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INTRODUCTION 

Because prairie dogs (Cynomys spp.) function 

as ecosystem engineers and keystone species in 

North America’s grasslands (Fig. 1), their 

conservation and management lies at the core 

of many conservation efforts1,2. However, 

prairie dog management is challenging 

because they are severely affected by epizootic 

plague outbreaks caused by the introduced 

bacterium Yersinia pestis3,4, and highly 

threatened by drought and climate change in 

the southern portion of their range5–7. In fact, 

the formerly largest remaining colonies (in 

Janos, Chihuahua, Mexico; Conata Basin of 

South Dakota, USA; and Thunder Basin 

National Grassland, Wyoming, USA) have 

collapsed by 50 to over 90%, during the last two 

decades, largely due to plague, drought, and/or 

land use impacts6,8–10. This underscores the 

urgency for conserving prairie dog colonies, 

associated species, and mitigating plague and 

Fig. 1. Conceptual diagram illustrating how the ecological 

role of prairie dogs cascades throughout the prairie dog 

ecosystem. Plus signs indicate an increase in an ecosystem 

property as a result prairie dogs; minus signs indicate a 

decrease. (Modified version from Davidson et al. 2012 1) 
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impacts from climate and land use change by identifying potential landscapes for conservation action, 

both now and into the future. And,–critically–such areas need to be considered within the context of 

rangelands that are relied on for cattle production and have traditionally harbored complex social 

cultures resistant to prairie dog conservation11,12. 

The capacity for a landscape to support spatially extensive grassland conservation efforts 

depends on a complex suite of abiotic, ecological, social, and economic factors13. Mapping of landscape 

capacity to support such conservation efforts across North America’s central grasslands provides a 

much-needed tool for optimizing use of scarce funds for grassland conservation and restoration efforts. 

This is especially valuable for contemporary management because of the social, environmental, and 

economic factors that influence where prairie dog complexes can be conserved and expanded across 

large blocks of continuous habitat – to support numerous, associated grassland species1,10,13.  

To address this need, we identified potential landscapes for conservation, through spatial 

modeling. Our work examines ecological, political, and social factors, along with changing climate and 

land use to maximize long-term conservation potential and co-existence with human activities. Our 

project involves two major components: Part I, developing a black-tailed prairie dog (C. ludovicianus) 

(BTPD) habitat suitability model (HSM) under both current climate and projected future climate 

scenarios and Part II, identifying suitable landscapes for black-tailed prairie dog (BTPD) ecosystem 

conservation using the conservation planning tool, Zonation.  
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INTRODUCTION 

Here, we develop a habitat suitability model (HSM) for the black-tailed prairie dog (BTPD) ecosystem. 

Our HSM is based on presence and absence data for prairie dog occurrences across the geographic 

range of the BTPD within the United States, and how the prairie dog occurrences relate to climate, soils, 

topography, and land cover (Fig. 1). We also project the BTPD HSM under two future climate 

scenarios: 1) warm and wet and 2) hot and dry. 

 

 

METHODS 
 

To begin Part I of our analysis, we first obtained BTPD occurrence data and identified their 

geographic range boundary (Fig. 2). We obtained range-wide prairie dog occurrence data from 

Western EcoSystems Technology, Inc. (WEST, Inc.; Hereafter, “WEST data”) to use for our 

primary HSM analysis because colony data was systematically collected across the BTPD 

range over the same time period14. The WEST data is based on prairie dog colonies identified 

using National Agriculture Imagery Program (NAIP) imagery from a stratified random sample of 

2x2 mile grid cells extending across the BTPD range within the United States. (Table 1.).  

 

Fig. 1. Methodological approach for developing the black-tailed prairie dog habitat suitability model (HSM). 
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Table 1. Sample size of the WEST data14. The Table below is Table 1.1 from McDonald et al. (2015)14, showing 

total number of 2 mi by 2 mi grid cells in each state or overlapping BLM managed land, number of grid cells 

sampled (sample size) and date of National Agriculture Imagery Program (NAIP) imagery.  

 

 
 

In order to transform the WEST data into a format suitable for data analyses, we generated 

presence and absence points for BTPD using the WEST data. For each colony polygon detected within a 

given grid cell, we assigned one presence point for each hectare within the colony and then randomly 

selected one absence point for every 15 ha within the remaining portion of the grid cell where no 

colonies were found. All points were at least 60 m (two 30 x 30 m raster cells) away from each other, 

and all absence points were at least 500 m from any presence point. This produced approximately 

86,300 presence points and 315,000 absence points, from which we randomly selected the same number 

of absence points as presence points to use in our HSM analysis.  

Our BTPD range boundary is based on current and historical distribution. To determine current 

range we largely followed the WEST14 boundary and extended the range boundary where appropriate 

to reflect the historical range distribution based on museum specimens. Each states’ Western 

Association of Fish and Wildlife Agencies (WAFWA) Prairie Dog Conservation Team (PDCT) member 

approved the Final BTPD boundary for their state, and GPS point locations for all museum specimens 

we used to create the boundary are stored in the project database along with detailed metadata for 

each. 

 The next step in our Part I modelling effort involved determining the best and most current 

spatial data layers available for soils, climate, topography, and land cover for the HSM (Tables 2 and 3 

and Fig. 3). We downloaded and processed data for analyses (described below) and identified suitable 

land cover types and patch metrics. These efforts yielded a total of 25 environmental input datasets for 

the full study area, based on the data sources in Table 2 (see also Fig. 3).  

Our research team used several valuable databases representing major improvements in the 

resolution and accuracy of the input variables. First, we used the 2016 National Land Cover Database 

(NLCD), which was released by USGS in May of 2019. This 2016 database represents a major 

improvement from 2011 NLCD that was previously available, as it incorporates new data derived from 
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the USDA’s Cropland Data Layers for 2011 – 2016, and implemented new algorithms for identifying 

developed and paved surfaces. Second, rather than using the National Soil Survey’s SSURGO database 

to map soil types across the BTPD range, we used a new digital soil map of the US (POLARIS 15,16) that 

builds upon SSURRGO but includes improved interpolation of soil texture and other attributes down 

to a 30-m pixel resolution. One limitation is that this improved soil model did not include depth to 

bedrock, which is an important factor influencing BTPD burrowing. We attempted to use the latest 

SSURGO soils data17 for the depth to bedrock metric, compiling depth to bedrock values from 

individual statewide datasets and averaged over map unit components. Many map units had no 

bedrock depth measure in SSURGO, so we estimated missing data using a component-weighted 

average of maximum horizon depth. Polaris soils data16 are available as individual 1-degree tiles per 

metric per depth, so we downloaded, depth-weighted, and merged the Polaris data by soil metric over 

the study area. The most recent National Elevation Data (NED)18  was likewise downloaded as 

individual 1-degree tiles and merged over the study area. We then corrected the NED by identifying 

and removing as many sink artifacts as possible, while preserving true sinks such as playas and 

perennial water bodies. Next, we used the software TauDEM19 to calculate a Topographic Wetness 

Index as well as slope for the entire BTPD range. The NED was also used to create a Terrain 

Ruggedness Index as well as information on aspect as a function of 'northness' and 'eastness'. We used 

the 2016 NLCD20 as the basis of several land cover type metrics including patch size, distance to patch 

edge, and nearest edge type. Finally, current climate data metrics were calculated from raw daily 

gridded meteorological data21 averaged over 1994 - 2014. All continuous datasets were normalized to 

be between 0 and 1 (-1 to +1 in the case of the northness and eastness measures) so that inputs had 

equivalent scales. Categorical data (primarily land cover) were converted to one-hot ‘dummy’ variables 

for use in modeling algorithms that cannot accept categorical inputs. The Python and R scripting code 

written for many of the above calculations is available at https://github.com/mmfink/HOTR_Code. 

TauDEM, which is written in C++, is available at http://hydrology.usu.edu/taudem/taudem5/. The 

remaining data processing was done in ESRI ArcGIS. During iterative modeling, we narrowed down 

environmental inputs based on covariate correlation, proportion of deviance explained, and effect on 

model performance (Table 3). We were forced to drop the SSURGO-derived depth to bedrock input 

due to the large amount of data coded as zeroes (indicating no real depth data available), which was 

biasing model output.  

  



Davidson et al., p.6 
 

 

Variable Spatial data layer for Habitat Suitability Model 

BTPD colony occurrences Prairie dog occurrences from WEST survey14 

Land Cover USGS National Land Cover Database 201620 

Soils POLARIS 30-m resolution database16 

Metrics: bulk density to 100cm, Sand to 100cm, %Clay to 100cm,  

% organic matter to 100cm, pH to 100cm  

Slope & elevation National Elevation Dataset18 

Metrics: Topographic Wetness Index, Topographic Ruggedness Index, 

slope, aspect 

Climate – current 

 

 

 

 

Climate – future 

(used only for HSMs 

projected into the future) 

Current climate (1994-2014), using gridMet21 

Metrics: Mean annual precipitation (mm), winter + spring & summer + 

fall precipitation, max summer temperature, potential 

evapotranspiration, growing degree days 

 

Future Climate (2100), using MACAv2_METDATA22,23 

Metrics: Mean annual precipitation (mm), winter + spring & summer + 

fall precipitation, max summer temperature, potential 

evapotranspiration, growing degree days 

 

Table 2. Spatial data layers and their sources used in the black-tailed prairie dog (BTPD) habitat suitability model. 

https://www.mrlc.gov/data
http://hydrology.cee.duke.edu/POLARIS/
https://prd-tnm.s3.amazonaws.com/index.html?prefix=StagedProducts/Elevation/1/IMG/
https://app.climateengine.org/
https://climate.northwestknowledge.net/MACA/data_portal.php
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Fig. 3. Some of the spatial layers created for the black-tailed prairie dog (BTPD) habitat suitability model, based 

on BTPD occurrence14, climate21, land cover24, topography18, and soils16. 

 

To determine the best-fit habitat suitability model for our data, we evaluated the performance 

of several different independent models and an ensemble model25,26. Specifically, we created BTPD 

habitat suitability models using a: 1) Generalized Linear Mixed-Model (GLMM), 2) Random Forest 

model (RF), 3) Boosted Regression Trees model (BRT, also known as Generalized Boosted Models or 

GBM), and 4) an ensemble model that combined the outputs of the GLM, BRT, and RF HSMs. Models 

were created using the R packages lme427, randomForest28, and dismo29. The GLMM used the identity of 

the sampling grid cell that each presence or absence point fell within as a random factor. All R code 

used for modeling is available at the previously mentioned GitHub repository. 
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Table 3. All environmental inputs considered, with the final used in bold (in “Label” column). 

Label Description Based On 

bd soil bulk density to 1 m (g/cm3) POLARIS 

clay percent clay to 1 m POLARIS 

DEM elevation (m) USGS NED 

depth depth to bedrock (cm) SSURGO 

distToNon distance (from each pixel) to the nearest non-habitat (m) NLCD 2016 

eastness east-west aspect index USGS NED 

GDD5 annual growing degree-days, base 5, averaged over 1994-2014 gridMET 

hab_non binary designation of grass/shrub habitat (1) or other land cover type 

(0) 

NLCD 2016 

hab_nonpch patch size of contiguous habitat or non-habitat (m2) NLCD 2016 

nearType land cover type of the nearest non-habitat (categorical)* NLCD 2016 

nlcd land cover (categorical)* NLCD 2016 

nlcd_patch patch size of each land cover type (m2) NLCD 2016 

northness north-south aspect index USGS NED 

om percent organic matter to 1 m POLARIS 

PET annual potential evapotranspiration, grass reference (mm), averaged 

over 1994-2014 

gridMET 

ph soil pH to 1 m (soil:water method) POLARIS 

ppt_sf summer – fall (June-November) total precipitation (mm), averaged over 

1994-2014 

gridMET 

ppt_ws winter – spring (December-May) total precipitation (mm), averaged 

over 1994-2014 

gridMET 

ppt_yrly annual total precipitation (mm), averaged over 1994-2014 gridMET 

sand percent sand to 1 m POLARIS 

slope degrees slope USGS NED 

tmax maximum summer (June-August) air temperature, averaged over 1994-

2014 

gridMET 

TRI Terrain Ruggedness Index USGS NED 

TWI Topographic Wetness Index USGS NED 
*Categorical variables were converted into one-hot dummy variables (e.g., nlcd.Grassland, nlcd.Cropland, etc.) for the GLMM 

model. 

Models were trained on a random 70% subset of the full dataset, maintaining relatively equal 

numbers of presence and absence points (Fig. S1). Half of the remaining data (15%) were used to 

evaluate RF and BRT model performance during tuning of the calling parameters (such as number of 

trees). The final 15% of withheld data (“Testing dataset”) were then used to evaluate all three final 

models (Table S1, Fig. S1). All sampling of presence/absence points was done at the level of the grid cell 

(i.e., the cells were randomly sampled, not the points within them). We selected 95% Sensitivity 

because our primary goal was to correctly identify prairie dog habitat.  

The ensemble model was created as a weighted average of the final GLMM, RF, and BRT 

models. Using the mean of Sensitivity=0.95, weights used were calculated by averaging 6 performance 
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metrics (AUC, TSS, PCC, Kappa, Sensitivity, and Specificity), which were themselves averaged over a 

10-fold cross-validation of the models built on the Training dataset. This gives the higher performing 

models more influence over the ensemble. For the cross-fold validation, each fold randomly sampled 

10% of the sampling grid cells in the Training dataset, so that if a sampling grid cell was selected, all 

presence and absence points within that cell were assigned to that fold. The ensemble was evaluated 

against the Testing dataset as well (Table S1). 

BTPD Habitat Suitability Model under Future Climate 

Next, we projected our BTPD HSM into the future (2100) under two different (representing “best” and 

“worst case”) climate scenarios: 1) warm and wet (IPSL-CM5A-LR_r1i1p1_rcp45); and 2) hot and dry 

(MIROC5_r1i1p1_rcp85). These models best represented the two scenarios for our study region. The 

future climate model scenarios were obtained from MACA v2-METDATA, and were averaged over 

2076-2099 (Table 2). All other model inputs remained the same. From the MACA website, “Climate 

forcings in the MACAv2-METDATA were drawn from a statistical downscaling of global climate 

model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5, Taylor et al. 2010) 

utilizing the Multivariate Adaptive Constructed Analogs (MACA22) method with the METDATA30 

observational dataset as training data.” 

 

Ensemble Model Review 

During summer 2020, our team met with biologists from each state individually and with other experts 

on the prairie dog ecosystem to provide detailed state-level review of the ensemble habitat suitability 

map. After extensive review, our team worked to address each of the comments we received. The 

biggest challenge was modelling the desert grasslands of the American Southwest (AZ, southern NM, 

southwestern TX), where prairie dogs occurred historically, and considerable grassland remains. 

Throughout this region, prairie dogs were extensively exterminated over the last century and their 

populations have not recovered as in other parts of their range, likely due to the increasingly arid 

climate and grassland desertification31–34. Nevertheless, extensive grassland remains in the region and 

colonies do exist, just not in high enough abundance to be well-sampled by the WEST et al. effort. To 

help address this, we obtained additional, recent data (within the last ca. 10 years) for AZ, NM, and TX 

from within the desert grassland ecoregion35 to add to the occurrence locations identified in the WEST 

data. This allowed us to better model habitat conditions where BTPDs occur across the desert grassland 

ecoregion. We randomly selected the same number of grid cells in the WEST et al. data and traded 

them out with the new grid cells covering the additional occurrence data. This way we were able to 

retain the same number of grid samples per state. To account for the higher level of sampling effort in 

Wyoming and Colorado in the WEST14 study, we randomly sampled an equal density of grid cells in 

each state across the BTPD geographic range. We also removed errors in occurrence data identified 

during the reviews by biologists in each state, as some of the occurrences were false positives. In a few 

instances along the western edge of the BTPD range in New Mexico, we removed mapped colonies that 

were likely to be Gunnison’s prairie dogs rather than BTPD, based on consultation with the state 

wildlife agency.  

 

  

https://climate.northwestknowledge.net/MACA/data_portal.php
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RESULTS  

 
Among the three models used the build the ensemble HSM, the GLMM performed most poorly and 

was more restrictive in identifying suitable prairie dog habitat compared to the RF and BRT models 

(Table S1; Fig. S1). Yet, the GLMM performed better at modelling suitability relative to soils across the 

BTPD range compared to the RF and BRT, while RF and BRT modelled suitability relative to climate 

better than GLMM. Climate variables were important predictors across all models, followed by 

topography and landcover; soils were generally less important (Fig. S2). The variables of greatest 

importance for the GLMM were: topographic ruggedness, growing degree days, and soil organic 

matter; whereas variables of greatest importance for both the RF and BRT were: summer-fall 

precipitation, growing degree days, winter-spring precipitation, landcover, and topographic 

ruggedness (Fig. S2).  

When we compared performance metrics of all four models (GLMM, RF, BRT, ensemble), the 

Random Forest model performed slightly better than the ensemble, followed by BRT and GLMM 

(Table S1; Fig. S1). However, we selected the ensemble model to build our HSM because not only did it 

perform similarly well to RF, but it also made ecologically most sense when we evaluated each of the 

models independently and the ensemble HSM appeared to reduce the impact of individual model 

biases. Indeed, ensemble HSMs often perform better than single HSMs because they can average out 

uncertainties and biases inherent in different model algorithms. Our final ensemble model exhibited 

high predictive accuracy, with an AUC of 0.96 and error rate of 13% at a Sensitivity (ability to correctly 

identify prairie dog habitat) of 95% (Figs. 4 and S3). We also evaluated the model when Sensitivity was 

equal to Specificity and when Specificity was 95% and found similar model performance (Table S3; Fig. 

S3).  

The most suitable habitat for the BTPD ecosystem under the current climate extends largely 

from northern and eastern New Mexico and the panhandle of Texas and Oklahoma through eastern 

Colorado, eastern Wyoming, southern Montana, western south Dakota, and parts of western Kansas 

and Nebraska (Fig. 5, Table 4). Small patches of suitable habitat occur through the southwest in 

Arizona, southern New Mexico, and southwest Texas. The eastern part of the original prairie dog range 

is largely unsuitable due to the extensive conversion of grassland to cropland, and the southern portion 

of their geographic range is limited largely by climate suitability. Low suitability across most of 

Nebraska is due to excessively sandy soils.   

 

 

Fig. 4. Performance metrics of the black-tailed prairie dog ensemble habitat suitability model. These performance 

metrics reflect when Sensitivity is set to 0.95. 
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Fig. 5. Black-tailed prairie dog (BTPD) ensemble habitat suitability model (HSM), under current climate. Dark 

green shows areas of highest habitat suitability for BTPDs, and beige shows areas of lowest suitability. 
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Table 4. Number of hectares of black-tailed prairie dog (BTPD) habitat that is of low, medium, and high 

suitability within each state and across the BTPD range. 

STATE NAME Low Medium High 

Montana 1,763,366 1,345,433 1,588,702 

North Dakota 340,733 180,275 63,826 

South Dakota 1,711,314 1,277,664 1,470,485 

Wyoming 1,064,272 1,021,180 1,961,438 

Nebraska 692,534 441,174 389,552 

Colorado 1,338,636 1,558,562 4,216,600 

Kansas 631,120 420,207 760,199 

Arizona 13,750 5,789 108 

Oklahoma 280,290 212,791 480,503 

Texas 1,018,266 804,629 1,064,014 

New Mexico 1,169,982 863,150 728,047 

Entire US Range 10,024,502 8,130,936 12,723,491 

 

Projecting suitable habitat into the future under both future scenarios (warm and wet; hot and 

dry) shows how the suitable habitat shifts northward (Fig. 6). Under the warm and wet scenario, 

eastern Colorado remains a stronghold, and suitable habitat expands across Wyoming, Montana, 

western North Dakota, South Dakota, western Nebraska, Kansas, and central Texas. Suitable habitat 

under this scenario retracts across the Southwest, with reductions especially in southern and eastern 

New Mexico with the northeastern part of New Mexico remaining as highly suitable habitat; it also 

declines somewhat across the Texas-Oklahoma panhandle region. Under the more extreme hot and dry 

future scenario, suitable habitat substantially declines across the Southwest through Texas, Oklahoma, 

and Kansas. Central and northeastern New Mexico and eastern Colorado remain favorable habitat but 

become the southern edge of suitable range, with the heart of suitable habitat projected to occur across 

Wyoming, Montana, and the Dakotas. We did not model the future scenarios beyond the known 

historical range within the United States, but it is likely suitable habitat could expand beyond the 

historical range in North Dakota, Montana, and Canada with the project northward range shift. 
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Fig. 6. Black-tailed prairie dog (BTPD) habitat suitability models (HSM) under current climate and future 

climate scenarios. Dark green shows areas of highest habitat suitability for BTPDs, and beige shows areas of 

lowest suitability. 

 

FINAL PRODUCTS: 
The final map products have been posted online through the Colorado Natural Heritage Program 

(CNHP) at Colorado State University, the Western Association of Fish and Wildlife Agency (WAFWA), 

and made available through an interactive web map 36 (Table 5). Within the interactive web map, users 

can view the output raster layers of the modeled priority areas and have the ability to query for 

additional information associated with each cell. 

 

Table 5. List of data products produced. 

Dataset product type format resolution access 

BTPD Habitat Suitability Model (HSM) 
under current climate 

raster geo-TIF 90m CNHP 
WAFWA 

BTPD HSM under future climate (2100); 
warm & wet scenario 

raster geo-TIF 90m CNHP 
WAFWA 

BTPD HSM under future climate (2100); 
hot & dry scenario 

raster geo-TIF 90m CNHP 
WAFWA 

  

https://cnhp.colostate.edu/projects/hotr/
https://wafwa.org/initiative-programs/prairie-dog/
https://ku.maps.arcgis.com/home/item.html?id=68ea768d0e3143d3a5673c8af2564ba3
https://cnhp.colostate.edu/projects/hotr/
https://wafwa.org/initiative-programs/prairie-dog/
https://cnhp.colostate.edu/projects/hotr/
https://wafwa.org/initiative-programs/prairie-dog/
https://cnhp.colostate.edu/projects/hotr/
https://wafwa.org/initiative-programs/prairie-dog/
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SUPPLEMENTARY DOCS (PART I) 

 

Table S1. Mean 10-fold Cross-Validation Performance metrics on the Testing dataset for the Generalized Linear 

Mixed-Model (GLMM), Random Forest model (RF), and Boosted Regression Trees model (BRT) when sensitivity 

= 95%. 

Model AUC TSS err_rate kappa PCC Sensitivity Specificity Threshold 

GLMM 0.891 0.552 0.224 0.552 0.776 0.95 0.602 0.035 

RF 0.970 0.788 0.106 0.788 0.894 0.95 0.838 0.232 

BRT 0.922 0.624 0.188 0.624 0.812 0.95 0.674 0.165 

Ensemble 0.956 0.734 0.133 0.734 0.867 0.95 0.784 0.206 

 

Table S2. Ensemble model metrics (against the Testing dataset) for when sensitivity = specificity, sensitivity = 

95%, and specificity = 95%. Sensitivity (True Positive Rate); Specificity (False Negative Rate). 

 

 AUC TSS err_rate kappa PCC Sensitivity Specificity Threshold 

Sensitivity = Specificity 0.96 0.781 0.109 0.781 0.891 0.893 0.888 0.321 

Sensitivity 95% 0.96 0.746 0.127 0.746 0.873 0.950 0.796 0.217 

Specificity 95% 0.96 0.756 0.122 0.756 0.878 0.806 0.950 0.435 
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Fig. S1. Performance metrics of the 10-fold cross validation and testing dataset for the Generalized Linear Mixed-

Model (GLMM), Random Forest model (RF), Boosted Regression Trees model (BRT), and Ensemble (EN) when 

sensitivity = 95%. 
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Fig. S2. Variable importance plots for the Generalized Linear Mixed Model, Random Forest, and 

Boosted Regression Tree. All values have been normalized so that the sum of all variable importance 

measures for a model = 1. See Table 3 for label and description of each variable. 
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Fig. S3. Ensemble (EN) model performance when sensitivity = specificity, sensitivity = 95%, and specificity = 

95%. Sensitivity (Sen; True Positive Rate); Specificity (Spec; False Negative Rate). 
 



Davidson et al., p.18 
 

 
 

Fig. S4. Ensemble model performance when sensitivity = specificity, sensitivity = 95%, and specificity = 95%. 

ROC curve shows relationship between sensitivity (true positive rate) and specificity (true negative rate). Gray 

solid line indicates random performance. Dashed lines show the values the axes measure for the thresholds at: 

Sensitivity (Sen) = 0.95 (0.217); Sensitivity = Specificity (0.321); Specificity (Spec) = 0.95 (0.435).  
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INTRODUCTION 

Here, we use a conservation planning analysis to identify potential landscapes for conservation across 

North America’s central grasslands, with a focus on the black-tailed prairie dog (BTPD) ecosystem 

within the United States. Our approach considers conservation potential based on our black-tailed 

prairie dog habitat suitability model, threats, land cover and projected landuse change, habitat 

connectivity, and climate (both present and future) (Fig. 1).  
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Fig. 1. Methodological approach for identifying suitable landscapes for the black-tailed prairie dog (BTPD) 

ecosystem conservation. 

 

METHODS 

 

Once the habitat suitability models were created (Part I), we gathered and created a suite of spatial 

layers that describe the social, political, ecological, and anthropogenic landscape within the current 

BTPD geographic range within the United States to include in a conservation prioritization analysis. 

The goal of this analysis was to not only assess the suitability of the habitat for the prairie dog 

ecosystem, but also how the social and political landscape, threats to prairie dog habitat (such as 

development), habitat connectivity, and general ecological landscape (e.g., percent cover of grass) 

collectively influence opportunities to conserve the BTPD ecosystem (Table 1).   

 

Data Preparation 

To prepare the underlying data for the conservation prioritization analysis using the program 

Zonation, the data layers were integrated into the nested hexagon framework (NHF). The NHF grid is 

based around a 1 km2  hexagon unit that is aggregated up by units of 7 to generate coarser scale cells of 

7 km2 (cogs), 49 km2 (wheels), and 343 km2 (rings), allowing for cross-scale multidisciplinary analysis 

while obscuring precise sensitive location data (Fig. 2).     
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A total of 31 data layers representing point, polygon, and raster formats were processed and 

summarized into the NHF for consideration in the Zonation analysis (Table 1). While the exact process 

used to integrate the data layers into the NHF and subsequently into raster files for the Zonation 

analysis was slightly different for each data layer, the general process was the same. All GIS data 

processing was done using ESRI ArcMap 10.7 software. Input data layers were intersected with the 

NHF and the data layers were summarized per NHF hexagon cell using Zonal Statistics, Tabulate Area, 

or other similar geoprocessing tools to generate a summary of the source layer data per hexagon. 

Examples of the resulting tabular summaries conveyed the area of each landcover class per hexagon 

cell (later converted to a percent), the mean tillage risk, majority landscape condition, the sum of the 

meters of road or number of wells within a cell, or the presence of wind turbines within each 1 km2 

hexagon cell. The specific summary methods of each input layer integrated can be found within Table 

1.     

Table 1. Summary of the data layers and the summary methods used to integrate datasets into the nested 

hexagon framework (NHF). The table also conveys the relationship between the layer data values and habitat 

suitability for the black-tailed prairie dog (BTPD) ecosystem, and which layers were incorporated into the final 

Zonation analysis.  

Data category Source dataset Summary method                                  

(per 1 km2 hexagon) 

Relationship to 

prairie dogs 

Included in 

final Zonation 

analysis 

% grass/shrub  2016 NLCD (52, 71, 81)20 % grass/shrub within hexagon Positive Yes 

% emergent wetland 2016 NLCD (95)20 % emergent wetland within hexagon Negative Yes 

% grass/shrub in 1 mile  Raster surface of % grass/shrub 

from NLCD20 (52, 71, 81) within 

1 mile 

Mean value in hexagon Positive Yes 

  

 
1 km2 Hexagon, 7 km2 Cog,        

49 km2 Wheel, 343 km2 Ring 

Fig. 2. From left to right, views of the 5x5 degree latitude/longitude tiles showing the extent of the NHF 

grid, the NHF tiles covering the Great Plains used to summarize datasets for this project, and the cell 

structure of the nested hexagon framework. 

 

5x5 degree 

NHF tiles 
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Percent tree cover NLCD trees20 + USFS % tree 

cover37 + PLJV cedar and 

mesquite38 

% of hexagon with tree cover Negative Yes 

Tillage risk Olimb tillage risk39 Mean % in hexagon Negative Yes 

Oil/gas wells (well count) Welldatabase40 # of active wells in hexagon Negative Yes 

Oil/gas wells (well density) Welldatabase40 # of all well records in hexagon Negative Yes 

Wind power potential NREL wind speed at 100 

meters41 

Mean windspeed in hexagon Negative Yes 

Distance to Transmission 

lines 

DHS transmission lines42 Distance from hexagon to nearest 

transmission line 

Negative Yes 

Wind turbines FAA obstruction database43 “Built or proposed” present in hexagon Negative Yes 

Protected Area PAD-US44 Acres of GAP 1 sites in hexagon Neutral Yes 

Protected Area PAD-US44 Acres of GAP 2 sites in hexagon Neutral Yes 

Protected Area PAD-US44 Acres of GAP 3 sites in hexagon Neutral No 

Protected Area PAD-US44 Acres of GAP 4 sites in hexagon Neutral No 

Private Lands Conservation NCED45 + Turner% + SPLT# + 

APR^ properties  

Sum of conservation acres per hexagon 

(NCED + Turner + SPLT + APR) 

Positive Yes 

% CRP County level CRP46 % of county enrolled in CRP, % then 

assigned to all hexagon cells in county 

Positive Yes 

Road density US Census Tiger Roads47 Sum of road length per hexagon (road 

class = S1100, S1200) 

Negative Yes 

Road density US Census Tiger Roads47 Sum of road length per hexagon (road 

class = S1400, S1500) 

Negative Yes 

Political support for the 

environment 

League of Conservation Voters 

Conservation Scorecard48 

Mean per hexagon of the median LCV 

scorecard value for US Representatives 

from 1973-2020. 

Positive Yes 

Preference for prairie dog 

population increases 

Prairie dog survey* 

 

Mean per hexagon of the proportion of 

population supporting prairie dog 

increases based on responses of 29,000 

survey participants spatialized to the US 

Census tract  

Positive Yes 

Preference for federal 

economic incentives for 

prairie dog conservation 

Prairie dog survey* 

 

Mean per hexagon of the proportion of 

population supporting federal incentives 

for prairie dog conservation based on 

responses of 29,000 survey participants 

spatialized to the US Census tract 

Positive Yes 

Preference for private 

economic incentives for 

prairie dog conservation 

Prairie dog survey* 

 

Mean per hexagon of the proportion of 

population supporting private incentives 

for prairie dog conservation based on 

responses of 29,000 survey participants 

spatialized to the US Census tract 

Positive Yes 

Institutional capacity to 

actualize conservation 

Count of Land and Water 

Conservation Fund projects49  

Count of LWCF projects per hexagon Positive Yes 

Land cover change USGS (projected 2100)50 Pct grass per hexagon (classes 11,12,14) 

in future climate scenario A2, 2050 

Positive Yes 
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Land cover change USGS (projected 2100)50 Pct grass per hexagon (classes 11,12,14) 

in future climate scenario A2, 2100 

Positive  Yes 

Land cover change USGS (projected 2100)50 Pct grass per hexagon (classes 11,12,14) 

in future climate scenario B2, 2050 

Positive Yes 

Land cover change USGS (projected 2100)50 Pct grass per hexagon (classes 11,12,14) 

in future climate scenario B2, 2100 

Positive Yes 

Landscape fragmentation Modified from Augustine et al. 

(2019)13 ** 

mean distance to grassland fragmenting 

feature (cropland, woodland, urban, 

road) 

Negative Yes 

Climate change BTPD HSM under future 

climate (2100), warm and wet 

scenario 

Mean of BTPD habitat probability values 

in hexagon 

reference Yes 

Climate change BTPD HSM under future 

climate (2100), hot and dry 

scenario 

Mean of BTPD habitat probability values 

in hexagon 

reference Yes 

BTPD Habitat Suitability 

Model (HSM)  

Ensemble model of BTPD 

habitat potential (under 

current climate) 

Mean of BTPD habitat probability values 

in hexagon 

reference Yes 

BTPD non-habitat mask*** Mask layer of unsuitable 

habitat, based on the BTPD 

HSMs 

Majority of 90m pixel was unsuitable 

habitat 

reference Yes 

*Prairie dog survey (unpublished data by Williamson et al.): The probability that a region would support increases in prairie dog populations or 
support federal incentives for prairie dog conservation was based on survey responses from over 29,000 North American residents. Census 
tract level estimates were generated using a Bayesian multi-level regression with post stratification wherein the demographics of survey 
respondents are used to map the probability to Census geographies based on the demographic composition of the Census tracts.  
**Landscape Fragmentation layer: We mapped the degree of rangeland fragmentation across the historic BTPD range following the methods 
of Augustine et al. (2019)13, except that we used the 2016 NLCD as the source data layer, rather than a combination of the 2011 NLCD and 
USDA Cropland Data Layers. Briefly, every pixel was classified as (1) rangeland, which we defined as grassland, shrubland, and improved 
pasture/hay cover types, (2) a fragmenting land cover type, which we defined as forest, cropland, or developed lands, or (3) neutral land cover 
types which were not rangeland, but also did not fragment adjacent rangelands. In the final fragmentation map, we set all pixels mapped as 
either a fragmenting or a neutral land cover type to a value of zero, and then calculated the distance to the nearest fragmenting land cover 
type for each rangeland pixel (e.g., Figure 3 of Augustine et al. 2019).  
*** BTPD non-habitat mask: We created a layer to mask out highly unsuitable habitat. We classified highly unsuitable habitat as those areas 
where suitability was in the 10th (lowest) percentile for each of the BTPD HSMs generated under the current and future climate scenarios, and 
where soils were comprised of 90% or greater of sand.  
% Ted Turner Properties  
# Southern Plains Land Trust Properties 
^ American Prairie Reserve Properties 

 

Within the attribute table of the hexagon feature class, a series of new attribute fields were 

created to convey the newly summarized data (e.g., % grassland, majority Landscape Condition, 

number of wells). Using the unique hexagon ID’s, the data tables of the summarized information were 

joined with the feature class attribute table, and the summarized data was copied into the newly 

created hexagon attribute fields using the “calculate field” process. Due to the number of hexagons 

(over 2 million record rows) being calculated, this process often took several days so researchers later 

began using a python script to “update cursor” that proved much faster than join/calculate field 

process. The resulting attribute table of the NHF one-kilometer cells provided a summary of the 

datasets integrated, all pre-summarized to the same framework for compatibility and easy use (Table 

2). Some source data layers like percent of CRP and the political voting data were originally in coarse 

(county/voting district) spatial resolutions. As a result of summarizing these datasets to the hexagons, 
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the results display a false level of spatial precision regarding the data values conveyed. In cases where 

coarse data was summarized and displayed at a higher spatial resolution, many individual hexagons 

share the same value that originally represented the district/county as a whole, not a specific hexagon.   

 

Table 2. Subset of the NHF hexagon attribute table showing the information from the summarized datasets 

allowing a single cell to reveal information about a wide range of variables at once. 

 

 

 

The hexagon feature class data was exported to a series of raster layers using the ArcMap 

Feature to Raster function to accommodate the conservation prioritization software requirements that 

all input data be in a raster format. Output raster layers were specified to have a 90 m resolution, were 

snapped to the same 90 m pixels as the ensemble habitat suitability models, and the raster values were 

derived from the values in each of the feature class attribute fields representing the 1 km2 hexagon 

summarized data. The intersect, calculate field, and convert to raster processes were done in batches 

using the 5x5 degree NHF tile or by regional groupings of 7 tiles for the northern half of the range and 

9 tiles for the southern half of the range for efficient processing. After each tile was converted to a raster 

layer, they were mosaiced together to create a series of rangewide raster layers, and then clipped to the 

BTPD range boundary (Fig. 3).     

hexagon_id State Pct_NLCD_Grass Pct_NLCD_EmgWet Pct_NLCD_range Pct_NLCD_Forest Pct_NLCD_Crop Pct_NLCD_Urban Tree_acres Tree_pct

105W-40N-269-5-3-5 CO 20 11 31 1 68 0 2 0.81

105W-40N-269-5-4-1 CO 2 2 4 0 38 4 124 50.22

105W-40N-269-5-4-2 CO 0 0 0 0 96 4 0 0.09

105W-40N-269-5-4-3 CO 2 1 3 0 74 9 33 13.41

105W-40N-269-5-4-6 CO 15 9 24 1 38 7 78 31.59

105W-40N-269-5-4-7 CO 0 3 4 0 59 0 82 33.21

Mean_windspeed Wind_turbinesMtrs_to_Trans PADUS_GAP1 PADUS_GAP2 PADUS_GAP3 PADUS_GAP4 NCED_ac MeanDistToFrag Maj_LSCond

6.59                            0 4438 0 0 0 0 34 17 43

6.58                            0 2596 0 0 78.285542 49.847519 126 1 0

6.58                            0 3524 0 0 0 0 184 0 17

6.57                            0 2597 0 0 0 0 54 1 0

6.59                            0 2597 0 0 222.560196 23.984982 24 9 0

6.58                            0 3525 0 0 57.494851 0 127 1 20
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Fig. 3. A subset of the data layers summarized to the NHF, rasterized, and 

used within the Zonation analysis to identify conservation priority areas 

for the black-tailed prairie dog (BTPD) ecosystem. See Table 1 for details. 

on each layer. 
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Zonation Modelling 

We selected potential landscapes for prairie dog ecosystem conservation across the range of the black-

tailed prairie dog within the USA, using the spatial conservation prioritization method and Zonation 

software 51. Zonation produces a hierarchical spatial priority ranking of the study region, accounting 

for complementarity by considering local representation of the biodiversity features (species, ecosystem 

types, etc.). Zonation iteratively removes cells whose removal causes the smallest loss in feature 

representation across the overall remaining region until no cell is left in the region. The hierarchical 

conservation rank of the region is based on the order of cell removal, which is recorded and can be 

used later to select any given top fraction (e.g., best 25%) of the region. We used the additive benefit 

function (ABF) removal rule, which is based on the sum of the features representation in each cell, 

favoring places containing high habitat quality for a large number of biodiversity features. 

We used different weights for the biodiversity features in the Zonation analysis. The relative 

weighting of biodiversity features is an important component of the Zonation algorithm and impacts 

the order in which cells are removed from the prioritization landscape. Cells that contain a high-weight 

feature are kept longer in the analysis than cells with only low-weight features. Features with a 

negative weight are considered undesirable. Consequently, they are found among the cells with low 

conservation priority and removed from the landscape early in the analysis. To select the best places for 

to focus prairie dog conservation efforts, we used spatial layers describing current and future (2100) 

habitat suitability for the species (weight 10), favorable landscape conditions (weight 1) and social 

willingness (weight 1) to embrace BTPD conservation. These layers were considered as features in the 

analysis with positive values (i.e., higher values indicated favorable places for BTPD conservation). 

Because suitable habitat is ultimately the most important variable for conservation, habitat suitability 

features had the highest weighting among all positive features. We also considered threats in the 

selection of priorities, aiming to avoid places with high intensity of threatening activities and 

conservation conflicts. Threat layers had negative weights (-4). Areas with high values of threatening 

activities had low values of conservation priority and were removed from the study region early in the 

analysis. Details on each feature used can be found in Table 1. 

In the scenarios that involved current and future projected suitable BTPD habitat, we used the 

interaction function, which induces connectivity of suitable sites for the interacting features to account 

for distribution shifts due to climate change. Areas with low habitat suitability or high sandy soil 

(>90%) were masked out of the analysis using an area mask file, where cells with value “1” were 

included in the analysis, while cells with value “0” were excluded (Table 1). As conservation policies 

and funding decisions are usually made by political entities, we also selected conservation priorities 

considering the state boundaries, so that priorities are identified within each state. For this, we used the 

Administrative Units (ADMU) function in Zonation to also select state priorities in the final 

conservation ranking 52. 

 

RESULTS  

 
Our results show that potential landscapes for BTPD ecosystem conservation are largely found across 

the western portion of the current/historical range, and the priorities under current climate across the 

Southwest largely disappear under both future climate scenarios (Fig. 4). The areas with highest 

conservation priority are represented in red and pink. These areas primarily reflect high habitat 
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connectivity, highly suitable habitat, and low threats. Very northeastern New Mexico, eastern 

Colorado, eastern Wyoming, eastern Montana, very eastern Nebraska, and western South Dakota 

harbor the greatest amount of priority habitat now and into the future. Much of (but not all) the high 

priority habitat in Arizona, southern New Mexico, and Texas under today’s climate does not maintain 

such status under the future climate scenarios. 

The entire prairie dog geographic range boundary within the US, encompasses 159,786,000 ha, 

not all of which is suitable habitat (see Part I of this report). Of this area we identified 27,121,311 ha 

(16%) that represent high conservation priority across all climate scenarios (Table 3; Fig. 4d). The 

priority rankings shown in Figure 4 are as follows: 2% (from 0.98 to 1 of priority rank) Light red; 5% 

(from 0.95 to 0.979 of priority rank) Dark red; 10% (from 0.90 to 0.949 of priority rank) Pink;25% (from 

0.75 to 0.849 of priority rank) Yellow; 50% (from 0.50 to 0.749 of priority rank) Light blue; 75% (from 

0.25 to 0.499 of priority rank) Dark blue; 100% (from 0.00 to 0.249 of priority rank) Black. The areas in 

red and pink are largely those with high habitat suitability for the BTPD ecosystem, intact grassland, 

high habitat connectivity, and low threats. On the other end of the scale, the areas represented in black 

have the lowest conservation priority. These areas include high elevation and urban landscapes, the 

Nebraska sandhills (high quality grassland habitat, but unsuitable sandy soils), and grassland that has 

been converted to cropland (much of the eastern portion of the BTPD range). For example, areas in the 

top 30% priority include the light read, dark red, pink, yellow and part of the light blue pixels.  

 
 

Fig. 4. Current and future priority area scenarios across the black-tailed prairie dog geographic range. a) 

Conservation priorities under the current climate; b) conservation priorities under the warm and wet (W&W) 

future climate scenario; c) conservation priorities under the hot and dry (H&D) future climate scenario; d) 

overlap of the top 25% conservation priorities across the present and future climate scenarios.  
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The priorities change dramatically when we look by state, instead of across the entire BTPD 

range; this is to be expected because we are specifically modelling for priority habitat within each state 

(Fig. 5). We did this because funding sources and conservation priorities are often at the state-level, and 

not range-wide. This way, each state has information on conservation priorities within their own 

jurisdictional boundaries. In these state-based scenarios, much of the high priority habitats in Arizona, 

New Mexico, and Texas remain high priority under the future climate scenarios. Using the state-based 

scenarios, we identified 26,935,416 ha (16%) that represent high conservation priority under current 

and projected future climates (Table 3; Fig. 5d). 

 

 
 

Fig. 5. Current and future priority area scenarios across the black-tailed prairie dog geographic range, within each 

state. a) Conservation priorities under the current climate; b) conservation priorities under the warm and wet 

(W&W) future climate scenario; c) conservation priorities under the hot and dry (H&D) future climate scenario; 

d) overlap of the top 25% conservation priorities across the present and future climate scenarios. 
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Climate Scenario Area (ha) Area (km2) % 

Present 3,318,975 33,189.75 2.08 

Future W&W 1,414,179 14,141.79 0.89 

Future H&D 1,093,014 10,930.14 0.68 

Future H&D and W&W 2,914,704 29,147.04 1.82 

Present and Future W&W 977,670 9,776.7 0.61 

Present and Future H&D 867,672 8,676.72 0.54 

Total Overlap 26,935,416 269,354.16 16.86 

 

Only a tiny fraction of the priority habitat that overlaps across all three climate scenarios 

(shown in green in Figures 4d and 5d) is currently protected (PAD-US Gap 1 and Gap 2 and Private 

Conservation Lands, see Table 1) (Fig. 6). Indeed, 0.63% of the high priority areas (top 25%) across the 

BTPD geographic range occur within protected areas (Fig. 6). The total amount of protected area that 

overlaps with the top 25% of priority areas across the BTPD range is 1,006,000 ha (0.63%). Whereas, 

26,115,300 ha (16%) of the top priority areas remain unprotected (Fig. 6b). Among the high 

conservation priority areas by state, 757,647 ha (0.47%) occur within 

protected areas, whereas 26,177,742 ha (16%) remain unprotected (Fig. 

6c).  

 

Table 3. Amount and percent of area occurring within the top (25%) priority 

areas within each state, shown in Figure 5. Red represents top priority areas under 

current climate only. Orange represents where top priority areas overlap for one of 

the future climate scenarios (warm and wet, W&W; or hot and dry, H&D) and the 

present climate. Yellow represents where top priority areas overlap for both future 

climate scenarios, but not current climate. Green represents where top priority 

areas overlap across current climate and both future climate scenarios. 

 

Fig. 6. Relationship of the top 

25% priority areas and lands 

already managed for 

conservation, based on the 

Protected Areas Database (Gap 1 

& 2 status) and Private Land 

Conservation Areas (see Table 

1). (a) Shows protected areas in 

green; (b) shows the high 

conservation priority areas (top 

25%) that remain unprotected 

(16% of the BTPD range); (c) 

shows the high conservation 

priority areas within each state 

(top 25%) that remain 

unprotected (16% of the BTPD 

range). 
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The overwhelming threat across the BTPD range 

is conversion of grasslands to croplands and consequent 

fragmentation of habitat (Fig. 7). The loss of native 

grasslands to agriculture has been and is predicted to be 

greatest across the eastern part of the BTPD range, 

especially across the central and southern plains in Texas, 

Oklahoma, and Kansas. Oil and gas development and 

wind turbine establishment also are significant threats, 

especially across this same region.  

 We found that general spatial patterns of priority 

area locations, across present and future climate 

scenarios, were not strongly impacted by the social and 

political data layers used in our analysis (Table 1). Habitat 

suitability, connectivity, and threats played a larger role 

in determining the potential landscapes for conservation 

priority. Nevertheless, social attitudes and political 

culture strongly impact the success of on-the-ground 

conservation efforts and may drive the decisions of local 

managers. Given this, we created several maps to 

help illuminate those areas where conservation 

might be positively or negatively impacted by the 

social and political landscapes (Figs. 8 and 9). The 

goal here was to help inform managers and 

conservation practitioners where there might be 

social support/contention and institutional 

resources for prairie dog ecosystem conservation.  

When identifying conservation priorities for on-the-ground implementation projects, the 

primary goal should be to protect and restore habitat that is most suitable, followed by the surrounding 

landscape potential, and threats. The maps presented in Figures 8 and 9 aim to help inform decision 

making for prioritizing conservation efforts. The social layers, here, provide insights into the relative 

ease or difficulty in securing the best habitats (Fig. 8). Priority areas might change, for example, when 

habitat values are equal (or nearly equal). That is, assuming two high quality patches of habitat, we 

might choose the socially “cheapest” patch first. The other datasets showing Federal and Private 

Conservation Incentives (Fig. 9) illuminate how the availability of such incentives might reduce the 

social costs in high-priority habitats. The red areas in Figure 9 are places where conservation incentives 

are likely to be helpful for securing high priority conservation areas, whereas the blue areas are places 

where the incentive is likely to be adopted but may fail to secure meaningful conservation, and the 

yellow are priority areas that are not likely to be successfully secured with incentives. 
 

 

Fig. 7. Gradient of threats (high to low) across 

the black-tailed prairie dog geographic range. 

Threats represented in this map: mean tillage 

risk, number of active oil wells, distance to 

transmission lines, presence of wind turbines, 

roads (primary and secondary), and percent of 

trees. 
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Fig. 8. This map represents social willingness to support prairie 

dog conservation. Delta represents the change in the priority 

value when social layers were included versus excluded from 

the analysis shown in Figure 4a (Conservation priorities across 

full BTPD range under current climate and with social layers 

included in the model minus Conservation priorities across the 

full BTPD range under current climate without social layers). 

The positive values show places where conservation priorities 

(represented in Figure 4a) were increased by the presence of 

social support for prairie dog conservation, whereas negative 

values show areas that lost priority ranks due to low social 

support for prairie dog conservation. The original social data 

are from a range-wide Prairie Dog Survey conducted by 

Williamson et al. (unpublished). Grey areas represent masked-

out regions of unsuitable habitat (see Table 1). 

 

Fig. 9. Bivariate maps showing the spatial distribution of conservation priorities across full BTPD range under 

current climate (priorities identified in Fig. 4a) and how they overlap with preferences for: a) federal and b) 

private conservation incentives. The positive values show places where conservation priorities were increased by 

the presence of social support for prairie dog conservation, whereas negative values show areas that lost priority 

ranks due to low social support for prairie dog conservation. The original social data are from a range-wide 

Prairie Dog Survey conducted by Williamson et al. (unpublished); see Table 1 for details.  
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Landownership also plays an important role in on-the-ground conservation potential (Table 4, 

Fig. 10). Most of the priority areas for conservation that we identified, across all three climate scenarios, 

were located on private land, compared to public land. However, across the western distribution of the 

BTPD range there remains considerable public land, especially federal and state land, and indigenous 

land that may provide valuable opportunities for conservation of the BTPD ecosystem. Yet, the extent 

to which federal and state lands will support prairie dog ecosystem conservation, is strongly influenced 

by the social and political landscapes within which they are located. There also is considerable Private 

Lands Conservation along the western distribution of the BTPD range, which overlaps with many high 

priority areas. The landownership maps underscore the importance of working with private 

landowners and local communities when implementing conservation measures to support prairie dog 

ecosystem conservation.  

 

Table 4. Shows how much high priority habitat (identified in green in Fig. 4d) overlaps 

 with different landownership categories, across the black-tailed prairie dog geographic range. 

Landownership Area (ha) % 

Federal 2,908,617 11% 

Federal, Designated 325,847 1% 

Indigenous Lands 2,474,793 9% 

Joint 8,910 0% 

Local Government 44,465 0% 

NGO 33,348 0% 

Private Conservation Land 79,709 0% 

Regional Agency Special District 2,902 0% 

State 2,215,959 8% 

Private Land 19,026,599 70% 
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a  b  

Fig. 10. Map a) shows the different landownership types occurring across the black-tailed prairie dog (BTPD) 

geographic range (data is from PAD-US44), and b) shows a zoomed-in view of rangewide BTPD conservation 

priorities under current climate (as identified in Fig. 4a), with red areas showing high priority habitat for the 

BTPD ecosystem and blue showing low priority habitat. Panel b also shows some landownership classes (Private 

Lands Conservation Areas, Gap Status 1, and Gap Status 2; see Table 1 for details) and how they overlap with 

priority habitat. 

 

 

FINAL PRODUCTS 

 

The final map products have been posted online through the Colorado Natural Heritage Program 

(CNHP) at Colorado State University, the Western Association of Fish and Wildlife Agency (WAFWA), 

and made available through an interactive web map 36 (Table 5). Within the interactive web map, users 

can view the output raster layers of the modeled priority areas and have the ability to query the NHF 

grid for additional information associated with each cell. The attribute table associated the NHF 

contains summaries (mean, percent, total area) of input variables and model outputs. Queries made 

against NHF cells reveal summarized data from over 30 layers to provide an array of useful 

information.   

 

  

https://cnhp.colostate.edu/projects/hotr/
https://wafwa.org/initiative-programs/prairie-dog/
https://ku.maps.arcgis.com/home/item.html?id=68ea768d0e3143d3a5673c8af2564ba3
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Table 5. List of data products produced. 

Dataset product type format resolution access 

Priority areas for the BTPD ecosystem 
across BTPD range, under current 
climate  

raster geo-TIF 90m; 900m CNHP 
WAFWA 

Priority areas for the BTPD ecosystem 
across BTPD range, under future climate 
(2100) warm & wet scenario 

raster geo-TIF 90m; 900m CNHP 
WAFWA 

Priority areas for the BTPD ecosystem 
across BTPD range, under future climate 
(2100) hot & dry scenario 

raster geo-TIF 90m; 900m CNHP 
WAFWA 

Overlap of the top 25% conservation 
priorities across BTPD range, under the 
present and future climate scenarios 

raster geo-TIF 900m CNHP 
WAFWA 

Priority areas for the BTPD ecosystem by 
state, under current climate  

raster geo-TIF 90m; 900m CNHP 
WAFWA 

Priority areas for the BTPD ecosystem by 
state, under future climate (2100) warm 
& wet scenario 

raster geo-TIF 90m; 900m CNHP 
WAFWA 

Priority areas for the BTPD ecosystem by 
state, under future climate (2100) hot & 
dry scenario 

raster geo-TIF 90m; 900m CNHP 
WAFWA 

Overlap of the top 25% conservation 
priorities by each state, under the 
present and future climate scenarios 

raster geo-TIF 900m CNHP 
WAFWA 

Readme Overlap Combinations text Text  CNHP 
 

NHF hexagon grid  polygon gdb 1 km2 ku.maps.arcgis.com  
Search for “BTPD” 

Threat map Image TIF 900m CNHP 
 

Landownership map (PAD-US) 
summarized 

polygon gdb 900m CNHP 
 

Delta map showing social willingness to 
support prairie dog conservation, based 
on Prairie Dog Survey by Williamson et 
al. (unpublished) 

raster geo-TIF 900m CNHP 
 

 

 

  

https://cnhp.colostate.edu/projects/hotr/
https://wafwa.org/initiative-programs/prairie-dog/
https://cnhp.colostate.edu/projects/hotr/
https://wafwa.org/initiative-programs/prairie-dog/
https://cnhp.colostate.edu/projects/hotr/
https://wafwa.org/initiative-programs/prairie-dog/
https://cnhp.colostate.edu/projects/hotr/
https://wafwa.org/initiative-programs/prairie-dog/
https://cnhp.colostate.edu/projects/hotr/
https://wafwa.org/initiative-programs/prairie-dog/
https://cnhp.colostate.edu/projects/hotr/
https://wafwa.org/initiative-programs/prairie-dog/
https://cnhp.colostate.edu/projects/hotr/
https://wafwa.org/initiative-programs/prairie-dog/
https://cnhp.colostate.edu/projects/hotr/
https://wafwa.org/initiative-programs/prairie-dog/
https://cnhp.colostate.edu/projects/hotr/
https://ku.maps.arcgis.com/home/gallery.html?view=grid&sortOrder=desc&sortField=relevance
https://cnhp.colostate.edu/projects/hotr/
https://cnhp.colostate.edu/projects/hotr/
https://cnhp.colostate.edu/projects/hotr/
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