to implement many of these ap-
proaches without explicitly calculating or . For the aug-
mented Jacobian technique with a single degree of redundancy,

can be calculated as , for example. And
when , the manipulator inertia matrix, can
be calculated by treating the columns of as joint acceler-
ations and calculating the resulting joint torques with an in-
verse-dynamics algorithm. Directional derivatives ofalong
the columns of can be used to find in lieu of explicit
calculation. For problems in which or are very costly to
evaluate, the ability to find the solution without them can be the
most important characteristic of (6).

Methods which are cast using a nonpositive-definitecan
be made more robust by moderating—or damping—the joint
rates. A damped version of the augmented Jacobian method with
one degree of redundancy could use ,
and a damped version of Baillieul’s method for one degree of
redundancy could use , with

a positive-definite matrix with a small relative norm. This is
a method to address the occurrence of algorithmic singularities.
Examples of using this damping technique to reduce task errors
are given in [27].

IV. COMPUTATIONAL COSTS

To compare the computational costs of the method using
(2)–(5) and that using (6), a floating point count3 is used
here. This count is based on the cost after, , and
are explicitly established. Explicit calculation is not always
necessary for (6), as discussed previously. The results are given
in Table I. Note the normal-equation method with (5) is a
representative example of one of many ways to solve (2) with

3A floating-point count is acknowledged as an imperfect measure of imple-
mentation cost and is used here only as a rough gauge of the algorithm.
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(4) [28], [29]. It is used here for comparative purposes because
it is relatively fast when efficiently applied and is frequently
discussed in robotics literature.

In establishing Table I, efficiencies were exploited for both
techniques. For (2)–(5), the optimized procedure of Klein and
Huang [16] was modified to incorporate a weighting matrix:

• Cholesky decomposition was used to findgiving
;

• was used to form and
using forward substitution on the rows

of and ;
• the symmetry of was exploited in its calculation from

;
• Cholesky decomposition was used to solvefrom

;
• a final backsubstitution using was performed on

to find .

And for (6), the following were performed:

• an LU decomposition with column pivoting was per-
formed on rectangular ( is lower triangular,
is upper triangular);

• the matrix was found by assigning rows through
to equal the rows of the identity ma-

trix and using backsubstitution with to complete each
column of to a null-space vector;

• the LU decomposition of was extended with the rows
formed by ;

• this final LU decomposition was used to solveusing a
forward substitution then a backsubstitution on

.

Computations involving the weighting matrix were excluded
from the count for the cases.

For and , common values for commercially
available redundant manipulators, the floating-point counts are
as given in Table II. Here, for , (6) requires less than
60% of the cost of (2)–(5). The difference is even more signif-
icant when . Equation (6) requires fewer floating-point
operations for a general than (2)–(5) with .

When , (6) is similar in concept to the dual projection
method [30] and the projection methods given in [31] for one
degree of redundancy and [32] and [33] for general redundancy.
Though somewhat faster, it is comparable with these in its com-
putational cost. Also, note that null-space bases have been pre-
viously used as an explicit way to complement particular solu-
tions [34].

V. NUMERICAL ACCURACY

Equation (6) tends to suffer less from numerical errors than
(2)–(5) because conditioning problems withare compounded
in forming . For example, if , then the two-norm
condition number of equals the square of the condition
number of .

To illustrate the relative numerical accuracy of the two
methods, a planar three-link manipulator with unit link lengths
is used here in a simulation experiment. For the task of
planar positioning, 10 000 pseudorandom configurations and
unit-norm end-effector velocity directions were chosen. Then

TABLE II
FLOATING-POINT COSTS FORn = 7 AND m = 6 ONCEJJJ ,WWW , ANDrf ARE

KNOWN, USING THE EFFICIENCIESMENTIONED IN THE TEXT

Fig. 1. Errors in end-effector velocity using 10 000 configurations and
unit-norm velocity directions. The error for the methods of (2)–(5) and of
(6) are shown against the vertical and horizontal scales, respectively. The
diagonal line separates the regions where one method outperforms the other.
Statistics for these errors are given in Table III. Points with errors greater than
8:0� 10 for the method of (2)–(5) are not shown.

TABLE III
ERRORSTATISTICS FOR THE10 000 SAMPLES. THE PERCENTAGEERROR

MEASURE IS THEPERCENTAGE OFPOINTS FORWHICH ONE METHOD

PERFORMEDWORSETHAN THE OTHER—9% OF THE TIME BOTH METHODS

HAD THE SAME ERROR

both methods were used with and to calculate,
in single precision, joint rates to achieve the desired velocity.
The two norm of the error given by the difference between the
desired and the actual velocity was calculated, and the values
are shown in Fig. 1. The statistics for these results are given in
Table III, showing (6) to be more accurate.

VI. WHEN IS NOT OFFULL RANK

When the Jacobian is not of full rank, the augmented form of
(6) can still be used, but with modification. In particular, when

does not have full rank, can be found as follows:

(13)
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where is a weighting matrix for the -space and is
a matrix with columns that complete the columns of to
a spanning set of the entire space. Equation (13) minimizes

subject to being min-
imized.

Note (13) does not solve the problem of kinematic singulari-
ties. Equation (6) will typically not give a physically realizable
joint-rate solution near a kinematic singularity, and the same is
true of the method comprising (2)–(5). To address this issue, a
method that does not give the desired, such as time scaling or
damped least squares, must be used.

VII. SUMMARY

Many velocity-control techniques have the same structure
and can be cast in this article’s framework simply as different
choices of scaling factor (), configuration measure (),
and joint-rate weighting matrix ( ). As a conceptual tool,
this provides a basis for common analysis. Any technique
so cast can be verified against the meaning of minimizing

in the Jacobian’s null space. As a method
of implementation, the framework allows easy changes be-
tween parameters in software and is efficient and accurate.
It also allows the possibility of avoiding explicit calculation
of and by calculating and directly.
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