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ABSTRACT 

 

 

 

ENHANCED WATERSHED MODELING AND DATA ANALYSIS WITH A FULLY 

COUPLED HYDROLOGIC MODEL AND CLOUD-BASED FLOW ANALYSIS 

 

 

 

In today’s world of increased water demand in the face of population growth and climate 

change, there are no simple answers. For this reason many municipalities, water resource 

engineers, and federal analyses turn to modeling watersheds for a better understanding of the 

possible outcomes of their water management actions. The physical processes that govern 

movement and transport of water and constituents are typically highly nonlinear. Therefore, 

improper characterization of a complex, integrated, processes like surface-subsurface water 

interaction can substantially impact water management decisions that are made based on existing 

models. Historically there have been numerous tools and watershed models developed to analyze 

watersheds or their constituent components of rainfall, run-off, irrigation, nutrients, and stream 

flow. However, due to the complexity of real watershed systems, many models have specialized 

at analyzing only a portion of watershed processes like surface flow, subsurface flow, or simply 

analyzing local monitoring data rather than modeling the system. 

As a result many models are unable to accurately represent complex systems in which 

surface and subsurface processes are both important. Two popular watershed models have been 

used extensively to represent surface processes, SWAT (Arnold et al, 1998), and subsurface 

processes, MODFLOW (Harbaugh, 2005). The lack of comprehensive watershed simulation has 

led to a rise in uncertainty for managing water resources in complex surface-subsurface driven 

watersheds. For this reason, there have been multiple attempts to couple the SWAT and 
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MODFLOW models for a more comprehensive watershed simulation (Perkins and Sophocleous, 

1999; Menking, 2003; Galbiati et al., 2006; Kim et al., 2008); however, the previous couplings 

are typically monthly couplings with spatial restrictions for the two models. Additionally, most 

of these coupled SWAT-MODFLOW models are unavailable to the general public, unlike the 

constituent SWAT and MODFLOW models which are available. Furthermore, many of these 

couplings depend on a forced equal spatial discretization for computational units. This requires 

that one MODFLOW grid cell is the same size and location of one SWAT hydrologic response 

unit (HRU). Additionally, many of the previous couplings are based on a loose monthly average 

coupling which might be insufficient in natural spring and irrigated agricultural driven 

groundwater systems which can fluctuate on a sub-monthly time scale. 

The primary goal of this work is to enhance the capacity for modeling watershed 

processes by fully coupling surface and subsurface hydrologic processes at a daily time step. The 

specific objectives of this work are 1) to examine and create a general spatial linkage between 

SWAT and MODFLOW allowing the use of spatially-different existing models for coupling; 2) 

to examine existing practices and address current weaknesses for coupling of the SWAT and 

MODFLOW models to develop an integrated modeling system; 3) to demonstrate the capacity of 

the enhanced model compared to the original SWAT and MODFLOW models on the North Fork 

of the Sprague River in the Upper Klamath Basin in Oregon. 

The resulting generalized daily coupling between a spatially dis-similar SWAT and 

MODFLOW model on the North Fork of the Sprague River has resulted in a slightly more lower 

representation of monthly stream flow (monthly R
2
 = 0.66, NS = 0.38) than the original SWAT 

model (monthly R
2
 = 0.60, NS = 0.57) with no additional calibration. The Log10 results of 

stream flow illustrate an even greater improvement between SWAT-MODFLOW correlation 
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(R
2
) but not the overall simulation (NS) (monthly R

2
 = 0.74, NS = -0.29) compared to the 

original SWAT (monthly R
2
 = 0.63, NS = 0.63) correlation (R

2
). With an improved water table 

representation, these SWAT-MODFLOW simulation results illustrate a more in depth 

representation of overall stream flows on a groundwater influenced tributary of the Sprague 

River than the original SWAT model. 

Additionally, with the increased complexity of environmental models there is a need to 

design and implement tools that are more accessible and computationally scalable; otherwise 

their use will remain limited to those that developed them. In light of advancements in cloud-

computing technology a better implementation of modern desktop software packages would be 

the use of scalable cloud-based cyberinfrastructure, or cloud-based environmental modeling 

services. Cloud-based deployment of water data and modeling tools assist in a scalable as well as 

platform independent analysis; meaning a desktop, laptop, tablet, or smart phone can perform the 

same analyses. To utilize recent advancements in computer technology, a further focus of this 

work is to develop and demonstrate a scalable cloud-computing web-tool that facilitates access 

and analysis of stream flow data. The specific objectives are to 1) unify the various stream flow 

analysis topics into a single tool; 2) to assist in the access to data and inputs for current flow 

analysis methods; 3) to examine the scalability benefits of a cloud-based flow analysis tool. 

 Furthermore, the new Comprehensive Flow Analysis tool successfully combined time-

series statistics, flood analysis, base-flow separation, drought analysis, duration curve analysis, 

and load estimation into a single web-based tool. Preliminary and secondary scalability testing 

has revealed that the CFA analyses are scalable in a cloud-based cyberinfrastructure environment 

to a request rate that is likely unrealistic for web tools.  
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CHAPTER 1: INTRODUCTION 

 

 

 

A continuing focus of water resources planning and management is assessing the impacts 

of changing land use and climate conditions on stream flow. At the heart of this type of analysis 

is the use of existing water data and various tools to analyze things like the base-flow 

contribution and model these watershed systems. Many studies have focused on the impacts of 

land use and/or climate change on both the hydrological response of a system (Lettenmaier et al., 

1999; Wood et al., 2004; Hay et al., 2011) and water quality changes within the system (Jeppsen 

et al., 2007; Solheim et al., 2010; Ahmadi et al., 2013). Various other topics examined are the 

impacts and severity of flooding (IACWD, 1982), droughts (Salas et al., 2005), and different 

point and non-point source stream pollution impacts (Cleland, 2007). 

The physical processes that govern movement and transport of water and constituents are 

typically highly nonlinear resulting in complex algorithms to attempt to simulate these processes. 

An example of this non-linearity is the interaction between surface and subsurface water process 

which recursively alters soil percolation based on soil moisture content as affected by the depth 

to groundwater which increases with greater soil percolation. Therefore, improper 

characterization of these integrated processes can substantially impact water management 

decisions that are made based on existing models. A further hindrance to decision making is a 

generally poor accessibility to available flow analysis tools and insufficient infrastructure for the 

tool to support on-demand scalability. 

Historically there have been numerous tools and watershed models developed to analyze 

watersheds or their constituent components of rainfall, run-off, irrigation, nutrients, and stream 

flow. However, due to the complexity of real watershed systems, many models have specialized 
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at analyzing only a portion of watershed processes like surface flow, subsurface flow, or simply 

analyzing local monitoring data rather than modeling the system. As a result many models are 

unable to accurately represent complex systems in which surface and subsurface processes are 

both important. The lack of comprehensive watershed simulation has led to a rise in uncertainty 

for managing water resources in complex surface-subsurface driven watersheds. Without the 

inclusion of both surface and groundwater hydrologic processes, decisions based on model 

results may not accurately reflect actual conditions in the watershed. The best way to solve this 

problem would be to integrate a surface process driven model with a subsurface process driven 

model on a refined temporal scale for a more comprehensive watershed simulation. 

Two popular watershed models have been used extensively to represent surface 

processes, SWAT (Arnold et al, 1998), and subsurface processes, MODFLOW (Harbaugh, 

2005). The popularity and focus of these models has led to multiple attempts to couple the 

models (Perkins and Sophocleous, 1999; Menking, 2003; Galbiati et al., 2006; Kim et al., 2008); 

however, the previous couplings are typically monthly couplings with spatial restrictions for the 

two models. Additionally, most of these coupled SWAT-MODFLOW models are unavailable to 

the general public, unlike the constituent SWAT and MODFLOW models which are available. 

Furthermore, many of these couplings depend on a forced equal spatial discretization for 

computational units (Kim et al., 2008; Chung et al., 2010). This requires that 1 MODFLOW grid 

cell is the same size and location of 1 SWAT hydrologic response unit (HRU). Additionally, 

many of the previous couplings are based on a monthly average coupling which might be 

insufficient in natural spring and irrigated agricultural driven groundwater systems in which 

water table elevation can fluctuate on a daily basis. 
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The primary goal of this work is to enhance the capacity for modeling watershed 

processes by fully coupling surface and subsurface hydrologic processes at a daily time step. The 

specific objectives of this work are 1) to examine and create a general spatial linkage between 

SWAT and MODFLOW allowing the use of spatially-different existing models for coupling; 2) 

to examine existing practices and address current weaknesses for coupling of the SWAT and 

MODFLOW models to develop an integrated modeling system; 3) to demonstrate the capacity of 

the enhanced model compared to the original SWAT and MODFLOW models. The performance 

of the coupled SWAT-MODFLOW model will be tested in the Upper Klamath Basin due to the 

complex groundwater interactions coupled with an interest in surface hydrology problems. 

Additionally, with the increased complexity of models of the environment there is a need 

to design and implement tools that are more accessible and computationally scalable. Otherwise 

their use will remain limited to those that developed them. Most models and analyses are 

desktop-based software packages that use local computer resources to execute. Recently there 

has been a shift in the implementation of these analyses to port them to the web with web-based 

graphical user interfaces to assist in with interacting with inputs and results of the analysis. 

However, in light of advancements in cloud-computing technology an even better 

implementation would be the use of scalable cloud-based cyberinfrastructure. Cloud-based 

deployment of water data and modeling tools assist in a scalable, as well as, platform 

independent analysis; meaning a desktop, laptop, tablet, or smart phone can perform the same 

analyses. 

To utilize recent advancements in computer technology, the focus of this work was to 

develop and demonstrate a scalable cloud-computing web-tool that facilitates access and analysis 

of stream flow data. The specific objectives are to 1) unify the various stream flow analysis 
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topics into a single tool; 2) to assist in the access to data and inputs for current flow analysis 

methods; 3) to examine the scalability benefits of a cloud-based flow analysis tool.  
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CHAPTER 2: COUPLING SWAT AND MODFLOW MODELS FOR ENHANCED 

ASSESSMENT OF HYDROLOGIC PROCESSES AT THE WATERSHED SCALE 

 

 

 

2.1: INTRODUCTION 

In today’s world of increased water demand in the face of population growth and climate 

change there are no simple solutions. For this reason many municipalities, water resource 

engineers, and federal analyses turn to modeling watersheds for a better understanding of the 

possible outcomes of their actions. These modeling efforts have typically focuses on either 

surface or subsurface water processes. The problem with this approach is that surface water 

models are typically unable to represent complex groundwater interaction and groundwater 

models lack the ability to model surface processes like plant growth. One popular surface water 

model, the Soil and Water Assessment Tool (SWAT) (Arnold et al, 1998) has repeatedly of 

performed poorly in heterogeneous groundwater driven systems (Peterson and Hamlett, 1998; 

Spruill et al., 2000; Chu and Shirmohammadi, 2004; Srivastava et al., 2006; Gassman et al., 

2007). Similarly a popular groundwater model, modular groundwater flow (MODFLOW) 

(Harbaugh, 2005) is unable to simulate surface processes like overland flow, sheet erosion, 

channel erosion, plant growth, nutrient cycling, and agricultural management (fertilizer and 

pesticide application). 

Due to the various benefits and drawbacks of watershed models there are a multitude 

available. A complication encountered when choosing a watershed scale model to use, is the 

multitude of choices. Many models are developed by research or government groups and are not 

typically used outside of those groups. A selection of some of the many available watershed 

scale models is graphed below in Figure 1 by how many peer-reviewed journal articles in a 
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database refer to using the model. As illustrated below, the most popular models by far are the 

surface water model SWAT and the subsurface groundwater model MODFLOW, although 

TOPMODEL (Beven et al., 1995) is significantly more popular than some of the other models as 

well. 

 

Figure 1: Watershed Models Listed by Number of Papers Available in Journal Paper Databases 

SWAT has been a useful tool for assessing water resources, pollution problems, and 

assessing environmental conditions worldwide (Gassman et al., 2007). However, SWAT is a 

lumped watershed model with emphasis on plant and crop growth, nutrient cycling, and sediment 

yields from urban, natural, and agricultural areas. Using SWAT in a groundwater dominated 

system can sometimes fail to accurately represent the heterogeneous groundwater flow processes 

due to this lumped approach (Peterson and Hamlett, 1998; Spruill et al., 2000; Chu and 

Shirmohammadi, 2004; Srivastava et al., 2006; Gassman et al., 2007). For this reason there has 

been recent work to couple SWAT with the saturated finite-difference groundwater model 

MODFLOW. One of the earliest couplings was by adding a print statement to SWAT for 

parameters necessary for MODFLOW and then a read statement in MODFLOW to read them 
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and use of a third software to convert the inputs for MODFLOW (Perkins and Sophocleous, 

1999). A different combined use of SWAT and MODFLOW was used during a lake analysis by 

Menking (2003; 2004) in which a SWAT model’s watershed outputs were used as inputs to the 

lake for a MODFLOW simulation. A more comprehensive simulation model was created by 

Galbiati et al. (2006) in which SWAT was coupled with MODFLOW for hydrologic simulation 

as well as MT3DMS for nutrient and chemical simulation. A later coupling of SWAT and 

MODFLOW via MODFLOW’s river package (Harbaugh et al., 2010) was performed by Kim et 

al. (2008) and for a better representation of base-flow in a watershed in South Korea. 

There are, however, numerous limitations to these existing couplings of SWAT and 

MODFLOW. The coupling of SWAT and MODFLOW by Perkins and Sophocleous (1999) 

relied on the use of a third software package to read and convert the SWAT outputs into 

MODFLOW inputs and vise-versa. The combination of SWAT and MODFLOW by Menking 

(2003; 2004) was not really a model coupling so much as using one model as an input 

preprocessor for the second model. The work by Galbiati that created a hydrology and 

nutrient/chemical coupling between SWAT, MODFLOW, and MT3DMS was only on a monthly 

basis thus restricting the interaction of SWAT and MODFLOW to only a monthly time step 

leaving sub-monthly groundwater interaction unrepresented. Kim et al. (2008) used a gridded 

preprocessing approach to force SWAT computational units (HRUs) to be the same size as the 

MODFLOW finite-difference grid cells, this reduces the computational efficiency of the lumped 

sub-basin approach that SWAT uses and requires the model extents and computational units to 

be the same size. This will typically require a user to create their own SWAT and MODFLOW 

project rather than using an available version of one model and having to only create the second. 
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The primary goal of this work is to enhance the capacity for modeling watershed 

processes by fully coupling surface and subsurface hydrologic processes at a daily time step. The 

specific objectives of this work are 1) to examine and create a general spatial linkage between 

SWAT and MODFLOW allowing the use of spatially-different existing models for coupling; 2) 

to examine existing practices and address current weaknesses for coupling of the SWAT and 

MODFLOW models to develop an integrated modeling system; 3) to demonstrate the capacity of 

the enhanced model compared to the original SWAT and MODFLOW models. The performance 

of the coupled SWAT-MODFLOW model will be tested in the North Fork of the Sprague River 

in the Upper Klamath Basin in Oregon due to the complex groundwater interactions, pre-existing 

spatially-dissimilar SWAT and MODFLOW models, and an interest the area’s hydrology 

problems. 

2.1.1: SWAT 

The Soil and Water Assessment Tool (SWAT) was developed by the U.S. Department of 

Agriculture’s Agricultural Research Service (USDA-ARS) (Arnold et al., 1998; Arnold and 

Fohrer, 2005; Neitsch et al., 2005; Gassman et al., 2007; Neitsch et al., 2011). It is a physically-

based, basin-scale, pseudo-distributed, continuous-time watershed model emphasizing surface 

processes. SWAT operates by taking a single watershed, gauged or ungauged, and breaks it into 

multiple sub-basins which are then further broken into multiple unique combinations of land use, 

soil, and slope known as Hydrologic Response Units (HRUs). Calculations in SWAT are 

performed for each HRU and then scaled up to the sub-basin outlet by the percent area of the 

HRU within the sub-basin. This approach results in the HRUs lacking the spatial relations 

typically seen in a fully distributed model, but yields a computationally efficient calculation 

scheme allowing for watershed simulation over large periods of time. 
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Due to the long history of SWAT, almost 30 years, and the documentation of its 

subroutines, the application of SWAT models has grown worldwide in the past decade (Gassman 

et al., 2007). In the U.S., SWAT models are increasingly used to assist in Total Maximum Daily 

Load (TMDL) development (Borah et al., 2006) and to better understand the impacts of field 

management schemes for soil conservation and nutrient control. One meso-scale use of SWAT 

has been in the Hydrologic Unit Model of the U.S. (HUMUS) (Arnold et al., 1999b) in which all 

of the U.S. Geological Survey (USGS) 8-digit Hydrologic Cataloging Unit (HCU) watersheds 

(Seaber et al., 1987) in the continental U.S. were simulated. Use of the SWAT model however, 

has not been limited to the U.S., numerous projects in Europe have used SWAT to analyze and 

quantify the impacts of climate and management change on European watershed. One example 

being the European Commission’s (EC) Climate Hydrochemistry and Economics of Surface-

water Systems (CHESS) project (CHESS, 2001). The popularity and use of SWAT is apparent 

on its website database which contains over 1500 articles about SWAT used to examine 

watershed problems (https://www.card.iastate.edu/swat_articles). Additionally, to assist in the 

preparation of the various input files for the SWAT model, a free map-based ArcGIS interface 

call ArcSWAT was developed. ArcSWAT assists in delineating the watershed and processing 

raw data inputs like elevation maps and soil types into the required inputs files for the model. 

The SWAT model begins with climate information daily precipitation, maximum and 

minimum temperature, solar radiation, relative humidity, wind speed. Then surface runoff is 

calculated by either the United States Department of Agriculture Natural Resources 

Conservation Service (USDA-NRCS) curve number method (USDA-NRCS, 2004) or the Green-

Ampt method. Then a hydrologic balance, precipitation, interception, surface runoff, infiltration, 

evapotranspiration, lateral subsurface flow, and return flow from the shallow aquifer, per HRU is 
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calculated and routed to the sub-basin’s stream and then outlet. The land phase of the water 

balance calculated by SWAT per HRU is shown below in Figure 2 with units of mm of H2O, 

where SWt is the final soil water content, SW0 is the initial soil water content, t is the time in 

days, Rday is the amount of precipitation on day i, Qsurf is the amount of surface runoff on day i, 

Ea is the amount of evapotranspiration on day i, wseep is the amount of percolation and bypass 

flow exiting the soil profile bottom on day i, and Qgw is the amount of return flow on day i. 

 

Figure 2: SWAT Model Water Balance Equation 

Evapotranspiration can be calculated using the Penman-Monteith (Monteith, 1965), 

Priestly-Taylor (Priestly and Taylor, 1972), or Hargreaves (Hargreaves et al., 1985) models 

(Gassman et al., 2007). SWAT also contains a number of subroutines to handle both forest and 

agricultural areas. Forest growth from seed to mature stand and crop planting, crop harvest, 

tillage, nutrient (fertilizer) application, and pesticide application can be simulated. The 

application amount and timing of fertilizers and pesticides can be customized using the many 

different management options allowed by SWAT. Sediment runoff from HRUs and channel 

erosion is also simulated in SWAT using the Modified Universal Soil Loss Equation (MUSLE) 

(Williams and Berndt, 1977). The nitrogen and phosphorous amounts in application and soil and 

water content can be simulated and tracked using multiple organic and inorganic nutrient pools 

and calculate a resulting nutrient loading to and concentration in the streams (Gassman et al., 

2007). SWAT then lumps flow, sediment, nutrient, and pesticide and calculates loadings to the 

river with a lagged release, based on the time of concentration of the HRU. The scope of the 
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processes covered by the SWAT subroutines is shown below in Figure 3; however the 

groundwater processes used by SWAT are a simplified lumped-parameter approach. 

 

Figure 3: SWAT Model Watershed Processes 

2.1.2: SWAT GROUNDWATER DISCHARGE TO RIVERS 

As outlined by Gassman et al. (2007), there are numerous examples in which SWAT 

stream flow simulation has performed poorly for various groundwater-driven systems. SWAT 

contains groundwater subroutines but most of these problems stem from the lumped parameter 

approach used to handle what is actually a distributed groundwater flow processes. In northeast 

Pennsylvania, Peterson and Hamlett (1998) encountered problems applying SWAT to the Ariel 

Creek watershed for proper base-flow representation. They found that this complication was due 

to the presence of fragipan soils, soils containing a vertically impermeable layer causing more 

lateral flow. A further complication of not fully distributing the groundwater processes inside 

SWAT was discovered by Spruill et al. (2000) for a calibrated experimental watershed in which 

poor simulation of peak flows and recession rates were observed in combination with accurate 

monthly flows. A similar problem was found by Chu and Shirmohammadi (2004) with an 

unusually wet year in a 3.5 km
2
 Maryland watershed. When the wet year was removed from the 

analysis period the model performed well; however, when included the model failed to properly 
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estimate base-flow. Additionally, Srivastava (2006) found a poor representation of base-flow and 

other flow characterization by SWAT on the West Branch Brandywine Creek in Southwest 

Pennsylvania. 

Some recent work on climate change impacts to wetland extent and water quality changes 

has focused on the Upper Klamath Basin in southwestern Oregon (Records, 2013). However, as 

illustrated by Gannett et al. (2010) the area of the Upper Klamath Basin is a heavily groundwater 

influenced system with an abundance of natural springs with complex interaction due to 

underlying volcanic strata. The sustained base-flow levels of the North Fork of the Sprague 

River have proven difficult to simulate using SWAT (Records, 2013) even after auto-calibration. 

Therefore, a manual calibration was then performed to fine tune the watershed parameters and 

yield a better match of base-flow on the North Fork of the Sprague River. The resulting 

simulation showed a more elevated base-flow closer to the real system but caused an annual 

trend in the base-flow level which was not observed in the watershed.  For this reason it was 

determined that the lumped groundwater parameters of SWAT may be unable to handle complex 

groundwater processes like this without modifying the source code. A further discussion of 

SWAT’s inability to capture accurate groundwater processes in the Upper Klamath Basin is 

included in the Section 2.3: Results and Discussion. 

2.1.3: MODFLOW 

A similar watershed scale model to SWAT is the groundwater model MODFLOW 

developed by the United States Geological Survey (USGS) (McDonald and Harbaugh 1988; 

Hargaugh et al., 2000; and Harbaugh 2005). MODFLOW is a three-dimensional, saturated, 

physically-based, finite-difference groundwater model. This grid-based subsurface flow model 

combines a simple mass balance with Darcy’s law to simulate both steady and transient state 
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groundwater conditions. A recent addition to the MODFLOW package is a Newtonian based 

solver algorithm which better satisfies the complex non-linear drying and re-wetting of grid cells 

in unconfined groundwater systems (Niswonger et al., 2011). Through the use of various 

packages in MODFLOW the surface and subsurface process of groundwater recharge (Harbaugh 

et al., 2000), vadose zone percolation (UZF1 package) (Niswonger et al., 2006), 

evapotranspiration (Harbaugh et al., 2000), and river-aquifer interactions (Harbaugh et al., 2000), 

and more can be simulated. Some of the various processes that can be modeled by MODFLOW 

are shown in Figure 4. An additional benefit to MODFLOW models is that numerous regional 

aquifers already have MODFLOW models built for them thanks to the work by the USGS 

(Christenson et al., 2011; Paschke 2011; Gannett et al., 2012; and Mashburn et al., 2013). 

However, MODFLOW is unable to simulate overland flow, sheet erosion, channel erosion, plant 

and crop growth, nutrient cycling, or agricultural management (pesticides and fertilizers). 

 

Figure 4: MODFLOW Model Watershed Processes 

Like most groundwater models, MODFLOW lacks the ability to simulate pollutant 

transport because it focuses only on groundwater hydrology. For this reason there have been a 

number of efforts to model pollutant advection, dispersion, and reaction based on the outputs of 

common groundwater models like MODFLOW. One such modular three-dimensional transport 
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model (MT3D) was developed by Zheng (1990). MT3D was built to use MODFLOW’s 

groundwater hydrology results and determine a pollutant reactive transport solution; later MT3D 

was modified into MT3DMS to handle multi-species transport and interaction (Zheng and Wang, 

1999; Prommer et al., 2003). Another similar model for using MODFLOW results to model 

pollutant transport is the Reactive Transport 3D model (RT3D) developed by Clement et al. 

(1998). RT3D was later modified to handle 1-dimensional unsaturated groundwater pollutant 

transport using the results of the MODFLOW-UZF1 package (UZF-RT3D) (Bailey et al., 

2013b). However, a continued issue with this methodology is that these packages are not built 

into MODFLOW and only simulate subsurface chemical species transport. Although this is a 

step in the direction towards a complete watershed model, even with the use of RT3D or 

MT3DMS, MODFLOW is still unable to handle surface processes, channel erosion, and plant 

growth/cycling due to its limitation to subsurface processes. 

2.1.4: SURFACE-SUBSURFACE WATERSHED MODELING 

The idea of enhancing surface water models to more accurately reflect groundwater or 

groundwater models to more accurately reflect surface water processes is nothing new, but there 

are numerous ways to approach it. One combination of SWAT with a distributed groundwater 

model was by Perkins and Sophocleous (1999; Sophocleous and Perkins 2000). In this case, 

SWAT was combined with MODFLOW in order to pass in the MODFLOW inputs of tributary 

flow, recharge, and evapotranspiration (ET). This model was built, calibrated and tested in a set 

of river basins in Kansas to facilitate a better understanding and analysis of the groundwater 

pumping in the area. The coupling between these models was accomplished with a read/write 

subroutine added to both SWAT and MODFLOW for input files while an interceptor program 

was written to handle the conversion of the different spatial and temporal scales between models. 
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MODFLOW was modified to include an additional subroutine which took SWAT tributary flow 

results and initialized and mapped stream outputs to grid cells and ET, recharge and 

pumping/irrigation demands. SWAT was similarly modified to average land use and HRU 

differences per sub-basin to pass into the MODFLOW model. SWAT was further modified to 

lump and output simulation results per day, month, or year for use with MODFLOW’s 

groundwater modeling time step. 

A continuation and addition to this model was performed by Conan et al. (2003) with the 

addition of a groundwater nutrient transport model to the coupling. The watershed of interest this 

time was the Coet-Dan watershed in Brittany, France where a nitrate problem has developed due 

to historical agriculture development. A preliminary investigation of the pollutant led to the 

understanding that the nitrate surface pollutant leached to the groundwater and was then 

transported to the streams by groundwater base-flow. This combined surface water/groundwater 

interaction lent itself to being modeled by the combined surface water/groundwater model of 

Sophocleous’s SWAT and MODFLOW model. The only complication was the lack of a 

groundwater nutrient model. The groundwater pollutant advection, dispersion, reaction model, 

MT3D (Zheng, 1990) was therefore incorporated into the combined SWAT and MODFLOW 

model to handle unsaturated zone flow nitrate leaching and complete the watershed model in 

both water quantity and quality. Again, this coupling of SWAT and MODFLOW was 

accomplished through the use of a third input conversion model outside of the SWAT and 

MODFLOW codes.  

A combined use, not combined model, of SWAT and MODFLOW was performed on the 

Estancia basin in New Mexico (Menking et al., 2003) and a look into the same basin during the 

last glacial period was also examined (Menking et al., 2004). In these studies a SWAT model 
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was used to determine overland hydrology inputs to a large lake and the lake level was then 

modeled using MODFLOW with the lake (LAK2) package (Council, 1999). The SWAT and 

MODFLOW models were not coupled so much as compared and various inputs/outputs were 

post processed and used in the other model. 

Another surface water-groundwater model combination, ParFlow, by Kollet and Maxwell 

(2006) incorporates a two dimensional surface model with a three dimensional variably saturated 

groundwater flow model. The surface model simulates land surface, vegetation, and overland 

flow and is used as a boundary condition to the groundwater model allowing a simultaneous 

solution of the two systems. The resulting surface/subsurface model compared well to the 

existing models of Hec-1, MODHMS, and Hydrologic Simulation Program-Fortran (HSPF). 

While the surface model in ParFlow allows for calculation of evaporation, transpiration, freeze-

thaw processes, and heat fluxes (Ferguson and Maxwell, 2010) it does not simulate nutrient 

cycling and erosion yields. 

A different combined surface/subsurface watershed model was created by Galbiati et al. 

(2006) where they combined SWAT, MODFLOW, and MT3DMS into the Integrated Surface-

Subsurface Model (ISSM). In this combination SWAT was used to simulate the surface water 

dynamics as well as unsaturated zone and plant interactions while MODFLOW was used to 

simulate the saturated zone hydrology. Then MT3DMS was used to determine pollutant 

advection, dispersion, and reaction in the subsurface and pass the results back to SWAT. The 

coupling of SWAT and MODFLOW in ISSM was accomplished through the stream routing 

(STR1) package of MODFLOW (Prudic et al., 2004). SWAT and MODFLOW were run on a 

monthly time step with stream seepage and base-flow contribution from MODFLOW added to 

the results of SWAT’s own stream routing functions. Combining the model in this fashion and 
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calibrating the resulting model for the Bonello watershed in Italy yielded reasonable results on a 

heavily agricultural and costal watershed. This monthly coupling however does not lend itself to 

simulation of a complex sub-monthly groundwater-surface water connection because the models 

are only run on a monthly time step. 

An early attempt to augment the algorithms in MODFLOW to better represent surface 

processes resulted in the creation GSFLOW (Markstrom et al., 2008). GSFLOW combines the 

groundwater model of MODFLOW-2005 with the Precipitation Runoff Model System (PRMS). 

GSFLOW couples the models to simulate the surface domain and governing equations 

independently of the subsurface domain. This coupling is different than the approach taken by 

ParFlow (Kollet and Maxwell, 2006) which simultaneously solves the surface and subsurface 

governing equations. GSFLOW can provide an accurate simulation of the hydrologic response in 

both the surface and subsurface systems but still lacks the ability to simulate nutrient cycling, 

pesticide transport, crop-growth and die-off, or sediment yields. 

Work by Kim et al. (2008) took a gridded approach to SWAT and chose to combine it 

with the finite-grid groundwater model MODFLOW. Kim et al. preprocessed the SWAT input 

information into the same grid sizes used by the MODFLOW model so that the passing of 

information from grid-based HRUs to grid-based MODFLOW could be accomplished without 

multiple HRUs contributing to a grid or vise-versa. The aquifer-river interactions in this 

particular model were handled by MODFLOW using the river (RIVR) package (Harbaugh et al., 

2010). The resulting model was applied to the Musimcheon Basin in Korea resulting in a better 

representation of stream base-flows and groundwater pumping effects than the original SWAT 

method. A continuation of the work by Kim et al. (2008) takes a special look at groundwater 

recharge rates in the Mihocheon watershed in South Korea (Chung et al., 2010) and found them 
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much better represented in the combined SWAT-MODFLOW model than by the original SWAT 

alone. This coupling was more closely coupled than the work by Sophocleous and Perkins 

(1999) but still fails to retain the full computational benefits of the pseudo-distributed original 

SWAT model and uses extra computer resources to read and write the input files to pass between 

the two models. 

Another combined surface-subsurface hydrology model, Catchment Hydrology 

(CATHY) uses a path-based overland flow combined with a coarser gridded subsurface model 

(Camporese et al., 2010). CATHY uses threshold based boundary conditions to convert potential 

water fluxes in the system into actual fluxes passed between the surface and subsurface modules 

within it. CATHY includes routines for hill slope runoff, channel flow, lake areas, and 

subsurface interactions. However, CATHY is not capable of simulating plant growth or nutrient 

transport/cycling because it is only a hydrology model. 

A further continuation of the work by Sophocleous and Perkins (1999) is a special 

modification of their combined SWAT-MODFLOW model (SWATMOD99) to better handle 

unsaturated and saturated zone processes in an arid environment (Luo and Sophocleous, 2011). 

They added special subroutine process to handle the conversion and pass back of groundwater 

depth, percolation, and evapotranspiration. After modification this model was applied to the 

Hetao Irrigation District, Inner Mongolia, China and illuminated high conveyance losses in the 

irrigation canals of the area. The issue still with this model is the loose coupling of the systems 

and as well as the outdated SWAT and MODFLOW software versions. To partially address this, 

Luo and Sophocleous (2011) updated this coupling from SWAT 99.2 to SWAT 2000 but the 

MODFLOW model remained the 1996 version. It would be more beneficial for this model to be 
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combined with the newest available version of SWAT, SWAT 2012 (Neitsch et al., 2011) and 

the most recent MODFLOW, MODFLOW-NWT (Niswonger et al., 2011). 

Because SWAT is a pseudo-distributed model a logical step to better represent the 

heterogeneous distributed that actually exists would be to disaggregate SWAT’s HRUs in a 

preprocessing to support a more gridded approach. This in turn can better represent groundwater 

properties and processes in the same model by reflecting the spatial heterogeneity of the system 

in the inputs. One example of this is the work by Rathjens and Oppelt (2012), in order to retain 

the high resolution spatial inputs they built a gridded SWAT setup. A gridded approach is vastly 

different than the sub-basin/HRU setup currently in SWAT. This is primarily evident in that the 

gridded runoff needs to be routed from one grid to the next and eventually to the river as opposed 

to the current SWAT infrastructure which routes each HRU independently to the sub-basin’s 

river then to the next sub-basin. The end result of the modifications was titled SWATgrid and 

successfully tested on the Lake Fork Texas watershed in Texas. This is an attempt to make the 

existing subroutines of SWAT handle the distributed processes of groundwater flow and 

transport perform better. However the existing SWAT routines are unable to handle complex 

groundwater processes and groundwater pollutant transport problems like the reactive transport 

of selenium and nitrate in an irrigated agricultural area (Bailey et al., 2013a; Bailey et al., 2014). 

2.2: METHODS AND MODELS 

2.2.1 OVERVIEW 

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1995b; Arnold et al., 1998), 

and the U.S. Geological Survey’s Modular Ground-Water Flow Model (MODFLOW) 

(Harbaugh, 2005) were chosen for coupling. SWAT has been a useful tool for assessing water 
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resources, pollution problems, and assessing environmental conditions worldwide (Gassman et 

al., 2007). In addition to MODFLOW’s popularity, there are many regional-scale models 

available in the U.S. (Rumman and Payne 2003; Christenson et al. 2011; Paschke, 2011; Gannett 

et al., 2012; Mashburn et al., 2013). Summarized herein are the use of the Upper Klamath Basin 

MODFLOW model (Gannett et al., 2012) and a SWAT model for the Sprague River (Records, 

2013). The SWAT and MODFLOW models were coupled on a daily time step to allow for 

greater model feedback. Both the entire Sprague River and the groundwater influenced North 

Fork were chosen as a comparison to the original SWAT model and MODFLOW model. The 

SWAT model was calibrated by Records (2013) for the period from 2001 to 2006 while the 

MODFLOW model was calibrated by Gannett et al. (2012) for the period from 1970 to 2004. 

The period of analysis for the combined SWAT-MODFLOW model is from 1995 to 2004, which 

is the entire period of overlap between the SWAT, MODFLOW, and observed data. USGS 

Station 11495800 was used for comparison of the North Fork of the Sprague River and the 

USGS Station 11501000, prior to the Sprague River’s confluence with the Williamson River, 

was used for comparison of the entire Sprague River watershed.  

2.2.2 MODEL COUPLING 

In order to create a comprehensive surface/subsurface watershed model the surface model 

SWAT 2012 Revision 591 (Arnold et al., 1998) was coupled with the latest version of the 

groundwater model MODFLOW-NWT (Niswonger et al., 2011), which contains a Newtonian 

based solution method to analyze the non-linear drying/rewetting of grid cells for the original 

MODFLOW-2005 (Harbaugh, 2005). These models were coupled in such a fashion as to retain 

their respective strengths; SWAT was allowed to handle land surface processes, in-stream 

processes, and SWAT’s “soil zone” processes; MODFLOW-NWT handles inputs to the aquifer 
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with either 1-dimensional unsaturated subsurface recharge, using the Unsaturated Zone Flow 

(UZF1) package (Niswonger et al., 2006) or aquifer recharge with MODFLOW’s Recharge 

(RCH) package (Harbaugh et al., 2000),  interaction with the stream network, and groundwater 

pumping.  Figure 5 and Table 1 outline each watershed process or concept as handled by either 

SWAT or MODFLOW in the coupled SWAT-MODFLOW (SM) model. 

 

Figure 5: SWAT-MODFLOW Coupled Model Watershed Processes 

Table 1: SWAT-MODFLOW Coupled Model Watershed Processes 

SWAT Simulation MODFLOW Simulation 

Infiltration 

Aquifer 

Recharge via 

Either:  

The RCH package 

(Harbaugh et al., 2000) 

Evapotranspiration 

Vadose zone percolation 

below the soil profile via 

the UZF1 package 

(Niswonger et al., 2006) 

Plant Growth and Root 

Zone 
Water Table Elevation 

Overland Flow and 

Transport 
Saturated Groundwater Flow 

Lateral Subsurface flow in 

SWAT’s “Soil Zone” 

Groundwater pumping, via the WEL package 

(Harbaugh et al., 2000) 

Stream Flow and 

Transport 

Groundwater discharge to streams (base-flow), 

stream seepage to groundwater, via the RIVR 

package (Harbaugh et al., 2000). 
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To facilitate a more general coupling between SWAT’s spatially discontinuous HRU 

variables and MODFLOW’s spatially continuous grid-based variables, a series of linking 

functions to convert the variables were developed. This information was preprocessed using the 

geospatial software (ArcGIS Desktop: Release 10, Environmental Systems Research Institute 

Redlands, CA). Full step by step creation of the necessary inputs for this coupled SWAT-

MODFLOW model is documented in Appendix I. As a short explanation, the HRUs of SWAT 

were spatially disaggregated and then intersected with the MODFLOW grid. The intersection 

provides information on what percentage of an HRU contributes to which grid and vise-versa. 

Using these percent areas as weights for averaging, the various linking variables are mapped 

from SWAT HRUs to MODFLOW grid cells and back, illustrated in Figure 6. This general 

contributing area approach allows for SWAT HRUs larger in size than MODFLOW grid cells or 

grid cells larger than HRUs. Additionally, all of the subroutines modified were checked to allow 

a MODFLOW model with greater in spatial coverage than the SWAT model or vise-versa to be 

combined in the same fashion. 
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Figure 6: SWAT-MOFLOW Model Spatial Interaction; SWAT (green text), MODFLOW (bold blue text) 

 In order to process the information required for these conversions, output from the GIS 

operations, a series of preprocessing scripts were written in Java, a copy of this code is available 

in Appendix II. The resultant output files from the Java pre-processing summarize which HRUs 

contribute what percent are of each grid, and vise-versa. To facilitate the conversion from HRUs 

to grids, there are 4 primary input files. The first, map_dhru2hru.txt, summarizes which spatially-

disaggregated HRUs (DHRUs) contribute to each of the original SWAT HRUs; this step allows 

groundwater processes to remain fully distributed in MODFLOW. The second linking file, 

map_dhru2grid.txt, summarizes which DHRUs contribute to the MODFLOW grid cells. 

Map_grid2dhru.txt similarly summarizes which MODFLOW grid cells contribute to each DHRU 

for conversion of MODFLOW information back to SWAT. The final linking file, 

map_river2grid.txt, provides the necessary information to convert SWAT river information into 

MODFLOW river grid cell information. An example of the template and explanation of each of 
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these linking files is available in Appendix III. Similarly, each of the FORTRAN conversion 

subroutines used to couple these models are available in Appendix IV. To assist with a general 

linkage of spatially-different SWAT and MODFLOW models, these functions were written to 

change information only for HRUs that intersect grids and vise-versa. To increase model 

coupling compared to previous SWAT-MODFLOW integrations in an attempt to capture sub-

monthly groundwater-surface water interaction, it was decided to execute MODFLOW on a 

daily time step. The general flow of information on a daily basis is outline in Figure 7. 

 

Figure 7: SWAT-MODFLOW Code Process Diagram 
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When the coupled model runs, it begins by reading in all of the SWAT input files as 

normal. Once the SWAT input files are read in, the MODFLOW input files and linking files are 

also read in, Appendix IV: sm_read_dhru2grid, sm_read_dhru2hru, sm_read_grid2dhru, 

sm_read_river2grid. Then SWAT executes normally through all of its sub-basin and HRU 

calculations. Once SWAT finished calculating its HRU processes, a subroutine to prepare input 

variables from SWAT to MODFLOW is called Appendix IV: sm_conversion2mf. This 

subroutine was written to convert the SWAT HRU variables and units into spatially located 

DHRU linkage variables ready to be converted inside of MODFLOW. Specifically, this step 

converts SWAT HRU-based variables of percolation from the bottom of the soil profile (sepbtm) 

and remaining evapotranspiration (etremain) into DHRUs. The array variable etremain was 

added to SWAT to track the remaining unsatisfied evapotranspiration (potential ET minus actual 

ET in SWAT’s subbasin subroutine) which is needed as an input for MODFLOW. It is also in 

this step that SWAT units are converted into the units of the current MODFLOW model. This 

unit conversion step is required because in general SWAT runs on SI units whereas MODFLOW 

can use a variety of units as specified by the current model inputs; a MODFLOW model can run 

with units of feet and days, meters and months, centimeters and seconds, or others. Again, this 

general coupling is to support the use of existing dis-similar spatial scales and units of SWAT 

and MODFLOW models. 

In the next step of the code MODFLOW is called. As MODFLOW executes it checks 

which of its various packages are active and if a new stress period has been reached, it reads in 

the required information for each active package. If the river (RIVR), recharge (RECH), or 

unsaturated zone flow (UZF1) packages are active, it then a linkage subroutine is called to 

convert the SWAT variables into the MODFLOW variables, Appendix IV: sm_mfRiver, 
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sm_recharge, and sm_uzf. In this coupling, the primary linkage between the rivers of SWAT and 

MODFLOW is handled using MODFLOW’s RIVR package (Harbaugh et al., 2000). 

Furthermore, the original MODFLOW-NWT model was modified to include a day counter, 

forcing MODFLOW to execute on a daily time step. This modification includes a reader-reset 

that allows MODFLOW to read in new stress period information, which may or may not be on a 

daily time step, as it normally does when the SWAT-MODFLOW simulation reaches the next of 

MODFLOW stress period. Once MODFLOW is done executing for the day, another conversion 

subroutine is called to pass information back to SWAT, Appendix IV: sm_conversion2swat. This 

subroutine finds and converts the water table elevation from MODFLOW grids and units to 

SWAT HRUs and units. It also passes back the MODFLOW determined stream loss/gain per 

grid cell to SWAT river variables. Stream gain, or groundwater discharge (SWAT’s gw_q 

variable), is passed back based on relative area of each HRU contributing to a given river 

segment. Stream loss, or seepage, is passed back to the sub-basin as a whole to SWAT’s reach 

loss variable, rttlc, which was changed to a global array instead of a global value to allow 

tracking of this information. As a final step, Appendix IV: sm_upflux_to_soil, in locations where 

the water table has reached the SWAT’s soil zone, upflux water is passed back water into the soil 

zone based on soil wilting point and field capacity. A summary of these daily interactions is 

shown in Figure 8. 
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Figure 8: SWAT-MOFLOW Coupled Model Information Flow Diagram 

Once the information from MODFLOW is passed back into SWAT, the normal SWAT 

river routing subroutines are called to transport water, sediment, and nutrients to the basin outlet 

and the model progresses to the next day of simulation. All of these steps take place in memory 

within the FORTRAN code resulting in a single program rather than a SWAT model, a 

MODFLOW model, and a coupling model as three programs. 

2.2.3: APPLICATION 

The application of this new style of SWAT-MODFLOW coupling was applied to the 

Upper Klamath Basin in Oregon, Figure 9. An analysis of both the North Fork of the Sprague 

River and the entire Sprague River watershed was performed. 
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Figure 9: Sprague River Watershed Location, Upper Klamath River Basin, OR 

The Upper Klamath Basin has been highlighted for its key groundwater influence on 

surface water hydrology reflecting a complex groundwater-driven watershed (Gannett et al., 

2010). It has also been the focus of historic and recent intensive agricultural projects, specifically 

recently the U.S. Bureau of Reclamation’s Klamath Irrigation Project. Due to regional interest, a 

MODFLOW groundwater model was developed by the USGS for the entire Upper Klamath 

Basin (Gannett et al., 2012) to assess the potential impacts of increased groundwater 

development with in the basin, primarily for agricultural use. An overview of the MODFLOW 

model combined with the SWAT models, the North Fork of the Sprague River and the entire 

Sprague River, is shown below in Figure 10. 
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Figure 10: SWAT Model’s Location Within USGS’s Upper Klamath Basin MODFLOW Model 

Furthermore, Records (2013) studied the impacts to the extent and function of wetlands 

under various climate predictions. As a result of this work a SWAT model was developed for the 

Sprague River basin. The SWAT model performed well for surface process dominated tributaries 

like the Sycan River, Figure 11, but performed poorly for groundwater driven tributaries like the 

North Fork of the Sprague River, Figure 12, even after auto calibration and manual calibration. 

For these reasons, the new style of coupling of SWAT and MODFLOW was chosen to be 

demonstrated on the North Fork of the Sprague River with an overlap of the SWAT model 

developed by Records (2013) and the MODFLOW model developed by Gannett et al. (2012), an 

overview of these SWAT and MODFLOW model extents and locations are shown in Figure 10. 
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Figure 11: SWAT Auto-Calibration Results for the Sycan River, OR 

 

Figure 12: SWAT Combined Auto-Calibration and Manual Calibration Results for the North Fork of the Sprague 

River, OR 

2.3: RESULTS AND DISCUSSION 

 An examination of the results of the SWAT-MODFLOW model coupling is contained 

herein for both the groundwater influenced North Fork of the Sprague River and the entire 

Sprague River. 
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2.3.1: NORTH FORK OF THE SPRAGUE RIVER 

2.3.1.1: STREAM FLOW RESULTS 

An initial examination of the results of the combined SWAT-MODFLOW model for the 

North Fork of the Sprague River reveals a lower base-flow than observed but still a relatively 

good fit to observed data (shown on a monthly time-step in Figure 13). A 1-to-1 comparison of 

SWAT and SWAT-MODFLOW versus observed daily data is shown in Figure 14 and a similar 

1-to-1 comparison for monthly data is shown in Figure 15. Statistics summaries for the fit of the 

models to daily and monthly observed data are presented in Table 2 and Table 3, respectively. 

Both the daily and monthly comparisons show a slight improvement in coefficient of 

determination (R
2
) and poorer, but still acceptable, Nash-Sutcliffe (NS) coefficients of 

performance, between the original SWAT model (daily R
2
 = 0.35, NS = 0.23; monthly R

2
 = 0.60, 

NS = 0.57) and the SWAT-MODFLOW model (daily R
2
 = 0.34, NS = 0.14; monthly R

2
 = 0.66, 

NS = 0.38). The original Sprague River and North Fork of the Sprague River SWAT models 

were calibrated on a monthly basis while the original Upper Klamath MODFLOW model was 

calibrated using quarterly stress periods, which explains the improvement between daily and 

monthly statistics. The larger time-step of the original calibration is the likely source of the 

poorer daily performance statistics for the coupled SWAT-MODFLOW model. Additional 

calibration using a sub-monthly time-step may improve the simulation results. 
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Figure 13: SWAT-MODFLOW Monthly Results, No Additional Calibration for the North Fork of the Sprague River 

OR 

 

Figure 14: 1-to-1 Comparison of Daily SWAT and SWAT-MODFLOW Results for North Fork of the Sprague River  

Table 2: Comparison of Daily SWAT and SWAT-MODFLOW Results to Observed Data for the North Fork of the 

Sprague River 

  SWAT SWAT-MODFLOW 

Nash-Sutcliffe 0.23 0.14 

R
2 

0.35 0.34 
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Figure 15: 1-to-1 Comparison of Monthly SWAT and SWAT-MODFLOW Results for North Fork of the Sprague 

River  

Table 3: Comparison of Monthly SWAT and SWAT-MODFLOW Results to Observed Data for the North Fork of the 

Sprague River 

  SWAT SWAT-MODFLOW 

Nash-Sutcliffe 0.57 0.38 

R
2 

0.60 0.66 

 

To better examine SWAT-MODFLOW’s impacts on base-flow representation, the Log10 

of both daily and monthly data was taken and compared with observed data in a 1-to-1 plot as 

shown in Figure 16 and Figure 17, respectively. For both the daily and monthly Log10 

comparisons the correlation between observed data and SWAT-MODFLOW simulations appears 

stronger than correlations between observed data and SWAT. However, the SWAT results are 

much closer to the 1-to-1 perfect simulation than SWAT-MODFLOW. Some of this error in 

SWAT-MODFLOW’s simulation could potentially be corrected after calibration of the coupled 

model. The statistical summary for both the daily and monthly comparisons with observed flow 

are shown in Table 4 and Table 5, respectively. In both daily and monthly cases there is a large 
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increase in R
2
 although there is a decrease in the NS of the Log10 data from SWAT (daily R

2
 = 

0.33, NS = 0.13; monthly R
2
 = 0.63, NS = 0.63) to SWAT-MODFLOW (daily R

2
 = 0.37, NS = -

1.43; monthly R
2
 = 0.74, NS = -0.29). 

 

Figure 16: 1-to-1 Comparison of Log-10 of Daily SWAT and SWAT-MODFLOW Results for North Fork of the 

Sprague River  

Table 4: Comparison of Log-10 of Daily SWAT and SWAT-MODFLOW Results to Log-10 of Observed Data for 

the North Fork of the Sprague River 

  SWAT SWAT-MODFLOW 

Nash-Sutcliffe 0.13 -1.43 

R
2
 0.33 0.37 

 



35 

 

 

Figure 17: 1-to-1 Comparison of Log-10 of Monthly SWAT and SWAT-MODFLOW Results for North Fork of the 

Sprague River  

Table 5: Comparison of Log-10 of Monthly SWAT and SWAT-MODFLOW Results to Log-10 of Observed Data for 

the North Fork of the Sprague River 

  SWAT SWAT-MODFLOW 

Nash-Sutcliffe 0.63 -0.29 

R2 0.63 0.73 

 

Figure 18, which contains a flow duration curve of daily stream flow, illustrates the 

differences in the stream flow simulation by SWAT and SWAT-MODFLOW. A flow duration 

curve is a graph of statistically ranked flow data based on its exceedence probability. For 

example, flows that are exceeded 43% of the time have a value of 43 on the x-axis. As depicted 

in Figure 18, the SWAT model flow duration curve is close to the shape and magnitude of the 

observed flows. The SWAT-MODFLOW model, however, under-estimates the low flows of this 

particular sub-basin by about half a cubic meter per second. Again, it is likely that this 

performance can be improved by calibrating the coupled SWAT-MODFLOW model. 
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Figure 18: Flow Duration Curve Comparison for North Fork of the Sprague River Stream Flow 

A statistical analysis of the monthly stream flow and residual errors between the SWAT 

and SWAT-MODFLOW models and observed data are summarized in Figure 19. In the monthly 

error analysis, the SWAT model had a smaller magnitude of error than the SWAT-MODFLOW 

model. The monthly graphs of the SWAT model match the observed data more closely than the 

original SWAT-MODFLOW model; however, this may be resolved via calibration of the 

SWAT-MODFLOW model. 
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Figure 19: Comparison and Error Statistics of Monthly SWAT and SWAT-MODFLOW Results for North Fork of the 

Sprague River 
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2.3.1.2: BASE-FLOW RESULTS 

 To illustrate the difference in base-flow simulation between the SWAT and coupled 

SWAT-MODFLOW model, a base-flow separation of the resulting hydrographs was performed 

using the BFLOW base-flow separation filter developed by Arnold et al. (1995a; Arnold and 

Allen, 1999a). BFLOW performs three separate base-flow separation passes; usually the first 

pass is sufficient to capture the base-flow from a hydrograph (Arnold et al. 1995a). A 1-to-1 

comparison of the BFLOW’s first pass was made of SWAT versus observed and SWAT-

MODFLOW versus observed. 

 

Figure 20: SWAT and SWAT-MODFLOW North Fork of the Sprague River Base-flow Separation Pass 1 Daily 

Results, 1-to-1 Comparison 

2.3.1.3: STREAM SEEPAGE/GAIN RESULTS 

 Another benefit of the coupled SWAT-MODFLOW model is its ability to simulate 

spatially variable river-aquifer interactions. In the original SWAT model this process took place 

at the sub-basin level. With the inclusion of MODFLOW, this interaction now takes place on the 

grid cell level, which is typically smaller than a sub-basin. The average base-flow discharge to 
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the stream and average seepage to the aquifer are both shown below in Figure 21. The sign of the 

rate of water in/out of a MODFLOW grid cell determines if it is entering (+) or leaving (-) the 

aquifer. As seen in Figure 21, the spatial variability of this process is more than the sub-basin 

level of the SWAT watershed can represent, which is another benefit of a fully distributed 

groundwater model. 

 

Figure 21: SWAT-MODFLOW North Fork of the Sprague River Stream Seepage/Base-flow Discharge Map 

2.3.1.4: WATER TABLE RESULTS 

A further comparison of the models addresses the simulation of groundwater height 

within the basin as simulated by the original MODFLOW model versus the combined SWAT-

MODFLOW model for the North Fork of the Sprague River basin. Figure 22 shows the water 
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table heights for the original MODFLOW model after the first stress period of calculations (three 

months), and illustrates a well-connected continuous aquifer system throughout the North Fork 

of the Sprague River Basin. Figure 23 illustrates the resulting groundwater table calculated by 

the SWAT-MODFLOW model after the first stress period. The difference between the 

MODFLOW model and SWAT-MODFLOW model (MODFLOW result minus SWAT-

MODFLOW result) is shown in Figure 24. There are a few locations, primarily the northeast, 

where the SWAT-MODFLOW groundwater table is different that the MODFLOW model. 

Normally this might be attributed to the need of a warm-up period of simulation to establish an 

equilibrium balance because MODFLOW needs this sort of warm-up period. However a warm-

up set of initial conditions was previously calculated using a separate steady state analysis 

performed by Gannett et al. (2012). 

 

Figure 22: Groundwater height at start of MODFLOW simulation for the North Fork of the Sprague River 
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Figure 23: Groundwater height at start of SWAT-MODFLOW simulation for the North Fork of the Sprague River 

 

Figure 24: Difference in groundwater height between MODFLOW and SWAT-MODFLOW at start of simulation for 

the North Fork of the Sprague River 
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As seen at the end of the simulation results in Figure 25, MODFLOW appears to have 

minimal change in the aquifer since the start of simulation, some of which is due to the large 

range of water table values scene within the North Fork of the Sprague River which contains 

mountains on the east and low river valleys in the south. Figure 26 displays the water table 

elevations for the coupled SWAT-MODFLOW model at the end of simulation, while the 

difference between SWAT-MODFLOW and MODFLOW is shown in Figure 27 (MODFLOW 

result minus SWAT-MODFLOW result). The major difference between the MODFLOW and 

SWAT-MODFLOW is again located in the northeastern region of the basin where the highest 

groundwater and ground surface elevations are located. 

 

Figure 25: Groundwater height at end of MODFLOW simulation for the North Fork of the Sprague River 
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Figure 26: Groundwater height at end of SWAT-MODFLOW simulation for the North Fork of the Sprague River 

 

Figure 27: Difference in groundwater height between MODFLOW and SWAT-MODFLOW at end of simulation for 

the North Fork of the Sprague River 
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The depressed water table heights at this high elevation region of the basin are due 

mainly to a smaller volume of recharge entering the aquifer in this location. The difference in 

recharge is caused by a disagreement between the original MODFLOW model’s recharge values, 

which were determined by the Precipitation-Runoff Modeling System (PRMS) (Gannett et al. 

2012), and SWAT’s soil percolation values which replace MODFLOW’s recharge values in the 

coupling of the two models within this particular region. The differences in recharge were, 

however, were confirmed to not be due to the partial spatial coverage of the MODFLOW model 

by the SWAT model which occurs at this edge of the SWAT model. The generalized spatial 

linkage of SWAT and MODFLOW in this coupling retains an area-based weighting of the 

original MODFLOW model value of recharge for any portion of a MODFLOW grid cell that is 

not contributed to by a SWAT HRU (either partial coverage or no coverage). Therefore, a 

MODFLOW grid cell which intersects with HRUs for 40 percent of its area receives a recharge 

value that is 40 percent from SWAT soil zone percolation values and 60 percent from the 

original MODFLOW model value. A possible reason for the discrepency in water table 

simulation in the northeast portion of the basin is how the soil zone percolation is calculated. The 

percolation out of SWAT’s soil zone is primarily derived from precipitation at the sub-basin 

scale. In sub-basins, like this northeast region, precipitation processes can be very different at 

localized high elevations as compared to the valley areas even though both areas are simulated 

within a single SWAT sub-basin. To address this, SWAT models allow the use of elevation 

bands to vary certain watershed parameters based on land surface elevation, which were used in 

the SWAT model by Records (2013). It appears, however, that there is still some disparity 

between the groundwater heights as influenced by SWAT soil percolation values and the original 

MODFLOW model using PRMS aquifer recharge values. Finally, the original MODFLOW 
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model cited sparse availability of calibration data for water table heights in the forested upland 

areas of the basin (Gannet et al., 2012), resulting in a higher margin of error in these locations for 

water table elevation. 

With the exception of the issue in the northeast portion of the model for groundwater 

elevations, the coupled SWAT-MODFLOW model mostly reflects groundwater levels close to 

the original Upper Klamath MODFLOW model, indicating that the soil zone percolation values 

from SWAT in the North Fork of the Sprague River are comparable with the PRMS recharge 

values used by the MODFLOW. Additionally, the coupled SWAT-MODFLOW model simulated 

a higher water table than the original MODFLOW model, which is actually an improvement over 

the original MODFLOW model because, as explained by Gannet et al. (2012), the original 

MODFLOW model simulated groundwater elevations residuals within the Sprague River basin 

of roughly 100 to -100 ft, with most of the simulations being lower than observed water table 

levels. No comparison was made to observation wells because data was unavailable within the 

catchment area of interest in the North Fork of the Sprague River Basin. 

2.3.2: SPRAGUE RIVER 

2.3.2.1: STREAM FLOW RESULTS 

Upon examination of the SWAT and SWAT-MODFLOW results for the whole Sprague 

River watershed, the results were almost identical. Both the SWAT and SWAT-MODFLOW 

stream flow values were equivalent to 2 decimal places at the outlet of the watershed. The 

comparison against observed data at USGS Station 11501000 is shown below in Figure 13. The 

SWAT and SWAT-MODFLOW results are so similar that, when plotted, they lie on top of one 

another. Both models do a good job simulating the majority of stream flows. However, the 
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recession rates of the simulated hydrographs do not match the observed values. Statistical 

summaries for the fit of the models to daily and monthly observed data are shown in Table 2 and 

Table 3, respectively. The daily and monthly statistics for SWAT and SWAT-MODFLOW are 

equal due to the similar stream flow outputs. Due to the similarity between the model results, a 

water balance was also examined for the models. The SWAT model was found to calculate a 

zero groundwater discharge over the analysis period from 1995-2004. The SWAT-MODFLOW 

model was found to calculate a groundwater discharge approximately equal to 0.2% of the total 

stream flow. It is believed that since the simulated groundwater discharge represents such a 

minor portion of the total stream flow, the SWAT-MODFLOW model yielded similar results to 

the SWAT model.  

An explination for this ‘washing out’ of the groundwater discharge as compared to total 

stream flow is found by examining the river system in question. The most groundwater influence 

is found in the North Fork of the Sprague River. However, the largest tributary to the Sprague 

River is the Sycan River which is approximately twice as large as the North Fork of the Sprague 

River. The final South Fork of the Sprague River, the last significant tributary, is a surface 

process dominated tributary like the Sycan. This combination of several large surface-driven 

streams and a single small groundwater influenced stream effectively overpowers small trends in 

total stream flow due to base-flow discharge from groundwater. 
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Figure 28: SWAT-MODFLOW Daily Results, No Additional Calibration for the Sprague River, OR 

Table 6: Comparison of Daily SWAT and SWAT-MODFLOW Results to Observed Data for Sprague River 

  SWAT SWAT-MODFLOW 

Nash-Sutcliffe 0.54 0.54 

R
2 

0.59 0.59 

 

Table 7: Comparison of Monthly SWAT and SWAT-MODFLOW Results to Observed Data for the Sprague River 

  SWAT SWAT-MODFLOW 

Nash-Sutcliffe 0.68 0.68 

R
2 

0.76 0.76 

 

A further illustration of the similarities in the stream flow simulation by SWAT and 

SWAT-MODFLOW is shown in Figure 18 , which contains a flow duration curve for total 

stream flow. Note that this flow duration curve is shaped differently than the curve for the North 

Fork of the Sprague River which indicates a different series of controls and contributions to flow, 

primarily a lack of base-flow dominance (large flat curve). Again, the SWAT and SWAT-

MODFLOW model results are so similar that they plot on top of one another. This flow duration 

curve also highlights the inability of either model to capture the observed recession rates in low 
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flow periods (flow durations > 20%). Additionally, both models slightly under predict the higher 

flows observed in the basin. 

 

Figure 29: Flow Duration Curve Comparison for the Sprague River Stream Flow 

2.3.2.2: STREAM SEEPAGE/GAIN RESULTS 

As with the North Fork of the Sprague River analysis, the average base-flow discharge 

from the aquifer to the stream and seepage from the stream to the aquifer is shown in Figure 30. 

These results are similar to those from the North Fork analysis, and their implications were 

discussed previously. 
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Figure 30: SWAT-MODFLOW Sprague River Stream Seepage/Base-flow Discharge Map 

2.3.2.3: WATER TABLE RESULTS 

 As compared earlier for the North Fork of the Sprague River, the SWAT-MODFLOW 

results closely resemble those of the original MODFLOW model. Shown in Figure 31 and Figure 

32 are the groundwater table heights for the entire Sprague River after the first stress period in 

1970 for the MODFLOW and the SWAT-MODFLOW models, respectively. The difference 

between the values is shown in Figure 33. There are numerous small differences, but the 

probable cause of these has been discussed in the North Fork’s water table result section. One 

new difference to emphasize is that at the start of simulation there appears to be a large 
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difference in one of the Sycan River’s tributaries towards the top of the map in Figure 33, while 

the rest of the basin is close to or higher than the original MODFLOW model. 

 

Figure 31: Groundwater height at start of MODFLOW simulation for the Sprague River 

 

Figure 32: Groundwater height at start of SWAT-MODFLOW simulation for the Sprague River 



51 

 

 

Figure 33: Difference in groundwater height between MODFLOW and SWAT-MODFLOW at start of simulation for 

the Sprague River 

Summarized in Figure 34 and Figure 35 are the groundwater heights at the end of 

simulation in 2004 for the MODFLOW and SWAT-MODFLOW models, respectively. Again 

both models simulate a continuous aquifer which patterns itself roughly parallel to the area’s 

land surface. The differences between the MODFLOW model and the SWAT-MODFLOW 

model are shown in Figure 36. One thing to note on this map is the large area of difference in the 

northeastern corner of the Sprague River Basin. The likely causes of this difference are 

summarized in the North Fork water table results section.  
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Figure 34: Groundwater height at end of MODFLOW simulation for the Sprague River 

 

Figure 35: Groundwater height at end of SWAT-MODFLOW simulation for the Sprague River 
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Figure 36: Difference in groundwater height between MODFLOW and SWAT-MODFLOW at end of simulation for 

the Sprague River 

2.3.4: LIMITATIONS AND FUTURE WORK 

One consequence of the daily SWAT-MODFLOW coupling is the greater execution time 

of the model. The original MODFLOW model for the Upper Klamath Basin solves the 

groundwater flow equations every quarterly stress period. By forcing MODFLOW to run on a 

daily time step, it increases the number of groundwater flow equation solutions by 90 times the 

original model. Based on an initial run time of approximately 12 minutes, for an Intel Core 2 

Duo 2GHz CPU with 4GB of RAM, this forecasts an anticipated 18 hours to run MODFLOW on 

a daily time-step for the 35 year Upper Klamath Basin model. However, due to the similarity of 

much of the watershed on a daily basis combined with the upgrade of the Upper Klamath Basin 

model from MODFLOW-2000 to MODFLOW-2005-NWT, and Sprague River model from 

SWAT-2009 rev. 477 to SWAT-2012 rev. 591 resulted in the coupled SWAT-MODFLOW 

model completing a 35 year analysis in approximately 11 hours. This is does not seem 

unreasonable compared to the Lower Arkansas River Valley (LARV) MODFLOW-only model 
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documented by Morway et al. (2013) to focuses on the groundwater alluvial aquifer impacts due 

to heavy irrigated agriculture which takes approximately 9 hours to execute. 

A continuation of after a coupled surface-subsurface watershed model would be to add 

the capacity to simulate nutrient transport between SWAT and MODFLOW. SWAT already has 

a nutrient model in it however MODFLOW does not. In order to simulate subsurface nutrient 

transport and interaction a third model would need to be combined to SWAT-MODFLOW like 

the subsurface chemical/nutrient transport model like MT3DMS or UZF-RT3D. Coupling this 

subsurface reaction, advection, and dispersion transport model would allow the combined 

surface-subsurface watershed would simulate not only hydrology but also nutrient, metal, and 

pesticide transport at the watershed scale. This sort of coupling would assist in tackling the 

complex watershed chemical problems like the nutrient and wetland issues in the Upper Klamath 

basin and the nitrate-selenium issues in the Lower Arkansas River Valley. 

2.4: CONCLUSIONS 

The complex issues of water demand and environmental change in watersheds have 

driven the desire to simulate and model watersheds and the impacts of various management and 

climate change scenarios. The pseudo-distributed watershed model SWAT and the finite-

difference groundwater model MODFLOW are at the forefront of popular available watershed 

models. Inabilities of these models to simulate complex groundwater response as well as erosion, 

plant growth, nutrient cycling, and agricultural management has led to multiple attempts to link 

the models. However, these models are unavailable and have drawbacks like required identical 

spatial discretization and monthly coupling. As a result the aforementioned work was undertaken 

to create a generalized spatial linkage between SWAT and MODFLOW which retains the 

respective strengths of the two models coupled on a daily time-step. This linkage facilitates the 
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use of existing spatially dis-similar SWAT and MODFLOW models while increasing the overall 

quality of simulation for a more reliable result than previously possible. 

This daily coupling between SWAT and MODFLOW has resulted in realistic and 

accurate stream flow results for the North Fork of the Sprague River in Oregon. Additionally, 

groundwater representation within SWAT was increased by the inclusion of MODFLOW and 

accurate groundwater table elevations were simulated as a result. However, at the high elevation 

edge of the watershed a reduced volume of recharge to the aquifer caused lower water table 

elevations relative to the original MODFLOW model for the Upper Klamath Basin. The new 

SWAT-MODFLOW coupling resulted in a more accurate representation of both the frequency 

and magnitude of streams flows than the original calibrated SWAT model only. This model 

coupling of the coupled SWAT-MODFLOW model also provided these results without 

additional calibration. It is likely calibration will improve all the results herein discussed. 
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CHAPTER 3: SCALABLE AND ACCESSIBLE CLOUD-BASED SERVICES FOR STREAM 

WATER ANALYSIS 

 

 

 

3.1: INTRODUCTION 

Stream flow data has become an increasingly important tool for assessing current stream 

conditions as well as a basis for predicting future conditions and water supply. However, current 

stream flow analysis software typically focuses on only one aspect of stream flow resulting in the 

need for many software packages to analyze the multiple aspects of stream flow; floods, 

droughts, groundwater contribution, frequency-duration, pollutant loading, and more. This 

requires multiple input files to satisfy each of the software packages for one stream gauge 

dataset. Additionally, these individual packages are desktop-based software that uses local 

computer resources rather than taking advantage of some of the recent advancements in cloud-

computing technology. 

Due to this current style of implementation, one analysis in one software package, there 

are numerous available flow analysis software packages. Base-flow separation, or the separation 

of groundwater from surface runoff contribution to total stream flow, has been a particular focus 

with numerous software packages. The Hydrograph Separation tool (HYSEP) was developed by 

the USGS to help automate a previously manual hydrograph separation technique (Sloto and 

Crouse, 1996). Another similar base-flow separation package is the BFLOW multi-pass digital-

filter base-flow separation tool developed by Arnold et al. (1995a; Arnold and Allen, 1999a). In 

addition to base-flow software, Flynn et al. (2006) have developed a package, PeakFQ, which 

automates the U.S. flood analysis, Bulletin 17B (IACWD, 1982), by fitting a regression to 

available flood. There is also the load estimator tool, LOADEST (Runkel et al., 2004), which 
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estimates in-stream pollutant loads with regression-based interpolation between observed 

pollutant loads and the Sanitary Sewer Overflow Analysis and Planning tool SSOAP even assists 

with simulating the impacts of sanitary sewer over flow (Vallabhaneni et al., 2012). 

There has, however, been a recent shift in the implementation style of these packages. A 

number of new software analyses area being ported to the web with internet-based graphical user 

interfaces to assist with interacting with the analysis. One example of a base-flow separation tool 

is the Web-based Hydrograph Analysis Tool, WHAT, developed by Lim et al. (2005). 

Govindaraju et al. (2009) took it a step further and conceptualized an entire outline for the 

necessary cyberinfrastructure to support an end-to-end approach to environmental modeling. 

Another recent web implementation of a flow/water quality analysis tool came in the form of the 

SPARROW-DSS tool to assist with sediment and nutrient loadings to river basins in the U.S. 

(Booth et al., 2011). A more complex and necessary step than making a tool available on the web 

is implementing it in a scalable fashion. One example of a scalable infrastructure for web tools is 

a cloud-based environment to take advantage of lumped server resources rather than local 

computer resources. There are many benefits to cloud-infrastructure including greater scalability 

and the ability to process more than one analysis at a time due to multiple virtual machines. One 

flow analysis package that has taken advantage of these benefits is ParFlow, a parallel surface-

subsurface watershed model, which was implemented in a cloud environment by Burger et al. 

(2012). 

To utilize recent advancements in computer technology, the focus of this additional work 

is to develop and demonstrate a scalable cloud-computing web-tool that facilitates access and 

analysis of stream flow data. The specific objectives are to 1) unify the various stream flow 
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analysis topics into a single tool; 2) to assist in the access to data and inputs for current flow 

analysis methods; 3) to examine the scalability benefits of a cloud-based flow analysis tool. 

3.2: METHODS 

3.2.1: COMPREHENSIVE FLOW ANALYSIS (CFA) OVERVIEW 

The primary focus of this research is to integrate the various aspects of flow analysis and 

implement it on a scalable cloud-computing web-tool to facilitate access to the tool. The 

Comprehensive Flow Analysis (CFA) tool was developed by creating and integrating multiple 

available stream flow analysis methods used for the various aspects of rivers; floods, drought, 

water quality, pollutant loadings, base-flow contribution from groundwater. In order to increase 

the access and scalability of the analyses within CFA, CFA was built into the Cloud Services 

Innovation Platform (CSIP). CSIP is an environmental modeling service which facilitates a 

scalable cloud infrastructure for analysis execution. The analysis capabilities of CFA are 

demonstrated by a downstream analysis of nutrient loading on the Cache La Poudre River in 

Colorado while the scalability of CFA methods are demonstrated for test cases containing all 

available flow data from 1000 existing USGS stream monitoring sites across the U.S.  

3.2.2: CYBERINFRASTRUCTURE 

A key importance of this new flow analysis tool is its cyberinfrastructure. CFA was 

designed for access to the tool through the Environmental Risk Assessment and Management 

System (eRAMS) website. eRAMS was developed at Colorado State University to facilitate 

geospatial manipulation of data for use with environmental modeling. eRAMS is built on a web-

based geospatial analyst, similar to ArcGIS, allowing data manipulation, environmental 

modeling and results analysis, and the sharing of geospatial information. The map-based 
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structure of eRAMS allows unique location based searches and access to stream flow monitoring 

sites and their relevant information like drainage area, elevation, and watershed/sub-basin 

location. Included on eRAMS is a base layer of all of the stream flow monitoring locations in the 

USGS’ National Water Information System (NWIS) and U.S.EPA’s STORET/WQX databases. 

This point layer acts as the first set of inputs for the CFA tool and its analyses allowing the 

eRAMS CFA interface to pre-process and auto-populate many of the necessary inputs 

simplifying the overall process of running a flow analysis with CFA. Appendix V, Figure 47 

contains the eRAMS GUI and Figure 48, Figure 49, Figure 50, Figure 51, Figure 52, Figure 53, 

and Figure 54 show example CFA analyses reports for a station on the Cache La Poudre River, 

CO. 

Additionally, included in the CFA tool is an automatic data extraction for stream flow 

and water quality information from the USGS’ NWIS and EPA’s STORET/WQX databases. The 

dynamic access to these databases allows the CFA tool to retrieve the most recent flow and water 

quality data for stream locations and combine it with local sampling data that a user may have 

for a quicker analysis with minimal input file data manipulation. The web access to the CFA tool 

on eRAMS is made possible by the development and inclusion of the CFA tool into the Cloud 

Services Innovation Platform (CSIP). Simply put, eRAMS is used as an input preprocessor and 

interface to the CFA tool while the actual analysis of CFA is carried out through a request to 

CSIP, as illustrated below in Figure 37. 
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Figure 37: CFA’s Interaction with eRAMS, CSIP, and External Databases 

3.2.3: SCALABILITY 

In order to provide a more scalable infrastructure for the flow analysis tool, CFA was 

incorporated into CSIP. CSIP deploys its modeling engine using Eucalyptus Infrastructure-as-a-

Service Cloud (IaaS) virtual machines (VMs) (Lloyd et al., 2012). CSIP uses Eucalyptus for its 

ability to provide an elastic modeling platform to manage cloud infrastructure. Within CSIP, 

Eucalyptus manages the launching, destroying, and modifications to VMs to provide a scalable 

infrastructure for the CFA tool. 
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3.2.4: ACCESSIBILITY 

As mentioned earlier, the main access to the CFA analyses was incorporated into eRAMS 

through the development of a graphical user interface (GUI). Additionally, eRAMS provides 

access to a number of the necessary inputs for CFA as base-layers to the interface. The station 

name and ID, used for data retrieval within the tool, are provided by the aforementioned base 

layer of flow stations for USGS and U.S. EPA. 

Special data and information for some of the analyses in CFA are also provided by 

eRAMS as background inputs to the GUI. An example of this additional input is the flood 

analysis in CFA. CFA’s flood analysis performs an automated Bulletin 17B Log-Pearson Type-

III distribution regression on available annual flood data. The Bulletin 17B is current the 

standard practice for analyzing floods on gauged U.S. rivers and streams (WRC-HC, 1967; 

IACWD, 1982). A complication of the flood analysis recommendations by the Inter-Agency 

Committee on Water Data (1982) is the requirement of a regionalized flood skewness coefficient 

in the analysis. A national scale resolution map is provided with the regionalized flood skewness 

coefficients is provided in the Bulletin 17B documentation, Figure 38, but since it’s conception 

there have been a number of state-scale improvements to this map by state agencies (e.g. Parrett 

and Johnson, 2004; Soong et al., 2004; Cooper, 2005; Atkins et al., 2009; Olson, 2009; Pomeroy 

and Timpson, 2010). To simplify the access to the regionalized flood skewness values, a 

literature review was undertaken to find all the available agency report maps and station 

skewness coefficient values in addition to the map provided by IACWD (1982). Each state map 

was then digitized and merged into the IACWD (1982) map to provide a nationwide unified 

base-layer map used by eRAMS for preprocessing this input for CFA’s flood analysis with 

higher spatial resolution than the original national map where information is available. 
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Preprocessing this information allows the eRAMS GUI for CFA to automatically extract the 

regionalized flood skewness coefficient based on the selected station’s location. 

 

Figure 38: Regionalized Flood Skewness Coefficient Map, Adapted from IACWD, 1982 

3.2.5: CFA ANALYSES 

The simplest analysis method included in CFA is a time series graphing and statics tool 

which summarizes available flow data or water quality data, an example of the output for this 

analysis is shown in Appendix V, Figure 48. As with all the analyses of CFA, the time series 

analysis is capable of querying the USGS’ NWIS and U.S. EPA’s STORET/WQX databases for 

available information based on the provided inputs. A subsequent, and more complex, method in 

CFA is the flood analysis which, aforementioned, performs an automated Log-Pearson Type-III 

regression on available flood data based on the provided regionalized flood skewness coefficient 

(IACWD, 1982). An example of the output for this analysis is shown in Appendix V, Figure 49. 
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An opposite but equally important aspect of stream flows is the consideration and 

analysis of droughts from the available stream flow record. Therefore, CFA includes an 

automated drought analysis method based on the work by Salas et al. (2005). The main 

component of the drought analysis fits a regression, an autoregressive (AR) or autoregressive-

moving average (ARMA), model to annual stream flow data and uses the statistical properties of 

the original dataset to simulate a much larger dataset which includes rarer long-length, large-

deficit ‘droughts’. The projected dataset is subsequently compared against a provided long term 

average drought limit to determine the length, severity, and average recurrence interval of these 

new ‘droughts.’ The resulting recurrence interval, severity, and length of each historic drought 

and projected drought are then summarized graphically. An example of the output for this 

analysis is shown in Appendix V, Figure 50, Figure 51, and Figure 52 broken into multiple 

figures due to the size of the output. 

Another approach to the analysis of stream flow data is the application of duration curves 

to graph statistically ranked flow data based on its occurrence. CFA contains two methods that 

use a duration curve approach, the Flow Duration Curve tool (FDC) and the Load Duration 

Curve tool (LDC). FDC uses a Weibull plotting position rank to graph daily average stream 

flows on a scale of percent exceedence allowing a quick visualization of the various flows a river 

has undergone, an example of the output for this analysis is shown in Appendix V, Figure 53. 

The LDC follows the same process and takes the analysis a step further and converts the FDC 

curve into a daily load curve based on a target water quality standard. Furthermore, it 

superimposes available sampled water quality concentration data (converted based on daily flow 

values into daily load values) onto the curve to graphically illustrate water quality concentration 

changes as flow regime changes. LDCs for nutrient can be used to help identify, based on where 
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water quality observations exceed the target curve, probable pollution sources (Cleland, 2002; 

Cleland, 2003; Cleland, 2007) as well as a basis for establishing total maximum daily load 

(TMDL) requirements of a watershed. An example of the output for this analysis is shown in 

Appendix V, Figure 54. 

Two additional flow analysis capacities in CFA are provided by the inclusion of currently 

available software packages for load estimation and base-flow separation. The water quality load 

estimation software, LOADEST developed by the USGS (Runkel et al., 2004), is built into CFA 

to act similar to the other analyses and provides an estimation of constituent water quality stream 

loads between observed data points, an example of the output for this analysis is shown in 

Appendix V, Figure 55. CFA also includes the base-flow separation software BFLOW, 

developed by Arnold et al. (1995a; Arnold and Allen, 1999a). BFLOW is an automated multi-

pass digital-filter base-flow separation tool to separate the groundwater contribution from total 

stream flow, an example of the output for this analysis is shown in Appendix V, Figure 56. A 

technical manual documenting the process of each of the analyses of the CFA tool is provided in 

Appendix VI. 

3.2.6: STUDY AREA 

A demonstration of the analysis capabilities of CFA was applied to the Cache La Poudre 

River Basin in Colorado, Figure 39. A description of the analysis locations shown in Figure 39 is 

provided in Table 8. 
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Figure 39: Cache La Poudre River Watershed Location, South Platte River Basin, CO 

The Cache La Poudre River (Poudre) is an 1887 square mile watershed in northern 

Colorado. The Poudre’s headwaters original in Rocky Mountain National Park and flows out of 

the mountains through its canyon before entering the cities of Fort Collins, Windsor, and 

Greeley, respectively. Upstream of the canyon mouth, Point 1 Figure 39, the basin is relatively 

undeveloped representing a more natural background state. The lower portion of the watershed is 

a mix of urban and agricultural land uses before its confluence with the South Platte River 

downstream of Greeley. 
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Table 8: CFA’s Cache La Poudre River Downstream Analysis Locations 

Map 

Point 
Location 

USGS Station 

ID 

Flow Data 

Dates 

Nitrogen 

Data Dates 
Comments 

1 Mouth of Poudre Canyon 06752000 

1/1/1900 

– 

9/30/2007 

7/29/1992 

– 

8/10/1995 

Minimal upstream 

development, representative 

of natural background 

2 
Lincoln Street Fort 

Collins, CO 
06752260 

4/8/1975 

– 

3/23/2014 

10/25/1979 

– 

4/15/1994 

Urban drainage and some 

waste water treatment plant 

impacts 

3 
Above Confluence with 

Boxelder Creek 
06752280 

10/1/1979

– 

3/23/2014 

10/24/1979 

– 

4/15/1994 

Contains impacts and treatment 

plants from the City of Fort 

Collins 

4 
Downstream of Greeley, 

CO 
06752500 

4/1/1903 

– 

9/30/1998 

7/30/1992 

– 

1/12/1995 

Contains impacts from Fort 

Collins, Windsor, agriculture, 

and Greeley 

 

3.3: RESULTS AND DISCUSSION 

3.3.1: DOWNSTREAM APPLICATION 

The map-based interface for the CFA tool facilitates a “downstream application” of flow 

analyses using the tool’s standardized approach to better understand and compare flow and 

nutrient dynamics along the length of a river. This was applied to a stretch of the Poudre River 

for the four points shown in Figure 39, described in Table 8. A load duration curve (LDC) 

analysis was applied to each of the four locations analyzing available flow data and total nitrogen 

tests (USGS water quality code 006000) for the stations from USGS’ NWIS. For the analysis a 

target nitrogen concentration of 2 mg/L was used in conjunction with the flow data to determine 

a total allowable nitrogen load based on flow recurrence interval.  

As show in Figure 40, at Point 1, all observed nitrogen concentrations are below the 

target standard and roughly parallel to the total LDC.  The water quality points are also 
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highlighted to reflect which part of the season they occur in, the points highlighted in black were 

witnessed from April to October. This season of stream flows was selected to highlight the 

impacts of the annual snow melt hydrograph from the winter seasonal low flows typical for 

rivers in this area. In addition to the water quality points, a boxplot of the observed nitrogen 

concentrations is provided for each of the five flow intervals of the duration curve. Additionally, 

each of the annual LDCs, plotted in grey, are clustered near the red LDC for the complete period 

of record which indicates minimal variation in stream flows over time, which supports the use of 

this station as a natural background indicator. 

 

Figure 40: CFA’s Load Duration Curve for Point 1, Cache La Poudre River at Mouth of Canyon 

At Point 2, in Fort Collins, it is quickly evident that the natural flow regime has been 

disturbed from urban development due to the wider spread in the annual LDCs in Figure 41. 

Additionally, nitrogen concentrations are elevated closer to the target concentration than for 

Point 1. This is due to some agricultural and urban storm water influences which drain to this 

portion of the river. The shape of the LDC has also changed to reflect the impacts of urbanization 

on a watershed which is a tendency towards higher peak flows more frequently due to added 
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imperviousness. The smaller magnitude of “Low Flows” portion of the LDC relative to Point 1 is 

due to water diversions out of the river between the canyon mouth and Fort Collins. 

 

Figure 41: CFA’s Load Duration Curve for Point 2, Cache La Poudre River at Fort Collins, CO 

Point 3 further illustrates the urban impacts of the City of Fort Collins on the flow regime 

of the Poudre River. Again, the flood peaks are further heightened and their frequency reduced. 

The Dry Conditions and Low Flows section remain at a lower magnitude than that of upstream. 

Additionally, the added complexity and variability of urban drainage and some agricultural 

return flow impacts is reflected in the wider spread of the annual LDCs. A further illustration of 

the downstream dynamics of the river as affected by the city, are the elevated nitrogen levels 

which now regularly exceed the target concentration of 2 mg/L. 
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Figure 42: CFA’s Load Duration Curve for Point 3, Cache La Poudre River above Boxelder Creek 

Point 4, Figure 43, illustrates a very different flow regime of the Poudre River than that 

before Fort Collins. After Fort Collins and before Greeley, agricultural groundwater return flows 

have contributed to the river elevating the Dry Conditions and Low Flow sections of the LDC. 

However, due to the urban drainage of Fort Collins, Windsor, and Greeley, the High Flows 

remain high. As with the previous points, the overall nitrogen concentration have again increased 

dramatically above the target concentration illustrating downstream impacts of urban and 

agricultural areas on this river. A downstream analysis, like this one, can shed light on different 

influences to a river system and help sort out where things start to change. It can also assist 

regulating agencies in assessing the viability of future regulation standards against currently 

available data. 
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Figure 43: CFA’s Load Duration Curve for Point 4, Cache La Poudre River near Greeley, CO 

3.3.2: SCALABILITY 

In order to test the expected scalability of the CFA tool, a series of test cases were 

generated for each of the analyses. These test cases were then sent for execution to a cloud 

environment using 2-core, extra-large, Amazon-cloud, virtual machines. Based on an 

understanding of the behind the scenes of CFA’s analyses, a preliminary scalability test was 

performed using estimated request rates that were expected to stress the scalability of the system. 

These rates were estimated based primarily on the complexity of the analysis, simple analyses 

were tested at higher request rates, complex analyses were tested at lower request rates. Table 9 

below summarizes the initial scalability request rates for each of the various models in the CFA 

tool; these rates are approximate in practice due to overhead computational costs of setting up 

the testing infrastructure and other similar limitations. 
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Table 9: CFA’s Preliminary Scalability Request Rates 

CFA Analysis Preliminary Request Rate 

Time Series/Statistics 10 req/sec 

Flood (Bulletin 17B) 25 req/sec 

Drought (Salas et al., 2005) 2 req/sec 

Flow Duration Curve 10 req/sec 

Load Duration Curve 2 req/sec 

Base-flow Separation (BFLOW) 2 req/sec 

Load Estimator (LOADEST) 2 req/sec 

 

The results of this preliminary scalability testing are shown below in Figure 44. The high 

request rates for time-series/statistics and the flow duration curve illustrate the expected decrease 

in analysis execution time with increased available infrastructure (VMs). However, the similarly 

simple load duration curve and drought analyses show almost no improvement with increased 

number of VMs due to their lower request rates, meaning that the initial infrastructure of the first 

4 VMs are likely sufficient to complete the analyses at the given request rates. The irregularity in 

the flood analysis results was unexpected and examined further. It was discovered that the high 

request rate of the flood analysis testing coupled with how quickly the flood analyses completed, 

new VMs were unable to launch properly for the next step of the testing cycle resulting in an 

irregular execution time versus available infrastructure curve. 
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Figure 44: CFA’s Preliminary Scalability Testing Results 

The base-flow separation (BFLOW) and load estimator (LOADEST) models, due to their 

greater complexity, were tested over a broader range of number of virtual machines in an attempt 

to view a more complex response to available infrastructure. However, the preliminary testing, 

Figure 44, revealed that after an initial amount of VMs are supplied to those particular models, 

minimal or negative additional computational benefit is gained with the addition of more virtual 

machines. Additionally, after preliminary testing it was found that only 37% of the LOADEST 

test cases ran to completion. Upon a re-examination of the test cases, the majority of the 

LOADEST test cases were found to be faulty and were replaced and re-verified before any 

additional scalability testing to ensure proper results. Then the LOADEST and BFLOW analyses 

were re-tested for scalability at a variety of new request rates in an attempt to better stress the 

scalability of these particular models. Only the load estimation and base-flow separation analyses 

were tested because based on the preliminary testing these were the only analysis in CFA that 

appeared to have a significant computational burden. 



73 

 

Shown below in Figure 45, the scalability results for the load estimation illustrate a 

general trend that with increased cyberinfrastructure, number of VMs, and the average runtime 

decreases. Additionally, as request rates are increased, there is a trend to increase the average run 

time. However, for this particular analysis the additional benefit of more than 12 virtual 

machines does not appear to assist with quicker model execution. Load estimation tests 

converged to an average value of about 7 seconds after only 12 virtual machines became 

available. 

 

Figure 45: CFA’s Additional Load Estimator (LOADEST) Scalability Testing Results 

The scalability results for the base-flow separation were more complex. As shown below 

in Figure 46, the BFLOW analysis appeared to reach a much more stable average execution time 

for its models, approximately 8 seconds despite having different request rates. The base-flow 

separation analysis also showed the same increase in execution time with increased request rate 

for a given set of initial VMs. Both the load estimator and base-flow separation analyses support 

the claim of scalability with their decreased execution time for both greater available 

infrastructure (number of VMs) and for lower request rates.  
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Figure 46: CFA’s Additional Base-flow Separation (BFLOW) Scalability Testing Results 

3.3.3: LIMITATIONS 

One issue that the scalability testing revealed is that some of the analyses in CFA; FDC, 

LDC, flood, and drought analysis, are very simple. This in turn requires a very large, possibly 

unrealistic, web-request rate to identify and illustrate scalability benefits with cloud-based VMs 

in CSIP. Even on a globally available website with thousands of users, a request rate 25 requests 

per second is probably not realistic; thus the scalability benefits of the simple CFA analyses are 

likely minimal. The flood analysis testing also illuminated a bottle neck of the current 

implementation of the infrastructure to launch new VMs for testing due to the quick execution of 

the analyses. However, due to how quickly the analyses completed it is likely unnecessary to 

launch new VMs to handle an increase in this particular analyses’ demand because the current 

infrastructure will be available to handle the requests in a very short amount of time anyway. 

3.4: CONCLUSIONS 

Water will continue to be an important component in cities, agriculture, and industry. To 

better understand existing stream systems requires more tools and analysis techniques that need 
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to be easily available and make use of recent advancements in computer technology. As tools 

become more complex, proper management of computational resources become more important. 

A current solution to proper management of cyberinfrastructure is the use and development of 

flow analysis software using cloud-based cyberinfrastructure to combine various analyses into 

single tool and provide a scalable modeling infrastructure. A single unified tool requires data to 

be preprocessed once rather than once for each analysis and software package being used 

resulting in more efficient use of time and resources. Additionally, web support for flow analyses 

will continue to be an important step in use of a tool; otherwise limitations like access to 

complicated inputs, like regional flood skewness coefficients, will remain beyond the reach of 

many users. The Comprehensive Flow Analysis (CFA) tool provides this software package unity 

allowing multiple flow analyses on a single formatted dataset. Furthermore, the scalability of the 

various CFA flow analyses under different cyberinfrastructure hardware configurations and 

request rates demonstrates that this is a scalable tool. The scalable infrastructure combined with 

the database access built into CFA creates a more streamlined analysis process from data 

collection to analysis to results. 
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CHAPTER 4: CONCLUSIONS 

 

 

 

The complex issues of water demand and environmental change in watersheds have 

driven the desire to simulate and model watersheds and the impacts of various management and 

climate change scenarios. The pseudo-distributed watershed model SWAT and the finite-

difference groundwater model MODFLOW are at the forefront of popular available watershed 

models. Inabilities of these models to simulate complex groundwater response as well as erosion, 

plant growth, nutrient cycling, and agricultural management has led to multiple attempts to link 

the models. However, these models are unavailable and have drawbacks like required identical 

spatial discretization and monthly coupling. As a result the aforementioned work was undertaken 

to create a generalized spatial linkage between SWAT and MODFLOW which retains the 

respective strengths of the two models coupled on a daily time-step. This linkage facilitates the 

use of existing spatially dis-similar SWAT and MODFLOW models while increasing the overall 

quality of simulation for a more reliable result than previously possible. 

This daily coupling between SWAT and MODFLOW has resulted in realistic and 

accurate stream flow results for the North Fork of the Sprague River in Oregon. Additionally, 

groundwater representation within SWAT was increased by the inclusion of MODFLOW and 

accurate groundwater table elevations were simulated as a result. However, at the high elevation 

edge of the watershed a reduced volume of recharge to the aquifer caused lower water table 

elevations relative to the original MODFLOW model for the Upper Klamath Basin. The new 

SWAT-MODFLOW coupling resulted in a more accurate representation of both the frequency 

and magnitude of streams flows than the original calibrated SWAT model only. This model 
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coupling also provided these results without additional calibration. It is likely calibration of the 

coupled SWAT-MODFLOW model will improve all the results herein discussed. 

Additionally, as better ways to access and implement flow analyses become available it is 

important to leverage these advances. Water will continue to be an important component in 

cities, agriculture, and industry. To better understand existing stream systems requires more tools 

and analysis techniques that need to be easily available and make use of recent advancements in 

computer technology. As tools become more complex, proper management of computational 

resources become more important. A current solution to proper management of 

cyberinfrastructure is the use and development of flow analysis software using cloud-based 

cyberinfrastructure to combine various analyses into single tool and provide a scalable modeling 

infrastructure. A single unified tool requires data to be preprocessed once rather than once for 

each analysis and software package being used resulting in more efficient use of time and 

resources. Additionally, web support for flow analyses will continue to be an important step in 

use of a tool; otherwise limitations like access to complicated inputs, like regional flood 

skewness coefficients, will remain beyond the reach of many users. The Comprehensive Flow 

Analysis (CFA) tool provides this software package unity allowing multiple flow analyses on a 

single formatted dataset. Furthermore, the scalability of the various CFA flow analyses under 

different cyberinfrastructure hardware configurations and request rates demonstrates that this is a 

scalable tool. The scalable infrastructure combined with the database access built into CFA 

creates a more streamlined analysis process from data collection to analysis to results.  
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APPENDIX I: SWAT-MODFLOW LINKAGE INPUT FILE INSTRUCTIONS 

 

 

 

ARCGIS SHAPEFILE MANIPULATION 

1. Modify the MODFLOW grid shapefile (FISHNET can be used to create a gridded 

shapefile in ArcGIS, http://arcscripts.esri.com/details.asp?dbid=12807) 

a. Add new field (grid_id) integer 

i. See “HOW TO SORT AND NUMBER GRID CELLS FOR EXPECTED 

GRID ID NUMBER SEQUENCE” on how to populate this field 

b. Add new field (Col_Row) string 

i. Populate the field by the column index of the grid cell then a space then a 

dash then a space then the row "index of the grid cell 

ii. Example: The grid cell in column 71 and row 33 would have Col_Row = 

“71 – 33”  

2. Copy “reach” shapefile (name it reach_new) then: 

a. Add new field (riv_id) integer, which is the river id 

i. Populate as "field calculator" as = SUBBASIN 

3. Determine the SWAT/MODFLOW river interaction  

a. Intersect reach_new with the MODFLOW grid shapefile (name it rivergrid) 

http://arcscripts.esri.com/details.asp?dbid=12807
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b. After intersecting add a new field (rgrid_len) float, the length of each river 

segment within the MODFLOW grid 

i. populate the field by "calculate geometry" 

ii. Note: this needs to be in units of meters 

c. Export this attribute table as a csv file (name it rivergrid.csv) 

4. Copy FullHRU and name it “FullHRU_edit” and modify it 

a. add new field (riv_id) integer, the river this HRU drains to 

i. Populate the field by "field calculator" = SUBBASIN 

ii. Or by the river IDs that you have previously created (note: only 1 river per 

subbasin) 

b. add new field (hru_id) integer 

i. First list the attribute table in increasing order by the column of "HRUgis" 

ii. Populate by numbering this new field 1,2,...,n this should result such that 

"HRU 1" is the first HRU in subbasin 1 

c. Take FullHRU_edit _sort and apply the GIS operation "Multipart to singlepart" to 

get a layer (name it FullDHRU) of disaggregated HRUs (DHRU) 

5. Modify the FullDHRU shapefile 

a. add new field (DHRU_area) float  
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i. Populate the field by "calculate geometry" 

b. add new field (DHRU_id) long integer 

i. populate the field by "field calculator" as = FID + 1 

c. export attribute table (name it FullDHRU.csv) 

6. Intersect the MODFLOW grid shapefile (AllCells_sort) with FullDHRU (name it 

DHRU_grid) 

a. add new field (overlap_a) float, the overlap area between DHRUs and grid cells 

i. Populate the field by "calculate geometry" 

b. add new field (grid_area) float, the area of a grid cell 

i. Populate the field by "field calculator" as = the area of the MODLFOW 

grid cell, in meters 

ii. Example: A 250 meter by 250 meter grid would have area = 250*250 = 

62500 square meters 

c. Export attribute table as a csv file (name it DHRU_grid.csv) 

7. Run createSWAT_MODFLOW_files.java 

a. See Appendix II 
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HOW TO SORT AND NUMBER GRID CELLS FOR EXPECTED GRID ID NUMBER 

SEQUENCE 

1. Open the Geoprocessing >  Python window 

2. Copy the below code after filling in the correct file path and file name for your database 

on the env.workspace line (replace “C:/Projects/mydatabase.mdb” with your file path and 

name of your database) 

import arcpy 

from arcpy import env 

env.workspace = "U:/ArcGIS/Default.mdb" 

arcpy.Sort_management("AllCells", "AllCells_sort", [["row", "ASCENDING"], ["col", 

"ASCENDING"]], "PEANO") 

 

3. Then Modify the AllCells_sort shapefile: 

a. Add new field (grid_id) long int 

b. Open the Field Calculator to populate this field as equal to objectID 
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APPENDIX II: AUTOMATED SWAT-MODFLOW LINKAGE INPUT FILE CREATION 

JAVA CODE 

 

 

 

CREATESWAT_MODFLOW_FILES.JAVA 

package SWAT_MODFLOW; 

 

import java.io.IOException; 

import javax.swing.JOptionPane; 

 

/** 

* Last Updated: 28-February-2014 

* @author Tyler Wible 

* @since 31-July-2013 

*/ 

public class createSWAT_MODFLOW_files { 

  public static void main(String[] args) throws IOException { 

     

    //Ask user for inputs 

    String directory = fetchDirectory(); 

    int num_Grids = fetchGrids(); 

    int num_HRUs = fetchHRUs(); 

    int num_DHRUs = fetchDHRUs(); 

    String mfRiverFile = fetchMFriverFile(); 

    int num_RiverGrids = fetchRiverGrids(); 

     

    //Set inputs 

    String[] inputs = new String[3]; 

    inputs[0] = directory; 

     

     

    //Create grid2dhru file 

    inputs[1] = String.valueOf(num_Grids); 

    inputs[2] = String.valueOf(num_DHRUs); 

    map_grid2dhru.main(inputs); 

     

     

    //Create dhru2grid file 

    inputs[1] = String.valueOf(num_Grids); 

    inputs[2] = String.valueOf(num_DHRUs); 

    map_dhru2grid.main(inputs); 

     

     

    //Create dhru2hru file 
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    inputs[1] = String.valueOf(num_HRUs); 

    inputs[2] = String.valueOf(num_DHRUs); 

    map_dhru2hru.main(inputs); 

     

     

    //Create river2grid file 

    inputs[1] = mfRiverFile; 

    inputs[2] = String.valueOf(num_RiverGrids); 

    map_river2grid.main(inputs); 

  } 

  static String fetchDirectory(){ 

    String fileString = JOptionPane.showInputDialog("Please enter the file path to the 

directory where the input files are located. Ex: 'C:/myFolder/myOtherFolder'", "Enter file 

directory"); 

    return fileString; 

  } 

  static int fetchGrids(){ 

    String gridString = JOptionPane.showInputDialog("Please enter the total number 

(including inactive cells) of MODFLOW grid cells in the MODFLOW model", "Enter 

Number of Grid Cells"); 

    int gridInt = Integer.parseInt(gridString); 

    return gridInt; 

  } 

  static int fetchHRUs(){ 

    String hruString = JOptionPane.showInputDialog("Please enter the total number of 

SWAT Hydrologic Response Units (HRUs) in the SWAT model", "Enter Number of 

HRUs"); 

    int hruInt = Integer.parseInt(hruString); 

    return hruInt; 

  } 

  static int fetchDHRUs(){ 

    String dhruString = JOptionPane.showInputDialog("Please enter the total number of 

Disaggregated-Hydrologic Response Units (DHRUs) in the SWAT/MODFLOW/UZF-

RT3D model", "Enter Number of DHRUs"); 

    int dhruInt = Integer.parseInt(dhruString); 

    return dhruInt; 

  } 

  static String fetchMFriverFile(){ 

    String fileString = JOptionPane.showInputDialog("Please enter the name of the river 

pakage file in the MODFLOW model (ex: 'myMODFLOWFile.riv')", "Enter 

MODFLOW river file name"); 

    return fileString; 

  } 

  static int fetchRiverGrids(){ 
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    String dhruString = JOptionPane.showInputDialog("Please enter the total number of 

MODFLOW river grid cells in the MODFLOW model", "Enter Number of river grid 

cells"); 

    int dhruInt = Integer.parseInt(dhruString); 

    return dhruInt; 

  } 

} 

 

MAP_DHRU2GRID.JAVA 

package SWAT_MODFLOW; 

 

import java.io.File; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.util.ArrayList; 

import java.util.Formatter; 

import java.util.Scanner; 

 

/** 

* Last Updated: 10-March-2014 

* @author Tyler Wible 

* @since 11-April-2013 

*/ 

public class map_dhru2grid { 

  public static void main(String[] args) throws IOException { 

    //Inputs 

    String directory = args[0]; 

    int num_Grids = Integer.parseInt(args[1]); 

    int num_DHRUs = Integer.parseInt(args[2]); 

     

    System.out.println("Creating map_dhru2grid.txt..."); 

    readFile(directory, num_Grids, num_DHRUs); 

    System.out.println("Done"); 

  } 

  /** 

   * Reads the attribute table file MOD_HRU.csv containing the grid IDs, HRU IDs, their 

respective areas and their area of overlap 

   * @param directory  the path to the input file (ex. C:/temp) 

   * @param numGrids  the total number of grid cells (active and inactive) in the 

MODFLOW model 

   * @param num_DHRUs  the total number of disaggregated HRUs in the SWAT model 

   * @throws IOException 

   */ 

  public static void readFile(String directory, int numGrids, int num_DHRUs) throws 

IOException { 
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    // read the file 

    String path = directory + "/DHRU_grid.csv"; 

    File file = new File(path); 

    Scanner scanner = new Scanner(file); 

 

    // Read header 

    String[] header = scanner.nextLine().split(","); 

 

    //Get indices for the desired columns 

    int index_grid_id = 0; 

    int index_grid_area = 0; 

    int index_dhru_id = 0; 

    int index_overlap_area = 0; 

    for(int i=0; i<header.length; i++){ 

      header[i] = header[i].replace('"', '%'); 

      header[i] = header[i].replaceAll("%", ""); 

      if(header[i].equalsIgnoreCase("grid_id")){ 

        index_grid_id = i; 

      }else if(header[i].equalsIgnoreCase("grid_area")){ 

        index_grid_area = i; 

      }else if(header[i].equalsIgnoreCase("dhru_id")){ 

        index_dhru_id = i; 

      }else if(header[i].equalsIgnoreCase("overlap_a")){ 

        index_overlap_area = i; 

      } 

    } 

     

    //Check for missing information 

    if(index_grid_id == 0){ 

      throw new IOException("Error encountered, there is no attribute column 'grid_id' in 

DHRU_grid.csv"); 

    } 

    if(index_grid_area == 0){ 

      throw new IOException("Error encountered, there is no attribute column 'grid_area' 

in DHRU_grid.csv"); 

    } 

    if(index_dhru_id == 0){ 

      throw new IOException("Error encountered, there is no attribute column 'dhru_id' in 

DHRU_grid.csv"); 

    } 

    if(index_overlap_area == 0){ 

      throw new IOException("Error encountered, there is no attribute column 'overlap_a' 

in DHRU_grid.csv"); 

    } 
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    // Read and parse text file 

    ArrayList<String> DHRU_Num = new ArrayList<String>();          // DHRU Num  

    ArrayList<Double> percent_Area_GRID = new ArrayList<Double>(); // area DHRU 

inside given grid / total area grid 

    ArrayList<String> grid_Num = new ArrayList<String>();         // Grid number 

    while(scanner.hasNextLine()){                                   

      String line = scanner.nextLine(); 

       

      // Split the read data 

      String[] data_Splitted = line.split(","); 

 

      // Grab values from text file 

      double total_area_of_GRID = Double.parseDouble(data_Splitted[index_grid_area]); 

      double area_of_HRU_within_GRID = 

Double.parseDouble(data_Splitted[index_overlap_area]); 

       

      //Calculate percent area of HRU within grid 

      double percent_area_of_GRID_Double = area_of_HRU_within_GRID / 

total_area_of_GRID; 

 

      //Save values from text file 

      DHRU_Num.add(data_Splitted[index_dhru_id]); 

      percent_Area_GRID.add(percent_area_of_GRID_Double); 

      grid_Num.add(data_Splitted[index_grid_id]); 

    } 

    scanner.close(); 

     

    write_modified_HRU_MOD(directory, DHRU_Num, percent_Area_GRID, grid_Num, 

numGrids, num_DHRUs); 

  } 

  /** 

   * Takes the list of grid/hru ids and the percent area of HRUs contributing to a given 

grid and creates the SM linkage file 

   * map_hru2grid.txt 

   * @param directory  the path to the output file (ex. C:/temp) 

   * @param DHRU_Num list of HRU ID numbers 

   * @param percent_Area_GRID list of percent grid within the above HRU ID 

   * @param grid_Num  list of grid ID numbers 

   * @param numGrids  the total number of grid cells (active and inactive) in the 

MODFLOW model 

   * @param num_DHRUs  the total number of disaggregated HRUs in the SWAT model 

   * @throws IOException 

   */ 

  public static void write_modified_HRU_MOD(String directory, 

                      ArrayList<String> DHRU_Num, 

                      ArrayList<Double> percent_Area_GRID, 
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                      ArrayList<String> grid_Num, 

                      int numGrids, 

                      int num_DHRUs) throws IOException { 

     

    String path = directory + "/map_dhru2grid.txt"; 

    File file = new File(path); 

    boolean fileTF = file.isFile(); 

    if(fileTF){ 

      boolean fileDeleteTF = file.delete(); 

      if(!fileDeleteTF){ 

        System.out.println("The file (" + path + ") could not be deleted"); 

      } 

    } 

     

    ArrayList<ArrayList<String>> gridIndexList = new ArrayList<ArrayList<String>>(); 

    int maxSize = 0; 

    for(int j=1; j <= numGrids; j++){ // iterating over grid number 

      System.out.println(j); 

      // Find all positions containing current Grid number 

      ArrayList<String> DHRUindex_for_currentGrid = new ArrayList<String>(); // 

arraylist containing all HRUs within current Grid Num" 

      for(int i = 0; i < grid_Num.size(); i++){ 

        if(j == (int) Double.parseDouble(grid_Num.get(i))){ 

          // Gives me an array containing all positions of HRUs which contribute to current 

grid 

          DHRUindex_for_currentGrid.add(String.valueOf(i)); 

        } 

      } 

      if(DHRUindex_for_currentGrid.size() > maxSize) maxSize = 

DHRUindex_for_currentGrid.size(); 

      gridIndexList.add(DHRUindex_for_currentGrid); 

    } 

     

    // Format for which the text file will be written 

    Formatter HRU_MOD = new Formatter(new FileWriter(file, true)); 

    // Write out the total number of MODFLOW grid cells which intersect with the SWAT 

hrus and what the maximum number of SWAT hrus is that intersect this 

    HRU_MOD.format("%1$12s%2$12s%n", numGrids, maxSize);  

     

    for(int j=1; j <= numGrids; j++){ // iterating over grid number 

      ArrayList<String> currentGrid_DHRUindexList = gridIndexList.get(j-1); 

       

      // format the grid number as first column and the number of HRUs contributing to this 

grid as the second column 

      HRU_MOD.format("%1$12s%2$12s%n", j, currentGrid_DHRUindexList.size()); 
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      //Print ID of HRUs contributing to the current grid 

      for(int i = 0; i < currentGrid_DHRUindexList.size(); i++){ 

        int hruIndex = Integer.parseInt(currentGrid_DHRUindexList.get(i)); 

        int hruNumber = (int) Double.parseDouble(DHRU_Num.get(hruIndex)); 

        HRU_MOD.format("%1$12s", hruNumber); 

      } 

      HRU_MOD.format("%n", ""); 

       

       

      //Print Percent areas of each HRU contributing to the current grid 

      for(int i = 0; i < currentGrid_DHRUindexList.size(); i++){ 

        int hruIndex = Integer.parseInt(currentGrid_DHRUindexList.get(i)); 

        HRU_MOD.format("%1$12.5f", percent_Area_GRID.get(hruIndex)); 

      } 

      HRU_MOD.format("%n", ""); 

    } 

    gridIndexList.clear(); 

    HRU_MOD.close(); 

  } 

} 

//Format of output 

//390      59   (total number of grids to be read in) (the maximum number of dhrus that 

contribute to a single grid) 

//1        4    (grid#)    (# of dhrus contributing to this grid) 

//hru2_ID   hru12_ID   hru31_ID   hru37_ID  (list of dhru id #s contributing to grid#) 

//0.36      0.25       0.04       0.35      (list of %areas of dhru contributing to grid#, adds to 1) 

 

MAP_DHRU2HRU.JAVA 

package SWAT_MODFLOW; 

 

import java.io.File; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.util.ArrayList; 

import java.util.Formatter; 

import java.util.Scanner; 

 

 

/** 

* Last Updated: 10-March-2014 

* @author Tyler Wible 

* @since 11-June-2013 

*/ 

public class map_dhru2hru { 
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  public static void main(String[] args) throws IOException { 

    //Inputs 

    String directory = args[0]; 

    int num_HRUs = Integer.parseInt(args[1]); 

    int num_DHRUs = Integer.parseInt(args[2]); 

     

    System.out.println("Creating map_dhru2hru.txt..."); 

    readFile(directory, num_DHRUs, num_HRUs); 

    System.out.println("Done"); 

  } 

  /** 

   * Reads the attribute table file MOD_HRU.csv containing the grid IDs, HRU IDs, their 

respetive areas and their area of overlap 

   * @param directory  the path to the input file (ex. C:/temp) 

   * @param num_DHRUs  the total number of disaggregated HRUs in the SWAT model 

   * @param num_HRUs  the total number of aggregated (normal SWAT) HRUs in the 

SWAT models 

   * @throws IOException 

   */ 

  public static void readFile(String directory, int num_DHRUs, int num_HRUs) throws 

IOException { 

    // read the file 

    String path = directory + "/FullDHRU.csv"; 

    File file = new File(path); 

    Scanner scanner = new Scanner(file); 

 

    // Read header 

    String[] header = scanner.nextLine().split(","); 

     

    //Get indices for the desired columns 

    int index_hru_id = 0; 

    int index_hru_area = 0; 

    int index_sub_id = 0; 

    int index_dhru_id = 0; 

    int index_dhru_area = 0; 

    for(int i=0; i<header.length; i++){ 

      header[i] = header[i].replace('"', '%'); 

      header[i] = header[i].replaceAll("%", ""); 

      if(header[i].equalsIgnoreCase("hru_id")){ 

        index_hru_id = i; 

      }else if(header[i].equalsIgnoreCase("Shape_Area")){ 

        index_hru_area = i; 

      }else if(header[i].equalsIgnoreCase("SUBBASIN")){ 

        index_sub_id = i; 

      }else if(header[i].equalsIgnoreCase("dhru_id")){ 

        index_dhru_id = i; 
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      }else if(header[i].equalsIgnoreCase("dhru_area")){ 

        index_dhru_area = i; 

      } 

    } 

     

    //Check for missing information 

    if(index_hru_id == 0){ 

      throw new IOException("Error encountered, there is no attribute column 'hru_id' in 

FullDHRU_intersect.csv"); 

    } 

    if(index_hru_area == 0){ 

      throw new IOException("Error encountered, there is no attribute column 

'Shape_Area' in FullDHRU_intersect.csv"); 

    } 

    if(index_sub_id == 0){ 

      throw new IOException("Error encountered, there is no attribute column 

'SUBBASIN' in FullDHRU_intersect.csv"); 

    } 

    if(index_dhru_id == 0){ 

      throw new IOException("Error encountered, there is no attribute column 'dhru_id' in 

FullDHRU_intersect.csv"); 

    } 

    if(index_dhru_area == 0){ 

      throw new IOException("Error encountered, there is no attribute column 'dhru_area' 

in FullDHRU_intersect.csv"); 

    } 

     

     

    // Read and parse now reduced text file (should have 1 line per dhru) 

    ArrayList<String> HRU_Num = new ArrayList<String>();           //HRU Num  

    ArrayList<Double> percent_Area_HRU = new ArrayList<Double>();  //area DHRU 

inside given HRU / total area HRU 

    ArrayList<String> dhru_Num = new ArrayList<String>();          //DHRU number 

    ArrayList<Integer> subbasin_id = new ArrayList<Integer>();     //subbasin id number 

containing the current river ID number 

     

    while(scanner.hasNextLine()){ 

      // Split the read data 

      String[] data_Splitted = scanner.nextLine().split(","); 

 

      // Grab values from text file 

      double total_area_of_HRU = Double.parseDouble(data_Splitted[index_hru_area]); 

      double area_of_Dhru_within_HRU = 

Double.parseDouble(data_Splitted[index_dhru_area]); 

       

      //Calculate percent area of dhru within HRU 
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      double percent_area_of_HRU_Double = area_of_Dhru_within_HRU / 

total_area_of_HRU; 

       

      //Save values from text file 

      HRU_Num.add(data_Splitted[index_hru_id]); 

      percent_Area_HRU.add(percent_area_of_HRU_Double); 

      dhru_Num.add(data_Splitted[index_dhru_id]); 

      subbasin_id.add(Integer.parseInt(data_Splitted[index_sub_id])); 

    } 

    scanner.close(); 

     

    write_map_grid2hru(directory, HRU_Num, percent_Area_HRU, dhru_Num, 

subbasin_id, num_DHRUs, num_HRUs); 

  } 

  /** 

   * Takes the list of dhru/hru ids and the percent area of dhrus contributing to a given 

HRU and creates the SM linkage file 

   * map_dhru2hru.txt 

   * @param directory  the path to the output file (ex. C:/temp) 

   * @param HRU_Num list of HRU ID numbers 

   * @param percent_Area_hru list of percent dhru within the above HRU ID 

   * @param dhru_Num  list of dhru ID numbers 

   * @param subbasin_id  list of subbasin ID numbers 

   * @param num_DHRUs  the total number of disaggregated HRUs in the SWAT model 

   * @param num_HRUs  the total number of aggregated (normal SWAT) HRUs in the 

SWAT model 

   * @throws IOException 

   */ 

  public static void write_map_grid2hru(String directory, 

                    ArrayList<String> HRU_Num, 

                    ArrayList<Double> percent_Area_hru, 

                    ArrayList<String> dhru_Num, 

                    ArrayList<Integer> subbasin_id, 

                    int num_DHRUs,  

                    int num_HRUs)throws IOException { 

 

    String path = directory + "/map_dhru2hru.txt"; 

    File file = new File(path); 

    boolean fileTF = file.isFile(); 

    if(fileTF){ 

      boolean fileDeleteTF = file.delete(); 

      if(!fileDeleteTF){ 

        System.out.println("The file (" + path + ") could not be deleted"); 

      } 

    } 
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    ArrayList<ArrayList<String>> hruIndexList = new ArrayList<ArrayList<String>>(); 

    int maxSize = 0; 

    for(int j=1; j <= num_HRUs; j++){ // iterating over hru number 

      System.out.println(j); 

      // Find all positions containing current hru number 

      ArrayList<String> DHRUindex_for_currentHRU = new ArrayList<String>(); // 

arraylist containing all dhrus within current HRU 

      for(int i = 0; i < HRU_Num.size(); i++){ 

        if(j == (int) Double.parseDouble(HRU_Num.get(i))){ 

          // Gives an array containing all the indexes of dhrus which contribute to current 

HRU 

          DHRUindex_for_currentHRU.add(String.valueOf(i)); 

        } 

      } 

      if(DHRUindex_for_currentHRU.size() > maxSize) maxSize = 

DHRUindex_for_currentHRU.size(); 

      hruIndexList.add(DHRUindex_for_currentHRU); 

    } 

     

    // Format for which the text file will be written 

    Formatter outputFile = new Formatter(new FileWriter(file, true)); 

    // Write out the total number of disaggregated HRUs contained in this file 

    outputFile.format("%1$12s%2$12s%n", num_HRUs, maxSize);  

     

    for(int j=1; j <= num_HRUs; j++){ // iterating over hru number 

      ArrayList<String> currentHRU_DHRUindexList = hruIndexList.get(j-1); 

       

      // format the HRU number as first column and the number of dhrus contributing to 

this HRU as the second column 

      int index = Integer.parseInt(currentHRU_DHRUindexList.get(0)); 

      int sub_id = subbasin_id.get(index); 

      outputFile.format("%1$12s%2$12s%3$12s%n", j, 

currentHRU_DHRUindexList.size(), sub_id); 

       

      //Print the dhru ids for the grids contributing to the current dhru 

      for(int i = 0; i < currentHRU_DHRUindexList.size(); i++){ 

        int gridIndex = Integer.parseInt(currentHRU_DHRUindexList.get(i)); 

        int rowNumber = (int) Double.parseDouble(dhru_Num.get(gridIndex)); 

        outputFile.format("%1$12s", rowNumber); 

      } 

      outputFile.format("%n", ""); 

       

      //Print Percent areas of each grid contributing to the current dhru 

      for(int i = 0; i < currentHRU_DHRUindexList.size(); i++){ 

        int gridIndex = Integer.parseInt(currentHRU_DHRUindexList.get(i)); 

        outputFile.format("%1$12.5f", percent_Area_hru.get(gridIndex)); 
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      } 

      outputFile.format("%n", ""); 

    } 

    outputFile.close();//tcw 

  } 

} 

//Format of output:  

//390  (total number of disaggregated HRUs to be read in) 

//1     4     1    (aggregated hru#)  (# of dhrus contributing to this hru) (subbasinID) 

//dhru1_ID  dhru12_ID  dhru31_ID  dhru37_ID  (list of dhru id #s contributing to hru#) 

//0.36      0.25       0.04       0.35      (list of %areas of dhru contributing to hru#, adds to 1) 

 

MAP_GRID2DHRU.JAVA 

package SWAT_MODFLOW; 

 

import java.io.File; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.util.ArrayList; 

import java.util.Formatter; 

import java.util.Scanner; 

 

/** 

* Last Updated: 10-March-2014 

* @author Tyler Wible 

* @since 11-June-2013 

*/ 

public class map_grid2dhru { 

  public static void main(String[] args) throws IOException { 

    //Inputs 

    String directory = args[0]; 

    int num_Grids = Integer.parseInt(args[1]); 

    int num_DHRUs = Integer.parseInt(args[2]); 

     

    System.out.println("Creating map_grid2dhru.txt..."); 

    readFile(directory, num_Grids, num_DHRUs); 

    System.out.println("Done"); 

  } 

  /** 

   * Reads the attribute table file MOD_HRU.csv containing the grid IDs, HRU IDs, their 

respective areas and their area of overlap 

   * @param directory  the path to the input file (ex. C:/temp) 

   * @param numGrids  the total number of grid cells (active and inactive) in the 

MODFLOW model 

   * @param numDHRUs  the total number of disaggregated HRUs in the SWAT model 
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   * @throws IOException 

   */ 

  public static void readFile(String directory, int numGrids, int numDHRUs) throws 

IOException { 

    // read the file 

    String path = directory + "/DHRU_grid.csv"; 

    File file = new File(path); 

    Scanner scanner = new Scanner(file); 

 

    // Read header 

    String[] header = scanner.nextLine().split(","); 

     

    //Get indices for the desired columns 

    int index_col_row = 0; 

    int index_grid_id = 0; 

    int index_dhru_id = 0; 

    int index_dhru_area = 0; 

    int index_overlap_area = 0; 

    for(int i=0; i<header.length; i++){ 

      header[i] = header[i].replace('"', '%'); 

      header[i] = header[i].replaceAll("%", ""); 

      if(header[i].equalsIgnoreCase("Col_Row")){ 

        index_col_row = i; 

      }else if(header[i].equalsIgnoreCase("grid_id")){ 

        index_grid_id = i; 

      }else if(header[i].equalsIgnoreCase("dhru_id")){ 

        index_dhru_id = i; 

      }else if(header[i].equalsIgnoreCase("dhru_area")){ 

        index_dhru_area = i; 

      }else if(header[i].equalsIgnoreCase("overlap_a")){ 

        index_overlap_area = i; 

      } 

    } 

     

    //Check for missing information 

    if(index_col_row == 0){ 

      throw new IOException("Error encountered, there is no attribute column 'Col_Row' 

in DHRU_grid.csv"); 

    } 

    if(index_grid_id == 0){ 

      throw new IOException("Error encountered, there is no attribute column 'grid_id' in 

DHRU_grid.csv"); 

    } 

    if(index_dhru_id == 0){ 

      throw new IOException("Error encountered, there is no attribute column 'dhru_id' in 

DHRU_grid.csv"); 
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    } 

    if(index_dhru_area == 0){ 

      throw new IOException("Error encountered, there is no attribute column 'dhru_area' 

in DHRU_grid.csv"); 

    } 

    if(index_overlap_area == 0){ 

      throw new IOException("Error encountered, there is no attribute column 'overlap_a' 

in DHRU_grid.csv"); 

    } 

     

    // Read and parse text file 

    ArrayList<String> DHRU_Num = new ArrayList<String>();          // HRU Num  

    ArrayList<Double> percent_Area_HRU = new ArrayList<Double>();  // area grid 

inside given HRU / total area HRU 

    ArrayList<String> grid_Num = new ArrayList<String>();          // Grid number 

    ArrayList<String> grid_row = new ArrayList<String>();          // Grid row id 

    ArrayList<String> grid_col = new ArrayList<String>();          // Grid column id 

    while(scanner.hasNextLine()){                                   

      String line = scanner.nextLine(); 

 

      // Split the read data 

      String[] data_Splitted = line.split(","); 

 

      // Grab values from text file 

      double total_area_of_DHRU = 

Double.parseDouble(data_Splitted[index_dhru_area]); 

      double area_of_GRID_within_DHRU = 

Double.parseDouble(data_Splitted[index_overlap_area]); 

       

      //Calculate percent area of grid within HRU 

      double percent_area_of_DHRU_Double = area_of_GRID_within_DHRU / 

total_area_of_DHRU; 

 

      //Save values from text file 

      DHRU_Num.add(data_Splitted[index_dhru_id]); 

      percent_Area_HRU.add(percent_area_of_DHRU_Double); 

      grid_Num.add(data_Splitted[index_grid_id]); 

      grid_row.add(columnRow(data_Splitted[index_col_row], false)); //grid row# 

      grid_col.add(columnRow(data_Splitted[index_col_row], true));  //grid column# 

    } 

    scanner.close(); 

     

    write_map_grid2dhru(directory, DHRU_Num, percent_Area_HRU, grid_Num, 

grid_row, grid_col, numGrids, numDHRUs); 

  } 

  /** 
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   * Converts the column - row string (ex. "3 - 49" is column 3 row 49) into either its 

column or row index only 

   * @param column_row  the "column - row" string (ex. "3 - 49") 

   * @param columnTrue  if true, this returns the column index (ex. "3") if false it returns 

the row index (ex. "49") 

   * @return  The column or row index dependiong on the value of columnTrue 

   */ 

  public static String columnRow(String column_row, boolean columnTrue){ 

    //Convers the strin Col -  row into  

     

    String[] array = column_row.substring(1, column_row.length() - 1).split("-"); 

    String column = array[0].trim(); 

    String row = array[1].trim(); 

     

    String returnValue = row; 

    if(columnTrue){ 

      returnValue = column; 

    } 

     

    return returnValue; 

  } 

  /** 

   * Takes the list of grid/hru ids and the percent area of grids contributing to a given 

HRU and creates the SM linkage file 

   * map_grid2hru.txt 

   * @param directory  the path to the output file (ex. C:/temp) 

   * @param DHRU_Num list of HRU ID numbers 

   * @param percent_Area_HRU list of percent grid within the above HRU ID 

   * @param grid_Num  list of grid ID numbers 

   * @param grid_row  list of grid row numbers 

   * @param grid_col  list of grid column numbers 

   * @param numGrids  the total number of grid cells (active and inactive) in the 

MODFLOW model 

   * @param numDHRUs  the total number of disaggregated HRUs in the SWAT model 

   * @throws IOException 

   */ 

  public static void write_map_grid2dhru(String directory, 

                    ArrayList<String> DHRU_Num, 

                    ArrayList<Double> percent_Area_HRU, 

                    ArrayList<String> grid_Num, //unused 

                    ArrayList<String> grid_row,  

                    ArrayList<String> grid_col,  

                    int numGrids, //unused 

                    int numDHRUs)throws IOException { 

 

    String path = directory + "/map_grid2dhru.txt"; 
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    File file = new File(path); 

    boolean fileTF = file.isFile(); 

    if(fileTF){ 

      boolean fileDeleteTF = file.delete(); 

      if(!fileDeleteTF){ 

        System.out.println("The file (" + path + ") could not be deleted"); 

      } 

    } 

     

    ArrayList<ArrayList<String>> dhruIndexList = new ArrayList<ArrayList<String>>(); 

    int maxSize = 0; 

    for(int j=1; j <= numDHRUs; j++){ // iterating over dhru number 

      System.out.println(j); 

      // Find all positions containing current Grid number 

      ArrayList<String> gridIndex_for_currentDHRU = new ArrayList<String>(); // 

arraylist containing all grids within current HRU 

      for(int i = 0; i < DHRU_Num.size(); i++){ 

        if(j == (int) Double.parseDouble(DHRU_Num.get(i))){ 

          // Gives an array containing all the indexes of grids which contribute to current 

HRU 

          gridIndex_for_currentDHRU.add(String.valueOf(i)); 

        } 

      } 

      if(gridIndex_for_currentDHRU.size() > maxSize) maxSize = 

gridIndex_for_currentDHRU.size(); 

      dhruIndexList.add(gridIndex_for_currentDHRU); 

    } 

     

    // Format for which the text file will be written 

    Formatter MOD_HRU = new Formatter(new FileWriter(file, true)); 

    // Write out the total number of dissaggregated hrus which intersect with the 

MODFLOW grid cells and the maximum number of MODFLOW grid cells that intersect 

a single dhru 

    MOD_HRU.format("%1$12s%2$12s%n", numDHRUs, maxSize);  

     

    for(int j=1; j <= numDHRUs; j++){ // iterating over dhru number 

      ArrayList<String> currentDHRU_gridIndexList = dhruIndexList.get(j-1); 

       

      // format the dHRU number as first column and the number of grids contributing to 

this HRU as the second column 

      MOD_HRU.format("%1$12s%2$12s%n", j, currentDHRU_gridIndexList.size()); 

       

      //Print the row ids for the grids contributing to the current dhru 

      for(int i = 0; i < currentDHRU_gridIndexList.size(); i++){ 

        int gridIndex = Integer.parseInt(currentDHRU_gridIndexList.get(i)); 

        int rowNumber = (int) Double.parseDouble(grid_row.get(gridIndex)); 
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        MOD_HRU.format("%1$12s", rowNumber); 

      } 

      MOD_HRU.format("%n", ""); 

       

      //Print the column ids for the grids contributing to the current dhru 

      for(int i = 0; i < currentDHRU_gridIndexList.size(); i++){ 

        int gridIndex = Integer.parseInt(currentDHRU_gridIndexList.get(i)); 

        int columnNumber = (int) Double.parseDouble(grid_col.get(gridIndex)); 

        MOD_HRU.format("%1$12s", columnNumber); 

      } 

      MOD_HRU.format("%n", ""); 

       

       

      //Print Percent areas of each grid contributing to the current dhru 

      for(int i = 0; i < currentDHRU_gridIndexList.size(); i++){ 

        int gridIndex = Integer.parseInt(currentDHRU_gridIndexList.get(i)); 

        MOD_HRU.format("%1$12.5f", percent_Area_HRU.get(gridIndex)); 

      } 

      MOD_HRU.format("%n", ""); 

    } 

    MOD_HRU.close();//tcw 

  } 

} 

//Format of outout: tcw 

//390           62   (total number of dHRUs to be read in)    (the maximum number of grids 

that contribute to a single dhru) 

//1             4    (hru#)    (# of grids contributing to this dhru) 

//grid2_row_ID  grid12_row_ID  grid31_row_ID  grud37_row_ID  (list of grid row id #s 

contributing to dhru#) 

//grid2_col_ID  grid12_col_ID  grid31_col_ID  grud37_col_ID  (list of grid column id #s 

contributing to dhru#) 

//0.36          0.25           0.04           0.35           (list of %areas of grid contributing to 

dhru#, adds to 1) 

 

MAP_RIVER2GRID.JAVA 

package SWAT_MODFLOW; 

 

import java.io.BufferedReader; 

import java.io.File; 

import java.io.FileReader; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.util.ArrayList; 

import java.util.Formatter; 

import java.util.Scanner; 
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/** 

* Last Updated: 28-February-2014 

* @author Tyler Wible 

* @since 18-April-2013 

*/ 

public class map_river2grid { 

  public static void main(String[] args) throws IOException { 

    //Inputs 

    String directory = args[0]; 

    String mfRiverFile = args[1]; 

    int num_RiverGrids = Integer.parseInt(args[2]); 

     

    System.out.println("Creating map_river2grid.txt..."); 

    writeResults(directory, mfRiverFile, num_RiverGrids); 

    System.out.println("Done"); 

  } 

  /** 

   * Converts the column - row string (ex. "3 - 49" is column 3 row 49) into either its 

column or row index only 

   * @param column_row  the "column - row" string (ex. "3 - 49") 

   * @param columnTrue  if true, this returns the column index (ex. "3") if false it returns 

the row index (ex. "49") 

   * @return  The column or row index depending on the value of columnTrue 

   */ 

  public static String columnRow(String column_row, boolean columnTrue){ 

    //Convers the strin Col -  row into  

     

    String[] array = column_row.substring(1, column_row.length() - 1).split("-"); 

    String column = array[0].trim(); 

    String row = array[1].trim(); 

     

    String returnValue = row; 

    if(columnTrue){ 

      returnValue = column; 

    } 

     

    return returnValue; 

  } 

  /** 

   * Reads the attribute table file as a CSV file containing information on the river  

   * segments in SWAT intersected with the MODFLOW grid and pull out information on 

grid  

   * cell IDs and the subbasins of the river 

   * @param fileLocation  the path to the input file (ex. C:/temp) 

   * @return  selected contents of the CSV as a String[][] array 
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   * @throws IOException 

   */ 

  public static String[][] readRiverGridFile(String fileLocation) throws IOException{     

    //Open a reader for the results file 

    String path = fileLocation + "/rivergrid.csv"; 

    FileReader file_to_read = new FileReader(path); 

    BufferedReader reader = new BufferedReader(file_to_read); 

     

    //Read out some of the contents of the input file 

    ArrayList<String> data = new ArrayList<String>(); 

    String currentLine = ""; 

    while((currentLine = reader.readLine()) !=null){ 

      data.add(currentLine); 

    } 

    reader.close(); 

    file_to_read.close(); 

     

    //Populate data 

    String[][] resultArray = new String[data.size()-1][4]; 

    int index_col_row = 0; 

    int index_riv_id = 0; 

    int index_sub_id = 0; 

    int index_riv_len = 0; 

    for(int i=0; i<data.size(); i++){//Loop rows of data 

      String[] currentRow = data.get(i).split(","); 

       

      if(i == 0){ 

        for(int j=0; j<currentRow.length; j++){ 

          currentRow[j] = currentRow[j].replace('"', '%'); 

          currentRow[j] = currentRow[j].replaceAll("%", ""); 

          if(currentRow[j].equalsIgnoreCase("Col_Row")){ 

            index_col_row = j; 

          }else if(currentRow[j].equalsIgnoreCase("riv_id")){ 

            index_riv_id = j; 

          }else if(currentRow[j].equalsIgnoreCase("Subbasin")){ 

            index_sub_id = j; 

          }else if(currentRow[j].equalsIgnoreCase("rgrid_len")){ 

            index_riv_len = j; 

          } 

        } 

         

        //Check for missing information 

        if(index_col_row == 0){ 

          throw new IOException("Error encountered, there is no attribute column 

'Col_Row' in rivergrid.csv"); 

        } 
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        if(index_riv_id == 0){ 

          throw new IOException("Error encountered, there is no attribute column 'riv_id' in 

rivergrid.csv"); 

        } 

        if(index_sub_id == 0){ 

          throw new IOException("Error encountered, there is no attribute column 'Subbasin' 

in rivergrid.csv"); 

        } 

        if(index_riv_len == 0){ 

          throw new IOException("Error encountered, there is no attribute column 'rgrid_len' 

in rivergrid.csv"); 

        } 

         

         

      }else{ 

        //Keep desired information 

        resultArray[i-1][0] = currentRow[index_riv_id];                    //riverID# 

        resultArray[i-1][1] = currentRow[index_riv_len];                   //lengthOfRiver in 

grid# 

        resultArray[i-1][2] = columnRow(currentRow[index_col_row], true);  //grid 

column# 

        resultArray[i-1][3] = columnRow(currentRow[index_col_row], false); //grid row# 

      } 

    } 

     

    return resultArray; 

  } 

  /** 

   * read the MODLFOW river package file to get the order/info. about the river grid cells 

so the right  

   * SWAT river information is passed to the correct MODFLOW river grid cell 

   * @param filePath  the full file path to the river package file (ex. 

C:/tempFolder/myRivepackage.txt) 

   * @param num_RiverGrids  the total number of MODFLOW river grids in the model 

   * @return  selected contents of the river package as a String[][] array 

   * @throws IOException 

   */ 

  public static int[][] readMODFLOWrivFile(String filePath, int num_RiverGrids) throws 

IOException{     

    // intialize scanner (reader) 

    File file = new File(filePath); 

    Scanner scanner = new Scanner(file); 

     

    //Read in header information information 

    boolean readNextLine = true; 

    while(readNextLine){ 



116 

 

      String currentLine = scanner.nextLine(); 

      try{ 

        if(currentLine.substring(0,1).equals("#")){ 

          readNextLine = true; 

        }else{ 

          currentLine = scanner.nextLine(); 

          readNextLine = false; 

        } 

      }catch(IndexOutOfBoundsException e){ 

        currentLine = scanner.nextLine(); 

        readNextLine = false; 

      } 

    } 

     

     

    //Populate data 

    int[][] resultArray = new int[num_RiverGrids][3]; 

    for(int i=1; i<=num_RiverGrids; i++){//Loop for number of river cells 

      String[] columns = scanner.nextLine().split("\\s+"); 

       

      //Keep desired information 

      resultArray[i-1][0] = i;                            //river grid # 

      resultArray[i-1][1] = Integer.parseInt(columns[2]); //grid row# 

      resultArray[i-1][2] = Integer.parseInt(columns[3]); //grid column# 

    } 

     

    return resultArray; 

  } 

  /** 

   *  

   * @param fileLocation 

   * @param subbasinMax 

   * @throws IOException 

   */ 

  public static void writeResults(String fileLocation, String mfRiverFile, int 

num_RiverGrids) throws IOException{ 

     

    //Read River/grid Attribute table file 

    String[][] riverGridData = readRiverGridFile(fileLocation); 

     

    //Read MODFLOW .riv file 

    int[][] mfRiverData = readMODFLOWrivFile(fileLocation + "/" + mfRiverFile, 

num_RiverGrids); 

     

    //Delete the old map_rive2grid.txt if it exists 

    String path = fileLocation + "/map_river2grid.txt"; 
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    File file = new File(path); 

    boolean fileTF = file.isFile(); 

    if(fileTF){ 

      boolean fileDeleteTF = file.delete(); 

      if(!fileDeleteTF){ 

        System.out.println("The file (" + path + ") could not be deleted"); 

      } 

    } 

     

    // Format for which the text file will be written 

    Formatter riverFile = new Formatter(new FileWriter(file, true)); 

    riverFile.format("%1$12s%n", num_RiverGrids);//Write the total number of 

MODFLOW grids for dimensioning purposes 

     

     

    for(int j=1; j <= num_RiverGrids; j++){ // iterating over river grid number 

      System.out.println(j); 

      int mfRow = mfRiverData[j-1][1]; 

      int mfColumn = mfRiverData[j-1][2]; 

       

      // Find all positions containing current grid number 

      ArrayList<Integer> index_for_river_Num_for_Current_grid_Num = new 

ArrayList<Integer>(); // arraylist containing all river within current grid number 

       

      for(int i = 0; i < riverGridData.length; i++){ 

        int row = (int) Double.parseDouble(riverGridData[i][3]); 

        int column  = (int) Double.parseDouble(riverGridData[i][2]); 

         

        if(mfRow == row && mfColumn == column){ 

          // Gives me an array containing all positions of rivers which contribute to current 

grid 

          index_for_river_Num_for_Current_grid_Num.add(i); 

        } 

      } 

      riverFile.format("%1$12s%2$12s%n", j, 

index_for_river_Num_for_Current_grid_Num.size()); // format the grid number as first 

column and the number of rivers contributing to this as the second column 

       

       

      //Print ID of rivers contributing to the current grid 

      for(int i = 0; i < index_for_river_Num_for_Current_grid_Num.size(); i++){ 

        int riverIndex = index_for_river_Num_for_Current_grid_Num.get(i); 

        int riverNumber = (int) Double.parseDouble(riverGridData[riverIndex][0]); 

        riverFile.format("%1$12s", riverNumber); 

      } 

      riverFile.format("%n", ""); 
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      //Print length of river within current grid 

      for(int i = 0; i < index_for_river_Num_for_Current_grid_Num.size(); i++){ 

        int riverIndex = index_for_river_Num_for_Current_grid_Num.get(i); 

        double riverLength = Double.parseDouble(riverGridData[riverIndex][1]); 

        riverFile.format("%1$12.5f", riverLength); 

      } 

      riverFile.format("%n", ""); 

      index_for_river_Num_for_Current_grid_Num.clear(); 

    } 

    riverFile.close();//tcw 

  } 

} 

//Format of outout: tcw 

// 

//57       (total # of  river cells in MODFLOW) 

//36.2      591.25      299.04      350.12     (list of thickness of lengths of river segments of 

grid cell) 

//1        4    (grid#)    (# of river segments contributing to this grid) 

//rivr2_ID  rivr12_ID   rivr31_ID   rivr37_ID  (list of river id #s which are in this grid 

cell) 

//36.2      591.25      299.04      350.12     (list of lengths of river segment in this grid cell) 
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APPENDIX III: EXAMPLE SWAT-MODFLOW LINKAGE INPUT FILES 

 

 

 

GENERAL FORMATTING NOTES 

 These files are space separated, aka the number of spaces between each value does not 

matter (i.e. “1          2” is read in the same as “1  2”). 

 The function of the file is included in the name, the first element is the current format of a 

variable in the model; the second element is the desired/converted output of that variable 

for use in the model. 

o For example with, map_dhru2grid.txt 

o The first element is “dhru” meaning data is in a format of an array with an 

element per spatially disaggregated HRU. 

o The second element, “grid,” is the desired conversion of the variable to a 2D array 

of grid rows and columns, a format used by MODFLOW. 

o Therefore this file contains information of which dhrus contribute to each grid cell 

listed in this file to allow conversion of variables in this fashion. 

EXPLANATION OF: “map_dhru2grid.txt” 

This file contains an entry for every MODFLOW grid cell ID (inactive or active) as 

documented in Appendix I to create. The file starts with the first grid cell ID and ends with last 

grid cell ID (i.e. 1 to number of grid cells). Listed below are terms used in the next section to 

label the content of the file. 

 tLines = number of grids in the MODFLOW model to read in 

 DHRU = Disaggregated Hydrologic Response Unit 
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 A-HRU = the percent area of an DHRU inside a given grid cell # (Area DHRU inside 

grid # / Area of grid #) 

 Grid # = the grid cell ID number for the MODFLOW model 

 maxContr = the maximum number of DHRUs contributing to any grid cell used for 

dimensioning variables within the code 

EXAMPLE FILE CONTENTS, WITH LABELS: 

 6 4  “tLines” “maxContr” 

1 0  “Grid#” “# DHRUs inside Grid#” 

“leave a blank line” 

“leave a blank line” 

2 2  “Grid#” “# DHRUs inside this Grid#” 

17 32  “DHRU#” “DHRU#” 

0.08 0.12  “A-HRU” “A-HRU” 

3 4  “Grid#” “# DHRUs inside this Grid#” 

17 32 39 43 “DHRU#” “DHRU#” “DHRU#” “DHRU#” 

0.16 0.32 0.04 0.16 “A-HRU” “A-HRU” “A-HRU” “A-HRU” 

EXPLANATION OF EXAMPLE FILE CONTENTS 

 There are a total of 6 grid cells in the MODFLOW model and the grid cell in the 

MODFLOW model with the most DHRUs contributing to it has 4. 
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 The first grid cell has 0 disaggregated HRUs which contribute to it. This is likely because 

the grid cell is located outside of the boundaries of the SWAT model. 

o When a grid cell has no DHRUs contributing to it, leave 2 blank lines before the 

next entry. 

 The second grid cell has 2 DHRUs which contribute to it. 

o The first DHRU contributing to grid-ID 2 is number 17. 

o The second DHRU contributing to grid-ID 2 is number 32. 

o The first DHRU comprises 8% of the area of grid-ID 2 

o The second DHRU comprises 12% of the area of grid-ID 2 

o Because this percent area does not add up to 100% this grid cell is likely only 

partially covered by the SWAT model, which is allowed with this coupling. 

 The third grid cell has 4 DHRUs which contribute to it. 

o The first DHRU contributing to grid-ID 3 is number 17. 

o The second DHRU contributing to grid-ID 3 is number 32. 

o The third DHRU contributing to grid-ID 3 is number 39. 

o The fourth DHRU contributing to grid-ID 3 is number 43. 

o The first DHRU comprises 16% of the area of grid-ID 3 

o The second DHRU comprises 32% of the area of grid-ID 3 

o The third DHRU comprises 4% of the area of grid-ID 3 

o The fourth DHRU comprises 16% of the area of grid-ID 3 

o Because this percent area does not add up to 100% this grid cell is likely only 

partially covered by the SWAT model, which is allowed with this coupling. 



122 

 

EXPLANATION OF: “map_dhru2hru.txt” 

This file contains an entry for every SWAT HRU as created by the ArcSWAT interface. The 

file starts with the first HRU and ends with last HRU (i.e. 1 to number of HRUs in entire 

watershed). Listed below are terms used in the next section to label the content of the file. 

 DHRU = Disaggregated Hydrologic Response Unit 

 HRU = AHRU = Aggregated Hydrologic Response Unit (normal ArcSWAT HRUs) 

 sub# = the subbasin number that the AHRU currently resides in 

 A-HRU = the percent area of DHRU inside an AHRU (DHRU Area / AHRU Area) 

 DHRU id = The global id of the DHRU 

 maxContr = the maximum number of DHRUs within any HRU used for dimensioning 

variables within the code 

EXAMPLE FILE CONTENTS, WITH LABELS: 

35 4  “Total # of HRUs” “maxContr” 

1 2 1 “AHRU #” “# DHRUs inside AHRU ID = 1” “Sub#” 

14 15  “DHRU id” “DHRU id” 

0.08 0.92  “A-HRU” “A-HRU” 

2 4 1 “AHRU #” “# DHRUs inside AHRU ID = 2” “Sub#” 

1 3 4 7 “DHRU id” “DHRU id”  “DHRU id” “DHRU id” 

0.08 0.12 0.4 0.4 “A-HRU” “A-HRU”  “A-HRU” “A-HRU” 
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EXPLANATION OF EXAMPLE FILE CONTENTS 

 There are a total of 35 HRUs in the SWAT model and the HRU in the SWAT model with 

the most DHRUs contained within it has 4. 

 The first SWAT HRU has 2 DHRUs within it and is located in sub-basin 1. 

o The first DHRU contained in HRU-1 is number 14. 

o The second DHRU contained in HRU-1 is number 15. 

o The first DHRU comprises 8% of the area of HRU-1 

o The second DHRU comprises 92% of the area of HRU-1 

 The second SWAT HRU has 4 DHRUs within it and is located in sub-basin 1. 

o The first DHRU contained in HRU-2 is number 1 

o The second DHRU contained in HRU-2 is number 3 

o The third DHRU contained in HRU-2 is number 4 

o The fourth DHRU contained in HRU-2 is number 7 

o The first DHRU comprises 8% of the area of HRU-2 

o The second DHRU comprises 12% of the area of HRU-2 

o The third DHRU comprises 40% of the area of HRU-2 

o The fourth DHRU comprises 40% of the area of HRU-2 

EXPLANATION OF: “map_grid2dhru.txt” 

This file contains an entry for every DHRU to create as documented in Appendix I. The file 

starts with the first DHRU-ID and ends with last DHRU-ID (i.e. 1 to number of DHRUs). Listed 

below are terms used in the next section to label the content of the file. 

 tLines = number of DHRUs in the coupled model to read in 
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 DHRU# = Disaggregated Hydrologic Response Unit ID number 

 Row-ID = the row ID for the grid cell contributing to the DHRU 

 Col-ID = the column ID for the grid cell contributing to the DHRU 

 A-grid = the percent area of an grid cell inside a given DHRU# (Area grid cell inside 

DHRU# / Area of DHRU#) 

 Grid # = the grid cell ID number for the MODFLOW model 

 maxContr = the maximum number of grid cells contributing to any DHRU, used for 

dimensioning variables within the code 

EXAMPLE FILE CONTENTS, WITH LABELS: 

 400 7  “tLines” “maxContr” 

1 0  “DHRU#” “# grid cells inside DHRU#” 

“leave a blank line” 

“leave a blank line” 

“leave a blank line” 

2 1  “Grid#” “# DHRUs inside this Grid#” 

5   “Row-ID” 

3   “Col-ID” 

1.0   “A-grid” 

3 4  “Grid#” “# DHRUs inside this Grid#” 
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2 2 3 3 “Row-ID” “Row-ID” “Row-ID” “Row-ID” 

3 4 3 4 “Col-ID” “Col-ID” “Col-ID” “Col-ID” 

0.125 0.125 0.375 0.375 “A-grid” “A-grid” “A-grid” “A-grid” 

EXPLANATION OF EXAMPLE FILE CONTENTS 

 There are a total of 400 DHRUs in the coupled model and the DHRU with the most grid 

cells contributing to it has 7. 

 The first DHRU has 0 grid cells which contribute to it. This is likely because the DHRU 

derived from the SWAT model is located outside of the boundaries of the MODFLOW 

model. 

o When a DHRU has no grid cells contributing to it, leave 3 blank lines before the 

next entry. 

 The second DHRU has 2 grid cells which contribute to it. 

o The first grid cell contributing to DHRU-2 is row number 5 

o The first grid cell contributing to DHRU-2 is column number 3 

o The first grid cell comprises 100% of the area of DHRU-2 

 The third DHRU has 4 grid cells which contribute to it. 

o The first grid cells contributing to DHRU-3 is row number 2 

o The second grid cells contributing to DHRU-3 is row number 2 

o The third grid cells contributing to DHRU-3 is row number 3 

o The fourth grid cells contributing to DHRU-3 is row number 3 

o The first grid cells contributing to DHRU-3 is column number 3 

o The second grid cells contributing to DHRU-3 is column number 4 
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o The third grid cells contributing to DHRU-3 is column number 3 

o The fourth grid cells contributing to DHRU-3 is column number 4 

o The first grid cells comprises 12.5% of the area of DHRU-3 

o The second grid cells comprises 12.5% of the area of DHRU-3 

o The third grid cells comprises 37.5% of the area of DHRU-3 

o The fourth grid cells comprises 37.5% of the area of DHRU-3 

o Because this percent area row does not add up to 100% this DHRU is likely only 

partially covered by the MODFLOW model, which is allowed with this coupling. 

EXPLANATION OF: “map_river2grid.txt” 

This file contains an entry for every MODFLOW river cell as provided by MODFLOW’s 

river package file. The file starts with the first river cell and ends with last river cell (i.e. 1 to 

number of river grid cells). Listed below are terms used in the next section to label the content of 

the file. 

 DHRU = Disaggregated Hydrologic Response Unit 

 ID = identification number 

 T-RCells = total number of river cells in MODFLOW 

 R-Grid# = the river grid cell # 

 N-Grid = the # unique rivers (from different SWAT sub-basins) which are contained by 

this grid cell 

 RivID = river IDs, which contribute to the current river cell 

 L-Riv = length of river within current "R-Grid#" 
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EXAMPLE FILE CONTENTS, WITH LABELS: 

4   “T-RCells” 

1 1  “R-Grid#” “N-Grid” 

9   “RivID” 

70.7107  “L-Riv” 

2 2  “R-Grid#” “N-Grid” 

9 8  “RivID” “RivID” 

100.0 212.132 “L-Riv” “L-Riv” 

EXPLANATION OF EXAMPLE FILE CONTENTS 

 There are a total of 4 river cells in the MODFLOW model 

 The first MODFLOW river cell has 1 SWAT river contained within it. 

o The SWAT river number, which is also the sub-basin ID, for this river is “9” 

o The length of the SWAT river within this grid cell is “70.71070” meters 

 The second MODFLOW river cell has 1 SWAT rivers contained within it. 

o The first SWAT river number that contributes to this MODFLOW river cell is “9” 

o  The second SWAT river number that contributes to this MODFLOW river cell is 

“8” 

o The length of the first SWAT river within this grid cell is “100.0” meters 

o The length of the second SWAT river within this grid cell is “212.132” meters  
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APPENDIX IV: SWAT-MODFLOW FORTAN CODE 

 

 

 

MODEVENT.F 

      module modevent 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Andre Dozier, PhD student 

!!    Colorado State University 2012-2016 

!!    Comment initials "aqd" 

!! 

!!    ~ ~ ~ PURPOSE ~ ~ ~ 

!!    Implements a generic code event that can be subscribed to by any number of 

subscribers with two different structures:  

!!     - a subroutine with the following format can be subscribed to an event by "call 

my_event%subscribe(my_subscriber)" 

!!          subroutine my_subscriber(eventdata) 

!!              class (ieventdata), pointer :: eventdata 

!!              <my_work>       

!!          end subroutine  

!! 

!!     - a subclass with the following format can be subscribed to an event by "call 

my_event%subscribe_object(my_subscriber)" 

!!          type, public, extends(isubscriber) :: my_subscriber_class 

!!              <my_data>                

!!          contains 

!!              procedure, pass :: run => my_subscriber_subroutine 

!!          end type 

!! 

!!          subroutine my_subscriber_subroutine(subsc, eventdata) 

!!              class (my_subscriber_class), intent(inout) :: subsc 

!!              class (ieventdata), pointer :: eventdata 

!!              <my_work> 

!!          end subroutine 

!! 

!!    An event can be instantiated by "type(event), target :: my_event" 

!!    An event can be "fired" by "call my_event%fire()". 

!!        

      implicit none 

 

        ! Parameters 

        logical :: verbose = .false. 

 

        ! Define a generic subscriber  

        type, public, abstract :: isubscriber 



129 

 

            integer :: ind = -1 

            class (isubscriber), pointer :: next => null()  

        contains  

            procedure(abstrun), deferred, pass :: run 

        end type  

 

        ! Define the interface for event data 

        type, public, abstract :: ieventdata 

        end type 

 

        ! Define abstrun  

        abstract interface  

            subroutine abstrun(subsc, eventdata) 

                import :: isubscriber 

                import :: ieventdata 

                class (isubscriber), intent(inout) :: subsc 

                class (ieventdata), pointer :: eventdata 

            end subroutine  

        end interface  

 

        ! Running a simplified subscriber's subroutine  

        interface  

            subroutine simple(eventdata) 

                import :: ieventdata 

                class (ieventdata), pointer :: eventdata 

            end subroutine simple  

        end interface  

 

        ! Define the simplified subscriber 

        type, public, extends(isubscriber) :: subscriber 

            procedure (simple), pointer, nopass :: simple => null() 

        contains  

            procedure, pass :: run => simplerun 

        end type subscriber 

 

        ! Define the event class 

        type, public :: event 

            integer :: subindex = 0 

            class (ieventdata), pointer :: data => null() 

            class (isubscriber), pointer :: first => null() 

            class (isubscriber), pointer :: last => null()   

        contains 

            procedure :: subscribe 

            procedure :: subscribe_object 

            procedure :: unsubscribe 

            procedure :: fire 
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        end type event 

 

      contains 

 

        ! Run the subscriber's event  

        subroutine simplerun(subsc, eventdata) 

            class (subscriber), intent(inout) :: subsc 

            class (ieventdata), pointer :: eventdata 

 

            if (associated(subsc%simple)) call subsc%simple(eventdata) 

        end subroutine  

 

        ! Subscribe to the event 

        function subscribe(self, newsubscriber) 

            integer :: subscribe 

            class(event), intent(inout) :: self 

            type (subscriber), pointer :: subsc 

            class(isubscriber), pointer :: isubsc 

 

            interface 

                subroutine newsubscriber(eventdata) 

                    import :: ieventdata 

                    class (ieventdata), pointer :: eventdata 

                end subroutine newsubscriber 

            end interface 

 

            ! set the subscriber's run method to the new method 

            allocate(subsc) 

            subsc%simple => newsubscriber 

 

            ! allocate the subscriber pointer 

            allocate(isubsc, source=subsc) 

 

            ! subscribe the object 

            call self%subscribe_object(isubsc) 

 

            ! return the index of the subscriber (for unsubscription later) 

            subscribe = isubsc%ind 

        end function 

 

        ! Subscribes a subscriber object  

        subroutine subscribe_object(self, newsubscriber) 

            class(event), intent(inout) :: self 

            class(isubscriber), pointer :: newsubscriber 

 

            ! assign the subscribers index  
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            newsubscriber%ind = self%subindex 

            if (verbose) print *,'adding index ',self%subindex 

 

            ! ensure the first subscriber is allocated  

            if (.not.associated(self%first)) then  

                self%first => newsubscriber 

                self%last => newsubscriber 

            else  

                self%last%next => newsubscriber  

                self%last => self%last%next 

            end if  

 

            ! increment the index of the subscriber 

            self%subindex = self%subindex + 1 

        end subroutine 

 

        ! Unsubscribe to the event 

        subroutine unsubscribe(self, unsubi) 

            class(event), intent(inout) :: self 

            integer :: unsubi 

            class (isubscriber), pointer :: prev, sub 

 

            ! exit if there are no subscribers 

            if (.not.associated(self%first)) return  

 

            ! find the subscriber with the same index 

            prev => null() 

            sub => self%first 

            if (verbose) print *,'looking for index ',unsubi 

            do while (sub%ind /= unsubi) 

                if (.not.associated(sub%next)) return 

                prev => sub 

                sub => sub%next 

            end do 

 

            ! remove the subscriber and deallocate it 

            if (associated(prev)) then  

                ! remove sub 

                if (associated(sub%next)) then  

                    ! point to the next subscriber 

                    prev%next => sub%next 

                else 

                    ! point to the second to last subscriber 

                    if (verbose) print *,'removing end subscriber' 

                    deallocate(prev%next) 

                    self%last => prev 
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                end if  

                deallocate(prev) 

                deallocate(sub)  

            else  

                ! delete the first subscriber 

                if (associated(sub%next)) then 

                    ! point to the second subscriber if existent 

                    if (verbose) print *,'removing first subscriber' 

                    self%first => sub%next 

                    deallocate(sub)  

                else 

                    ! the first subscriber is the only one left 

                    if (verbose) print *,'removing all subscribers' 

                    deallocate(self%first)  

                end if  

            end if  

        end subroutine 

 

        ! Fire the event 

        subroutine fire(self) 

            class(event), intent(in) :: self 

            integer :: i 

            class (isubscriber), pointer :: sub, nextsub 

             

            ! exit if there are no subscribers 

            if (.not.associated(self%first)) return  

 

            ! run all the subscribers  

            sub => self%first 

            do  ! while (associated(sub%next))  

                if (associated(sub%next)) nextsub => sub%next 

                call sub%run(self%data) 

                if (.not.associated(sub%next)) return 

                sub => nextsub 

            end do 

            deallocate(sub) 

        end subroutine 

 

      end module modevent 

 

PKG_MODFLOW.F 

      subroutine pkg_modflow 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 
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!!    Comment initials "tcw" 

!! 

!!    Andre Dozier, PhD student 

!!    Colorado State University 2012-2016 

!!    Comment initials "aqd" 

!! 

!!    ~ ~ ~ PURPOSE ~ ~ ~ 

!!    Adds the SM package to MODFLOW 

!! 

        use modevent !event class 

        use global, only: OnRivPkg,OnRechPkg,OnUZFPkg,MFrunTop !MODFLOW 

events 

        implicit none 

 

        integer :: pkg_i 

         

        interface 

            subroutine sm_mfRiver(eventdata) 

                import :: ieventdata 

                class(ieventdata), pointer :: eventdata 

            end subroutine 

        end interface 

 

        interface 

            subroutine sm_recharge(eventdata) 

                import :: ieventdata 

                class(ieventdata), pointer :: eventdata 

            end subroutine 

        end interface 

 

        interface 

            subroutine sm_uzf(eventdata) 

                import :: ieventdata 

                class(ieventdata), pointer :: eventdata 

            end subroutine 

        end interface 

 

        interface 

            subroutine sm_mf_read(eventdata) 

                import :: ieventdata 

                class(ieventdata), pointer :: eventdata 

            end subroutine 

        end interface 

 

        ! River stage is provided by SWAT  

        pkg_i = OnRivPkg%subscribe(sm_mfRiver) 
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        ! Recharge is provided by SWAT  

        pkg_i = OnRechPkg%subscribe(sm_recharge) 

 

        ! Infiltration and ET is provided by SWAT  

        pkg_i = OnUZFPkg%subscribe(sm_uzf)  

         

        ! If SM is used, de-activate mf_read and SLMT7PNT insided of mf_run because it 

has already been called by the linkage 

        pkg_i = MFrunTop%subscribe(sm_mf_read) 

 

      end subroutine pkg_modflow 
 

 

PKG_SWAT.F 

      subroutine pkg_swat 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    Andre Dozier, PhD student 

!!    Colorado State University 2012-2016 

!!    Comment initials "aqd" 

!! 

!!    Ryan Bailey, Post-Doc student (2012-2013), Assistant Professor (2013-) 

!!    Colorado State University 2012- 

!!    Comment initials "rtb" 

!! 

!!    ~ ~ ~ PURPOSE ~ ~ ~ 

!!    Adds the SM package to SWAT replacing the groundwater modeling 

!!    component with MODFLOW 

!! 

        use modevent !event class 

        use parm, only: OnInit,normOutUpdate,OnCommand19,OnSoilTempCalc, 

     &                  OnCropGrowthCalc,OnRouteInitialize !SWAT events 

        use sm_getgw !Groundwater Related events 

        implicit none 

 

        integer :: pkg_i 

 

        interface 

            subroutine sm_init_mf(eventdata) 

                import :: ieventdata 

                class (ieventdata), pointer :: eventdata 

            end subroutine 
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        end interface 

 

        interface 

            subroutine sm_mf_run(eventdata) 

                import :: ieventdata 

                class (ieventdata), pointer :: eventdata 

            end subroutine 

        end interface 

         

        interface 

            subroutine sm_normOut(eventdata) 

                import :: ieventdata 

                class (ieventdata), pointer :: eventdata 

            end subroutine 

        end interface 

 

        ! Initialize modflow 

        pkg_i = OnInit%subscribe(sm_init_mf) 

         

        !Check if SWAT should update it's groundwater output variables 

        pkg_i = normOutUpdate%subscribe(sm_normOut) 

         

        ! Call MODFLOW 

        pkg_i = OnCommand19%subscribe(sm_mf_run) 

         

        !Calculate GW contribution from MODFLOW 

        pkg_i = OnSoilTempCalc%subscribe(sm_getgwcontr) 

 

        !Compute nutrient loading from MODFLOW 

        pkg_i = OnCropGrowthCalc%subscribe(sm_getgwnutr) 

         

        !Determine if initializing the swat reach loss variable is necessary 

        pkg_i = OnRouteInitialize%subscribe(sm_getrechloss) 

 

      end subroutine pkg_swat 
 

 

SM_ALLOCATE.F 

      subroutine sm_allocate() 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    ~ ~ ~ PURPOSE ~ ~ ~ 
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!!    this subroutine allocates array sizes for variables used in the SM linkage between 

SWAT, MODFLOW 

 

      use parm, only: msub !SWAT 

      use sm_parm !sm linkage 

      implicit none 

       

!     Allocate the size of the river-to-grid variables 

      allocate(grid2riv_id(nriver_cells, msub)) 

      allocate(grid2riv_len(nriver_cells, msub)) 

      grid2riv_id = 0. 

      grid2riv_len = 0. 

       

!     Allocate the size of disaggregated hru variables before MODFLOW and UZF-RT3D 

runs 

      allocate(etremain_dhru(dhru)) 

      allocate(sepbtm_dhru(dhru)) 

      etremain_dhru = 0. 

      sepbtm_dhru = 0. 

       

      return 

      end 
 

 

SM_CLOSE.F 

      subroutine sm_close 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    ~ ~ ~ Purpose ~ ~ ~ 

!!    This subroutine deallocates the variables from sm_parm and some 

!!    additional MODFLOW which had their deallocate calls moved 

       

!     Import variables 

      use GWFRIVMODULE, only: RIVAUX, RIVR !MODFLOW 

      use sm_parm !sm linkage 

      implicit none 

       

!     Deallocate MODFLOW variables 

      deallocate(RIVAUX) 

      deallocate(RIVR) 

       

!     Deallocate sm variables 

      deallocate(g2d_r) 
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      deallocate(g2d_c) 

      deallocate(g2d_area) 

      deallocate(d2g_id) 

      deallocate(d2g_area) 

      deallocate(d2h_id) 

      deallocate(d2h_area) 

      deallocate(grid2riv_id) 

      deallocate(grid2riv_len) 

       

      deallocate(etremain_dhru) 

      deallocate(sepbtm_dhru) 

       

      return 

      end 

 

SM_CONVERSION2MF.F 

      subroutine sm_conversion2mf 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    ~ ~ ~ PURPOSE ~ ~ ~ 

!!    This subroutine converts the necessary SWAT variables (per hru) into SM variables 

!!    (per disaggregated hru, dhru) then converts these into the proper units for 

MODFLOW 

!! 

!!    ~ ~ ~ Variables Used~ ~ ~ 

!!    name            |units                 |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    LENUNI          |unit_in               |the MODFLOW variable for which length units are 

being used 

!!    ITMUNI          |unit_out              |the MODFLOW variable for which time units are 

being used 

!!    sepbtm(:)       |mm H2O                |percolation from bottom of soil profile for 

!!                    |                      |the day in HRU 

!!    etremain(:)     |mm H2O                |remaining et to be passed from SWAT to 

!!                    |                      |MODFLOW-UZF, etremain(j) = pet_day-etday 

!!    etremain_dis(:) |mm H2O           (in) |remaining et to be passed from SWAT to 

!!                    |LENUNI**3/ITMUNI (out)|MODFLOW-UZF per disaggregated hru 

(dhru) 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Variables Modified ~ ~ ~ 

!!    name            |units                 |definition 
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!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    sepbtm_dhru(:)  |mm H2O           (in) |percolation from bottom of the soil profile 

!!                    |                      |populated from sepbtm and sm_hru2dhru conversion 

!!                    |LENUNI**3/ITMUNI (out)|for the day in HRU, now in MODFLOW units 

!!    etremain_dis(:) |mm H2O           (in) |remaining et to be passed from SWAT to 

!!                    |LENUNI**3/ITMUNI (out)|MODFLOW-UZF per disaggregated hru 

(dhru) 

!!                    |                      |populated from etremain and sm_hru2dhru conversion 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Local Definitions ~ ~ ~ 

!!    name          |units                 |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    mf_lengthUnit |MODFLOW length unit   |the modified inteteger to represent 

!!                  |                      |the MODFLOW unit of length for units 

!!    mf_timeUnit   |MODFLOW time unit     |the modified integer to represent 

!!                  |                      |the MODFLOW unit of time for units 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 

       

      !Import variables 

      use parm, only:sepbtm,etremain,leapyr  !SWAT 

      use GLOBAL, only:LENUNI,ITMUNI !MODFLOW 

      use sm_parm !sm linkage 

      implicit none 

       

      !Define local variables 

      integer mf_lengthUnit,mf_timeUnit 

      mf_lengthUnit = LENUNI + 10 

      mf_timeUnit = ITMUNI 

       

      !Convert SWAT hru based variables into SM dis-aggregated hrus for more accurate 

surface/groundwater interaction 

      call sm_hru2dhru(sepbtm, sepbtm_dhru) 

      call sm_hru2dhru(etremain, etremain_dhru) 

       

      !Convert SM variables into MODFLOW units 

      call units(sepbtm_dhru, 14, mf_lengthUnit, 1, dhru, leapyr)! to convert units (mm/day 

to LENUNI/day) 

      call units(sepbtm_dhru, mf_timeUnit, 4, 1, dhru, leapyr)! to convert time units 

(LENUNI/days to LENUNI/ITMUNI) 

      call units(etremain_dhru, 14, mf_lengthUnit, 1, dhru, leapyr)! to convert length units 

(mm/day to LENUNI/day) 

      call units(etremain_dhru, mf_timeUnit, 4, 1, dhru, leapyr)! to convert time units 

(LENUNI/days to LENUNI/ITMUNI) 
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      return 

      end 

 

SM_CONVERSION2SWAT.F 

      subroutine sm_conversion2swat 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    ~ ~ ~ Purpose ~ ~ ~ 

!!    This subroutine converts all the MODFLOW variables, to pass into SWAT, into the 

proper units and SWAT variables 

!! 

!!    ~ ~ ~ Variables Used ~ ~ ~ 

!!    name            |units            |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

~ ~ ~ 

!!    gw_q(:)         |mm H2O           |groundwater contribution to streamflow from 

!!                    |                 |HRU on current day 

!!    gw_qdeep(:)     |mm H2O           |groundwater contribution to streamflow from deep 

aquifer 

!!                    |                 |from HRU on current day 

!!    gwht(:)         |m                |groundwater height 

!!                    |                 |HRU on current day 

!!    hru_fr(:)       |none             |fraction of subbasin area in HRU 

!!    hrutot(:)       |none             |number of HRUs in subbasin 

!!    leapyr          |none             |leap year flag 

!!                    |                 |0  leap year 

!!                    |                 |1  regular year 

!!    msub            |none             |max number of subbasins 

!!    nhru            |none             |number of HRUs in watershed 

!!    rttlc(:)        |m^3 H2O          |transmission losses from reach on day 

!!    sub_fr(:)       |none             |fraction of watershed area in subbasin 

!!    sub_km(:)       |km^2             |area of subbasin in square kilometers 

!!    LENUNI          |MODFLOW length   |the MODFLOW variable for which length 

units are being used 

!!    ITMUNI          |MODFLOW time     |the MODFLOW variable for which time units 

are being used 

!!    NROW            |n/a              |the MODFLOW variable for number of rows of grids 

!!    NCOL            |n/a              |the MODFLOW variable for number of columns of grids 

!!    NLAY            |n/a              |the MODFLOW variable for number of layers of grids 

!!    HNEW(:,:,:)     |LENUNI           |MODFLOW variable for the new head in the aquifer 

!!    BOTM(:,:,:)     |LENUNI           |MODFLOW variable for the elevation of the  
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!!                    |                 |bottom of each grid cell layer 

!!    RIV(6,:)        |LENUNI           |MODFLOW variable for properties of the river cells 

!!                    |n/a              |(1,:) cell layer index 

!!                    |n/a              |(2,:) cell row index 

!!                    |n/a              |(3,:) cell column index 

!!                    |LENUNI           |(4,:) cell river stage (bottom elevation + depth) 

!!                    |LENUNI/ITMUNI    |(5,:) cell conductance 

!!                    |LENUNI           |(6,:) cell river bottom elevation 

!!    grid2riv_id     |none             |a list per MODFLOW river grids (cols) containing  

!!                    |                 |the SWAT river IDs within that grid cell 

!!    grid2riv_len    |m                |a list per MODFLOW river grids (cols) containing  

!!                    |                 |the SWAT river lengths within that grid cell 

!!    nriver_cells    |n/a              |the total number of river grid cells in MODFLOW 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

~ ~ ~ 

!! 

!!    ~ ~ ~ Variables Modified ~ ~ ~ 

!!    name            |units                 |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

~ ~ ~ 

!!    gwht(:)         |m                     |groundwater height SWAT variable, populated by 

MODFLOW's HNEW 

!!    gw_q(:)         |mm H2O                |groundwater contribution to streamflow from 

!!                    |                      |HRU on current day 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

~ ~ ~ 

!! 

!!    ~ ~ ~ Local Definitions ~ ~ ~ 

!!    name            |units                 |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

~ ~ ~ 

!!    mf_lengthUnit   |MODFLOW length unit   |the modified integer to represent 

!!                    |                      |the MODFLOW unit of length for units 

!!    mf_timeUnit     |MODFLOW time unit     |the modified integer to represent 

!!                    |                      |the MODFLOW unit of time for units 

!!    IL              |none                  |the layer index for getting info. from RIVR 

!!    IC              |none                  |the column index for getting info. from RIVR 

!!    IR              |none                  |the row index for getting info. from RIVR 

!!    h               |none                  |the hru index for looping over subbasin's hrus 

!!    sum_rivrate(1)  |LENUNI**3/ITMUNI      |holder for the sum of river rates 

contributing to a 

!!                    |                      |given subbasin to be mapped to rivSegPar 

!!    wtlocation(:,:) |n/a                   |sm variable of the rows and columns of  

!!                    |                      |MODFLOW grid cells with a value indicating 

!!                    |                      |which layer the water table is located in 
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!!    gw_tot          |m**3/day              |The total amount of groundwater discharge from the 

current 

!!                    |                      |grid cell to the subbasin outlet 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

~ ~ ~ 

!!    ~ ~ ~ ~ ~ ~ End Specifications ~ ~ ~ ~ ~ ~ 

       

      !Import variables 

      use parm, only: gw_q,gw_qdeep,gwht,hru_fr,hru1,hrutot, !SWAT 

     &                leapyr,msub,nhru,rttlc,sub_fr,sub_km 

      use GLOBAL,only:LENUNI,ITMUNI,NROW,NCOL,NLAY,HNEW,BOTM 

!MODFLOW 

      use GWFRIVMODULE, only:RIVR !MODFLOW 

      use sm_parm !sm linkage 

      implicit none 

       

      !define local variables 

      integer mf_lengthUnit,mf_timeUnit,subID,dhruID 

      integer IL,IC,IR,i,j,k,h 

      DOUBLE PRECISION HHNEW,CHRIV,RRBOT,CCRIV 

      real grid_rivlen, HRIV, CRIV, RBOT, RATE, gw_tot 

      real wtlocation(NCOL,NROW) 

      real rt_cnew_location(NCOL,NROW) 

      real sum_rivrate(1) 

      real gwht_dhru(dhru) 

      mf_lengthUnit = LENUNI + 10 

      mf_timeUnit = ITMUNI 

      wtlocation = 1 !Set default water table location 

      subID = 0 

      gw_tot = 0 

      gwht_dhru = 0 

      h = 1 !set starting hru index 

       

      !Loop through MODFLOW variables and pull out information 

      do j=1, NROW 

        do i=1, NCOL 

          do k=1, NLAY 

            !Loop through and find which layer the water table is in 

            if(HNEW(i,j,k).LT.BOTM(i,j,k-1) .and. !BOTM(J,I,0) contains the top of layer1 

     &           HNEW(i,j,k).GT.BOTM(i,j,k)) then  

              wtlocation(i,j) = k 

            endif 

          enddo 

        enddo 

      enddo 
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      !Preprocess replacing the values of gw_q and gw_qdeep which will be populate with 

data from MODFLOW 

      rttlc = 0. 

      do i=1, nhru 

        do j=1, d2h_size 

          dhruID = d2h_id(i,j) 

          if(dhruID.ne.0)then 

            gw_q(i) = 0 

            gw_qdeep(i) = 0 !also zero the deep groundwater flow to streams because 

MODFLOW only passes back 1 baseflow value 

          endif 

        enddo 

      enddo 

       

      do i=1, nriver_cells 

        !reset averaged river properties 

        grid_rivlen = 0. 

        sum_rivrate(1) = 0. 

        RATE = 0. 

         

        !Use original MODFLOW code to calculate the rate of loss/gain from/to rivers 

(LENUNI^3/ITMUNI) 

        !the below code is borrowed from the MODFLOW subroutine LMT7RIV7 to 

calculate RATE 

        IL=RIVR(1,i) 

        IR=RIVR(2,i) 

        IC=RIVR(3,i) 

        !--GET RIVER PARAMETERS FROM RIVER LIST. 

        HRIV=RIVR(4,i) 

        CRIV=RIVR(5,i) 

        RBOT=RIVR(6,i) 

        HHNEW=HNEW(IC,IR,IL) 

        CHRIV=CRIV*HRIV 

        CCRIV=CRIV 

        RRBOT=RBOT 

        !--COMPARE HEAD IN AQUIFER TO BOTTOM OF RIVERBED. 

        IF(HHNEW.GT.RRBOT) RATE=CHRIV-CCRIV*HHNEW !--AQUIFER HEAD 

> BOTTOM THEN RATE=CRIV*(HRIV-HNEW). 

        IF(HHNEW.LE.RRBOT) RATE=CRIV*(HRIV-RBOT) !--AQUIFER HEAD < 

BOTTOM THEN RATE=CRIV*(HRIV-RBOT) 

        !end MODFLOW code 

         

        !Get total segments length within current grid cell 

        do j=1, msub 

          grid_rivlen = grid_rivlen + grid2riv_len(i,j) 

        enddo 
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        !Apply only a portion of the river seepage/discharge rate to each river segment 

within the 

        !current grid cell based on the relative length of the river segment within the grid 

cell 

        do j=1, msub !j should only be used as an index for grid2riv_id and grid2riv_len, but 

NOT as the actual subbasin index 

          !determine if the current river cell is part of this subbasin 

          subID = grid2riv_id(i,j) 

           

          if(subID.ne.0)then 

            sum_rivrate(1) = RATE * (grid2riv_len(i,j)/grid_rivlen) 

            !for example, if subID's river is all of the river length in the grid, the 

            !subbasin would get 100% of the river rate, if 2 rivers (from 2 subbasins) of 

            !equal length are within the grid, each subbasin would get 50% of the river rate 

             

            if(sum_rivrate(1).lt.0) then !a negative rate indicates water leaving the aquifer, 

aka discharge to river 

              !take the groundwater discharge rate and convert it into SWAT units 

              sum_rivrate(1) = -sum_rivrate(1) 

              call units(sum_rivrate, mf_lengthUnit, 15, 3, 1, leapyr)! convert length unit 

(LENUNI**3/ITMUNI to km**3/ITMUNI) 

              call units(sum_rivrate, 4, mf_timeUnit, 1, 1, leapyr)! convert time unit 

(km**3/ITMUNI to km**3/day) 

              call units(sum_rivrate, 15, 14, 1, 1, leapyr)!convert length unit (km**3/day to 

mm-km**2/day) 

              gw_tot = sum_rivrate(1)/sub_km(subID)!divide by the subbasin area, in km, 

thus finishes converting units (mm-km**2/day to mm/day) 

               

              !determine the starting HRU index for subID's HRUs 

              h = hru1(subID) 

              do k=1, hrutot(subID) 

                !apply a portion of gw_tot to gw_q based on the % hru area in subID's subbasin 

area 

                gw_q(h)= gw_q(h) + (hru_fr(h)*sub_fr(subID))*gw_tot 

                h = h + 1 

              enddo 

 

            else !a positive rate indicates water entering the aquifer, aka leakage from river 

              !take the seepage to groundwater rate and convert it into SWAT units 

              call units(sum_rivrate, mf_lengthUnit, 12, 3, 1, leapyr)! convert length unit 

(LENUNI**3/ITMUNI to m**3/ITMUNI) 

              call units(sum_rivrate, 4, mf_timeUnit, 1, 1, leapyr)! convert time unit 

(m**3/ITMUNI to m**3/day) 

               

              rttlc(subID) = rttlc(subID) + sum_rivrate(1) 
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            endif 

          endif 

             

        enddo 

      enddo 

       

      !Convert MODFLOW grid variable into SM dis-aggregated hru variable 

      call sm_grid2dhru3D(HNEW, gwht_dhru, 

wtlocation)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!reconsider this since SWAT never uses the value of 

variable!!!!!!!!!!!!!!!!tcw 

       

      !Convert SM variable into SWAT units 

      call units(gwht_dhru, mf_lengthUnit, 12, 1, dhru, leapyr)!convert length unit 

(LENUNI to m) 

       

      !Convert SM variable into SWAT variable 

      call sm_dhru2hru(gwht_dhru, gwht, 0) 

       

      !Call additional MODFLOW to SWAT subfunctions 

      call sm_upflux_to_soil 

       

      !Update SWAT's output variables for output.std with the new groundwater results 

from MODFLOW 

      call sm_updateOutput 

       

      return 

      end 
 

 

SM_DHRU2GRID2D.F 

      subroutine sm_dhru2grid2D (smVar, mfVar2, mult_TF) 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    ~ ~ ~ Purpose ~ ~ ~ 

!!    This subroutine converts SM-based disaggregated HRUs (dhrus) to 2D MODFLOW-

based grids. 

!!    Additionally, this subroutine multiplies a MODFLOW 2D variable by the grid area 

of each 

!!    MODFLOW grid if mult_TF is 1, divides a MODFLOW 2D variable by the grid area 

of each 

!!    MODFLOW grid if mult_TF is 2, or does nothing additional if mult_TF is 0. 

!! 

!!    ~ ~ ~ Variables Used ~ ~ ~ 
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!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    d2g_id      |none          |Array per MODFLOW grid of the IDs of the 

!!                |              |dhrus which contribute to this grid 

!!    d2g_area    |none          |Array per MODFLOW grid of the percent area of 

!!                |              |the dhrus which contribute to this grid 

!!    d2g_size    |none          |the maximum number of dhrus which contribute 

!!                |              |to a single grid, used for looping and 

!!                |              |dimensioning variables 

!!    smVar       |unknown       |sm variable (list per dhru) 

!!    mfVar2      |unknown       |2D MODFLOW variable (NCOL, NROW) to be 

!!                |              |populated with the contents of the SM variable 

!!    mult_TF     |n/a           |integer, if "1" will multiply array 

!!                |              |by the grid area, if "2" will divide 

!!                |              |array by the grid area, if "0" will not 

!!                |              |convert the variable based on MODFLOW area 

!!    DELR        |LENUNI        |MODFLOW variable, the thickness of the row per column 

!!    DELC        |LENUNI        |MODFLOW variable, the thickness of the column per row 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Variables Modified ~ ~ ~ 

!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    mfVar2      |unknown       |2D MODFLOW variable (NCOL, NROW) now populated 

!!                |              |with the contents of the SM variable 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Local Definitions ~ ~ ~ 

!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    newVar2     |unknown       |2D MODFLOW variable (NCOL, NROW) that is 

!!                |              |temporarily populated with the contents of  

!!                |              |the SM variable before checking for remaining 

!!                |              |grid area not contributed to by a dhru 

!!    areaUsed    |%             |2D MODFLOW variable (NCOL, NROW) that is 

!!                |              |used to track how much of the grid area has 

!!                |              |been contributed to by the dhrus so that any 

!!                |              |remaining grid area not contributed to by a dhru 

!!                |              |uses the original MODFLOW value       

!!    i           |n/a           |MODFLOW row loop index 

!!    j           |n/a           |MODFLOW column loop index 

!!    ctr         |n/a           |MODFLOW grid id index 

!!    k           |n/a           |d2g_size loop index 

!!    cellUsed    |n/a           |a true/false for whether the MODFLOW grid 

!!                |              |has interacted with a SM dhru and should 

!!                |              |therefore be converted for area/unit reasons 
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!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 

 

!     Import variables 

      use GLOBAL, only: NCOL,NROW,DELR,DELC !MODFLOW 

      use sm_parm, only: dhru,d2g_size,d2g_id,d2g_area !sm linkage 

      implicit none 

       

!     Define local variables 

      real smVar(dhru) 

      real mfVar2(NCOL,NROW) 

      real newVar2(NCOL,NROW) 

      real areaRemain(NCOL,NROW) 

      integer mult_TF, i, j, k, ctr, dhruID 

      logical cellUsed 

       

!     Initialize local variables 

      newVar2 = 0. 

      areaRemain = 1. 

      ctr = 1 

      cellUsed = .false. 

       

!     Convert SM dhru variables into MODFLOW-grid variables by multiplying each 

!     contributing dhru variable by its percent area contributing to each grid 

      do j=1, NROW 

        do i=1, NCOL 

          do k=1, d2g_size 

            dhruID = d2g_id(ctr,k) 

            if(dhruID.ne.0)then 

              !Convert the dhru information into grid information 

              newVar2(i,j) =newVar2(i,j)+smVar(dhruID)*d2g_area(ctr,k) 

              !Track how much of the area of the grid has been contributed to (%) 

              areaRemain(i,j) = areaRemain(i,j) - d2g_area(ctr,k) 

              cellUsed = .true. 

            endif 

          enddo 

           

          !If the grid cell was contributed to by dhrus, and 

          !the units need to convert the area, do so here 

          if(cellUsed .and. mult_TF.eq.1)then 

            !Multiply variable by cell area 

            newVar2(i,j) = newVar2(i,j)*DELR(i)*DELC(j) 

          else if(cellUsed .and. mult_TF.eq.2)then 

            !Divide variable by cell area 

            newVar2(i,j) = newVar2(i,j)/(DELR(i)*DELC(j)) 

          endif 
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          !Store the converted dhru results into the MODFLOW variable 

          if(areaRemain(i,j) > 0)then 

            !If the dhrus do not completely cover the grid cell, retain a portion of the original 

grid data 

            mfVar2(i,j) = newVar2(i,j) + mfVar2(i,j)*areaRemain(i,j) 

          else 

            mfVar2(i,j) = newVar2(i,j) 

          endif 

           

          !reset the counters for the loop 

          cellUsed = .false. 

          ctr = ctr + 1 

        enddo 

      enddo 

 

      return 

      end 

 

SM_DHRU2HRU.F 

      subroutine sm_dhru2hru (smVar, swatVar, mult_TF) 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    ~ ~ ~ Purpose ~ ~ ~ 

!!    This subroutine converts SM-based disaggregated HRUs (dhru) to SWAT HRUs. 

!!    Additionally, this subroutine multiplies a SWAT variable by the area, in 

!!    km**2, of each SWAT hru if mult_TF is true 1, divides a SWAT variable by 

!!    the area, in km**2, of each SWAT hru if mult_TF is false 2, or does nothing 

!!    additional if mult_TF is 0. 

!! 

!!    ~ ~ ~ Variables Used ~ ~ ~ 

!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    d2h_id      |none          |Array per SWAT hru of the IDs of the dhrus 

!!                |              |which contribute to this hru 

!!    d2h_area    |none          |Array per SWAT hru of the percent area of 

!!                |              |the dhrus which contribute to this hru 

!!    d2h_size    |none          |the maximum number of dhrus which contribute 

!!                |              |to a single hru, used for looping and 

!!                |              |dimensioning variables 

!!    smVar       |unknown       |SM variable (list of dhrus) 

!!    swatVar     |unknown       |SWAT variable (list of nhru) to be populated 
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!!                |              |with the contents of the SM variable 

!!    hru_km(:)   |km**2         |area of HRU in square kilometers 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Variables Modified ~ ~ ~ 

!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    swatVar     |unknown       |SWAT variable (list of nhru) to be populated 

!!                |              |with the contents of the SM variable 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Local Definitions ~ ~ ~ 

!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    i           |none          |SWAT HRU loop index 

!!    j           |none          |SM dhru loop index 

!!    cellUsed    |n/a           |a true/false for whether the SWAT hru 

!!                |              |has interacted with a SM dhru and should 

!!                |              |therefore be converted for area/unit reasons 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

 

!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 

 

!     Import variables 

      use parm, only: nhru, hru_km !SWAT 

      use sm_parm, only: dhru, d2h_size, d2h_id, d2h_area !sm linkage 

      implicit none 

       

!     Define local variables 

      real smVar(dhru) 

      real swatVar(nhru) 

      integer mult_TF, i, j, dhruID 

      logical cellUsed 

       

!     Initialize local variables 

      cellUsed = .false. 

       

!     Convert SM-dhru variables into SWAT-HRU variables by multiplying each 

!     contributing dhru variable by its percent area contributing to each HRU 

      do i=1, nhru 

        do j=1, d2h_size 

          dhruID = d2h_id(i,j) 

          if(dhruID.ne.0)then 

             

            if(cellUsed)then 

              !if this is the second or more time referencing this cell, add to its contents 
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              swatVar(i) = swatVar(i) + smVar(dhruID)*d2h_area(i,j) 

            else 

              !if this is the first time referencing this cell, overwrite its contents 

              swatVar(i) = smVar(dhruID)*d2h_area(i,j) 

              cellUsed = .true. 

            endif 

             

          endif 

        enddo 

         

        !If the hru was contributed to by dhrus, and  

        !the units need to convert the area, do so here 

        if(cellUsed .and. mult_TF.eq.1)then 

          !Multiply variable by cell area, in km 

          swatVar(i)=swatVar(i)*hru_km(i) 

        else if(cellUsed .and. mult_TF.eq.2)then 

          !Divide variable by cell area, in km 

          swatVar(i)=swatVar(i)/(hru_km(i)) 

        endif 

         

        !reset the counters for the loop 

        cellUsed = .false. 

      enddo 

       

      return 

      end 

 

SM_GETGW.F 

      module sm_getgw 

!!    ~ ~ ~ Authors ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    Andre Dozier, PhD student 

!!    Colorado State University 2012-2016 

!!    Comment initials "aqd" 

!! 

!!    ~ ~ ~ Purpose ~ ~ ~ 

!!    This subroutine sets up events for the groundwater portion of the 

!!    SWAT-MODFLOW linkage 

!! 

        use parm 

        use modevent 

        implicit none 
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      contains  

 

        subroutine sm_getgwcontr(eventdata) 

          class (ieventdata), pointer :: eventdata 

          computegw = .false. 

        end subroutine sm_getgwcontr 

 

        subroutine sm_getgwnutr(eventdata) 

          class (ieventdata), pointer :: eventdata 

          computenutr = .true. 

        end subroutine sm_getgwnutr 

         

        subroutine sm_getrechloss(eventdata) 

          class (ieventdata), pointer :: eventdata 

          initializeRCHloss = .false. 

        end subroutine sm_getrechloss 

         

 

      end module sm_getgw 

 

SM_GRID2DHRU2D.F 

      subroutine sm_grid2dhru2D (mfVar2, smVar) 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    ~ ~ ~ Purpose ~ ~ ~ 

!!    This subroutine converts 2D MODFLOW-based grids to SM-based disaggregated 

HRUs (dhrus) 

!! 

!!    ~ ~ ~ Variables Used ~ ~ ~ 

!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    g2d_r       |none          |Array per SM dhru of the row IDs of the grids 

!!                |              |which contribute to this dhru 

!!    g2d_c       |none          |Array per SM dhru of the column IDs of the grids 

!!                |              |which contribute to this dhru 

!!    g2d_area    |none          |Array per SM dhru of the percent area of 

!!                |              |the grids which contribute to this dhru 

!!    g2d_size    |none          |the maximum number of grids which contribute 

!!                |              |to a single dhru, used for looping and 

!!                |              |dimensioning variables 

!!    mfVar2      |unknown       |2D MODFLOW variable (NCOL, NROW) 

!!    smVar       |unknown       |SM variable (list of dhrus) to be populated 
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!!                |              |with the contents of the MODFLOW variable 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Variables Modified ~ ~ ~ 

!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    smVar       |unknown       |SM variable (list of dhrus) now populated 

!!                |              |with the contents of the MODFLOW variable 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Local Definitions ~ ~ ~ 

!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    i           |none          |SM dhru loop index 

!!    j           |none          |g2d_size loop index 

!!    row         |none          |row index for MODFLOW 

!!    col         |none          |column index for MODFLOW 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

 

!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 

 

!     Import variables 

      use GLOBAL, only: NCOL,NROW !MODFLOW 

      use sm_parm, only: dhru, g2d_size, g2d_r, g2d_c, g2d_area !sm linkage 

      implicit none 

       

!     Define local variables 

      real mfVar2(NCOL,NROW) 

      real smVar(dhru) 

      integer i, j, row, col 

       

!     Initialize variables 

      smVar = 0. 

       

!     Convert MODFLOW-grid variables into SM-dhru variables by multiplying each 

!     contributing grid variable by its percent area contributing to each dhru 

      do i=1, dhru 

        do j=1, g2d_size 

          row = g2d_r(i,j) 

          col = g2d_c(i,j) 

          if(col.ne.0 .and. row.ne.0)then 

            smVar(i) = smVar(i) + mfVar2(col,row)*g2d_area(i,j) 

          endif 

        enddo 

      enddo 
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      return 

      end 

 

SM_GRID2DHRU3D.F 

      subroutine sm_grid2dhru3D (mfVar3, smVar, location) 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    ~ ~ ~ Purpose ~ ~ ~ 

!!    This subroutine converts 3D MODFLOW-based grids to SM-based disaggregated 

HRUs (dhrus) 

!! 

!!    ~ ~ ~ Variables Used ~ ~ ~ 

!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    g2d_r       |none          |Array per SM dhru of the row IDs of the grids 

!!                |              |which contribute to this dhru 

!!    g2d_c       |none          |Array per SM dhru of the column IDs of the grids 

!!                |              |which contribute to this dhru 

!!    g2d_area    |none          |Array per SM dhru of the percent area of 

!!                |              |the grids which contribute to this dhru 

!!    g2d_size    |none          |the maximum number of grids which contribute 

!!                |              |to a single dhru, used for looping and 

!!                |              |dimensioning variables 

!!    mfVar3      |unknown       |MODFLOW variable (NCOL, NROW, NLAY) 

!!    smVar       |unknown       |SM variable (list of dhru) to be populated 

!!                |              |with the contents of the MODFLOW variable 

!!    location    |none          |an array(NCOL, NROW) with the value equal to which 

!!                |              |layer(NLAY) the MODFLOW value is to be taken from 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Variables Modified ~ ~ ~ 

!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    smVar       |unknown       |SM variable (list of dhrus) now populated 

!!                |              |with the contents of the MODFLOW variable 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Local Definitions ~ ~ ~ 

!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    i           |none          |SM dhru loop index 

!!    j           |none          |g2d_size loop index 
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!!    row         |none          |row index for MODFLOW 

!!    col         |none          |column index for MODFLOW 

!!    lay         |none          |layer index for MODFLOW 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

 

!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 

 

!     Import variables 

      use GLOBAL, only: NCOL,NROW,NLAY !MODFLOW 

      use sm_parm, only: dhru, g2d_size, g2d_r, g2d_c, g2d_area !sm linkage 

      implicit none 

       

!     Define local variables 

!     real sum 

      double precision mfVar3(NCOL,NROW,NLAY) 

      real smVar(dhru) 

      real location(NCOL,NROW) 

      integer i, j, row, col, lay 

       

!     Initialize variables 

!     sum = 0 

      smVar = 0. 

       

!     Convert MODFLOW-grid variables into SM-dhru variables by multiplying each 

!     contributing grid variable by its percent area contributing to each dhru 

!     For 3D variable arrays taking specified layer value only 

      do i=1, dhru 

        do j=1, g2d_size 

          row = g2d_r(i,j) 

          col = g2d_c(i,j) 

          if(col.ne.0 .and. row.ne.0)then 

            lay = location(col,row) 

            smVar(i) = smVar(i) + 

     &          mfVar3(col,row,lay)*g2d_area(i,j) 

          endif 

        enddo 

      enddo 

         

      return 

      end 

 

SM_HRU2DHRU.F 

      subroutine sm_hru2dhru (swatVar, smVar) 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 
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!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    ~ ~ ~ Purpose ~ ~ ~ 

!!    This subroutine converts a SWAT HRU-variable to a SM disaggregated HRUs 

(dhrus) variable 

!! 

!!    ~ ~ ~ Variables Used ~ ~ ~ 

!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    d2h_id      |none          |Array per SWAT hru of the IDs of the dhrus 

!!                |              |which contribute to this hru 

!!    swatVar     |unknown       |SWAT variable (list of nhru) 

!!    smVar       |unknown       |SM variable (list of dhrus) to be populated 

!!                |              |with the contents of the SWAT variable 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Variables Modified ~ ~ ~ 

!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    smVar       |unknown       |SM variable (list of dhrus) to be populated 

!!                |              |with the contents of the SWAT variable 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Local Definitions ~ ~ ~ 

!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    i           |none          |SWAT HRU loop index 

!!    j           |none          |SM dhru loop index 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

 

!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 

 

!     Import variables 

      use parm, only: nhru !SWAT 

      use sm_parm, only: dhru, d2h_size, d2h_id, d2h_area !sm linkage 

      implicit none 

       

!     Define local variables 

      real swatVar(nhru) 

      real smVar(dhru) 

      integer i, j 

       

!     Initialize variables 

      smVar = 0. 
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!     Convert SWAT-HRU variables to SM-dhru variables 

!     The conversion does not involve a weighted average because the SWAT variables 

!     are calculated such that the variable's value is the same within each DHRU 

!     The Water Table in SWAT is a depth. The depth is the same everywhere in the HRU. 

!     Thus, any dhru will also have the same value. Hence, do not apply a weighted 

average. 

      do i=1, nhru 

        do j=1, d2h_size 

          if(d2h_id(i,j).ne.0)then 

            smVar(d2h_id(i,j)) = swatVar(i) 

          endif 

        enddo 

      enddo 

       

      return 

      end 

 

SM_INIT_MF.F 

      subroutine sm_init_mf(eventdata) 

!!    ~ ~ ~ Authors ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    Andre Dozier, PhD student 

!!    Colorado State University 2012-2016 

!!    Comment initials "aqd" 

!! 

!!    Ryan Bailey, Post-Doc student (2012-2013), Assistant Professor (2013-) 

!!    Colorado State University 2012- 

!!    Comment initials "rtb" 

!! 

!!    ~ ~ ~ PURPOSE ~ ~ ~ 

!!    This subroutine initializes MODFLOW and the SWAT-MODFLOW (SM) linking 

!!    subroutines 

!! 

        use modevent 

        implicit none 

        class (ieventdata), pointer :: eventdata 

 

!     Set up MODFLOW data and allocate arrays 

        print *, 'MODFLOW is being used' !rtb 

        call mf_read !rtb 

        call sm_read_grid2dhru !tcw 

        call sm_read_dhru2grid !tcw 
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        call sm_read_dhru2hru !tcw 

        call sm_read_river2grid !tcw 

      end subroutine sm_init_mf 

 

SM_MAIN.F 

      program main 

!!    ~ ~ ~ Authors ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    Andre Dozier, PhD student 

!!    Colorado State University 2012-2016 

!!    Comment initials "aqd" 

!! 

!!    ~ ~ ~ PURPOSE ~ ~ ~ 

!!    This subroutine links sets up the SWAT-MODFLOW (SM) linking subroutines 

!!    and "events" and then calls SWAT-MODFLOW through "events" 

!! 

        use sm_parm, only: mf_active 

        implicit none 

 

        ! Read the swat-modflow input files 

        call sm_read_link !tcw 

 

        ! Subscribe to events within modflow and swat (in order to 

        !     essentially wrap the models with connection routines) 

        if (mf_active.eq.1) then  

          call pkg_modflow 

          call pkg_swat 

        end if  

 

        ! Run SWAT's main subroutine 

        call swat_main 

        ! MODFLOW is called within SWAT with Command 19 

 

        ! Close swat-modflow (close files, deallocate variables, etc.)s 

        call sm_close 

        call mf_close 

 

      end program main 

 

SM_MF_READ.F 

      subroutine sm_mf_read(eventdata) 
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!!    ~ ~ ~ Authors ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    Andre Dozier, PhD student 

!!    Colorado State University 2012-2016 

!!    Comment initials "aqd" 

!! 

!!    ~ ~ ~ Purpose ~ ~ ~ 

!!    This subroutine converts the provided array to different units based on  

!!    provided flags for the incoming and outgoing units (based on a modified  

!!    set of MODFLOW's unit flags listed below) 

!! 

!!    ~ ~ ~ Local Variables ~ ~ ~ 

!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    leapyr      |none          |leap year flag for unit conversions 

!!                |              |involving years 

!!                |              |0  leap year 

!!                |              |1  regular year 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 

       

!       Initialize local variables 

        use modevent 

        use parm, only: leapyr !SWAT 

        use GLOBAL, only: readMFinput, MF_leapyr !MODFLOW 

        implicit none 

        class (ieventdata), pointer :: eventdata 

 

        !mf_read has already been called by SM linkage, so do not call it again 

        readMFinput = .false. 

         

        !make sure modflow's unit conversion for the time-step are based on years or leap 

years correctly 

        MF_leapyr = leapyr 

 

      end 

 

SM_MF_RUN.F 

      subroutine sm_mf_run(eventdata) 

!!    ~ ~ ~ Authors ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 
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!!    Comment initials "tcw" 

!! 

!!    Andre Dozier, PhD student 

!!    Colorado State University 2012-2016 

!!    Comment initials "aqd" 

!! 

!!    ~ ~ ~ PURPOSE ~ ~ ~ 

!!    This subroutine calls conversions from SWAT to MODFLOW, then runs 

MODFLOW 

!!    for one day, then converts back the groundwater results from MODFLOW to 

!!    SWAT 

!!       

        use modevent 

        implicit none 

        class (ieventdata), pointer :: eventdata 

 

        !Convert SWAT units into MODFLOW units 

        call sm_conversion2mf 

 

        !water table 

        !river discharge/seepage 

        !pumping 

        call mf_run 

 

        !Convert MODFLOW units back to SWAT units 

        call sm_conversion2swat 

 

      end subroutine sm_mf_run 

 

SM_MFRIVER.F 

      subroutine sm_mfRiver(eventdata) 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    ~ ~ ~ PURPOSE ~ ~ ~ 

!!    This subroutine converts the necessary SWAT variables used by MODFLOW's river 

package into 

!!    the required hydrauilc conductivity and stage in MODFLOW one a daily timestep 

!! 

!!    ~ ~ ~ Variables Used~ ~ ~ 

!!    name            |units   |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
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!!    LENUNI          |unit_in |the MODFLOW variable for which length units are being 

used 

!!    dep_chan(:)     |m       |average daily water depth in channel 

!!    grid2riv_len    |m       |a list per MODFLOW river grids (cols) containing  

!!                    |        |the SWAT river lengths within that grid cell 

!!    nriver_cells    |n/a     |the total number of river grid cells in MODFLOW 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Variables Modified ~ ~ ~ 

!!    name            |units   |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    RIVR(4,:)       |        |river stage (depth + bottom elevation) filled in with info from 

SWAT per day 

!!    RIVR(5,:)       |        |river conducance, filled in with info from SWAT per day (in 

order to overwrite re-reading the .RIVR file every timeset) 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Local Definitions ~ ~ ~ 

!!    name          |units     |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    mf_lengthUnit |LENUNI    |the modified inteteger to represent 

!!                  |          |the MODFLOW unit of length for units 

!!    rivlen        |LENUNI    |variable for total river length in current  

!!                  |          |river grid cell 

!!    rivdepth      |ITMUNI    |variable for weighted average (based on river  

!!                  |          |length) for depth of water in current river grid cell 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 

       

      !Import variables 

      use modevent 

      use parm, only:msub,dep_chan,leapyr !SWAT 

      use GLOBAL, only:LENUNI !MODFLOW 

      use GWFRIVMODULE, only:RIVR !MODFLOW 

      use sm_parm !sm linkage 

      implicit none 

      class (ieventdata), pointer :: eventdata 

 

      !Define local variables 

      integer mf_lengthUnit,mf_timeUnit,i,j,k,subIndex 

      real rivlen(1) 

      real rivdepth(1) 

      mf_lengthUnit = LENUNI + 10 
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      ! Loop through the SWAT rivers to get channel depth (dep_chan) to pass into 

MODFLOW's RIVR 

      do i=1, nriver_cells 

        !reset averaged river properties 

        rivlen = 0. 

        rivdepth = 0. 

         

        !Loop through the SWAT rivers attributes needed to calculate depth 

        do j=1, msub 

          !Get the river's properties to be based on a weighted average with:  

          !weights = subbasin's river segment length / total river length in grid cell (rivlen) 

          rivlen(1) = rivlen(1) + grid2riv_len(i,j) 

          rivdepth(1) = rivdepth(1)+dep_chan(j)*grid2riv_len(i,j) 

        enddo 

         

        if(rivlen(1).eq.0) rivlen(1) = 1. !prevent divide by zero problems 

        !Take weighted average of river depth 

        rivdepth(1) = rivdepth(1)/rivlen(1) 

         

        !Convert into MODFLOW units 

        call units(rivdepth, 12, mf_lengthUnit, 1, 1, leapyr);! to convert length units (m to 

LENUNI) 

         

        !Populate MODFLOW's RIVR variable for this time step's river stage 

        RIVR(4,i) = rivdepth(1) + RIVR(6,i)! cell stage (depth + bottom elevation) 

      enddo 

       

       

      return 

      end 

 

SM_NORMOUT.F 

      subroutine sm_normOut(eventdata) 

!!    ~ ~ ~ Authors ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    Andre Dozier, PhD student 

!!    Colorado State University 2012-2016 

!!    Comment initials "aqd" 

!! 

!!    ~ ~ ~ PURPOSE ~ ~ ~ 

!!    This subroutine updates a flag in SWAT to not save  

!!    groundwater discharge variables (gw_q and gw_qdeep) 
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!!    as this is now taken care of in sm_updateOutput.f 

!!       

        use modevent 

        use parm, only: normOut !SWAT 

        implicit none  

        class (ieventdata), pointer :: eventdata 

         

        !Because SWAT-MODFLOW will update groundwater's output summary variables 

itself, turn off the normal summary in sumv.f 

        normOut = .false. 

 

      end subroutine  

 

SM_PARM.F 

      module sm_parm 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    ~ ~ ~ PURPOSE ~ ~ ~ 

!!    This module contains variables used for linking SWAT variables to MODFLOW and  

!!    MODFLOW variables to SWAT 

!!       

!!    Declare global variables for SWAT-MODFLOW (SM) linkage 

      real, dimension (:,:), allocatable :: g2d_r, g2d_c, g2d_area 

      real, dimension (:,:), allocatable :: d2g_id, d2g_area 

      real, dimension (:,:), allocatable :: d2h_id, d2h_area 

      integer :: g2d_size, d2g_size, d2h_size 

      real, dimension (:,:), allocatable :: grid2riv_id, grid2riv_len 

       

!!    Declare flag for whether modflow is active 

      integer :: mf_active 

       

!!    SM Disaggregated HRU (dhru) variables 

      real, dimension (:), allocatable :: etremain_dhru, sepbtm_dhru 

      integer :: dhru 

       

!!    MODFLOW/SWAT River segment variables 

      integer :: nriver_cells 

       

      end module sm_parm 
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SM_READ_DHRU2GRID.F 

      subroutine sm_read_dhru2grid 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    ~ ~ ~ Purpose ~ ~ ~ 

!!    This subroutine reads in the file containing the information to convert  

!!    SM-based disaggregated hrus (dhru) variables to MODFLOW-based grid variables 

!! 

!!    ~ ~ ~ Variables Used ~ ~ ~ 

!!    name         |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    NCOL         |none          |the current number of columns of MODFLOW grids 

!!    NROW         |none          |the current number of rowss of MODFLOW grids 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Variables Modified ~ ~ ~ 

!!    name         |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    d2g_id       |none          |Array per MODFLOW grid of the IDs of the dhrus 

!!                 |              |which contribute to this grid 

!!    d2g_area     |none          |Array per MODFLOW grid of the percent area of 

!!                 |              |the dhrus which contribute to this grid 

!!    d2g_size     |none          |the maximum number of dhrus which contribute 

!!                 |              |to a single grid, used for looping and 

!!                 |              |dimensioning variables 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Local Definitions ~ ~ ~ 

!!    name         |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    i            |none          |counter index for the number of MOFLOW grids 

!!    j            |none          |counter index for reading in contributing 

!!                 |              |areas and looping through all hrus 

!!    temp         |none          |index of current MODFLOW grid 

!!    nhru_current |none          |index of the number of contributing areas 

!!                 |              |to loop through 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 

 

!     Import variables 

      use GLOBAL, only: NCOL, NROW, NLAY !MODFLOW 

      use sm_parm, only: d2g_size, d2g_id, d2g_area !sm linkage 
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      implicit none 

       

!     Initialize local variables 

      integer i, j, gridID, nhru_current, numGrid 

       

!     The first line of this file is the total number of MODFLOW grids (active and inactive) 

= NROW * NCOL 

      open (5005,file="map_dhru2grid.txt") 

      read(5005,*) numGrid, d2g_size 

       

!     Initialize variables 

      allocate(d2g_id(NCOL*NROW, d2g_size)) 

      allocate(d2g_area(NCOL*NROW, d2g_size)) 

      d2g_id = 0. 

      d2g_area = 0. 

       

      do i=1, numGrid 

        read(5005,*) gridID, nhru_current ! grid # then the number of dhrus contributing to 

this grid cell 

         

        if(nhru_current.gt.0)then 

          read(5005,*) (d2g_id(gridID,j),j=1,nhru_current) ! list of dhru ID numbers which 

contribute to this grid cell 

          read(5005,*) (d2g_area(gridID,j),j=1,nhru_current) ! list of % areas of that dhru 

contributing to this grid cell 

        else 

          read(5005,*) 

          read(5005,*) 

        endif 

         

      enddo 

      close(5005) 

       

      return 

      end 

 

SM_READ_DHRU2HRU.F 

      subroutine sm_read_dhru2hru 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    ~ ~ ~ Purpose ~ ~ ~ 

!!    This subroutine reads in the file containing the information to convert  
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!!    SM-based disaggregated HRU (dhru) variables to SWAT-based normal/aggregated 

HRU variables 

!! 

!!    ~ ~ ~ Variables Used ~ ~ ~ 

!!    name         |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    nhru         |none          |the current number of SWAT hrus 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Variables Modified ~ ~ ~ 

!!    name         |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    d2h_id       |none          |Array per SWAT hru of the IDs of the dhrus 

!!                 |              |which contribute to this hru 

!!    d2h_area     |none          |Array per SWAT hru of the percent area of 

!!                 |              |the dhrus which contribute to this hru 

!!    d2h_size     |none          |the maximum number of dhrus which contribute 

!!                 |              |to a single hru, used for looping and 

!!                 |              |dimensioning variables 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Local Definitions ~ ~ ~ 

!!    name         |units        |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    i            |none         |counter index for reading in contributing 

!!                 |             |areas and looping through all grids 

!!    j            |none         |counter index for the number of SM dhru 

!!    hruID        |none         |index of current SM dhru 

!!    dhru_current |none         |index of the number of contributing areas 

!!                 |             |to loop through 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 

 

!     Import variables 

      use sm_parm, only: d2h_size, d2h_id, d2h_area !sm linkage 

      implicit none 

       

!     Initialize local variables 

      integer ahru,i,j,hruID,dhru_current,subID 

      real, dimension (:,:), allocatable :: dhrulist 

      real blah 

       

!     Read in the ID and percent area of each SM dhru contributing to each SWAT HRU 

      open (5006,file="map_dhru2hru.txt") 
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!     The first line of this file is the total number of HRUs in the watershed (aka, how 

many will be read in) 

      read(5006,*) ahru, d2h_size !must equal SWAT's nhru 

       

!     Initialize variables 

      allocate(d2h_id(ahru, d2h_size)) 

      allocate(d2h_area(ahru, d2h_size)) 

      d2h_id = 0. 

      d2h_area = 0. 

       

      do i=1, ahru 

        ! the HRU's global ID within the watershed, the number of dhrus contributing to this 

HRU,  

        ! the subbasin number for this HRU, the river ID that this HRU drains to, the 

segement ID of  

        ! the river that this HRU drains to, the strahlor stream order of this river 

        read(5006,*) hruID, dhru_current, subID 

         

        if(dhru_current.gt.0)then 

          read(5006,*) (d2h_id(hruID,j),j=1,dhru_current) ! list of dhru ID numbers which 

contribute to this hru 

          read(5006,*) (d2h_area(hruID,j),j=1,dhru_current) ! list of % areas of that dhru 

contributing to this hru 

        else 

          read(5006,*) 

          read(5006,*) 

        endif 

         

      enddo 

      close(5006) 

       

      return 

      end 

 

SM_READ_GRID2DHRU.F 

      subroutine sm_read_grid2dhru 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    ~ ~ ~ Purpose ~ ~ ~ 

!!    This subroutine reads in the file containing the information to convert  

!!    MODFLOW-based grid variables to SM-based disaggregated HRU (dhru) variables 

!! 
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!!    ~ ~ ~ Variables Used ~ ~ ~ 

!!    name         |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    dhru         |none          |the total number of disaggregated HRUs in the  

!!                 |              |entire watershed (not just the current subbasin) 

!!    NCOL         |none          |the current number of columns of MODFLOW grids 

!!    NROW         |none          |the current number of rowss of MODFLOW grids 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Variables Modified ~ ~ ~ 

!!    name         |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    g2d_r        |none          |Array per SM dhru of the row IDs of the grids 

!!                 |              |which contribute to this dhru 

!!    g2d_c        |none          |Array per SM dhru of the column IDs of the grids 

!!                 |              |which contribute to this dhru 

!!    g2d_area     |none          |Array per SM dhru of the percent area of 

!!                 |              |the grids which contribute to this dhru 

!!    g2d_size     |none          |the maximum number of grids which contribute 

!!                 |              |to a single dhru, used for looping and 

!!                 |              |dimensioning variables 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Local Definitions ~ ~ ~ 

!!    name         |units        |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    i            |none         |counter index for the number of SM dhru 

!!    j            |none         |counter index for reading in contributing 

!!                 |             |areas and looping through all grids 

!!    dhruID       |none         |index of current SM dhru 

!!    ngrid_current|none         |index of the number of contributing areas 

!!                 |             |to loop through 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 

 

!     Import variables 

      use GLOBAL, only: NCOL, NROW, NLAY !MODFLOW 

      use sm_parm, only: dhru, g2d_size, g2d_r, g2d_c, g2d_area !sm linkage 

      implicit none 

       

!     Initialize local variables 

      integer i, j, dhruID, ngrid_current 

      real, dimension (:,:), allocatable :: gridlist 

       

!     Read in the ID and percent area of each MODFLOW grid contributing to each SM 

dhru 
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      open (5004,file="map_grid2dhru.txt") 

       

!     The first line of this file is the total number of disaggregated hrus in the watershed 

(aka, how many will be read in) 

      read(5004,*) dhru, g2d_size 

       

!     Initialize variables 

      allocate(g2d_r(dhru, g2d_size)) 

      allocate(g2d_c(dhru, g2d_size)) 

      allocate(g2d_area(dhru, g2d_size)) 

      g2d_r = 0. 

      g2d_c = 0. 

      g2d_area = 0. 

       

      do i=1, dhru 

        read(5004,*) dhruID, ngrid_current ! the dhru's global ID within the watershed, the 

number of grids contributing to this dhru 

         

        if(ngrid_current.gt.0)then 

          read(5004,*) (g2d_r(dhruID,j),j=1,ngrid_current) ! list of grid row ID numbers 

which contribute to this dhru 

          read(5004,*) (g2d_c(dhruID,j),j=1,ngrid_current) ! list of grid column ID numbers 

which contribute to this dhru 

          read(5004,*) (g2d_area(dhruID,j),j=1,ngrid_current) ! list of % areas of that grid 

contributing to this dhru 

        else 

          read(5004,*) 

          read(5004,*) 

          read(5004,*) 

        endif 

         

      enddo 

      close(5004) 

       

      return 

      end 

 

SM_READ_LINK.F 

      subroutine sm_read_link 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    ~ ~ ~ Purpose ~ ~ ~ 
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!!    This subroutine reads in the file containing the information to linke 

!!    SWAT and MODFLOW 

!! 

!!    ~ ~ ~ Variables Modified ~ ~ ~ 

!!    name         |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    mf_active    |none          |index whether or not to use MODFLOW to 

!!                 |              |calculate groundwater flow processes 

!!                 |              |instead of SWAT's gwmod 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 

 

!     Import variables 

      use sm_parm, only: mf_active !SM linkage 

      implicit none 

       

!     Read in extra information for linking SWAT and MODFLOW 

      open(5003,file="sm_link.txt") 

      read(5003, '(I20)') mf_active 

      close(5003) 

       

      return 

      end 

 

SM_READ_RIVER2GRID.F 

      subroutine sm_read_river2grid() 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    ~ ~ ~ Purpose ~ ~ ~ 

!!    This subroutine reads in the file containing the information to calculate 

!!    river conductance for MODFLOW's river cells 

!! 

!!    ~ ~ ~ Variables Used ~ ~ ~ 

!!    name          |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    subtot        |none          |number of subbasins in watershed 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Variables Modified ~ ~ ~ 

!!    name          |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    grid2riv_id   |none          |a list per MODFLOW river grids (cols) containing  
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!!                  |              |the SWAT river IDs within that grid cell 

!!    grid2riv_len  |m             |a list per MODFLOW river grids (cols) containing  

!!                  |              |the SWAT river lengths within that grid cell 

!!    river_cells   |LENUNI        |an array of the properties of the river grid cells, 

!!                  |              |are the thicknesses of the river bed of the grid cells 

!!    nriver_cells  |n/a           |the total number of river grid cells in MODFLOW 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Local Definitions ~ ~ ~ 

!!    name          |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    i             |none          |counter index for the number of SWAT subbasins 

!!    j             |none          |counter index for reading contributing 

!!                  |              |MODFLOW rive grids 

!!    temp          |none          |index of current SWAT subbasin 

!!    ngrid_current |none          |index of the number of contributing MODFLOW 

!!                  |              |river grids 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 

 

!     Import variables 

      use GLOBAL, only:LENUNI,ITMUNI !MODFLOW 

      use sm_parm !sm linkage 

      implicit none 

       

!     Initialize local variables 

      integer i, j, temp, nriv_current       

       

!     Read in the id and percent area of each SWAT HRU contributing to each 

!     MODFLOW grid 

      open (5007,file="map_river2grid.txt") 

      read(5007,*) nriver_cells ! the total # of river cells in MODFLOW 

       

!     Allocate the variable sizes, which needs to be called here before reading the file 

continues 

      call sm_allocate() 

       

!     Read which SWAT river reaches are within each MODFLOW river cell, and their 

associated river lengths 

      do i=1, nriver_cells 

        read(5007,*) temp, nriv_current ! grid #, then the number of river segments within 

this grid 

        if(nriv_current.gt.0)then 

          read(5007,*) (grid2riv_id(i,j), j=1,nriv_current) ! list of river ID numbers which are 

within the current grid 
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          read(5007,*) (grid2riv_len(i,j),j=1,nriv_current) ! list of length of river within the 

current grid 

        else 

          read(5007,*) 

          read(5007,*) 

        endif 

         

      enddo 

      close(5007) 

 

      return 

      end 

 

SM_RECHARGE.F 

      subroutine sm_recharge(eventdata) 

!!    ~ ~ ~ Authors ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    Andre Dozier, PhD student 

!!    Colorado State University 2012-2016 

!!    Comment initials "aqd" 

!! 

!!    ~ ~ ~ PURPOSE ~ ~ ~ 

!!    This subroutine converts the necessary SWAT variables for the MODFLOW 

recharge 

!!    (RCH) package's variables 

!!       

        use modevent 

        use sm_parm, only: sepbtm_dhru 

        use GWFRCHMODULE, only: RECH  

        implicit none  

        class (ieventdata), pointer :: eventdata 

 

        call sm_dhru2grid2D(sepbtm_dhru,RECH,1) 

         

      end subroutine sm_recharge  

 

SM_UPDATEOUTPUT.F 

      subroutine sm_updateOutput 

!!      ~ ~ ~ Author ~ ~ ~ 

!!      Tyler Wible, Masters student 

!!      Colorado State University 2012-2014 
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!!      Comment initials "tcw" 

!! 

!!      ~ ~ ~ Purpose ~ ~ ~ 

!!      This file is temporary only, please delete it later 

!!      This file update the SWAT output variables with corrected 

!!      groundwater flow values from MODFLOW 

       

!       Import variables 

        use parm !SWAT 

        implicit none 

 

        integer :: subID,h, k 

       

        !Update SWAT's output variables to reflect the changes to gw_q and gw_qdeep 

from MODFLOW, like it is done in sumv.f 

        do subID=1, msub  

          h = hru1(subID) 

          do k=1, hrutot(subID) 

            !the below code is borrowed from SWAT's sumv.f 

            if (curyr > nyskip) then 

              !! HRU summations 

              hrumono(6,h) = hrumono(6,h) + gw_q(h) 

              hrumono(70,h) = hrumono(70,h) + gw_qdeep(h) 

 

              !! watershed summations 

              if (ffcst == 0 .and. iscen == 1) then 

                wshddayo(104) = wshddayo(104) + gw_q(h) * hru_dafr(h) 

                wshddayo(113) = wshddayo(113) + gw_qdeep(h) *hru_dafr(h) 

              else if (ffcst == 1) then 

                fcstaao(8) = fcstaao(8) + gw_q(h) * hru_dafr(h) 

              end if 

            end if 

            !end borrowed SWAT code from sumv.f 

            h = h + 1 

          enddo 

        enddo 

       

      return 

      end 

 

SM_UPFLUXTOSOIL.F 

      subroutine sm_upflux_to_soil 

!!    ~ ~ ~ Authors ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 
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!!    Comment initials "tcw" 

!! 

!!    Ryan Bailey, Post-Doc student (2012-2013), Assistant Professor (2013-) 

!!    Colorado State University 2012- 

!!    Comment initials "rtb" 

!! 

!!    ~ ~ ~ Purpose ~ ~ ~ 

!!    Add upflux water (calculated by UZF) to soil profile (SWAT) 

!!    Start with the bottom soil layer. When filled to Field Capacity, move to 

!!    next layer up. 

!! 

!!    ~ ~ ~ Variables Used ~ ~ ~ 

!!    name          |units             |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    sol_nly(:)    |none              |number of soil layers  

!!    sol_z(:,:)    |mm soil           |depth to bottom of soil layer  

!!    sol_st(:,:)   |mm H2O            |amount of water stored in the soil 

!!                  |                  |layer on any given day (less wp water) 

!!    sol_up(:,:)   |mm H2O/mm soil    |water content of soil at -0.033 MPa 

!!                  |                  |(field capacity) 

!!    sol_sw(:)     |mm H2O            |amount of water stored in soil profile 

!!                  |                  |on any given day 

!!    sol_wpmm(:,:) |mm H20            |water content of soil at -1.5 MPa 

!!                  |                  |(wilting point) 

!!    nhru          |none              |number of HRUs in watershed 

!!    LENUNI        |unit_in           |the MODFLOW variable for which length 

!!                  |                  |units are being used 

!!    ITMUNI        |unit_out          |the MODFLOW variable for which time 

!!                  |                  |units are being used 

!!    NCOL          |n/a               |the MODFLOW variable for number of 

!!                  |                  |columns of grids 

!!    NROW          |n/a               |the MODFLOW variable for number of 

!!                  |                  |rows of grids 

!!    NLAY          |n/a               |the MODFLOW variable for number of 

!!                  |                  |layers of grids 

!!    GWET(:,:,:)   |LENUNI**3/ITMUNI  |a modflow variable for the et coming 

!!                  |                  |from the groundwater UZF package 

!!                  |                  |(only the UZF or EVT package is allowed 

!!                  |                  |active, not both) 

!!    UZET(:,:,:)   |LENUNI**3/ITMUNI  |an added modflow variable for the et 

!!                  |                  |coming from the groundwater UZF package 

!!                  |                  |(only the UZF or EVT package is allowed 

!!                  |                  |active, not both) 

!!    EVTvol(:,:,:) |LENUNI**3/ITMUNI  |an added modflow variable for the et 

!!                  |                  |coming from the groundwater EVT package 

!!                  |                  |(only the UZF or EVT package is allowed 
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!!                  |                  |active, not both) 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Variables Modified ~ ~ ~ 

!!    name          |units             |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    sol_st(:,:)   |mm H2O            |amount of water stored in the soil layer 

!!                  |                  |on any given day (less wp water) 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Local Definitions ~ ~ ~ 

!!    name          |units               |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    upflux(:)     |mm H20              |depth of upflux water (as calculated 

!!                  |                    |from GWET) 

!!    dg            |mm soil             |thickness of soil layer 

!!    sol_upmm      |mm H2O              |amount of water at field capacity 

!!    j             |none                |HRU number 

!!    sol_water     |mm H20              |current amount of water in the soil layer 

!!    upflux_mm     |mm H20              |depth of upflux water for the current HRU 

!!    sol_deficit   |?                   |the amount of water that can potentially  

!!                  |                    |be added to the soil layer (based on field capacity) 

!!    fract_upflux  |none                |determine fraction of total upflux water  

!!                  |                    |that is directed to the current layer 

!!    no3mass_add   |??                  |based on fract_upflux this is how much of the no3 mass  

!!                  |                    |should be added to the layer 

!!    mf_lengthUnit |MODFLOW length unit |the modified inteteger to represent 

!!                  |                    |the MODFLOW unit of length 

!!    mf_timeUnit   |MODFLOW time unit   |the modified integer to represent 

!!                  |                    |the MODFLOW unit of time 

!!    mf_et(:,:)    |LENUNI**3/ITMUNI    |variable to contain each MODFLOW  

!!                  |                    |grid cell's et to pass to SWAT  

!!                  |                    |= GWET 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 

 

!     Import variables 

      use parm, only: sol_nly,sol_z,sol_st,sol_up,sol_sw,sol_wpmm, !SWAT 

     &                nhru, leapyr 

      use GLOBAL, only:LENUNI,ITMUNI,NCOL,NROW,NLAY,DELR,DELC,IUNIT 

!MODFLOW 

      use GWFUZFMODULE, only: GWET, UZET !MODFLOW UZF package 

      USE GWFEVTMODULE,ONLY: EVTvol !MODFLOW EVT package 

      use sm_parm, only: dhru !sm linkage 

      implicit none 
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!     Initialize local variables 

      integer i,j,k,ly,mf_lengthUnit,mf_timeUnit,nlayers,layer 

      real dg,upflux_mm,sol_upmm,sol_water,sol_deficit,fract_upflux 

      real mf_et(NCOL,NROW) 

      real upflux_dhru(dhru) 

      real upflux(nhru) 

      mf_et = 0. 

      mf_lengthUnit = LENUNI + 10 

      mf_timeUnit = ITMUNI 

       

       

      !Calculate the total ET upflux from MODFLOW from its uzf groundwater ET 

(GWET) variable for each grid cell 

      do j=1, NROW 

        do i=1, NCOL 

          do k=1, NLAY 

            !If using the EVT package, get ET from there 

            if(IUNIT(5).gt.0)then 

              mf_et(i,j) = mf_et(i,j) + EVTvol(i,j,k)/(DELR(i)*DELC(j)) 

            endif 

             

            !If using the UZF package, get ET from there 

            if(IUNIT(55).gt.0)then 

              mf_et(i,j) = mf_et(i,j) + UZET(i,j,k)/(DELR(i)*DELC(j)) 

            endif 

          enddo 

           

             

          !If using the UZF package, get addtional ET from there 

          if(IUNIT(55).gt.0)then 

            mf_et(i,j) = mf_et(i,j) + GWET(i,j)/(DELR(i)*DELC(j)) 

          endif 

       enddo 

      enddo 

       

!     Convert MODFLOW variable into SM variable 

      call sm_grid2dhru2D(mf_et, upflux_dhru)! Map the MODFLOW upflux from grids 

to dhrus 

 

       

!     Convert SM variable into SWAT units 

      call units(upflux_dhru, mf_lengthUnit, 15, 3, dhru, leapyr)! to convert length units 

(LENUNI**3 to km**3) 

      call units(upflux_dhru, mf_timeUnit, 4, 1, dhru, leapyr)! to convert time units 

(ITMUNI to days) 

      call units(upflux_dhru, 15, 14, 1, dhru, leapyr)! to convert length units (km to mm) 
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!     Convert SM variable into SWAT variable 

      call sm_dhru2hru(upflux_dhru, upflux, 2)! Map the MODFLOW upflux from dhrus 

to HRUs and divide the SWAT variable by hru area (km**3/km**2 = km) 

 

       

      do j=1, nhru 

        !upflux_mm: the depth of upflux for the HRU (calculated by dividing the flow rate 

of (UZET + GWET) by the area of the HRU) 

        upflux_mm = upflux(j) !get the upflux for the HRU 

 

        !add upflux water to the soil layers - beginning with the bottom layer ------------------

---- 

       

        !loop through the soil layers (beginning with the bottom layer) 

        nlayers = sol_nly(j) 

        do k=1,nlayers 

         

          !only proceed if there is any upflux water remaining 

          if(upflux_mm.gt.0) then  

            layer = nlayers - (k-1) 

 

            !calculate thickness of soil layer 

            if(layer.gt.1) then 

              dg = sol_z(layer,j) - sol_z(layer-1,j) 

            else 

              dg = sol_z(layer,j) 

            endif 

 

            !determine total water (mm) at Field Capacity (what the soil layer can hold) 

            sol_upmm = sol_up(layer,j) * dg !(mm water / mm soil) * mm soil 

 

            !determine the current amount of water in the soil layer 

            !(must add wilting point water, since sol_st does not include it) 

            sol_water = sol_st(layer,j) + sol_wpmm(layer,j) 

 

            !calculate amount of water that can potentially be added to the soil layer 

            !(based on field capacity) 

            sol_deficit = sol_upmm - sol_water 

 

            !calculate how much upflux water is added to the soil layer 

            if(upflux_mm.ge.sol_deficit) then !Fill up all of the soil layer 

               

              !fill the soil layer to field capacity (then subtract the wilting point 

              !water, since this is part of the definition of sol_st) 
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              sol_st(layer,j)=(sol_water+sol_deficit)-sol_wpmm(layer,j) 

               

              !decrease the amount of upflux that can be added to the above layers 

              !(the next time through the loop) 

              upflux_mm = upflux_mm - sol_deficit 

 

            else !Fill up part of the soil layer 

              !add all of the upflux (resulting water amount in soil layer should be less 

              !than field capacity) 

              sol_st(layer,j)=(sol_water + upflux_mm)-sol_wpmm(layer,j) 

              upflux_mm = 0 

               

            endif 

               

          endif 

        enddo !go to the above layer 

 

        !update total soil water amount for the profile --------------------------------------------- 

        sol_sw(j) = 0. 

        do ly = 1, sol_nly(j) 

          sol_sw(j) = sol_sw(j) + sol_st(ly,j) 

        enddo 

      enddo 

         

      return 

      end 

 

SM_UZF.F 

      subroutine sm_uzf(eventdata) 

!!    ~ ~ ~ Authors ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    Andre Dozier, PhD student 

!!    Colorado State University 2012-2016 

!!    Comment initials "aqd" 

!! 

!!    ~ ~ ~ PURPOSE ~ ~ ~ 

!!    This subroutine converts the necessary SWAT variables for the MODFLOW 

!!    unsaturated zone flow (UZF1) package's variables 

!!       

        use modevent 

        ! Inside of MODFLOW, infiltration and ET is  

        ! provided by SWAT 
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        use sm_parm, only: sepbtm_dhru, etremain_dhru 

        use GWFUZFMODULE, only: FINF, PETRATE 

        implicit none  

        class (ieventdata), pointer :: eventdata 

 

        call sm_dhru2grid2D(sepbtm_dhru,FINF,1) 

        call sm_dhru2grid2D(etremain_dhru, PETRATE,1) 

 

      end subroutine 

 

UNITS.F 

      subroutine units(array,unit_in,unit_out,magnitude,asize,leapyr) 

!!    ~ ~ ~ Author ~ ~ ~ 

!!    Tyler Wible, Masters student 

!!    Colorado State University 2012-2014 

!!    Comment initials "tcw" 

!! 

!!    ~ ~ ~ Purpose ~ ~ ~ 

!!    This subroutine converts the provided array to different units based on  

!!    provided flags for the incoming and outgoing units (based on a modified  

!!    set of MODFLOW's unit flags listed below) 

!! 

!!    0 = undefined 

!!    1 = seconds 

!!    2 = minutes 

!!    3 = hours 

!!    4 = days 

!!    5 = years    Note: a year is assumed to be equal to 365 days 

!! 

!!    11 = feet 

!!    12 = meters 

!!    13 = centimeters 

!!    14 = millimeters 

!!    15 = kilometers 

!! 

!!    21 = kilograms 

!!    22 = grams 

!!    23 = milligrams 

!!    24 = micrograms 

!! 

!!    31 = square feet 

!!    32 = square meters 

!!    33 = hectacre (ha) 

!! 

!!    ~ ~ ~ Variables Used ~ ~ ~ 
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!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    array(:)    |unit_in units |the variable to have its units converted 

!!                |              |currently in the units of unit_in that has 

!!                |              |"asize" elements in the array 

!!    unit_in     |none          |integer representing the incoming unit of the  

!!                |              |parameter following the codes listed above 

!!    unit_out    |none          |integer representing the outgoing unit of the  

!!                |              |parameter following the codes listed above 

!!    magnitude   |none          |the exponent of the units to be converted 

!!                |              |example: if converting from square feet (ft^2) 

!!                |              |to square meeters (m^2), magnitude should have 

!!                |              |a value of 2 

!!    asize       |              |the number of elements in array(:) 

!!    leapyr      |none          |leap year flag, this is only used if the in/out 

!!                |              |units are time units involving years 

!!                |              |0  leap year 

!!                |              |1  regular year 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!! 

!!    ~ ~ ~ Variables Modified ~ ~ ~ 

!!    name        |units         |definition 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    array       |unit_out units|the originally provided variable array now  

!!                |              |in the units of unit_out 

!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 

       

!     Initialize local variables 

      implicit none 

      integer asize, leapyr 

      real array(asize) 

      real conversion 

      integer unit_in, unit_out, magnitude, i 

      conversion = 1. 

       

!     Determine the time unit conversion 

      if (unit_in.eq.1 .and. unit_out.eq.2) then 

        conversion = 1./60.        !!Convert seconds to minutes 

      else if (unit_in.eq.1 .and. unit_out.eq.3) then 

        conversion = 1./3600.      !!Convert seconds to hours 

      else if (unit_in.eq.1 .and. unit_out.eq.4) then 

        conversion = 1./86400.     !!Convert seconds to days 

      else if (unit_in.eq.1 .and. unit_out.eq.5 .and. leapyr.ne.0) then 

        conversion = 1./31536000.  !!Convert seconds to non-leap years 

      else if (unit_in.eq.1 .and. unit_out.eq.5 .and. leapyr.eq.0) then 
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        conversion = 1./31622400.  !!Convert seconds to leap years 

       

      else if (unit_in.eq.2 .and. unit_out.eq.1) then 

        conversion = 60.           !!Convert minutes to seconds 

      else if (unit_in.eq.2 .and. unit_out.eq.3) then 

        conversion = 1./60.        !!Convert minutes to hours 

      else if (unit_in.eq.2 .and. unit_out.eq.4) then 

        conversion = 1./1440.      !!Convert minutes to days 

      else if (unit_in.eq.2 .and. unit_out.eq.5 .and. leapyr.ne.0) then 

        conversion = 1./525600.    !!Convert minutes to non-leap years 

      else if (unit_in.eq.2 .and. unit_out.eq.5 .and. leapyr.eq.0) then 

        conversion = 1./527040.    !!Convert minutes to leap years 

       

      else if (unit_in.eq.3 .and. unit_out.eq.1) then 

        conversion = 3600.         !!Convert hours to seconds 

      else if (unit_in.eq.3 .and. unit_out.eq.2) then 

        conversion = 60.           !!Convert hours to minutes 

      else if (unit_in.eq.3 .and. unit_out.eq.4) then 

        conversion = 1./24.        !!Convert hours to days 

      else if (unit_in.eq.3 .and. unit_out.eq.5 .and. leapyr.ne.0) then 

        conversion = 1./8760.      !!Convert hours to non-leap years 

      else if (unit_in.eq.3 .and. unit_out.eq.5 .and. leapyr.eq.0) then 

        conversion = 1./8784.      !!Convert hours to leap years 

       

      else if (unit_in.eq.4 .and. unit_out.eq.1) then 

        conversion = 86400.        !!Convert days to seconds 

      else if (unit_in.eq.4 .and. unit_out.eq.2) then 

        conversion = 1440.         !!Convert days to minutes 

      else if (unit_in.eq.4 .and. unit_out.eq.3) then 

        conversion = 24.           !!Convert days to hours 

      else if (unit_in.eq.4 .and. unit_out.eq.5 .and. leapyr.ne.0) then 

        conversion = 1./365.       !!Convert days to non-leap years 

      else if (unit_in.eq.4 .and. unit_out.eq.5 .and. leapyr.eq.0) then 

        conversion = 1./366.       !!Convert days to leap years 

       

      else if (unit_in.eq.5 .and. unit_out.eq.1 .and. leapyr.ne.0) then 

        conversion = 31536000.     !!Convert non-leap years to seconds 

      else if (unit_in.eq.5 .and. unit_out.eq.2 .and. leapyr.ne.0) then 

        conversion = 525600.       !!Convert non-leap years to minutes 

      else if (unit_in.eq.5 .and. unit_out.eq.3 .and. leapyr.ne.0) then 

        conversion = 8760.         !!Convert non-leap years to hours 

      else if (unit_in.eq.5 .and. unit_out.eq.4 .and. leapyr.ne.0) then 

        conversion = 365.          !!Convert non-leap years days 

       

      else if (unit_in.eq.5 .and. unit_out.eq.1 .and. leapyr.eq.0) then 

        conversion = 31622400.     !!Convert leap years to seconds 
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      else if (unit_in.eq.5 .and. unit_out.eq.2 .and. leapyr.eq.0) then 

        conversion = 527040.       !!Convert leap years to minutes 

      else if (unit_in.eq.5 .and. unit_out.eq.3 .and. leapyr.eq.0) then 

        conversion = 8784.         !!Convert leap years to hours 

      else if (unit_in.eq.5 .and. unit_out.eq.4 .and. leapyr.eq.0) then 

        conversion = 366.          !!Convert leap years days 

       

       

       

!     Determine the distance unit conversion 

      else if (unit_in.eq.11 .and. unit_out.eq.12) then 

        conversion = 1./3.28084    !!Convert feet to meters 

      else if (unit_in.eq.11 .and. unit_out.eq.13) then 

        conversion = 1./0.0328084  !!Convert feet to centimeters 

      else if (unit_in.eq.11 .and. unit_out.eq.14) then 

        conversion = 1./0.00328084 !!Convert feet to millimeters 

      else if (unit_in.eq.11 .and. unit_out.eq.15) then 

        conversion = 1./3280.84    !!Convert feet to kilometers 

       

      else if (unit_in.eq.12 .and. unit_out.eq.11) then 

        conversion = 3.28084       !!Convert meters to feet 

      else if (unit_in.eq.12 .and. unit_out.eq.13) then 

        conversion = 100.          !!Convert meters to centimeters 

      else if (unit_in.eq.12 .and. unit_out.eq.14) then 

        conversion = 1000.         !!Convert meters to millimeters 

      else if (unit_in.eq.12 .and. unit_out.eq.15) then 

        conversion = 1./1000.      !!Convert meters to kilometers 

       

      else if (unit_in.eq.13 .and. unit_out.eq.11) then 

        conversion = 0.0328084     !!Convert centimeters to feet 

      else if (unit_in.eq.13 .and. unit_out.eq.12) then 

        conversion = 1./100.       !!Convert centimeters to meters 

      else if (unit_in.eq.13 .and. unit_out.eq.14) then 

        conversion = 10.           !!Convert centimeters to millimeters 

      else if (unit_in.eq.13 .and. unit_out.eq.15) then 

        conversion = 1./100000.    !!Convert centimeters to kilometers 

       

      else if (unit_in.eq.14 .and. unit_out.eq.11) then 

        conversion = 0.00328084    !!Convert millimeters to feet 

      else if (unit_in.eq.14 .and. unit_out.eq.12) then 

        conversion = 1./1000.      !!Convert millimeters to meters 

      else if (unit_in.eq.14 .and. unit_out.eq.13) then 

        conversion = 1./10.        !!Convert millimeters to centimeters 

      else if (unit_in.eq.14 .and. unit_out.eq.15) then 

        conversion = 1./1000000.   !!Convert millimeters to kilometers 
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      else if (unit_in.eq.15 .and. unit_out.eq.11) then 

        conversion = 0.00328084    !!Convert kilometers to feet 

      else if (unit_in.eq.15 .and. unit_out.eq.12) then 

        conversion = 1000.         !!Convert kilometers to meters 

      else if (unit_in.eq.15 .and. unit_out.eq.13) then 

        conversion = 100000.       !!Convert kilometers to centimeters 

      else if (unit_in.eq.15 .and. unit_out.eq.14) then 

        conversion = 1000000.      !!Convert kilometers to milimeters 

       

       

       

!     Determine the weight unit conversion 

      else if (unit_in.eq.21 .and. unit_out.eq.22) then 

        conversion = 1000.         !!Convert kilograms to grams 

      else if (unit_in.eq.21 .and. unit_out.eq.23) then 

        conversion = 1000000.      !!Convert kilograms to milligrams 

      else if (unit_in.eq.21 .and. unit_out.eq.24) then 

        conversion = 1000000000.   !!Convert kilograms to micrograms 

       

      else if (unit_in.eq.22 .and. unit_out.eq.21) then 

        conversion = 1./1000.      !!Convert grams to kilograms 

      else if (unit_in.eq.22 .and. unit_out.eq.23) then 

        conversion = 1000.         !!Convert grams to milligrams 

      else if (unit_in.eq.22 .and. unit_out.eq.24) then 

        conversion = 1000000.      !!Convert grams to micrograms 

       

      else if (unit_in.eq.23 .and. unit_out.eq.21) then 

        conversion = 1./1000000.   !!Convert milligrams to kilograms 

      else if (unit_in.eq.23 .and. unit_out.eq.22) then 

        conversion = 1./1000.      !!Convert milligrams to grams 

      else if (unit_in.eq.23 .and. unit_out.eq.24) then 

        conversion = 1000.         !!Convert milligrams to micrograms 

       

      else if (unit_in.eq.24 .and. unit_out.eq.21) then 

        conversion = 1./1000000000.!!Convert micrograms to kilograms 

      else if (unit_in.eq.24 .and. unit_out.eq.22) then 

        conversion = 1./1000000.   !!Convert micrograms to grams 

      else if (unit_in.eq.24 .and. unit_out.eq.23) then 

        conversion = 1./1000.      !!Convert micrograms to milligrams 

       

       

       

!     Determine the area unit conversion 

      else if (unit_in.eq.31 .and. unit_out.eq.32) then 

        conversion = 1./10.7639    !!Convert square feet to square meters 

      else if (unit_in.eq.31 .and. unit_out.eq.33) then 
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        conversion = 1./107639.    !!Convert square feet to hectacres 

       

      else if (unit_in.eq.32 .and. unit_out.eq.31) then 

        conversion = 10.7639       !!Convert square meters to square feet 

      else if (unit_in.eq.32 .and. unit_out.eq.33) then 

        conversion = 0.0001        !!Convert square meters to hectacres 

       

      else if (unit_in.eq.33 .and. unit_out.eq.31) then 

        conversion = 107639.       !!Convert hectacres to square feet 

      else if (unit_in.eq.33 .and. unit_out.eq.32) then 

        conversion = 10000.        !!Convert hectacres to square meters 

       

         

      else 

        conversion = 1.            !!Conversion Error, conversion not accounted for 

      endif 

       

       

!     Convert line by line the array into its new units 

      do i=1,asize 

        array(i) = array(i) * (conversion**magnitude) 

      enddo 

       

      return 

      end 
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APPENDIX V: COMPREHENSIVE FLOW ANALYSIS EXAMPLE OUTPUT 

 

 

 

 

Figure 47: eRAMS Graphical User Interface (GUI) to CFA Tool 
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Figure 48: CFA Example Report Output for Time series and Statistics Analysis 
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Figure 49: CFA Example Report Output for Flood Analysis 
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Figure 50: CFA Example Report Output for Drought Analysis, Part 1 
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Figure 51: CFA Example Report Output for Drought Analysis, Part 2 
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Figure 52: CFA Example Report Output for Drought Analysis, Part 3 
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Figure 53: CFA Example Report Output for Flow Duration Curve Analysis 
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Figure 54: CFA Example Report Output for Load Duration Curve Analysis 
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Figure 55: CFA Example Report Output for Daily Load Estimator (LOADEST) Analysis 
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Figure 56: CFA Example Report Output for Base-flow Separation (BFLOW) Analysis 
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APPENDIX VI: COMPREHENSIVE FLOW ANALYSIS (CFA) TECHNICAL MANUAL 

 

 

 

1. INTRODUCTION 

Stream flow data has become an increasingly important tool for assessing current stream 

conditions and as a predictor for future conditions. However, there are numerous aspects of 

stream flow to analyze as well as methods to do so: 

 Stream flow variability and availability for water rights and allocations 

 Extent and use of flood plains 

 Amount of return flows from groundwater to streams, mostly for modeling purposes 

 Impact and extent of droughts on municipal water supply 

The foundation of all of these analyses is the stream flow record itself, but there is not 

currently a uniform approach to each of these topics combined into a single comprehensive tool. 

The manner and implementation of a new tool is of additional importance to its acceptance and 

usage. 

Current stream flow analysis tools and numerical techniques like base-flow separation 

BFLOW (Arnold et al. 1995; Arnold and Allen 1999), hydrograph separation HYSEP (Sloto and 

Michele 1996), the Bulletin 17B flood analysis method (IACWD 1982), Web-based Hydrograph 

Analysis Tool WHAT (Lim et al. 2005), drought analysis (Salas et al. 2005; Mishra and Singh 

2011), and others require installation and use of a software package on a single computer or 

manual data manipulation and calculations. Numerical automation of data analysis can 

streamline data processing and remove inherent uncertainties in manual data manipulation 

techniques. Additionally, the benefit of a web-based tool is that it requires no software 
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installation and is platform independent. For these reasons web-based software is much easier to 

deploy as well as simpler for people to use. A further complication of web-modeling 

development is the scaling of usage to meet user demands. The utilization of cloud infrastructure 

allows the intensive calculations to be moved from a single server to one or many cloud-based 

virtual machines, as needed based on current demand/usage. 

With the above features in mind the Comprehensive Flow Analysis, CFA, tool was 

designed for the Environmental Risk Assessment and Management System, eRAMS. eRAMS is 

a web-based geospatial analysis tool to facilitate open-source environmental modeling. The web-

deployment of eRAMS satisfies the design criteria for no software installation necessary for 

users. Additionally, eRAMS’ utilizes the cloud-based modeling services provided by the Cloud 

Services Innovation Platform, CSIP (David et al. 2012). The cloud services reached by eRAMS, 

through CSIP, satisfies the second criteria to utilize virtual machine computation. CSIP provides 

an open web interface to the models integrated with it, utilizing a Representational State 

Transfer, REST, web service to facilitate initiating, interacting, and retrieving results from 

modeling runs. 

2.  USER MANUAL 

 Access 

o The non-login version of CFA is available at  www.erams.com/flowanalysis 

o The login version of CFA is available at www.erams.com 

 Log in 

 Go to the Projects section of your profile 

 Start a new project and use the “Flow Analysis” project type 

 Click “GIS/Analysis” to go to the map interface 

http://www.erams.com/flowanalysis
http://www.erams.com/
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 Go to the “Flow Analysis” tab of the map 

 Search for a flow/water quality monitoring station using either a: 

o Keyword search 

o Point buffer (circular area around a point clicked on the map) 

o Line buffer (circular area around a line drawn on the map) 

o Polygon (an arbitrary shape drawn on the map) 

o Rectangle (a bounding box drawn on the map) 

 After finding the station of interest, click on it on the map and select “Flow Analysis 

Model” on the summary of the station 

o This launches the CFA interface 

o Further instructions are available under “Getting Started” 

 Select the type of analysis model you wish to run from the tabs at the top (data, flood, 

drought, base-flow, duration curves, LOADEST) 

o Provide the request inputs for the model, tips and information are available from 

the “Help” button 

 Click the “Run Model” button 

o If the raw data selected on the interface is desired click “Download Data” 

 The results of CFA are then added to a results page in eRAMS and displayed.  

o The result files, graphs, and summary page of model runs are available for 

download. 

3. CURRENT INFRASTRUCTURE 

The Environmental Risk Assessment and Management System (eRAMS) website 

developed by Dr. Mazdak Arabi at Colorado State University was created to facilitate geospatial 
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manipulation of data for environmental modeling. eRAMS works on a web-based geospatial 

analyst, similar to ArcGIS, to manipulate, model, and share geospatial information. Additionally, 

multiple models have been linked into eRAMS including watershed delineation, the Soil and 

Water Analysis Tool (SWAT), a multi-criteria decision analysis tool, data extraction tools, the 

High Country Solar Platform (HCSP) for determining solar panel feasibility. The CFA tool is 

accessible on eRAMS through a scalable cloud-based framework called the Cloud Service 

Infrastructure Platform (CSIP) developed by Olaf David and Wes Lloyd (2013). 

The Comprehensive Flow Analysis (CFA) tool was developed by creating and integrating 

a series of flow analysis methods into a single web tool and interface. CFA includes six flow 

models: a time series and statistical analysis, a flood analysis, a drought analysis, a base-flow 

separation tool, a flow and load duration curve tool, and a load estimator tool. The combination 

of these models into a single program on an open-source-cloud-based platform allows for 

multiple independent analyses on the same dataset using the same tool without the need to switch 

programs or re-format input data for a different flow analysis. Beyond simply saving time, CFA 

creates a standardized approach to the different aspects of flow analysis allowing site to site 

comparisons of results. 

Behind the scenes, a model run of CFA is accomplished by taking the inputs, for 

example: which model is requested (flood, time series, base-flow, etc.), station ID, begin and end 

dates, and other information. This is then passed them from eRAMS to CSIP via a 

representational state transfer, REST using a JavaScript Object Notation (JSON) to list the inputs 

of the desired CFA run. After receiving the REST request, CSIP initializes a model run of CFA, 

waits for it to finish executing, then returns the result from CFA back to eRAMS. An outline of 

this interaction is shown below in Figure 57. 
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Figure 57: CFA’s Interaction with eRAMS, CSIP, and External Databases 

4. COMPREHENSIVE FLOW ANALYSIS (CFA) MODELS 

Each of the analysis methods included in CFA is summarized below including an 

explanation of method-specific inputs and outputs. 

4.1. TIME SERIES ANALYSIS 

The first model included in CFA is a simple time series analysis. The Time Series 

Analysis Tool graphs temporal changes in available flow or water quality data for any given 

station within the specified time period of interest. Time series also provides a summary of the 

statistics of the graphed data, including its min, max, median, mean, upper and lower quartiles, 

and standard deviation. An example of the output from the Time Series Analysis Tool is shown 

below in Figure 58. 
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Figure 58: Example CFA's Time Series Analysis Tool Result Graph 

4.2. FLOOD ANALYSIS 

Of greater benefit than a simple time series of stream flows, CFA also includes a flood 

analysis model. The Flood Analysis Tool in CFA follows the USGS Bulletin 17B approach 

(IACWD 1982) for flood flow frequency analysis of unregulated streams. However, CFA is 

unable to verify whether the stream gauging stations are unregulated or not. For this reason, as 

with all models, users should have some prior knowledge about the model and its limitations as 

well as knowledge of the area of interest. The USGS Bulletin 17B method follows the 

recommendations of Bulleting 15 (WRC-HC 1967) for flood magnitude/frequency study, in 

which a Log-Pearson Type III distribution is fitted to available flood data. By fitting a 

distribution to available data, return periods for unobserved and historic floods can be calculated 

using the parameters of the fitted distribution. This also allows for flood flows of standard return 

periods, like the 100-year flood, to be interpolated from the fitted distribution. 
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Due to the sensitivity of the Log-Pearson Type III distribution to its skewness parameter 

Bulletin 17B published by the Hydrology Subcommittee of the Interagency Advisory Committee 

on Water Data (IACWD 1982) recommends the use of both a station skew value, derived from 

available station data, and a generalized regional skew value. The generalized regional skew 

value can be found from interpolation of the regional skew map included in the Bulletin 17B 

documentation (IACWD 1982). For greater accuracy of the regionalized skewness, many states 

have developed similar maps of their states and surrounding areas based on new regression 

techniques (see Appendix VII for flood skewness coefficient references). Within CFA the state 

skewness maps were digitized and interpolated on as well as the Plate I map (IACWD 1982) and 

combined allowing the regional skewness value for each station to be auto-extracted. The 

generalized skewness coefficients used in this particular tool are first attempted to be taken from 

a state agency generated map; then if no state data is available the skewness is take from the 

Plate I map (IACWD 1982). As per the recommendation of Bulletin 17B (IACWD 1982) the 

final skewness used in the flood analysis is an average between the station skewness, calculated 

from the available flood dataset, and the generalized skewness, found as described above. An 

example of the result of the Flood Analysis Tool can be seen below in Figure 59. Following the 

figure is an explanation of the methodology in CFA’s flood analysis tool using the Bulletin 17B 

method. 
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Figure 59: Example CFA's Flood Analysis Tool Result Graph 

 The methodology inside CFA’s Bulletin 17B method is to first check if there is sufficient 

data for the analysis (greater than 10 and less than 149 flood peaks). 

 Then the statistics (count, Log10 mean, standard deviation, and skewness) for the base 

dataset are calculated.  

 Based on the skewness value the outliers of the dataset (if any) are determined. The 

statistics of the dataset are then recalculated with the new outlier-removed dataset. If the 

skewness changes greatly between these steps a warning flag is conveyed to the user. 

 Then the frequency/probabilities for each flood are linearly interpolated from the tables 

provided in the Bulletin 17B documentation (IACWD 1982). If the flood is outside the 

dataset for interpolation, those values are extrapolated. 
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 The frequencies/probabilities are then plotted against flood magnitudes in skewed 

probability space (aka the spacing between the probabilities is not standard unless 

skewness equals zero). 

4.3. DROUGHT ANALYSIS 

An opposite, but equally important, aspect of stream flows is the consideration and 

analysis of droughts from stream flow records. For this reason a generalized drought analysis 

tool was included in CFA. The drought analysis method included in CFA fits a regression model 

to historic annual stream flow data and forecasts it to simulate a larger dataset in order to predict 

high recurrence interval droughts (Salas, et al. 2005). The following is a step by step explanation 

of the drought analysis method used and example outputs for each step. 

The drought analysis begins by calculating annual flow values from available average 

daily flow data.  Figure 60 contains an annual time series of the flow data with the specified 

annual drought limit as a reference. 
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Figure 60: Example CFA's Drought Analysis Tool Result Graph 1 

Figure 61 contains a second time series containing the annual surplus or deficit between 

the supplied annual flow and the drought demand limit; this is meant to highlight the occurrence 

of droughts. 
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Figure 61: Example CFA's Drought Analysis Tool Result Graph 2 

After calculating the annualized flow data, it is then converted to its stochastic 

component (the mean is subtracted from the data and then divided by the standard deviation). 

The stochastic data is then transformed into a normalized dataset using a Box-Cox 

transformation. Then an Auto-Regressive (AR) or Auto-Regressive-Moving-Average (ARMA) 

model is fitted to the dataset (Salas 1993). The purpose of fitting the regressive model to the 

stochastic data is to increase the size of the dataset while maintaining its statistical properties, 

mean and standard deviation. Figure 62 contains a plot of the original annual data versus the 

predicted model data to illustrate the correlation between the datasets.  If the correlation is poor 

then further modifications need to be made to the regression model in order to improve the 

reliability of the drought analysis. 
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Figure 62: Example CFA's Drought Analysis Tool Result Graph 3 

After fitting the regression model, a 100,000 year forecasting is performed using the 

fitted model to create a dataset sufficiently large to ‘observe’ high recurrence interval droughts. 

Figure 63 contains a plot of the original data and the first portion of the 100,000 year projected 

dataset used to analyze the drought impacts.  This projected dataset is large to allow sufficient 

'droughts' to occur illustrating high recurrence interval droughts that cannot be calculated from 

minimal observed data.  The first 100 years of this dataset are not used in the analysis and a 

dropped as a model warm-up period.  This allows for the model to operate independent of initial 

conditions. 
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Figure 63: Example CFA's Drought Analysis Tool Result Graph 4 

Next the drought analysis uses the projected dataset to calculate the average recurrence 

interval of the 1yr, 2yr, 3yr, etc. droughts.  These droughts are then categorized by their amount 

of drought deficit (supplied annual flow - drought demand limit) and illustrated in Figure 64.  

The original data and its corresponding recurrence intervals are included in Figure 64 as well to 

illustrate the fit of the predicted data to that of the observed data.  If the fit is poor, a better 

correlation of the regression model will likely improve the fit of the drought recurrence intervals. 
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Figure 64: Example CFA’s Drought Analysis Tool Result Graph 5 

4.4. BASE-FLOW SEPARATION (BFLOW) 

Another useful aspect of stream flow analysis and hydrologic modeling of river basins is 

river base-flow. Rather than write a numerical hydrograph separation tool, CFA has incorporated 

the numerical base-flow separation program “BFLOW,” developed by the by Arnold et al. 

(1995; Arnold and Allen 1999). BFLOW is an automated digital filter base-flow separation tool 

which performs a multi-pass separation of base-flow from total stream flow. In order to 

implement the windows executable BFLOW in CSIP, which uses a Linux platform, the windows 

emulator WINE (WineHQ 2012) was used within CSIP (Lloyd et al. 2012). For the ease of use, 

like the rest of the tools in CFA, BFLOW operates on uploaded or auto-extracted data. CFA also 

automatically generates and formats the data into the necessary input files for the BFLOW 

executable. Beyond simply performing the analysis and returning the results CFA’s base-flow 

analysis also graphs the outputs of BFLOW’s separation overlaid onto total stream flow for a 
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visual understanding of groundwater contributions to stream flow, see Figure 65. The result file 

of the BFLOW program is available for download like the other flow analysis modes in CFA. 

 

Figure 65: Example CFA's Base-Flow Separation (BFLOW) Tool Result Graph 

4.5. DURATION CURVE ANALYSIS 

Another approach to stream flow data is the application of duration curves; which 

statistically rank and graph available flow data. The Flow Duration Curve (FDC) tool in CFA 

graphs Weibull plotting position ranks of stream flows on a scale of percent exceedence. 

Graphing flow values in this way allows for a quick visualization of the variability of flow under 

the different flow regimes and is useful numerically for thresholds such as the flow rate only 

exceeded 10% of the time in the historical record. The plotting position used in CFA is a tied-

rank max. This means for example if there are 3 observations of a flow value of 30cfs that would 

normally have ranks 13, 14, and 15 the rank of all three observations is re-set to the maximum 

rank of the ties, in this case rank 15. An example of the output of CFA’s FDC tool is shown 
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below in Figure 66. The black line is the duration curve for the entire period of analysis while 

there is a light grey line for each annual duration curve in the period of analysis. 

 

Figure 66: Example CFA's Flow Duration Curve Analysis Tool Result Graph 

An extension of the FDC is the Load Duration Curve (LDC) tool in CFA. A LDC is a 

FDC multiplied by a target water quality concentration level to achieve a load per day value of a 

particular water quality nutrient. In addition to the LDC itself, observed water quality samples 

can be graphed as loads (flow * water quality concentration * conversion factors = load). If the 

observed loads never occur above the LDC line then there is no indication of a water quality 

problem for that desired target concentration, as shown in Figure 67.  
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Figure 67: Example CFA's Load Duration Curve Analysis Tool Result Graph 1 

If there are observations which exceed the LDC, shown in Figure 68, it can sometimes 

help determine, based on where the observations exceed the curve, what pollution sources are 

probable contributors (Cleland 2007, Cleland 2003 and Cleland 2002). Based on the location of 

these exceedences and the outline provided in (Cleland 2007, Cleland 2003 and Cleland 2002), 

CFA’s LDC dynamically estimates possible nutrient pollution sources based on the location and 

magnitude of the exceeded values on the graph and reports this back to the user. In addition to 

the more complex analysis of identifying pollutant sources, LDCs can also be used to identify 

Total Maximum Daily Loads (TMDLs) for different flow regimes of a river of interest (Cleland 

2007). The value of the LDC at a given exceedence is equal to the TMDL for that river, minus a 

margin of safety, for the specified pollutant and target water quality concentration. 
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Figure 68: Example CFA's Load Duration Curve Analysis Tool Result Graph 2 

4.6. LOAD ESTIMATOR (LOADEST) 

Another executable included in CFA is the Load Estimator which is a tool (LOADEST) 

developed by the U.S. Geological Survey (Runkel et al. 2004).  LOADEST is a FORTRAN 

executable that estimates the amount of constituent loads in streams and rivers given a time 

series of stream flows and constituent concentrations.  Estimation of constituent loads occurs in 

two steps, the calibration procedure and the estimation procedure, both of which are based on 

three statistical estimation methods.  These methods are Adjusted Maximum Likelihood 

Estimation (AMLE), Maximum Likelihood Estimation (MLE) and Least Absolute Deviation 

(LAD).  The first two methods are appropriate when the calibration model errors, or residuals, 

are normally distributed.  Of these two, AMLE is best utilized when the calibration data (i.e. 

stream flow and constituent concentration) are censored.  The LAD is an alternative to maximum 

likelihood estimation when the residuals are not normally distributed.  
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In the calibration step, known constituent concentrations with corresponding stream 

flows are used to calibrate LOADEST so that it may be determined which of the preloaded 

models in LOADEST may best be used for determining the load.  Next, in the estimation step, all 

of the known stream flows are used to estimate loads of constituent for each day.  CFA then 

provides a time series graph, see Figure 69, of the loads estimated by LOADEST.  These loads 

can be determined in either grams, kilograms, pounds or tons.  CFA also provides a boxplot and 

a statistical summary of the estimated loads for the given time period determined by the stream 

flow data.  Finally, if daily stream flow values are available, these daily loads (Figure 69) can be 

summed in CFA to provide monthly (Figure 70) or even yearly (Figure 70) values of constituent 

loads in streams and rivers and their corresponding time series and boxplots will be provided. 

 

Figure 69: Example CFA's Load Estimator (LOADEST) Analysis Tool Result Daily Graph 
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Figure 70: Example CFA's Load Estimator (LOADEST) Analysis Tool Result Monthly Graph 

 

Figure 71: Example CFA's Load Estimator (LOADEST) Analysis Tool Result Annual Graph 
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