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ABSTRACT 

 

A CLIMATOLOGICAL STUDY OF SNOW COVERED AREAS 

IN THE WESTERN UNITED STATES 

 

 Snow accumulation and timing of melt affect the availability of water resources for the 

Western United States.  Climate warming can significantly impact the hydrology of this region 

by decreasing the amount of precipitation falling as snow and altering the timing of snowmelt 

and associated runoff.  Therefore, it is essential to characterize how regional climatology affects 

snow accumulation and ablation and to identify areas that may be especially sensitive to climate 

warming.  This can help resource managers plan appropriately for hydrologic changes.  This 

study utilizes 11-year average (2000 – 2010) MODIS Snow Cover Area (SCA) and Land Surface 

Temperature (LST) data and annual PRISM precipitation to determine how elevation, slope 

orientation, latitude, and continentality influence regional characteristics of SCA and LST for 

early April, early May, early June, and early July in four focus regions: the Colorado Rockies, 

the Sierra Nevada, the Washington Cascades, and the Montana Rockies.  Then, using monthly 

averages of the 11-year MODIS SCA for January to June, we examine the spatiotemporal 

evolution of the snowpack and LST throughout the Western U.S.  We use threshold values of 

January to July 11-year average SCA to determine the duration of snow persistence and delineate 

zones of intermittent, transitional, persistent and seasonal snow.  Within the transitional and 

persistent snow zones, we use 11-year average LST data for January-February-March (LSTJFM) 

to categorize five different snow sensitivity zones.  Areas with the highest winter average land 

surface temperatures are assumed to be most sensitive to climate warming, whereas areas with 

the lowest land surface temperature are assumed to be least sensitive.   
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 Results show that snow cover tends to increase with increasing elevation, and the 

elevation of snow cover is lower in higher latitudes, maritime environments, and most western 

slopes.  Land surface temperature tends to decrease with increasing elevation, increasing latitude, 

and tends to be colder on most western slope sites.  The largest divergence between eastern and 

western slope SCA and LST characteristics is observed in the Sierra Nevada, while little 

divergence is observed in the Colorado Rockies.  Snow cover in the Western U.S. is observed 

predominantly along two main axes: from north to south along the Cascades and the Sierra 

Nevada, and from northwest to southeast along the axis of the Rocky Mountain Cordillera.  The 

snow line is lowest in the Washington Cascades and highest in the Colorado Rockies; between 

these two areas a northwest/southeast elevation gradient is observed.  The warmest snow zones 

(warmest JFMLST) are at lower elevations of the Cascades/Sierra Nevada and in the southwest, 

whereas coolest snow zones (coldest JFMLST) are in the interior northern Rockies, mid to higher 

elevations of the Cascades, and the higher elevations of the Colorado Rockies and the Sierra 

Nevada.  The warmest snow zones are likely to be most sensitive to climate warming, as these 

locations are vulnerable to shifting toward intermittent winter snow cover.   
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CHAPTER 1: INTRODUCTION, BACKGROUND AND OBJECTIVES

 

1.1 INTRODUCTION 

The snowpack is the largest reservoir of water in the western region of the United States, 

contributing 50-80% of the total water supply (Doesken and Judson, 1997).  The Western U.S. 

depends on this snowmelt runoff to provide water for municipal, industrial, recreational and 

agricultural needs (Barnett et al., 2008).  The location and duration of snow cover affects the 

local and global energy balance due to the high albedo of snow compared to land surfaces 

(DeBeer and Pomeroy, 2009; Déry et al., 2005) along with the insulating properties of snow 

(Déry et al., 2005).  In mountain environments, the persistence of snow affects the plant growing 

season and the amount of water available for soil moisture (Billings and Bliss, 1959).  The 

timing and magnitude of available surface runoff in the Western U.S. depends on the amount of 

snowpack accumulated in a season and the timing and rate of melt (Barnett et al., 2008; Nolin 

and Daly, 2006; Stewart, 2009).  Therefore, the Western U.S. could be adversely affected by 

climate warming, which can significantly alter snow environments (CIRMOUNT, 2006).   

Already, the Western U.S. has experienced some of the greatest warming in the county, 

and changes in snowpack and streamflow characteristics have been observed (Stewart, 2009).  

Many areas of the Western U.S. have documented reductions in April 1
st
 snow water equivalent 

(SWE) (Hamlet et al., 2005; Mote et al., 2005; Stewart, 2009) and an increase in the fraction of 

precipitation falling as rain rather than snow (Knowles et al., 2006; Pederson et al., 2010; 

Stewart, 2009), which decreases the amount of water available for spring and summer runoff.  
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These trends have been particularly apparent in areas characterized by warmer winter and/or 

spring time air temperatures, and future warming is predicted to further exacerbate these 

problems (Hamlet et al., 2005; Knowles et al., 2006; Stewart, 2009).  Several studies have 

documented earlier dates of snowmelt onset and earlier hydrograph rise (Cayan et al., 2001; 

Clow, 2010; Stewart, 2009).  Decreases in the duration of the snowcover causes a negative 

feedback loop due to the corresponding decrease in albedo; thus as snowpacks decrease in 

response to warmer temperatures, increased absorption of solar radiation causes an 

intensification of warming trends and further reductions in snowpack (Déry et al., 2005; Stewart, 

2009).  As such, water resources in the Western United States may see significant changes in 

response to continued climate warming (Barnett et al., 2008; Huber et al., 2005; Mote et al., 

2005; Nolin and Daly, 2006; Stewart, 2009).  Such changes will have significant impacts on the 

western water budget, which will in turn affect environmental, economic, social, and political 

realms.   

 

1.2 BACKGROUND 

Measurements of the snowpack are essential for monitoring and modeling snowpack 

characteristics and trends.  Measurements of snowpack occur at a point through manual or 

automated procedures, or with remote sensing, both of which have their respective advantages 

and disadvantages.  Snow water equivalent (SWE), a measurement common at ground-based 

point stations, is the amount of water held in a snowpack.  From a resource management 

perspective, the spatial distribution of SWE is a top priority to assess the potential runoff during 

the melt season.  However, across the Western U.S. SWE has traditionally been measured at 

sparse point locations (Martinec and Rango, 1981; Stewart, 2009), which have to be interpolated 
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in space in order to estimate the volume of water held in a snowpack (Cline et al., 1998).  Since 

SWE can exhibit great variability across space, especially in mountain regions (DeBeer and 

Pomeroy, 2009; Déry et al., 2005; Elder et al., 1991), this can lead to large errors in estimates of 

SWE.  Furthermore, snowfall measured with rain gauges may significantly under-represent the 

amount of actual snowfall due to undercatch (Fassnacht, 2004).  Additionally, there is a lack of 

snowpack measurements above the tree line (Mizukami and Perica, 2008), an area that can 

receive high amounts of snow accumulation.  Therefore, snowpack in the mountainous regions 

of the Western United States may be substantially undersampled through point measurement 

techniques (CIRMOUNT, 2006; Stewart, 2009).   

Temperature measurements are essential for many modeling and modeling applications, 

especially those concerning climate change.  Point measurements of temperature demonstrate 

many of the same disadvantages as point snowpack measurements.  Temperature is highly 

variable over space, yet climate stations measuring temperature in the Western U.S. are relatively 

sparse and are often situated in valley bottoms (Barry, 2008; Cayan, 1996).  Most weather 

stations measure air temperature; there are very few ground based stations which measure 

surface temperature (Coll et al., 2005).  Despite the relatively sparse ground based network of 

snow and temperature measurements, these measurement are often employed in studies 

describing regional climatology and climate change trends (Armstrong and Armstrong, 1987; 

Cayan, 1996; Clow, 2010; Knowles et al., 2006; Mizukami and Perica, 2008; Mock, 1996; Mote 

et al., 2005; Serreze et al., 1999). 

Remote sensing offers exciting opportunities to expand and improve upon snowpack 

monitoring on a global scale, but it is not without its drawbacks.  Remote sensing is useful to 

monitor the seasonal (Martinec and Rango, 1986) and long term trends (Robinson and Frei, 
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2000) in snow cover.  Although remote sensing can provide continuous measurements, tradeoffs 

must be made between spatial and temporal resolution.  Higher temporal resolution is typically 

associated with reduced spatial resolution and vice versa.  Passive microwave remote sensing has 

been used to measure SWE, but it has a very coarse spatial resolution (e.g. ~25km grid cell for 

the SSM/I product) and presents difficulties in measurements of wet snowpacks or snow in 

mountainous terrain (Blyth, 1993; Grody and Basist, 1996).  Snow covered area (SCA) provides 

a useful measurement for several snowpack monitoring and modeling applications.  SCA is 

easily observable because snow has high reflectance in the visible, thermal infrared, and 

microwave wavelengths of the electromagnetic spectrum (Hall and Martinec, 1985).  Although 

SCA measurements do not supply information on the volume of water held in a snowpack, they 

do provide  information on the spatial distribution of snow, which is important for distributed 

and semi-distributed hydrologic modeling (Cline et al., 1998; DeBeer and Pomeroy, 2009; 

DeWalle and Rango, 2008; Déry et al., 2005; Martinec and Rango, 1981) and global atmospheric 

modeling (Robinson and Frei, 2000).   

Several snow cover products are available; two commonly used snow cover products are 

from the National Weather Service National Operational Hydrologic Remote Sensing Center 

(NOHRSC) and NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS).  NOHRSC 

is a modeled snow cover product produced daily at a 1km resolution using imagery from the 

Advanced Very High Resolution Radiometer (AVHRR) and the Geostationary Operational 

Environmental Satellite (GOES) (Maurer et al., 2003).  MODIS provides snow cover using the 

Normalized Snow Difference Index (NSDI), which is calculated as the differences between 

surface reflectance observed in visible (0.545 – 0.565μm) and near infrared (1.628-1.652μm) 

wavelengths divided by the sum of these reflectances.  MODIS data are provided at a 500 m grid 
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resolution, daily and as an 8-day composite, from both the Terra (available since 2000) and Aqua 

(available since 2002) satellite platforms (Hall et al., 2002).  Maurer (2003) found the daily 

MODIS data product to be superior to the NOHRSC product, classifying fewer pixels as cloud 

and more accurately classifying snow/no-snow pixels based on comparison to ground-based 

station observations of SWE.   

Cloud cover obscuration is one of the main disadvantage of remotely sensed SCA 

(Parajka and Blöschl, 2008; Parajka et al., 2010; Robinson and Frei, 2000).  For MODIS imagery 

cloud cover can be greatly reduced by using imagery from the Terra and Aqua satellite 

platforms, which pass over the same geolocation approximately 12 hours apart, to create a single 

image composite (Parajka and Blöschl, 2008) or by using the 8-day composite MODIS SCA 

product (Hall et al., 2002).   

In addition to the MODIS SCA products, MODIS also provides daily measurements of 

land surface temperature (LST), which could be useful for energy balance modeling and 

monitoring global climate change (Justice et al., 1998).  The product is sensitive to cloud 

temperature, and therefore cloud covered pixels are excluded from the product.  The MODIS 

land surface temperature product is based on measurements of thermal radiation (within the 3.5 -

4.2 μm range) emitted from the land surface.  The land surface temperature data product has 

been available since 2000.  Data are provided at a 1km gridded resolution for daily or 8-day time 

intervals.  The accuracy of the product has been tested by comparing remotely sensed MODIS 

LST measurements to in-situ LST measurements and was found to have a high degree of 

accuracy (+/- 1°K) (Wan, 2008; Wan et al., 2004).  Thus the product can provide an overview of 

the spatiotemporal characteristics of land surface temperature.  Since a decade-long MODIS 

record exists, which has continuous spatial coverage, this study utilizes MODIS derived snow 
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cover area and land surface temperature, rather than point station data, to analyze the 

spatiotemporal characteristics of snow and land surface temperature and to assess the sensitivity 

of seasonally snow covered areas to climate change in the Western United States.   

 

1.3 OBJECTIVES 

The primary objectives of this research are to (1) determine the spatiotemporal variability 

of snow cover and land surface temperature across the Western United States, (2) identify and 

map snow zones with similar characteristics, and (3) identify snow covered areas that may be 

most sensitive to climate change.  To meet these objectives, we investigate the spatial and 

temporal patterns of MODIS snow covered area and land surface temperature as they relate to 

physiographic characteristics across the Western United States.  Within smaller focus regions, 

we examine how snow covered area, land surface temperature, and precipitation vary with 

elevation, maritime versus continental climates, higher-mid latitude versus mid-latitude 

environments, and eastern versus western slopes.  Then, for the entire Western U.S., we use 

average winter and springtime snow cover to identify zones of persistent, transitional, 

intermittent, and seasonal snowpacks, determine the spatiotemporal distribution of land surface 

temperature within seasonally snow covered areas, and use average wintertime land surface 

temperature to identify which snow zones may be sensitive to climate warming.   
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CHAPTER 2: DATA AND METHODS 

 

2.1 STUDY AREA 

The study area includes basins located within Western United States west of the 100
th

 

meridian (Figure 2.1).  The area is divided into hydrologic basins defined by the 8-digit USGS 

hydrologic unit code (huc); only basins that lie entirely within the United States border are 

included in analyses.  Each basin is divided into 100 m elevation contours; these elevation zones 

are the spatial unit used for analyses in this study, and they are referred to as huc100.  The 

huc100 spatial unit is chosen to analyze the influence of elevation on snow cover, land surface 

temperature, and precipitation in the Western U.S.  Elevation of the Western United States study 

area ranges from 86 m below mean sea level (msl) in Death Valley, California, to 4,421 m above 

msl, a mere 120 km away at the peak of Mt. Whitney (Figure 2.1).   

Throughout the Western U.S. precipitation and temperature are highly variable; Figure 

2.3 shows the average annual precipitation and average annual temperature for 1971 to 2000 

from PRISM.  As a whole, the Western U.S. boasts a wide variety of climates, including coastal 

environments, deserts, montane regions, and rainforest.  Continental snow environments tend to 

have cold, dry winters with shallower, less dense snowpacks while maritime snow environments 

are typically characterized by milder winters and deeper, denser snowpacks (Armstrong and 

Armstrong, 1987; Mizukami and Perica, 2008; Serreze et al., 1999).   

Within the Western U.S. study region, four areas are defined for in-depth analyses: the 

Colorado Rockies, Sierra Nevada, Washington Cascades, and Montana Rockies (Figure 2.1; 
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Figure 2.2).  These in-depth areas are chosen to represent examples of four different climate 

zones, selected to illustrate the influence of latitude and continentality on snow cover, land 

surface temperature, and precipitation in the Western U.S.  These in-depth areas are further 

subdivided into western and eastern slope regions, referred to in this paper as focus regions, to 

examine the effects of primary slope orientation in each area.  Focus region huc statistics are 

included in Appendix A. 

 

 

Figure 2.1 Elevation of Western United States study areas.  Eastern slope focus region hucs 

are outlined in red, and western slope focus region hucs are outlined in blue. 
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Figure 2.2 Elevation of the (a) Washington Cascades (b) Montana Rockies (c) Sierra Nevada 

and (d) Colorado Rockies focus study regions.  Western slope focus regions are shown in blue, 

and eastern slope focus regions are shown in red.   
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Figure 2.3 Average annual precipitation and average annual temperature (1971-2000) in the 

Western United States.  Source: Oregon State University PRISM model 

(http://www.prism.oregonstate.edu/). 
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The Köppen-Geiger climate classifications for the focus regions are displayed in Figure 

2.4 (Peel et al., 2007).  The Sierra Nevada is largely classified as a temperate climate with a hot 

or warm dry summer, especially along the western portions, but also includes cold climates with 

a warm dry summer, as well as cold arid steppe/desert.  The western portion of the Washington 

Cascades is classified primarily as temperate with a dry/hot summer, while the eastern portion is 

cold with a dry warm summer and arid steppe.  The Montana Rockies are located at a relatively 

high latitude and exhibit both maritime and continental climate characteristics, with the western 

slope being a predominantly maritime climate while the eastern slope is predominantly 

continental (Finklin, 1986).  The Köppen-Geiger climate classification for the Montana Rockies 

focus regions is a cold climate without a dry season and a warm summer on the western portion 

and on the eastern portion the climate is characterized as cold with a dry winter and a hot 

summer (Peel et al., 2007).  The Colorado Rockies are a predominantly cold climate without a 

dry season and with a warm or cold summer, with highest areas classified as polar tundra.  Near 

Denver, Colorado the climate is classified as temperate without a dry season and a hot or warm 

summer, and cold without a dry season with a  hot summer.  Further east along the great plains 

region of Colorado is classified as cold arid steppe with a small area of cold arid desert. 
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Figure 2.4 Köppen-Geiger climate classification (Peel et al., 2007) for the (a) Washington 

Cascades (b) Montana Rockies (c) Sierra Nevada and (d) Colorado Rockies focus study regions.  

Western slope focus regions are shown in blue, and eastern slope focus regions are shown in red.   
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2.2 DATA 

Within the study region, we examined spatiotemporal differences of MODIS snow 

covered area, MODIS land surface temperature, and the spatial differences in precipitation as 

estimated by the PRISM model.  Focus regions are utilized to facilitate in-depth understanding of 

regional patterns and the Western U.S. region is analyzed to assess wider-scale patterns.   

 

2.2.1 Snow Covered Area 

 The SCA data used in this study are the NASA MODIS/Terra Snow Cover 8-Day L3 

Global 500m Grid, Version 5 (Product code MOD10A2) available from the National Snow and 

Ice Data Center (NSIDC <http://nsidc.org/data/>) covering the time period of January 1
st
 to 

August 12
th

 for 2000 to 2010.  The Terra MODIS satellite did not start collecting data until 

February 26
th

 of 2000, so there is no snow cover data prior to that time.  The MODIS SCA 

product is derived with the normalized snow difference index (NSDI), which divides the 

difference between the surface reflectance measured by band 4 (0.545 – 0.565μm) and band 6 

(1.628-1.652μm) by the sum of band 4 and band 6:  

      
               

               
     (2.1) 

A pixel is considered snow if reflectance of band 2 (0.841 – 0.876μm) is greater than 11% and 

the NSDI is greater than 0.4 (Hall et al., 2002).  The algorithm classifies each pixel as snow, no 

snow, cloud, lake ice, ocean, detector saturated, fill, night, no decision, and data missing.  The 8-

day data product classifies a pixel as snow covered if any day within the eight day period is 

covered in snow.  The data are available in a gridded sinusoidal projection at a 500m gridded 

spatial resolution.  Several quality assessments studies of the MODIS SCA product have found it 

to be an accurate and reliable data product (Hall and Riggs, 2007; Hall et al., 2002).  Although a 
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daily MODIS SCA data product is available, the 8-day composite is used in this study due to the 

marked decrease in cloud cover, which is the primary limitation of the MODIS snow cover 

products (Parajka and Blöschl, 2008; Parajka et al., 2010; Robinson and Frei, 2000).   

 

2.2.2 Land Surface Temperature 

The land surface temperature data product used in this study is the MODIS Land Surface 

Temperature and Emissivity 8-Day L3 Global 1km product (Product code MOD11A2) provided 

by NASA for the time period of January 1
st
 to August 12

th
 for 2000 to 2010.  As mentioned 

previously, there are no land surface temperature data prior to February 26
th

 2000 from the Terra 

satellite sensor.  MODIS Land Surface Temperature is determined by measuring the thermal 

radiation emitted by the land surface in clear sky conditions with bands 31 (10.780 – 11.280 μm) 

and 32 (11.770 – 12.270 μm) and employing a generalized split window algorithm, described in 

detail in Wan (2004).  These data have been validated as reliable for scientific use and are 

considered accurate within 1°C (Wan, 2008; Wan et al., 2004).  These data provide 8-day 

average day time land surface temperatures at a 1km gridded resolution.   

 

2.2.3 Precipitation 

 The precipitation values used in this study were derived by the Parameter-elevation 

Regression on Independent Slopes Model (PRISM) developed by Oregon State University 

(<http://www.prism.oregonstate.edu/>).  PRISM provides annual average precipitation from 1971 to 

2000 at an 800 m gridded resolution.  The PRISM model uses point precipitation data from 

weather stations and interpolates precipitation over space by taking into consideration the 

influences of topography (Neilson and Phillips, 1994).  It is considered a high quality product 
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and has been implemented in many climatological and hydrological studies (Nolin and Daly, 

2006). 

 

2.3 DATA PROCESSING AND PREPARATION 

MODIS snow cover and land surface temperature data for the Western U.S. consists of 9 

separate tiles, which are mosaicked and reprojected into the USGS version of the USA 

Contiguous Alber’s equal area conic projection using IDL.  This process is repeated for each 8-

day image in the 2000-2010 dataset.  Then, for each 8-day image, the SCA percentage is 

calculated for every huc100, (the 100 m elevation zones that are the spatial unit of analysis for 

this study), by Equation 2.2: 

         
 

      
*100%     (2.2) 

where          is the snow cover percentage on a certain day for a certain year, S is the number 

of pixels classified as snow, and NS is the number of pixels classified as no snow.  If a pixel is 

classified as cloud, lake ice, ocean, detector saturated, fill, night, no decision, or data missing it is 

not included in analyses.  If a huc100 contains greater than 20% cloud cover, it is excluded from 

the results. 

 Land surface temperature for a certain day of year for the period from 2000 to 2010 is 

calculated as the arithmetic mean of all pixel values within each huc100.  Cloud cover is not 

taken into consideration due to the fact that MODIS does not calculate LST for cloud covered 

pixels.   

 Data analyses in this study consider both the 11-year average characteristics and annual 

variability in SCA.  For both land surface temperature and snow covered area, four 8-day time 

periods are used for temporal comparison of the ablation period across the focus regions: March 
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30
th

 to April 6
th

, referred to as early April; May 1
st
 to May 8

th
, referred to as early May; June 2

nd
 

the June 9
th

, referred to as early June, and July 4
th

 to July 11
th

, referred to as early July.   

These analyses use both the average and standard deviation of snow covered area for 

each of the selected 8 day periods (early April, early May, early June, and early July) from 2000 

to 2010, which are determined for every huc100, and are referred to as SCA and     , 

respectively.  Focus region comparisons incorporate an additional processing step to facilitate 

regional comparisons.  Each focus region contains several different hucs; to estimate the 

aggregated characteristics over the entire focus region, SCA and      for all hucs are binned and 

averaged by 100 m elevation zone, referred to as    ̅̅ ̅̅ ̅ and  ̅   .  To compare    ̅̅ ̅̅ ̅ across focus 

regions, the elevation zone where    ̅̅ ̅̅ ̅ is greater than 50% and 90% are derived, referred to as 

   ̅̅ ̅̅ ̅
    and    ̅̅ ̅̅ ̅

   , respectively.  On average    ̅̅ ̅̅ ̅
    is chosen to represent elevations that 

have a 50% probability of being snow covered on a specific date, whereas    ̅̅ ̅̅ ̅
    represents 

areas that maintain close to full snow cover on a specific date.  Additionally, the elevation and 

percentage where    ̅̅ ̅̅ ̅ is at a maximum is determined (    ̅̅ ̅̅ ̅̅      and    ̅̅ ̅̅ ̅
   , respectively).   The 

variable  ̅    is used to evaluate when and where    ̅̅ ̅̅ ̅ exhibits high interannual variability 

across and within focus regions.   

A similar procedure is employed to process land surface temperature regionally and 

within focus regions.  Like snow covered area, the average and standard deviation for land 

surface temperature for each 8 day period from 2000 to 2010 is determined for every huc100, 

referred to as LST and     , respectively.  Within each focus region, LST and      are binned 

and averaged across100 m elevation zones, referred to as    ̅̅ ̅̅ ̅ and  ̅   .  From these averaged 

values, a comparative metric for the land surface temperature is derived by taking the elevation 

zone where    ̅̅ ̅̅ ̅ is less than 0°C (   ̅̅ ̅̅
 ̅ ).  Similar to  ̅   , the variable  ̅    is useful in showing 
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spatiotemporal patterns in the focus region land surface temperature standard deviation.  Figure 

2.5 depicts an example of SCA,    ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅
50%,    ̅̅ ̅̅ ̅

90%,     ̅̅ ̅̅ ̅̅     ,     ,  ̅   , LST,    ̅̅ ̅̅ ̅,    ̅̅ ̅̅
 ̅ , 

     and  ̅    versus elevation for early April in the Sierra Nevada, and variables are 

summarized in Table 2.1.   

Table 2.1 Snow cover and land surface temperature variables for the study areas. 

Variable Definition 

LST 11 year-average land surface temperature for each huc100 

   ̅̅ ̅̅ ̅ 11 year-average land surface temperature binned by 100 m 

elevation band for each focus region for each 8-day period 

   ̅̅ ̅̅
 ̅  Elevation where    ̅̅ ̅̅ ̅ is less than 0°C 

SCA 11 year-average snow cover area for each huc100 

   ̅̅ ̅̅ ̅ 11 year-average snow cover area binned by 100 m elevation 

band for each focus region for each 8-day period 

   ̅̅ ̅̅ ̅
    Elevation where    ̅̅ ̅̅ ̅ is greater than 50% 

   ̅̅ ̅̅ ̅
    Elevation where    ̅̅ ̅̅ ̅ is greater than 90% 

   ̅̅ ̅̅ ̅
    Percentage of maximum    ̅̅ ̅̅ ̅ 

    ̅̅ ̅̅ ̅̅      Elevation where    ̅̅ ̅̅ ̅ at a maximum 

     11 year land surface temperature standard deviation for each 

huc100 

 ̅    11 year land surface temperature standard deviation binned by 

100 m elevation band for each focus region for each 8-day 

period 

     11 year snow cover area standard deviation for each huc100 

 ̅    11 year snow cover area standard deviation binned by 100 m 

elevation band for each focus region for each 8-day period 

 

 The PRISM model is used to determine precipitation patterns across the Western U.S. 

and to compare precipitation versus elevation characteristics between focus regions. The PRISM 

1971 – 2000 average annual precipitation (P) are binned by 100 m elevation bands within the 

focus regions, and a linear trend line is fit to each focus region (referred to as  ̅) to describe the 

relationship between precipitation versus elevation. 
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Figure 2.5 Examples of SCA and LST metrics for the western and eastern slope Sierra Nevada focus region in early April, 2000-

2010.  (a) Average snow covered area (SCA), focus region average snow covered area (   ̅̅ ̅̅ ̅), elevation where    ̅̅ ̅̅ ̅ > 50% (   ̅̅ ̅̅ ̅
50%), 

elevation where     ̅̅ ̅̅ ̅ > 90% (   ̅̅ ̅̅ ̅
90%), and elevation (    ̅̅ ̅̅ ̅̅     ) and percentage (   ̅̅ ̅̅ ̅

max) of focus region maximum snow covered 

area, (b) Average land surface temperature (LST), focus region average land surface temperature (   ̅̅ ̅̅ ̅ , and the elevation where is 

   ̅̅ ̅̅ ̅ crosses the 0°C threshold (   ̅̅ ̅̅
 ̅ ), (c) Snow covered area standard deviation      and focus region snow covered area standard 

deviation  ̅   , (d) Land surface temperature standard deviation (    ) and the focus region standard deviation( ̅   ). 

a 

   ̅̅ ̅̅ ̅
max =98% 

    ̅̅ ̅̅ ̅̅      = 4200m 

   ̅̅ ̅̅ ̅
90% =  

2100m 

 

   ̅̅ ̅̅ ̅
50% =  

1600m 

W Slope LST 
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2.4 SNOW COVER DEPLETION MODEL 

 The data analyses described in Section 2.3 focus on particular dates during the ablation 

period, and this study is also concerned with continuous snow cover depletion characteristics.  

Figure 2.6a shows an example of SCA calculated for huc100’s in the Big Thompson huc in 

Colorado for each 8-day period.  The nature of the 8-day maximum snow extent can make 

annual data noisy, especially in lower elevation zones with intermittent snow cover, where spring 

snow storms can create abrupt increases in snow cover with limited SWE that usually melts 

quickly after storm events.  This noise can be propagated into the eleven year average, causing 

spikes in the average and making it difficult to determine melt timing metrics, specifically the 

day of year for 50% snow cover loss.   

 We therefore developed a Snow Cover Depletion Model, termed the SCoDMod, and 

applied it to the MODIS 8-day SCA data from 2000 to 2010 to address these issues.  The 

SCoDMod is a modified sigmoid function fit to 2000 -2010 average snow cover from January 1
st
 

through August 12
th

 for each huc100 and is represented by Equation 2.3: 

              (
    

  
)     (2.3) 

where SCA% is the percent snow covered area, t is the day of year starting with Jan 1
st
 as day 1, 

and p1, p2, and p3 are fitted parameters.  The SCoDMod smooths the average SCA decrease 

curve, thus highlighting the ablation period snow cover loss characteristics each huc100.  Every 

SCoDMod function for each huc100 is calculated by running a MATLAB code, which executes 

a nonlinear regression on the 11 year average data and determines parameters based on a 

nonlinear regression least squares curve fitting algorithm.  Using SCoDMod, we can derive 

objective indices of snow cover loss timing that are less affected by the intermittent spring snow  

 



20 

 

Elevation (m) 
 
 

4000 
 
 
 
 
 

3000 
 
 
 
 
 

2000 
 
 
 
 
 
 
 
 

 

Figure 2.6 (a) MODIS 2000 – 2010 average snow covered area versus day of year, and (b) 

SCoDMod derived average snow covered area versus day of year for the Big Thompson basin, 

Colorado.  

 

events that cause spikes in the loss curve.  The climatic smoothing of the raw MODIS data are 

apparent in Figure 2.6b, which shows the results of the SCoDMod derived SCA fit to the Big 

Thompson huc in Colorado.  The goodness of the SCoDMod fit is determined by the root mean 

square error (RMSE), which is calculated as (Equation 2.4): 

      √
∑                      

 

     
    (2.4) 

where SCAi is the i
th

 SCA in the date series, SCASCoDMod is the SCA modeled by the fitted 

SCoDMod equation, n is the length of the date series, and p is equal to 3, the number of fitted 

parameters.  The SCoDMod RMSE for the focus regions is shown in Figure 2.7.  Once 
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SCoDMod is fit to 2000 to 2010 average snow cover data for each huc100, we determine 

quantile metrics indicating the day of year that the SCA reaches a value of 50% by rearranging 

the SCoDMod equation as (Equation 2.5): 

         (
  

   
  )         (2.5) 

where Q50 is day of year that the snow cover in a huc100 reaches 50%, on average.   The Q50 

variable is binned and averaged across 100 m elevation zones for each focus region (referred to 

as    ̅̅ ̅̅ ̅) and used to analyze depletion patterns between and within each focus region. 

 

2.5 SNOW AND TEMPERATURE ZONES 

2.5.1 Western U.S. Analyses of Snow Cover and Snow Zones 

 Monthly snow cover maps are determined by averaging the 2000-2010 average SCA over 

a month, which effectively means averaging four 8-day consecutive time periods for each month 

from January to July for each huc100.  These times periods are January 1
st
 to February 1

st
 , 

referred to as January snow cover area (SCAJAN), February 2
nd

 to March 5
th

, referred to as 

February snow cover area (SCAFEB), March 6
th

 to April 6
th

, referred to as March snow cover area 

(SCAMAR), April 7
th

 to May 8
th

, referred to as April snow cover area (SCAAPR), May 9
th

 to June 

9
th

, referred to as May snow cover area (SCAMAY), and June 10
th

 to July 11
th

, referred to as June 

snow cover area (SCAJUN).  Irregular start and stop dates reflect the timing of the 8-day MODIS 

product, which does not always provide data that correspond with the first day in each month 

(each time period is 32 days long).  
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Figure 2.7 Root mean squared error (RMSE) of SCoDMod fit to SCA in focus regions in the Western United States.  Western 

slope is shown in blue, and eastern slope is shown in red.  
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In this study, we calculate the average SCA for the 11 years from Jan 1st to July 3
rd

 (23 

8-day periods) and call this snow cover persistence (SP) for each huc100.  By using this 

calculation, areas with SP greater than 50% are typically snow covered until April 1
st
 on average, 

which is the mid-point of the time period.  Additionally, April 1
st
 is typically considered to be 

close to the date of maximum snow accumulation (Mote et al., 2005; Serreze et al., 1999).  We 

then define four snow zones based on SP, summarized in Table 2.2: the intermittent snow zone 

(ISZ), the persistent snow zone (PSZ), the transitional snow zone (TSZ), and the seasonal snow 

zone (SSZ).  If we assume an idealized snow loss curve, the intermittent snow zone represents 

areas that ablate to 50% snow cover between February 15
th

 and April 1
st
 (Figure 2.8a,d).  The 

ISZ can also include areas subject to with frequent short lasting snow events.  The persistent 

snow zone includes areas that, on an idealized snow loss curve, melt to 50% snow cover on or 

after May 15
th

, as well as areas that may have snow persistence year round (Figure 2.8c,d).  The 

transitional snow zone lies between the PSZ and the ISZ corresponds to areas would melt to 50% 

snow cover on the idealized curve between April 1
st
 and May 15

th
 (Figure 2.8b,d).  The seasonal 

snow zone (SSZ) is a combination of the latter two snow zones and represents areas which melt 

on the idealized curve to 50% snow cover on or after April 1
st 

(Figure 2.8b,d).  Elevation of the 

snow zones are used to illustrate differences in snow characteristics across the Western U.S.  

Areas within the SSZ are those with high potential to generate snowmelt runoff.   
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Figure 2.8 Conceptual model illustrating snow persistence and snow zone definitions.  

Assuming an idealized snow cover depletion curve, snow persistence (SP) of 25% corresponds to 

areas that melt to 50% snow cover on February 15
th

 (a), snow persistence (SP) of 50% 

corresponds to areas that melt to 50% snow cover on April 1
st
 (b), snow persistence (SP) of 75% 

corresponds to areas that melt to 50% snow cover on March 15
th

 (c).  Right image shows 

idealized snow loss curves for the intermittent snow zone (ISZ), transitional snow zone (TSZ), 

persistent snow zone (PSZ) and seasonal snow zone (SSZ) (d).   

 

Table 2.2 Snow zone definitions based on January 1
st
 – July 3

rd
 snow persistence (SP) for 

the Western United States. 

 Greater than  

SP (%) 

Less than  

SP (%) 

Intermittent Snow Zone (ISZ) 25 50 

Transitional Snow Zone (TSZ) 50 75 

Persistent Snow Zone (PSZ) 75 100 

Seasonal Snow Zone (SSZ) 50 100 
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2.5.2 Sensitive Snow Zones 

 The 2000 – 2010 average land surface temperature within the SSZ is averaged from 

January 1
st
 to March 29

th
 (referred to as LSTJFM) and is used as a proxy to identify seasonally 

snow covered environments that may be sensitive to climate warming.  In this study we use 

temperature thresholds based on the mean and standard deviation of LSTJFM to define the 

sensitive snow zones.  Although the data are slightly skewed toward higher temperatures (Figure 

2.9), the spread of LSTJFM in the SSZ is nearly normal and has a mean of -4.6°C and a standard 

deviation of 3.5°C.  We define 5 sensitive snow zones: the 1
st
 most sensitive snow zone (SSM1), 

the 2
nd

 most sensitive snow zone (SSM2), the 3
rd

 most sensitive snow zone (SSM3), the 2
nd

 least 

sensitive snow zone (SSL2), and the 1
st
 least sensitive snow zone (SSL1) (Figure 2.9; Table 2.3).  

The areas that have a LSTJFM above the mean are considered the most sensitive snow zones, and 

the areas that have a LSTJFM below the mean are considered the least sensitive snow zones.  The 

area with LSTJFM greater than the 3
rd

 LSTJFM standard deviation above the mean is very small, so 

it is combined with the area within the 3
rd

 standard deviation above the mean to define the 1
st
 

most sensitive snow zone (SSM1) (LSTJFM > 2.4°C).  Similarly, the area included within the 3
rd

 

standard deviation below the mean is very small, and there are no areas that fall outside the 3
rd

 

standard deviation below the mean (due to the positive skew in the data), so the 1
st
 least sensitive 

snow zone (SSL1) includes all areas within the second and third LSTJFM standard deviation below 

the mean (LSTJFM <-8.1°C).  In addition to the three-month averaged LSTJFM, the temporal 

evolution of each 8-day 2000-2010 average LST for the period from January to May is 

considered for qualitative analyses of areas that are potentially sensitive to climate change.   
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Table 2.3 Sensitive snow zone definitions, based on the mean and standard deviation of the 

January-March 11-year average land surface temperature (LSTJFM) within the seasonal snow 

zone (SSZ), for the Western United States. 

 Cooler than  

(°C) 

Warmer 

than (°C) 

1
st
 Most Sensitive Snow Zone (SSM1) NA 2.4 

2
nd

 Most Sensitive Snow Zone (SSM2) -2.4 -1.1 

3
rd

 Most Sensitive Snow Zone (SSM3) -1.1 -4.6 

2
nd

 Least Sensitive Snow Zone (SSL2) -4.6 -8.1 

1
st
 Least Sensitive Snow Zone (SSL1) -8.1 NA 

 

 

  
 

Figure 2.9 Histogram of the 2000-2010 average LST from January to March (LSTJFM) for the 

seasonal snow zone (SSZ) in the Western United States.  Blue lines show sensitive snow zone 

divisions, and the blue dashed line shows the mean of the data.   
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CHAPTER 3: FOCUS REGION ANALYSES 

 

3.1 INTRODUCTION 

 

The Western United States is a topographically diverse landscape spanning the mid-

latitudes south of the 49
th

 parallel.  Climatic conditions are influenced by a variety of factors that 

can be described by three major process scales: broad-scale, meso-scale, and local-scale (Mock, 

1996; Shinker, 2010).  Broad-scale (>100 km) processes include synoptic patterns, which are 

largely influenced by latitude and global circulation.  Meso-scale (10-100 km) climatic patterns 

in the Western U.S. are the result of proximity to the coast (continentality).  Finally, terrain 

physiography impacts climatic conditions on a local scale (1-10 km) (Mock, 1996; Shinker, 

2010).  In this study, four in-depth areas, divided into western and eastern slope focus regions, 

are used to assess the influence of broad-scale, meso-scale, and local-scale processes on 

precipitation (P), land surface temperature (   ̅̅ ̅̅ ̅), and snow cover area (   ̅̅ ̅̅ ̅  in the Western 

United States.  This focus region analysis uses snapshots in time and space to improve the 

understanding of the spatial variations in P and spatial and temporal variations in    ̅̅ ̅̅ ̅ and    ̅̅ ̅̅ ̅ in 

the Western United States.  The four in-depth areas are chosen to investigate maritime-

continental and latitudinal effects.  Since the majority of air masses providing moisture to the 

Western U.S. are of a westerly origin, dividing each in-depth area into western and eastern slope 

focus regions provides insight on the characteristics of leeward versus windward slopes on 

precipitation, land surface temperature, and snow cover.  Using these focus regions, the specific 
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objectives of this chapter are to evaluate the influence of (1) elevation, (2) latitude, (3) 

continentality, and (4) primary orientation of slope (western versus eastern) on the spatial 

variability of precipitation and the spatiotemporal variability of snow cover and land surface 

temperature in the Western United States.   

 

3.2 RESULTS 

3.2.1 Precipitation 

 Annual western and eastern slope precipitation (P) and a linear fit of precipitation versus 

elevation ( ̅) are shown in Figure 3.1 for the Washington Cascades, the Montana Rockies, Sierra 

Nevada and the Colorado Rockies focus regions.  For all focus regions,  ̅ increases with 

elevation; however, this rate varies between regions.  Because P exhibits large variability across 

elevation zones, the linear fit  ̅ is poor (R
2
 between 0.04 and 0.28) and therefore only loosely 

describes the general trends of precipitation versus elevation in the focus regions.  The rate of 

increase of  ̅ with elevation for the focus regions is summarized in Table 3.1.  The western 

Sierra Nevada has the lowest  ̅ rate increase with elevation (13 mm 100m
-1

; Figure 3.1Cw) while 

the highest rate of increase is observed on the eastern slope of the Montana Rockies 

(72 mm 100m
-1

; Figure 3.1Be).  The greatest y-intercept is observed on the western slope of the 

Washington Cascades (2500mm; Figure 3.1Aw).   

.
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W Slope  ̅ (linear fit) E Slope  ̅ (linear fit) 

 

Figure 3.1 Precipitation versus elevation for western (blue) and eastern (red) slopes in the 

Washington Cascades, Montana Rockies, Sierra Nevada, and Colorado Rockies.  Data are from 

the PRISM model (http://www.prism.oregonstate.edu/).   
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Table 3.1 Average precipitation rate of increase per 100 m increase in elevation, y-intercept 

and R
2
 of the linear fit of PRISM (http://www.prism.oregonstate.edu/) modeled precipitation 

versus elevation for the Washington Cascades, Montana Rockies, Sierra Nevada, and Colorado 

Rockies focus regions.   

Precipitation ( ̅ - linear fit) Increase with Elevation and Y Intercept 

 
Precipitation Increase with 

Elevation 

Y Intercept R
2
 

Focus Study Site 
W Slope 

(mm 100m
-1

) 

E Slope 

(mm 100m
-1

) 

W Slope 

(mm) 

E Slope 

(mm) 

W Slope E Slope 

Washington Cascades 22 53 2500 840 0.04 0.19 

Montana Rockies 52 72 370 -380 0.19 0.19 

Sierra Nevada 13 31 930 80 0.21 0.19 

Colorado Rockies 29 24 -88 -9.1 0.28 0.27 

 

3.2.2 Snow Covered Area 

Focus region snow cover area versus elevation for early April, early May, early June, and 

early July are shown in Figure 3.2 for the focus regions, and Table 3.2 summarizes the elevation 

of    ̅̅ ̅̅ ̅
50%,    ̅̅ ̅̅ ̅

90%, and     ̅̅ ̅̅ ̅̅      and the percentage of    ̅̅ ̅̅ ̅
max.  Figure 3.2a illustrates snow 

cover versus elevation through the ablation period for the Washington Cascades.  In early April 

in the Washington Cascades    ̅̅ ̅̅ ̅
50% is observed at 700 m on the western slope and 1000 m on 

the eastern slope, while the western versus eastern slope    ̅̅ ̅̅ ̅
90% is at 1100 m versus 1300 m, 

respectively.     ̅̅ ̅̅ ̅
max reaches 100% for both western (1600 m) and eastern (1700 m) slopes.  As 

the ablation season progresses, an increase in elevation of    ̅̅ ̅̅ ̅
50%,    ̅̅ ̅̅ ̅

90% and     ̅̅ ̅̅ ̅̅      is 

observed.  In early July    ̅̅ ̅̅ ̅
50% and    ̅̅ ̅̅ ̅

90% are at 2200 m and 2500 m, respectively for western 

slope and at 2800 m and 2900 m, respectively, for the eastern slope.  For both eastern and 

western slope Washington Cascades a    ̅̅ ̅̅ ̅
max of 100% is still observed in early July at higher 

elevation (3000 m, both slopes).  At the highest elevations, year round SCA is observed (not 

shown).   
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Figure 3.2 Focus region average snow covered area (   ̅̅ ̅̅ ̅  versus elevation for early April, 

early May, early June, and early July in the Washington Cascades, Montana Rockies, Sierra 

Nevada, and Colorado Rockies.  Eastern slopes are shown in red, and western slopes are shown 

in blue. 

 

During early April in the Montana Rockies, western slope    ̅̅ ̅̅ ̅
50% and    ̅̅ ̅̅ ̅

90% are at 

900 m and 1600 m, respectively, while eastern slope    ̅̅ ̅̅ ̅
50% and    ̅̅ ̅̅ ̅

90% are at 1400 m and 

1800 m (Figure 3.2b; Table 3.2).  The elevations of    ̅̅ ̅̅ ̅
50% and    ̅̅ ̅̅ ̅

90% rise during early May 

and early June on the western slope, and neither    ̅̅ ̅̅ ̅
50% and    ̅̅ ̅̅ ̅

90%  are observed on the western 

slope in early July.  On the eastern slope the elevations of    ̅̅ ̅̅ ̅
50% and    ̅̅ ̅̅ ̅

90% rise during early 

May, but    ̅̅ ̅̅ ̅
50% and    ̅̅ ̅̅ ̅

90% are not observed in early July.  Early April    ̅̅ ̅̅ ̅
max of 100% is 

observed on both western (3100 m) and eastern (2600 m) slopes.  By early June the west slope 

still retains a    ̅̅ ̅̅ ̅
max of 100% at 3000 m.  However, the    ̅̅ ̅̅ ̅

max of the eastern slope has depleted 

to 34% at 2700 m.  By early July most snow has depleted on both western and eastern slopes.   
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Table 3.2 Elevation (m) of    ̅̅ ̅̅ ̅ depletion to 50% (   ̅̅ ̅̅ ̅
50%), 90%     ̅̅ ̅̅ ̅

90%), and maximum 

   ̅̅ ̅̅ ̅ (    ̅̅ ̅̅ ̅̅      , and the percentage of maximum    ̅̅ ̅̅ ̅ (   ̅̅ ̅̅ ̅
max) for the Washington Cascades, 

the Montana Rockies, the Sierra Nevada, and the Colorado Rockies in early April, early May, 

early June, and early July.   

 Early April Early May Early June Early July 

Washington Cascades 

W Slope    ̅̅ ̅̅ ̅̅
50% 700 1000 1500 2200 

E Slope    ̅̅ ̅̅ ̅̅
50% 1000 1400 1900 2800 

W Slope    ̅̅ ̅̅ ̅̅
90% 1100 1500 1900 2500 

E Slope    ̅̅ ̅̅ ̅̅
90% 1300 1800 2800 2900 

W Slope    ̅̅ ̅̅ ̅̅
max 100% 100% 100% 100% 

W Slope     ̅̅ ̅̅ ̅̅      1600 2000 2600 3000 

E Slope    ̅̅ ̅̅ ̅̅
max 100% 100% 100% 100% 

E Slope     ̅̅ ̅̅ ̅̅      1700 2000 2800 3000 

Montana Rockies 

W Slope    ̅̅ ̅̅ ̅̅
50% 900 1600 2500 - 

E Slope    ̅̅ ̅̅ ̅̅
50% 1400 1800 - - 

W Slope    ̅̅ ̅̅ ̅̅
90% 1600 2100 2900 - 

E Slope    ̅̅ ̅̅ ̅̅
90% 1800 2600 - - 

W Slope    ̅̅ ̅̅ ̅̅
max 100% 100% 100% 28% 

W Slope     ̅̅ ̅̅ ̅̅      3100 2800 3000 2800 

E Slope    ̅̅ ̅̅ ̅̅
max 100% 100% 34% 8% 

E Slope     ̅̅ ̅̅ ̅̅      2600 2800 2700 2700 

Sierra Nevada 

W Slope    ̅̅ ̅̅ ̅̅
50% 1600 2000 2900 - 

E Slope    ̅̅ ̅̅ ̅̅
50% 2300 2700 3800 - 

W Slope    ̅̅ ̅̅ ̅̅
90% 2100 2500 3800 - 

E Slope    ̅̅ ̅̅ ̅̅
90% 3000 3600 - - 

W Slope    ̅̅ ̅̅ ̅̅
max 100% 100% 90% 32% 

W Slope     ̅̅ ̅̅ ̅̅      2600 3400 3800 3800 

E Slope    ̅̅ ̅̅ ̅̅
max 98% 95% 61% 6% 

E Slope     ̅̅ ̅̅ ̅̅      4200 3900 3900 3800 

Colorado Rockies 

W Slope    ̅̅ ̅̅ ̅̅
50% 2500 3000 4000 - 

E Slope    ̅̅ ̅̅ ̅̅
50% 2500 2900 - - 

W Slope    ̅̅ ̅̅ ̅̅
90% 3000 3400 - - 

E Slope    ̅̅ ̅̅ ̅̅
90% 3100 3700 - - 

W Slope    ̅̅ ̅̅ ̅̅
max 100% 100% 64% 6% 

W Slope     ̅̅ ̅̅ ̅̅      3500 4300 4300 4300 

E Slope    ̅̅ ̅̅ ̅̅
max 97% 92% 47% 1% 

E Slope     ̅̅ ̅̅ ̅̅      3300 4300 4300 3200 
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Sierra Nevada focus region    ̅̅ ̅̅ ̅ versus elevation for the spring ablation period is shown 

in Figure 3.2c.  In early April in the Sierra Nevada,    ̅̅ ̅̅ ̅
50% is at 1600 m on the western slope and 

at 2300 m on the eastern slope (Figure 3.2c; Table 3.2).  The elevation of    ̅̅ ̅̅ ̅
50% progressively 

increases for both slopes through June.  Early April    ̅̅ ̅̅ ̅
90% is at 2100 m and 3000 m on the 

western and eastern slopes, respectively, and increases in elevation through June on the western 

slope and through early May on the eastern slope.  In early April on the western slope    ̅̅ ̅̅ ̅
max 

reaches 100% at 2600 m and on the eastern slope it reaches 98% at 4200 m.  By early June 

western slope    ̅̅ ̅̅ ̅
max has depleted to 90% at 3800 m, and eastern slope has depleted to 61% at 

3900 m.  In early July nearly all snow cover has melted on the eastern slope (   ̅̅ ̅̅ ̅
max = 6% at 

3800 m), and most snow cover has melted on the western slope (   ̅̅ ̅̅ ̅
max = 32% at 3800 m).   

In early April in the Colorado Rockies, both the western and eastern slopes have    ̅̅ ̅̅ ̅
    

at 2500 m (Figure 3.2d; Table 3.2).  Western slope    ̅̅ ̅̅ ̅
    is at 3000 m, and eastern slope is at 

3100 m.  In early May    ̅̅ ̅̅ ̅
    and    ̅̅ ̅̅ ̅

    rise in elevation for both slopes, and by early June 

   ̅̅ ̅̅ ̅
    is observed only on the western slope (4000 m) and neither slope reaches    ̅̅ ̅̅ ̅

   .  

Early April    ̅̅ ̅̅ ̅
    is 100% for the western slope at 3500 m and 97% at 3300 m on the eastern 

slope.  Both slopes reach     ̅̅ ̅̅ ̅̅      of 4300 m in early June, with western slope    ̅̅ ̅̅ ̅
    at 64% 

and eastern slope at 47%.  Nearly all snow melts by early July, with both western and eastern 

slopes having    ̅̅ ̅̅ ̅ less than 6% at all elevations. 
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3.2.3 Average Land Surface Temperature  

Early April, early May, early June, and early July land surface temperatures versus 

elevation for all study regions are illustrated in Figure 3.3, and    ̅̅ ̅̅
 ̅  is summarized in Table 

3.3.  For all time periods in all focus regions, land surface temperature tends to decrease with 

increasing elevation; however this rate of change slows at higher elevations.  Early April    ̅̅ ̅̅
 ̅  

is at 1700m for both eastern and western slopes of the Washington Cascades (Figure 3.3a; Table 

3.3).  During early May and early June    ̅̅ ̅̅
 ̅  rises in elevation for both slopes, but occurs at a 

higher elevation on the eastern slope than that observed on the western slope.  Neither eastern 

nor western slope Washington Cascades has focus region average land surface temperatures that 

cross the zero degree threshold in early July.  In the Montana Rockies, western slope    ̅̅ ̅̅
 ̅  is at 

1700 m in early April, and eastern slope    ̅̅ ̅̅
 ̅  is at 1800 m (Figure 3.3b; Table 3.3).  For both 

western and eastern slopes    ̅̅ ̅̅
 ̅  is not observed on or after early May in the Montana Rockies.  

In the Sierra Nevada Mountains in early April,    ̅̅ ̅̅
 ̅  is at 3100 m on the western slope and 

3600 m on the eastern slope (Figure 3.3c; Table 3.3).  On both western and eastern slope Sierra 

Nevada     ̅̅ ̅̅ ̅̅  is above the 0°C threshold by early May.  In early April in the Colorado Rockies, 

both western and eastern slope    ̅̅ ̅̅ ̅ crosses the 0°C threshold (   ̅̅ ̅̅
 ̅ ) at 3300 m (Figure 3.3d; 

Table 3.3).  By early May neither eastern nor western slope focus regions have average    ̅̅ ̅̅ ̅ less 

than 0°C.  
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Figure 3.3 Focus region average land surface temperature (   ̅̅ ̅̅ ̅  versus elevation for early 

April, early May, early June, and early July in the Washington Cascades, Montana Rockies, 

Sierra Nevada, and Colorado Rockies.  Eastern slope is shown in red, and western slope is shown 

in blue.   

 

 

Table 3.3 Elevation at which    ̅̅ ̅̅ ̅ is less than 0°C (   ̅̅ ̅̅
 ̅ ) for the Washington Cascades, the 

Montana Rockies, the Sierra Nevada, and the Colorado Rockies in early April, early May, early 

June, and early July.   

 Early April Early May Early June Early July 

Washington Cascades 

W Slope    ̅̅ ̅̅ ̅
0°C 1700 2300 2800 - 

E Slope    ̅̅ ̅̅ ̅
0°C 1700 2800 3000 - 

Montana Rockies 

W Slope    ̅̅ ̅̅ ̅
0°C 1700 - - - 

E Slope    ̅̅ ̅̅ ̅
0°C 1800 - - - 

Sierra Nevada 

W Slope    ̅̅ ̅̅ ̅
0°C 3100 - - - 

E Slope    ̅̅ ̅̅ ̅
0°C 3600 - - - 

Colorado Rockies 

W Slope    ̅̅ ̅̅ ̅
0°C 3300 - - - 

E Slope    ̅̅ ̅̅ ̅
0°C 3300 - - - 

 

a b 

c d 

Maritime Continental 

West Slope 
MT Rockies 

WA Cascades 

M
id

 L
a

t 
H

ig
h
e

r 
L

a
t 

Apr 

May 

Jun 

Jul 

L
S

T
 (

°C
) 

Apr 
East Slope 

May 

Jun 

Jul 

Sierra 

Nevada 
CO Rockies 

Elevation (m) 



36 

3.2.4 Snow Covered Area Standard Deviation 

The focus region snow covered area standard deviations are shown in Figure 3.4.  The 

western slope Washington Cascades  ̅    peaks at 700 m (26%) in early April (Figure 3.4Aw).  

The peak in  ̅    progressively moves up in elevation through the ablation period, reaching 

1100 m (18%) in early May, 1400-1500 m in early June (25%), and 2000 m (21%) in early July.  

On the eastern slope,  ̅    peaks at 1000 m (22%) in early April, and the peak increases in 

elevation to 1500 m (23%) in early May (Figure 3.4Ae).  In early June, eastern slope Washington 

Cascades  ̅    increases linearly from 1200 m (6%) to 1900 m (24%) and ranges between 17% 

to 26% from 1900 m to 2700 m.  By early July  ̅    tends to increase linearly between 1800 m 

(6%) and 2700 m (33%).   

In early April on the western slope of the Montana Rockies, the largest standard 

deviations in focus region snow cover are observed at the lowest elevations (below 1700 m; 

maximum 29% at 900 m (Figure 3.4Bw).  The peak in early May western slope  ̅    is lower in 

value (18%) and higher in elevation (1600 m) than in early April.  In early June  ̅    increases 

linearly with elevation from 1000 m (3%) to 2600 m (29%).  By early June, lower elevations 

(less than 2500 m) have low  ̅    (less than 5%), and the highest  ̅    is observed at 2800 m 

(20%).  The greatest early April  ̅    n the eastern slope of the Montana Rockies is at lower 

elevations (less than 1900 m) with a peak at 1300 m (41%) (Figure 3.4Be).  High  ̅    (ranging 

from 25% to 29%) is observed between 900 m and 1800 m in early May.  In early June eastern 

slope  ̅    generally increases with elevation from 1100 m (1%) to 2700 m (40%).  By early July 

all elevation zones below 2700 m have less than 7%  ̅   , and at 2700 m a  ̅    of 24% is 

observed.   
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Figure 3.4 Focus region standard deviation of snow covered area ( ̅   ) for early April, early 

May, early June, and early July in the Washington Cascades, Montana Rockies, Sierra Nevada, 

and Colorado Rockies.  Eastern slope is shown in red, and western slope is shown in blue.  
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In early April on the western slope in the Sierra Nevada,  ̅    peaks at 1400 m at 38% 

(Figure 3.4Cw).  By early May the peak has risen to 1900 m and is lower in value (30%).  In 

early June  ̅    peaks at 3000 m (36%), and the peak is wider than observed in preceding 

months.  By early July low snow covered area standard deviations are observed below 3100 m 

(< 5%), and standard deviation increases linearly above this elevation, with maximum  ̅    at 

4100 m (30%).  Eastern slope Sierra Nevada snow cover area standard deviation peaks at 2300 m 

(20%) in early April (Figure 3.4Ce).  In early May  ̅    increases linearly from 1700 m (0%) to 

2700 m (17%) and varies randomly from 2700 m and 4300 m between 9 and 25%.  Early June 

eastern slope Sierra Nevada   ̅    generally increases linearly above 1800 m (1%) to a peak of 

44% at 4300 m.  Early July  ̅    is minimal on the eastern slope, with  ̅    less than 6% at most 

elevation zones and less than 11% at all elevation zones.   

In early April the standard deviation of focus region snow covered area ( ̅   ) in western 

Colorado peaks at 33% at 2200m (Figure 3.4Dw).  As the ablation season progresses, this peak 

rises in elevation to 2900 m but is lower in amount (23%) by early May, and in early June the 

highest  ̅    is observed at the highest elevations (maximum of 48% at 4300 m).  By early July 

 ̅    is small, with all but the highest elevation zone exhibiting  ̅    of less than 6%.  Eastern 

slope Colorado Rockies  ̅    follows a similar trend (Figure 3.4De).  Early April  ̅    peaks at 

2300 m (35%) and increases in elevation (2700 m) but decreases in value (31%) by early May.  

By early June  ̅    increases linearly starting at 2700 m (3%) and peaks at the highest elevation 

at 45% (4300 m).  By early July the variance in snow cover is minimal, and all elevations have 

less than 3%  ̅   .   
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3.2.5 Land Surface Temperature Standard Deviation 

The focus region standard deviations for land surface temperature are shown in Figure 

3.5.  In early April on the western slope of the Washington Cascades,  ̅    shows a slight peak at 

600 m (5.5°C) (Figure 3.5Aw).  Early May  ̅    ranges from 1.7°C to a small peak of 3.5°C at 

1300 m.  The largest peak in  ̅    on the western slope of the Washington Cascades is in early 

June at 800 m (6.2°C).  Early July  ̅    ranges between 1.5 and 3.5°C, with a slight peak at 

2200 m.  On the eastern slope of the Washington Cascades, no strong trend is present in  ̅    

from early April to early July (Figure 3.5Ae).  Early April  ̅    ranges from 3.0 to 5.0°C, with a 

small peak at 2800 m.  In early May  ̅    ranges between 1.7 and 3.3°C, from 2.2 to 5.1°C in 

early June, and from 1.9 to 4.0°C in early July. 

Western slope Montana Rockies do not show a distinct relationship between  ̅    and 

elevation (Figure 3.5Bw).  Early April  ̅    ranges from 2.8 to 4.1°C, early May  ̅    ranges 

from 2.0 to 4.0°C, early June  ̅    ranges from 2.6 to 4.8°C, and early July  ̅    ranges from 2.8 

to 3.5°C.  On the eastern slope a strong peak in  ̅    is observed in early April at 1300 m (8.4°C) 

and in early May at 1100 m (7.5°C) (Figure 3.5Be).  In early June  ̅    ranges between 3.5 and 

6.1°C, and in early July  ̅    ranges between 3.3 and 4.5°C. 
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Figure 3.5 Focus region standard deviation of land surface temperature ( ̅   ) for early 

April, early May, early June, and early July in the Washington Cascades, Montana Rockies, 

Sierra Nevada, and Colorado Rockies.  Eastern slope is shown in red, and western slope is shown 

in blue.  
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In early April on the western slope of the Sierra Nevada,  ̅    peaks at 5.5°C at 1500 m 

(Figure 3.5Cw).  Early May shows bimodal peaks at 0 m (4.8°C) and 2000 m (4.6°C).  In early 

June,  ̅    peaks at 5.8°C at 2900 m.  Early July  ̅    increases slightly with increasing elevation 

and ranges from 2.3 to 4.2°C.  The land surface temperature standard deviation on the eastern 

slope of the Sierra Nevada peaks at 5.7°C at 2200-2300 m in early April (Figure 3.5Ce).  In early 

May  ̅    ranges from 3.0 to 5.1°C, from 3.2 to 5.1°C in early June and from 1.3 to 3.8°C in 

early July. 

In early April,  ̅    on the western slope of the Colorado Rockies ranges from 2.5°C to a 

peak of 7.4°C at 1900 m (Figure 3.5Dw).  For the rest of the ablation period, there is no 

discernible trend in  ̅    versus elevation, with  ̅    ranging between 3.2 to 5.5°C in early May, 

3.8 to 5.7°C in early June, and 2.8 to 3.5°C in early July.   On the eastern slope of the Colorado 

Rockies,  ̅    peaks from 2300-2400 m at 5.7°C in early April (Figure 3.5De).  Early May to 

early July  ̅    does not reveal strong trends versus elevation and ranges from 3.4 to 5.1°C in 

early May, 4.2 to 5.3°C in early June, and 2.5 to 3.8°C in early July.   

 

3.2.6 Day of Year Depletion to 50%    ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅̅   

The focus region day of year depletion to 50%    ̅̅ ̅̅ ̅ (   ̅̅ ̅̅ ̅) is shown in Figure 3.6.  On the 

western slope of the Washington Cascades the    ̅̅ ̅̅ ̅ versus elevation curve is very steep 

(15.5 days 100 m
-1

) between 300 and 1000 m (Figure 3.6a).  This rate of change slows to 

6.5 days 100 m
-1

 from 1000 to 1700 m, and there is a slight decrease (5.4 days 100 m
-1

) from 

1700 to 2200 m.  On the eastern slope of the Washington Cascades the rate of change from 100 

to 1500 m
-1

 is 8.8 days 100 m
-1

, and it slows to 4.9 days 100 m
-1

 from 1500 to 2300 m.  The 

lowest elevation    ̅̅ ̅̅ ̅ on the western slope happens on January 1
st
 at 0 m and lasts until after July  
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Figure 3.6 Focus region day of depletion to 50%    ̅̅ ̅̅ ̅ (   ̅̅ ̅̅ ̅) for early April, early May, early 

June, and early July in the Washington Cascades, Montana Rockies, Sierra Nevada, and 

Colorado Rockies.  Eastern slope is shown in red, and western slope is shown in blue.   
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 above 2200 m.  The lowest elevation    ̅̅ ̅̅ ̅ on the eastern slope happens on January 11
th

 at 

100 m and lasts until after July 19
th 

above 2700 m. 

The western slope of the Montana Rockies maintains a similar    ̅̅ ̅̅ ̅ rate of change for all 

elevation zones up to 2600 m (Figure 3.6b).  The rate of change is 5.8 days 100 m
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 from 900 to 
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change is very steep (28.2 days 100 m
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decreases to 10.7 days 100 m
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, and above 1900 m the rate of change dramatically decreases to 

3.7 days 100 m
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 (1900 – 2200 m) and 1.8 days 100 m
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 (2200 – 2800 m).  Western slope    ̅̅ ̅̅ ̅ 

ranges from March 22
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 at 900 m to June 27
th

 at 2800 m while eastern slope    ̅̅ ̅̅ ̅ ranges from 

Jan 19
th

 at 1200 m to May 30
th

 at 2800 m.   

 On the western slope in the Sierra Nevada,    ̅̅ ̅̅ ̅ versus elevation increases rapidly from 

1300 m to 1800 m at a rate of 10.8 days 100 m
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decreases to 3.3 days 100 m
-1

 between 1800 m and 3200 m and further decreases to 

0.6 days 100 m
-1

 from 3200 to 4100 m.  On the eastern slope there is a steep rate of change 

(13.4 days 100 m
-1

) from 1500 m to 2200 m.  This rate of change slows to 4.6 days 100 m
-1

 from 

2200 m to 3300 m and to 0.4 days 100 m
-1

 from 3300 m to 4100 m.  In higher elevations (2700 

to 4100 m) on the western slope    ̅̅ ̅̅ ̅ ranges between May 29
th

 at 2700 m and June 25
th

 at 

3800 m, and in higher elevations (3000 to 4300 m) on the eastern slope    ̅̅ ̅̅ ̅ ranges between 

May 20
th

 at 3000 m and June 6
th

 at 3900 m.   

Areas above 2500 m in the Colorado Rockies ablate to 50% snow cover (   ̅̅ ̅̅ ̅) on or after 

March 30
th 

(Figure 3.6d).  In the Colorado Rockies, both western and eastern slope exhibit a 

similar    ̅̅ ̅̅ ̅ versus elevation relationship from 2500 m to 3200 m.  Between these middle-

elevation zones the rate of change of    ̅̅ ̅̅ ̅ versus elevation is 6.9 days 100 m
-1

 on the western 

slope and 7.0 days 100 m
-1

 on the eastern slope.  Above 3300 m, a stark break in the rate of 

change appears on both the western and eastern slopes, such that increasing elevation above 

3300 m produces little delay in the date of    ̅̅ ̅̅ ̅.  From 3500 m to 4300 m the rate of change is 

0.9 days 100 m
-1

 on the western slope and 1.0 days 100 m
-1

 on the eastern slope.  In high 

elevations (3400 – 4300 m) in the Colorado Rockies, the western slope    ̅̅ ̅̅ ̅ occurs between May 

28
th

 and June 6
th

, and the eastern slope    ̅̅ ̅̅ ̅ occurs between May 25
th

 and June 3
rd

.   

 

 

3.3 DISCUSSION 

Focus region analyses highlight regional spatial differences in precipitation and 

spatiotemporal differences in snow cover and land surface temperature in the Western United 

States.  By considering these patterns as the result of a combination of processes at multiple 

scales, insights into the controls on precipitation, snow cover, and land surface temperature are 
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gained.  Differences in land surface temperature and snow cover observed between the focus 

regions illustrate the impacts of latitude, which operates at a broad-scale (> 100 km) and 

influences synoptic atmospheric circulation patterns and the availability of solar energy.  

Maritime/continental divisions demonstrate mesoscale (10-100 km) impacts of continental 

location, and physiographic elements, such as the elevation and western-eastern slopes, help 

explain differences observed at the local-scale (1-10 km).  In some cases the combined effects of 

these different scales may highlight certain climatic characteristics, while in others the impacts 

may be masked or diminished.  In considering the influences of all three scales on climate, we 

arrive at a more complete understanding of the causes for spatiotemporal variations in snow 

cover and land surface temperature and the spatial variations in precipitation in the Western U.S.   

 

3.3.1 Precipitation 

 In mid-latitudes, precipitation tends to increase with increasing elevation (Barry, 2008), 

as is observed for all focus regions in this study; however, precipitation can be highly variable 

over space, illustrated by the very low R
2
 for the linear fits of   ̅ versus elevation in the focus 

regions (Table 3.1).  Increasing precipitation with elevation is a result of orographic influence 

caused by local-scale physiography (Barry, 2008; Mock, 1996; Shinker, 2010). The higher 

latitude sites have a greater slope for the linear fit of  ̅ versus elevation than the mid latitude sites 

(Table 3.1) and tend to have greater overall precipitation than the mid-latitude sites.  More 

precipitation at higher latitudes is in part caused by broad-scale synoptic weather patterns that 

tend to bring more frequent wintertime storms to the areas above the 41
st
 parallel in the Western 

U.S. (Mitchell, 1976).  The rate of increase of  ̅ versus elevation is greater on the eastern slope 

than the western slope sites for all focus regions except the Colorado Rockies (Table 3.1).  As 
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will be seen in the following discussion of snow cover and land surface temperature, the 

Colorado Rockies are different from the other study regions in that western/eastern slope 

differences are not readily apparent.  Higher precipitation amounts on the western slope of the 

Sierra Nevada , the Washington Cascades (Price, 1986; Shinker, 2010), and the Montana 

Rockies (Figure 3.1Aw,Ae,Bw,Be,Cw,Ce) are common (Finklin, 1986) because these western 

slopes are the windward facing and are the first to receive the westerly moist air masses coming 

off the Pacific ocean (Price, 1986).  The Washington Cascades have the highest overall annual 

precipitation for all the focus regions (Figure 3.1Aw,Ae), with greater amounts of precipitation 

observed on the western slope.  The Pacific Northwest, which includes the Washington 

Cascades, receives some of the highest amounts of wintertime precipitation in the Western U.S. 

(Serreze et al., 1999; Shinker, 2010).   

 

3.3.2 Snow Covered Area: Elevation 

 Elevation is a local-scale physiographic characteristic that plays a strong role in 

explaining snow cover within the focus regions.  Both western and eastern slope focus regions 

demonstrate increasing snow cover with increasing elevation for time periods when snow exists 

(Figure 3.2).  Although snow cover can vary greatly dependent on other variables (e.g. land use, 

aspect, and vegetation), for the spatial unit used in this study (huc100) elevation appears to play 

the predominant role within each region.  Considering that snow depth (Fassnacht et al., 2003) 

and snow cover duration increase with increasing elevation (Barry, 2008) it is intuitive that snow 

cover should also increase with increasing elevation.  In mid-latitudes at the date of maximum 

snow accumulation for a region, higher elevations will tend to have higher amounts of snow due 

to the combined influence of lower temperatures and higher precipitation with increasing 
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elevation (Barry, 2008).  Additionally, it has been found that higher elevations tend to melt later 

than lower elevations in the Western U.S. (Clow, 2010).  In mountain environments higher 

elevations generally correspond with increased topographic complexity; therefore, although 

some mountainous areas will receive very high solar radiation inputs with increasing elevation 

due to decreased atmosphere, the topographic diversity causes shading in many areas and 

therefore mountains have lower overall net radiation, which allows snowpacks to persist longer 

(Barry, 2008; Price, 1986).  Therefore, higher elevations tend to melt later due to a combination 

of these lower temperatures and lower overall net radiation (Barry, 2008).   

 Although the snow cover versus elevation curve for different focus regions tends to be 

similar in shape in early April, the elevation at which a certain snow cover percentage is 

observed differs markedly between regions (see Table 3.2; Table 3.4; Figure 3.2).  The lowest 

elevation and longest lasting snow cover is observed in the Washington Cascades (Figure 3.2a), 

likely due to cold temperatures and high SWE input (Serreze et al., 1999).  The highest elevation 

snow cover is observed in the Colorado Rockies (Figure 3.2d), which receives the lowest 

wintertime SWE inputs (Serreze et al., 1999) of the study regions.  This high-elevation, low 

SWE observed in the Colorado Rockies is probably due to the combined effects of the mid-

latitude location and continental climate.   

Table 3.4 Early April elevation of    ̅̅ ̅̅ ̅
    for the western and eastern slopes of the 

Colorado Rockies, Sierra Nevada, Washington Cascades, and Montana Rockies. 

Elevation Where    ̅̅ ̅̅ ̅̅  > 50% 

Focus Study Site W Slope (m) E Slope (m) 

Washington Cascades 700 1000 

Montana Rockies 900 1400 

Sierra Nevada 1600 2300 

Colorado Rockies 2500 2500 
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3.3.3 Snow Covered Area: Western Versus Eastern Slope 

 In the Western U.S., the location of focus regions on western or eastern slopes can result 

in large differences in the amounts of snow received (Figure 3.2).  Western and eastern slope 

differences in snow cover illustrate the impacts of local-scale physiography on precipitation 

patterns.  The largest divergence in western versus eastern slope snow cover characteristics are 

observed in the Sierra Nevada (Table 3.2; Figure 3.2c).  Conversely, the Colorado Rockies show 

little to no divergence between western and eastern slope snow cover characteristics during the 

ablation period.  Both the Washington Cascades and the Montana Rockies show an intermediate 

divergence between western and eastern slope snow cover characteristics, and although not as 

pronounced as that observed in the Sierra Nevada, a western-eastern slope difference is readily 

apparent (Table 3.2; Table 3.4; Figure 3.2a-c).   

It has been long established that there is a strong rain shadow effect in the Sierra Nevada 

and the Washington Cascades, with much greater amounts of precipitation observed on the 

western slope (Price, 1986).  The Montana Rockies also act as a barrier that causes the western 

slope to exhibit characteristics of a maritime environment while the eastern slope is more like a 

continental environment (Finklin, 1986).  The divergence in west and east slope snow cover in 

Sierra Nevada, the Washington Cascades, and the Montana Rockies focus regions illustrates the 

impacts of the rain-shadow effect on snow cover.  The smaller differences in snow cover for 

west and east slopes in the Washington Cascades and the Montana Rockies are possibly caused 

by the generally lower elevations of these mountain ranges compared to the Sierra Nevada (see 

Figure 2.2a-c), thus creating less of a barrier to air flow.  Since snowfall is largely a function of 

temperature (Auer, 1974; U.S. Army Corps of Engineers, 1956; Fassnacht et al., 2001; Fassnacht 

and Soulis, 2002), these smaller differences may also be the result of cooler temperatures overall 
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at the higher latitude focus regions and warmer temperatures overall in the lower latitude focus 

regions, which would cause more precipitation to fall as rain rather than snow on the eastern 

slopes in the Sierra Nevada.  Although the Colorado Rockies will act as a barrier for westerly air 

masses, the eastern slope also receives frequent spring upslope events (Barry, 2008; Changnon et 

al., 1993) as well as southerly storms from the Gulf of Mexico (Barry, 2008), which can 

contribute large amounts of precipitation.  These upslope events and southerly storms may 

reduce the influence of western and eastern slope on snow cover in the Colorado Rockies relative 

to the other focus regions. 

 

3.3.4 Snow Covered Area: Maritime versus Continental 

 Continentality, or distance from water sources, influences snow cover characteristics in 

the Western United States at the mesoscale.  As observed in this study, the theoretical elevation 

of the snowline tends to increase with increasing continentality worldwide (Ives et al., 1974).  

For each latitudinal and slope group (mid-latitude versus higher-latitude and west slope versus 

east slope), maritime sites have snow cover at lower elevation than continental sites (Figure 3.2; 

Table 3.2; Table 3.4).  One noteworthy observation is that the Sierra Nevada rain shadow effect 

causes the eastern slope of the Sierra Nevada to behave more similarly to the continental 

Colorado sites, over 1,000 km away, than to the adjacent western slope Sierra Nevada.  

Differences is snowpack properties based on continental location have been noted by other 

studies (Armstrong and Armstrong, 1987; Serreze et al., 1999).  Snowpacks are generally denser 

in maritime regions of the Western U.S. (Armstrong and Armstrong, 1987).  Serreze (1999) 

found the more maritime Pacific Northwest to have the lowest snow to precipitation ratios in the 

Western U.S because these areas are close the freezing threshold.  Fassnacht et al. (2001) 
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summarized studies of the probability of snow based on temperature using work from the U.S. 

Army Corps of Engineers (1956) and Auer (1974), which show that for a given temperature, 

precipitation is less likely to fall as snow in the Sierra Nevada than compared to data from the 

entire U.S.  Although these studies highlight that maritime snow may be more sensitive to 

temperature, the lower snowlines observed in maritime regions are probably most strongly 

influenced by the decreased moisture content of continental air masses (Price, 1986), which 

causes an increase in the lifting condensation level required for precipitation to occur (Price, 

1986).   

 

3.3.5 Snow Covered Area: Latitude 

Latitude plays a broad scale role in influencing snow cover versus elevation relationships 

in the Western U.S.  It is well established that the snow line tends to occur at lower elevation 

with increasing latitude (Barry, 2008; Ives et al., 1974), a phenomena observed in this study: for 

each respective western and eastern slope focus region, higher latitude maritime (continental) 

sites exhibit lower elevation snow cover than mid-latitude maritime (continental) sites (Figure 

3.2; Table 3.2; Table 3.4).  Latitude, and the corresponding differences in insolation, has a large 

influence on the elevation of snow cover.  The mid-latitude sites receive greater amounts of 

winter insolation than the higher-latitude sites (Shinker, 2010) thus causing warmer temperatures 

at mid-latitude sites.  Since temperature will largely determine whether precipitation falls as rain 

or snow (Auer, 1974; U.S. Army Corps of Engineers, 1956; Fassnacht et al., 2001), and higher 

latitudes tend to have lower winter time temperatures, it follows that the rain/snow threshold will 

tend to be higher in elevation at the mid-latitude sites.   
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3.3.6 Snow Covered Area: Standard Deviation 

We postulate that the peaks in snow cover area standard deviation are indicative of the 

interannual variability of the snow line.  All focus regions follow a similar progression through 

time: in early April,  ̅    is greatest at lower to mid elevations, and as the season progresses this 

greater variation occurs at higher elevations (Figure 3.4).  By June, the highest  ̅    values are 

generally observed at the highest elevation zones.  By early July for all focus regions except the 

Washington Cascades  ̅    is minimal because    ̅̅ ̅̅ ̅ has almost completely depleted; higher  ̅    

is observed in the highest elevations of the Washington Cascades because snow cover often still 

exists at these locations in July.  The largest snow cover standard deviation is observed in early 

April at the lower elevations on the eastern slope of the Montana Rockies (Figure 3.4Be), 

probably due to frequent spring storm events on the Great Plains.  Overall, for a given time 

period SCA variability tends to be lowest in areas that have close to 100% snow cover (e.g. high 

elevation areas), or in areas with no snow cover (e.g. low elevation areas).  In the San Juan 

Mountains of Colorado interannual variability of maximum snow pack has been found to 

decrease with increasing elevation, while areas closer to the snowline showed the greatest 

variability (Caine, 1975).  Variability is highest in areas that are between higher elevation 

persistent snow and lower elevation intermittent snow, such as the mid elevation Sierra Nevada, 

as well as areas which are subject to short lasting spring storm cover events, such as low 

elevation eastern slope Montana Rockies.  The peaks in    ̅̅ ̅̅ ̅ standard deviation correspond to 

areas that exhibit the most sensitivity to weather conditions from year to year. 
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3.3.7    ̅̅ ̅̅ ̅̅ : Day of Year Depletion to 50% Snow Cover 

The day of depletion to 50% snow cover (   ̅̅ ̅̅ ̅) versus elevation offers insights into the 

progression of snowmelt through time.  The rate of change of    ̅̅ ̅̅ ̅ versus elevation tends to 

decrease with increasing elevation for all study regions (Figure 3.6).  In some regions, the rate of 

change in (   ̅̅ ̅̅ ̅) versus elevation is relatively consistent, as observed in the Washington 

Cascades (Figure 3.6a); in others, the rate of change gradually decreases with increasing 

elevation, as observed in the Sierra Nevada (Figure 3.6c).  In the Colorado Rockies (Figure 3.6d) 

and the eastern slope of the Montana Rockies (Figure 3.6b), there is an abrupt break in the rate of 

change at high elevation (above 3000 m), indicating that all snow cover at those high elevations 

is depleting to 50% in a very short time period (10 days for the Colorado Rockies).  Our field 

experiences in the Colorado Rockies lead us to suggest that at the beginning of the ablation 

season these higher elevation sites have little to no melt because temperatures remain very cold.  

The lower and middle elevations, on the other hand, are progressively warming and melting as 

the ablation season marches through time.  Towards the end of the ablation period temperatures 

eventually warm enough to induce rapid melting everywhere.  Since the Colorado Rockies and 

the Montana Rockies receive lower snowfall amounts (Armstrong and Armstrong, 1987; Serreze 

et al., 1999), less time is required to reduce snow cover.  In the Washington Cascades, 

temperatures at higher elevations remain cold enough to allow snow cover to persist year round, 

thus this break in rate of snow cover loss with elevation is not observed.   

 

3.3.8 Land Surface Temperature: Elevation 

Western and eastern slope land surface temperatures of the focus regions demonstrate a 

strong local-scale dependence on elevation, with increasing elevation corresponding to 
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decreasing temperatures (Figure 3.3).  This relationship is most pronounced at lower and mid-

elevation zones; at the highest elevation zones,    ̅̅ ̅̅ ̅ does not change as rapidly with increasing 

elevation, creating a backwards “J” shaped response of    ̅̅ ̅̅ ̅ versus elevation (Figure 3.3).  This 

may be the result of the fact that high elevations in the Western U.S. tend to warm slower than 

middle and lower elevations (Shinker, 2010).  Similarly, lower elevations tend to have wider 

daily temperature ranges than higher elevation sites due more frequent turbulent mixing of air in 

higher elevation mountains (Barry, 2008; Price, 1986).  Additionally, the high albedo of snow 

will cause less absorption of solar energy than bare ground and therefore less warming.  Both the 

high heat capacity and frozen state of snow will cause less variable LST than would be observed 

on bare ground (Barry, 2008).  While the land surface temperature versus elevation curve is 

generally similar in shape for the study regions, land surface temperatures can vary greatly 

between study regions.  Comparing LST in similar elevation zones across focus regions, the 

coldest land surface temperatures are observed in the Washington Cascades (Figure 3.3a; Table 

3.3).  Additionally, these lower temperatures last much longer in the Cascades, where    ̅̅ ̅̅
 ̅  

lasts until June, whereas the    ̅̅ ̅̅
 ̅  at all other focus sites is not observed after early April 

(Figure 3.3a-d; Table 3.3).   

 

3.3.9 Land Surface Temperature: Western Versus Eastern Slope 

 Location on the western or eastern slope can cause local-scale differences in land surface 

temperature (Figure 3.3).  The largest divergence between western and eastern slope land surface 

temperatures is in the Sierra Nevada at lower and middle elevation zones (less than 3000 m) 

(Figure 3.3c).  In contrast, the Colorado Rockies land surface temperature versus elevation 

relationship is similar for western and eastern slopes (Figure 3.3d).  In the Washington Cascades 
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and the Montana Rockies the widest deviations between western and eastern slope land surface 

temperature is observed at the lowest elevations (Figure 3.3a,b).  Since the eastern slopes of the 

Sierra Nevada, Washington Cascades, and the Montana Rockies receive less precipitation and 

therefore retain less moisture than their western slope counterparts, they will tend to heat and 

cool much more quickly, causing differences in temperatures at similar elevations (Barry, 2008).  

Thus the impacts of the rain-shadow effect on temperature appear to be stronger at lower 

elevations. 

 

3.3.10 Land Surface Temperature: Latitude and Continentality 

 Temperature in the Western U.S. is largely influenced by broad-scale patterns of solar 

radiation, which are controlled primarily by latitude (Barry, 2008; Mock, 1996; Shinker, 2010).  

Thus land surface temperatures during early April in higher latitude focus regions cross the zero 

degree threshold (   ̅̅ ̅̅
 ̅ ) at lower elevations than the mid-latitude focus regions (Figure 3.3; 

Table 3.5).  For the focus regions, latitude appears to exhibit a stronger influence on the land 

surface temperature-elevation relationship than the maritime effect (Table 3.5).  This is not to 

imply that mesoscale continental effects do not impact land surface temperatures, but rather the 

influence of continentality may not be readily apparent in the spatial transects employed in this 

study.  The influences may also be masked by the predominant influences of latitude, elevation, 

and potentially other factors not considered in this study.  Serreze et al. (1999) found that as a 

whole the Pacific Northwest (which includes Oregon and Washington) maintained, on average, 

much warmer winter/spring temperatures than interior locations at similar latitudes; however the 

maps included in Serreze et al.’s (1999) study showed that the Washington Cascades are clearly 

much colder than the Oregon Cascades and the more coastal Olympic mountains.  The 

winter/spring temperatures in the Washington Cascades are more similar to the interior 
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continental climates than the coastal maritime climates.  During winter months, the Washington 

Cascades are subject to easterly atmospheric circulation, which brings cold continental air 

through mountains passes (Steenburgh et al., 1997).  The Washington Cascades may be far 

enough away from the coast that latitude and/or easterly atmospheric circulation, rather than 

continentality, dominates in determining land surface temperatures.  Furthermore, due to the 

snow-albedo feedback effect and the insulating nature of snow, snow cover on the ground may 

promote cooler springtime temperatures than would be observed in patchy snow covered areas 

that warm more quickly.  Thus it is observed in the Washington Cascades that snow cover 

remains higher and land surface temperatures remain colder for longer duration that the other 

three study sites.   

Table 3.5 Early April elevation of    ̅̅ ̅̅
 ̅  for the western and eastern slopes of the 

Washington Cascades, Montana Rockies, Sierra Nevada, and Colorado Rockies. 

Elevation Where    ̅̅ ̅̅ ̅ < 0°C 

Focus Study Site W Slope (m) E Slope (m) 

Washington Cascades 1700 1700 

Montana Rockies 1700 1800 

Sierra Nevada 3100 3600 

Colorado Rockies 3300 3300 

 

3.3.11 Land Surface Temperature: Standard Deviation 

 There are several cases in which peaks in land surface temperature standard deviation 

correlate well to peaks in the snow covered area standard deviation.  This is observed for early 

April through early July on the western slope Sierra Nevada and western slope of the 

Washington Cascades, early April and early May on the eastern slope Sierra Nevada and the 

western and eastern slope of the Colorado Rockies, and early April on the eastern slope of the 

Montana Rockies (Figure 3.5).  The largest  ̅    is observed at the low elevations in early April 
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on the eastern slope of the Montana Rockies, possibly due to frequent spring storm events.  We 

postulate that the observed coincidence between the peaks in snow covered area and land surface 

temperature standard deviation are a result of the influence of the presence/absence of snow and 

its influence on energy fluxes. 

 

3.4 SUMMARY 

Snow cover, land surface temperature and precipitation differences throughout the 

Western U.S. are not controlled by one single variable but rather are the result of multiple factors 

operating at several spatial scales.  Mock (1996) and Shinker (2010) describe three spatial scales 

on which different phenomena operate that impact temperature and precipitation variations in the 

Western U.S.: broad-scale synoptic patterns, meso-scale impacts of continental location, and 

local-scale influences of physiography.  These three operating scales of control on precipitation 

and temperature in the Western U.S. help explain the spatial differences in precipitation and the 

spatial and temporal differences in land surface temperature and snow cover observed in this 

study.  Focus region elevation and eastern/western slope variations in snow cover highlight 

differences caused by local-scale phenomena, maritime versus continental divisions illustrate 

mesoscale differences, and the latitudinal divisions show the impacts of broad-scale synoptic 

patterns.   

Considerable spatial variability in precipitation and spatiotemporal variability in land 

surface temperature and snow covered area is observed between the focus regions.  Precipitation 

tends to increase in maritime environments, higher latitudes, and on western slopes.  It is not 

surprising, therefore, that the greatest precipitation amounts are observed on the western slope of 

the higher-latitude maritime Washington Cascades.  Snow cover tends to increase with 

increasing elevation and is lower in elevation in maritime environments, at higher latitudes, and 
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on (most) western slopes.  Land surface temperatures tend to be lower at higher elevations, 

higher latitudes, and on (most) western slopes.  The lowest elevation, longest lasting snow cover 

is observed on the western slope of the Washington Cascades, and the highest elevation snow 

cover is observed in the Colorado Rockies.  Likewise, the coldest temperatures are observed in 

the Washington Cascades.  For all focus regions, land surface temperature decreases with 

increasing elevation; however at the highest elevation this rate of decrease slows.  The largest 

divergence in western and eastern slope snow cover is observed in the Sierra Nevada, likely due 

to the extreme rain shadow effect caused by the very high elevation mountain range.  Little to no 

divergence is observed in the snow cover of the Colorado Rockies, likely due to springtime 

upslope storm events and storms from the Gulf of Mexico.  Interestingly, snow cover on the 

eastern slope of the Sierra Nevada is more similar to the continental Colorado Rockies than the 

adjacent western slope Sierra Nevada.  The greatest divergences in western and eastern slope 

land surface temperature are observed in the Sierra Nevada, while very little divergence between 

western and eastern slope land surface temperature is observed in the Colorado Rockies.  The 

eastern/western slope differences in land surface temperature, or lack thereof, are probably due 

to the influences of snow and moisture content on land surface temperature.  Latitude appears to 

play a stronger role than continentality in explaining regional differences in land surface 

temperature, although this may be the result of atmospheric circulation or other factors not 

considered in this study.   

All focus regions demonstrate a decreasing rate of change of    ̅̅ ̅̅ ̅ versus elevation, likely 

due to the fact that higher elevations tend to warm more slowly than lower elevations.  The 

Colorado Rockies, and to a certain extent, the eastern slope Montana Rockies and the Sierra 

Nevada, exhibit an interesting change in behavior of snow cover loss timing at high elevation, in 
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which snow cover depletes to 50% within a very short time period (e.g. 10 days in the Colorado 

Rockies).  The progressive increase in elevation of the peaks in snow cover standard deviation 

through the ablation period is indicative of the variability in the snow line from year to year.  

Land surface temperature standard deviation tends to peak at similar elevations as the snow 

cover standard deviations for several focus regions, likely because of snow’s impact on the land 

surface energy budget.  Transitional areas between lower elevations with no snow and higher 

elevations with persistent snow can exhibit high variability each year, suggesting they are most 

sensitive to weather patterns.  This high sensitivity to temperature at transitional elevations 

means the snow line progresses rapidly upward in elevation as the ablation season progresses.  In 

contrast, higher elevations with persistent snow cover in the Colorado Rockies, Sierra Nevada, 

and on the eastern slope of the Montana Rockies have nearly synchronous snow loss late in the 

season when temperatures are warm everywhere.   

Besides the geographic characteristics included in this study, many other factors (i.e. 

vegetation, slope) may be of importance in explaining climatic spatiotemporal variability in the 

Western U.S.  Further studies considering other variables not considered in this study could help 

improve understanding of Western U.S. climate and may be of use to identify regions with 

particular snow cover and land surface temperature characteristics.   
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CHAPTER 4: WESTERN U.S. ANALYSES 

 

4.1 INTRODUCTION 

The focus region analyses helped identify some of the factors that control spatiotemporal 

variability in SCA and LST.  This chapter extends the focus region findings to an analysis of the 

spatiotemporal patterns in SCA and LST for the Western U.S. as a whole.  The objectives of this 

portion of the study are to (1) determine the spatiotemporal variations in average snow cover in 

the Western U.S., (2) define zones of persistent, transitional, intermittent and seasonal snow, (3) 

determine the elevation of these zones, (4) assess the spatiotemporal variations of temperature 

within the seasonal snow zone, and finally, by using average wintertime LST (5) determine 

which areas in the seasonal snow zone may be more sensitive to changes in climate.   

 

4.2 RESULTS 

4.2.1 January to June Snow Cover 

Average monthly January to June snow cover derived from MODIS for 2000 to 2010 is 

shown in Figure 4.1.  In January snow covers much of the Western U.S., with greater than 50% 

SCA observed in low to high elevation Sierra Nevada and Cascades, the NW-SE axis of the 

Rocky Mountain cordillera, the Blue Mountains in Oregon, mid to high elevation northeastern 

and central eastern Nevada, the Upper Gila Mountains of Arizona and New Mexico, and most of 

the northern Great Plains.  February snow covers a similar extent as observed in January; most 

snow cover loss in February is at lower elevation areas.  By March more snow cover loss is 

apparent.  Snow cover has decreased to less than 25% in lower elevations of coastal Oregon and 
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Washington and has retreated to middle elevations in the Cascades and Sierras and to higher 

elevations in Arizona/New Mexico.  Mid-elevation Utah and Northwestern Nevada show 

substantially less snow cover, and the northern Great Plains shows loss of snow cover to less 

than 50%.  By April the Western U.S. is divided strongly into areas with greater than 50% snow 

cover and areas with less than 50% snow cover.  Areas retaining greater than 50% snow cover 

include the middle and higher elevation Cascades and Sierra Nevada, higher elevation ranges 

along the axis of the Rocky Mountain Cordillera, the Washington Olympics, the Utah Wasatch 

and Uinta, high elevation Nevada ranges, and sparse areas in the higher elevation Upper Gila 

Mountains in Arizona/New Mexico.  By May snow cover has retreated to even higher elevation 

zones, but retains a strong presence in the higher elevation Sierra Nevada, Cascades, Washington 

Olympic Mountains, Utah Wasatch and Uinta, and the middle and higher elevation axis of the 

Rocky Mountain cordillera.  By June most snow cover has depleted to less than 50%; however 

small areas of greater than 50% snow cover still remain in the highest elevations of the Cascades 

and the high elevation interior Rockies in northwest Wyoming.   

 

4.2.2 Snow Zones 

 Western United States snow persistence (SP) is shown in Figure 4.2, and the elevation of 

the seasonal snow zone (SSZ), persistent snow zone (PSZ), transitional snow zone (TSZ) and 

intermittent snow zone (ISZ) are shown in Figure 4.3.  Detailed maps of the snow zones are 

included in Appendix B for California/Nevada (CA/NV), Oregon/Washington (OR/WA), 

Idaho/Montana/Wyoming (ID/MT/WY), and Utah/Colorado/Arizona/New Mexico 

(UT/CO/AZ/NM).   
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Figure 4.1 MODIS 2000 – 2010 average monthly snow covered area from January to June in the Western United States.   
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The seasonal snow zone (SSZ; Figure 4.3d) covers an area of 448,135 km
2
 and makes up 

13.2% of the total area (Table 4.1). The persistent snow zone (PSZ; Figure 4.3a) is 114,410 km
2
 

and constitutes 3.4% of the total area and 25.5% of the SSZ (Table 4.1).  The lowest elevation 

PSZ (1000 to 1500 m) is observed in the Washington Cascades/Olympic Mountains, whereas the 

highest elevation PSZ (>3000 m) is observed in the Colorado Rockies, the southern Sierra 

Nevada, the Utah Uinta and Wasatch and the northwestern Wyoming/central Idaho/southwestern 

Montana Rockies.  Between these two extremes there is a northwest/southeast elevation gradient.  

Lower elevation PSZ (1500 to 2000 m) is observed in the Washington Olympic, 

Washington/Oregon Cascades, northern California Mountains and the northern 

Idaho/northwestern Montana Rockies.  Lower to mid elevation PSZ (2000 to 2500 m) is 

observed in northern Sierra Nevada and the central Idaho/western Montana Rockies.  The middle 

to higher elevation PSZ (2500 to 3000 m) is observed in the central Sierra Nevada, the western 

slope southern Sierra Nevada, the Rockies of central Idaho, southwestern Montana, northwestern 

Wyoming, and northern Colorado, and small areas within the ranges of northeastern Nevada and 

northern Utah.  Western and eastern slope differences in the snowline are observed in the 

southern Sierra Nevada (western slope at 2500 m versus eastern slope at 3000 m) and the 

Washington Cascades (western slope at 1000 m versus eastern slope at 1500 m).  There is no 

PSZ observed in Arizona.   

Table 4.1 Area, percent of total area, and percent of seasonal snow zone (SSZ) for the 

persistent snow zone (PSZ), the transitional snow zone (TSZ), the intermittent snow zone (ISZ), 

the seasonal snow zone (SSZ), and the remaining area in the Western United States.   

 Area 

(km
2
) 

Percent of Total Area 

(%) 

Percent of SSZ 

(%) 

PSZ – Persistent Snow Zone 114,410 3.4 25.5 

TSZ- Transitional Snow Zone 333,725 9.8 74.5 

ISZ – Intermittent Snow Zone 845,246 24.9 NA 

SSZ – Seasonal Snow Zone 448,135 13.2 NA 

Remaining Area 2,106,899 62 NA 
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Figure 4.2 Snow persistence (SP) and snow zones in the Western U.S. determined from 

2000-2010 MODIS average snow cover averaged from January 1
st
 to July 3

rd
.  Four snow zones 

are defined: the intermittent snow zone (ISZ; orange; 25-49% average snow covered area), the 

transitional snow zone (TSZ; light blue; 50-74%), and the persistent snow zone (PSZ; dark blue; 

75-100%).  The seasonal snow zone (SSZ) is the combination of light and dark blue zones, with 

snow persistence from 50-100%).  
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Figure 4.3 Elevation of the (a) persistent snow zone (PSZ), (b) transitional snow zone (TSZ), 

(c) intermittent snow zone (ISZ), and (d) seasonal snow zone (SSZ) for the Western United 

States.   
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 The transitional snow zone (TSZ) makes up 9.8% of the total area of the western U.S. 

and 74.5% of the SSZ.  It covers 333,725 km
2
 (Table 4.1; Figure 4.3b).  The elevation where the 

TSZ begins is the same as the elevation where the SSZ begins.  The lowest elevation TSZ (750 

to 1000 m) is observed in the Washington Olympic/Cascades ranges.  The highest elevation TSZ 

(3000 to >3500 m) is observed predominantly in the southern Rockies of Colorado and New 

Mexico and is also observed in the southern Sierra Nevada, the southern Wasatch, the Upper 

Gila Mountains of Arizona and New Mexico, and the central Nevada Ranges.  Between these 

two zones exists a northwest/southeast elevation gradient.  TSZ between 1000 and 1500 m is 

observed predominantly in the Washington and Oregon Cascades, northern Idaho and 

northwestern Montana.  The central to northern portions of the western slope Sierra Nevada, 

northern California, southern and eastern Oregon, central Idaho, and central-western Montana 

have TSZ between 1500 and 2000 m.  TSZ from 2000 to 2500 m is observed predominantly in 

the Rocky Mountains of Idaho, Montana, and Wyoming, and in smaller areas of the 

southwestern slope Sierra Nevada and the ranges of northern Nevada, northern Utah, and 

northern Colorado.  TSZ between 2500 and 3000 m is observed in the Colorado Rockies, the 

Utah Uinta and Wasatch, western Wyoming, and the central to southern portions of the eastern 

slope Sierra Nevada.  Several areas show western and eastern slope differences in the lower 

elevation limit of the TSZ snowline, such as the southern Sierra Nevada (1500 m on the western 

slope versus 2500 m on the eastern slope) and the southern Oregon Cascades (1000 m on the 

western slope versus 1500 m on the eastern slope). 

 The intermittent snow zone (ISZ) is by far the largest snow zone, covering an area of 

845,246 km
2
 and making up 24.9% of the total area (Table 4.1; Figure 4.3c).  The lowest 

elevation ISZ (<500 to 1000 m) is in the western slope Oregon Cascades, the Washington 



65 

Cascades/Olympic/Rocky Mountains, the northern Idaho/ northwestern Montana Rockies, and 

the northern Great Plains.  The highest elevation ISZ is observed between 2500 and 3500 m in 

the south-central Colorado/northern New Mexico Rockies, the central Utah Wasatch Mountains, 

the eastern slope of the Sierra Nevada, and the Upper Gila Mountains in New Mexico and 

Arizona.  An elevational gradient is observed between these two zones.   Lower-mid elevations 

ISZ (2000 to 2500 m) are observed on the eastern slope of the Sierra Nevada, the ranges within 

central Nevada, the southern Wyoming Great Plains, the Upper Gila Mountains in Arizona and 

New Mexico, the Utah Wasatch and Uinta, and the Colorado Rockies.  Lower elevation ISZ 

(1000 to 2000 m) is observed on the western slope of the Sierra Nevada, northern California, 

eastern Oregon, the flatter basins within north-central Nevada, southwestern Montana, the 

northern Great Plains along southeastern Montana/northeastern Wyoming, and areas of 

western/northeastern Utah and northwestern Colorado.  Western slope and eastern slope 

differences in the snowline of the ISZ are observed in the southern Sierra Nevada (west slope: 

1500 m; east slope: 2000 m), the northern Sierra Nevada (west slope: 1000 m; east slope: 

1500 m) and the Oregon Cascades (west slope: 500 m; east Slope: 1000 m). 

 

4.2.3 Land Surface Temperature in the Seasonal Snow Zone 

 Average land surface temperature for January to March (LSTJFM) within the seasonal 

snow zone (SSZ) of the Western United States is shown in Figure 4.4.  The warmest areas (> 

2°C) are at lower elevations of the Sierra Nevada in CA, CA/OR Cascades, CA/OR Klamath, and 

the higher elevations of the southern CA Mountains and Mt. Baldy/the Kaibab Plateau in AZ.  

The coldest areas (< -8°C) are observed predominantly in the interior northern Rocky Mountains 

clustered around the intersection of ID, MT, and WY; however, high elevation areas in the CO 
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Rockies, UT Wasatch and Uinta, CA Sierra Nevada, and a few areas in the OR Blue Mountains 

and northeastern NV have less than -8°C LSTJFM.  There is a NE to SW temperature gradient that 

is observed between the colder interior regions and the warmer more coastal OR Cascades, CA 

Sierra Nevada, and the southwestern CA/AZ region.  A similar gradient is observed in the 

temporal evolution of 8-day 2000 to 2010 average MODIS land surface temperature from 

January to May within the SSZ of the Western United States (Figure 4.5).  In January the 

warmest areas are in the lower and mid elevation Sierra Nevada, followed by the lower 

elevations of the CA/OR/WA Cascades, southwest AZ/NM Upper Gila Mountains, the NV 

mountain ranges, the Blue Mountains of OR, and northern ID/western MT.  The areas that 

remain the coolest longest are the highest elevations of the northern Rockies around ID/MT/WY, 

the CO Rockies, the Sierra Nevada, and a few peaks in the OR/WA Cascades.  

  
Figure 4.4 2000 – 2010 average MODIS land surface temperature for January, February 

March (LSTJFM) for the seasonal snow zone (SSZ) in the Western United States 

Land Surface Temperature 

     (° C) 



67 

 

 

 

 

 

 

 

   Feb 10   Feb 18        Feb 26          Mar 6            Mar 14 

 

 

 

 

 

 

  Mar 21    Mar 30         Apr 7          Apr 15  

 

 

 

 

 

 

  Apr 23        May 1        May 9         May 17 

 

 

 

 

 

 

Figure 4.5 MODIS derived 8 day average LST for 2000-2010 in the seasonal snow zone (SSZ) of the Western U.S.
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4.2.4 Sensitive Snow Zones 

 The elevation of the sensitive snow zones in the Western United States, which are 

grouped by standard deviation (see Chapter 2), are depicted in Figure 4.6.  Focus maps of the 

sensitive snow zones are included for California/Nevada, Oregon/Washington, 

Idaho/Montana/Wyoming and Colorado/Utah/Arizona/New Mexico in Appendix B.   

 The first most sensitive snow zone (SSM1) exists primarily in the lower elevations of the 

Sierra Nevada and the Oregon Cascades, covering 8,864 km
2
 and making up 2.0% of the 

seasonal snow zone (SSZ) (Table 4.2; Figure 4.6a).  The lowest elevation SSM1 (1000 to 1500 m) 

is observed in the Oregon Cascades and northern California.  The highest elevation SSM1 (2500 

to 3000 m) is observed in sparse areas of the mountains in southern California, southern Nevada, 

and central-eastern Arizona.  There is an elevation gradient that runs from high elevation SSM1 in 

the south to lower elevation SSM1 in the north.  In the southern Sierra Nevada and the Kaibab 

plateau in Arizona the SSM1 is observed between 2000 and 2500 m.  In the central and northern 

Sierra Nevada and the northern California mountains SSM1 between 1500 and 2000 m is 

observed.    

Table 4.2 Area and percent of seasonal snow zone (SSZ) of the 1
st
 (SSM1), 2

nd
 (SSM2), and 

3
rd

 most sensitive snow zones (SSM3) and of the 2
nd

 (SSL2), and 1
st
 least sensitive snow zones 

(SSL1) for the Western United States.   

 Area 

(km
2
) 

Percent of SSZ 

(%) 

SSM1  8,864 2.0 

SSM2  56,874 12.7 

SSM3  143,907 32.1 

SSL2  197,871 44.2 

SSL1  40,619 9.1 
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Figure 4.6 Elevation of the (a) 1

st
 most (SSM1), the (b) 2

nd
 most (SSM2), the (c) 3

rd
 most (SSM3), the (d) 2

nd
 least (SSL2), and the (e) 

1
st
 least (SSL1) sensitive snow zones in the Western United States.   
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 The second most sensitive temperature zone (SSM2) covers an area of 56,874 km
2
 and 

constitutes 12.7% of the SSZ (Table 4.2; Figure 4.6b).  The SSM2 is observed predominantly in 

the Sierra Nevada and the Cascades; however areas in Nevada, Idaho, Utah, Colorado, Arizona 

and New Mexico are also included.  The lowest elevation SSM2 (750 to 1000 m) is observed in 

the Washington Cascades and Olympic Mountains.  The highest elevation SSM2 (> 2500 m) is 

observed along the eastern slope Colorado Front Range and the southern Colorado/northern New 

Mexico Rockies, the southern Sierra Nevada, the southern California Mountains, the southern 

Utah Wasatch, the Upper Gila Mountains of Arizona/New Mexico, and the central to southern 

Nevada Ranges.  Between the lowest elevation SSM2 in the northwest and the highest elevation 

SSM2 along the southern and southwest areas there is an elevation gradient.  SSM2 between 2000 

and 2500 m is observed in the central Sierra Nevada, central Nevada ranges, central Utah 

Wasatch, and southeastern Colorado Rockies.  In the northern Sierra Nevada, northern California 

Mountains, southern Oregon Cascades and eastern Oregon Mountains SSM2 between 1500 and 

2000 m is observed.  SSM2 between 1000 and 1500 m is observed in the northern Oregon 

Cascades, northeastern Oregon Blue Mountains, and the Washington Cascades/Olympic 

Mountains.  The western slope Sierra Nevada SSM2 covers a much wider area than the eastern 

slope, where SSM2 is only a thin band.  A similar western/eastern slope difference is observed in 

the Oregon Cascades.  No SSM2 is observed in Montana. 

 The third most sensitive snow zone (SSM3) is observed in all states in the Western U.S.  

The SSM3 covers 143,907 km
2
 and makes up 32.1% of the SSZ (Table 4.2; Figure 4.6c).  The 

lowest elevation SSM3 (750 to 1500 m) is observed in the Washington Olympic/Cascades 

Mountains and the Rocky Mountains of northwestern Washington, northern Idaho, and 

northwestern Montana.  The highest elevation SSM3 (>3000 m) is observed in the Colorado 
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Rockies, the southern Sierra Nevada, the southern Utah Wasatch, the central Nevada ranges, and 

Humphrey’s peak in Arizona.  An elevation gradient exists from the lowest elevation SSM3 in the 

northwest to the highest elevations in the south and southeast.  SSM3 between 2500 and 3000 m is 

observed in the Colorado/New Mexico Rocky Mountains, the southern/central Utah Wasatch and 

the northern Utah Uinta, the central Sierra Nevada, the central Nevada Ranges and small areas in 

Wyoming.  SSM3 from 2000 and 2500 m is observed in the northern Sierra Nevada and northern 

California Mountains, the northern Nevada Ranges, the northern Utah Wasatch, northeastern 

Colorado, Wyoming, southern Idaho, southeastern Oregon and southern Montana.  In the Oregon 

and Washington Cascades, eastern Oregon, the Washington Olympic Mountains, central Idaho 

and southwestern Montana the SSM3 is observed between 1500 and 2000 m.  In the southern 

Sierra Nevada the lower limit of SSM3 tends to begin above 2500 m on the western slope and 

above 3000 m on the eastern slope, and SSM3 tends to be thinner on the eastern slope.   

 The second least sensitive snow zone (SSL2) exists predominantly in the Rocky 

Mountains, with sizable areas of SSL2 present in the northern Washington Cascades and the high 

elevation Sierra Nevada (Figure 4.6d).  The SSL2 covers an area of 197,871 km
2
 and makes up 

44.2% of the SSZ (Table 4.2).  The lowest elevation SSL2 is in northern Montana, Idaho, and 

Washington, whereas the highest elevation SSL2 is in the Colorado Rockies, the Utah Wasatch 

and Uinta, the southern Sierra Nevada, and parts of western Wyoming.  The SSL2 in the southern 

Sierra Nevada is at the highest elevations (>3000 m).  In the Washington Cascades the SSL2 is 

mainly observed between 1500 to 2000 m.  In northeastern and central Idaho and northwestern 

Montana the SSL2 is observed as low as 1000 m and as high as 3000 m.  Central portions of 

Idaho show SSL2 ranging from 1000 to 3000 m.  In Wyoming SSL2 is mainly observed between 

2000 and 3000 m.  SSL2 in the northern CO Rockies ranges from 2000 to greater than 3500 m, 
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and in the southern CO Rockies SSL2 ranges from 2500 to greater than 3500 m.  Utah SSL2 is 

confined to the mid to higher elevations (2000 to 3500 m) of the Wasatch and the Uinta 

Mountain ranges, with the southern Wasatch SSL2 ranging between 2500 and 3500 m, while the 

more northern Wasatch/Uinta SSL2 is observed as low as 2000 m in the Wasatch and up to 

3500 m in the Uinta.  Small areas of SSL2 are observed in the northeastern corner of Nevada 

(2000 to 3500 m), the OR Cascades, OR Blue Mountains and southeastern OR Mt. Steens (1500 

to 3000 m), and the northern NM Rockies (>3000 m).  No SSL2 is observed in Arizona.   

 The least sensitive snow zone (SSL1) is confined to the mid to high elevation interior 

Rockies and small areas within Oregon, Washington, and northern California (Figure 4.6e).  The 

SSL1 covers 40,619 km
2
 and constitutes 9.1% of the SSZ (Table 4.2).  The predominant area of 

SSL1 is at the intersection of Idaho, Montana, and Wyoming, and ranges as low as 1500 m to 

greater than 3500 m.  The high elevation Colorado Rockies boast the second most prominent 

area of SSL1, which is above 3000 m.  The Uinta range in northeastern Utah also maintains a 

sizeable area of SSL1 above 3000 m.  Other smaller areas of SSL1 exist in northern CA (> 

3000 m), northern OR (> 2500 m) and Washington (> 2000 m).  There is no SSL1 in Nevada, 

Arizona, and New Mexico. 

 

4.3 DISCUSSION 

The first objective of this thesis was to determine the spatiotemporal variations in average 

snow cover for the Western U.S.; this is achieved with the average monthly snow covered area 

for January through July.  These maps provide insights into snow cover loss patterns in the 

Western United States.  In January and February snow covers a large portion of the Western U.S. 

including higher-elevation topographically diverse sites, lower elevation foothills and flatter 

regions (Figure 4.1).  In March much of the lower elevation foothills and flatter regions have 
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begun to lose snow cover due to increasing temperatures at lower elevations and more direct 

insolation due to less shading in the flatter regions/foothills (Price, 1986).  By April, snow cover 

exists primarily in areas included within the SSZ, which is confined predominantly to the 

topographically diverse mountain ranges that receive less direct solar radiation due to increased 

shading (Price, 1986).  Snow cover is found predominantly along two main axes: north to south 

along the Sierra Nevada/Cascades and northwest to southeast along the Rocky Mountain 

Cordillera.  These high elevation, topographically diverse areas tend to remain colder longer 

(Barry, 2008; Price, 1986; Shinker, 2010) and have greater wintertime SWE accumulation 

(Fassnacht et al., 2003) than other areas in the Western U.S and therefore melt later in the 

ablation period (Clow, 2010).  As the ablation season progresses through April and May, snow 

cover increases to progressively higher elevations as lower elevations warm and snow melts.  

Almost all snow cover in the Western U.S. is ablated by July.  Areas with the longest lasting 

snow cover include the high elevation Sierra Nevada, Colorado Rockies, Utah Uinta and 

Wasatch, the mid to high elevation Washington/Oregon Cascades and coastal mountains, and the 

interior Rockies of Idaho, Montana, and Wyoming.   

 We complete the second and third objectives by using snow persistence to define zones 

of persistent, transitional, intermittent, and seasonal snow and evaluating the elevation within 

these zones.  The snow zone analyses illustrate the influences of elevation, latitude, and 

continentality on snowpack in the Western U.S (Figure 4.3).  As shown in the focus region 

analyses, decreasing latitude and increasing continentality result in an increase in the elevation of 

the snowline.  Expanding to the regional perspective shows that this latitude effect, combined 

with the continental-maritime effect, result in a NW/SE axis of snowline, which starts at the 

lowest elevations in the Northwestern Washington Cascades and increases to the highest 
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elevations in the southwestern Rockies.  This NW/SE snowline axis is observable in the ISZ, the 

TSZ, the PSZ, and the SSZ (Figure 4.3).  The orientation of this gradient in a NW/SE axis rather 

than strictly N/S or W/E demonstrates the combined influences of broad-scale latitudinal patterns 

and meso-scale continental patterns (Barry, 2008; Ives et al., 1974; Shinker, 2010).  Across 

similar latitudes, the SSZ begins at higher elevations in areas with increasing continentality.  

Across similar meridians, which tend to have similar continentality, the SSZ snowline is 

observed at lower elevations in higher latitudes.  Thus the combined effects of latitude and 

continentality result in the NW/SE elevation gradient observed in the snowline (Barry, 2008; 

Ives et al., 1974).   

Focus region analyses demonstrated that snow cover tends to occur at lower elevations on 

western slopes of the Sierra Nevada, the Washington Cascades, and the Montana Rockies.  

Similarly, in the expanded Western U.S. analyses, several areas readily illustrate the influence of 

local-scale differences caused by physiography of predominant slope, such as is observed in the 

ISZ and TSZ in the Sierra Nevada and Oregon Cascades, and the PSZ in the Sierra Nevada and 

Washington Cascades, which tend to have lower elevation snow lines on the western slopes.  

Focus region analyses illustrated the importance of elevation in determining local snow cover, 

with increasing elevations corresponding with increasing snow cover, yet also demonstrated the 

regional differences on snowline caused by the impacts of latitude and continentality.  The 

Western U.S. analyses show the influence of elevation as a local-scale physiographic control on 

the presence or absence of snow.  Latitude and continentality largely determine the elevation at 

which snow cover can exist for the SSZ, and in the southern portions of the Western U.S. snow 

cover exists because the local-scale physiography reaches high enough elevations.  If not for the 

high elevation Rocky Mountains, much of the Western U.S. would probably not receive high 
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amounts of snow accumulation.  This phenomenon is reflected in the lack of seasonal snow 

cover in New Mexico and Arizona, even though it is possible for seasonal snow cover to exist at 

very high elevations, as is shown by the presence of a SSZ in the highest mountaintops of New 

Mexico and Arizona.  However, the elevation of the Rockies quickly drops off in New Mexico & 

Arizona, and therefore much less snow cover is observed in these states.  While areas of the SSZ 

are primarily confined to mountainous terrain, areas within the ISZ are largely observed in flatter 

areas and the more undulating foothills of the Western U.S.  As mentioned previously, these 

areas receive more direct insolation and lower amounts of SWE, which is likely the reason snow 

in these areas tends to melt quickly.   

 We assess the spatiotemporal variations of temperature within the seasonal snow zone by 

looking at the progression of the average 8-day LST within the seasonal snow zone during winter 

and spring, which was the fourth objective of this thesis.  Finally, we complete the fifth objective 

by using the wintertime (January-February-March) average LST to define the relative sensitivity 

of the seasonal snow zone to climate change.  Areas that warm first (last) generally coincide with 

areas highlighted as most (least) sensitive to climate change (Figure 4.4; Figure 4.5; Figure 4.6).  

Although sensitivity of snow to climate change depends on both precipitation and temperature, 

for this study we have used temperature only.  While observed temperatures and those modeled 

in global climate models have tended to increase in most areas of the Western U.S., observed and 

modeled precipitation trends have been variable, largely due to the interannual variability of 

precipitation (Brown and Mote, 2009; Hamlet et al., 2005; Stewart, 2009).  Previous studies have 

found that decreases in SWE and decreases in SWE to precipitation ratios have largely been 

explained by increases in temperature rather than by changes in precipitation amount (Brown and 

Mote, 2009; Hamlet et al., 2005; Stewart, 2009).  Additionally, warmer MODIS land surface 



76 

temperatures have been found to coincide with periods of melt and mass loss on the Greenland 

ice sheet (Hall et al., 2008).  We therefore used land surface temperature as a proxy for climate 

change sensitivity under the assumption that the warmest areas will be most sensitive to shifting 

from seasonal snow cover to intermittent snow cover.  By using the data-derived seasonal snow 

zone, which represents areas that, based on an 11-year average, have greater than 50% snow 

cover on April 1
st
, we base the sensitivity analysis explicitly on areas with documented seasonal 

snow cover.   

The snow sensitivity classifications in this study are defined based on the spread of the 

land surface temperature data, rather than fixed temperature thresholds, as has been implemented 

in other modeling and climate change studies (Brown, 1997; Brown, 2000; Brown and Mote, 

2009; Casola et al., 2009; Lynch-Stieglitz, 1994; Nolin and Daly, 2006; Stewart, 2009).  

Modeling and climate change studies have often used an air temperature of 0°C to represent the 

threshold that determines whether precipitation falls as rain or snow (Brown, 1997; Brown, 

2000; Brown and Mote, 2009; Fassnacht and Soulis, 2002; Lynch-Stieglitz, 1994).  However, 

snow can fall at air temperatures greater than 0°C, and rain can fall at temperatures lower than 

0°C due to the fact that snow formation depends on cloud temperature, rather than air 

temperatures near the ground surface (Lackmann et al., 2010).  Just as air temperature will not 

necessarily reflect snowfall conditions, neither will land surface temperature; in fact land surface 

temperatures will be more complex in their relation to cloud conditions, and therefore snowfall, 

due to land surface coverage conditions (e.g. snow cover percentage, the presence/absence of 

vegetation, vegetation type and land use).  Therefore, to define appropriate sensitivity thresholds, 

the methods in this study do not rely on relatively arbitrary land surface temperature values such 

as 0°C, but rather consider the mean and standard deviation of the land surface temperature 
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within the seasonal snow zone to define the sensitive snow zones.  This presents a data-driven 

method for determining relative sensitivity of snow based on observed temperature conditions 

where seasonal snow cover is documented.  One weakness of this approach is the relatively large 

(1 km) spatial resolution of the MODIS LST product, and the subsequent averaging over each 

huc100 spatial unit, which can cause the LST to be influenced by a wide variety of land cover 

types.  Similarly, the LST used for sensitive snow zone definitions is averaged over a wide time 

period (January-February-March average LST for the 2000 to 2010 average).  However, in 

viewing the similarities between the relatively warmer and colder areas observed in both the 

LSTJFM map and the 8-day 2000 -2010 average temporal evolution of land surface warming from 

January to May, we feel confident that the defined sensitive snow zones give an accurate 

representation of the temperature conditions that would affect relative sensitivity of snow to 

climate warming in the Western U.S. 

 For the sensitive snow zones, there is a northeast to southwest gradient of snow 

sensitivity to climate change, with areas along the outer rim of the southwest and the maritime 

regions being some of the most sensitive (Figure 4.6a,b).  The most sensitive snow zones are 

lower to mid elevation Sierra Nevada (1500 to 2500 m), followed by the low to mid elevation 

Cascades (750 to 2000 m), the mid-elevations (2000 to 3000 m) in southern and central Utah 

Wasatch Mountains, mid to higher elevations (>2500 m) of the southern California Mountains, 

the eastern Colorado Front Range, and the southern San Juan Mountains in Colorado (Figure 

4.6a,b).  Sensitive snow zones also exist in the Nevada Basin and Range.  The least sensitive 

snow zones are found predominantly in the interior regions of the Western U.S. (the northern 

Rockies in Idaho/Montana/Wyoming) (Figure 4.6d,e).  Other areas included in the least sensitive 

snow zones are the mid to high elevation (> 2500 m) Colorado Rockies and Utah Uinta/Wasatch, 
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the high elevation (> 3000 m) Sierra Nevada, and the low to high elevation (> 1500 m) 

Washington Cascades and mid elevation (> 2000 m) Oregon Cascades/Blue Mountains.   

 The sensitive snow zones highlighted in this study are consistent with other studies of 

climate change sensitivity in the West.  The Pacific Northwest (Brown and Mote, 2009; Hamlet 

et al., 2005; Mote et al., 2005; Nolin and Daly, 2006; Serreze et al., 1999; Stewart, 2009) and the 

lower and mid-elevation Sierra Nevada (Brown and Mote, 2009; Hamlet et al., 2005; Mote et al., 

2005; Stewart, 2009) are considered the most sensitive areas to climate change in the Western 

U.S.  The southwest is also considered highly sensitive to climate change (Mote et al., 2005; 

Stewart, 2009).  In this study, some areas in Colorado are also found to be sensitive snow zones, 

especially along the eastern Colorado Front Range and in the southern Colorado San Juan 

Mountains; these areas may not have been highlighted as sensitive in previous studies because 

ground-based monitoring networks at mid elevations in the Colorado Rockies are sparse.  

Although the Colorado Rockies are relatively cold, Clow (2010) suggested that Colorado may 

not be resistant to climate change and that the colder Colorado climate may initially mask the 

impacts of climate change.  Further, in areas where snowfall depends more on precipitation than 

on temperature, the impacts of climate change may not be as obvious.  Western U.S. maritime 

snowfall tends to be temperature dependent, while interior Western U.S. snowfall is precipitation 

dependent (Hamlet et al., 2005; Mote et al., 2005; Serreze et al., 1999).  Likewise, higher 

elevation sites, such as the high elevation southern Sierra Nevada, maintain very cold wintertime 

temperatures, and snowfall is thus precipitation dependent (Hamlet et al., 2005; Mote et al., 

2005).  Sensitivity of snow zones to climate warming may be harder to predict in these 

precipitation-dependent regions.  However, if the assumption that temperature is the primary 

driver of snow sensitivity to climate is correct in most locations, our results show that the initial 
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impacts of climate change on the seasonal snow zone will likely become apparent in the warmer 

areas of the Western U.S.- the lower to mid elevations of the maritime regions and the 

southwestern U.S. If warming continues to take place, colder interior climates may also become 

impacted by shifts from seasonal to intermittent snow cover.  

 Snow cover and to a lesser extent, land surface temperature, can vary markedly from year 

to year due to interannual variability and decadal oscillations (e.g. ENSO, PDO).  Furthermore, a 

warming climate will change the hydrology and biota of the Western U.S.  As mentioned in 

Chapter 1, decreases in snow water equivalent (Hamlet et al., 2005; Mote et al., 2005; Stewart, 

2009), decreases in snow to precipitation ratios (Knowles et al., 2006; Pederson et al., 2010; 

Stewart, 2009) and earlier onset of streamflow rise (Cayan et al., 2001; Clow, 2010; Stewart, 

2009) have already been documented in many areas throughout the west.  Furthermore, in large 

portions of the western U.S., especially in Colorado and Wyoming, there has been massive tree 

die-off (in some areas with nearly 100% tree mortality) due to mountain pine beetle infestations 

(Samman and Logan, 2000), which may cause increased snow accumulation and more rapid 

spring melt (Mikkelson et al., 2011).  Due to the short time period covered by the MODIS data 

used in this study, we have not attempted to determine the influences of these processes on the 

results.  The averages of SCA used in this study instead provide a climatological perspective on 

snow conditions.  These averages will be influenced by the range of variability in climate and 

land cover conditions within the time period of analysis, and we suggest that as additional years 

of MODIS data become available, future studies should use these data sets to evaluate the 

influence of interannual and decadal variability, climate change, and bark beetle kill on snow 

cover and land surface temperature in the Western U.S. 

 



80 

4.4 SUMMARY 

 The main areas of snow cover in the Western United States exist along two primary axes: 

from north to south along the Washington Cascades and the Sierra Nevada, and from northwest 

to southeast along the axis of the Rocky Mountain Cordillera.  The snowline in the Western U.S. 

shows a strong elevation gradient from the northwest (low elevation) to the southeast (high 

elevation) caused by the combined influences of latitude and continentality.  The seasonal snow 

zone is generally confined to higher-elevation, topographically diverse areas, while the 

intermittent snow zone often is observed in lower elevation foothills and flat areas, which receive 

more direct insolation.  Within the seasonal snow zone, the warmest areas are the lower to mid 

elevation maritime mountain regions and the mid to higher elevation southwest, whereas the 

coldest areas are observed in the northern Idaho/Montana/Wyoming Rockies, the high elevation 

Sierra Nevada, the mid to high elevation Utah Wasatch/Uinta, the Colorado Rockies, the lower 

to high elevation Washington Cascades, and small areas in mid to high elevations of Oregon and 

Nevada.  Areas in the seasonal snow zone that may be most sensitive to climate change are 

predominantly along the lower to mid elevation maritime ranges and the southwestern United 

States, while the least sensitive areas are the interior northern Idaho/Montana/Wyoming Rockies, 

the mid to higher elevation Colorado Rockies, the high elevation Sierra Nevada and the mid to 

high elevation Washington Cascades.  Resource managers in these sensitive snow zones should 

take into consideration the potential consequences of climate change on snowpacks in order to 

prepare for an altered hydrologic regime.   
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CHAPTER 5: CONCLUSIONS

 

 Snow covered area, land surface temperature, and precipitation exhibit considerable 

spatiotemporal variability throughout the Western United States.  This study illustrates the 

climatic variability caused by physiography and spatial location at the local-scale, meso-scale, 

and broad scale.  In Chapter 3, the focus region analyses offer in depth understanding of the 

influences of latitude, continentality, elevation, and slope orientation on snow cover, land surface 

temperature, and precipitation.  Latitude influences these variables on the broad scale (>100 km) 

through insolation inputs, which cause lower temperatures at higher latitudes, and global 

atmospheric circulation patterns, which cause higher precipitation at higher latitudes.  The 

combination of greater precipitation and lower temperatures in the higher latitudes of the 

Western U.S. causes lower elevation, longer lasting snow cover.  Continentality, or distance from 

water sources, creates variability in snow cover, land surface temperature, and precipitation at 

the meso-scale (1-100 km); areas with increasing continentality tend to receive less precipitation, 

due to decreasing moisture content of air masses as they move further into the continent, and as a 

result have snow cover at higher elevations.   

 Elevation and slope orientation influence precipitation, land surface temperature, and 

snow cover on a local-scale (1-10 km), primarily due to the impacts of orography.  Higher 

elevations tend to have more precipitation, lower land surface temperatures, and greater snow 

covered area.  Slope orientation (western versus eastern slope) can have substantial influences on 

precipitation, land surface temperature, and snow cover, as is observed in the Sierra Nevada, the 
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Washington Cascades, and the Montana Rockies, but such is not always the case, as is observed 

in the Colorado Rockies.  In areas where western and eastern slope differences are observed, 

western slopes tends to receive more precipitation, have colder land surface temperatures, and 

have snow cover at lower elevations.  Many of the storms that the Sierra Nevada, the 

Washington Cascades, and the Montana Rockies receive are westerly, whereas the Colorado 

Rockies is subject to frequent upslope storm events as well as southerly Gulf of Mexico storm 

tracks; this may explain the relative similarity in western and eastern slope snow cover for the 

Colorado Rockies compared to the other focus regions. 

 Analyses in Chapter 4 provide insights into the spatial and temporal differences in 

climatology and sensitivity to climate change of the Western U.S.  Most of the snow cover in the 

Western U.S. is observed along two main axes: north to south along the Cascades and Sierra 

Nevada, and northwest to southeast along the Rocky Mountain cordillera.  At the beginning of 

winter (January and February) snow cover is also observed in many of the flatter areas and 

lower, undulating foothills.  These areas often receive lower snowfall as well as more direct 

insolation than the more topographically diverse mountain ranges and therefore lose snow cover 

sooner in the melt season.  Although some areas in the higher elevation mountain ranges can 

receive high amounts of solar radiation due to decreased atmosphere, overall the colder 

temperatures and shading in these areas lead to snow patches that can last well into the melt 

season.  As snowmelt progresses through the season snow is forced to higher elevations and lasts 

longest in the high elevation Rockies, Washington Cascades, and southern Sierra Nevada.   

 The maps depicting elevation of the snow zones illustrate the combined influences of 

latitude and continentality on the elevation of the snow line.  All snow zones demonstrate an 

elevation gradient of the snowline, which runs from the lowest elevations in the northwest to the 
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highest elevations in the southeast of the Western United States.  Latitude and continentality 

combine to form the diagonal northwest to southeast gradient, rather than a strict north to south 

gradient if latitude was the only factor or a west to east gradient if continentality was the only 

factor.  The influence of local-scale topography on snow cover is also apparent in the snow zone 

maps.  Much of the higher latitude areas have lower elevations overall, yet they remain snow 

covered because the theoretical snow line occurs at low elevations.  The theoretical snow line in 

Colorado is very high in elevation, but because of the high elevations of these mountains, they 

still receive a substantial snowpack.   

 Within the seasonal snow zone, land surface temperatures highlight seasonally snow 

covered environments that may be sensitive to climate warming in the Western United States.  

Both the temporal progression of land surface temperature and the land surface temperature 

average for January-February-March reveal similar spatial patterns in the temperatures of the 

seasonal snow zone.  The coldest areas are located predominantly in the northern interior 

Rockies around the intersection of Idaho, Montana, and Wyoming, and the high elevation 

Colorado Rockies; however cold areas are also observed in the high elevations of the Sierra 

Nevada and Utah Wasatch/Uinta, as well as low to high elevation Washington Cascades.  If 

changes in seasonal snow cover are primarily driven by temperature, these cold areas are likely 

the least sensitive to climate change.  In contrast, the warmest snow zones are located in the mid-

elevation Sierra Nevada, along the lower to mid-elevation Cascades, in mountains along the 

southwest and on the eastern Colorado Front Range.  Because these areas have average winter 

land surface temperatures at or even above freezing, they may be most sensitive to climate 

warming.  Between these two zones exists a temperature/sensitive snow zone gradient from 

warmest (most sensitive) in the southwest to coldest (least sensitive) in the northeast.   
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 Our findings on the sensitivity of snow zones to warming are similar to other climate 

change sensitivity studies  (Brown and Mote, 2009; Clow, 2010; Hamlet et al., 2005; Mote et al., 

2005; Nolin and Daly, 2006; Serreze et al., 1999; Stewart, 2009), illustrating the robustness of 

this data-driven approach to defining sensitive snow zones.  Furthermore, the use of spatially 

continuous remotely sensed data allowed us to identify the spatial extent of these sensitive snow 

zones, as well as to identify sensitive areas such as the mid-elevation Colorado Front Range 

which could be missed by studies that relied on ground based measurement networks.   

The methods of snow zone mapping and climate sensitivity analysis presented in this 

thesis take full advantage of a rich spatiotemporal dataset from MODIS.  Climate trend analyses 

and climate sensitivity studies often utilize point data (Armstrong and Armstrong, 1987; Cayan, 

1996; Clow, 2010; Knowles et al., 2006; Mizukami and Perica, 2008; Mock, 1996; Mote et al., 

2005; Serreze et al., 1999), yet the network of climate and snow monitoring stations in the 

Western U.S. is sparse, and often higher elevation areas, which receive substantial amounts of 

snow accumulation, have no station data and are therefore under-represented in station-based 

analyses.  This study clearly shows the utility of satellite imagery in spatiotemporal studies of 

land surface characteristics and climate change sensitivity.   

This study has characterized the 11-year climatology and climate sensitivity of MODIS 

derived snow cover and land surface temperature using both an in-depth focus region and a 

regional-scale approach.  However, 11 years is too short of a time period to determine any trends 

and is a fairly short time period for deriving true climatological averages considering the 

influences of interannual variability, decadal oscillations (e.g. ENSO and PDO), warming 

temperatures trends, and changes in vegetation (e.g. bark beetle kill in the Rocky Mountains).  

However, the utility of remote sensing to monitor snow zones is clearly apparent from our 
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results.  We therefore suggest that programs such as MODIS continue to monitor the earth 

surface, and, as technology progresses, that new techniques for measuring snow and temperature 

be implemented.  In future years we suggest that trend analyses be conducted on MODIS derived 

snow cover and land surface temperature to evaluate how these variables change over time.   
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APPENDIX A: FOCUS REGION BASIN STATISTICS 
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Table A.1: Huc ID, easting, northing, elevation minimum/maximum/mean/standard deviation 

and area for focus regions. 

 
HUC ID Centroid (m) Elevation (m) Area (km

2
) 

  Easting Northing Min Max Mean Std Dev   

Western Slope Washington Cascades 

17110006 -1876003 3052183 30 3162 1124 538 1921 

17110009 -1899647 3014854 28 2388 840 487 2177 

17110010 -1921911 2994445 29 2206 637 461 1797 

17110012 -1948239 2998747 0 1593 264 324 1579 

17110013 -1942259 2966163 0 1696 516 424 1231 

17110014 -1952256 2940715 0 4366 865 621 2609 

17110015 -1984450 2926031 0 4319 553 487 1826 

17080004 -1954476 2881125 241 4365 1113 441 2679 

Eastern Slope Washington Cascades 

17020008 -1789860 3065506 228 2659 1413 498 4737 

17020009 -1822635 3036303 183 2785 1340 563 2412 

17020010 -1818014 2951285 149 2742 826 473 3854 

17020011 -1851923 2989125 183 2783 1194 479 3436 

17030001 -1865951 2922370 363 2351 972 362 5542 

17030002 -1903646 2897337 334 2437 1242 379 2891 

17070106 -1924585 2816656 61 3575 906 397 3488 

Western Slope Montana Rockies 

17010207 -1304561 2935468 960 3048 1716 351 2939 

17010209 -1310621 2875705 914 2681 1771 338 4338 

17010203 -1299526 2787775 1000 2800 1648 310 5990 

Eastern Slope Montana Rockies 

10030202 -1238522 2962643 1006 2793 1311 185 3107 

10030201 -1252817 2924985 1006 2864 1483 316 3335 

10030205 -1193581 2864940 792 2743 1231 295 5308 

10030104 -1233480 2837852 1026 2772 1506 397 4869 

10030102 -1168788 2809896 792 2743 1219 262 6737 

Western Slope Sierra Nevada 

18020128 -2085505 2054193 103 2971 1371 597 2620 

18020129 -2088205 2022825 121 3041 1297 733 2201 

18040013 -2106516 2005422 56 2330 818 552 1649 

18040012 -2086091 1982939 91 3086 1318 773 2054 

18040010 -2069543 1952186 62 3483 1585 826 2596 

18040009 -2058474 1917466 65 3941 1719 935 4169 

18040008 -2056933 1884295 121 3840 1588 905 2842 

18040006 -2018017 1835036 133 4152 2077 965 4400 
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Table A.1 (cont): Huc ID, easting, northing, elevation minimum/maximum/mean/standard 

deviation and area for focus regions. 

HUC ID Centroid (m) Elevation (m) Area (km
2
) 

  Easting Northing Min Max Mean Std Dev   

Eastern Slope Sierra Nevada 

16050102 -2014540 2079453 1256 3230 1839 343 3122 

16050101 -2038825 2038848 1889 3250 2123 274 1323 

16050201 -2019219 2008221 1404 3413 2033 438 2435 

16050302 -1997978 1979526 1386 3539 2072 495 2552 

16050301 -1977489 1947870 1400 3719 2231 424 2839 

18090101 -1973372 1899974 1945 3958 2340 369 2784 

18090102 -1953480 1837436 1112 4302 2216 698 4986 

18090103 -1937530 1728155 1055 4321 1760 698 3556 

Western Slope Colorado Rockies 

14050001 -933834 1992671 1889 3745 2445 379 6796 

14010001 -879269 1935755 1767 4092 2783 374 7533 

14010002 -860224 1895170 2227 4312 3128 416 1771 

14010003 -900936 1889922 1889 4143 2864 462 2518 

14010004 -935818 1858599 1767 4280 2919 517 3754 

14020001 -920962 1809852 2438 4197 3201 315 1998 

14020003 -919586 1756468 2342 4279 2947 329 2859 

13010004 -896149 1713520 2253 3991 2765 388 3498 

Eastern Slope Colorado Rockies 

10180001 -863056 2004093 2385 3860 2706 262 3694 

10190007 -776541 2007149 1401 4052 2140 561 4852 

10190006 -782850 1970500 1425 4333 2224 624 2151 

10190005 -785845 1934793 1448 4302 2193 659 2562 

10190004 -804327 1900300 1554 4289 2703 658 1478 

10190002 -787849 1857553 1568 4334 2448 529 4785 

10190001 -833994 1828938 2255 4306 2944 300 4168 

11020001 -851227 1775401 1647 4383 2853 499 7934 
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Figure B.1 Elevation of the (a) persistent snow zone (PSZ), (b) transitional snow zone (TSZ), 

(c) intermittent snow zone (ISZ), and (d) seasonal snow zone (SSZ) for California and Nevada.   
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Figure B.2 Elevation of the (a) persistent snow zone (PSZ), (b) transitional snow zone (TSZ), 

(c) intermittent snow zone (ISZ), and (d) seasonal snow zone (SSZ) for Oregon and Washington.   
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Figure B.3 Elevation of the (a) persistent snow zone (PSZ), (b) transitional snow zone (TSZ), 

(c) intermittent snow zone (ISZ), and (d) seasonal snow zone (SSZ) for Idaho, Montana, and 

Wyoming.   
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Figure B.4 Elevation of the (a) persistent snow zone (PSZ), (b) transitional snow zone (TSZ), 

(c) intermittent snow zone (ISZ), and (d) seasonal snow zone (SSZ) for Utah, Colorado, Arizona, 

and New Mexico.   
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Figure B.5 Elevation of the (a) 1

st
 most (SSM1), the (b) 2

nd
 most (SSM2), the (c) 3

rd
 most (SSM3), the (d) 2

nd
 least (SSL2), and the (e) 

1
st
 least (SSL1) sensitive snow zones in California and Nevada.   
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Figure B.6 Elevation of the (a) 1

st
 most (SSM1), the (b) 2

nd
 most (SSM2), the (c) 3

rd
 most (SSM3), the (d) 2

nd
 least (SSL2), and the (e) 

1
st
 least (SSL1) sensitive snow zones in Oregon and Washington.   
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Figure B.7 Elation of the (a) 1

st
 most (SSM1), the (b) 2

nd
 most (SSM2), the (c) 3

rd
 most (SSM3), the (d) 2

nd
 least (SSL2), and the (e) 1

st
 

least (SSL1) sensitive snow zones in Idaho, Montana, and Wyoming.   
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Figure B.8 Elevation of the (a) 1

st
 most (SSM1), the (b) 2

nd
 most (SSM2), the (c) 3

rd
 most (SSM3), the (d) 2

nd
 least 

(SSL2), and the (e) 1
st
 least (SSL1) sensitive snow zones in Utah, Colorado, Arizona, and New Mexico.    
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