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ABSTRACT

MAXIMAL CURVES, ZETA FUNCTIONS, AND DIGITAL SIGNATURES

Curves with as many points as possible over a finite field Fq under the Hasse-

Weil bound are called maximal curves. Besides being interesting as extremal objects,

maximal curves have applications in coding theory. A maximal curves may also have

a great deal of symmetry, i.e. have an automorphism group which is large compared

to the curve’s genus. In Part 1, we study certain families of maximal curves and find

a large subgroup of each curve’s automorphism group. We also give an upper bound

for the size of the automorphism group.

In Part 2, we study the zeta functions of graphs. The Ihara zeta function of a

graph was defined by Ihara in the 1960s. It was modeled on other zeta functions

in its form, an infinite product over primes, and has some analogous properties, for

example convergence to a rational function. The knowledge of the zeta function of a

regular graph is equivalent to knowledge of the eigenvalues of its adjacency matrix.

We calculate the Ihara zeta function for an infinite family of irregular graphs and

consider how the same technique could be applied to other irregular families. We also

discuss ramified coverings of graphs and a joint result with Michelle Manes on the

divisibility properties of zeta functions for graphs in ramified covers.

Part 3 is joint work with Jeremy Muskat. Gauss’s curve, with equation x2t2 +

y2t2 + x2y2 − t4 = 0 defined over Fp was the subject of the last entry in Gauss’

mathematical diary. For p ≡ 3 mod 4, we give a proof that the zeta function of C is

ZC(u) =
(1 + pu2)(1 + u)2

(1− pu)(1− u)
.
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Using this, we find the global zeta function for C.

The best algorithms for solving some lattice problems, like finding the shortest

vector in an arbitrary lattice, are exponential in run-time. This makes lattice problems

a potentially good basis for cryptographic protocols. Right now, lattices are especially

important in information security because there are no known quantum computer

algorithms that solve lattice problems any faster than traditional computing. The

learning with errors problem (LWE) is provably as hard as certain lattice problems.

Part 4 of the dissertation is a description of a digital signature scheme based on the

learning with errors problem over polynomial rings. The search version of LWE is

to find a hidden vector s, given access to many pairs of noisy inner products with

random vectors (ai, bi = ai · s+ ei). The context can be shifted to a polynomial ring

over Z/q, giving rise to the problem of learning with errors over a ring (R-LWE). In

this joint work with Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan, we

devise a digital signature scheme based on R-LWE and outline a proof of security for

certain parameter choices.
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Part I

Automorphisms of a family of

maximal curves
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I began this work with my advisor Rachel Pries in 2007 when Guilietti and Ko-

rchmaros posted a paper on the Arxiv about a new family of maximal curves (GK

curves). Besides proving maximality, Guilietti and Korchmaros determined the au-

tomorphism groups for their curves. I was reading their paper in preparation for my

qualifying exam when Garcia, Guneri, and Stichtenoth posted a paper on a family of

maximal curves that generalized the GK curves. We decided to work on finding the

automorphism groups of the curves in the general family.
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Chapter 1

Introduction

Let n ≥ 3 be odd and let q = ph be a power of a prime. Let m = (qn + 1)/(q + 1).

Define Cn to be the normalization of a fiber product over P1 of the covers of curves

Hq → P1
y and Xn → P1

y, where Hq and Xn have affine equations

Hq : xq + x− yq+1 = 0 (1.1)

Xn : yq
2 − y − zm = 0. (1.2)

The Hasse-Weil bound states that for a smooth connected projective curve X with

genus g, defined over Fq2 , the number of points on X defined over Fq2 is bounded above

by q2 + 1 + 2gq. A curve which attains this bound is called an Fq2-maximal curve.

The curve Hq is known as the Hermitian curve and has been well studied [16]. It is a

maximal over Fq2 , and thus maximal over Fq2n for n ≥ 3 odd. It has genus q(q−1)/2,

the highest genus which is attainable for an Fq2-maximal curve. The curve Xn is a

member of a class that has been studied by Stichtenoth [45]. Abdon, Bezerra, and

Quoos proved that the genus of Xn is (q− 1)(qn− q)/2, and that Xn is Fq2n-maximal

[1].

For a given q, the curve C3 coincides with Giulietti and Korchmaros’ maximal

curve [12]. Giulietti and Korchmaros proved that C3 was maximal using the natural

embedding theorem, a result from Korchmaros and Torres [21] that states that every
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Fq2-maximal curve is isomorphic to a curve of degree q+ 1 embedded in a Hermitian

variety of bounded dimension. Giulietti and Korchmaros also proved that the curve

C3 is not covered by any Hermitian curve and determined the Fq2-automorphism

group AutFq2 (C3) if q ≡ 1(mod 3) and a normal subgroup of index 3 in AutFq2 (C3) if

q ≡ 2(mod 3). Giulietti and Korchmaros prove these facts by showing that elements of

these groups give rise to automorphisms of the curve C3, then by bounding the size of

AutFq2 (C3). When q ≡ 1(mod 3), this completely determines the Fq2-automorphism

group. This group is very large compared to the genus gC3 of C3, i.e. Aut(C3) ≥

24gC3(gC3 − 1).

Garcia, Guneri, and Stichtenoth prove that Cn is Fq2n-maximal for n ≥ 3 [11].

Recently, Duursma and Mak proved that Cn is not Galois covered by the Hermitian

curve Hq2n for q odd, and exhibited a Galois covering for q even [9]. For n > 3, the

automorphism groups of the curves Xn and Cn do not appear in the literature. We

prove the following:

Theorem 1. The automorphism group Aut(Xn) fixes the point at infinity on Xn and

is a semi-direct product of the form (Z/p)2h o Z/(qn + 1)(q − 1).

The curve Cn has a single point P∞ at infinity. Let ICn ⊆ Aut(Cn) be the inertia

group of Cn at P∞.

Theorem 2. The group ICn is a semi-direct product of the form QoZ/(qn+1)(q−1),

where Q is a non-abelian group of order q3 and exponent p.

We describe the structure of Γ = Qo Z/(qn + 1)(q− 1) more precisely in Chapter

3. These results are the focus of the first chapters of this part of the thesis. See the

appendix, Chapter 6, for a background on algebraic curves, maximal curves, and the

particular families that are the focus of this paper.
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Chapter 2

Geometry of Cn and Xn

Though the curve C3 was initially presented [12] as the intersection in P3 of two

hypersurfaces, it is useful to view the generalized curve Cn as a fiber product, as

illustrated in the following diagram:

Cn = Xn×̃P1Hq → Xn

↓ ↓

Hq −→ P1
y.

This construction lets us see that Cn has exactly one point at infinity.

Proposition 1. The curve Cn has a single point at infinity.

Proof. The fibers of Hq → P1
y and Xn → P1

y over infinity each consist of a unique

point, meaning that the point at infinity is fully ramified in each of these covers. Since

the degrees of the covers are relatively prime, we see that q(qn+1)/(q+1) divides the

ramification index of any point on Cn over infinity in the cover Cn → P1
y. Since the

degeree of Cn → P1
y is q(qn + 1)/(q + 1), this implies that there can only be a single

point at ∞ on Cn.

Viewing the curve Cn as a fiber product allows us to use the Riemann-Hurwitz

formula to show that the genus of Cn is (q−1)(qn+1 + qn− q2)/2 [11]. Garcia, Guneri,

and Stichtenoth also use the fiber product construction to study the sizes of the fibers

above Fq2n-points in Hq and Xn, and thereby prove that Cn is Fq2n maximal.
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Remark 1. The projective curve in P3 given by the homogenization of the equations

xq + x − yq+1 = 0 and yq
2 − y − z(qn+1)/(q+1) = 0 is smooth only when n = 3. For

n ≥ 5, the curve has a cusp type singularity at ∞.

The following summarizes the genera and numbers of Fq2n-points for the curves

Xn and Cn:

gXn = (q − 1)(qn − q)/2, #Xn(Fq2n) = q2n+1 − qn+2 + qn+1 + 1,

gCn = (q − 1)(qn+1 + qn − q2)/2, #Cn(Fq2n) = q2n+2 − qn+3 + qn+2 + 1.
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Chapter 3

The subgroups Q and G of Aut(Cn)

Let a, b ∈ Fq2 be such that aq + a = bq+1. Define

Qa,b :=


1 bq a

0 1 b

0 0 1

 .

Let Q = {Qa,b : a, b ∈ Fq2 , aq + a = bq+1}. Note that with the operation of matrix

multiplication, Q is a subgroup of the special unitary group SU(3, q2). Notice that

we have

Qa,bQc,d =


1 (b+ d)q a+ c+ bqd

0 1 b+ d

0 0 1

 = Qa+c+bqd,b+d.

This implies that Q is not abelian, since Qa,bQc,d = Qc,dQa,b means that bqd = dqb,

which is not true for arbitrary b, d ∈ Fq2 .

Since there is a bijection between Q and the Fq2-rational affine points of Hq, we

see that |Q| = q3. It is known that Q has exponent p if p 6= 2, exponent 4 if p = 2.

The center of Q is Q0 := {Qa,0} ⊂ Q.

Lemma 1. The subgroup Q0 is isomorphic to (Z/p)h.

7



Proof. Since Q has exponent p, so does Q0. Also, |Q0| = q = ph, since aq + a =

Tr(a) = 0 has q solutions a ∈ Fq2 . Then we check that Q0 is abelian:

Qα,0Qβ,0 = Qα+β,0 = Qβ,0Qα,0.

Since Q0 C Q, the subgroup Q/Q0 is well defined and has order q2.

Lemma 2. The quotient group Q/Q0 is isomorphic to (Z/p)2h.

Proof. Since Q has exponent p, the factor group Q/Q0 also has exponent p. Then

Q/Q0 is abelian since for Qa,b, Qc,d ∈ Q, the commutator Q−1
a,bQ

−1
b,cQa,bQc,d is in Q0:

Q−1
a,bQ

−1
b,cQa,bQc,d = Qaq+cq+bqd,−b−dQa+c+bqd,b+d

= Qaq+a+cq+c+2bqd−(b+d)q+1,0 ∈ Q0.

We now consider how Qa,b acts on the curve Cn. Let (x, y, z) denote an affine point

of Cn. Define

Qa,b : x 7→ x+ bqy + a, y 7→ y + b, z 7→ z.

Proposition 2. The group Q is contained in Aut(Cn) and the quotient curve Cn/Q

is a projective line. Further, Cn/Q0 = Xn.

Proof. First, note that Q preserves Hq. Let (x, y) be an affine point of Hq. Then

Qa,b(x)q +Qa,b(x)−Qa,b(y)q+1 = xq + x+ bq
2

yq + bqy + aq + a− (y + b)q+1

= yq+1 + byq + bqy + bq+1 − (y + b)q+1

= 0.

Next, we check that Q preserves Xn. Let (y, z) be an affine point of Xn. Then

Qa,b(y)q
2 −Qa,b(y)−Qa,b(z)m = yq

2 − y + bq
2 − b− zm

= yq
2 − y − zm

= 0.

8



So Q preserves Xn, and so preserves the fiber product Cn.

The quotient curve of Cn by Q0 is Xn because K(Xn) is fixed by Q0 and |K(Cn) :

K(Xn)| = q = |Q0|. A similar argument shows that K(Cn/Q) ∼= K(z), and so Cn/Q is

a projective line, denoted P1
z.

Let ζ ∈ µ(qn+1)(q−1) be a (qn + 1)(q − 1)-st root of unity. Define gζ by

gζ : x 7→ ζq
n+1x y 7→ ζmy, z 7→ ζz.

Note that ζq
n+1 is a (q − 1)-st root of unity, so an element of Fq. Therefore

(ζq
n+1)q = ζq

n+1. Let G = {gζ : ζ ∈ µ(qn+1)(q−1)}, a group of order (qn + 1)(q − 1).

Define M to be the subgroup of G of order m = (qn + 1)/(q+ 1), i.e. M = {gζ : ζm =

1}. Let N be the subgroup of G of order qn + 1.

Proposition 3. The group G is contained in Aut(Cn). The quotient curves Cn/N

and Cn/G are projective lines and Cn/M = Hq.

Proof. First, we check that G preserves Hq. Let (x, y) be an affine point of Hq. Then

gζ(x)q + gζ(x)− gζ(y)q+1 = ζq(q
n+1)xq + ζq

n+1x− ζqn+1yq+1

= ζq
n+1(xq + x− yq+1)

= 0

Now we check that G preserves Xn. Let (y, z) be an affine point of Xn. Then

gζ(y)q
2 − gζ(y)− gζ(z)m = ζmq

2

yq
2 − ζmy − ζmzm

= ζmy(ζm(q2−1)yq
2−1 − 1)− ζmzm

= ζmy(yq
2−1 − 1)− ζmzm

= ζm(yq
2 − y − zm)

= 0

9



So G preserves the fiber product Cn. Therefore G ⊂ Aut(Cn).

As before we see that K(Cn/M) ∼= K(Hq) and that K(Cn/N) ∼= K(x). So Cn/N is

a projective line denoted P1
x. We have that K(Cn/G) ∼= K(u), where u = xq−1, and so

Cn/G is a projective line denoted P1
u.

Proposition 4. The group generated by G and Q in Aut(Cn) is a semi-direct product

of the form QoφG. Further, the homomorphism φ : G→ Aut(Q) is given by gζ 7→ ψζ,

where ψζ : Qa,b 7→ gζQa,bg
−1
ζ .

Proof. Note first that |Q| and |G| are relatively prime, so Q ∩ G = {id}. To have

a semidirect product, the only other requirement is that G normalizes Q [8, Section

5.5].

Let gζ ∈ G and Qa,b ∈ Q as above. Writing ψζ more explicitly, we have

ψζ(Qa,b) : x 7→ x+ bqζq
n+1−my + aζq

n+1

y 7→ y + ζmb

z 7→ z

Since ζq
n+1−m = (ζm)q, that means that ψζ(Qa,b) = Qζqn+1a,ζmb. This is an element

of Q because

(ζmb)q+1 = ζq
n+1bq+1 = ζq

n+1(a+ aq) = ζq
n+1a+ (ζq

n+1a)q.

Therefore G normalizes Q, and the group 〈G,Q〉 is a semidirect product.

Let Γ = QoφG. This semidirect product is not a direct product, as the following

lemma makes specifically clear.

Lemma 3. Subgroups isomorphic to Q×M and Q0 ×N are contained in Γ.

Proof. Notice that

gζQa,bg
−1
ζ = Qζqn+1a,ζmb.

10



For b 6= 0, we have gζQa,bg
−1
ζ = Qa,b if and only if gζ ∈ M . Therefore M commutes

with every element of Q. If b = 0, then gζQa,0g
−1
ζ = Qa,0 if and only if gζ ∈ N .

Therefore N commutes with every element of Q0.

The above propositions prove the following:

Proposition 5. The group Aut(Cn) contains a subgroup isomorphic to Qoφ G.

This gives a lower bound on the size of Aut(Cn):

|Aut(Cn)| ≥ |Qoφ G| = q3(qn + 1)(q − 1).

The genus of Cn is (q−1)(qn+1 + qn− q2)/2, meaning that |Aut(Cn)| grows more than

linearly in g(Cn), surpassing the Hurwitz bound for large q.

We can draw the following diagram to summarize the coverings we have described:

q q2

Cn → Xn → P1
z

qn+1
q+1

= m ↓ ↓ ↓

Hq → P1
y → P1

t

q + 1 ↓ ↓

P1
x → P1

w

q − 1 ↓

P1
u

The numbers next to the arrows are the degrees of the coverings. The projective line

P1
w denotes the curve Cn/(Q0 × N), where K(Cn/(Q0 × N)) ∼= K(w) with w = yq+1.

The projective line P1
t denotes the curve Cn/(Q×M), where K(Cn/(Q×M)) ∼= K(t)

with t = zm.

11



Chapter 4

Ramification

Ramification theory provides a major tool in understanding the possibilities for the

automorphism group of Cn.

4.1 Ramification groups

Definition 1. Let Y ′ → Y be a Galois covering of curves with Galois group G. Let

P be a point on Y and P ′ be a point on Y ′ in the fiber over P . For i ≥ −1 define the

i-th ramification group of P ′ by

Gi(P
′|P ) := {σ ∈ G : vP ′(σ(z)− z) ≥ i+ 1 ∀ z ∈ OP ′}.

For a reference about ramification groups, see Sections 2 and 3 of Chapter 4 of

Serre [38]. Some facts about ramification groups in positive characteristic are:

• G ≥ G−1 D G0 D ... D Gi D Gi+1 D ... and Gm = {id} for m sufficiently large.

• |G0| = e(P ′|P ) is the ramification index of P ′ over P .

• The order of G1 is a power of p, G0/G1 is cyclic of order relatively prime to p,

and Gi/Gi+1 is elementary abelian of exponent p for i ≥ 1.

12



The sequence of indices i which are above assigned to the subgroups is called the

lower numbering of the ramification groups. An integer i for which Gi 6= Gi+1 is

called a lower jump.

Lower numbering can be said to behave well with respect to subgroups of G

(see [38, Chapter 4]).

Proposition 6. Let H ≤ G with K the fixed field of H in K′. Let Hi denote the ith

ramification group for the extension K ′/K. Then Hi = Gi ∩H.

The lower jumps of H are a subsequence of the lower jumps of G.

The ramification groups can also be numbered by another system, known as the

upper numbering. To find the upper numbering, we first need to extend the domain

of our index set for the ramification groups. For u ≥ −1 a real number, let Gu be

the ramification group Gi, where i = due, i.e. i is the smallest integer ≥ u. We then

define the functions φ and ψ by

φ(u) :=

∫ u

0

dt

(G0 : Gt)
,

ψ(u) := φ−1(u).

We now define the upper numbering of the ramification groups:

Gv := Gψ(v),

or, equivalently

Gφ(u) := Gu.

From this definition, it can be derived that

ψ(v) =

∫ v

0

(G0 : Gw)dw.

An index j for which Gj 6= Gk for all k > j is called an upper jump. Upper

numbering behaves well with respect to quotient groups of G, in the following sense.

13



Proposition 7. H is a normal subgroup of G, then

(G/H)v = (GvH)/H

for all v.

Serre proves this proposition [38, Chapter 4, Section 3] using Herbrand’s Theorem.

4.2 Filtrations at infinity

In determining the ramification groups, it is enough to consider the action of σ ∈ G

on a uniformizer of the curve at the given point [45].

Proposition 8. There is one break in the ramification filtration of Hq → P1
y and it

occurs at index q + 1 in the lower numbering.

Proof. Recall that this is a degree q Artin-Schreier cover. The associated Galois group

is Q0
∼= (Z/p)h where ph = q. The elements of Q0 are Qa,0, where Qa,0(x) = x+ a for

a ∈ Fq2 with aq + a = TrFq2/Fq(a) = 0.

Let ∞y be the point at infinity of P1
y. Let ∞′ be the point at infinity of Hq.

Stichtenoth analyzes generalized Artin-Schreier covers corresponding to function field

extensions K(x)/K of the form A(x) = u for some u ∈ K with certain properties and

A(x) a separable, additive polynomial with all its roots in the base field. He uses the

valuation at infinity in K of u−A(r), where r is any element of K, to determine the

ramification groups at infinity [45, Proposition 3.7.10]. Here, we have K = K(P1
y),

K = K(Hq), with A(x) = xq + x and u = yq+1.

For every each P on P1
y, define an integer mP by

mP :=



m if there is an element r ∈ Fq2n such that

vP (yq+1 − (rq + r)) = −m < 0 and m 6≡ 0 mod p

−1 if vP (yq+1 − (rq + r)) ≥ 0 for some r ∈ Fq2n

14



We can choose r to be an element of trace 0 in Fq2 . We then have

m∞y = −v∞y(yq+1 − rq − r) = −v∞y(yq+1) = −(q + 1)(v∞y(y)) = q + 1.

Let τ be a uniformizer at ∞′. Following [45, Proposition 3.7.8] we see that since

mP is prime-to-p, we have v∞′(τ −Qa,0(τ)) = m∞ + 1 = q + 2 for all a 6= 0 as above.

Also, v∞′(τ −Q0,0(τ)) = v∞′(0) =∞ by definition. That means that

Gi :=

 Q0 for − 1 ≤ i ≤ q + 1

{id} for i ≥ q + 2
,

so the lower jump for the extension K(Hq)/K(y) is q + 1.

Proposition 9. There is one break in the ramification filtration of Cn → Xn and it

occurs at index qn + 1 in the lower numbering.

Proof. The same ideas apply to the covering Cn → Xn, with the modification that∞′

now represents the place at infinity in K(Cn), and ∞ the place at infinity in K(Xn).

As before, let ∞y represent the point at infinity on P1
y. Then we have

v∞(y) = e(∞|∞y)(v∞y(y)) = −q
n + 1

q + 1
.

So, again choosing r of trace 0 in Fq2 , we have

m∞ = −v∞(yq+1 − rq − r) = −v∞(yq+1) = qn + 1.

Therefore |Gi| = q for −1 ≤ i ≤ qn + 1 and |Gi| = 1 for qn + 2 ≤ i, giving a lower

jump of qn + 1.

Next we find the ramification filtration for the extension K(Xn)/K(P1
z), a gener-

alized Artin-Schreier extension of order q2. The Galois group Q/Q0 is isomorphic to

(Z/p)2h ∼= Fq2 (as an additive group). Let σb ∈ Q/Q0 be defined by σb(y, z) = (y+b, z)

for (y, z) a point of Xn and b ∈ Fq2 .
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Proposition 10. There is one break in the ramification filtration of Xn → P1
z and it

occurs at index m in the lower numbering.

Proof. Let ∞′ be the place at infinity in K(Xn) and let ∞ be the point at infinity on

P1
z. Here, we have

m∞ = −v∞(zm) = −m(v∞(z)) = m.

Since this is prime-to-p, that means if τ is a uniformizer at ∞, we have

v∞′(τ − σb(τ)) =
qn + 1

q + 1
+ 1

for all b 6= 0. Therefore |Gi| = q2 for −1 ≤ i ≤ m = (qn + 1)/(q + 1) and |Gi| = 1 for

all larger i, giving a lower jump of m = (qn + 1)/(q + 1).

Now that we’ve determined the ramification filtrations and lower jumps for each of

the extensions above, we determine the upper jumps for the degree q2 extension from

Proposition 10. This is so that we can determine the jumps for the larger extension

K(Cn)/K(P1
z).

Proposition 11. There are two jumps in the ramification filtration of Cn → P1
z, and

they occur at indices m = (qn + 1)/(q + 1) and qn + 1 in the lower numbering.

Proof. Begin with K(Xn)/K(P1
z). Since the lower jump in extension is m, the upper

jump is given by

φ(m) =

∫ m

0

dt

G0 : Gt

=
m∑
i=1

1

= m.

This illustrates the fact that, if there is only one jump in a p-group extension, its

upper jump is the same as its lower jump.

Now, we use proposition 6 to say that the qn+1, the lower jump for K(Cn)/K(Xn),

is also a lower jump for K(Cn)/K(P1
z). Proposition 7 requires that m, the upper jump
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for K(Xn)/K(P1
z), is also an upper jump for K(Cn)/K(P1

z). The question now becomes

whether or not these represent the same jump in the filtration, and if not, which one

is larger.

We know that the filtration has at most two jumps, because more jumps in the

filtration they would require additional jumps in the filtrations for K(Cn)/K(Xn) or

K(Xn)/K(P1
z)–if Gi 6= Gi+1, then either Gi ∩H 6= Gi+1 ∩H, which creates a jump in

the filtration for K(Cn)/K(Xn), or if not, then HGi/H 6= HGi+1/H, which implies a

jump i in the filtration for K(Xn)/K(P1
z). There must be in fact two jumps, because

if there is only one jump in the extension, it will have the same upper and lower

numbering.

Say that the jump with lower numbering of qn + 1 represents the smaller jump.

Then, its upper numbering would be found by

φ(qn + 1) =

∫ qn+1

0

dt

G0 : Gt

= Σqn+1
i=1

1

G0 : G− t
= qn + 1

This contradicts the assumption that it is the smaller jump, since qn + 1 > m.

Therefore the jump with upper numbering (qn + 1)(q + 1) is the smaller jump, and

therefore its lower numbering is also m.
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Chapter 5

Automorphisms of Xn and Cn

5.1 Automorphisms of Xn

Let IXn be the inertia group at the point at infinity of Xn.

Theorem 3. The automorphism group of Xn is Aut(Xn) = Q/Q0 oφ G.

Proof. The curve Xn is defined by the equation A(y) = B(z), where

A(y) = yq
2 − y

and

B(z) = zm.

Notice that A(y) has the property that A(y + a) = A(y) + A(a). Theorem 12.11

from [16] states that all automorphisms of this type of curve fix the point at infinity,

so in fact the inertia group IXn is the entire automorphism group of Xn.

Let Gi for i ≥ 0 be the i-th ramification group of IXn . The tame (prime-to-

p) automorphisms in the inertia group are described H < G0, where H ∼= G0/G1.

Notice that since the inertia group admits such a ramification filtration, there must

be a unique Sylow-p subgroup of the inertia group. In fact, an inertia group G0 must

be the semi-direct product of a cyclic subgroup of order prime-to-p with a normal
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(and hence unique) Sylow-p subgroup G1. Applying [16] Theorem 12.7 (i) and (iii)

to Xn, we know that |H| divides (q − 1)(qn + 1) and that |G1| = q2. So |IXn| divides

q2(q − 1)(qn + 1).

We know that (Q oφ G)/Q0
∼= Q/Q0 oφ̃ G ≤ IXn since Xn = Cn/Q0. Since

|Q/Q0 oφ G| = q2(q − 1)(qn + 1), we have that IXn = Aut(Xn) = Q/Q0 oφ G.

5.2 Automorphisms of Cn

Let ICn be the inertia group at P∞ for Cn and let S be the Sylow-p subgroup of ICn .

Let W = Cn/S.

We refer to the results of Section 4 and make use of the following theorem of

Serre [38]:

Theorem 4 (Serre). If s ∈ Gi, t ∈ Gj, and i, j ≥ 1, then sts−1t−1 ∈ Gi+j+1.

Proposition 12. The group Q0 is in the center of S.

Proof. Consider the extension K(Cn)/K(W). Let s be an element of S − Q with

maximal lower jump J in this extension. Since Gi/Gi+1 is elementary abelian it must

be that s and sp have different lower jumps in this extension. The jump of sp must

be greater than that of s, so either sp = Id or sp ∈ Q. That means that |s| = p or

|s| = p2.

Case 1: |s| = p. Assume that J > qn + 1. Then s commutes with Q0, since for

q ∈ Q0 Theorem 4 implies that sqs−1q−1 = Id. Therefore s descends to s ∈ IXn =

Q/Q0, a contradiction since s /∈ Q. That means that J ≤ qn + 1. Then Q0 is the last

non-trivial ramification group and therefore in the center of S.

Case 2: |s| = p2. Then 〈s〉 ∩ Q = 〈sp〉, where 〈sp〉 ∼= Z/p. That means that in

the ramification filtration of K(Cn)/K(P1
z), the lower jump of sp must be qn + 1 or
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m. Since Q ≤ S, Proposition 6 implies that the lower jumps of elements of Q will

the same in the larger extension K(Cn)/K(W). Since the lower jump of s is less than

or equal to that of sp
a
, we must have that J ≤ qn + 1. Therefore Theorem 4 implies

that Q0 is in the center of S.

Theorem 5. The inertia group at infinity of Cn is Qoφ G.

Proof. Assume that there exists s ∈ S but s /∈ Q. Then, by Proposition 12, we have

that s commutes with Q0 and s descends to an automorphism in IXn , and IXn = S/Q0.

Since IXn = S/Q0 = Q/Q0, the third Isomorphism theorem implies that S = Q.

Now we consider the tame automorphisms in ICn . Let T be the tame part of ICn .

Since T is cyclic group, all tame automorphisms commute with M and so descend

to Hq. Since the tame part of IHq = G/M [2], we have T/M = G/M and the third

isomorphism theorem implies that T = G. Since we already know that Q is the

Sylow-p subgroup of ICn , we have that Qoφ G = ICn .

5.3 Further restrictions on Aut(Cn)

The inertia group ICn gives a lower bound on the size of Aut(Cn), namely

|Aut(Cn)| ≥ |ICn| = q3(qn + 1)(q − 1).

What else can be said to restrict the possibilities for Aut(Cn)? Theorem 11.127

from [16] gives one upper bound on the size. Let Y be a curve of genus gY ≥ 2 with

automorphism group H. If |H| ≥ 8g3
Y , then Y must be birationally equivalent to one

of four specific curves:

1. the hyperelliptic curve with equation y2 + y+x2k+1 = 0 for p = 2 and g = 2k−1;

2. the hyperelliptic curve with equation y2 = xq + x for p > 2 and g = (q − 1)/2;
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3. the Hermitian curve Hq with genus g = (q2 − q)/2;

4. the DLS curve with equation xq0(xq+x) = yq−y with p = 2, q0 = 2r, q = 22r+1,

and g = q0(q − 1).

In our case, these can all be eliminated since gCn = (q − 1)(qn+1 + qn − q2)/2. This

gives an upper bound on the size of the automorphism group:

q3(qn + 1)(q − 1) ≤ |Aut(Cn)| < (q − 1)3(qn+1 + qn − q2)3.

Giulietti and Korchmaros determined the Fq2-automorphism group for the curve

C3 if q ≡ 1(mod 3) and found a normal subgroup of index 3 if q ≡ 2(mod 3) [12].

Theorem 6 (Giulietti and Korchmaros). If q ≡ 1(mod 3), then

AutFq6 (Cn) ∼= SU(3, q2)× Z/(q3 + 1)/(q + 1).

If q ≡ 2(mod 3), then there exists G C AutFq2 (C3) such that |AutFq6 (C3) : G| = 3

and

G ∼= SU(3, q2)× Z/(q3 + 1)/(3(q + 1)).

Giulietti and Korchmaros prove this by showing that the given groups preserve C3

then using geometry to bound the size of AutFq6 (C3), which in the first case completely

determines the automorphism group. We make similar progress towards the Fq2n-

automorphism group of Cn. Notice that the automorphisms in Γ = QoφG are defined

over Fq2n . Therefore Γ acts on the Fq2n-points of Cn. Let H be a group acting on a

set A. For any a ∈ A, the orbit-stabilizer theorem states that |H| = |StabH(a)||aH |.

Since |P Γ
∞| ≤ #Cn(Fq2n) = q2n+2 − qn+3 + qn+2 + 1, we get the upper bound

|AutFq2n (Cn)| ≤ |ICn| ·#Cn(Fq2n) = q3(qn + 1)(q − 1)(q2n+2 − qn+3 + qn+2 + 1).

Though the leading terms of the two upper bounds are the same, comparing the

next term of the two bounds shows that the second is a slight improvement over the

first. We can more information by considering the possible orbits of P∞, the point at

infinity on Cn.
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Lemma 4. Two affine Fq2n-points (x1, y1, z1) and (x2, y2, z2) are in the same orbit

under Γ ≤ AutFq2n (Cn) if and only if z2 = ζz2 for ζ a qn + 1)(q − 1)st root of unity.

The number of orbits of the Fq2n-points of Cn is (qn−1 − 1)/(q − 1) + 2:

O∞ = {P∞}, OFq2 = {(x, y, 0) affine on Cn}

Oi = {(x, y, z) affine on Cn with z 6= 0}, 1 ≤ i ≤ (qn−1 − 1)/(q − 1)

Proof. We have seen that Γ fixes P∞. Next, consider an affine point (x, y, 0) on Cn.

Notice that yq
2−y = 0 if and only if y ∈ Fq2 , and since xq +x = yq+1, it must be that

y ∈ Fq2 if and only if x ∈ Fq2 . If ζ is a (qn + 1)(q− 1)-st root of unity then ζmFq2 and

ζq
n+1 ∈ Fq. Therefore gζ ∈ G fixes OFq2 set-wise. The group Q also fixes OFq2 set-wise

because Q is defined over Fq2 . We see that Q acts transitively on O2 as follows. Let

P1 = (x1, y1, 0) and P2 = (x2, y2, 0) be any two points in OFq2 . Let y2 − y1 = b ∈ Fq2 .

Choose any a such that aq + a = bq+1. Then Qa,b(P1) = (x1 + bqy1 + a, y2). Then let

x1+bqy1+a = x′. There are q solutions to the equation xq+x = yq+1
2 , and both x′ and

x2 are solutions. The group Q0 fixes y and z. Since there are q elements of Q0 there

must be some element Qα,0 ∈ Q0 which sends x′ to x2. Therefore Qα,0Qa,b(P1) = P2.

Consider the affine Fq2n-points of Cn with z 6= 0. Let P1 = (x1, y1, z1) and P2 =

(z1, y1, z1) be two such points. Then P1 and P2 are in the same orbit if and only if

z1 = ζz2 for ζ a (qn + 1)(q − 1)-st root of 1. This is true since Q fixes z and there

exists gζ ∈ G which multiplies z by ζ. Two points S1 = (x1, y1, z) and S2 = (x2, y2, z)

with the same z value are in the same orbit if and only if there is an automorphism

Qa,b such that Qa,b(S1) = S2. This gives a total of q3(qn + 1)(q − 1) points in

each orbit. Since there are q2n+2 − qn+3 + qn+2 − q3 such points, there must be

(q2n+2−qn+3 +qn+2−q3)/(q3(qn+1)(q−1)) = (qn−1−1)/(q−1) different such orbits.

From the description of the orbits it is clear that Γ acts transitively on these points.

Proposition 13. The order of the Fq2n-automorphism group of Cn is given by

|AutFq2n (Cn)| = |Γ|(1 + αq3 + βq3(qn + 1)(q − 1)),
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where α ∈ {0, 1} and β ∈ {0, 1, ..., (qn−1 − 1)/(q − 1)}.

Proof. The orbit of P∞ under AutFq2 (Cn) must be some combination of the orbits of

the Fq2n-points of Cn under Γ. Lemma 4 and the orbit-stabilizer theorem then imply

the result.

Since 1 + αq3 + βq3(qn + 1)(q − 1) is prime-to-p, we get the following corollary:

Corollary 1. The group Q is a Sylow-p subgroup of AutFq2n (Cn).
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Chapter 6

Appendix: Background on

Algebraic Curves and Maximal

Curves

6.1 Summary of notation

Here, let q = ph where p is a prime and h ∈ N. Let Fq be the field with q elements.

Let F be an algebraic closure of F. Let Pn denote n-dimensional projective space. If

X is a curve in Pn defined over Fq, for any field Fqi ⊂ Fq, let X (Fqi) denote the set

of points of X which are defined over Fqi . Then let Ni = #X (Fqi) be the cardinality

of that set.

6.2 Algebraic curves

This brief background survey can be supplemented by Dummit and Foote [8], Stichtenoth

[45], and Hirschfeld, Korchmaros, and Torres [16] [8].

An algebraic variety in projective space is the zero set of some set of homogeneous

polynomials. All functions in the ideal generated by these polynomials will vanish at
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these same values, so we can associate this variety with the entire homogeneous ideal

generated by the defining polynomials. A point on a variety is a point of projective

space which satisfies the defining polynomials.

An algebraic curve is a one-dimensional algebraic variety. In the simplest case, a

curve is cut out of P2 (two dimensional projective space) as the zero set of a single

homogeneous polynomial in 3 variables, i.e. it is the vanishing of the principal ideal

generated by this polynomial. Curves of this sort are called plane curves. Curves can

also be embedded in higher dimensional projective spaces but then require more than

one defining polynomial (corresponding to non-principal ideals). It takes at least n−1

polynomials to carve a curve out of Pn. Though curves are always considered to exist

in projective space, it will sometimes be useful to work with the non-homogenous,

affine versions of the defining equations.

The coefficients of the defining polynomials will lie in some field L, and we could

consider points whose coordinate values lie in any extension of L. We will think of

the curve X as existing over L, with all satisfactory tuples in L being points of the

curve. It will also be interesting to restrict our view to smaller fields. For a field M

with L ⊆M ⊆ L, we call the points of X with coordinates in M the M-points of X . If

X is defined over a finite field Fq, X will have an infinite number of points considered

over Fq, but only a finite number of Fqn-points for any value of n. Counting these

points is an important part of this paper.

6.3 Irreducibility and Smoothness

For the purposes of this paper, it is desirable that a curve be both irreducible and

smooth. Vaguely, irreducible means that the curve is made up of a single component,

and smooth means that the curve has a well defined unique tangent line at every

point.
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Let X = V (I), where I is a homogeneous ideal of L[x0, x1, ..., xn]. The variety X

is said to be irreducible if and only if it can not be written as the union of two proper

subvarieties.

X is irreducible ⇔ X 6= V1 ∪ V2 for all varieties V1, V2 6= X .

If X is a plane curve, so I = (F ) for some single polynomial F , then X is ir-

reducible if and only if F doesn’t factor over L[X0, X1, X2]. The curve is called

absolutely irreducible if it is irreducible when considered over L.

From here on, curve will be assumed to mean absolutely irreducible curve unless

stated otherwise. This does not give away much ground because curves which are not

irreducible are made up of a finite number of irreducible components.

A singularity of a curve is a point on the curve without a well defined tangent

line. On a the graph of a real, affine plane curve, a singularity might look like a

point where the line of the graph crosses itself or is pinched to a point. This picture

doesn’t translate directly to curves over finite fields, but the algebraic formulation of

smoothness does.

To determine if a plane curve has a single, well defined tangent line at a point,

we can calculate the formal partial derivatives of the defining homogeneous equation.

The tangent line to the curve defined by F (X, Y, Z) = 0 at a point (A,B,C) has the

homogeneous linear equation

∂F

∂X
(A,B,C)(X − A) +

∂F

∂Y
(A,B,C)(Y −B) +

∂F

∂Z
(A,B,C)(Z − C) = 0.

It is not hard to show that the constant terms will cancel, resulting in the homoge-

neous linear equation

∂F

∂X
(A,B,C)(X) +

∂F

∂Y
(A,B,C)(Y ) +

∂F

∂Z
(A,B,C)(Z) = 0.

This will be a well defined line as long some partial derivative is non-zero when

evaluated at (A,B,C).
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For non-plane curves a similar but slightly more complicated procedure is required.

For a curve in Pn defined by the n−1 equations Fi(X0, X1, ..., Xn) 1 ≤ i ≤ n−1, define

the Jacobian matrix J of the curve to be the matrix of formal partial derivatives

J :=


∂F1

∂X0

∂F1

∂X1
· · · ∂F1

∂Xn

...
...

. . .
...

∂Fn−1

∂X0

∂Fn−1

∂X1
· · · ∂Fn−1

∂Xn

 .

The tangent space to this projective curve at the point (a0, ..., an) is given by the

linear system

J(a0, ..., an)


X0

X1

...

Xn


=


0

...

0

 .

This defines a line as long as J(a0, ..., an) has rank n − 1. So a space curve is non-

singular if J has rank n− 1 when evaluated at all points on the curve.

We can also check for singularities by checking the affine equations for the curve,

then checking for singularities at infinity.

6.4 The Function Field and Automorphism Group

of a Curve

Given a curve X defined over a field K, there is an associated function field K(X ).

For a plane curve given by F (X, Y, Z) = 0 where F ∈ K[X, Y, Z], the function field

is given by

K(X ) ∼= Frac(K[X, Y, Z]/(F )).

An automorphism of X is a morphism from X to itself which induces an auto-

morphism of K(X ). The set of automorphisms of K(X ) which fix K and are defined
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over some field L form a group under composition, called the L-automorphism group

of X and denoted by AutL(X ). Unless it is otherwise noted, we will assume that

L = K = K and simply write Aut(X ). A basic fact about automorphism groups

is that if the genus of X is greater than 1, then Aut(X ) is finite. In fact this can

be greatly improved. If X is an irreducible curve of genus g ≥ 2 defined over a

field of characteristic 0, then |Aut(X )| ≤ 84(g − 1). This is known as the Hur-

witz bound. There are many exceptions in positive characteristic, but automorphism

groups larger than this can be considered fairly large. It has been proven that in most

cases |Aut(X )| ≤ 24g2. Automorphism groups surpassing this bound are considered

to be very large.

For curves X and Y , a covering morphism φ : X → Y defined over K corresponds

to an injective homomorphism ψ : K(Y)→ K(X ). So K(X ) is an extension of K(Y).

X K(X )

↓ ↑

Y K(Y)

Two curves X and Y are said to be birationally equivalent if there are dominant

rational maps φ : X → Y and ψ : Y → X such that φ ◦ ψ is the identity on an open

subset of Y and ψ ◦ φ is the identity on an open subset of X . Birationally equivalent

curves have isomorphic function fields. Two curves are said to be isomorphic if the

maps φ and ψ are morphisms, i.e. maps that are defined at every point of the curves.

6.5 Galois Extensions and Quotient Curves

If the extension K(X )/K(Y) is Galois, X is said to be a Galois cover of Y . In the

case of a Galois cover Aut(K(X )/K(Y)) is called the Galois group of K(X )/K(Y) and

denoted Gal(K(X )/K(Y)).
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In the Galois case we can use Galois theory to see further structure. Let G =

Gal(K(X )/K(Y)). Any subgroup H of G corresponds to a subfield F with K(X ) ⊂

F ⊂ K(X ), where F is the fixed field of the group H. If H is a normal subgroup of G

then F/K is a Galois extension and

Gal(F/K) ∼= G/H.

Any intermediate subfield K(Y) ⊂ F ⊂ K(X ) is a finite algebraic extension of

K(Y), so it is the function field of some curve Z. If F = K(Z) is the fixed field of

H for some H 6 G, then Z is called the quotient curve of X by H and we write

Z = X/H.

6.6 Maximal curves and Zeta functions

For a smooth projective curve X defined over Fq, the zeta function Z(X , t) of X is

given by

Z(X , t) := exp(Σ∞i=1

Ni

i
ti) (6.1)

By the Weil conjectures, proven by Andre Weil himself in the case of curves, it is

known that the zeta function of a nonsingular projective curve converges to a rational

function

Z(X , t) =
L(t)

(1− t)(1− qt),
(6.2)

where

L(t) = Π2g
i=1(1− ωit) ∈ Z[t].

Here, g is the genus of the curve. By the Riemann hypothesis for curves, again a

portion of the Weil conjectures, we have |ωi| =
√
q for all i.

By equating the forms of Z(X , t) given in (1) and (2), then taking the logarithm

of both and equating coefficients, we obtain the relation

Nn = qn + 1− Σ2g
i=1ω

n
i (6.3)
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Consider a curve X defined over Fq. The fact that |ωi| =
√
q imposes that

−2g
√
q ≤ Σ2g

i=1ωi ≤ 2g
√
q.,

giving the bound

q + 1− 2g
√
q ≤ N1 ≤ q + 1 + 2g

√
q.

If X is maximal over Fq according to this bound, then

N1 = q + 1 + 2g
√
q

which requires that ωi = −√q for all i.

An Fq-maximal curve has q + 1 + 2g
√
q points over Fq. If this is to be an integer,

q must be a perfect square. For this reason, we will generally consider curves defined

over Fq2 .

We then have the following formula for the zeta function of an Fq2-maximal curve

X

Z(X , t) =
(1 + qt)2g

(1− t)(1− q2t)
.

Equation (3) gives the number of points on X over all extension fields of Fq2 . Since

ωi = −q for all i, we have

Nn = q2n + 1− 2g(−q)n.

Therefore a curve which is maximal over a given finite field will be maximal over odd

degree extensions of that field and be minimal (attain the lower Hasse-Weil bound)

over extensions of even degree.

6.7 Upper Bound on Genera of Maximal Curves

The zeta function of a maximal curve gives an upper bound on possible genera for

maximal curves over a given finite field.
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Theorem 7. Let X be a Fq2-maximal curve. Then g(X ) ≤ q(q−1)
2

.

Proof. Since Fq2 ⊂ Fq4 , it must be that

#X (Fq2) ≤ #X (Fq4).

That means

q2 + 1 + 2qg(X ) ≤ q4 + 1− 2q2g(X )

2g(X )(q + q2) ≤ q4 − q2 = q2(q + 1)(q − 1)

g(X ) ≤ q(q − 1)

2
.

6.8 Newton Polygon of a Maximal Curve

Newton polygons encode information about polynomials or power series over local

fields. The Newton polygon of an algebraic curve is defined based on its zeta function,

more specifically the numerator of the zeta function, known as its L-polynomial.

Though we use the fact that L(t) ∈ Z[t] in the definition of the Newton polygon this

is not necessary. The method of Newton polygons can be applied to any polynomial

with coefficients in a complete local field, for example the completion of the p-adics.

We will determine the Newton polygon of a maximal curve, then state a result that

shows maximal curves are supersingular. Background on Newton polygons and elliptic

curves can be found in Koblitz [20] and Silverman [40], respectively.

Definition 2. Let L(t) = a0 + a1t + a2t
2 + ... + ant

n be the L-polynomial for an

smooth projective curve X defined over Fq, where q = ph for some prime p. By the

Weil conjectures, we know that L(t) ∈ Z[t]. Let νp(x) denote the p-adic valuation of

x ∈ Q. Let ν ′p(x) = νp(x)

h
be the normalized valuation. Define the Newton polygon of
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X with respect to q be the lower convex hull of the points Pi = (i, ν ′(ai)) for 0 ≤ i ≤ n,

plotted on a standard xy-plane.

To illustrate the lower convex hull, one can imagine placing pins in the points

described on a graph, then stretching a rubber band from below around the pins,

coming from the negative y direction. The resulting shape of the rubber band is the

lower convex hull. So a Newton polygon is made up of several straight line segments

between points.

We will introduce a few ideas to make an interesting statement about maximal

curves based on their Newton polygons. For more on abelian varieties and Jacobians,

see Serre [37].

An abelian variety is an algebraic variety which is also an abelian group. Given a

smooth, irreducible projective curve X , one can define an abelian variety called the

Jacobian of X which is denoted Jac(X ).

If A and B are abelian varieties, an isogeny A→ B is a surjective morphism with

a finite kernel. We say A is isogenous to B if such an isogeny exists. Isogeny is an

equivalence relation, coarser than isomorphism.

An elliptic curve is a smooth irreducible curve of genus 1 with a rational point. An

elliptic curve is isomorphic to its own Jacobian, i.e. it comes equipped with a group

structure of its own. For n a natural number, the n-torsion points of an elliptic curve

over the algebraic closure of the base field form a subgroup. An elliptic curve defined

over Fq, where q = ph with p prime, has n-torsion over Fq isomorphic to Cn × Cn for

all n relatively prime to p. For n such that p|n, the n-torsion can vary. In particular,

the p-torsion of an elliptic curve can either be trivial or isomorphic to Cp. Elliptic

curves of the latter type are called ordinary, while elliptic curves with trivial p-torsion

are called supersingular.

A proof of the following can be found in Yuri Manin’s 1963 thesis [28].
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Fact 1. If the Newton polygon of a curve X has all slopes equal to 1
2
, then Jac(X ) is

isogenous to a product of supersingular elliptic curves.

A curve of genus ≥ 1 which is isogenous to the product of supersingular elliptic

curves is also called supersingular. The Jacobian of a supersingular curve has trivial

p-torsion, however supersingularity is a stronger condition than trivial p-torsion.

This leads to a statement about the structure of the Jacobian of a maximal curve:

Theorem 8. Maximal curves are supersingular. If X is an Fp2h-maximal curve for

some p prime, then the p-torsion of Jac(X )(Fp) is trivial.

Proof. The Newton polygon of an Fq2-maximal curve X with respect to Fq2 can be

fairly easily determined by expanding the L-polynomial determined above. Since

L(t) = (1 + qt)2g = Σ2g
i=0

(
2g

i

)
qiti,

we can see that ai =
(

2g
i

)
qi. We can check that ν ′(

(
2g
i

)
) = ν ′(1) = 0 for i = 0 and

i = 2g, and ν ′(
(

2g
i

)
) ≥ 0 for all 1 ≤ i ≤ 2g − 1. Then, considering that ν ′(qi) = i

2
,

we can see that P1 = (0, 0), P2g = (2g, g), and all Pi for 1 ≤ i ≤ 2g − 1 lie above the

straight line between these two points. Thus the lower convex hull is a straight line

of slope 1
2

from (0, 0) to (2g, g). This is the Newton polygon of X . Thus by fact 1, X

is supersingular.

6.9 Example: The Hermitian Curve

6.9.1 The Hermitian curve Hq

Perhaps the best known example of a maximal curve is the Hermitian curve. For

q = pn, define the Hermitian curve Hq to be the projective curve with the following

affine equation

Hq : hq(x, y) = xq + x− yq+1 = 0.
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Theorem 9. The Hermitian curve Hq is maximal over Fq2.

Proof. The number of points possible for a curve depends on its genus, so the first

step is calculating the genus of Hq. The Plucker formula gives the genus g of a smooth

projective plane curve X of degree d as

g(X ) =
(d− 1)(d− 2)

2
.

To see that Hq is smooth, it is sufficient to show that there is no point at which

all partial derivatives of the homogenized form of the equation defining Hq vanish.

Consider the homogenized equation for Hq

Hq(X, Y, Z) := XqZ +XZq − Y q+1 = 0.

The conditions imposed by the partial derivatives vanishing are as follows:

0 =
∂Hq

∂X
= Zq ⇒ Z = 0

0 =
∂Hq

∂Y
= −Y q ⇒ Y = 0

0 =
∂Hq

∂Z
= Xq ⇒ X = 0.

Since X = Y = Z = 0 is not a point of P2, Hq is smooth. The Plucker formula

gives that g(Hq) = q(q−1)
2

. Therefore the Hasse-Weil bound requires that

#Hq(Fq2) ≤ q2 + 1 + 2gq

= q3 + 1.

Now we can count the points on the curve using the field trace and norm maps.

First note that Hq has a single point at infinity since Z = 0 implies that Y q+1 = 0,

so Y = 0, and [1 : 0 : 0] is the only non-affine point on the curve. The affine points

over Fq2 are solutions to

xq + x = yq+1
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with x, y ∈ Fq2 . Note that xq + x = TrFq2/Fq(x), where the trace map TrFq2/Fq is a

degree q homomorphism of additive groups mapping Fq2 → Fq. That means that for

every α ∈ Fq, there are q values of x ∈ Fq2 such that xq + x = α.

Next, notice that yq+1 = NFq2/Fq(y), where the norm map NFq2/Fq is a degree q+ 1

homomorphism of multiplicative groups mapping F∗q2 → F∗q. So for each nonzero

α ∈ Fq, there are q + 1 values of y ∈ Fq2 such that yq+1 = α. For α = 0, the only

solution is y = 0.

Counting these possibilities, we have q − 1 non-zero α in Fq, each of which are

mapped to by q values of x and q + 1 values of y in Fq2 . For α = 0 there are still q

values of x but only 1 value of y. Adding the point at infinity gives a total of

(q − 1)(q + 1)(q) + q + 1 = q3 + 1

points over Fq2 .

Notice that the Hermitian curve Hq attains the upper bound for the genus of an

Fq2 maximal curve, proving that the bound in Theorem 1 is tight.

The following fact was proven in 1994 by Rück and Stichtenoth [35], and by

Fuhrmann and Torres in 1996 using different methods [10].

Fact 2. Any Fq2-maximal curve with genus q(q−1)
2

is isomorphic over Fq2 to Hq.

Not every genus below the bound of q(q−1)
2

is obtainable for an Fq2-maximal curve.

The Hermitian curve takes on the upper bound, but Fuhrmann and Torres proved

that the next largest obtainable genus is (q−1)2

4
[10], the genus of the Fq2-maximal

curve F given by the affine equation

f(x, y) := xq + x− y
(q+1)

2 = 0,
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which is covered by Hq under the map

x 7→ x

y 7→ y2.

By the following result of Serre, this map forces F to be maximal as well.

Fact 3. Any curve which is Fq2-covered by an Fq2 maximal curve is also Fq2-maximal.

In particular, the quotient curves of a maximal curve X by subgroups of AutFq2 (X )

are also maximal. Curves with large automorphism groups have the potential to

generate many quotient curves, so are a good source of maximal curves.

Many known examples of maximal curves are covered by the Hermitian curve, and

until recently no maximal curve had been proven not to be covered by the Hermitian

curve or one of three other curves, namely the Deligne-Lustzig curve associated to the

Suzuki group (DLS), the Deligne-Lustzig curve associated to the Ree group (DLR),

and the Garcia-Stichtenoth curve. In 2007, Giuletti and Korchmaros introduced a

family of curves maximal over Fq6 which they proved were not covered by the any

of these curves [12]. A 2008 article by Garcia, Guneri, and Stichtenoth generalizes

Giulietti and Korchmaros’ family, introducing curves maximal over Fq2n for all odd

n ≥ 3 [11]. It is not known whether these curves are covered by a known maximal

curve for n ≥ 5. These families of curves will be the main focus of this portion of the

paper.

6.9.2 Other equations for the Hermitian curve

The equation considered above is not the only one valid for the Hermitian curve. A

Hermitian curve can be understood by its relationship to a Hermitian form, defined to

be a symmetric sesquilinear form h : V × V 7→ K such that h(v, w) = h(w, v), where

V is a K-vector space and x is the conjugate of x ∈ K. If K = Fq2 , the conjugate

considered is the element’s image under the q-th power map, i.e. x = xq. For more
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on Hermitian forms, see Grove [14]. Given a basis for V , a Hermitian form can be

expressed as a Hermitian matrix, by definition an n× n matrix M such that

M = M
T
,

that is, if mi,j is the i, j-th entry of M , then mi,j = mj,i.

A Hermitian matrix gives rise to a homogeneous polynomial and projective curve

as follows. Let (X, Y, Z) = v and M be a non-singular 3×3 Hermitian matrix defined

over Fq2 . Then vTMv is a homogenous polynomial, the projective vanishing of which

is a Hermitian curve. To see Hq in this light, let

M =


0 0 1

0 −1 0

1 0 0

 .

Then

(
X Y Z

)
0 0 1

0 −1 0

1 0 0




X

Y

Z

 =
(
X Y Z

)
0 0 1

0 −1 0

1 0 0




Xq

Y q

Zq



=
(
Z −Y Z

)
Xq

Y q

Zq


= XqZ +XZq − Y q+1.

The identity matrix is also a Hermitian matrix, corresponding to the curve H′q
with equation Xq+1 + Y q+1 + Zq+1 = 0. This curve has the same genus as Hq and is

also Fq2-maximal, so we know that the curves are isomorphic over Fq2 . To see that

the curves are isomorphic it would also serve to construct an invertible morphism

from one curve to the other, as below.

Let the points of H′q be given by Rq+1 + Sq+1 + T q+1 = 0. Then choose δ, γ ∈ Fq2

so that δq+1 = γq + γ = −1 and define
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X := δ(1 + γ)R− γS Y := δT Z := S − δR.

We can then calculate directly that

XqZ +XZq − Y q+1 = Rq+1 + Sq+1 + T q+1 = 0.

We have just seen that Hq is isomorphic to H′q. Now we will see that all curves

arising from Hermitian forms are isomorphic to H′q, and so isomorphic to Hq.

Proposition 14. All non-singular Hermitian matrices with entries in Fq2 give rise

to Fq2 isomorphic curves.

Proof. To demonstrate that the curves are Fq2-isomorphic, it is sufficient to give an

invertible homogeneous linear transformation defined over Fq2 between them. We

use the fact that any Hermitian matrix with entries in Fq2 can be diagonalized by

a unitary matrix with entries in Fq2 , and the resulting diagonal matrix will take on

values in Fq (thus is also a Hermitian matrix).

Let M be a non-singular Hermitian matrix, U be a unitary matrix which diago-

nalizes M . Let v be a vector in P2 such that vTMv = 0. Then

0 = vTUU−1MUU−1v.

Since U is unitary, U−1 = U
T

. If w = UTv, then vTU = wT and U−1v = U
T
v = wT .

That means

0 = wT (U−1MU)w.

So the matrix U defines an invertible linear transformation from points on the curve

M, associated to M , to points on the curve Dq associated to the diagonal Hermitian

matrix D = U−1MU , meaning that M and Dq are isomorphic over Fq2 . Now we

prove that Dq is isomorphic to H′q.

The defining equation for the curve Dq associated to D is as follows:
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D =


a 0 0

0 b 0

0 0 c

 ↔ Dq : aXq+1 + bY q+1 + cZq+1 = 0,

where a, b, c ∈ F∗q.

The curve Dq then maps to the curve H′q defined as follows. Choose α, β, σ ∈ F∗q2

so that

αq+1 = a

βq+1 = b

σq+1 = c.

The values α, β, and γ exist in F∗q2 because xq+1 = NFq2/Fq(x) maps F∗q2 onto F∗q.

Define the matrix N :

N =


α 0 0

0 β 0

0 0 σ

 .
Given v = (X, Y, Z) a point on Dq, let Nv = w. Then w = (αX, βY, σZ), and

(αX)q+1 + (βY )q+1 + (σZ)q+1 = aXq+1 + bY q+1 + cZq+1 = 0,

So Nw is a point of H′q.

Therefore NU is a map from the points ofM, the curve arising from a Hermitian

matrix M , to H′q, a standard version of the Hermitian curve. This is an isomorphism

since U and N are invertible.

In the special case of M =


0 0 1

0 −1 0

1 0 0

 discussed earlier, we could use U =
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
0 0 1

0 1 0

1 0 0

 and N =


1 0 0

0 γ 0

0 0 1

, where γ is an element of Fq2 with γq+1 = −1.

We now know that any Hermitian form generates a curve isomorphic to H′q. Now,

given a curve F in P2 and an isomorphism T : F → H′q, can we find a Hermitian

matrix H so that the points of F are the vanishing of the form H?

Let w = (X, Y, Z) be a point of F . The isomorphism T is an invertible linear

transformation mapping points of F to points of H′q, so may be given as an invertible

matrix. Then let Tw = v, where v = (X ′, Y ′, Z ′) is a point of Hq. Since the defining

property of v is that

vT


1 0 0

0 1 0

0 0 1

 v = 0,

we have that

(Tw)T


1 0 0

0 1 0

0 0 1

 Tw = 0.

Simplifying, this gives

wTTTTw = 0.

Let H = TTT. Then

H
T

= TTT
T

= TTT = H

so H is Hermitian. Therefore given an isomorphism from a curve in P2 to the Hermi-

tian curve H′q, we can write the curve as the vanishing of a corresponding Hermitian

form.

Since all curves arising from this type of Hermitian form are isomorphic it makes

sense to use the most convenient form for a given problem. The curveHq is convenient

because it is a very commonly used form and has only a single point at infinity. In
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contrast, the curve H′q, with corresponding affine equation xq+1 + yq+1 + 1 = 0, has

q + 1 points at infinity.

6.10 Proving Maximality in Two Families of Max-

imal Curves

We have already seen two methods of proving that a curve is maximal. The first, as

demonstrated for the Hermitian curve, is simply to count points. A second method,

used for F above, is to show that the curve in question is Fq2-covered by another

maximal curve. We will consider two more methods, which were employed by Giulietti

and Korchmaros and Garcia, Guneri, and Stichtenoth in the papers mentioned above.

The natural embedding theorem, due to Korchmaros and Torres in 2001, com-

pletely characterizes maximal curves, though it gives no explicit equations [16].

Fact 4. Let X be a smooth projective curve defined over Fq2. Then X is maximal

over Fq2 if and only if X is isomorphic over Fq2 to a smooth, absolutely irreducible

curve of degree q + 1 lying on a non-degenerate Hermitian variety Hm,q.

Here Hm,q is the m-dimensional analogue of the Hermitian curve. For example,

consider the 4 × 4 identity matrix, which gives rise to the 2-dimensional projective

Hermitian variety associated with the equation W q+1 + Xq+1 + Y q+1 + Zq+1 = 0. A

curve can be proven to be maximal by showing that it is isomorphic to a curve on

this surface which is smooth, absolutely irreducible, and of degree q+1. Giulietti and

Korchmaros employ this method to prove that the family of curves we now define are

maximal.

41



6.10.1 Giulietti and Korchmaros’ family of maximal curves

Define the curve Z to be the intersection of the surfaces Σ andHq with affine equations

given by

Σ : σ(x, y, z) := z
q3+1
q+1 − yx

q2 − x
xq + x

= 0, (6.4)

Hq : hq(x, y, z) := xq + x− yq+1 = 0. (6.5)

Notice that xq2−x
xq+x

is a polynomial with degree q2 − q which has zeros at exactly

the points of Fq2 whose trace in Fq is non-zero. Projective equations can be obtained

by homogenizing both equations with a single variable. These equations are

Σ : S(X, Y, Z,W ) := Z
q3+1
q+1 − Y X

q2W −XW q2

XqW +XW q
= 0,

Hq : Hq(X, Y, Z,W ) := XqW +XW q − Y q+1 = 0.

The intersection has the single point Y = Z = W = 0, X = 1 at infinity. Giulietti

and Korchmaros demonstrate that Z is Fq6-maximal. This will be outlined in several

claims.

Claim 1. The curve Z has degree q3 + 1.

For a non-plane curve such as this one we need a new definition of degree. The

degree of a curve X ⊂ Pn is denoted deg(X ) and is defined to be the maximum

number of points (counted with proper multiplicity) of intersection between X and a

hyperplane not containing any component of X . We will make use of the notion of

the notion if the dimension of a variety V , denoted dim(V) also. Without launching

into a discussion of dimension, we can get by with the key fact that the dimension of

a projective variety defined by a single homogeneous equation is 1 less than that of

the ambient space. For a deeper discussion of dimension and proofs of the facts used

below, see Shafarevich [39].
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Proof. Consider a hyperplane P in P3, defined to be the vanishing of a single linear

homogeneous polynomial in X, Y , Z, and W . Choose P so that it has a non-

empty intersection with each of Σ and Hq, is not tangent with either, and contains

no components of either. We know that P exists because dim(P) = dim(Σ) =

dim(Hq) = 2, and two projective varieties must have a non-empty intersection if

their dimensions sum to at least the dimension of the ambient space. We can avoid

both of their tangent spaces because, as smooth surfaces, each has a tangent space

of dimension 2. We can avoid containing components of the surfaces because each is

irreducible and does not itself lie in any hyperplane.

Having chosen P so carefully, we can see that the intersection in P3 of Σ and P

will be a curve of degree q3+1
q+1

, perhaps reducible. Similarly, the intersection in P3 of

Hq and P will be a curve of degree q+1. The intersection of Σ∩Hq with P will be the

intersection of these curves. Bezout’s theorem implies that the number of points of

intersection (counted with multiplicity) of a curve of degree d with a curve of degree

e is de. So deg(Z) = q3+1
q+1

(q + 1) = q3 + 1.

Claim 2. The curve Z is smooth.

Proof. First we’ll look at the affine patch with equations given in (4) and (5). Consider

the matrix of partial derivatives, calculated here:

J :=

 ∂σ
∂x

∂σ
∂y

∂σ
∂z

∂hq

∂x

∂hq

∂y

∂hq

∂z

 =

 −y d
dx

(x
q2−x
xq+x

) −xq2−x
xq+x

q3+1
q+1

z
q3+1
q+1
−1

1 −yq 0


The only possibility for the rank of J to be less than 2 is if z = 0. If z = 0, then

from (4) we know that either y = 0 or xq2−x
xq+x

= 0. If y = 0, then xq + x = 0 from

(5). But that means that the formal polynomial xq2−x
xq+x

evaluated at x is non-zero, so

the matrix again has rank 2. If xq2−x
xq+x

= 0, then xq + x 6= 0, so yq+1 6= 0 from (5),

and −yq 6= 0 either, and J has rank 2 as long as ∂σ
∂x
6= 0. The roots of xq2−x

xq+x
are the

elements of Fq2 with trace in Fq not equal to zero, so we know they are distinct, i.e.
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xq2−x
xq+x

is a separable polynomial. Therefore it shares no roots with its derivative, and

since y 6= 0, we have y d
dx

(x
q2−x
xq+x

) 6= 0. Therefore J has rank 2 in any case and Z has

no singular affine points.

Now consider the point at infinity. We can cover this with the affine patch where

X 6= 0, in which case we can dehomogenize as follows:

σ′(w, y, z) := z
q3+1
q+1 + y

wq
2 − w

wq + w
= 0, (6.6)

hq(w, y, z) := wq + w − yq+1 = 0. (6.7)

These equations are extremely similar to those in (4) and (5), and a similar reasoning

process leads us to conclude that the curve is smooth on this affine patch as well. So

Z is smooth everywhere.

To prove that Z lies on a Hermitian surface, we will need a polynomial identity.

Claim 3. In Fq2 [x],

(
xq

2 − x
xq + x

)q+1(xq + x) = xq
3

+ x− (xq + x)
q3+1
q+1 .

Proof. Calculation shows that

(xq − x)q(xq
3 − x+ (xq − x)

q3+1
q+1 ) = (xq

2 − x)q+1. (6.8)

Now choose ρ ∈ Fq2 so that ρ 6= 0 but Tr(ρ) = ρq + ρ = 0. We know that such a ρ

exists because the trace map surjects onto Fq. Since (8) holds for all x ∈ Fq2 , replace

x by ρx to obtain

(ρqxq − ρx)q(ρq
3

xq
3 − ρx+ (ρqxq − ρx)

q3+1
q+1 ) = (ρq

2

xq
2 − ρx)q+1

−ρ2(xq + x)q((xq
3

+ x)− (xq + x)
q3+1
q+1 ) = −ρ2(xq

2 − x)q+1

xq
3

+ x− (xq + x)
q3+1
q+1 = (

xq
2 − x

xq + x
)q+1(xq + x).
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Claim 4. The curve Z lies on the Hermitian surface H with affine equation

xq
3

+ x = yq
3+1 + zq

3+1.

Note that this is an affine form of the Hermitian surface corresponding to the

matrix


0 0 0 1

0 −1 0 0

0 0 −1 0

1 0 0 0


, which could be denoted by H2,q3 .

Proof. Let P := (x, y, z) be an affine point of Z. Since P lies on Σ, we know that

z
q3+1
q+1 = y

xq
2 − x

xq + x
.

Raising both sides of this equality to the (q + 1)-st power, we get

zq
3+1 = yq+1(

xq
2 − x

xq + x
)q+1.

Using the fact that yq+1 = xq + x and the identity from claim 3, we have

zq
3+1 = (xq + x)(

xq
2 − x

xq + x
)q+1 = xq

3

+ x− (xq + x)
q3+1
q+1 .

Using yq+1 = xq + x again, we obtain

zq
3+1 = xq

3

+ x− yq3+1.

The point at infinity on Z is [1 : 0 : 0 : 0], which is also the point at infinity on H.

Claim 5. Z is absolutely irreducible.

Proof. This proof uses results from intersection theory. More on this can be found

in Hirschfeld, Korchmaros and Torres [16]. This claim is proven by considering the

function field of an absolutely irreducible component of Z. Let Y be the absolutely

irreducible component of Z containing the affine point (x, y, z) = (0, 0, 0). It is

straightforward to check that Z is nonsingular at (0, 0, 0). Let K = Fq2 , so K(Y) is
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the function field of Y . Since Z is embedded in P3 we also have an embedding of Y in

P3. Let x, y, z, t ∈ K(Y) be the coordinate functions of this embedding and consider

the affine model of the curve where t = 1, so K(Y) ∼= Frac(K[x, y, z]/ ∼) where ∼

indicates algebraic relations between x, y, and z.

For a non-zero function f(x, y, z), let v(0,0,0)(f(x, y, z)) denote the valuation of

f(x, y, z) ∈ K(Y) at (0, 0, 0). The valuation can be understood as the order of

vanishing of a function at the given point. Since Y lies on H, we know that

xq
3

+ x = yq
3+1 + zq

3+1

x(xq
3−1 + 1) = yq

3+1 + zq
3+1

Since (0, 0, 0) is a zero, we have

v(0,0,0)(x) = v(0,0,0)(x
q3 + x) = v(0,0,0)(y

q3+1 + zq
3+1) ≥ q3 + 1

Consider the plane π defined by x = 0. Then the degree of the intersection of π

and Y at (0, 0, 0), called the intersection number and denoted I((0, 0, 0), π ∩Y), is at

least q3 +1. However, I((0, 0, 0), π∩Z) ≤ deg(π)deg(Z) = q3 +1. So either Y = Z or

Y ⊂ π. But by examining the equations for Z, we can see that Z∩π = {(0, 0, 0)∪∞}.

So Y = Z, and Z is absolutely irreducible.

By the natural embedding theorem, these claims imply that Z is maximal. Notice

that we are in the strange position of knowing that the curve is maximal without

knowing how many points it has, as by this reasoning we do not yet know the genus

of Z. Giulietti and Korchmaros determine the genus by finding that Z has the

Hermitian curve as a quotient, then using the Riemann-Hurwitz formula.
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6.10.2 Garcia, Guneri, and Stichtenoth’s family Cn

Recall for n ≥ 3 odd Cn is the curve defined in Section 1. Giulietti and Korchmaros’

curve Z discussed in Section 6.10.1 is also the curve C3. In proving the maximality

of Cn for arbitrary n, the following cover is considered:

Cn (x, y, z)

π′ ↓ ↓

Xn (y, z)

ψ ↓ ↓

P1 y

Abdon, Bezerra, and Quoos earlier determined the genus of Xn is (q−1)(qn−q)
2

, and

proved that Xn is Fq2n-maximal [1]. By proving that every Fq2n-point of Xn except

the point at infinity splits completely in Cn, Garcia, Guneri, and Stichtenoth show

that

#Cn(Fq2n) = 1 + deg(π′)(#Xn(Fq2n)− 1) (6.9)

= 1 + q(#Xn(Fq2n)− 1). (6.10)

They then determine the genus of the curve Cn. Note that since we do not have

one explicit equation for Cn, we can not use the Plucker formula as we did for Hq.

Then, considering the genus, the equality in (1.12) forces Cn to be Fq2n-maximal. We

will lead up to this proof in three claims, after stating some polynomial identities in

characteristic p that are important to the proof. In the following facts, let F be a

field of characteristic p, with q a power of p.

Fact 5. Let n = 2k + 1 ≥ 1 for 0 ≤ k ∈ Z. Let S := yq
2 − y ∈ F[y]. Then

k∑
i=1

Sq
n+q2i

= yq
n+2+qn+1 − yqn+2+q2 − yqn+1+qn

+ yq
n+q2

k∑
i=0

S1+q2i+1

= yq
n+2+q2 − yqn+2+1 − yq2+q + yq+1.
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Garcia, Guneri, and Stichtenoth prove this fact by simple induction on n.

Fact 6. If i, j ∈ Z are not congruent modulo 2, then q + 1 divides qi + qj.

Fact 7. Let n > 1 be an odd integer of the form n = 3m+ r for some r ∈ {0, 1,−1},

m ≥ 1. Define

T := yq+1 S := yq
2 − y Tn : = T

qn+q2

q+1 − T q + T

Bn := T q
n−1 − T n−2 + ...− T q + T Qn : =

m−1∑
j=0

(−1)r+j(Sq+1)q
r+3j

.

Then

Bn −Qn − Tn = Pn,

where Pn is a polynomial in F[Sq+1] with coefficients in {0, 1,−1}.

This fact is proven by induction on n, with separate base cases for each value of

n modulo 3. Facts 6 and 7 are also employed.

Now for the claims that make up the proof of maximality.

Claim 6. The degree of the map π′ is q.

Proof. To see this, consider a point (y0, z0) ∈ Xn, with y0 6= 0. The degree of the

map will be the number of points (x0, y0) ∈ Hq so that ψ((x0, y0)) = φ((y0, z0)) = y0.

This is the number of values for x so that x + xq = y0. Since TrFq2/Fq(x) = x + xq is

a separable, degree q morphism, we have q such x values. Thus deg(π′) = q.

Claim 7. Every Fq2n-rational affine point of Xn splits completely in Cn in the covering

π′.

Proof. Since we are first concerned with the affine points of Cn, let (x, y, z) be a Fq2n-

rational affine point of Cn, meaning that x, y, z ∈ Fq2n satisfy the affine equations

given in (9) and (10). Then let ε ∈ Fq2 be an element of trace zero, i.e. εq + ε = 0.

Notice that (x+ ε, y, z) is also an Fq2n-rational point of Cn, simply because

(x+ ε)q + x+ ε = xq + x+ εq + ε = xq + x.
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Also notice that for affine points, the projection π′ maps (x, y, z) to (y, z), so if

(α, β, γ) is a point of Cn, then (β, γ) is a point of Xn. So let (α, β, γ) ∈ Cn(Fq) with

β, γ ∈ Fq2n . If we can show that this implies α ∈ Fq2n also, that means (β, γ) ∈

Xn(Fq2n) splits completely in Cn(Fq2n).

This is where we will use facts 7 and 8. Consider (x, y, z) = (α, β, γ). Then in

terms of α, β, and γ, we have

T = βq+1, S = βq
2 − β,

and Tn, Bn, and Qn can be rewritten as functions of β. Then

Bqn

n −Bn = (T q
n−1 − T qn−2

+ ...− T q + T )q
n − (T q

n−1 − T qn−2

+ ...− T q + T )

= T q
2n−1 − T q2n−2

+ ...− T qn+1

+ T q
n − T qn−1

+ T q
n−2 − ...+ T q − T

= Σ2n−1
i=0 (−1)i+1T q

i

.

Since T = βq+1 = αq + α by (9), this becomes

Bqn

n −Bn = Σ2n−1
i=0 (−1)i+1(αq + α)q

i

= Σ2n−1
i=0 (−1)i+1(αq

i+1

+ αq
i

)

= −α− αq + αq + αq+1 − αq+1 − αq+2 + ...+ αq
2n−1

+ αq
2n

= αq
2n − α.

Notice that α ∈ Fq2n if and only if αq
2n − α = 0, meaning Bqn

n − Bn = 0, which

happens if and only if Bn ∈ Fqn . So we wish to prove that Bn ∈ Fqn .

If S = βq
2 − β = 0, then β ∈ Fq2 , and βq+1 = αq + α means α ∈ Fq2 ⊂ Fq2n . So

assume S 6= 0.

Adapted to this situation, Hilbert’s Theorem 90 states that a ∈ Fq2n has TrFq2n/Fq2 (a) =

a + aq
2

+ aq
4

+ ... + aq
2(n−1)

= 0 if and only if a = bq
2 − b for some b ∈ Fq2n . So since

S = βq
2 − β,

S + Sq
2

+ Sq
4

+ ...+ Sq
2(n−1)

= 0.
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Multiplying by the non-zero value Sq
n
, we have

Sq
n+1 + Sq

n+q2 + Sq
n+q4 + ...+ Sq

n+q2(n−1)

= 0.

Since γ ∈ Fq2n by assumption, γq
n+1 = NFq2n/Fqn (γ) ∈ Fqn . But from (10), Sq+1 =

(βq
2 − β)q+1 = γq

n+1. So Sq+1 ∈ Fqn . By fact 7, we can then see that Sq
j+1 ∈ Fqn for

any odd j. That means Sq
n+j+qn

= (Sq
j+1)q

n
= Sq

j+1.

Notice that n is odd, so any even integer greater than n can be written as n + j

for some positive odd integer j. Let n = 2k + 1. Now we can write

0 = Sq
n+1 + Sq

n+q2 + Sq
n+q4 + ...+ Sq

n+q2(n−1)

= Sq
n+1 + Sq

n+q2 + Sq
n+q4 + ...+ Sq

n+qn−1

+ S1+q + S1+q3 + ...+ S1+qn−2

= (Sq
n+q2 + Sq

n+q4 + ...+ Sq
n+qn−1

) + (S1+q + S1+q3 + ...+ S1+qn−2

+ S1+qn

)

=
k∑
i=1

Sq
n+q2i

+
k∑
i=0

S1+q2i+1

.

By fact 6,

0 = βq
n+2+qn+1 − βqn+2+q2 − βqn+1+qn

+ βq
n+q2 + βq

n+2+q2 − βqn+2+1 − βq2+q + βq+1

= βq
n+2+qn+1 − βqn+1+qn

+ βq
n+q2 − βqn+2+1 − βq2+q + βq+1.

Since β ∈ Fq2n , so βq
2n

= β, we can write βq
n+2+1 = βq

n+2+q2n
. That means

0 = (βq
2+q − βq+1 − βq2+qn

)q
n − (βq

2+q − βq+1 − βq2+qn

)

= ((βq+1)q − βq+1 − (βq+1)
q2+qn

q+1 )q
n − ((βq+1)q − βq+1 − (βq+1)

q2+qn

q+1 )

= −(Tn(βq+1))q
n

+ Tn(βq+1).

So Tn(βq+1) is an element of Fqn .

Now consider that Qn and Pn are polynomials in Sq+1 ∈ Fqn with coefficients in

Fqn , and fact 6 tells us that

Bn = Qn + Tn + Pn.

That means that Bn ∈ Fqn , so every Fq2n-rational affine point of Xn splits completely

in Cn.
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Claim 8. The genus of Cn is (q−1)(qn+1+qn−q2)
2

.

We discovered when proving proposition 1 that p divides the index of ramification

at infinity in the covering Cn → Xn. This is called wild ramification, and it greatly

complicates our problem of calculating genus. Garcia, Guneri, and Stichtenoth do

calculate the genus using a fairly specialized theorem from Stichtenoth [45]. However,

if all ramification in a covering is non-wild (tame), we can use a simple form of the

Riemann-Hurwitz to calculate the genus of one curve if we know the genus of the other

and the index of ramification at each point. With this in mind, we can calculate the

genus using the other covering map, π : Cn → Hq, which is only tamely ramified.

Proof. Consider the following covering map:

Cn (x, y, z)

π ↓ ↓

Hq (x, y)

φ ↓ ↓

P1 y

For Pi ∈ Cn, let ei be the index of ramification in the covering π : Cn → Hq. The

Riemann-Hurwitz formula states that

2(g(Cn))− 2 = deg(π)(2g(Hq)− 2) +
∑
Pi∈Hq

(ei − 1).

First, note that deg(π)= qn+1
q+1

, since (10) means that there are qn+1
q+1

values of z

corresponding to a single y value. Ramification occurs when the fibers above points

in Hq have fewer points than this degree. For this covering, this happens at ∞ and

when yq
2 − y = 0, so for all y ∈ Fq2 . There are q values of x satisfying (9) for each of

these y values, resulting in a total of q3 points of ramification besides∞. Each of these

points (x, y) has the single point (x, y, 0) lying above it in Cn, so ei = deg(π) = qn+1
q+1

for each of these points. The point ∞ on Hq must also be fully ramified since there

is a single point above it on Cn. Using this, and the genus of Hq determined earlier,

we have:
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2g(Cn)− 2 =
qn + 1

q + 1
(2
q(q − 1)

2
− 2) + (q3 + 1)(

qn + 1

q + 1
− 1)

=
qn + 1

q + 1
(q3 + q2 − q − 1)− (q3 + 1)

2g(Cn) =
qn + 1

q + 1
(q3 + q2 − q − 1)− (q3 − 1)

= (qn + 1)(q2 − 1)− (q3 − 1)

= qn+2 − qn + q2 − 1− q3 + 1

= (q − 1)(qn+1 + qn − q2)

g(Cn) =
(q − 1)(qn+1 + qn − q2)

2
.

These claims lead to the following theorem.

Theorem 10. The curve Cn is maximal over Fq2n.

Proof. Since Xn is maximal, we know that

#Xn(Fq2n) = q2n + 1 + qn(q − 1)(qn − 1) = q2n+1 − qn+2 + qn+1 + 1.

Now Cn is maximal if and only if

#Cn(Fq2n) = q2n + 1 + qn(q − 1)(qn+1 + qn − q2) = q2n+2 − qn+3 + qn+2 + 1.

This amounts to the equality

(#Cn(Fq2n)− 1) + 1 = q(#Xn(Fq2n)− 1) + 1.

So, since every Fq2n-point of Xn except the single point at infinity splits completely

(has q preimages) in Cn, and the point at infinity ramifies completely (has 1 preimage)

in Cn by proposition 3, this equality holds and Cn is Fq2n-maximal.
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6.11 Ramification in coverings of quotient curves

We can draw the following diagram of quotient curves of Cn:

q q2

Cn →(1) Xn →(2) P1
z

qn+1
q+1

↓(3) ↓(4) ↓(5)

Hq →(6) P1
y →(7) P1

t

q + 1 ↓(8) ↓(9) 6 � ↓(10)

P1
x →(11) P1

w  (12) P1
s

q − 1 ↓(13)

P1
u

The numbers above the right arrows and to the left of down arrows correspond to

the degrees of the coverings. We can understand the ramification of the finite places

in the extensions above by examining the equations of the curves in question. To

describe each covering, we will consider the associated field extensions.

• (1) and (6) are degree q Artin-Schreier covers with field extension created by

adjoining the variable x subject to the relation xq + x = yq+1. There is no

ramification at finite places in these coverings.

• (2) is a degree q2 Artin-Schreier cover with field extension created by adjoining

the variable y subject to the relation yq
2 − y = z

qn+1
q+1 . There is no ramification

at finite places in this covering.

• (11) is a degree q Artin-Schreier cover with field extension created by adjoining

the variable x subject to the relation xq + x = w. There is no ramification at

finite places in this covering.

• (7) is a degree q2 Artin-Schreier cover with field extension created by adjoining

the variable y subject to the relation yq
2−y = t. There is no ramification above

finite places in this covering.
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• (3) and (4) are degree qn+1
q+1

Kummer covers with field extensions created by

adjoining the variable z subject to the relation yq
2 − y = z

qn+1
q+1 ). These covers

are fully ramified above all α ∈ Fq2 and at no other finite places.

• (8) is a degree q + 1 Kummer cover with field extension created by adjoining

the variable y subject to the relation xq + x = yq+1. This cover is fully ramified

above x ∈ Fq2 with TrFq2/Fq(x) = 0 and at no other finite places.

• (9) is a degree q+1 Kummer cover with field extension created by adjoining the

variable y subject to the relation yq+1 = w. This is fully ramified above w = 0

and at no other finite places.

• (10) must be a cyclic cover of degree q + 1, so is a Kummer cover and hence

Galois. Here the field extension is created by adjoining the variable t subject to

the relation tq+1 − s). This is fully ramified above s = 0 and at no other finite

places.

• (12) is a non-Galois cover of degree q2. The equation for this cover is a little

trickier, but using the relations s = tq+1, yq
2−y = t, and yq+1 = w, we find that

w(wq−1−1)q+1 = s. So this cover has L = K(w)/(w(wq−1−1)q+1−s). This map

is ramified above s = 0 and unramified at other finite places. We can see this

is true by letting s = c ∈ Fq. The number of places above c in the cover is the

number of distinct roots of w(wq−1− 1)q+1− c. Let fc(w) = w(wq−1− 1)q+1− c.

Then f ′c(w) = −wq2−q + 1, which has roots at w = ζ iq−1 for ζq−1 a primitive

q − 1st root of unity and 1 ≤ i ≤ q − 1. These are roots of fc(w) if and only

if c = 0. Thus fc(w) has repeated roots if and only if c = 0. There are q roots

of f0(w), meaning q places lying above 0 in the cover. The ramification indices

are e(0|0) = 1, e(ζ iq−1|0) = q + 1.

• (13) is a cyclic Galois cover of degree q − 1. The field extension is K(x)/K(t)

where u = xq−1.
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Part II

Ihara Zeta Functions of Graphs
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This work began at the Women In Numbers workshop at Banff in the fall of

2008. Audrey Terras and Winnie Li led a project group on Ihara zeta functions and

introduced some open problems in the area. Michelle Manes and I worked together

on the topic of understanding ramified coverings of graphs and whether a ramified

covering of graphs might imply divisibility among the corresponding zeta functions.

That work eventually grew into two papers, one in the Journal of Linear Algebra and

its Applications, another in the Fields Proceedings Volume of Women In Numbers.

This part of the dissertation gives background on Ihara zeta functions and describes

my own individual work in the area, as well as the joint work on divisibility.
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Chapter 1

Introduction

The Ihara zeta function of a graph was defined by Ihara in the 1960s [18]. It was

modeled on other zeta functions in its form, an infinite product over primes, and

has some analogous properties, for example convergence to a rational function. Ihara

introduced the function in the context of groups, and Serre observed that the func-

tion could be interpreted in terms of graphs. This connection was first seen for the

finite regular graphs that arose as quotients of regular trees. Sunada [22] studied

the zeta functions of these regular graphs in the 1980s. Soon after, Hashimoto [17]

further developed the theory of zeta functions, with an emphasis on bipartite graphs.

Hashimoto also proved that the complexity, i.e. number of spanning trees, of a regular

graph can be expressed in terms of the zeta function of the graph [17]. Northshield

extended this result to include irregular graphs [31]. Bass extended earlier results to

general, non-regular graphs. Terras and Stark have also studied Ihara zeta functions

extensively [41] [42] [43] and explored how (unramified) maps between graphs and

are reflected in the zeta functions of the graphs. Manes and I considered one notion

of ramified coverings in [27].

The zeta functions of members of some well-known families of graphs have been

determined. Regular graphs and bipartite graphs have been studied extensively. We

will summarize some essential results on zeta functions and explore some examples.
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A good background source is Norman Biggs’ “Algebraic Graph Theory” [4].

1.1 Background and Definitions

Let H be a finite connected graph with edge set E(H) and vertex set V (H). We

arbitrarily orient the edges so that we can refer to directions of travel along the

edges, i.e. if e is an edge with an arbitrary orientation, let e−1 denote that edge with

opposite orientation. Let P = a1a2...an be a path in H, where ai ∈ E(H) for each i.

A path is closed if it starts and ends at the same vertex. A path is said to contain a

backtrack if ai = a−1
i+1 for some i. A closed path is said to contain a tail if a1 = a−1

n .

Paths are considered equivalent if they are the same cycle of edges with a different

starting point. If C is a closed path in H, let [C] denote the equivalence class of C in

H. A prime path in H is a tailless, backtrackless, closed path C such that C 6= Ds for

any positive integer s and any path D in H. In other words, a prime is a closed path

without any backtracking that is not simply another path traced several times. A

prime in a graph is an equivalence class [C] of prime paths in the graph. The length

of a prime [C] is the number of edges in any representative of the class and is denoted

ν(C).

Definition 3. Let u ∈ C with |u| sufficiently small. The Ihara zeta function of a

finite connected graph H is

ζH(u) :=
∏

[P ] primes in H

(1− uν(P ))−1.

To calculate the zeta function for anything but an extremely simple graph we will

use the following, known as Ihara’s formula. The adjacency matrix of a graph H with

|V (H)| = m is an m ×m matrix where the (i, j)th entry is 1 if vertex i is adjacent

to vertex j and 0 otherwise. Also, the rank of the fundamental group of the finite,

connected graph H with no vertices of degree 1 is equal to |E(H)| − |V (H)|+ 1.
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Theorem 11. Let A be the adjacency matrix of a finite connected graph H which has

no vertices of degree 1. Let I be the m ×m identity matrix. Let Q be the diagonal

matrix with the (j, j)th entry equal to one less than the degree of vertex j. Let r be

the rank of the fundamental group of H. Then

ζ−1
H (u) = (1− u2)r−1det(I − Au+Qu2). (1.1)

This result is due to Ihara for regular graphs, Hashimoto for semi-regular bipartite

graphs, and Bass for general finite, connected graphs. It provides a powerful tool for

calculating zeta functions.

1.2 Example: The Platonic Solids

The platonic solids make pretty examples of graphs and their zeta functions. We

create a graph G from each platonic solid P by letting the vertex set and edge set of

G be the vertices and edges of P .

The graph of the tetrahedron is K4, the complete graph on 4 vertices. It has

adjacency matrix

Atetra =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0


.

Every vertex has degree 3, so

Qtetra =


2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2


.

The rank r of the fundamental group for the tetrahedron is r = 6 − 4 + 1 = 3.
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(a) The cube (b) The octahedron

Therefore

ζ−1
tetra(u) = (1− u2)2det


1 + 2u2 −u −u −u

−u 1 + 2u2 −u −u

−u −u 1 + 2u2 −u

−u −u −u 1 + 2u2


= (1− u2)2(u− 1) (2u− 1)

(
2u2 + u+ 1

)3
.

The zeta functions for the cube, octahedron, icosahedron, and dodecahedron can

be obtained similarly (matrices for the icosahedron and dodecahedron are omitted):

ζ−1
cube = (1− u2)4

· det



1 + 2u2 −u 0 −u 0 −u 0 0

−u 1 + 2u2 −u 0 0 0 −u 0

0 −u 1 + 2u2 −u 0 0 0 −u

−u 0 −u 1 + 2u2 −u 0 0 0

0 0 0 −u 1 + 2u2 −u 0 −u

−u 0 0 0 −u 1 + 2u2 −u 0

0 −u 0 0 0 −u 1 + 2u2 −u

0 0 −u 0 −u 0 −u 1 + 2u2


= (1− u2)5(2u+ 1)(2u− 1)(2u2 − u+ 1)3(2u2 + u+ 1)3.

60



(a) The icosahedron (b) The dodecahedron

ζ−1
octa = (1− u2)6det



1 + 3u2 −u −u −u 0 −u

−u 1 + 3u2 −u 0 −u −u

−u −u 1 + 3u2 −u −u 0

−u 0 −u 1 + 3u2 −u −u

0 −u −u −u 1 + 3u2 −u

−u −u 0 −u −u 1 + 3u2


= (1− u2)6(3u− 1)(u− 1)(3u2 + 2u+ 1)2(1 + 3u2)3.

ζ−1
icos = (1− u2)18(4u− 1)(u− 1)(1 + 3u2 + 16u4)3(4u2 + u+ 1)5.

ζ−1
dod = (1−u2)10(2u− 1)(u− 1)(1−u2 + 4u4)3(1 + 2u2)4(2u2 + 2u+ 1)4(2u2−u+ 1)5.
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Chapter 2

Regular Graphs

2.1 The General Case

In the case of regular graphs, Theorem 11 gives rise to an explicit formula for the

zeta function of a graph H in terms of the eigenvalues of its adjacency matrix. For

this, we need a lemma from linear algebra.

Lemma 5. Let a and n be scalars. If M is a square matrix, with ~v and eigenvector

of M with eigenvalue λ, then ~v is an eigenvector of

aM + bI,

with eigenvalue aλ+ b.

Proof. This is just a simple calculation:

(aM + bI)~v = aM~v + bI~v = (aλ+ b)~v.

Proposition 15. Let H be a regular graph with n vertices of adjacency k and adja-

cency matrix A. Let {λj: 1 ≤ j ≤ n} be the multi-set of eigenvalues of A. Then

ζ−1
H (u) = (1− u2)r−1Πn

j=1(1− λju+ (k − 1)u2).
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Proof. For a regular graph of adjacency k,

Q = (k − 1)I.

Therefore, if H is regular of adjacency k, we have

ζ−1
H (u) = (1− u2)r−1det(I − Au+Qu2) = (1− u2)r−1det((1 + (k − 1)u2)I − uA).

For any square matrix M , we know that det(M) is the product of the eigenvalues

of M (with appropriate multiplicities). Lemma 5 implies that the eigenvalues of

((1 + (k − 1)u2)I − uA) are {1 − λju + (k − 1)u2: 1 ≤ j ≤ n}, which proves the

proposition.

This means that for any regular graph H, finding the zeta function of H is equiv-

alent to finding the eigenvalues of its adjacency matrix. This allows us to calculate

the zeta functions for many classes of regular graphs.

2.2 Example: Strongly Regular Graphs

Definition 4. Let H be a regular graph of adjacency k, with v vertices. The graph

H is strongly regular if there exist λ, µ integers such that each pair of adjacent ver-

tices share exactly λ neighbors and each pair of nonadjacent vertices share exactly µ

neighbors. Such a graph is called an srg(v, k, λ, µ).

Properties of strongly regular graphs:

• Necessary: µ(v− k− 1) = k(k−λ− 1). However, this property is not sufficient

for existence.

• Let J be the v × v matrix of all 1s. Then, for a strongly regular graph,

A2 + (µ− λ)A+ (µ− k)I = µJ.
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• A strongly regular graph has 3 distinct eigenvalues:

1. λ1 = k, multiplicity 1

2. λ2 =
(λ−µ)+

√
(λ−µ)2+4(k−µ)

2
, multiplicity m2 = 1

2
(v − 1− 2k+(v−1)(λ−µ)√

(λ−µ)2+4(k−µ)
)

3. λ3 =
(λ−µ)−

√
(λ−µ)2+4(k−µ)

2
, multiplicity m3 = 1

2
(v − 1 + 2k+(v−1)(λ−µ)√

(λ−µ)2+4(k−µ)
)

The last property, along with the proposition, implies that

ζ−1
H (u) = (1−u2)r−1(1−ku+ (v−1)u2)(1−λ2u+ (v−1)u2)m2(1−λ3u+ (v−1)u2)m3

Examples of strongly regular graphs:

• Paley graphs. Let q be a prime power congruent to 1 modulo 4. Denote by

a1, a2, ..., aq the elements of Fq. Let G be the graph with vertex set {a1, a2, ...aq}

and edge set {ai, aj}, where i 6= j and ai − aj is a square in Fq. This is called

the Paley graph for Fq. Then G is an srg(q, q−1
2
, q−5

4
, q−1

4
).

This means that the adjacency matrix for G has eigenvalues q−1
2

with multi-

plicity 1,
−1+

√
q

2
with multiplicity q−1

2
, and

−1−√q
2

with multiplicity q−1
2

. So the

field of definition of the eigenvalues of the adjacency matrix is Q(
√
q). Also,

ζ−1
G = (1− u2)

q2−5q
4 (1− q − 1

2
u+ (q − 1)u2)

· (1−
−1 +

√
q

2
u+ (q − 1)u2)

q−1
2 (1−

−1−√q
2

u+ (q − 1)u2)
q−1
2 .

Consider the fields of definition of the eigenvalues of the adjacency matrix and

the poles of the zeta function. Generally, we have

1. Q(
√
q2 − 18q + 17) for 1− q−1

2
u+ (q − 1)u2.

2. Q(
√

17− 2
√
q − 15q) for 1− −1+

√
q

2
u+ (q − 1)u2.

3. Q(
√

17 + 2
√
q − 15q) for 1− −1−√q

2
u+ (q − 1)u2.
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For q = 13, we have

ζ−1
G = (1−u2)26(1−6u+12u2)(1−−1 +

√
13

2
u+12u2)6(1−−1−

√
13

2
u+12u2)6.

The smallest field of definition for the eigenvalues of the adjacency matrix of G

is Q(
√

13). The splitting fields of the factors of ζ−1
G are:

1. Q(
√
−3) for (1− 6u+ 12u2).

2. Q(
√
−178− 2

√
13) for (1− −1+

√
13

2
u+ 12u2).

3. Q(
√
−178 + 2

√
13) for (1− −1−

√
13

2
u+ 12u2).

Let s1 =
√
−178− 2

√
13 and s2 =

√
−178 + 2

√
13). The minimal polynomial

for s1 and is 922 + 7043x2 + 38x4 (calculated in Maple). This means that

|Q(s1) : Q| = 4. However s1 is the root of a quadratic polynomial in Q(
√

13),

so it must be that Q(
√

13) ⊂ Q(s1), and |Q(s1) : Q(
√

13)| = 2. Similarly,

|Q(s2) : Q(
√

13)| = 2. The minimal polynomials of s1 and s2 over Q(
√

13) are

distinct quadratics, so 8 = |Q(s1, s2) : Q|.

In fact, we have that Q(s1, s2) : Q(
√

13) is a biquadratic extension, since s1s2 =
√

3 · 659, not a square in Q(
√

13). We know that
√
−3 6 ∈Q(

√
13) because

√
13

is real. Since biquadratic extensions have exactly three intermediate subfields,

we can check that
√
−3 is not contained in Q(s1, s2) because it is not contained

in any of these three subfields. So adjoining
√
−3 to Q(

√
13) is a quadratic

extension. We can therefore see that
√
−3 is not in Q(s1) or Q(s2) because

these are also quadratic extensions of Q(
√

13) distinct from Q(
√

13)(
√
−3).

The only thing that we need to check is that
√
−3 is not in Q(s1s2), which it is

not. Therefore Q(
√
−3) ∩Q(s1, s2) = Q, so |Q(s1, s2,

√
−3) : Q| = 16.

• The complete balanced bipartite graph Bn,n is an srg(2n, n, 0, n). This means

that its zeta function is

ζ−1
Bn,n

(u) = (1− u2)n
2−2n+1(1− (n− 1)2u2)(1 + (n− 1)u2)2n−2.
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Chapter 3

Bipartite Graphs and Extensions

The easiest class of irregular graphs for which the zeta functions can be easily deter-

mined are bipartite graphs. Hashimoto determined the zeta functions for semi-regular

bipartite graphs in terms of the eigenvalues of their adjacency matrices [17]. Sato

determined the zeta functions and complexities for the line graphs of semi-regular

bipartite graphs [36]. Here, we prove a special case of Hashimoto’s work to give a

sense of why bipartite graphs have accessible zeta functions.

3.1 Example: The unbalanced complete bipartite

graph, Bm,n

Let Bm,n be the bipartite graph with m + n vertices, with vertices partitioned into

Pm = {a1, a2, ...am} and Pn = {b1, b2, ...bn}, and edges {(ai, bj) for all i, j ∈ Z,

1 ≤ i ≤ m and 1 ≤ j ≤ n}.

Proposition 16. The zeta function for the complete bipartite graph is given by:

ζ−1
Bm,n

(u) = (1− u2)mn−(m+n)+1(1 + (n− 1)u2)m−1(1 + (m− 1)u2)n−1(1− (m− 1)(n− 1)u2).

Proof. To create the matricesA andQ forBm,n, order the vertices a1, a2, ...am, b1, b2, ...bn.

Let Ji,j be the i × j matrix consisting of all ones. Let 0 be the appropriately sized
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matrix of all zeros. We represent A and Q as block matrices:

ABm,n =

 0 Jm,n

Jn,m 0

 , QBm,n =

 (n− 1)Im 0

0 (m− 1)In

 .

So

ζ−1
H (u) = (1− u2)r−1det(I|V | − Au+Qu2)

ζ−1
Bm,n

(u) = (1− u2)mn−(m+n)det(Im+n − Au+Qu2)

Let ZH := (I − Au+Qu2). Then ZBm,n is the block matrix

 U V

V T W

, where

U = (1 + (n− 1)u2)Im,

W = (1 + (m− 1)u2)In,

and V is the m× n matrix with each entry equal to −u.

For a square block matrix M =

 A B

C D

 where A is invertible, it is known

that

det(M) = det(A)det(D − CA−1B).

In our case, this means that

det(ZBm,n) = det(U)det(W − V TU−1V )

Calculation shows that W −V TU−1V is the n×n matrix with each diagonal entry

equal to

t1 = 1 + (m− 1)u2 − mu2

1 + (n− 1)u2

and all other entries equal to

t2 = − mu2

1 + (n− 1)u2
.
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So

ζ−1
Bm,n

(u) =(1− u2)mn−(m+n)det(ZBm,n)

=(1− u2)mn−(m+n)(1 + (n− 1)u2)m(det((1 + (m− 1)u2)In − t2Jn,n).

Let AKn = Jn,n−In be the adjacency matrix for the complete graph on n vertices.

ζ−1
Bm,n

(u) = (1− u2)mn−(m+n)(1 + (n− 1)u2)mdet((1 + (m− 1)u2)In − t2(AKn + In)).

It is well known that the eigenvalues of AKn are n− 1 with multiplicity 1 and −1

with multiplicity n− 1. So the eigenvalues of (1 + (m− 1)u2)In − t2(AKn + In) are

• (1 + (m− 1)u2)− t2((n− 1) + 1) with multiplicity 1

• (1 + (m− 1)u2)− t2(−1 + 1) = (1 + (m− 1)u2) with multiplicity n− 1.

Therefore

ζ−1
Bm,n

(u) =(1− u2)mn−(m+n)(1 + (n− 1)u2)m

((1 + (m− 1)u2)− mu2

1 + (n− 1)u2
)(n)(1 + (m− 1)u2)n−1

=(1− u2)mn−(m+n)+1(1 + (n− 1)u2)m−1(1 + (m− 1)u2)n−1(1− (m− 1)(n− 1)u2).

We get another class of examples by extending this method. When finding our

determinant, we notice that it can be rewritten using the adjacency matrix of Bn,n

instead of Kn.

68



3.2 Example: The partially balanced complete tri-

partite graph, Tm,n,n

Let Tm,n,n be a graph withm+2n vertices, partitioned into 3 parts, A = {a1, a2, ..., am},

B = {b1, b2, ..., bn}, andB′ = {b′1, b′2, ..., b′n}. The edges of Tm,n,n are {(ai, bj), (ai, b′k), (bj, b′k)} :

1 ≤ i ≤ m, 1 ≤ j, k ≤ n}. This is an irregular, non-bipartite graph, so the general

form of the zeta function for regular graphs and Hashimoto’s work on semi-regular

bipartite graphs can’t be directly applied. With some linear algebra and graph the-

ory, however, we can determine the general form for the zeta function of this type of

graph.

Proposition 17. The zeta function for the complete partially balanced tripartite graph

is given by

ζ−1
Tm,n,n

=(1− u2)n
2+2mn−2m−n(1 + (2n− 1)u2)m−1(1− nu+ (m+ n− 1)u2)(1 + (2n− 1)u2)− 2nmu2)

(1 + nu+ (m+ n+ 1)u2)(1 + (m+ n− 1)u2)2n−2.

Proof. The adjacency matrix of Tm,n,n is the block matrix

ATm,n,n =


0 Jm,n Jm,n

Jn,m 0 Jn,n

Jn,m Jn,n 0


The matrix Q is:

QTm,n,n =


(2n− 1)Im 0 0

0 (m+ n− 1)In 0

0 0 (m+ n− 1)In

 .

So we have that
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ζ−1
Tm,n,n

(u) = (1− u2)r−1det(I − Au+Qu2)

= (1− u2)n
2+2mn−2m−n

det


(1 + (2n− 1)u2)Im −uJm,n −uJm,n

−uJn,m (1 + (m+ n− 1)u2)In −uJn,n

−uJn,n −uJn,n (1 + (m+ n− 1)u2)In

 .

Let

ZTm,n,n =


(1 + (2n− 1)u2)Im −uJm,n −uJm,n

−uJn,m (1 + (m+ n− 1)u2)In −uJn,n

−uJn,n −uJn,n (1 + (m+ n− 1)u2)In

 .

Apply the same result on the determinants of block matrices used above, that is,

that

det

 U V

V T W

 = det(U)det(W − V TU−1V ).

Let U = (1 + (2n− 1)u2)Im, from which the definitions of W and V follow. So

det(ZTm,n,n) = (1 + (2n− 1)u2)mdet(

 (1 + (m+ n− 1)u2)In −uJn,n

−uJn,n (1 + (m+ n− 1)u2)In


− (

mu2

1 + (2n− 1)u2
J2n,2n)).

Let ABn,n =

 0 Jn,n

Jn,n 0

, the adjacency matrix of a complete balanced bi-

partite graph. The eigenvalues of ABn,n are n with multiplicity 1, −n with multi-

plicity 1, and 0 with multiplicity 2n − 2. Notice that A2
Bn,n

+ nABn,n = nJ2n,2n, so

J2n,2n = 1
n
A2
Bn,n

+ ABn,n . That means we can rewrite the above:
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det(ZTm,n,n) =(1 + (2n− 1)u2)mdet((1 + (m+ n− 1)u2)I2n

− uABn,n −
mu2

1 + (2n− 1)u2
(
1

n
A2
Bn,n

+ ABn,n))

=(1 + (2n− 1)u2)m

· (1 + (m+ n− 1)u2 − (u+
mu2

1 + (2n− 1)u2
)n− mu2

1 + (2n− 1)u2
(
1

n
)n2)

· (1 + (m+ n− 1)u2 + (u+
mu2

1 + (2n− 1)u2
)n− mu2

1 + (2n− 1)u2
(
1

n
)n2)

· (1 + (m+ n− 1)u2)2n−2

=(1 + (2n− 1)u2)m(1− nu+ (m+ n− 1)u2 − 2n(
mu2

1 + (2n− 1)u2
))

· (1 + nu+ (m+ n+ 1)u2)(1 + (m+ n− 1)u2)2n−2

=(1 + (2n− 1)u2)m−1(1− nu+ (m+ n− 1)u2)(1 + (2n− 1)u2)− 2nmu2)

· (1 + nu+ (m+ n+ 1)u2)(1 + (m+ n− 1)u2)2n−2.

This gives the above result.
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Chapter 4

Biregular graphs and graphs with

three eigenvalues

Propositions 16 and 17 use the same determinant decomposition for block matrices

and rely on the transformed matrix having a form that can be expressed as a poly-

nomial function of some other matrix for which the eigenvalues are already known.

Both Bm,n and Tm,n,n are examples of biregular graphs, i.e. graphs with exactly two

valencies. This technique could be useful for other biregular graphs, because their

vertices can be ordered so that the matrix I−uA+u2Q has a natural block structure.

I would like to study which biregular graphs also give rise to decompositions in terms

of powers of well-known matrices, and determine the zeta functions for these graphs.

Let H be a graph with vertex set V = {h1, h2, ..., hn} and edge set E. The cone

overH is the graph with vertex set V ∪{v} and edge set E∪{(h1, v), (h2, v), ..., (hn, v)}.

One could generalize this construction by considering the graph with vertex set V ∪

{v1, v2, ..., vk} and edge set E ∪ki=1 {(h1, vi), (h2, vi), ..., (hn, vi)}. The graph Tm,n,n is

the generalized cone created by adjoining m vertices to Bn,n. Graphs created in this

way also give a natural block structure to I − uA + u2Q. If H is a regular graph,

the generalized cone over H is a biregular graph with a particularly simple structure.

These graphs would be good first candidates to study.
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Another family of graphs which could be amenable to study are irregular graphs

with 3 eigenvalues. A regular graph is strongly regular exactly when it has 3 eigen-

values. The simplest example of an irregular graph with 3 eigenvalues is the complete

bipartite graph Bm,n. Other irregular graphs with 3 eigenvalues can be created from

some strongly regular graphs by the process of “switching” (see [30]). Let AH be the

adjacency matrix for the graph H. The adjacency algebra for H is the algebra of

polynomials in AH . Graphs with 3 eigenvalues have adjacency algebras of dimension

3, meaning all higher powers of the adjacency matrix can be expressed as linear com-

binations of I, AH , and A2
H . It is possible that this could be exploited in finding the

zeta function of H, or of a graph related to H.

Muzychuk and Klin considered when a biregular graph has exactly 3 eigenval-

ues [30]. The cone over a strongly regular graph is biregular, and Bridges and Mena

showed that the cone over a strongly regular graph with certain parameters has 3

eigenvalues [5]. These graphs are members of both of the above families, so could be

good starting examples.
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Chapter 5

Graph Coverings

Much of the material in this section can be found in similar form in [26], including

proofs in [27].

Terras and Stark considered the notion of an unramified covering of graphs. In-

tuitively, a covering is a surjective map f : H → G with V (H) 7→ V (G) and

E(H) 7→ E(G) which respects the structure of the graph. For a, b ∈ V (H) ad-

jacent, let (a, b) indicate the edge from a to b. A covering map requires that if

(a, b) ∈ E(H), then (f(a), f(b)) ∈ E(G), and f(a, b) = (f(a), f(b)). An unramified

covering also has the property that the fiber above each edge and vertex of G has the

same number of elements, known as the degree of the covering. Interesting examples

of unramified coverings exist, for instance the map from the cube to the tetrahedron

(see Figure 5.1).

If such an unramified covering map exists, then ζ−1
G | ζ

−1
H . Ihara zeta functions of

graphs have some parallels with Artin zeta functions of curves, in which we have zeta

function divisibility for ramified covers as well. We wanted to know if the divisibility

relation for Ihara zeta functions in an unramified cover also held for ramified coverings

of graphs. We used a definition of ramified covering adopted from Urakawa (via Baker

and Norine) as outlined below.

Definition 5. Let H and G be graphs. A function φ : V (H)∪E(H)→ V (G)∪E(G)
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DA

C' B CB'

D' A'

(a) The cube.

a b

c d

(b) The complete graph on 4 ver-

tices, also known as the tetrahe-

dron.

Figure 5.1: The cube graph is an unramified degree 2 cover of the tetrahedron.

is called a morphism if

• φ(x) ∈ V (G) for all x ∈ V (H), and

• for every x ∈ V (H) and e ∈ E(H) such that x ∈ e, we have either φ(e) ∈ E(G)

and φ(x) ∈ φ(e), or φ(e) = φ(x).

A morphism φ : H → G is said to be harmonic if for all x ∈ V (H) and e′ ∈ E(G),

the number of edges e in E(H) such that x ∈ e with φ(e) = e′ is the same for

each e′ which contains φ(x), i.e. φ is harmonic if for all x ∈ V (H), the quantity

|{e ∈ E(H) : x ∈ e, φ(e) = e′}| is constant for all e′ ∈ E(G) with φ(x) ∈ e′.

Notice that harmonic morphisms encompass the unramified coverings of graphs

studied by Terras and Stark, but allows for the size of fibers to vary (as in ramified

covers of curves). Edges in H may also collapse, i.e. be mapped to vertices of G.

Urakawa [49] also proved that the following is a well-defined notion of the degree of a

harmonic morphism.

Definition 6. If φ : G → H is a harmonic morphism of graphs with x ∈ V (G), the
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vertical multiplicity of φ at x is given by

vφ(x) = |e ∈ E(G) : φ(e) = φ(x)| .

The horizontal multiplicity of φ at x is given by

mφ(x) = |e ∈ E(G) : x ∈ e, φ(e) = e′|

for any edge e′ ∈ E(G) with φ(x) ∈ e′. For φ as above, and any vertex y ∈ V (H),

the degree of φ is given by

deg(φ) =
∑

x∈V (G):φ(x)=y

mφ(x).

Based on these definitions of multiplicity and degree, Baker and Norine [3] proved

a graph-theoretic analogue of the Riemann-Hurwitz formula, as well as several other

results. This indicates that harmonic morphisms could be a good choice for gener-

alizing the idea of covering maps of graphs to include ramification. We consider the

simplest version of a ramified covering, namely k ≥ 1 copies of a fixed graph X, with

a single vertex on each graph identified. See Figure 5.2 for an example. Note that

this fits the definition of ramified covering given in [3].

Manes and Malmskog proved a general result for the above mentioned type of

covering of regular graphs [27] [26].

Theorem 12. Let X be a finite (q + 1)-regular graph with vertices labeled v1, v2,

. . . , vn. Let AX be the adjacency matrix for X, and suppose that AX has d distinct

eigenvalues. Let Yk be the ramified cover of X created by identifying vertex v1 on k

copies of X. Then there exists a polynomial Pk,q(u) ∈ Z[u], with coefficients depending

on k and q (and on the original graph X) and with degu Pk,q ≤ 2d, such that for l ≥ k,

ζ−1
Yk

(u)Pl,q(u) divides ζ−1
Yl

(u)Pk,q(u). (5.1)

In particular, since Y1 = X, we have that for all l ≥ 1

ζ−1
X (u) divides ζ−1

Yl
(u)P1,q(u).
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(a) Three copies of K4 (b) The complete graph on 4 ver-

tices.

Figure 5.2: K4 and three copies of the graph around a single identified vertex.

Here, the degree of the extra term P1,q(u) needed for divisibility is independent of

both n and k, so the failure of true divisibility is controlled.

The main tools of the proof come from linear algebra. We use Ihara’s formula to

change the calculation of the zeta function of a graph into a determinant calculation.

In the case where the base graph X is Kn, the complete graph on n vertices, the

adjacency matrices are simple enough that we can say even more. See Figure 5.2 for

the n = 4 case.

Proposition 18. The Ihara zeta function for Kn is

ζ−1
Kn

(u) = (1− u2)n(n−3)/2(u− 1) ((n− 2)u− 1)
(
(n− 2)u2 + u+ 1

)n−1
. (5.2)

Hashimoto also calculated the zeta function of Kn [17]. However, the following

covers of Kn form a new family of examples [27] [26].

Proposition 19. Let Xn,k be the graph consisting of k copies of Kn identified at a

single identified vertex. Then the Ihara zeta function for Xn,k is

ζ−1
Xn,k

(u) = (1− u2)r−1(u− 1)
(
(n− 2)(nk − k − 1)u3 + (n− 3)u− 1

)
(
(n− 2)u2 + u+ 1

)k(n−2) (
(n− 2)u2 − (n− 2)u+ 1

)k−1
, (5.3)
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where r = k(n− 1)(n− 2)/2 is the rank of the fundamental group of Xn,k.

Corollary 2. Let Xn,k be the graph consisting of k copies of Kn with a single vertex

from each copy identified. If i ≤ j, then ζ−1
Xn,i

(u) ((n− 2)(nj − j − 1)u3 + (n− 3)u− 1)

divides ζ−1
Xn,j

(u) ((n− 2)(ni− i− 1)u3 + (n− 3)u− 1). In particular, for all k ≥ 1

ζ−1
Kn

(u) divides ζ−1
Xn,k

(u)
(
(n− 2)2u3 + (n− 3)u− 1

)
.

Here we have a specific example of a graph Kn and a ramified cover of the graph

Xn,k, where ζ−1
Kn

(u) - ζ−1
Xk,n

(u). We see that each term of (5.2) divides some term of

equation (5.3), except for the term

(n− 2)2u3 + (n− 3)u− 1,

which will never divide

(n− 2)(nk − k − 1)u3 + (n− 3)u− 1

(nor will it divide any other term of ζ−1
Xk,n

(u) when n > 3).

In the special case n = 3 we do actually have ζ−1
K3

(u) | ζ−1
X3,k

(u) for every k ≥ 1.

The u3 − 1 term divides into an “extra” copy of (u− 1)(u2 + u + 1), where the first

term arises from (1− u2)r−1, and the other arises from (u2 + u+ 1)k.

We have already addressed the complete balanced bipartite graph, Bn,n. See

Figure 5.3 for an example. Again, this was originally calculated by Hashimoto as the

simplest example of a semi-regular bipartite graph, however, the zeta functions of the

following covers had not previously been described [27].

Proposition 20. Let Yn,k be the graph consisting of k copies of Bn,n with a single

vertex on each of the k copies identified. Then the Ihara zeta function for Yn,k satisfies

ζ−1
Yn,k

(u) = (1− u2)k(n−1)2−1
(
(n− 1)u2 + 1

)k(2n−3)
(5.4)(

(n− 1)2u4 − (n− 1)(n− 2)u+ 1
)k−1

(u2 − 1)Pk,n(u), where

Pk,n(u) = (n− 1)2(nk − 1)u4 + (n− 1)(n− 2)u2 − 1. (5.5)
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(a) Two copies of B3,3 (b) The (3,3)-complete bipartite

graph.

Figure 5.3: B3,3 and two copies of the graph around a single identified vertex.

The complete bipartite covering again shows that “almost divisibility” is the best

one may achieve for zeta functions of these special ramified covers of graphs. The

polynomial Pk,n(u) will not divide any term of ζYn,l
(u)−1 when k < l. So either the

parallel of graph zeta functions and curve zeta functions does not extend to include

ramified coverings, or a different notion of ramified coverings must be considered. As

explained briefly in section 1, I would like to investigate whether graph coverings with

constant size fibers above each vertex and edge (as in the case of the cube covering the

tetrahedron), for which divisibility does hold, could be understood as incorporating

ramification above primes. One test for the validity of such an understanding would

be to see if an analogue of the Riemann Hurwitz formula holds in this type of covering,

as Baker and Norine proved for harmonic morphisms [3].
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Chapter 6

Future Research Directions

• Calculate zeta functions for families of graphs. Given sufficient computing

power, the zeta function for any particular finite graph can be computed directly

using Ihara’s determinant formula. However, finding the zeta functions for fam-

ilies of graphs is a different, theoretical problem. Ihara, Sunada, Hashimoto,

Bass, Terras and Stark, and other current researchers have calculated zeta func-

tions for many families of graphs; however, many have not been done.

For regular graphs, knowledge of the zeta function is equivalent to knowledge

of the eigenvalues of the graph’s adjacency matrix, so these have been studied

extensively. Semi-regular bipartite graphs’ zeta functions have also been well

studied. However, irregular graphs have not been addressed as fully. In these

cases, the zeta function seems to contain information beyond the eigenvalues

of the adjacency matrix of the graph. Michelle Manes and I calculated the

zeta functions for two infinite families of irregular graphs [27] [26], and I have

calculated the zeta function for a third, new infinite family. This work uses

methods and results from linear algebra and graph theory. I am currently

working to extend the technique that I used for the third family to find zeta

functions for other families. Two families of particular interest (and a next step

in my research) are biregular graphs and irregular graphs with 3 eigenvalues. For

80



references see [30], [7], [50], and [5]. A regular graph whose adjacency matrix

has 3 eigenvalues is a strongly regular graph, and so well understood. The

3 eigenvalue irregular graphs have some properties in common with strongly

regular graphs, so may be amenable to study.

• Determine the field of definition of poles of zeta functions of graphs. The mag-

nitudes of the poles of graph zeta functions have been well studied. Regular

graphs which obey an analogue of the Riemann Hypothesis have been shown

to be Ramanujan [48]. Ramanujan graphs have applications in network theory.

However, the field of definition has not been carefully considered for the poles

of zeta functions of graphs. We have examples where this field of definition is a

cyclotomic, quadratic, or biquadratic field (these appear when considering cycle

graphs, complete graphs, and semi-regular bipartite graphs). I plan to compile

data on these fields and perhaps determine what properties of the graph are

linked to this field extension. What properties of a graph will guarantee an

abelian extension, or that the extension has a 2-group as its Galois group?

A related goal is to analyze the divisibility properties of the reciprocals of zeta

functions under covers. If Y → X is a (possibly ramified) covering of curves

defined over a finite field, then the zeta function of X divides the zeta function of

Y . Terras and Stark proved an analogous result for unramified graph coverings.

Terras posed the question of what a ramified graph covering might be, and

asked whether such a divisibility result might hold for such graph coverings [48].

Motivated by [3]Michelle Manes and I considered the harmonic morphism as a

notion of ramified covering, and found that divisibility is not true for such

coverings [27] [26]. This raises the question of whether divisibility would result

if a different definition of ramified covering were adopted. Some preliminary

experiments have indicated that the simplest ideas, such as ramification along

an edge, are not promising. However, many other kinds of coverings could be
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considered. It also seems possible that Terras and Stark’s coverings could be

reinterpreted as being ramified. Ramification occurs in a covering of curves

when some point in the base curve has fewer points in the fiber above it than

the degree of the covering. The covers that Terras and Stark considered are

unramified in the sense that the fibers over each vertex and edge of the covered

graph are of constant size; however, fibers above primes in the covered graph are

not of constant size. I would like to investigate the possibility that this could be

interpreted as ramification. The parallel between graph zeta functions and curve

zeta functions would then be preserved. A good test of this reinterpretation

would be whether this notion of ramification is compatible with the Riemann-

Hurwitz formula.

Let ζ−1
G be the reciprocal of the zeta function of a graph G. The two topics above

are related because if G and H are graphs, and ζ−1
G divides that of ζ−1

H , then

the field of definition of the poles of ζG is contained in the field of definition

of the poles of ζH . This allows us to apply techniques of field theory to the

problem of divisibility. Once the question of field of definition of poles is better

understood, it may allow us to better understand the divisibility of reciprocal

zeta functions. It is possible that ramification of graphs in some covers could

be understood in terms of ramification in these field extensions.
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Part III

The Zeta Function of Gauss’ Curve
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This paper was begun by Jeremy Muskat and submitted to the Rocky Mountain

Journal of Mathematics. The referee suggested that finding the global zeta function

of the singular curve would add greatly to the paper. I revised and streamlined the

original paper and added Section 3 on the global zeta function.
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Chapter 1

Introduction

The last entry in Gauss’s mathematical diary [13] is the following conjecture.

Conjecture 1. Suppose p ≡ 1 mod 4, and a + bi ≡ 1 mod (2 + 2i) is such that

p = a2 + b2. Then the number of solutions to x2 + y2 +x2y2 = 1 over Fp is p+ 1− 2a.

Gauss’s conjecture accounts for four points at infinity. It is interesting to note that

Gauss was thinking of the curve projectively and counting the points birationally.

Counting the points geometrically yields two points at infinity. Using Gauss’s insight,

and counting points geometrically, led to the following theorem.

Theorem 13. [19, Chapter 11.5] Consider the curve C : x2t2 + y2t2 + x2y2 − t4 = 0

in P2 defined over Fp where p ≡ 1 mod 4. Write p = a2 + b2 with b even and with

a ≡ (−1)b/2 mod (2 + 2i). Then the number of points in C(Fp) is N1 = p − 1 − 2a.

Furthermore

ZC(u) =
(1− 2au+ pu2)(1− u)

1− pu
.

The focus of this paper is an analogue for Theorem 13 for the case when p ≡ 3 mod

4. We give a proof that when p ≡ 3 mod 4 the number of points in C(Fps) is

Ns(C) =

 ps + 3 if 2 - s;

ps − 2(i
√
p)s − 1 if 2|s.
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As shown in Theorem 14, this yields the zeta function

ZC(u) =
(1 + pu2)(1 + u)2

(1− pu)(1− u)
.

This result appears in [6], but its proof does not appear in the given reference [19,

chapter 11.5].

If X is a smooth projective curve, then the Weil conjectures imply that the complex

absolute value of the roots of ZX(u) is
√
p. Notice, for p ≡ 3 mod 4 the zeta function

of C has roots with complex absolute value 1. Therefore ZC(u) does not satisfy the

conclusion of the Weil conjectures, as expected since C is singular at infinity.

The method we use to determine the zeta function of C is to find a correspondence

between the solutions of x2t2 + y2t2 + x2y2 − t4 = 0 and the solutions of two other

equations. The solutions to these other equations can be counted using Jacobi sums

and the Weil conjectures.

In Theorem 15 we determine the global zeta function of C and relate this to the Hecke

L-function associated to the normalization C̃ of Gauss’s curve.

We would like to express our gratitude to our advisor Rachel Pries, whose technical

and editorial advice was essential for the completion of this paper, and to the referee

for very helpful comments.
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Chapter 2

The Zeta Function of C

Definition 7. Consider a projective plane curve X defined over Fp. The zeta function

of X is the series given by

ZX(u) = exp
( ∞∑

n=1

Nn(X)un

n

)
where Nn(X) denotes the size of X(Fpn).

Therefore the sequence Nn(X) determines the zeta function ZX(u). The converse is

often true; the following explains how to reverse the process.

Fact 8. [19, Chapter 11.1] If the zeta function of a projective plane curve X is

rational, meaning ZX(u) = Πi(1−aiu)Πj(1−bju)−1 for some ai, bj ∈ C, then Nn(X) =∑
j b

n
j −

∑
i a

n
i .

We will use the following notation in this section. Let X denote the curve in P2 given

by the zero locus of a homogeneous polynomial F ∈ Fp[x, y, t]. Let X0 represent

the affine curve given by the zero locus of the polynomial f(x, y) = F (x, y, 1). Let

Nn(X0) denote the size of X0(Fpn). Let p be a prime with p ≡ 3 mod 4. Let

ζ8 =
√

2/2 +
√

2i/2, then ζ8 ∈ Fpn if and only if n is even.

2.1 Near Bijections

Here, we define maps between curves which will relate the number of points on the

curves. Two additional curves with similar notation will be used. We will consider
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the projective curve E as well as the corresponding affine model E0:

E : y2t− x3 + 4xt2 = 0, E0 : y2 − x3 + 4x = 0,

We also use the affine curve G0:

G0 : z2 + w4 − 1 = 0.

Proposition 21. Consider the curves C0 : x2+y2+x2y2−1 = 0 and G0 : z2+w4−1 =

0 over Fp. Then

Nn(C0) =

 Nn(G0) if 2 - n;

Nn(G0)− 2 if 2|n.

Proof. Consider the map

µ : G0(Fpn)→ C0(Fpn) where (w, z) 7→
(
w,

z

1 + w2

)
The map µ is defined for all (w, z) ∈ G0(Fpn) such that w2 6≡ −1 mod p. Notice that

if x2 + y2 +x2y2− 1 = 0 then ((1 +x2)y)2 = 1−x4. Define µ̃ : C0(Fpn)→ G0(Fpn) by

µ̃(x, y) = (x, (1 + x2)y). The maps µ and µ̃ are inverses of each other. Therefore µ is

a bijection for n odd and a bijection away from the points (0,±
√
−1) ∈ G0(Fpn) for

n even. Hence Nn(C0) = Nn(G0) for n odd and Nn(C0) = Nn(G0)− 2 for n even.

Proposition 22. Consider the affine curve E0 : y2 − x3 + 4x = 0 defined over Fp.

Then Nn(C0) = Nn(E0)− 3 for n even.

Proof. Consider the following map defined over Fpn for n even:

α : E0(Fpn)→ G0(Fpn) where (x, y) 7→
(ζ8y

2x
,
y2 + 8x

4x2

)
.

The map α is well defined away from (0, 0) ∈ E0(Fpn) since

((y2 + 8x)/4x2)2 − (ζ8y/2x)4 − 1 = 0.

Consider the following map defined over Fpn for n even:

α̃ : G0(Fpn)→ E0(Fpn) where (w, z) 7→
( 2

z + iw2
,

4ζ7
8w

z + iw2

)
.
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The map α̃ is well defined for all points of G0(Fpn) since there is no point (w, z) in

G0(Fpn) such that z + iw2 = 0. Also

(4ζ7
8w/(z + iw2))2 − (2/(z + iw2))3 + 4(2/(z + iw2)) = 0.

The maps α and α̃ are inverses. Therefore α : E0(Fpn) − {(0, 0)} → G0(Fpn) is a

bijection and Nn(G0) = Nn(E0)−1 for n even. Proposition 21 proves the proposition.

2.2 Jacobi Sums

We use Jacobi sums as a tool to count points on G0. The multiplicative characters

of F∗pn form a cyclic group of order pn − 1. Let Sm,n be the set of multiplicative

characters of F∗pn of order m. Therefore, for each m|(pn − 1) the size of Sm,n is φ(m).

Let χm,n denote one of the multiplicative characters of order m on F∗pn . Extend χm,n

to Fpn by defining χm,n(0) = 0 for m 6= 1 and χ1,n(0) = 1. For the remainder of the

paper, we drop the word multiplicative and refer to χm,n as a character of Fpn .

Proposition 23. [19, Chapter 8.2] For a ∈ Fpn, let Nn(xn = a) denote the number

of solutions to the equation xn = a over Fpn. Then

Nn(xn = a) =
∑
m|n

∑
χ∈Sm,n

χ(a)

where the sum is over all characters of order m dividing n.

Definition 8. For any two characters χm,n and χl,n of Fpn, set

J(χm,n, χl,n) =
∑

a,b∈Fpn

a+b=1

χm,n(a)χl,n(b).

Then we call J(χm,n, χl,n) a Jacobi sum.

Proposition 24. [19, Chapter 8.2] J(χ1,n, χ1,n) = pn, and for m 6= 1, J(χm,n, χ1,n) =

0. For p ≡ 3 mod 4, J(χ2,n, χ2,n) = −(χ2,n) = −(−1)n.
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Notice that there is only one character of order 2.

Lemma 6. Recall that G0 is the affine curve with equation z2 + w4 − 1 = 0 defined

over Fp. Then Nn(G0) = pn + 1 when n is odd

Proof. For odd values of n, pn ≡ 3 mod 4. Hence the group of characters on Fpn does

not contain a character of order 4. Proposition 23 implies that N(x4 = b) = N(x2 =

b). Therefore

Nn(G0) =
∑

a,b∈Fpn

a+b=1

N(x2 = a)N(x4 = b) =
∑

a,b∈Fpn

a+b=1

N(x2 = a)N(x2 = b).

Using Proposition 23, 24, and Definition 8 we can simplify the above sum as follows:

Nn(G0) =
∑

a,b∈Fpn

a+b=1

(1 + χ2,n(a))(1 + χ2,n(b)) = J(χ1,n, χ1,n) + J(χ2,n, χ2,n).

Thus Nn(G0) = pn − (χ2,n) = pn + 1.

2.3 E0 : y2 − x3 + 4x2

Our goal for this section is to determine Nn(E0). We will use the Weil conjectures [19,

Chapter 11.4] to achieve this.

The Weil conjectures imply that

ZE(u) =
(1− αpu+ pu2)

(1− u)(1− pu)
where N1(E) = p+ 1− αp.

In order to completely determine ZE(u), we just need to determine N1(E).

Lemma 7. Recall that E0 is the affine curve with the equation y2t − x3 + 4xt2 = 0

over Fp. Then Nn(E0) = pn − 2(i
√
p)n when n is even.

Proof. The elliptic curve E has only one point [0, 1, 0] at infinity. Therefore N1(E) =

1 +N1(E0).
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By [19, Theorem 5, page 307] N1(E) = p+ 1 and αp = 0. It follows that

ZE(u) =
(1 + pu2)

(1− u)(1− pu)
=

(1 + i
√
pu)(1− i√pu)

(1− u)(1− pu)
.

Fact 8 implies

Nn(E) = (1n + pn)− ((i
√
p)n + (−i√p)n).

Therefore when n is even, Nn(E) = pn−2(i
√
p)n+1 and Nn(E0) = pn−2(i

√
p)n.

2.4 The Zeta Function for C

In this section we find the zeta function of Gauss’s curve for the case when p ≡ 3

mod 4. Gauss’s curve x2t2 + y2t2 +x2y2− t4 = 0 contains two ordinary double points

at infinity. Therefore C does not satisfy the hypothesis of the Weil Conjectures. The

zeta function ZC(u) has a different form than the zeta function of a smooth projective

plane curve of similar degree.

Theorem 14. Consider the curve C : x2t2 + y2t2 + x2y2 − t4 over Fp where p ≡ 3

mod 4. Then

Nn(C) =

 pn + 3 if 2 - n;

pn − 2(i
√
p)n − 1 if 2|n

and

ZC(u) =
(1 + u)2(1 + pu2)

(1− u)(1− pu)
.

Proof. Recall from Lemma 6 that Nn(G0) = pn + 1 for odd n, and from Lemma 7

that Nn(E0) = pn − 2(i
√
p)n for even n. Putting this together with Proposition 21

and 22 we have that

Nn(C0) =

 pn + 1 if 2 - n;

pn − 2(i
√
p)n − 3 if 2|n.

The curve C : x2t2 + x2y2 + y2 − t4 has the two points P1 = [1, 0, 0] and P2 = [0, 1, 0]

at infinity. Therefore

Nn(C) =

 pn + 3 if 2 - n;

pn − 2(i
√
p)n − 1 if 2|n.
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In order to calculate the zeta function, notice that Nn(C) can be rewritten for any

value of n as

Nn(C) = pn + 1− (i
√
p)n − (−i√p)n − 2(−1)n.

Therefore

ZC(u) = exp
( ∞∑
n=1

(pn + 1− (i
√
p)n − (−i√p)n − 2(−1)n)un

n

)
.

Using the identity
∑∞

n=1w
nn−1 = − ln(1− w) we get the desired result

ZC(u) =
(1 + u)2(1 + pu2)

(1− u)(1− pu)
.

2.5 Normalization of Singular Curves

The relationship between the zeta function of a singular curve and its normalization

has been studied in [46] and [51]. Gauss’s curve C is an example of a projective

plane curve with singularities. It has two ordinary double points at P1 = [1, 0, 0]

and P2 = [0, 1, 0]. By [15, Chapter 17], there exists a nonsingular projective curve C̃

along with a normalization map ν : C̃ → C. For every nonsingular point P of C, the

preimage ν−1(P ) consists of only one point.

Another approach to determining ZC(u) is to identify C̃ and its zeta function ZC̃(u).

Then Nn(C) can be calculated by comparing it to Nn(C̃) while considering the size

and field of definition of ν−1(P1) and ν−1(P2). This is essentially what we have done

in Sections 2-2.4 with C̃ = E and ν = µ ◦ α.

Let Csing represent the set of singular points of C. Let Q|P denote the set of points

q ∈ C̃ such that ν(Q) = P . Also let deg(P ) =dim(ÕP/OP ) where ÕP is the integral

closure of OP . The following proposition explains how the zeta function of a singular

curve is related to the zeta function of its normalization. It is a consequence of the

Euler product representation of the zeta function [23, Chapter 8.4].
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Proposition 25. (See, e.g., [6, Section 2]) Let X be a complete irreducible algebraic

projective curve with normalization X̃. Then

ZX(u)

ZX̃(u)
= ΠP∈Xsing

ΠQ|P (1− udeg(Q))

1− udeg(P )
.

For p any odd prime, C has two degree one singular points P1 = [1, 0, 0] and P2 =

[0, 1, 0]. If p ≡ 3 mod 4, there is one point of degree 2 on E for each of these, hence

ZC(u)/ZE(u) = (1 + u)2. When p ≡ 1 mod 4, there are two points of degree 1 on E

for each of these, yielding ZC(u)/ZE(u) = (1− u)2.
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Chapter 3

The Global Zeta Function of C

Let X be a non-singular elliptic curve defined over Z with discriminant ∆, let Xp =

X × Fp, and let S = {p prime: p|∆} be the set of primes of bad reduction for X.

Then, the above defined function ZXp(u) exists for all primes p /∈ S. Via the change

in variables u = p−s, we can define

ZXp(p−s) = ζXp(s)

to be the local zeta function of X at p. See [19, chapter 18.2] for reference.

Since we will now be considering the same equations, but viewed over Fp for varying

primes p, we will change notation slightly in what follows. Consider C : x2t2 + y2t2 +

x2y2 − t4 = 0 to be defined over Z and let Cp : C × Fp. Define E and Ep similarly.

For any curve X, let Np(X) = |Xp(Fp)| and let αp = p+ 1−Np. We then have that,

for p /∈ S,

ζXp(s) =
1− αpp−s + p1−2s

(1− ps)(1− p1−s)
.

For p ∈ S, define

ζXp(s) =
1

(1− p−s)(1− p1−s)
.

The global zeta function of X is defined to be the product of the local zeta functions:

ζX(s) =
∏
p

ζXp(s).
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Let LX(s) =
∏

p6|∆(1 − αpp
−s + p1−2s)−1, called the L-function of X. Taking the

product over all p, we have

ζX(s) =
ζ(s)ζ(s− 1)

LX(s)
,

where ζ(s) is the Riemann zeta function. Determining the global zeta function of X

is equivalent to determining its L-function.

Remark 2. Let P be a prime of Z[i]. Let N(P ) be the norm of P . For A ∈ Z[i], let

(A
P

)4 ∈ {0,±1,±i} be the quartic residue of A modulo P . That is,

(
A

P
)4 = 0 if P |A

and

(
A

P
)4P = A

N(P )−1
4 otherwise.

Define a Hecke character χ on primes P of Z[i]. If P divides 8 define χ(P ) = 0. If

N(P ) = p2, then p ≡ 3 mod 4 and P = p, where p is inert in Z[i]. In this case define

χ(P ) = −p. If N(P ) = p, i.e. (p) splits in Z[i] and p ≡ 1 mod 4, then P = (π) for

some π ∈ Z[i] with π ≡ 1 mod (2 + 2i). Define χ(P ) = ( 4
(π)

)4π.

The Hecke L-function associated to χ is defined as

L(s, χ) =
∏

P prime of Z[i]

(1− χ(P )N(P )−s)−1.

For the case of the elliptic curve E = C̃ : y2t−x3+4xt2 = 0, it is shown in [19, chapter

18.6] that LE(s) = L(s, χ)

We use a similar elementary definition for the global zeta function of a singular curve

(contrast with [6] and [47]).

Definition 9. Let Y be a singular curve with normalization Ỹ , where Ỹ has singular

set S. Let ζYp(s) = 1
(1−p−s)(1−p1−s)

for p ∈ S. Define the global zeta function of Y to
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be

ζY (s) =
∏
p

ζYp(s).

Definition 10. Define a Dirichlet character χ′ : Z → {0,±1}, where χ′(n) = 0 if n

is even, χ′(n) = 1 if n ≡ 1 mod 4, and χ′(n) = −1 if n ≡ 3 mod 4.

The Dirichlet L-function associated to χ′ is defined to be

L(s, χ′) =
∏

p prime of Z

(1− χ′(p)p−s)−1.

Theorem 15. The global zeta function for C is given by

ζC(s) :=
∏
p

ζCp(s) =
ζ(s)ζ(1− s)
LE(s)L(s, χ′)2

.

Proof. Recall that Np(C) = p− 1− 2ap for p ≡ 1 mod 4, where ap is the value a such

that a2 + b2 = p chosen in Conjecture 1. We then have

ζC(s) =
∏
p

ζCp(s)

=
1

(1− 2−s)(1− 21−s)

∏
p≡1(4)

(1− 2app
−s + p1−2s)(1− p−s)
1− p1−s

∏
p≡3(4)

(1 + p−s)2(1 + p1−2s)

(1− p−s)(1− p1−s)
.

A few simplifications yield the form:

ζC(s) = ζ(s)ζ(1− s)
∏
p≡1(4)

(1− 2app
−s + p1−2s)(1− p−s)2

∏
p≡3(4)

(1 + p−s)2(1 + p1−2s)

Now, consider the relationship between ap and αp, where αp = p+ 1−Np(E). When

p ≡ 1 mod 4, the two singularities on Cp are double points, which in the normalization

Ep yield two points each. That means that Np(E) = Np(C) + 2, giving

p+ 1− αp = p− 1− 2ap + 2,

so αp = 2ap for p ≡ 1 mod 4. When p ≡ 3 mod 4, we know that Np(E) = p + 1, so

αp = 0.
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Therefore

ζC(s) = ζ(s)ζ(1− s)
∏
p 6=2

(1− α−sp + p1−2s)(1− (−1)
p−1
2 p−s)2

= ζ(s)ζ(1− s)LE(s)−1L(s, χ′)−2.
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Part IV

Digital Signatures from LWE over

Z/q[x]/(f (x))
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This work started in the summer of 2010 during an internship with the cryptog-

raphy group at Microsoft Research. It is joint work with Kristin Lauter, Michael

Naehrig, and Vinod Vaikuntanathan. We have filed a patent on the scheme through

Microsoft and are preparing a paper for submission to AsiaCrypt. This summary is

intended to give background, outline the scheme, and give an idea of the security

proof for one set of parameters. As written, the scheme is secure only for one-time

use, i.e. new keys would need to be generated for each signature. However, Merkle

trees provide a way to convert the one-time scheme into a reusable scheme with a loss

of efficiency logarithmic in the number of signatures required [29].
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Chapter 1

Overview: Learning With Errors

over Polynomial Rings

1.1 Learning with Errors

Let q, n, andm be integers. Fix a vector s ∈ (Z/q)n. For i ∈ [1,m], choose ai ∈ (Z/q)n

uniformly at random and ei ∈ Z/q from an error distribution concentrated near 0.

The search learning with errors problem (LWE) is to find s, given access to m pairs

(ai, bi = ai · s + ei). Each pair can be thought of as a noisy inner product of s

with a random vector ai. The decision LWE problem is to distinguish with some

non-negligible probability the pairs of the form (ai, ai · s+ ei) from those of the form

(ai, ui), where ui is chosen independently and uniformly at random from Z/q.

Solving these problems has been proven to be as hard as certain lattice problems.

In particular, the approximate shortest vector problem (GapSVP) is to approximate

the length of the shortest non-zero vector in a lattice within a polynomial factor.

All known algorithms are exponential in n, the dimension of the lattice. In 2005,

Regev [33] proved that given a quantum computer and a search-LWE oracle, can

solve GapSVP in polynomial time with an approximation factor O(n
α

), where the

error distribution is a discrete Gaussian scaled by αq. He also proved that if q
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is prime and polynomial in n, search-LWE and decision-LWE are equivalent (even

without a quantum computer). In 2007, Regev [34] proved that if q is the product

of many small primes and the error distribution is Gaussian, search and decision are

equivalent even for larger n. Peikert [32] proved in 2009 that if q ≥ 2
n
2 and we have

a search-LWE oracle, we can solve GapSVP in polynomial time with no quantum

computer required, with the same approximation factor as Regev’s 2005 result. Also,

if q is polynomial in n, Peikert found a classical reduction to LWE from a variant of

GapSVP known as ζ-to-γ-GapSVP.

Many cryptographic schemes with security based on LWE have been devised.

However, large key sizes make these schemes less than ideal for practical use. One

interesting way to increase efficiency is to work over certain polynomial rings instead

of Z/q.

1.2 Ring LWE

Let Rq be Z/q[x]/(f(x)), wheref(x) ∈ Z/q[x] is a polynomial of degree n. Elements

of Rq can be described in terms of the power basis {1, x, x2, ...xn−1}. That is, for

any c ∈ Rq, we can write c = c0 + c1x + ... + cn−1x
n−1 for ci ∈ Z/q. Let s be a

fixed ring element. The (search) ring LWE problem (R-LWE) is to find s given access

to perturbed products of the form (ai, bi = ai ∗ s + ei) where the ai ∈ Rq are ring

elements selected uniformly at random and the components of the ei ∈ Rq are chosen

from some distributions concentrated near 0, and the operations + and ∗ are addition

and multiplication in the ring Rq. The decision R-LWE problem is to distinguish such

pairs from pairs in which both members have been chosen uniformly at random from

Rq.

As standard LWE problems can be related to problems in integer lattices, R-LWE

problems relate to problems in ideal lattices inside rings. Lyubashevsky, Peikert,

and Regev [25] and Stehle, Steinfeld, Tanaka, and Xagawa [44] both study the ideal
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lattice/R-LWE connection. A comparison of their approaches can be found in Lyuba-

shevsky, Peikert, and Regev’s paper [25], and we in general follow their development

here.

The main result of [25] can be broken into two parts. The first combines with

results of Regev [34] to give a quantum reduction from GapSVP on ideal lattices in

Z[x]/(f(x)) to search R-LWE in Rq. The second part gives a non-quantum reduction

from search R-LWE to the decision variant of R-LWE. An informal statement of their

main theorem, paraphrased from [25], is: Suppose that it is hard for polynomial-time

quantum algorithms to approximate the shortest vector problem in the worst case on

ideal lattices in R to within a fixed polynomial-in-n factor. Then any polynomial-in-n

number of R-LWE samples are pseudorandom to any polynomial time attacker. Note

that approximating the shortest vector in an ideal lattice has not been found to be

any easier than approximating the shortest vector in an integer lattice, despite many

attempts in this direction. Therefore the hardness of R-LWE is a reasonable basis for

cryptographic security.
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Chapter 2

Specifics for R and Rq

For the purpose of this paper, we focus on the case f(x) = xn + 1 with n = 2k, where

q is prime and q ≡ 1 mod 2n. In this case R = Z[x]/(f(x)) is the ring of integers

Z[ζ2n] inside the cyclotomic number field K = Q(ζ2n). For simplicity, we will let

ζ = ζ2n. Since |K : Q| = n, there are n different field homomorphisms of K into C

which fix Q. Let σi, for i ∈ [1, n] be the i-th such embedding. Then R can be viewed

as a lattice inside Cn via the canonical embedding map

σ(c) = (σ1(c), σ2(c), ..., σn(c)).

The Euclidean 2-norm on Cn induces a norm on the elements of R:

|c| =

√√√√ n∑
i=1

|σi(c)|2.

The embeddings σi can be described by their action on x. It is most convenient

here to index the embeddings by i ∈ (Z/(2n))×, the group of units of Z/(2n). We

say that σi(x) = ζ i for i ≤ n, and σi(x) = ζ i−n for i ∈ [n + 1, 2n]. Consider

c = c0 + c1x+ c2x
2 + ...+ cn−1x

n−1 ∈ R. We can uniquely describe c by its coefficients

with the column vector ~c = [c0, c1, ..., cn − 1]. Here, we drop the vector notation and

refer to the ring element and the coefficient vector with the same symbol c. The
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canonical embedding then acts on c by the matrix

Σ =


1 ζ ζ2 ... ζn−1

1 ζ2 ζ4 ... ζ2n−2

...
...

...
...

1 ζn+1 = ζ−(n−1) ζ2(n+1) = ζ2 ... ζ(n+1)(n−1) = ζ−1


via σ(c) = Σc.

The norm induced by this canonical embedding, while mathematically nice, can

be less than intuitive. However in the specific case described here, all embeddings of

x have σi(x) =
√
n, which leads to more intuitive behavior. In the situation described

in this paper, i. e. for a cyclotomic number field K = Q(ζ2n) where n = 2k is a power

of 2, the norm N(a) of an element a ∈ R induced by the 2-norm on Cn via the

canonical embedding can be computed from the coefficients of a given in the basis

{1, ζ, ζ2, . . . , ζn − 1} of R. We have

N(a) =
√
n

(
n−1∑
i=0

a2
i

)1/2

for a =
∑n−1

i=0 aiζ
i. This can be seen as follows. We first show that the canonical

embeddings of the basis elements ζ i are orthogonal. Let ζ i and ζj be two such

elements, i. e. i, j ∈ [0, n− 1]. We consider the inner product

〈σ(ζ i), σ(ζj)〉 = 〈σ(ζ i), σ(ζ−j)〉 = Tr(ζ i−j),

where the latter equality follows from [25, Section 2.3.3]. The trace can be computed

as

Tr(ζ i−j) =
∑

l∈(Z/(2n))∗

σl(ζ
i−j) =

∑
l∈(Z/(2n))∗

ζ(i−j)l.

For i = j, we have Tr(ζ i−j) = n. If i 6= j, for each l ∈ (Z/(2n))∗ there exists

l′ ∈ (Z/(2n))∗ such that (i− j)l ≡ (i− j)l′ + n (mod 2n). This means that all terms

in the trace cancel, so Tr(ζ i−j) = 0 in this case. This shows that the embeddings of

the basis elements are orthogonal to each other.
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To compute the norm, we rewrite its square as a trace. We have

N(a)2 = 〈a, a〉 = Tr(a · a) = Tr(
n−1∑
i=0

n−1∑
j=0

aiajζ
i−j) =

n−1∑
i=0

n−1∑
j=0

aiajTr(ζ i−j).

Since we just computed the traces occuring in the sum, we conclude that N(a)2 =

n
∑n−1

i=0 a
2
i .

2.1 Error Distributions

The R-LWE problem requires us to sample small random elements of a polynomial

ring. The norm discussion above gives gives us an idea of what we mean by small. We

begin by defining the standard generalization of the Gaussian distribution to higher

dimensions.

Let x ∈ Rn. The n-dimensional spherical Gaussian probability density function

with parameter r is given by

ρr(x) = exp(−π(
|x|
r

)2).

This gives the probability of sampling a given value x according to the distribution

Dr. Under the standard Euclidean norm of x, this spherical distribution chooses each

coordinate of x using the same Gaussian distribution. If we were to use a different

norm on Rn, the distributions for each coordinate might be skewed, resulting in an

elliptical Gaussian distribution in the standard norm.

To sample the error terms necessary for our signature scheme, we first consider

the ring K ⊗ R, which essentially extends the field of constants of R to allow real

coefficients. The canonical embedding of K extends to K ⊗R. If c′ ∈ K ⊗R, then in

the coordinates of ~c′ are in R instead of Q. This allows us to sample each coordinate

of ~c′ from a Gaussian distribution with parameter of our choosing.

When we embed c′ using σ, the resulting distribution is in general an elliptical

Gaussian distribution. However, for the specific case of R, the distribution remains
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spherical (see [25] for a more complete discussion). Lyubashevsky, Peikert, and Regev

proved the security reduction discussed above for error terms chosen from the family

Ψ≤α, defined to be the set of all elliptical Gaussian distributions over K ⊗ R which

result from choosing a Gaussian distribution with parameter ri ≤ α for each coordi-

nate axis of K ⊗ R. These elements of K ⊗ R are then rounded to yield elements of

R, giving error terms from a discrete Gaussian probability distribution on R.

2.2 Working in Rq

Recall that we would like to work in a finite setting, i.e. Rq = Z/q[x]/(f(x)). We

chose f(x) = xn + 1 with n = 2k, which is irreducible over Z[x]. However, this

polynomial may factor in Z/q[x] depending on q. We chose q ≡ 1 mod 2n because

xn + 1 factors completely in Z/q[x] for q of this form as xn + 1 = Πn
i=1(x− ai). This

yields the ring isomorphism

Rq = Z/q[x]/(f(x)) ∼= Z/q[x]/(x−a1)⊕Z/q[x]/(x−a2)⊕...⊕Z/q[x]/(x−an) ∼= (Z/q)n.

This matches our concrete description ofRq above, where c = c0+c1x+..cn−1x
n−1 ∈

Rq with ci ∈ Z/q corresponds to c = [c0, c1, ..., cn−1] ∈ Rq. So a uniformly random

element of Rq can be sampled as n uniformly random elements of Z/q. As for the

Gaussian distribution, q is chosen to be much larger than n so that an element from

the Gaussian distribution described above can be sampled as n elements of Z from

discrete Gaussian distributions centered at 0. These integers are then interpreted as

elements of Z/q and the vector with these coefficients is interpreted as an element

of Rq. The norm above is also valid for elements of Rq and is well defined when

the representatives for the coefficients of ring elements are defined to have minimum

absolute value modulo q. For example, the value q − 1 ∈ Z/q would be represented

by −1.
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Chapter 3

Digital Signatures from Ring LWE

3.1 Peikert, Lyubashevsky, and Regev’s simple ring

LWE scheme

The signature scheme we have devised is based on the simple public key cryptographic

protocol designed by Peikert, Lyubashevsky, and Regev [25]

• Secret key : short s ∈ Rq.

• Public key : Choose random a ∈ Rq, key is (a, b = as+ e)

• Encrypt m ∈ {0, 1}n: choose short t ∈ Rq. Output ciphertext

(c1, c2) = (at+ e1, bt+ e2 +mdq
2
e) ≈ (at, ast+mdq

2
e)

• Decrypt: recover m from c2 − c1s.

3.2 One-time signature scheme

We devised a signature scheme based on [25]. However, the details must be omitted

here because the scheme is in the patent process.
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3.2.1 Security for small q

We prove security based on the hardness of ring LWE for q ≈ nlog(n). This results

in large communication complexity and large keys. With an additional assumption,

namely that ring LWE is still hard given some auxiliary inputs, the signature scheme

is secure for q on the order of n3. The second set of parameters results in a very

efficient system and small keys. We are currently in the process of determining the

weakest assumption under which we can prove security for smaller q. This would make

the scheme feasible and much more efficient than lattice based signature schemes from

the literature [24].
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