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ABSTRACT 
 
 
 

DOWNSCALING SOIL MOISTURE OVER REGIONS THAT INCLUDE MULTIPLE 

COARSE-RESOLUTION GRID CELLS 

 

Many applications require soil moisture estimates over large spatial extents (30-300 km) 

and at fine-resolutions (10-30 m).  Remote-sensing methods can provide soil moisture estimates 

over very large spatial extents (continental to global) at coarse resolutions (10-40 km), but their 

output must be downscaled to reach fine resolutions.  When large spatial extents are considered, 

the downscaling procedure must consider multiple coarse-resolution grid cells, yet little attention 

has been given to the treatment of multiple grid cells.  The objective of this paper is to compare 

the performance of different methods for addressing multiple coarse grid cells.  To accomplish 

this goal, the Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) 

downscaling model is generalized to accept multiple coarse grid cells, and two methods for their 

treatment are implemented and compared.  The first method (fixed window) is a direct extension 

of the original EMT+VS model and downscales each coarse grid cell independently.  The second 

method (shifting window) replaces the coarse grid cell values with values that are calculated 

from windows that are centered on each fine grid cell.  The window values are weighted 

averages of the coarse grid values within the window extent, and three weighting methods are 

considered (box, disk, and Gaussian).  The methods are applied to three small catchments with 

detailed soil moisture observations and one large region.  The fixed window typically provides 

more accurate estimates of soil moisture than the shifting window, but it produces abrupt 
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changes in soil moisture at the coarse grid boundaries, which may be problematic for some 

applications.  The three weighting methods produce similar results. 
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1. INTRODUCTION 

 

Numerous applications can benefit from knowledge of volumetric water content (soil 

moisture) at fine resolutions (10-30 m) over large spatial extents (30-300 km).  For example, 

land-atmosphere models [Delworth and Manabe, 1989, Entekhabi et al., 1996, Ferranti and 

Viterbo, 2006], precipitation forecasting models [Koster and Suarez, 2003, Seuffert et al., 2002], 

regional and global climate models [Dirmeyer, 1999, Mahfouf et al., 1987, Seuffert et al., 2002], 

and hydrologic models at all scales [Houser et al., 1998, Lakshmi, 1998, Wood, 1997] would 

benefit from reliable soil moisture information.  Similarly, soil moisture is important for flood 

forecasting [Beck et al., 2009, Dunne and Black, 1970], drought monitoring and wildfire 

prediction [Bartsch et al., 2009, Bolten et al., 2010], crop growth and forest regrowth after 

wildfires [de Wit and van Diepen, 2007, Kasischke et al., 2007], and malaria outbreak modeling 

[Montosi et al., 2012]. Soil moisture is an important variable in soil mechanical stability [Horn 

and Fleige, 2003], which is relevant in trafficability [Flores et al., 2014] and vehicle impact 

assessment and land rehabilitation [Shoop et al., 2005, Vero et al., 2014]. 

Satellite remote sensing can provide soil moisture estimates with the spatial extents 

necessary for such applications, but the spatial resolutions of these estimates are much too 

coarse.  Several passive radiometers have been used to obtain global soil moisture at coarse 

resolutions.  For example, the Advanced Microwave Scanning Radiometer (AMSR-E) uses dual 

polarized size frequencies in the range of 6.9-89 GHz to estimate soil moisture at resolutions of 

5-60 km, where the coarser resolutions have smaller errors than the finer resolutions [Njoku et 

al., 2003].  Li et al. [2010] describes a physically-based land algorithm that simultaneously 

acquires global soil moisture, vegetation water content, and land surface temperature using 
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WindSat dual polarized data at 10, 18.7, and 37 GHz, resulting in 10-40 km resolution soil 

moisture estimates.  The Soil Moisture Ocean Salinity Mission (SMOS) uses an L-band (1.4 

GHz) synthetic aperture radiometer to estimate soil moisture and ocean salinity at a 40 km 

resolution [Kerr et al., 2012, Kerr et al., 2010].  Active microwave sensing has also been used to 

estimate soil moisture.  In particular, the Advanced Scatterometer (ASCAT) produces 

backscatter measurements from transmitted linear frequency-modulated pulses (C-band) to 

estimate global soil moisture at a 25 km resolution [Bartalis et al., 2007].  The Soil Moisture 

Active and Passive (SMAP) mission combines active and passive microwave sensing to obtain 9 

km resolution global soil moisture, but currently only the passive radiometer is operational [Das 

et al., 2011, Entekhabi et al., 2010]. 

One general approach for downscaling soil moisture to appropriate resolutions is to use 

optical/thermal data.  Such methods typically downscale to about a 1 km resolution because the 

most frequently collected optical/thermal data are available at this resolution.  For example, 

Chauhan et al. [2003] downscaled soil moisture from 25 km to 1 km using an approach based on 

the Triangle Method.  Merlin et al. [2005] downscaled 40 km SMOS data to a 1 km resolution 

using visible, near-infrared, and thermal infrared remote sensing data.  Merlin et al. [2006] added 

the use of a land surface model and tested this approach.  Disaggregation Based on Physical and 

Theoretical Scale Change (DisPATCh) was also used to downscale SMOS data to 3 km and 100 

m resolutions using Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced 

Spaceborne thermal Emission and Reflection radiometer (ASTER), and Landsat 7 data [Merlin 

et al., 2013].  Fang and Lakshmi [2014] disaggregated SMOS and AMSR-E data to a 1 km 

resolution and compared the results to in situ observations.  Using similar data in an empirical 
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algorithm, Song et al. [2014] downscaled 25 km AMSR-E data to 1 km using optical/thermal 

data, and it was more effective for soil moisture values less than 0.3 m3/m3. 

Another group of downscaling methods focus on reproducing the statistical properties of 

fine scale soil moisture rather than providing accurate estimates at every location.  For example, 

Crow et al. [2000] used a statistical approach to downscale spaceborne imaging radar (SIR-C) L-

band data.  They studied how patterns with 800-6400 m grid cells relate to finer (100-800 m) 

patterns.  Kim and Barros [2002] used a modified fractal interpolation method based on 

contraction mapping to downscale soil moisture from 10 km to 825 m.  Mascaro et al. [2011] 

applied a multifractal downscaling model to obtain soil moisture at the aircraft footprint scale of 

800 m from a satellite footprint scale of 25.6 km. 

Other statistical methods have been used to estimate soil moisture at fine resolutions.  

Perry and Niemann [2007] applied an Empirical Orthogonal Function (EOF) approach to the 

Tarrawarra catchment (downscaling from a catchment-wide average to a 20 m by 10 m 

resolution).  However, this method requires local soil moisture measurements to derive the 

EOFs.  In a similar manner, Kaheil et al. [2008] downscaled soil moisture based on local 

measurements.  The Southern Great Plains (SGP 97) dataset (from airborne imagery) was 

downscaled from a coarse resolution of 800 m to a fine resolution of 50 m. 

Other downscaling methods use topographic data, which is known to affect soil moisture 

variations at particularly fine resolutions [Famiglietti et al., 1998, Gomez-Plaza et al., 2001, 

Western et al., 1999].  Wilson et al. [2005] downscaled soil moisture in five catchments to 10-40 

m resolutions using empirical relationships with topographic attributes.  Busch et al. [2012] 

extended the EOF method of Perry and Niemann [2007] by estimating the soil moisture EOFs 

from topographic data, and Coleman and Niemann [2013] used a conceptual water balance called 
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the Equilibrium Moisture from Topography (EMT) model to downscale a catchment-wide 

average soil moisture to 10-40 m patterns at three catchments.  In some cases, topographic 

downscaling methods also use other types of data.  Pellenq et al. [2003] presented a model to 

downscale soil moisture to a 100 m resolution at the Nerrigundah catchment using both 

topographic and soil depth information.  Temimi et al. [2010] used an index that combines 

topographic attributes and the leaf area index (LAI) to estimate soil moisture at a 90 m 

resolution.  Ranney et al. [2015] generalized the Coleman and Niemann [2013] model to accept 

fine scale soil and vegetation data and called it the Equilibrium Moisture from Topography, 

Vegetation, and Soil (EMT+VS) model.  Using this approach, vegetation data were found to 

provide more value for downscaling than soil data, particularly if the soil data are sparse or 

uncertain.   

When any of these downscaling methods are used over large spatial extents, they must 

inevitably accept and downscale multiple coarse-resolution grid cells (i.e. a coarse grid of soil 

moisture values rather than a single average soil moisture value).  Some studies have not 

encountered this issue because they have focused on downscaling within an area that falls within 

a single coarse grid cell [Busch et al., 2012, Coleman and Niemann, 2013, Pellenq et al., 2003, 

Perry and Niemann, 2007, Ranney et al., 2015, Wilson et al., 2005].  Other studies have 

downscaled multiple coarse grid values but have not considered this issue in depth.  Several of 

these algorithms downscale each coarse grid cell independently from the adjacent coarse grids 

[Fang and Lakshmi, 2014, Merlin et al., 2013, Merlin et al., 2012], but the resulting soil 

moisture maps show unnatural discontinuities in the soil moisture values at the coarse grid 

boundaries.  Such discontinuities might be problematic for applications like routing vehicles 

across the landscape [Flores et al., 2014].  Song et al. [2014] downscaled in a way that uses 
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information from neighboring coarse grid values and avoids such discontinuities.  Only a few 

studies have directly discussed the treatment of multiple coarse grid cells [Kaheil et al., 2008, 

Kim and Barros, 2002, Sahoo et al., 2013].  Kim and Barros [2002] used a sliding window to 

statistically downscale soil moisture and avoid the discontinuities at the boundaries.  Kaheil et al. 

[2008] applied a spatial pattern search where pixels are sorted and interpolated to overcome the 

issue.  Sahoo et al. [2013] used a localization radius (distance from fine grid cell being 

downscaled), which is a function of the spatial correlation of the errors, to determine which 

coarse grids affect each particular fine grid pixel.  However, no studies have examined the 

treatment of multiple grid cells for topographically-based downscaling methods or considered 

how their treatment affects the downscaling performance. 

The objective of this paper is to develop and test approaches for accepting multiple 

coarse grid cells when downscaling soil moisture.  In particular, the EMT+VS model is 

generalized to accept multiple coarse grid cells, and approaches for treating the coarse grids are 

implemented and compared.  The EMT+VS model is selected because it is a flexible 

topographically-based downscaling method.  This flexibility allows it to reproduce both valley-

dependent and hillslope-dependent soil moisture patterns, and it can reproduce temporally 

unstable soil moisture patterns [Coleman and Niemann, 2013].  It has also been shown to 

outperform a statistical downscaling method when calibration data are limited [Werbylo and 

Niemann, 2014].  The methods for accepting multiple coarse grid cells are evaluated by 

application to three small catchments (Tarrawarra, Cache la Poudre, and Nerrigundah) and one 

large region (Eastern Victoria).  
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2. METHODOLOGY 

 

2.1 EMT+VS MODEL OVERVIEW 

This sub-section briefly summarizes the pre-existing EMT+VS model.  More details can 

be found in Coleman and Niemann [2013] and Ranney et al. [2015].  The EMT+VS model 

downscales soil moisture using a water balance of the hydrologically active soil layer.  That layer 

begins at the ground surface and ends at the depth where the hydraulic conductivity begins to 

decrease significantly due to a lower permeability soil layer or bedrock.  The hydrologically 

active layer has ranged from 5 cm and 30 cm depth in past model applications [Ranney et al., 

2015].  Over this range of depths, soil moisture is assumed to be constant.   

Four processes are represented in the water balance:  infiltration, deep drainage (or 

groundwater recharge), lateral flow, and evapotranspiration (ET).  Each process is written as a 

function of topographic, vegetation, and soil characteristics.  Infiltration uses the fractional 

vegetation cover to account for interception losses.  Deep drainage is described using Darcy’s 

Law with a percolation assumption.  Lateral flow is described using Darcy’s Law and assuming 

that the drainage area describes the contribution of flow from upslope.  The lateral hydraulic 

gradient is estimated using a function of the topographic slope, and the soil layer thickness 

depends on the topographic curvature.  The ET representation includes separate radiation and 

aerodynamic terms.  Spatial variations in insolation are described using the potential solar 

radiation index (PSRI), which is a function of the topographic slope and aspect [Dingman, 2002].  

The ET model also uses the fractional vegetation cover to account for the partitioning of ET into 

soil evaporation and transpiration and to account for shading effects on soil evaporation. 
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The fine-resolution soil moisture is calculated by assuming that the processes are in 

equilibrium.  The model can still produce soil moisture that varies in time if the coarse soil 

moisture input varies in time, but time does not explicitly appear in the model.  The equilibrium 

assumption disallows consideration of hysteresis in the spatial patterns of soil moisture.  The 

equation for the fine-resolution soil moisture is a weighted average of explicit analytical 

solutions for the soil moisture.  Each of the explicit solutions is obtained by assuming that one of 

the outflow terms is much larger than the others.  The final equation for the fine-resolution soil 

moisture ș is: 

 G G L L R R A A

G L R A

w w w w

w w w w

           (1) 

where G , L , R , and A  are the analytical soil moisture estimates if deep drainage, lateral 

flow, radiative ET, and aerodynamic ET dominate, respectively. The weights Gw , Lw , Rw , and 

Aw  determine how important G , L , R , and A are to the final soil moisture estimate, 

respectively.  

The deep drainage estimate of soil moisture is: 

 
DDI

DDI
G   (2) 

where DDI is the deep drainage index, which is defined: 

 
1

,

1
DDI 

v

s v

V

K

        (3) 

In these equations,   is the spatial-average soil moisture, DDI  is the spatial average of the 

DDI,   is soil porosity,   is interception efficiency, V  is fractional vegetation cover, ,s vK  is 

vertical saturated hydraulic conductivity, and v  is the vertical pore disconnectedness index.  In 
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a typical application,   is the soil moisture that is being downscaled, V  is fine-resolution 

vegetation cover data, and the other variables are typically either specified or calibrated 

constants.  However, the model derivation allows all variables in Equation (3) except v  to vary 

at the fine resolution if desired [Ranney et al., 2015].  The variable DDI  is calculated by 

averaging the fine resolution data. 

The lateral flow estimate of soil moisture is: 

 
LF

FI

I

L
L   (4) 

where LFI is the lateral flow index, which is defined: 

 
1 11

min

0 ,v min

1
LFI

h hh

s

V A

K cS

 



  

                 
 (5) 

LFI  is the spatial average of the LFI, A  is the contributing area for the fine grid cell under 

consideration, 0  is the thickness of the soil layer where the topographic curvature is zero,   is 

the anisotropy of hydraulic conductivity, c  is the linear dimension of the fine grid cell, S  is 

topographic slope,   relates the horizontal hydraulic gradient to the topographic slope, min  is 

the minimum topographic curvature that has soil present,   is topographic curvature, and h  is 

the horizontal pore disconnectedness index. In practice, A , S , and   are determined from the 

fine-resolution Digital Elevation Model (DEM) and produce spatial variations in L .  The other 

variables are typically constant (but all variables except h  can vary at the fine resolution if 

desired). 

The radiative ET estimate of soil moisture is: 

 
RE

EI

I

R
R   (6) 
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where REI is the radiative ET index, which is defined: 

  1 1 1
11 1

REI
(1 )

r r r

p p

V

I VE V

 


 
    

              
 (7) 

REI  is the spatial average of the REI,   is the ratio of aerodynamic to radiative ET (i.e. the 

Priestly-Taylor coefficient minus one), pE  is the average potential ET, pI  is the PSRI,   is the 

portion of transpiration that is met by the modeled soil layer,   describes the effect of shading 

on soil evaporation, and r  is the radiative ET exponent.  In practice, spatial variations in R  are 

produced by pI , which is determined from the fine-scale DEM, and V .  The other variables are 

typically constant (but all variables except r  can vary at the fine resolution if desired). 

The aerodynamic ET estimate of soil moisture is: 

 
AE

EI

I

A
A   (8) 

where AEI is the aerodynamic ET index, which is defined: 

 
1/ 1/

1 1
AEI

(1 )

a a

p

V

VE V

 


   
    

       
 (9) 

AEI  is the spatial average of the AEI and a  is the aerodynamic ET exponent.  In practice, V  

produces variations in A  and all other variables in Equation (9) are typically constants (but the 

derivation allows all variables except a  to vary at the fine resolution if desired). 

The weights are calculated from the magnitudes of the outflow terms in the water balance 

equation and are calculated as: 

 
DDI

v

Gw
     ,  (10) 
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LFI

h

Lw
     , (11) 

 
REI

r

Rw
     , (12) 

and: 

 
AEI

a

Aw
      (13) 

Because the exponents in the weight equations are all required to be spatially constant, the 

weights also are spatially constant in the EMT+VS model. 

 

2.2 GENERALIZATION TO MULTIPLE COARSE GRID CELLS 

All previous applications of the EMT+VS model downscaled a single spatial-average soil 

moisture ( ) at any given time, which implies that single values were used for DDI , LFI , REI

, and AEI .  The EMT+VS model can accept multiple coarse grid cells without any revision to 

the model derivation.  In this case, the spatial-averages ( , DDI , LFI , REI , and AEI ) have 

multiple values over the region of interest.  However, to obtain these averages, one needs to 

select the spatial extent over which the averages are calculated (referred herein as the window) 

and how the data within the window are used to calculate the averages (i.e. the data weighting).   

Two windowing methods are considered in this paper (fixed and shifting). The fixed 

window (Figure 1a) calculates the spatial averages over the same spatial extents as the coarse 

grid cells of soil moisture.  Thus, every fine grid cell within a given coarse grid cell has the same 

window and thus the same values for  , DDI , LFI , REI , and AEI .  The fixed window is a 

direct extension of the previous applications of the EMT+VS model because each coarse grid 
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cell is downscaled independently.  This windowing method is analogous to the approaches used 

by Fang and Lakshmi [2014], Merlin et al. [2013], and Merlin et al. [2012].  The shifting 

window (Figure 1b) has the same size as the coarse grid cells of soil moisture, but it is always 

centered on the fine grid cell that is being calculated.  Thus, every fine grid cell can have 

different values of  , DDI , LFI , REI , and AEI , and these values can depend on multiple 

coarse grid cells.  This windowing method is similar to the approaches used by Song et al. 

[2014], Kaheil et al. [2008], Kim and Barros [2002], and Sahoo et al. [2013].  

Once the window extent is determined, the averages must be calculated using the data 

within the window.  The fixed window always aligns with the coarse soil moisture grid, so   is 

simply the soil moisture value for that coarse grid cell.  Due to their definitions in the model 

derivation, DDI , LFI , REI , and AEI  must be calculated in a manner consistent with  , so 

they are found using an arithmetic average of the values within the fixed window (those 

variables are calculated using the fine-resolution data).  This approach implicitly assumes that 

the coarse soil moisture values equally weight all soil moisture values that occur within the 

coarse grid cell.  This assumption might be violated for some remote sensing products.  In 

contrast, the shifting window typically includes multiple coarse grid cells, so  must be 

calculated.  To obtain  , a fine grid is filled with the coarse soil moisture values as shown in 

Figure 1b.  Then, the weight for each fine grid cell in the window is calculated using the 

distance of the fine grid cell from the window center (i.e. where the local soil moisture is being 

calculated).  Three weighting schemes are considered (box, disk, and Gaussian).  Box weighting 

has the same window size and shape as the coarse grid cells (i.e. rectangular or square), and each 

fine grid cell within the window is weighted equally (Figure 1c).  It is equivalent to the 

weighting used by the fixed window method.  Disk weighting has equal weights within a circle 
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whose area is equal to the coarse grid area (Figure 1d).  Gaussian weighting uses a window 

whose radius is 3  (where   is a parameter).  Within the window, the weights are found from a 

Gaussian probability density function with standard deviation   (Figure 1e). 
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3. APPLICATION TO TEST SITES 

 

3.1 TEST SITE PROPERTIES  

The generalized EMT+VS model is tested by application to three small catchments and 

one large region.  The three catchments are the same ones considered by Ranney et al. [2015].  

They are used here because they have nearly complete grids of high-quality local soil moisture 

observations.  Thus, the coarse grid cells can have nearly any size and position and still contain 

soil moisture observations that can be used to evaluate the model performance.  Unfortunately, 

due to the small extents of these catchments, the coarse grid cells must be much smaller than 

those produced by satellites.  Thus, we also analyze one large region.  This region does not have 

local soil moisture observations, but large coarse grid cells can be used (the output from a land 

surface model) and the different methods for treating multiple coarse grid cells can still be 

compared. 

The Tarrawarra catchment was originally described by Western and Grayson [1998] and 

is located in Victoria, Australia (37°39’S, 145°26’E).  The catchment is 10.5 ha.  A 5 m DEM is 

available and was originally developed using a total station survey (Figure 2a).  Topographic 

relief is 25 m. Tarrawarra has a temperate climate with an average annual rainfall of 820 mm and 

an average annual potential evapotranspiration (PET) of 830 mm.  The vegetation is grazed 

pasture.  The soil moisture dataset was collected using time domain reflectometry (TDR) and 

includes thirteen dates spanning fourteen months (from 27 Sept 95 to 29 Nov 96). The 

measurements characterize the top 30 cm of the soil at a 10 m by 20 m spacing.  

The Nerrigundah catchment is located near Dungog, Australia (32°19’S, 151°43’E) and 

is described in detail by Walker et al. [2001].  It has an area of 6 ha.  A 20 m DEM is available 
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and was originally developed using a total station (Figure 2b).  Topographic relief is 27 m.  

Nerrigundah has a temperate climate with an average annual precipitation of 1000 mm and a 

class A pan evaporation of 1600 mm. The vegetation is predominately grasses. The soil moisture 

dataset was collected using TDR and consists of twelve dates over two months (27 Aug 97 to 22 

Sept 97).  The measurements characterize the top 15 cm of the soil at a 20 m by 20 m grid 

spacing.  

The Cache la Poudre catchment is located near Rustic, Colorado (40°41’57”N, 

105°30’25”W) and is described by[Coleman and Niemann, 2012].  It is approximately 8 ha.  A 

15 m DEM is available and was developed using a total station and survey-grade global 

positioning system (Figure 2c).  Topographic relief is 124 m. The catchment has a semiarid 

climate with an average annual precipitation of 400 mm and an average annual PET of 930 mm.  

The vegetation is aspect dependent with shrubs on the south-facing hillslopes and coniferous 

trees on the north-facing hillslopes.  Unlike the other catchments, data are available to describe 

the fractional vegetation cover on a 15 m by 15 m grid.  These data were originally generated 

using a multispectral digital camera and manual measurements of litter depth as described by 

Ranney et al. [2015].  Soil moisture was observed using a TDR on nine sampling dates over 

three months (21 Apr 08 to 24 Jun 08).  The measurements characterize the top 5 cm of the soil 

at a 15 m by 15 m grid spacing.  

Eastern Victoria is a large region that surrounds the Tarrawarra catchment (37°48’55”S to 

36°57’02”S, 145°07’23”E to 145°59’13”E).  The region has an area of 7575 km2.  A 30 m DEM 

is available from the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) [Hirano et al., 2003, Yamaguchi et al., 1998] (Figure 2d). The region has 1,493 m 
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total relief and varies from forested mountains in the east to agricultural plains in the west.  No 

local soil moisture observations are available to evaluate the downscaling model’s performance.  

 

3.2 MODEL APPLICATION 

For Tarrawarra, Nerrigundah, and Cache la Poudre, the coarse soil moisture inputs were 

determined by averaging the local observations within the coarse grid cells of the selected size 

and position.  The model parameters were calibrated using the same procedure described by 

Ranney et al. [2015].  Specifically, the parameter ranges were constrained using the available 

soil, vegetation, and climatic information.  Then, final parameter values were selected to 

maximize the average Nash Sutcliffe Coefficient of Efficiency (NSCE) [Nash and Sutcliffe, 

1970] among all days in the catchment’s dataset.  NSCE is applied spatially by taking differences 

between EMT+VS estimates and the measured soil moisture at each point.  Spatial NSCE values 

for each sampling data are then averaged arithmetically over all dates. 

For Eastern Victoria, a coarse grid of soil moisture is available from the Agricultural 

Meteorology model (AGRMET).  AGRMET is a global land surface model from the Air Force 

Weather Agency (AFWA) that produces satellite-based radiation and precipitation products 

[AFWA, 2002].  The dataset consists of six dates spanning seven months (15 Mar 08 to 31 Oct 

08).  The dates were selected to capture a wide range of moisture conditions.  The dataset 

characterizes the top 10 cm of the soil and includes sixteen coarse grid cells within the region.  

The Data Processing and Error Analysis System (DPEAS) [Jones and Vonder Haar, 2002] was 

used for spatial remapping, and the data were then projected to obtain grid cells that are roughly 

19 km by 24 km.  Although the grid cells are not exactly rectangular, after projection they were 

approximated as rectangular for simplicity of testing.  Nearly all parameters for Eastern Victoria 
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were taken directly from Tarrawarra without additional calibration.  These parameters may be 

applicable for the agricultural region near Tarrawarra but are likely inaccurate for other 

dissimilar portions of the region.  Nonetheless, they are the best available parameters for this 

region and provide representative soil moisture patterns for testing.  Only the anisotropy   was 

changed (from 47.2 to 250) so that the downscaled soil moisture map more consistently 

produced saturation at locations where streams are observed in satellite photos of the region. 
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4. RESULTS AND DISCUSSION 

 

We begin by evaluating the accuracy of the fixed window procedure when it is applied to 

the three catchments and different coarse grid cell sizes are used (Figure 3).  For this test, the 

EMT+VS model was applied using two calibration approaches (single and repeated).  For single 

calibration, the parameters for each catchment were determined when the model was supplied 

with a single coarse soil moisture value as input (the same scenario considered by Ranney et al. 

[2015], see Appendix A).  These parameters were then used for all coarse grid cell sizes.  For 

repeated calibration, the parameters were recalibrated for each coarse grid cell case.  For each 

coarse grid cell size, a collection of grids was generated using all possible grid origins (i.e. grid 

positions).  The NSCE values shown in Figure 3 are the averages among all dates in the dataset 

and among all origins for the given cell size.  The sizes of the coarse grid cells were determined 

using a constant increment in their linear dimension (e.g., 20 m).  However, due to the irregular 

boundaries of the catchments, the available soil moisture measurements do not necessarily span 

the full extent of a specified coarse grid cell.  For example, if a single very large grid cell were 

specified, the average soil moisture for that cell could only be calculated from measurements 

within the catchment area.  Thus, an effective cell size was calculated as the average area that is 

characterized by the measurements in each grid cell, and the square root of the effective cell size 

is used as the abscissa in Figure 3. 

The NSCE of the fine-resolution soil moisture that is produced by the fixed window 

procedure can be compared to the NSCE of the coarse resolution input.  If the input is a single 

value (i.e. one large coarse grid cell is used), then the NSCE of the input is zero (beyond the right 

edge of the plots in Figure 3) because none of the spatial variability is captured and the mean 
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value is preserved.  However, as the coarse grid becomes finer (shifting to the left in Figure 3), 

more variability is captured before downscaling and the NSCE of the input increases.  Figure 3 

shows that the output from the fixed window method also captures more variability as the coarse 

grid becomes finer.  This result shows that the downscaling model benefits from the additional 

information that is provided by the higher resolution input.  The NSCE of the fixed window 

output is also greater than the coarse input NSCE for all resolutions considered, which suggests 

that the downscaled pattern reproduces additional spatial variability even when relatively fine 

grid cells are supplied as input.  However, the difference between the input and output NSCE 

values becomes smaller as the coarse resolution input becomes finer.  Thus, downscaling 

provides less incremental benefit when the coarse resolution input is already capturing much of 

the spatial variation.  The difference in performance between the single and repeated calibrations 

is consistently small (about 0.02 on average), which suggests that the parameter values are not 

strongly dependent on the resolution of the soil moisture input and are relatively robust at each 

catchment.  The difference grows slightly as the coarse grid becomes finer because the single 

calibration is performed with a large effective grid cell size (i.e. one cell).  Single calibration is 

used in all the remaining analyses. 

Figure 4 shows the coarse input, output soil moisture, and the observed soil moisture 

patterns for one date at Tarrawarra when different resolutions are used for the input. The day 

shown (27 Sep 95) has intermediate soil moisture among those in the dataset.  The observed 

pattern (repeated in Figures 4g-i) exhibits the wettest conditions in the valley bottoms, moderate 

moisture on the south-facing hillslope, and the driest conditions on the north-facing slope.  The 

coarse-resolution inputs (Figure 4a-c) provide better information about the soil moisture pattern 

as the resolution improves from 220 m to 100 m.  In particular, the finer resolutions begin to 
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capture the difference in moisture between the opposing hillslopes, but the wet valley bottoms 

are not captured.  The soil moisture patterns from the EMT+VS model reproduce the main 

features in the observed patterns but underestimate the overall range in moisture values.  The 

difference in moisture between the opposing hillslopes is better captured as the resolution of the 

input improves.  The EMT+VS soil moisture patterns also exhibit abrupt changes in moisture at 

the boundaries of the coarse grid cells.  These features occur because each coarse grid cell is 

independently downscaled when the fixed window procedure is used.  They are also similar to 

the abrupt changes observed for other methods that downscale each cell independently [Fang 

and Lakshmi, 2014, Merlin et al., 2013, Merlin et al., 2012].  

The accuracy of the fixed window procedure is compared to that of the shifting window 

procedure in Figure 5.  The analysis was performed in the same manner as Figure 3, but the 

shifting window procedure was implemented with box, disk, and Gaussian weighting.  For 

Gaussian weighting,   was selected to be the length of the coarse grid cell (x ) divided by 

2.35.  This   value makes the weight at the edge of the window half of the weight at the center 

of the window.   For all catchments and coarse resolutions considered, the fixed window 

procedure has higher average NSCE values than the shifting window procedure (on average, it is 

about 0.03 higher).  However, the performance of the two methods becomes more similar as the 

resolution gets coarser (particularly at Tarrawarra where the two methods converge).  The 

performance of the fixed and shifting window methods were also evaluated using root-mean 

squared error (RMSE) and mean relative error (MRE) and similar results to NSCE were found.  

On average, the RMSE of the fixed window procedure is about 0.00074 m3m-3 lower than that of 

the shifting window procedure. Similarly, the MRE is about 0.0063 smaller for the fixed window 

procedure.  The weighting method has only a small effect on the performance of the shifting 
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window procedure, and the method with the best performance differs between catchments 

(Figure 5).  For Tarrawarra and Cache la Poudre, Gaussian weighting usually performs the best, 

but for Nerrigundah, it usually performs the worst.     

One reason that the fixed window procedure outperforms the shifting window procedure 

can be seen in Figure 6.  Results in Figure 6 consider the RMSE (m3m-3) of the average soil 

moisture that is calculated from the output fine-resolution pattern within each coarse grid cell.  

The fixed window procedure always has zero RMSE because it maintains the average soil 

moisture in each coarse grid cell exactly.  The fixed window always aligns with the coarse grid, 

so the coarse soil moisture value is directly used in the downscaling method.  The shifting 

window procedure does not preserve the average soil moisture in each coarse grid cell because 

the window is centered on the fine grid cell of interest and the average is usually calculated from 

multiple adjacent coarse grid values.  The RMSE of the average soil moisture is typically about 

0.02, 0.05, and 0.08 m3m-3 for the Tarrawarra, Nerrigundah, and Cache la Poudre catchments, 

respectively.  These errors do not change significantly with resolution.  The differing RMSE 

values are likely due to differences in the spatial correlation structure of the observed soil 

moisture.  This error is a key reason why the shifting window procedure is less accurate than the 

fixed window procedure.  It also suggests that the fixed window procedure is likely to perform 

better than the shifting window procedure if used in other downscaling methods because the 

same situation would occur.  

Figure 7 shows example output soil moisture maps for Nerrigundah when the fixed 

window and shifting window procedures (with associated weighting methods) are used.  The day 

shown (15 Sep 97) has intermediate soil moisture relative to the rest of the dataset.  Similar to 

Figure 4, the fixed window procedure produces abrupt changes in moisture at the coarse grid 
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boundaries (Figure 7c).  In contrast, all three shifting window procedures produce smooth 

transitions at these boundaries (Figure 7d-f).  The soil moisture maps produced by the three 

weighting procedures (box, disk, and Gaussian) are similar in appearance just as they were 

similar in accuracy.  The generated soil moisture patterns from the other dates and catchments 

showed similar results. 

Gaussian weighting differs from the other procedures because it requires specification of 

a parameter  .  Figure 8 shows the performance of the downscaling method when three 

different values of   are used: / 2.35x , / 4x , and / 6x .  Larger sigma values were also 

tested but do not perform better than those shown in Figure 8.  For / 4x   , 95% of the 

overall weight is given to points within a distance of x .  Likewise, / 4x    creates a 

window with 99.7% of the weight falling within the distance of x .  For reference, the NSCE 

for the fixed window procedure is also included in Figure 8.  The best   value is inconsistent 

between different catchments and resolutions.  While / 2.35x    is usually the most accurate 

Gaussian procedure at Tarrawarra and Cache la Poudre, it is the least accurate at Nerrigundah. 

Also, the best   value depends on the coarse grid resolution at Cache la Poudre, with the best 

value changing at a resolution near 36 m.  These inconsistencies are again likely due to 

differences in the spatial correlation structure of the soil moisture and the EMT+VS indices at 

each catchment. 

Next, we evaluate the downscaling methods for the large Eastern Victoria region, which 

allows consideration of much larger coarse grid cells.  Because local soil moisture observations 

are not available to evaluate the model results, we assume that the fixed window procedure 

remains the most accurate for this large region and evaluate the difference between the other 

methods and the fixed window method.  Figure 9 shows the NSCE for the shifting window 
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procedure (with different weighting methods) when compared to fixed window procedure.   

Specifically, Figure 9a shows this NSCE for the small Tarrawarra catchment when a range of 

coarse grid resolutions are used, and Figure 9b shows this NSCE for the large Eastern Victoria 

region when the coarse resolution AGRMET data are used. The high NSCE values in Figure 9a 

suggest that the box, disk, and Gaussian procedures are close approximations of the fixed 

window procedure and that the similarity increases as the size of the coarse-grid cells increases.  

Figure 9b is consistent with this trend.  The similarity between the results is even higher when 

the very large grid cells are used across the larger region.  Because of the high similarity between 

the fixed and shifting window patterns, the shifting window method is expected to have similar 

accuracy to the fixed window pattern when applied at large scales. This similarity is also 

confirmed when using other measures. The RMSE and MRE range 0.017-0.018 m3m-3 and 

0.046-0.057, respectively. 

Soil moisture maps produced by the EMT+VS model for Eastern Victoria on a date with 

intermediate moisture (01 Nov 08) are shown in Figure 10 (zoomed-in images are in Appendix 

B).  Similar to the small catchments, the fixed window procedure produces abrupt changes in soil 

moisture at the coarse grid boundaries, but smooth transitions are seen for the box, disk, and 

Gaussian procedures.  The patterns from the three shifting window procedures are almost 

indistinguishable visually.  It should be noted that the figure shows fine resolution patterns over 

very large regions, so much of the variability that is introduced by downscaling is not visible 

here.  The difference map shows the box weighting results minus the fixed window results.  The 

largest differences are observed at the coarse grid edges.  In addition, some stream patterns are 

evident in the differences.  Near the coarse grid boundaries, the spatial averages used by the 

shifting window diverge from those used by the fixed window.  The different averages can 
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produce different weighting of the underlying soil moisture estimates that are used in the 

EMT+VS model.  Overall, the range of differences indicate that the methods produce very 

similar results over most areas.  Maps of the box, disk, and Gaussian weighting results were also 

examined and appear visually indistinguishable. 

Histograms of soil moisture were calculated to understand the difference in the statistical 

properties of the downscaled patterns.  Figure 11 shows the histograms of the input, fixed 

window procedure, and shifting window procedure with box weighting for the same date that 

was shown in Figure 10.  The histogram of the input soil moisture (Figure 11a) is unrealistic 

(e.g., no values near 0.1 are observed) due to the coarse resolution of the map.  Both downscaled 

soil moisture maps exhibit more continuous ranges of moisture than the input. The histograms 

from the fixed and shifting window (Figure 11b-c) procedures are similar, but the shifting 

window histogram has more values near 0.1.  These values are associated with the smooth 

transition between adjacent dry and wet coarse grid cells.   

Semi-variograms were also used to characterize the spatial correlation structures of the 

soil moisture estimates produced by the different methods. The nugget, sill, and range are all 

similar among the different methods, showing that spatial structures of the estimates are similar.  

Although the abrupt boundaries between large cells are visually pronounced, the boundary area 

is very small compared with the domain, so the nugget effect is reduced by pairs away from the 

boundary.  Differences over short lags are also dominated by stream channels in both methods.  

In a further attempt to see a statistical difference in the nugget, the boundaries were isolated 

(points far from boundaries were removed) and the new images were analyzed.  Semi-

variograms were fitted to images that included 100%, 43%, 21%, and 8.5% of Eastern Victoria 

by area as seen in Appendix C. At 43% area, the fixed method had a nugget of 0.00166 and box 
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weighting had a nugget of 0.00154.  Other areas that were analyzed had nuggets that were the 

same for the fixed method and box weighting.   

It is worth noting that the computational efficiency varies for the different weighting 

methods.  The fixed window procedure is much quicker than the shifting window procedure 

because each coarse grid cell is downscaled independently and can be processed in parallel.  For 

the shifting window procedure, box weighting is the most efficient because it utilizes two 1-D 

filters that are the same length and width as the coarse grid. The 1-D filter is passed over the 

image twice (once vertically and once horizontally) producing the equivalent of a 2-D filter.  

Gaussian weighting also utilizes the two 1-D filters, but it is slightly more computationally 

expensive than box weighting because the window is typically larger (due to the tail on the 

Gaussian distribution).  Disk weighting is much more computationally expensive because it 

cannot easily utilize the 1-D filter algorithm.  It requires about ten times the computation time of 

the other shifting window methods. 
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5. CONCLUSIONS 

 

In this paper, the EMT+VS model was generalized to downscale soil moisture from 

multiple coarse resolution grid cells.  The presence of multiple grid cells affects the calculation 

of spatial averages that appear in the EMT+VS model.  To calculate these averages, two 

windowing methods were considered (fixed and shifting), and for the shifting window, three 

weighting methods were evaluated (box, disk, and Gaussian).  Based on the results, the following 

conclusions can be made: 

1. The EMT+VS model successfully downscales soil moisture when supplied with multiple 

coarse-resolution grid cells of soil moisture.  Specifically, for all catchments and coarse 

resolutions considered, the soil moisture patterns produced by the model capture more of 

the observed soil moisture variability than the coarse grid soil moisture patterns, which 

suggests that the downscaling provides added value.  The accuracy of the generated soil 

moisture patterns improves as the resolution of the coarse grid becomes finer.  However, 

the increase in the NSCE compared to the coarse resolution input becomes smaller as the 

coarse grid becomes finer.  The calibrated parameter values are also relatively robust with 

respect to the resolution of the input. 

2. Among the two windowing methods considered, the fixed window method provides the 

more accurate fine-resolution soil moisture patterns.  The NSCE of the fixed window 

procedure is about 0.03 more (explains 3% more of the variance) than shifting window 

procedure for the small catchments.  If applied to regions with larger coarse grid cells, the 

difference in accuracy is likely smaller because the fixed and shifting window patterns 

become more similar in such cases.  The fixed window approach is more accurate 
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because it preserves the spatial average soil moisture within the original coarse grid cells.  

Thus, this windowing method is also expected to have better performance when used 

with other soil moisture downscaling methods.  

3. Although less accurate, the shifting window procedure provides smooth transitions in the 

soil moisture between coarse grid cells for all weighting methods considered.  Smooth 

transitions are also expected to occur if the shifting window method is used with other 

soil moisture downscaling methods.  Smooth transitions may be important for some 

applications such as determining optimal vehicle routing across the landscape. 

4. For the shifting window procedure, the box, disk, and Gaussian weighting methods 

perform similarly.  The most accurate weighting method varies among the cases 

considered, and the best standard deviation for Gaussian weighting also depends on the 

case considered.  In the end, the box method is recommended for practical applications 

because it is the most computationally efficient and does not require specification of a 

parameter. 

Future research should consider the performance of these methods when applied to larger 

regions with abundant local soil moisture observations.  This study evaluated the treatment of 

multiple coarse grid cells when those cells were relatively small due to the limited spatial extent 

of the available soil moisture datasets.  One could instead compare against remotely-sensed 

estimates of soil moisture (such as AirMoss [Chapin et al., 2012, Tabatabaeenejad et al., 2015]).  

Although such estimates are likely less reliable than TDR measurements, that approach would 

allow consideration of much larger spatial extents.  The methods could also be tested when they 

are coupled with other soil moisture downscaling methods or when downscaling other variables.  

Finally, the coarse resolution soil moisture values used in our experiments were calculated as 
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arithmetic averages of the soil moisture values occurring within each grid cell.  However, some 

remote sensing methods may emphasize soil moisture values that occur near the center of the 

coarse grid cell.  The methods considered in this paper could be tested when unequal weightings 

are used to determine the coarse grid cell values.  Likewise, further research could investigate 

how errors in the coarse resolution soil moisture propagate to the fine resolution soil moisture 

patterns. 
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6. FIGURES 

 

Figure 1. Illustration of the alignment of (a) the fixed window and (b) the shifting window 
relative to the coarse grid of soil moisture.  The window determines the values that are used to 
calculate averages in the EMT+VS model.  Also, illustration of (c) box, (d) disk, and (e) 
Gaussian weighting functions that are used to calculate the averages. 
 



29 

 

 

Figure 2. Topographic maps of the four test sites including (a) the Tarrawarra catchment, (b) the 
Nerrigundah catchment, (c) the Cache la Poudre catchment, and (d) the Eastern Victoria region 
(which includes the Tarrawarra catchment). 
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Figure 3.  Evaluation of the accuracy of downscaling multiple coarse grid cells of soil moisture 
with the EMT+VS model when the fixed window procedure is used for (a) Tarrawarra, (b) 
Nerrigundah, and (c) Cache la Poudre.  Average NSCEs are calculated by comparing the 
downscaled soil moisture to the observed soil moisture for all dates in the available dataset and 
all possible origins for the coarse resolution input.  Average effective linear grid size refers to the 
resolution of the coarse grid that is supplied to the downscaling method. 
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Figure 4.  Soil moisture maps for Tarrawarra on 27 Sep 95.  Top row (a-c) shows the coarse 
resolution soil moisture input (resolution becomes coarser to the right as labeled).  These grid 
cells correspond to 74 m, 102 m, and 124 m average effective grid sizes (from left to right).  
Second row (d-f) shows the fine resolution soil moisture output using the fixed window 
procedure, and bottom row (g-i) shows the observed soil moisture (plots g-i are the same). White 
cells are locations with missing data. 
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Figure 5. Comparison of the accuracy of fine-resolution soil moisture maps produced by the 
EMT+VS model when the fixed and shifting window procedures are used for (a) Tarrawarra, (b) 
Nerrigundah, and (c) Cache la Poudre.  For the shifting window procedure, box, disk, and 
Gaussian ( / 2.35x   ) weighting are used as labeled.  Average NSCEs are calculated from all 
dates in the available dataset and all possible origins for the coarse resolution soil moisture input.  
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Figure 6. RMSE (m3m-3) in the average soil moisture within each coarse grid cell from the fine-
resolution maps at (a) Tarrawarra, (b) Nerrigundah, and (c) Cache la Poudre.  Gaussian 
weighting uses / 2.35x   .  RMSEs are averages from all dates in the available dataset and all 
possible origins for the coarse resolution input. 
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Figure 7. Soil moisture maps for 15 Sep 97 at Nerrigundah showing (a) the observed pattern, (b) 
the coarse resolution input (average effective grid size of 78 m), (c) the fine resolution output 
from the fixed window procedure, and the fine resolution output from the shifting window 
procedure when (d) box, (e) disk, and (f) Gaussian weighting are used.  Gaussian weighting uses 

/ 2.35x   .  
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Figure 8. Comparison of the accuracy of the fine resolution soil moisture maps produced by the 
EMT+VS model when the shifting window procedure is used with Gaussian weighting for (a) 
Tarrawarra, (b) Nerrigundah, and (c) Cache la Poudre.  Average NSCEs are calculated from all 
dates in the available dataset and all possible origins for the coarse resolution input. 
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Figure 9. Similarity between the fine resolution soil moisture maps produced by the fixed and 
shifting window procedures at (a) the Tarrawarra catchment and (b) the Eastern Victoria region.  
Gaussian weighting uses / 2.35x   .  NSCE is calculated by considering the fixed window 
soil moisture as the observation dataset and the other methods as the model output.  For (a), 
average NSCEs are calculated from all dates in the available dataset and all possible origins for 
the coarse resolution input.  For (b), only the AGRMET coarse resolution input is used. 
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Figure 10. (a) Coarse resolution AGRMET soil moisture, (b) results of the fixed window 
method, (c) results of the box weighting method, and (d) results of the box weighting method 
minus the results of the fixed window method for Eastern Victoria on 01 Nov 08. 
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Figure 11. Histograms of soil moisture for Eastern Victoria on 01 Nov 08 using (a) the coarse 
resolution input, (b) the fine resolution output from the fixed window procedure, and (c) the fine 
resolution output from the shifting window procedure with box weighting. 
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8. APPENDICIES 

8.1 APPENDIX A 

Parameter

Lower Upper Calibrated Lower Upper Calibrated Lower Upper Calibrated

Climate E p  (mm/day) 2.25 2.25 2.25 2.81 2.81 2.81 2.55 2.55 2.55

α 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26

Vegetationȕ r 0.2 5 3.55 0.2 5 1.60 0.2 5 5.00

ȕ a 0.2 5 5 0.2 5 5 0.2 5 3.6002

Ȝ 0 1 0.37 0 1 0.96 0 1 0.89

Ș 0.01 1 0.83 0.01 1 1.00 0.01 1 0.04

ȝ 1 1 1 1 1 1 1 3 1.92

ȗ  (m) 1 1 1.000 1 1 1.000 0.001 200 0.026

V 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Soil φ  (m3/m3) 0.29 0.70 0.700 0.41 0.56 0.435 0.38 0.41 0.409

K s,v  (mm/day) 17 3355 386.3 36 2592 36.0 936 1845 984.9

Ț 1 500 47.2 1 500 209.4 1 500 75.4

Ȗ h 1 36.2 6.92 1 29.92 5.01 1 19.3 14.36

Ȗ v 6.68 36.2 14.12 6.3 29.92 29.15 6.3 19.3 14.10

į 0  (m) 0.3 0.3 0.3 0.25 0.25 0.25 0.05 0.05 0.05

ț min  (1/m) -1000000 -0.009 -886375 -1000000 -0.0057 -643233 -1000000 -0.056 -651810

İ 1 3 1 1 3 1 1 3 3

Tarrawarra Nerrigundah Cache la Poudre



46 

 

8.2 APPENDIX B 
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8.3 APPENDIX C 
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