

THESIS

ENHANCED WATERSHED MODELING AND DATA ANALYSIS WITH A FULLY

COUPLED HYDROLOGIC MODEL AND CLOUD-BASED FLOW ANALYSIS

Submitted by

Tyler Wible

Department of Civil and Environmental Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2014

Master’s Committee:

 Advisor: Mazdak Arabi

 Co-Advisor: Ryan Bailey

 Domenico Baú

 Michael Ronayne

Copyright by Tyler Wible 2014

All Rights Reserved

ii

ABSTRACT

ENHANCED WATERSHED MODELING AND DATA ANALYSIS WITH A FULLY

COUPLED HYDROLOGIC MODEL AND CLOUD-BASED FLOW ANALYSIS

In today’s world of increased water demand in the face of population growth and climate

change, there are no simple answers. For this reason many municipalities, water resource

engineers, and federal analyses turn to modeling watersheds for a better understanding of the

possible outcomes of their water management actions. The physical processes that govern

movement and transport of water and constituents are typically highly nonlinear. Therefore,

improper characterization of a complex, integrated, processes like surface-subsurface water

interaction can substantially impact water management decisions that are made based on existing

models. Historically there have been numerous tools and watershed models developed to analyze

watersheds or their constituent components of rainfall, run-off, irrigation, nutrients, and stream

flow. However, due to the complexity of real watershed systems, many models have specialized

at analyzing only a portion of watershed processes like surface flow, subsurface flow, or simply

analyzing local monitoring data rather than modeling the system.

As a result many models are unable to accurately represent complex systems in which

surface and subsurface processes are both important. Two popular watershed models have been

used extensively to represent surface processes, SWAT (Arnold et al, 1998), and subsurface

processes, MODFLOW (Harbaugh, 2005). The lack of comprehensive watershed simulation has

led to a rise in uncertainty for managing water resources in complex surface-subsurface driven

watersheds. For this reason, there have been multiple attempts to couple the SWAT and

iii

MODFLOW models for a more comprehensive watershed simulation (Perkins and Sophocleous,

1999; Menking, 2003; Galbiati et al., 2006; Kim et al., 2008); however, the previous couplings

are typically monthly couplings with spatial restrictions for the two models. Additionally, most

of these coupled SWAT-MODFLOW models are unavailable to the general public, unlike the

constituent SWAT and MODFLOW models which are available. Furthermore, many of these

couplings depend on a forced equal spatial discretization for computational units. This requires

that one MODFLOW grid cell is the same size and location of one SWAT hydrologic response

unit (HRU). Additionally, many of the previous couplings are based on a loose monthly average

coupling which might be insufficient in natural spring and irrigated agricultural driven

groundwater systems which can fluctuate on a sub-monthly time scale.

The primary goal of this work is to enhance the capacity for modeling watershed

processes by fully coupling surface and subsurface hydrologic processes at a daily time step. The

specific objectives of this work are 1) to examine and create a general spatial linkage between

SWAT and MODFLOW allowing the use of spatially-different existing models for coupling; 2)

to examine existing practices and address current weaknesses for coupling of the SWAT and

MODFLOW models to develop an integrated modeling system; 3) to demonstrate the capacity of

the enhanced model compared to the original SWAT and MODFLOW models on the North Fork

of the Sprague River in the Upper Klamath Basin in Oregon.

The resulting generalized daily coupling between a spatially dis-similar SWAT and

MODFLOW model on the North Fork of the Sprague River has resulted in a slightly more lower

representation of monthly stream flow (monthly R
2
 = 0.66, NS = 0.38) than the original SWAT

model (monthly R
2
 = 0.60, NS = 0.57) with no additional calibration. The Log10 results of

stream flow illustrate an even greater improvement between SWAT-MODFLOW correlation

iv

(R
2
) but not the overall simulation (NS) (monthly R

2
 = 0.74, NS = -0.29) compared to the

original SWAT (monthly R
2
 = 0.63, NS = 0.63) correlation (R

2
). With an improved water table

representation, these SWAT-MODFLOW simulation results illustrate a more in depth

representation of overall stream flows on a groundwater influenced tributary of the Sprague

River than the original SWAT model.

Additionally, with the increased complexity of environmental models there is a need to

design and implement tools that are more accessible and computationally scalable; otherwise

their use will remain limited to those that developed them. In light of advancements in cloud-

computing technology a better implementation of modern desktop software packages would be

the use of scalable cloud-based cyberinfrastructure, or cloud-based environmental modeling

services. Cloud-based deployment of water data and modeling tools assist in a scalable as well as

platform independent analysis; meaning a desktop, laptop, tablet, or smart phone can perform the

same analyses. To utilize recent advancements in computer technology, a further focus of this

work is to develop and demonstrate a scalable cloud-computing web-tool that facilitates access

and analysis of stream flow data. The specific objectives are to 1) unify the various stream flow

analysis topics into a single tool; 2) to assist in the access to data and inputs for current flow

analysis methods; 3) to examine the scalability benefits of a cloud-based flow analysis tool.

 Furthermore, the new Comprehensive Flow Analysis tool successfully combined time-

series statistics, flood analysis, base-flow separation, drought analysis, duration curve analysis,

and load estimation into a single web-based tool. Preliminary and secondary scalability testing

has revealed that the CFA analyses are scalable in a cloud-based cyberinfrastructure environment

to a request rate that is likely unrealistic for web tools.

v

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Mazdak Arabi for the opportunity to have worked

on this project as well has his help throughout developing the Comprehensive Flow Analysis tool

and coupling of SWAT and MODFLOW. I would also like to thank Dr. Ryan Bailey and his

tireless support and help on all the little problems I encountered along the way. Finally I would

like to thank Jeff Ditty, without whom I don’t think I would have made it this far thanks to his

help, effort, and support over the years.

I really appreciated the help and the initial models and calibration by Rosie Records for

SWAT on the Sprague River Basin and Marshall Gannett for MODFLOW for the Upper

Klamath Basin. I would also like to thank Jeff Arnold for his support and help throughout

working with/in the SWAT source code, and Andre Dozier for his general help with SWAT,

MODFLOW, and FORTRAN compiling in general. I would also like to thank Dave Patterson,

Kyle Traff, Wes Lloyd, and Olaf David for their help integrating the CFA tool into CSIP and

eRAMS as well as general coding and testing help for the tool and interface. Additionally I

would like to thank Tyler Dell for his help designing and implementing the Load Estimator

(LOADEST) analysis in the CFA tool as well as Chenda (Peter) Deng’s help with searching

various database for common watershed models and references. I would also like to thank Rosie

Records and Mehdi Ahmadi for their help with calibration statistics and general support for my

coupled SWAT-MODFLOW model work.

vi

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS .. v

LIST OF TABLES .. xii

LIST OF FIGURES ... xiii

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: COUPLING SWAT AND MODFLOW MODELS FOR ENHANCED

ASSESSMENT OF HYDROLOGIC PROCESSES AT THE WATERSHED SCALE 5

2.1: INTRODUCTION ... 5

2.1.1: SWAT ... 8

2.1.2: SWAT GROUNDWATER DISCHARGE TO RIVERS ... 11

2.1.3: MODFLOW .. 12

2.1.4: SURFACE-SUBSURFACE WATERSHED MODELING 14

2.2: METHODS AND MODELS ... 19

2.2.1 OVERVIEW .. 19

2.2.2 MODEL COUPLING .. 20

2.2.3: APPLICATION .. 27

2.3: RESULTS AND DISCUSSION .. 30

2.3.1: NORTH FORK OF THE SPRAGUE RIVER .. 31

vii

2.3.2: SPRAGUE RIVER ... 45

2.3.4: LIMITATIONS AND FUTURE WORK ... 53

2.4: CONCLUSIONS ... 54

CHAPTER 3: SCALABLE AND ACCESSIBLE CLOUD-BASED SERVICES FOR STREAM

WATER ANALYSIS.. 56

3.1: INTRODUCTION ... 56

3.2: METHODS .. 58

3.2.1: COMPREHENSIVE FLOW ANALYSIS (CFA) OVERVIEW 58

3.2.2: CYBERINFRASTRUCTURE .. 58

3.2.3: SCALABILITY .. 60

3.2.4: ACCESSIBILITY ... 61

3.2.5: CFA ANALYSES ... 62

3.2.6: STUDY AREA ... 64

3.3: RESULTS AND DISCUSSION .. 66

3.3.1: DOWNSTREAM APPLICATION .. 66

3.3.2: SCALABILITY .. 70

3.3.3: LIMITATIONS ... 74

3.4: CONCLUSIONS ... 74

CHAPTER 4: CONCLUSIONS ... 76

REFERENCES ... 78

viii

APPENDIX I: SWAT-MODFLOW LINKAGE INPUT FILE INSTRUCTIONS 92

ARCGIS SHAPEFILE MANIPULATION .. 92

HOW TO SORT AND NUMBER GRID CELLS FOR EXPECTED GRID ID NUMBER

SEQUENCE .. 95

APPENDIX II: AUTOMATED SWAT-MODFLOW LINKAGE INPUT FILE CREATION

JAVA CODE .. 96

CREATESWAT_MODFLOW_FILES.JAVA ... 96

MAP_DHRU2GRID.JAVA.. 98

MAP_DHRU2HRU.JAVA ... 102

MAP_GRID2DHRU.JAVA.. 107

MAP_RIVER2GRID.JAVA ... 112

APPENDIX III: EXAMPLE SWAT-MODFLOW LINKAGE INPUT FILES 119

GENERAL FORMATTING NOTES ... 119

EXPLANATION OF: “map_dhru2grid.txt” ... 119

EXAMPLE FILE CONTENTS, WITH LABELS: ... 120

EXPLANATION OF EXAMPLE FILE CONTENTS ... 120

EXPLANATION OF: “map_dhru2hru.txt” .. 122

EXAMPLE FILE CONTENTS, WITH LABELS: ... 122

EXPLANATION OF EXAMPLE FILE CONTENTS ... 123

EXPLANATION OF: “map_grid2dhru.txt” ... 123

ix

EXAMPLE FILE CONTENTS, WITH LABELS: ... 124

EXPLANATION OF EXAMPLE FILE CONTENTS ... 125

EXPLANATION OF: “map_river2grid.txt” .. 126

EXAMPLE FILE CONTENTS, WITH LABELS: ... 127

EXPLANATION OF EXAMPLE FILE CONTENTS ... 127

APPENDIX IV: SWAT-MODFLOW FORTAN CODE ... 128

MODEVENT.F ... 128

PKG_MODFLOW.F ... 132

PKG_SWAT.F .. 134

SM_ALLOCATE.F .. 135

SM_CLOSE.F ... 136

SM_CONVERSION2MF.F .. 137

SM_CONVERSION2SWAT.F .. 139

SM_DHRU2GRID2D.F.. 144

SM_DHRU2HRU.F .. 147

SM_GETGW.F ... 149

SM_GRID2DHRU2D.F.. 150

SM_GRID2DHRU3D.F.. 152

SM_HRU2DHRU.F .. 153

SM_INIT_MF.F .. 155

x

SM_MAIN.F ... 156

SM_MF_READ.F ... 156

SM_MF_RUN.F ... 157

SM_MFRIVER.F .. 158

SM_NORMOUT.F ... 160

SM_PARM.F .. 161

SM_READ_DHRU2GRID.F.. 162

SM_READ_DHRU2HRU.F ... 163

SM_READ_GRID2DHRU.F.. 165

SM_READ_LINK.F ... 167

SM_READ_RIVER2GRID.F ... 168

SM_RECHARGE.F .. 170

SM_UPDATEOUTPUT.F .. 170

SM_UPFLUXTOSOIL.F .. 171

SM_UZF.F .. 176

UNITS.F.. 177

APPENDIX V: COMPREHENSIVE FLOW ANALYSIS EXAMPLE OUTPUT 183

APPENDIX VI: COMPREHENSIVE FLOW ANALYSIS (CFA) TECHNICAL MANUAL . 193

1. INTRODUCTION .. 193

2. USER MANUAL ... 194

xi

3. CURRENT INFRASTRUCTURE ... 195

4. COMPREHENSIVE FLOW ANALYSIS (CFA) MODELS ... 197

4.1. TIME SERIES ANALYSIS ... 197

4.2. FLOOD ANALYSIS ... 198

4.3. DROUGHT ANALYSIS ... 201

4.4. BASE-FLOW SEPARATION (BFLOW) ... 206

4.5. DURATION CURVE ANALYSIS ... 207

4.6. LOAD ESTIMATOR (LOADEST) ... 210

5. COMPREHENSIVE FLOW ANALYSIS TECHNICAL MANUAL REFERENCES...... 213

APPENDIX VII: CFA STATE REGIONAL FLOOD SKEWNESS COEFFIECIENT

REFERENCES ... 216

xii

LIST OF TABLES

Table 1: SWAT-MODFLOW Coupled Model Watershed Processes .. 21

Table 2: Comparison of Daily SWAT and SWAT-MODFLOW Results to Observed Data for the

North Fork of the Sprague River .. 32

Table 3: Comparison of Monthly SWAT and SWAT-MODFLOW Results to Observed Data for

the North Fork of the Sprague River... 33

Table 4: Comparison of Log-10 of Daily SWAT and SWAT-MODFLOW Results to Log-10 of

Observed Data for the North Fork of the Sprague River .. 34

Table 5: Comparison of Log-10 of Monthly SWAT and SWAT-MODFLOW Results to Log-10

of Observed Data for the North Fork of the Sprague River .. 35

Table 6: Comparison of Daily SWAT and SWAT-MODFLOW Results to Observed Data for

Sprague River.. 47

Table 7: Comparison of Monthly SWAT and SWAT-MODFLOW Results to Observed Data for

the Sprague River .. 47

Table 8: CFA’s Cache La Poudre River Downstream Analysis Locations 66

Table 9: CFA’s Preliminary Scalability Request Rates .. 71

Table 10: CFA's State Regional Flood Skewness Coefficient References 216

xiii

LIST OF FIGURES

Figure 1: Watershed Models Listed by Number of Papers Available in Journal Paper Databases 6

Figure 2: SWAT Model Water Balance Equation .. 10

Figure 3: SWAT Model Watershed Processes .. 11

Figure 4: MODFLOW Model Watershed Processes .. 13

Figure 5: SWAT-MODFLOW Coupled Model Watershed Processes ... 21

Figure 6: SWAT-MOFLOW Model Spatial Interaction; SWAT (green text), MODFLOW (bold

blue text) ... 23

Figure 7: SWAT-MODFLOW Code Process Diagram .. 24

Figure 8: SWAT-MOFLOW Coupled Model Information Flow Diagram 27

Figure 9: Sprague River Watershed Location, Upper Klamath River Basin, OR 28

Figure 10: SWAT Model’s Location Within USGS’s Upper Klamath Basin MODFLOW Model

... 29

Figure 11: SWAT Auto-Calibration Results for the Sycan River, OR ... 30

Figure 12: SWAT Combined Auto-Calibration and Manual Calibration Results for the North

Fork of the Sprague River, OR ... 30

Figure 13: SWAT-MODFLOW Monthly Results, No Additional Calibration for the North Fork

of the Sprague River OR ... 32

Figure 14: 1-to-1 Comparison of Daily SWAT and SWAT-MODFLOW Results for North Fork

of the Sprague River ... 32

Figure 15: 1-to-1 Comparison of Monthly SWAT and SWAT-MODFLOW Results for North

Fork of the Sprague River ... 33

xiv

Figure 16: 1-to-1 Comparison of Log-10 of Daily SWAT and SWAT-MODFLOW Results for

North Fork of the Sprague River .. 34

Figure 17: 1-to-1 Comparison of Log-10 of Monthly SWAT and SWAT-MODFLOW Results for

North Fork of the Sprague River .. 35

Figure 18: Flow Duration Curve Comparison for North Fork of the Sprague River Stream Flow

... 36

Figure 19: Comparison and Error Statistics of Monthly SWAT and SWAT-MODFLOW Results

for North Fork of the Sprague River ... 37

Figure 20: SWAT and SWAT-MODFLOW North Fork of the Sprague River Base-flow

Separation Pass 1 Daily Results, 1-to-1 Comparison ... 38

Figure 21: SWAT-MODFLOW North Fork of the Sprague River Stream Seepage/Base-flow

Discharge Map .. 39

Figure 22: Groundwater height at start of MODFLOW simulation for the North Fork of the

Sprague River.. 40

Figure 23: Groundwater height at start of SWAT-MODFLOW simulation for the North Fork of

the Sprague River .. 41

Figure 24: Difference in groundwater height between MODFLOW and SWAT-MODFLOW at

start of simulation for the North Fork of the Sprague River ... 41

Figure 25: Groundwater height at end of MODFLOW simulation for the North Fork of the

Sprague River.. 42

Figure 26: Groundwater height at end of SWAT-MODFLOW simulation for the North Fork of

the Sprague River .. 43

xv

Figure 27: Difference in groundwater height between MODFLOW and SWAT-MODFLOW at

end of simulation for the North Fork of the Sprague River .. 43

Figure 28: SWAT-MODFLOW Daily Results, No Additional Calibration for the Sprague River,

OR ... 47

Figure 29: Flow Duration Curve Comparison for the Sprague River Stream Flow 48

Figure 30: SWAT-MODFLOW Sprague River Stream Seepage/Base-flow Discharge Map 49

Figure 31: Groundwater height at start of MODFLOW simulation for the Sprague River 50

Figure 32: Groundwater height at start of SWAT-MODFLOW simulation for the Sprague River

... 50

Figure 33: Difference in groundwater height between MODFLOW and SWAT-MODFLOW at

start of simulation for the Sprague River .. 51

Figure 34: Groundwater height at end of MODFLOW simulation for the Sprague River 52

Figure 35: Groundwater height at end of SWAT-MODFLOW simulation for the Sprague River

... 52

Figure 36: Difference in groundwater height between MODFLOW and SWAT-MODFLOW at

end of simulation for the Sprague River ... 53

Figure 37: CFA’s Interaction with eRAMS, CSIP, and External Databases 60

Figure 38: Regionalized Flood Skewness Coefficient Map, Adapted from IACWD, 1982 62

Figure 39: Cache La Poudre River Watershed Location, South Platte River Basin, CO 65

Figure 40: CFA’s Load Duration Curve for Point 1, Cache La Poudre River at Mouth of Canyon

... 67

Figure 41: CFA’s Load Duration Curve for Point 2, Cache La Poudre River at Fort Collins, CO

... 68

xvi

Figure 42: CFA’s Load Duration Curve for Point 3, Cache La Poudre River above Boxelder

Creek ... 69

Figure 43: CFA’s Load Duration Curve for Point 4, Cache La Poudre River near Greeley, CO 70

Figure 44: CFA’s Preliminary Scalability Testing Results... 72

Figure 45: CFA’s Additional Load Estimator (LOADEST) Scalability Testing Results 73

Figure 46: CFA’s Additional Base-flow Separation (BFLOW) Scalability Testing Results 74

Figure 47: eRAMS Graphical User Interface (GUI) to CFA Tool ... 183

Figure 48: CFA Example Report Output for Time series and Statistics Analysis 184

Figure 49: CFA Example Report Output for Flood Analysis ... 185

Figure 50: CFA Example Report Output for Drought Analysis, Part 1...................................... 186

Figure 51: CFA Example Report Output for Drought Analysis, Part 2...................................... 187

Figure 52: CFA Example Report Output for Drought Analysis, Part 3...................................... 188

Figure 53: CFA Example Report Output for Flow Duration Curve Analysis 189

Figure 54: CFA Example Report Output for Load Duration Curve Analysis 190

Figure 55: CFA Example Report Output for Daily Load Estimator (LOADEST) Analysis 191

Figure 56: CFA Example Report Output for Base-flow Separation (BFLOW) Analysis 192

Figure 57: CFA’s Interaction with eRAMS, CSIP, and External Databases 197

Figure 58: Example CFA's Time Series Analysis Tool Result Graph .. 198

Figure 59: Example CFA's Flood Analysis Tool Result Graph .. 200

Figure 60: Example CFA's Drought Analysis Tool Result Graph 1 ... 202

Figure 61: Example CFA's Drought Analysis Tool Result Graph 2 ... 203

Figure 62: Example CFA's Drought Analysis Tool Result Graph 3 ... 204

Figure 63: Example CFA's Drought Analysis Tool Result Graph 4 ... 205

xvii

Figure 64: Example CFA’s Drought Analysis Tool Result Graph 5 .. 206

Figure 65: Example CFA's Base-Flow Separation (BFLOW) Tool Result Graph 207

Figure 66: Example CFA's Flow Duration Curve Analysis Tool Result Graph 208

Figure 67: Example CFA's Load Duration Curve Analysis Tool Result Graph 1 209

Figure 68: Example CFA's Load Duration Curve Analysis Tool Result Graph 2 210

Figure 69: Example CFA's Load Estimator (LOADEST) Analysis Tool Result Daily Graph .. 211

Figure 70: Example CFA's Load Estimator (LOADEST) Analysis Tool Result Monthly Graph

... 212

Figure 71: Example CFA's Load Estimator (LOADEST) Analysis Tool Result Annual Graph 212

1

CHAPTER 1: INTRODUCTION

A continuing focus of water resources planning and management is assessing the impacts

of changing land use and climate conditions on stream flow. At the heart of this type of analysis

is the use of existing water data and various tools to analyze things like the base-flow

contribution and model these watershed systems. Many studies have focused on the impacts of

land use and/or climate change on both the hydrological response of a system (Lettenmaier et al.,

1999; Wood et al., 2004; Hay et al., 2011) and water quality changes within the system (Jeppsen

et al., 2007; Solheim et al., 2010; Ahmadi et al., 2013). Various other topics examined are the

impacts and severity of flooding (IACWD, 1982), droughts (Salas et al., 2005), and different

point and non-point source stream pollution impacts (Cleland, 2007).

The physical processes that govern movement and transport of water and constituents are

typically highly nonlinear resulting in complex algorithms to attempt to simulate these processes.

An example of this non-linearity is the interaction between surface and subsurface water process

which recursively alters soil percolation based on soil moisture content as affected by the depth

to groundwater which increases with greater soil percolation. Therefore, improper

characterization of these integrated processes can substantially impact water management

decisions that are made based on existing models. A further hindrance to decision making is a

generally poor accessibility to available flow analysis tools and insufficient infrastructure for the

tool to support on-demand scalability.

Historically there have been numerous tools and watershed models developed to analyze

watersheds or their constituent components of rainfall, run-off, irrigation, nutrients, and stream

flow. However, due to the complexity of real watershed systems, many models have specialized

2

at analyzing only a portion of watershed processes like surface flow, subsurface flow, or simply

analyzing local monitoring data rather than modeling the system. As a result many models are

unable to accurately represent complex systems in which surface and subsurface processes are

both important. The lack of comprehensive watershed simulation has led to a rise in uncertainty

for managing water resources in complex surface-subsurface driven watersheds. Without the

inclusion of both surface and groundwater hydrologic processes, decisions based on model

results may not accurately reflect actual conditions in the watershed. The best way to solve this

problem would be to integrate a surface process driven model with a subsurface process driven

model on a refined temporal scale for a more comprehensive watershed simulation.

Two popular watershed models have been used extensively to represent surface

processes, SWAT (Arnold et al, 1998), and subsurface processes, MODFLOW (Harbaugh,

2005). The popularity and focus of these models has led to multiple attempts to couple the

models (Perkins and Sophocleous, 1999; Menking, 2003; Galbiati et al., 2006; Kim et al., 2008);

however, the previous couplings are typically monthly couplings with spatial restrictions for the

two models. Additionally, most of these coupled SWAT-MODFLOW models are unavailable to

the general public, unlike the constituent SWAT and MODFLOW models which are available.

Furthermore, many of these couplings depend on a forced equal spatial discretization for

computational units (Kim et al., 2008; Chung et al., 2010). This requires that 1 MODFLOW grid

cell is the same size and location of 1 SWAT hydrologic response unit (HRU). Additionally,

many of the previous couplings are based on a monthly average coupling which might be

insufficient in natural spring and irrigated agricultural driven groundwater systems in which

water table elevation can fluctuate on a daily basis.

3

The primary goal of this work is to enhance the capacity for modeling watershed

processes by fully coupling surface and subsurface hydrologic processes at a daily time step. The

specific objectives of this work are 1) to examine and create a general spatial linkage between

SWAT and MODFLOW allowing the use of spatially-different existing models for coupling; 2)

to examine existing practices and address current weaknesses for coupling of the SWAT and

MODFLOW models to develop an integrated modeling system; 3) to demonstrate the capacity of

the enhanced model compared to the original SWAT and MODFLOW models. The performance

of the coupled SWAT-MODFLOW model will be tested in the Upper Klamath Basin due to the

complex groundwater interactions coupled with an interest in surface hydrology problems.

Additionally, with the increased complexity of models of the environment there is a need

to design and implement tools that are more accessible and computationally scalable. Otherwise

their use will remain limited to those that developed them. Most models and analyses are

desktop-based software packages that use local computer resources to execute. Recently there

has been a shift in the implementation of these analyses to port them to the web with web-based

graphical user interfaces to assist in with interacting with inputs and results of the analysis.

However, in light of advancements in cloud-computing technology an even better

implementation would be the use of scalable cloud-based cyberinfrastructure. Cloud-based

deployment of water data and modeling tools assist in a scalable, as well as, platform

independent analysis; meaning a desktop, laptop, tablet, or smart phone can perform the same

analyses.

To utilize recent advancements in computer technology, the focus of this work was to

develop and demonstrate a scalable cloud-computing web-tool that facilitates access and analysis

of stream flow data. The specific objectives are to 1) unify the various stream flow analysis

4

topics into a single tool; 2) to assist in the access to data and inputs for current flow analysis

methods; 3) to examine the scalability benefits of a cloud-based flow analysis tool.

5

CHAPTER 2: COUPLING SWAT AND MODFLOW MODELS FOR ENHANCED

ASSESSMENT OF HYDROLOGIC PROCESSES AT THE WATERSHED SCALE

2.1: INTRODUCTION

In today’s world of increased water demand in the face of population growth and climate

change there are no simple solutions. For this reason many municipalities, water resource

engineers, and federal analyses turn to modeling watersheds for a better understanding of the

possible outcomes of their actions. These modeling efforts have typically focuses on either

surface or subsurface water processes. The problem with this approach is that surface water

models are typically unable to represent complex groundwater interaction and groundwater

models lack the ability to model surface processes like plant growth. One popular surface water

model, the Soil and Water Assessment Tool (SWAT) (Arnold et al, 1998) has repeatedly of

performed poorly in heterogeneous groundwater driven systems (Peterson and Hamlett, 1998;

Spruill et al., 2000; Chu and Shirmohammadi, 2004; Srivastava et al., 2006; Gassman et al.,

2007). Similarly a popular groundwater model, modular groundwater flow (MODFLOW)

(Harbaugh, 2005) is unable to simulate surface processes like overland flow, sheet erosion,

channel erosion, plant growth, nutrient cycling, and agricultural management (fertilizer and

pesticide application).

Due to the various benefits and drawbacks of watershed models there are a multitude

available. A complication encountered when choosing a watershed scale model to use, is the

multitude of choices. Many models are developed by research or government groups and are not

typically used outside of those groups. A selection of some of the many available watershed

scale models is graphed below in Figure 1 by how many peer-reviewed journal articles in a

6

database refer to using the model. As illustrated below, the most popular models by far are the

surface water model SWAT and the subsurface groundwater model MODFLOW, although

TOPMODEL (Beven et al., 1995) is significantly more popular than some of the other models as

well.

Figure 1: Watershed Models Listed by Number of Papers Available in Journal Paper Databases

SWAT has been a useful tool for assessing water resources, pollution problems, and

assessing environmental conditions worldwide (Gassman et al., 2007). However, SWAT is a

lumped watershed model with emphasis on plant and crop growth, nutrient cycling, and sediment

yields from urban, natural, and agricultural areas. Using SWAT in a groundwater dominated

system can sometimes fail to accurately represent the heterogeneous groundwater flow processes

due to this lumped approach (Peterson and Hamlett, 1998; Spruill et al., 2000; Chu and

Shirmohammadi, 2004; Srivastava et al., 2006; Gassman et al., 2007). For this reason there has

been recent work to couple SWAT with the saturated finite-difference groundwater model

MODFLOW. One of the earliest couplings was by adding a print statement to SWAT for

parameters necessary for MODFLOW and then a read statement in MODFLOW to read them

7

and use of a third software to convert the inputs for MODFLOW (Perkins and Sophocleous,

1999). A different combined use of SWAT and MODFLOW was used during a lake analysis by

Menking (2003; 2004) in which a SWAT model’s watershed outputs were used as inputs to the

lake for a MODFLOW simulation. A more comprehensive simulation model was created by

Galbiati et al. (2006) in which SWAT was coupled with MODFLOW for hydrologic simulation

as well as MT3DMS for nutrient and chemical simulation. A later coupling of SWAT and

MODFLOW via MODFLOW’s river package (Harbaugh et al., 2010) was performed by Kim et

al. (2008) and for a better representation of base-flow in a watershed in South Korea.

There are, however, numerous limitations to these existing couplings of SWAT and

MODFLOW. The coupling of SWAT and MODFLOW by Perkins and Sophocleous (1999)

relied on the use of a third software package to read and convert the SWAT outputs into

MODFLOW inputs and vise-versa. The combination of SWAT and MODFLOW by Menking

(2003; 2004) was not really a model coupling so much as using one model as an input

preprocessor for the second model. The work by Galbiati that created a hydrology and

nutrient/chemical coupling between SWAT, MODFLOW, and MT3DMS was only on a monthly

basis thus restricting the interaction of SWAT and MODFLOW to only a monthly time step

leaving sub-monthly groundwater interaction unrepresented. Kim et al. (2008) used a gridded

preprocessing approach to force SWAT computational units (HRUs) to be the same size as the

MODFLOW finite-difference grid cells, this reduces the computational efficiency of the lumped

sub-basin approach that SWAT uses and requires the model extents and computational units to

be the same size. This will typically require a user to create their own SWAT and MODFLOW

project rather than using an available version of one model and having to only create the second.

8

The primary goal of this work is to enhance the capacity for modeling watershed

processes by fully coupling surface and subsurface hydrologic processes at a daily time step. The

specific objectives of this work are 1) to examine and create a general spatial linkage between

SWAT and MODFLOW allowing the use of spatially-different existing models for coupling; 2)

to examine existing practices and address current weaknesses for coupling of the SWAT and

MODFLOW models to develop an integrated modeling system; 3) to demonstrate the capacity of

the enhanced model compared to the original SWAT and MODFLOW models. The performance

of the coupled SWAT-MODFLOW model will be tested in the North Fork of the Sprague River

in the Upper Klamath Basin in Oregon due to the complex groundwater interactions, pre-existing

spatially-dissimilar SWAT and MODFLOW models, and an interest the area’s hydrology

problems.

2.1.1: SWAT

The Soil and Water Assessment Tool (SWAT) was developed by the U.S. Department of

Agriculture’s Agricultural Research Service (USDA-ARS) (Arnold et al., 1998; Arnold and

Fohrer, 2005; Neitsch et al., 2005; Gassman et al., 2007; Neitsch et al., 2011). It is a physically-

based, basin-scale, pseudo-distributed, continuous-time watershed model emphasizing surface

processes. SWAT operates by taking a single watershed, gauged or ungauged, and breaks it into

multiple sub-basins which are then further broken into multiple unique combinations of land use,

soil, and slope known as Hydrologic Response Units (HRUs). Calculations in SWAT are

performed for each HRU and then scaled up to the sub-basin outlet by the percent area of the

HRU within the sub-basin. This approach results in the HRUs lacking the spatial relations

typically seen in a fully distributed model, but yields a computationally efficient calculation

scheme allowing for watershed simulation over large periods of time.

9

Due to the long history of SWAT, almost 30 years, and the documentation of its

subroutines, the application of SWAT models has grown worldwide in the past decade (Gassman

et al., 2007). In the U.S., SWAT models are increasingly used to assist in Total Maximum Daily

Load (TMDL) development (Borah et al., 2006) and to better understand the impacts of field

management schemes for soil conservation and nutrient control. One meso-scale use of SWAT

has been in the Hydrologic Unit Model of the U.S. (HUMUS) (Arnold et al., 1999b) in which all

of the U.S. Geological Survey (USGS) 8-digit Hydrologic Cataloging Unit (HCU) watersheds

(Seaber et al., 1987) in the continental U.S. were simulated. Use of the SWAT model however,

has not been limited to the U.S., numerous projects in Europe have used SWAT to analyze and

quantify the impacts of climate and management change on European watershed. One example

being the European Commission’s (EC) Climate Hydrochemistry and Economics of Surface-

water Systems (CHESS) project (CHESS, 2001). The popularity and use of SWAT is apparent

on its website database which contains over 1500 articles about SWAT used to examine

watershed problems (https://www.card.iastate.edu/swat_articles). Additionally, to assist in the

preparation of the various input files for the SWAT model, a free map-based ArcGIS interface

call ArcSWAT was developed. ArcSWAT assists in delineating the watershed and processing

raw data inputs like elevation maps and soil types into the required inputs files for the model.

The SWAT model begins with climate information daily precipitation, maximum and

minimum temperature, solar radiation, relative humidity, wind speed. Then surface runoff is

calculated by either the United States Department of Agriculture Natural Resources

Conservation Service (USDA-NRCS) curve number method (USDA-NRCS, 2004) or the Green-

Ampt method. Then a hydrologic balance, precipitation, interception, surface runoff, infiltration,

evapotranspiration, lateral subsurface flow, and return flow from the shallow aquifer, per HRU is

10

calculated and routed to the sub-basin’s stream and then outlet. The land phase of the water

balance calculated by SWAT per HRU is shown below in Figure 2 with units of mm of H2O,

where SWt is the final soil water content, SW0 is the initial soil water content, t is the time in

days, Rday is the amount of precipitation on day i, Qsurf is the amount of surface runoff on day i,

Ea is the amount of evapotranspiration on day i, wseep is the amount of percolation and bypass

flow exiting the soil profile bottom on day i, and Qgw is the amount of return flow on day i.

Figure 2: SWAT Model Water Balance Equation

Evapotranspiration can be calculated using the Penman-Monteith (Monteith, 1965),

Priestly-Taylor (Priestly and Taylor, 1972), or Hargreaves (Hargreaves et al., 1985) models

(Gassman et al., 2007). SWAT also contains a number of subroutines to handle both forest and

agricultural areas. Forest growth from seed to mature stand and crop planting, crop harvest,

tillage, nutrient (fertilizer) application, and pesticide application can be simulated. The

application amount and timing of fertilizers and pesticides can be customized using the many

different management options allowed by SWAT. Sediment runoff from HRUs and channel

erosion is also simulated in SWAT using the Modified Universal Soil Loss Equation (MUSLE)

(Williams and Berndt, 1977). The nitrogen and phosphorous amounts in application and soil and

water content can be simulated and tracked using multiple organic and inorganic nutrient pools

and calculate a resulting nutrient loading to and concentration in the streams (Gassman et al.,

2007). SWAT then lumps flow, sediment, nutrient, and pesticide and calculates loadings to the

river with a lagged release, based on the time of concentration of the HRU. The scope of the

11

processes covered by the SWAT subroutines is shown below in Figure 3; however the

groundwater processes used by SWAT are a simplified lumped-parameter approach.

Figure 3: SWAT Model Watershed Processes

2.1.2: SWAT GROUNDWATER DISCHARGE TO RIVERS

As outlined by Gassman et al. (2007), there are numerous examples in which SWAT

stream flow simulation has performed poorly for various groundwater-driven systems. SWAT

contains groundwater subroutines but most of these problems stem from the lumped parameter

approach used to handle what is actually a distributed groundwater flow processes. In northeast

Pennsylvania, Peterson and Hamlett (1998) encountered problems applying SWAT to the Ariel

Creek watershed for proper base-flow representation. They found that this complication was due

to the presence of fragipan soils, soils containing a vertically impermeable layer causing more

lateral flow. A further complication of not fully distributing the groundwater processes inside

SWAT was discovered by Spruill et al. (2000) for a calibrated experimental watershed in which

poor simulation of peak flows and recession rates were observed in combination with accurate

monthly flows. A similar problem was found by Chu and Shirmohammadi (2004) with an

unusually wet year in a 3.5 km
2
 Maryland watershed. When the wet year was removed from the

analysis period the model performed well; however, when included the model failed to properly

12

estimate base-flow. Additionally, Srivastava (2006) found a poor representation of base-flow and

other flow characterization by SWAT on the West Branch Brandywine Creek in Southwest

Pennsylvania.

Some recent work on climate change impacts to wetland extent and water quality changes

has focused on the Upper Klamath Basin in southwestern Oregon (Records, 2013). However, as

illustrated by Gannett et al. (2010) the area of the Upper Klamath Basin is a heavily groundwater

influenced system with an abundance of natural springs with complex interaction due to

underlying volcanic strata. The sustained base-flow levels of the North Fork of the Sprague

River have proven difficult to simulate using SWAT (Records, 2013) even after auto-calibration.

Therefore, a manual calibration was then performed to fine tune the watershed parameters and

yield a better match of base-flow on the North Fork of the Sprague River. The resulting

simulation showed a more elevated base-flow closer to the real system but caused an annual

trend in the base-flow level which was not observed in the watershed. For this reason it was

determined that the lumped groundwater parameters of SWAT may be unable to handle complex

groundwater processes like this without modifying the source code. A further discussion of

SWAT’s inability to capture accurate groundwater processes in the Upper Klamath Basin is

included in the Section 2.3: Results and Discussion.

2.1.3: MODFLOW

A similar watershed scale model to SWAT is the groundwater model MODFLOW

developed by the United States Geological Survey (USGS) (McDonald and Harbaugh 1988;

Hargaugh et al., 2000; and Harbaugh 2005). MODFLOW is a three-dimensional, saturated,

physically-based, finite-difference groundwater model. This grid-based subsurface flow model

combines a simple mass balance with Darcy’s law to simulate both steady and transient state

13

groundwater conditions. A recent addition to the MODFLOW package is a Newtonian based

solver algorithm which better satisfies the complex non-linear drying and re-wetting of grid cells

in unconfined groundwater systems (Niswonger et al., 2011). Through the use of various

packages in MODFLOW the surface and subsurface process of groundwater recharge (Harbaugh

et al., 2000), vadose zone percolation (UZF1 package) (Niswonger et al., 2006),

evapotranspiration (Harbaugh et al., 2000), and river-aquifer interactions (Harbaugh et al., 2000),

and more can be simulated. Some of the various processes that can be modeled by MODFLOW

are shown in Figure 4. An additional benefit to MODFLOW models is that numerous regional

aquifers already have MODFLOW models built for them thanks to the work by the USGS

(Christenson et al., 2011; Paschke 2011; Gannett et al., 2012; and Mashburn et al., 2013).

However, MODFLOW is unable to simulate overland flow, sheet erosion, channel erosion, plant

and crop growth, nutrient cycling, or agricultural management (pesticides and fertilizers).

Figure 4: MODFLOW Model Watershed Processes

Like most groundwater models, MODFLOW lacks the ability to simulate pollutant

transport because it focuses only on groundwater hydrology. For this reason there have been a

number of efforts to model pollutant advection, dispersion, and reaction based on the outputs of

common groundwater models like MODFLOW. One such modular three-dimensional transport

14

model (MT3D) was developed by Zheng (1990). MT3D was built to use MODFLOW’s

groundwater hydrology results and determine a pollutant reactive transport solution; later MT3D

was modified into MT3DMS to handle multi-species transport and interaction (Zheng and Wang,

1999; Prommer et al., 2003). Another similar model for using MODFLOW results to model

pollutant transport is the Reactive Transport 3D model (RT3D) developed by Clement et al.

(1998). RT3D was later modified to handle 1-dimensional unsaturated groundwater pollutant

transport using the results of the MODFLOW-UZF1 package (UZF-RT3D) (Bailey et al.,

2013b). However, a continued issue with this methodology is that these packages are not built

into MODFLOW and only simulate subsurface chemical species transport. Although this is a

step in the direction towards a complete watershed model, even with the use of RT3D or

MT3DMS, MODFLOW is still unable to handle surface processes, channel erosion, and plant

growth/cycling due to its limitation to subsurface processes.

2.1.4: SURFACE-SUBSURFACE WATERSHED MODELING

The idea of enhancing surface water models to more accurately reflect groundwater or

groundwater models to more accurately reflect surface water processes is nothing new, but there

are numerous ways to approach it. One combination of SWAT with a distributed groundwater

model was by Perkins and Sophocleous (1999; Sophocleous and Perkins 2000). In this case,

SWAT was combined with MODFLOW in order to pass in the MODFLOW inputs of tributary

flow, recharge, and evapotranspiration (ET). This model was built, calibrated and tested in a set

of river basins in Kansas to facilitate a better understanding and analysis of the groundwater

pumping in the area. The coupling between these models was accomplished with a read/write

subroutine added to both SWAT and MODFLOW for input files while an interceptor program

was written to handle the conversion of the different spatial and temporal scales between models.

15

MODFLOW was modified to include an additional subroutine which took SWAT tributary flow

results and initialized and mapped stream outputs to grid cells and ET, recharge and

pumping/irrigation demands. SWAT was similarly modified to average land use and HRU

differences per sub-basin to pass into the MODFLOW model. SWAT was further modified to

lump and output simulation results per day, month, or year for use with MODFLOW’s

groundwater modeling time step.

A continuation and addition to this model was performed by Conan et al. (2003) with the

addition of a groundwater nutrient transport model to the coupling. The watershed of interest this

time was the Coet-Dan watershed in Brittany, France where a nitrate problem has developed due

to historical agriculture development. A preliminary investigation of the pollutant led to the

understanding that the nitrate surface pollutant leached to the groundwater and was then

transported to the streams by groundwater base-flow. This combined surface water/groundwater

interaction lent itself to being modeled by the combined surface water/groundwater model of

Sophocleous’s SWAT and MODFLOW model. The only complication was the lack of a

groundwater nutrient model. The groundwater pollutant advection, dispersion, reaction model,

MT3D (Zheng, 1990) was therefore incorporated into the combined SWAT and MODFLOW

model to handle unsaturated zone flow nitrate leaching and complete the watershed model in

both water quantity and quality. Again, this coupling of SWAT and MODFLOW was

accomplished through the use of a third input conversion model outside of the SWAT and

MODFLOW codes.

A combined use, not combined model, of SWAT and MODFLOW was performed on the

Estancia basin in New Mexico (Menking et al., 2003) and a look into the same basin during the

last glacial period was also examined (Menking et al., 2004). In these studies a SWAT model

16

was used to determine overland hydrology inputs to a large lake and the lake level was then

modeled using MODFLOW with the lake (LAK2) package (Council, 1999). The SWAT and

MODFLOW models were not coupled so much as compared and various inputs/outputs were

post processed and used in the other model.

Another surface water-groundwater model combination, ParFlow, by Kollet and Maxwell

(2006) incorporates a two dimensional surface model with a three dimensional variably saturated

groundwater flow model. The surface model simulates land surface, vegetation, and overland

flow and is used as a boundary condition to the groundwater model allowing a simultaneous

solution of the two systems. The resulting surface/subsurface model compared well to the

existing models of Hec-1, MODHMS, and Hydrologic Simulation Program-Fortran (HSPF).

While the surface model in ParFlow allows for calculation of evaporation, transpiration, freeze-

thaw processes, and heat fluxes (Ferguson and Maxwell, 2010) it does not simulate nutrient

cycling and erosion yields.

A different combined surface/subsurface watershed model was created by Galbiati et al.

(2006) where they combined SWAT, MODFLOW, and MT3DMS into the Integrated Surface-

Subsurface Model (ISSM). In this combination SWAT was used to simulate the surface water

dynamics as well as unsaturated zone and plant interactions while MODFLOW was used to

simulate the saturated zone hydrology. Then MT3DMS was used to determine pollutant

advection, dispersion, and reaction in the subsurface and pass the results back to SWAT. The

coupling of SWAT and MODFLOW in ISSM was accomplished through the stream routing

(STR1) package of MODFLOW (Prudic et al., 2004). SWAT and MODFLOW were run on a

monthly time step with stream seepage and base-flow contribution from MODFLOW added to

the results of SWAT’s own stream routing functions. Combining the model in this fashion and

17

calibrating the resulting model for the Bonello watershed in Italy yielded reasonable results on a

heavily agricultural and costal watershed. This monthly coupling however does not lend itself to

simulation of a complex sub-monthly groundwater-surface water connection because the models

are only run on a monthly time step.

An early attempt to augment the algorithms in MODFLOW to better represent surface

processes resulted in the creation GSFLOW (Markstrom et al., 2008). GSFLOW combines the

groundwater model of MODFLOW-2005 with the Precipitation Runoff Model System (PRMS).

GSFLOW couples the models to simulate the surface domain and governing equations

independently of the subsurface domain. This coupling is different than the approach taken by

ParFlow (Kollet and Maxwell, 2006) which simultaneously solves the surface and subsurface

governing equations. GSFLOW can provide an accurate simulation of the hydrologic response in

both the surface and subsurface systems but still lacks the ability to simulate nutrient cycling,

pesticide transport, crop-growth and die-off, or sediment yields.

Work by Kim et al. (2008) took a gridded approach to SWAT and chose to combine it

with the finite-grid groundwater model MODFLOW. Kim et al. preprocessed the SWAT input

information into the same grid sizes used by the MODFLOW model so that the passing of

information from grid-based HRUs to grid-based MODFLOW could be accomplished without

multiple HRUs contributing to a grid or vise-versa. The aquifer-river interactions in this

particular model were handled by MODFLOW using the river (RIVR) package (Harbaugh et al.,

2010). The resulting model was applied to the Musimcheon Basin in Korea resulting in a better

representation of stream base-flows and groundwater pumping effects than the original SWAT

method. A continuation of the work by Kim et al. (2008) takes a special look at groundwater

recharge rates in the Mihocheon watershed in South Korea (Chung et al., 2010) and found them

18

much better represented in the combined SWAT-MODFLOW model than by the original SWAT

alone. This coupling was more closely coupled than the work by Sophocleous and Perkins

(1999) but still fails to retain the full computational benefits of the pseudo-distributed original

SWAT model and uses extra computer resources to read and write the input files to pass between

the two models.

Another combined surface-subsurface hydrology model, Catchment Hydrology

(CATHY) uses a path-based overland flow combined with a coarser gridded subsurface model

(Camporese et al., 2010). CATHY uses threshold based boundary conditions to convert potential

water fluxes in the system into actual fluxes passed between the surface and subsurface modules

within it. CATHY includes routines for hill slope runoff, channel flow, lake areas, and

subsurface interactions. However, CATHY is not capable of simulating plant growth or nutrient

transport/cycling because it is only a hydrology model.

A further continuation of the work by Sophocleous and Perkins (1999) is a special

modification of their combined SWAT-MODFLOW model (SWATMOD99) to better handle

unsaturated and saturated zone processes in an arid environment (Luo and Sophocleous, 2011).

They added special subroutine process to handle the conversion and pass back of groundwater

depth, percolation, and evapotranspiration. After modification this model was applied to the

Hetao Irrigation District, Inner Mongolia, China and illuminated high conveyance losses in the

irrigation canals of the area. The issue still with this model is the loose coupling of the systems

and as well as the outdated SWAT and MODFLOW software versions. To partially address this,

Luo and Sophocleous (2011) updated this coupling from SWAT 99.2 to SWAT 2000 but the

MODFLOW model remained the 1996 version. It would be more beneficial for this model to be

19

combined with the newest available version of SWAT, SWAT 2012 (Neitsch et al., 2011) and

the most recent MODFLOW, MODFLOW-NWT (Niswonger et al., 2011).

Because SWAT is a pseudo-distributed model a logical step to better represent the

heterogeneous distributed that actually exists would be to disaggregate SWAT’s HRUs in a

preprocessing to support a more gridded approach. This in turn can better represent groundwater

properties and processes in the same model by reflecting the spatial heterogeneity of the system

in the inputs. One example of this is the work by Rathjens and Oppelt (2012), in order to retain

the high resolution spatial inputs they built a gridded SWAT setup. A gridded approach is vastly

different than the sub-basin/HRU setup currently in SWAT. This is primarily evident in that the

gridded runoff needs to be routed from one grid to the next and eventually to the river as opposed

to the current SWAT infrastructure which routes each HRU independently to the sub-basin’s

river then to the next sub-basin. The end result of the modifications was titled SWATgrid and

successfully tested on the Lake Fork Texas watershed in Texas. This is an attempt to make the

existing subroutines of SWAT handle the distributed processes of groundwater flow and

transport perform better. However the existing SWAT routines are unable to handle complex

groundwater processes and groundwater pollutant transport problems like the reactive transport

of selenium and nitrate in an irrigated agricultural area (Bailey et al., 2013a; Bailey et al., 2014).

2.2: METHODS AND MODELS

2.2.1 OVERVIEW

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1995b; Arnold et al., 1998),

and the U.S. Geological Survey’s Modular Ground-Water Flow Model (MODFLOW)

(Harbaugh, 2005) were chosen for coupling. SWAT has been a useful tool for assessing water

20

resources, pollution problems, and assessing environmental conditions worldwide (Gassman et

al., 2007). In addition to MODFLOW’s popularity, there are many regional-scale models

available in the U.S. (Rumman and Payne 2003; Christenson et al. 2011; Paschke, 2011; Gannett

et al., 2012; Mashburn et al., 2013). Summarized herein are the use of the Upper Klamath Basin

MODFLOW model (Gannett et al., 2012) and a SWAT model for the Sprague River (Records,

2013). The SWAT and MODFLOW models were coupled on a daily time step to allow for

greater model feedback. Both the entire Sprague River and the groundwater influenced North

Fork were chosen as a comparison to the original SWAT model and MODFLOW model. The

SWAT model was calibrated by Records (2013) for the period from 2001 to 2006 while the

MODFLOW model was calibrated by Gannett et al. (2012) for the period from 1970 to 2004.

The period of analysis for the combined SWAT-MODFLOW model is from 1995 to 2004, which

is the entire period of overlap between the SWAT, MODFLOW, and observed data. USGS

Station 11495800 was used for comparison of the North Fork of the Sprague River and the

USGS Station 11501000, prior to the Sprague River’s confluence with the Williamson River,

was used for comparison of the entire Sprague River watershed.

2.2.2 MODEL COUPLING

In order to create a comprehensive surface/subsurface watershed model the surface model

SWAT 2012 Revision 591 (Arnold et al., 1998) was coupled with the latest version of the

groundwater model MODFLOW-NWT (Niswonger et al., 2011), which contains a Newtonian

based solution method to analyze the non-linear drying/rewetting of grid cells for the original

MODFLOW-2005 (Harbaugh, 2005). These models were coupled in such a fashion as to retain

their respective strengths; SWAT was allowed to handle land surface processes, in-stream

processes, and SWAT’s “soil zone” processes; MODFLOW-NWT handles inputs to the aquifer

21

with either 1-dimensional unsaturated subsurface recharge, using the Unsaturated Zone Flow

(UZF1) package (Niswonger et al., 2006) or aquifer recharge with MODFLOW’s Recharge

(RCH) package (Harbaugh et al., 2000), interaction with the stream network, and groundwater

pumping. Figure 5 and Table 1 outline each watershed process or concept as handled by either

SWAT or MODFLOW in the coupled SWAT-MODFLOW (SM) model.

Figure 5: SWAT-MODFLOW Coupled Model Watershed Processes

Table 1: SWAT-MODFLOW Coupled Model Watershed Processes

SWAT Simulation MODFLOW Simulation

Infiltration

Aquifer

Recharge via

Either:

The RCH package

(Harbaugh et al., 2000)

Evapotranspiration

Vadose zone percolation

below the soil profile via

the UZF1 package

(Niswonger et al., 2006)

Plant Growth and Root

Zone
Water Table Elevation

Overland Flow and

Transport
Saturated Groundwater Flow

Lateral Subsurface flow in

SWAT’s “Soil Zone”

Groundwater pumping, via the WEL package

(Harbaugh et al., 2000)

Stream Flow and

Transport

Groundwater discharge to streams (base-flow),

stream seepage to groundwater, via the RIVR

package (Harbaugh et al., 2000).

22

To facilitate a more general coupling between SWAT’s spatially discontinuous HRU

variables and MODFLOW’s spatially continuous grid-based variables, a series of linking

functions to convert the variables were developed. This information was preprocessed using the

geospatial software (ArcGIS Desktop: Release 10, Environmental Systems Research Institute

Redlands, CA). Full step by step creation of the necessary inputs for this coupled SWAT-

MODFLOW model is documented in Appendix I. As a short explanation, the HRUs of SWAT

were spatially disaggregated and then intersected with the MODFLOW grid. The intersection

provides information on what percentage of an HRU contributes to which grid and vise-versa.

Using these percent areas as weights for averaging, the various linking variables are mapped

from SWAT HRUs to MODFLOW grid cells and back, illustrated in Figure 6. This general

contributing area approach allows for SWAT HRUs larger in size than MODFLOW grid cells or

grid cells larger than HRUs. Additionally, all of the subroutines modified were checked to allow

a MODFLOW model with greater in spatial coverage than the SWAT model or vise-versa to be

combined in the same fashion.

23

Figure 6: SWAT-MOFLOW Model Spatial Interaction; SWAT (green text), MODFLOW (bold blue text)

 In order to process the information required for these conversions, output from the GIS

operations, a series of preprocessing scripts were written in Java, a copy of this code is available

in Appendix II. The resultant output files from the Java pre-processing summarize which HRUs

contribute what percent are of each grid, and vise-versa. To facilitate the conversion from HRUs

to grids, there are 4 primary input files. The first, map_dhru2hru.txt, summarizes which spatially-

disaggregated HRUs (DHRUs) contribute to each of the original SWAT HRUs; this step allows

groundwater processes to remain fully distributed in MODFLOW. The second linking file,

map_dhru2grid.txt, summarizes which DHRUs contribute to the MODFLOW grid cells.

Map_grid2dhru.txt similarly summarizes which MODFLOW grid cells contribute to each DHRU

for conversion of MODFLOW information back to SWAT. The final linking file,

map_river2grid.txt, provides the necessary information to convert SWAT river information into

MODFLOW river grid cell information. An example of the template and explanation of each of

24

these linking files is available in Appendix III. Similarly, each of the FORTRAN conversion

subroutines used to couple these models are available in Appendix IV. To assist with a general

linkage of spatially-different SWAT and MODFLOW models, these functions were written to

change information only for HRUs that intersect grids and vise-versa. To increase model

coupling compared to previous SWAT-MODFLOW integrations in an attempt to capture sub-

monthly groundwater-surface water interaction, it was decided to execute MODFLOW on a

daily time step. The general flow of information on a daily basis is outline in Figure 7.

Figure 7: SWAT-MODFLOW Code Process Diagram

25

When the coupled model runs, it begins by reading in all of the SWAT input files as

normal. Once the SWAT input files are read in, the MODFLOW input files and linking files are

also read in, Appendix IV: sm_read_dhru2grid, sm_read_dhru2hru, sm_read_grid2dhru,

sm_read_river2grid. Then SWAT executes normally through all of its sub-basin and HRU

calculations. Once SWAT finished calculating its HRU processes, a subroutine to prepare input

variables from SWAT to MODFLOW is called Appendix IV: sm_conversion2mf. This

subroutine was written to convert the SWAT HRU variables and units into spatially located

DHRU linkage variables ready to be converted inside of MODFLOW. Specifically, this step

converts SWAT HRU-based variables of percolation from the bottom of the soil profile (sepbtm)

and remaining evapotranspiration (etremain) into DHRUs. The array variable etremain was

added to SWAT to track the remaining unsatisfied evapotranspiration (potential ET minus actual

ET in SWAT’s subbasin subroutine) which is needed as an input for MODFLOW. It is also in

this step that SWAT units are converted into the units of the current MODFLOW model. This

unit conversion step is required because in general SWAT runs on SI units whereas MODFLOW

can use a variety of units as specified by the current model inputs; a MODFLOW model can run

with units of feet and days, meters and months, centimeters and seconds, or others. Again, this

general coupling is to support the use of existing dis-similar spatial scales and units of SWAT

and MODFLOW models.

In the next step of the code MODFLOW is called. As MODFLOW executes it checks

which of its various packages are active and if a new stress period has been reached, it reads in

the required information for each active package. If the river (RIVR), recharge (RECH), or

unsaturated zone flow (UZF1) packages are active, it then a linkage subroutine is called to

convert the SWAT variables into the MODFLOW variables, Appendix IV: sm_mfRiver,

26

sm_recharge, and sm_uzf. In this coupling, the primary linkage between the rivers of SWAT and

MODFLOW is handled using MODFLOW’s RIVR package (Harbaugh et al., 2000).

Furthermore, the original MODFLOW-NWT model was modified to include a day counter,

forcing MODFLOW to execute on a daily time step. This modification includes a reader-reset

that allows MODFLOW to read in new stress period information, which may or may not be on a

daily time step, as it normally does when the SWAT-MODFLOW simulation reaches the next of

MODFLOW stress period. Once MODFLOW is done executing for the day, another conversion

subroutine is called to pass information back to SWAT, Appendix IV: sm_conversion2swat. This

subroutine finds and converts the water table elevation from MODFLOW grids and units to

SWAT HRUs and units. It also passes back the MODFLOW determined stream loss/gain per

grid cell to SWAT river variables. Stream gain, or groundwater discharge (SWAT’s gw_q

variable), is passed back based on relative area of each HRU contributing to a given river

segment. Stream loss, or seepage, is passed back to the sub-basin as a whole to SWAT’s reach

loss variable, rttlc, which was changed to a global array instead of a global value to allow

tracking of this information. As a final step, Appendix IV: sm_upflux_to_soil, in locations where

the water table has reached the SWAT’s soil zone, upflux water is passed back water into the soil

zone based on soil wilting point and field capacity. A summary of these daily interactions is

shown in Figure 8.

27

Figure 8: SWAT-MOFLOW Coupled Model Information Flow Diagram

Once the information from MODFLOW is passed back into SWAT, the normal SWAT

river routing subroutines are called to transport water, sediment, and nutrients to the basin outlet

and the model progresses to the next day of simulation. All of these steps take place in memory

within the FORTRAN code resulting in a single program rather than a SWAT model, a

MODFLOW model, and a coupling model as three programs.

2.2.3: APPLICATION

The application of this new style of SWAT-MODFLOW coupling was applied to the

Upper Klamath Basin in Oregon, Figure 9. An analysis of both the North Fork of the Sprague

River and the entire Sprague River watershed was performed.

28

Figure 9: Sprague River Watershed Location, Upper Klamath River Basin, OR

The Upper Klamath Basin has been highlighted for its key groundwater influence on

surface water hydrology reflecting a complex groundwater-driven watershed (Gannett et al.,

2010). It has also been the focus of historic and recent intensive agricultural projects, specifically

recently the U.S. Bureau of Reclamation’s Klamath Irrigation Project. Due to regional interest, a

MODFLOW groundwater model was developed by the USGS for the entire Upper Klamath

Basin (Gannett et al., 2012) to assess the potential impacts of increased groundwater

development with in the basin, primarily for agricultural use. An overview of the MODFLOW

model combined with the SWAT models, the North Fork of the Sprague River and the entire

Sprague River, is shown below in Figure 10.

29

Figure 10: SWAT Model’s Location Within USGS’s Upper Klamath Basin MODFLOW Model

Furthermore, Records (2013) studied the impacts to the extent and function of wetlands

under various climate predictions. As a result of this work a SWAT model was developed for the

Sprague River basin. The SWAT model performed well for surface process dominated tributaries

like the Sycan River, Figure 11, but performed poorly for groundwater driven tributaries like the

North Fork of the Sprague River, Figure 12, even after auto calibration and manual calibration.

For these reasons, the new style of coupling of SWAT and MODFLOW was chosen to be

demonstrated on the North Fork of the Sprague River with an overlap of the SWAT model

developed by Records (2013) and the MODFLOW model developed by Gannett et al. (2012), an

overview of these SWAT and MODFLOW model extents and locations are shown in Figure 10.

30

Figure 11: SWAT Auto-Calibration Results for the Sycan River, OR

Figure 12: SWAT Combined Auto-Calibration and Manual Calibration Results for the North Fork of the Sprague

River, OR

2.3: RESULTS AND DISCUSSION

 An examination of the results of the SWAT-MODFLOW model coupling is contained

herein for both the groundwater influenced North Fork of the Sprague River and the entire

Sprague River.

31

2.3.1: NORTH FORK OF THE SPRAGUE RIVER

2.3.1.1: STREAM FLOW RESULTS

An initial examination of the results of the combined SWAT-MODFLOW model for the

North Fork of the Sprague River reveals a lower base-flow than observed but still a relatively

good fit to observed data (shown on a monthly time-step in Figure 13). A 1-to-1 comparison of

SWAT and SWAT-MODFLOW versus observed daily data is shown in Figure 14 and a similar

1-to-1 comparison for monthly data is shown in Figure 15. Statistics summaries for the fit of the

models to daily and monthly observed data are presented in Table 2 and Table 3, respectively.

Both the daily and monthly comparisons show a slight improvement in coefficient of

determination (R
2
) and poorer, but still acceptable, Nash-Sutcliffe (NS) coefficients of

performance, between the original SWAT model (daily R
2
 = 0.35, NS = 0.23; monthly R

2
 = 0.60,

NS = 0.57) and the SWAT-MODFLOW model (daily R
2
 = 0.34, NS = 0.14; monthly R

2
 = 0.66,

NS = 0.38). The original Sprague River and North Fork of the Sprague River SWAT models

were calibrated on a monthly basis while the original Upper Klamath MODFLOW model was

calibrated using quarterly stress periods, which explains the improvement between daily and

monthly statistics. The larger time-step of the original calibration is the likely source of the

poorer daily performance statistics for the coupled SWAT-MODFLOW model. Additional

calibration using a sub-monthly time-step may improve the simulation results.

32

Figure 13: SWAT-MODFLOW Monthly Results, No Additional Calibration for the North Fork of the Sprague River

OR

Figure 14: 1-to-1 Comparison of Daily SWAT and SWAT-MODFLOW Results for North Fork of the Sprague River

Table 2: Comparison of Daily SWAT and SWAT-MODFLOW Results to Observed Data for the North Fork of the

Sprague River

 SWAT SWAT-MODFLOW

Nash-Sutcliffe 0.23 0.14

R
2

0.35 0.34

33

Figure 15: 1-to-1 Comparison of Monthly SWAT and SWAT-MODFLOW Results for North Fork of the Sprague

River

Table 3: Comparison of Monthly SWAT and SWAT-MODFLOW Results to Observed Data for the North Fork of the

Sprague River

 SWAT SWAT-MODFLOW

Nash-Sutcliffe 0.57 0.38

R
2

0.60 0.66

To better examine SWAT-MODFLOW’s impacts on base-flow representation, the Log10

of both daily and monthly data was taken and compared with observed data in a 1-to-1 plot as

shown in Figure 16 and Figure 17, respectively. For both the daily and monthly Log10

comparisons the correlation between observed data and SWAT-MODFLOW simulations appears

stronger than correlations between observed data and SWAT. However, the SWAT results are

much closer to the 1-to-1 perfect simulation than SWAT-MODFLOW. Some of this error in

SWAT-MODFLOW’s simulation could potentially be corrected after calibration of the coupled

model. The statistical summary for both the daily and monthly comparisons with observed flow

are shown in Table 4 and Table 5, respectively. In both daily and monthly cases there is a large

34

increase in R
2
 although there is a decrease in the NS of the Log10 data from SWAT (daily R

2
 =

0.33, NS = 0.13; monthly R
2
 = 0.63, NS = 0.63) to SWAT-MODFLOW (daily R

2
 = 0.37, NS = -

1.43; monthly R
2
 = 0.74, NS = -0.29).

Figure 16: 1-to-1 Comparison of Log-10 of Daily SWAT and SWAT-MODFLOW Results for North Fork of the

Sprague River

Table 4: Comparison of Log-10 of Daily SWAT and SWAT-MODFLOW Results to Log-10 of Observed Data for

the North Fork of the Sprague River

 SWAT SWAT-MODFLOW

Nash-Sutcliffe 0.13 -1.43

R
2
 0.33 0.37

35

Figure 17: 1-to-1 Comparison of Log-10 of Monthly SWAT and SWAT-MODFLOW Results for North Fork of the

Sprague River

Table 5: Comparison of Log-10 of Monthly SWAT and SWAT-MODFLOW Results to Log-10 of Observed Data for

the North Fork of the Sprague River

 SWAT SWAT-MODFLOW

Nash-Sutcliffe 0.63 -0.29

R2 0.63 0.73

Figure 18, which contains a flow duration curve of daily stream flow, illustrates the

differences in the stream flow simulation by SWAT and SWAT-MODFLOW. A flow duration

curve is a graph of statistically ranked flow data based on its exceedence probability. For

example, flows that are exceeded 43% of the time have a value of 43 on the x-axis. As depicted

in Figure 18, the SWAT model flow duration curve is close to the shape and magnitude of the

observed flows. The SWAT-MODFLOW model, however, under-estimates the low flows of this

particular sub-basin by about half a cubic meter per second. Again, it is likely that this

performance can be improved by calibrating the coupled SWAT-MODFLOW model.

36

Figure 18: Flow Duration Curve Comparison for North Fork of the Sprague River Stream Flow

A statistical analysis of the monthly stream flow and residual errors between the SWAT

and SWAT-MODFLOW models and observed data are summarized in Figure 19. In the monthly

error analysis, the SWAT model had a smaller magnitude of error than the SWAT-MODFLOW

model. The monthly graphs of the SWAT model match the observed data more closely than the

original SWAT-MODFLOW model; however, this may be resolved via calibration of the

SWAT-MODFLOW model.

37

Figure 19: Comparison and Error Statistics of Monthly SWAT and SWAT-MODFLOW Results for North Fork of the

Sprague River

38

2.3.1.2: BASE-FLOW RESULTS

 To illustrate the difference in base-flow simulation between the SWAT and coupled

SWAT-MODFLOW model, a base-flow separation of the resulting hydrographs was performed

using the BFLOW base-flow separation filter developed by Arnold et al. (1995a; Arnold and

Allen, 1999a). BFLOW performs three separate base-flow separation passes; usually the first

pass is sufficient to capture the base-flow from a hydrograph (Arnold et al. 1995a). A 1-to-1

comparison of the BFLOW’s first pass was made of SWAT versus observed and SWAT-

MODFLOW versus observed.

Figure 20: SWAT and SWAT-MODFLOW North Fork of the Sprague River Base-flow Separation Pass 1 Daily

Results, 1-to-1 Comparison

2.3.1.3: STREAM SEEPAGE/GAIN RESULTS

 Another benefit of the coupled SWAT-MODFLOW model is its ability to simulate

spatially variable river-aquifer interactions. In the original SWAT model this process took place

at the sub-basin level. With the inclusion of MODFLOW, this interaction now takes place on the

grid cell level, which is typically smaller than a sub-basin. The average base-flow discharge to

39

the stream and average seepage to the aquifer are both shown below in Figure 21. The sign of the

rate of water in/out of a MODFLOW grid cell determines if it is entering (+) or leaving (-) the

aquifer. As seen in Figure 21, the spatial variability of this process is more than the sub-basin

level of the SWAT watershed can represent, which is another benefit of a fully distributed

groundwater model.

Figure 21: SWAT-MODFLOW North Fork of the Sprague River Stream Seepage/Base-flow Discharge Map

2.3.1.4: WATER TABLE RESULTS

A further comparison of the models addresses the simulation of groundwater height

within the basin as simulated by the original MODFLOW model versus the combined SWAT-

MODFLOW model for the North Fork of the Sprague River basin. Figure 22 shows the water

40

table heights for the original MODFLOW model after the first stress period of calculations (three

months), and illustrates a well-connected continuous aquifer system throughout the North Fork

of the Sprague River Basin. Figure 23 illustrates the resulting groundwater table calculated by

the SWAT-MODFLOW model after the first stress period. The difference between the

MODFLOW model and SWAT-MODFLOW model (MODFLOW result minus SWAT-

MODFLOW result) is shown in Figure 24. There are a few locations, primarily the northeast,

where the SWAT-MODFLOW groundwater table is different that the MODFLOW model.

Normally this might be attributed to the need of a warm-up period of simulation to establish an

equilibrium balance because MODFLOW needs this sort of warm-up period. However a warm-

up set of initial conditions was previously calculated using a separate steady state analysis

performed by Gannett et al. (2012).

Figure 22: Groundwater height at start of MODFLOW simulation for the North Fork of the Sprague River

41

Figure 23: Groundwater height at start of SWAT-MODFLOW simulation for the North Fork of the Sprague River

Figure 24: Difference in groundwater height between MODFLOW and SWAT-MODFLOW at start of simulation for

the North Fork of the Sprague River

42

As seen at the end of the simulation results in Figure 25, MODFLOW appears to have

minimal change in the aquifer since the start of simulation, some of which is due to the large

range of water table values scene within the North Fork of the Sprague River which contains

mountains on the east and low river valleys in the south. Figure 26 displays the water table

elevations for the coupled SWAT-MODFLOW model at the end of simulation, while the

difference between SWAT-MODFLOW and MODFLOW is shown in Figure 27 (MODFLOW

result minus SWAT-MODFLOW result). The major difference between the MODFLOW and

SWAT-MODFLOW is again located in the northeastern region of the basin where the highest

groundwater and ground surface elevations are located.

Figure 25: Groundwater height at end of MODFLOW simulation for the North Fork of the Sprague River

43

Figure 26: Groundwater height at end of SWAT-MODFLOW simulation for the North Fork of the Sprague River

Figure 27: Difference in groundwater height between MODFLOW and SWAT-MODFLOW at end of simulation for

the North Fork of the Sprague River

44

The depressed water table heights at this high elevation region of the basin are due

mainly to a smaller volume of recharge entering the aquifer in this location. The difference in

recharge is caused by a disagreement between the original MODFLOW model’s recharge values,

which were determined by the Precipitation-Runoff Modeling System (PRMS) (Gannett et al.

2012), and SWAT’s soil percolation values which replace MODFLOW’s recharge values in the

coupling of the two models within this particular region. The differences in recharge were,

however, were confirmed to not be due to the partial spatial coverage of the MODFLOW model

by the SWAT model which occurs at this edge of the SWAT model. The generalized spatial

linkage of SWAT and MODFLOW in this coupling retains an area-based weighting of the

original MODFLOW model value of recharge for any portion of a MODFLOW grid cell that is

not contributed to by a SWAT HRU (either partial coverage or no coverage). Therefore, a

MODFLOW grid cell which intersects with HRUs for 40 percent of its area receives a recharge

value that is 40 percent from SWAT soil zone percolation values and 60 percent from the

original MODFLOW model value. A possible reason for the discrepency in water table

simulation in the northeast portion of the basin is how the soil zone percolation is calculated. The

percolation out of SWAT’s soil zone is primarily derived from precipitation at the sub-basin

scale. In sub-basins, like this northeast region, precipitation processes can be very different at

localized high elevations as compared to the valley areas even though both areas are simulated

within a single SWAT sub-basin. To address this, SWAT models allow the use of elevation

bands to vary certain watershed parameters based on land surface elevation, which were used in

the SWAT model by Records (2013). It appears, however, that there is still some disparity

between the groundwater heights as influenced by SWAT soil percolation values and the original

MODFLOW model using PRMS aquifer recharge values. Finally, the original MODFLOW

45

model cited sparse availability of calibration data for water table heights in the forested upland

areas of the basin (Gannet et al., 2012), resulting in a higher margin of error in these locations for

water table elevation.

With the exception of the issue in the northeast portion of the model for groundwater

elevations, the coupled SWAT-MODFLOW model mostly reflects groundwater levels close to

the original Upper Klamath MODFLOW model, indicating that the soil zone percolation values

from SWAT in the North Fork of the Sprague River are comparable with the PRMS recharge

values used by the MODFLOW. Additionally, the coupled SWAT-MODFLOW model simulated

a higher water table than the original MODFLOW model, which is actually an improvement over

the original MODFLOW model because, as explained by Gannet et al. (2012), the original

MODFLOW model simulated groundwater elevations residuals within the Sprague River basin

of roughly 100 to -100 ft, with most of the simulations being lower than observed water table

levels. No comparison was made to observation wells because data was unavailable within the

catchment area of interest in the North Fork of the Sprague River Basin.

2.3.2: SPRAGUE RIVER

2.3.2.1: STREAM FLOW RESULTS

Upon examination of the SWAT and SWAT-MODFLOW results for the whole Sprague

River watershed, the results were almost identical. Both the SWAT and SWAT-MODFLOW

stream flow values were equivalent to 2 decimal places at the outlet of the watershed. The

comparison against observed data at USGS Station 11501000 is shown below in Figure 13. The

SWAT and SWAT-MODFLOW results are so similar that, when plotted, they lie on top of one

another. Both models do a good job simulating the majority of stream flows. However, the

46

recession rates of the simulated hydrographs do not match the observed values. Statistical

summaries for the fit of the models to daily and monthly observed data are shown in Table 2 and

Table 3, respectively. The daily and monthly statistics for SWAT and SWAT-MODFLOW are

equal due to the similar stream flow outputs. Due to the similarity between the model results, a

water balance was also examined for the models. The SWAT model was found to calculate a

zero groundwater discharge over the analysis period from 1995-2004. The SWAT-MODFLOW

model was found to calculate a groundwater discharge approximately equal to 0.2% of the total

stream flow. It is believed that since the simulated groundwater discharge represents such a

minor portion of the total stream flow, the SWAT-MODFLOW model yielded similar results to

the SWAT model.

An explination for this ‘washing out’ of the groundwater discharge as compared to total

stream flow is found by examining the river system in question. The most groundwater influence

is found in the North Fork of the Sprague River. However, the largest tributary to the Sprague

River is the Sycan River which is approximately twice as large as the North Fork of the Sprague

River. The final South Fork of the Sprague River, the last significant tributary, is a surface

process dominated tributary like the Sycan. This combination of several large surface-driven

streams and a single small groundwater influenced stream effectively overpowers small trends in

total stream flow due to base-flow discharge from groundwater.

47

Figure 28: SWAT-MODFLOW Daily Results, No Additional Calibration for the Sprague River, OR

Table 6: Comparison of Daily SWAT and SWAT-MODFLOW Results to Observed Data for Sprague River

 SWAT SWAT-MODFLOW

Nash-Sutcliffe 0.54 0.54

R
2

0.59 0.59

Table 7: Comparison of Monthly SWAT and SWAT-MODFLOW Results to Observed Data for the Sprague River

 SWAT SWAT-MODFLOW

Nash-Sutcliffe 0.68 0.68

R
2

0.76 0.76

A further illustration of the similarities in the stream flow simulation by SWAT and

SWAT-MODFLOW is shown in Figure 18 , which contains a flow duration curve for total

stream flow. Note that this flow duration curve is shaped differently than the curve for the North

Fork of the Sprague River which indicates a different series of controls and contributions to flow,

primarily a lack of base-flow dominance (large flat curve). Again, the SWAT and SWAT-

MODFLOW model results are so similar that they plot on top of one another. This flow duration

curve also highlights the inability of either model to capture the observed recession rates in low

48

flow periods (flow durations > 20%). Additionally, both models slightly under predict the higher

flows observed in the basin.

Figure 29: Flow Duration Curve Comparison for the Sprague River Stream Flow

2.3.2.2: STREAM SEEPAGE/GAIN RESULTS

As with the North Fork of the Sprague River analysis, the average base-flow discharge

from the aquifer to the stream and seepage from the stream to the aquifer is shown in Figure 30.

These results are similar to those from the North Fork analysis, and their implications were

discussed previously.

49

Figure 30: SWAT-MODFLOW Sprague River Stream Seepage/Base-flow Discharge Map

2.3.2.3: WATER TABLE RESULTS

 As compared earlier for the North Fork of the Sprague River, the SWAT-MODFLOW

results closely resemble those of the original MODFLOW model. Shown in Figure 31 and Figure

32 are the groundwater table heights for the entire Sprague River after the first stress period in

1970 for the MODFLOW and the SWAT-MODFLOW models, respectively. The difference

between the values is shown in Figure 33. There are numerous small differences, but the

probable cause of these has been discussed in the North Fork’s water table result section. One

new difference to emphasize is that at the start of simulation there appears to be a large

50

difference in one of the Sycan River’s tributaries towards the top of the map in Figure 33, while

the rest of the basin is close to or higher than the original MODFLOW model.

Figure 31: Groundwater height at start of MODFLOW simulation for the Sprague River

Figure 32: Groundwater height at start of SWAT-MODFLOW simulation for the Sprague River

51

Figure 33: Difference in groundwater height between MODFLOW and SWAT-MODFLOW at start of simulation for

the Sprague River

Summarized in Figure 34 and Figure 35 are the groundwater heights at the end of

simulation in 2004 for the MODFLOW and SWAT-MODFLOW models, respectively. Again

both models simulate a continuous aquifer which patterns itself roughly parallel to the area’s

land surface. The differences between the MODFLOW model and the SWAT-MODFLOW

model are shown in Figure 36. One thing to note on this map is the large area of difference in the

northeastern corner of the Sprague River Basin. The likely causes of this difference are

summarized in the North Fork water table results section.

52

Figure 34: Groundwater height at end of MODFLOW simulation for the Sprague River

Figure 35: Groundwater height at end of SWAT-MODFLOW simulation for the Sprague River

53

Figure 36: Difference in groundwater height between MODFLOW and SWAT-MODFLOW at end of simulation for

the Sprague River

2.3.4: LIMITATIONS AND FUTURE WORK

One consequence of the daily SWAT-MODFLOW coupling is the greater execution time

of the model. The original MODFLOW model for the Upper Klamath Basin solves the

groundwater flow equations every quarterly stress period. By forcing MODFLOW to run on a

daily time step, it increases the number of groundwater flow equation solutions by 90 times the

original model. Based on an initial run time of approximately 12 minutes, for an Intel Core 2

Duo 2GHz CPU with 4GB of RAM, this forecasts an anticipated 18 hours to run MODFLOW on

a daily time-step for the 35 year Upper Klamath Basin model. However, due to the similarity of

much of the watershed on a daily basis combined with the upgrade of the Upper Klamath Basin

model from MODFLOW-2000 to MODFLOW-2005-NWT, and Sprague River model from

SWAT-2009 rev. 477 to SWAT-2012 rev. 591 resulted in the coupled SWAT-MODFLOW

model completing a 35 year analysis in approximately 11 hours. This is does not seem

unreasonable compared to the Lower Arkansas River Valley (LARV) MODFLOW-only model

54

documented by Morway et al. (2013) to focuses on the groundwater alluvial aquifer impacts due

to heavy irrigated agriculture which takes approximately 9 hours to execute.

A continuation of after a coupled surface-subsurface watershed model would be to add

the capacity to simulate nutrient transport between SWAT and MODFLOW. SWAT already has

a nutrient model in it however MODFLOW does not. In order to simulate subsurface nutrient

transport and interaction a third model would need to be combined to SWAT-MODFLOW like

the subsurface chemical/nutrient transport model like MT3DMS or UZF-RT3D. Coupling this

subsurface reaction, advection, and dispersion transport model would allow the combined

surface-subsurface watershed would simulate not only hydrology but also nutrient, metal, and

pesticide transport at the watershed scale. This sort of coupling would assist in tackling the

complex watershed chemical problems like the nutrient and wetland issues in the Upper Klamath

basin and the nitrate-selenium issues in the Lower Arkansas River Valley.

2.4: CONCLUSIONS

The complex issues of water demand and environmental change in watersheds have

driven the desire to simulate and model watersheds and the impacts of various management and

climate change scenarios. The pseudo-distributed watershed model SWAT and the finite-

difference groundwater model MODFLOW are at the forefront of popular available watershed

models. Inabilities of these models to simulate complex groundwater response as well as erosion,

plant growth, nutrient cycling, and agricultural management has led to multiple attempts to link

the models. However, these models are unavailable and have drawbacks like required identical

spatial discretization and monthly coupling. As a result the aforementioned work was undertaken

to create a generalized spatial linkage between SWAT and MODFLOW which retains the

respective strengths of the two models coupled on a daily time-step. This linkage facilitates the

55

use of existing spatially dis-similar SWAT and MODFLOW models while increasing the overall

quality of simulation for a more reliable result than previously possible.

This daily coupling between SWAT and MODFLOW has resulted in realistic and

accurate stream flow results for the North Fork of the Sprague River in Oregon. Additionally,

groundwater representation within SWAT was increased by the inclusion of MODFLOW and

accurate groundwater table elevations were simulated as a result. However, at the high elevation

edge of the watershed a reduced volume of recharge to the aquifer caused lower water table

elevations relative to the original MODFLOW model for the Upper Klamath Basin. The new

SWAT-MODFLOW coupling resulted in a more accurate representation of both the frequency

and magnitude of streams flows than the original calibrated SWAT model only. This model

coupling of the coupled SWAT-MODFLOW model also provided these results without

additional calibration. It is likely calibration will improve all the results herein discussed.

56

CHAPTER 3: SCALABLE AND ACCESSIBLE CLOUD-BASED SERVICES FOR STREAM

WATER ANALYSIS

3.1: INTRODUCTION

Stream flow data has become an increasingly important tool for assessing current stream

conditions as well as a basis for predicting future conditions and water supply. However, current

stream flow analysis software typically focuses on only one aspect of stream flow resulting in the

need for many software packages to analyze the multiple aspects of stream flow; floods,

droughts, groundwater contribution, frequency-duration, pollutant loading, and more. This

requires multiple input files to satisfy each of the software packages for one stream gauge

dataset. Additionally, these individual packages are desktop-based software that uses local

computer resources rather than taking advantage of some of the recent advancements in cloud-

computing technology.

Due to this current style of implementation, one analysis in one software package, there

are numerous available flow analysis software packages. Base-flow separation, or the separation

of groundwater from surface runoff contribution to total stream flow, has been a particular focus

with numerous software packages. The Hydrograph Separation tool (HYSEP) was developed by

the USGS to help automate a previously manual hydrograph separation technique (Sloto and

Crouse, 1996). Another similar base-flow separation package is the BFLOW multi-pass digital-

filter base-flow separation tool developed by Arnold et al. (1995a; Arnold and Allen, 1999a). In

addition to base-flow software, Flynn et al. (2006) have developed a package, PeakFQ, which

automates the U.S. flood analysis, Bulletin 17B (IACWD, 1982), by fitting a regression to

available flood. There is also the load estimator tool, LOADEST (Runkel et al., 2004), which

57

estimates in-stream pollutant loads with regression-based interpolation between observed

pollutant loads and the Sanitary Sewer Overflow Analysis and Planning tool SSOAP even assists

with simulating the impacts of sanitary sewer over flow (Vallabhaneni et al., 2012).

There has, however, been a recent shift in the implementation style of these packages. A

number of new software analyses area being ported to the web with internet-based graphical user

interfaces to assist with interacting with the analysis. One example of a base-flow separation tool

is the Web-based Hydrograph Analysis Tool, WHAT, developed by Lim et al. (2005).

Govindaraju et al. (2009) took it a step further and conceptualized an entire outline for the

necessary cyberinfrastructure to support an end-to-end approach to environmental modeling.

Another recent web implementation of a flow/water quality analysis tool came in the form of the

SPARROW-DSS tool to assist with sediment and nutrient loadings to river basins in the U.S.

(Booth et al., 2011). A more complex and necessary step than making a tool available on the web

is implementing it in a scalable fashion. One example of a scalable infrastructure for web tools is

a cloud-based environment to take advantage of lumped server resources rather than local

computer resources. There are many benefits to cloud-infrastructure including greater scalability

and the ability to process more than one analysis at a time due to multiple virtual machines. One

flow analysis package that has taken advantage of these benefits is ParFlow, a parallel surface-

subsurface watershed model, which was implemented in a cloud environment by Burger et al.

(2012).

To utilize recent advancements in computer technology, the focus of this additional work

is to develop and demonstrate a scalable cloud-computing web-tool that facilitates access and

analysis of stream flow data. The specific objectives are to 1) unify the various stream flow

58

analysis topics into a single tool; 2) to assist in the access to data and inputs for current flow

analysis methods; 3) to examine the scalability benefits of a cloud-based flow analysis tool.

3.2: METHODS

3.2.1: COMPREHENSIVE FLOW ANALYSIS (CFA) OVERVIEW

The primary focus of this research is to integrate the various aspects of flow analysis and

implement it on a scalable cloud-computing web-tool to facilitate access to the tool. The

Comprehensive Flow Analysis (CFA) tool was developed by creating and integrating multiple

available stream flow analysis methods used for the various aspects of rivers; floods, drought,

water quality, pollutant loadings, base-flow contribution from groundwater. In order to increase

the access and scalability of the analyses within CFA, CFA was built into the Cloud Services

Innovation Platform (CSIP). CSIP is an environmental modeling service which facilitates a

scalable cloud infrastructure for analysis execution. The analysis capabilities of CFA are

demonstrated by a downstream analysis of nutrient loading on the Cache La Poudre River in

Colorado while the scalability of CFA methods are demonstrated for test cases containing all

available flow data from 1000 existing USGS stream monitoring sites across the U.S.

3.2.2: CYBERINFRASTRUCTURE

A key importance of this new flow analysis tool is its cyberinfrastructure. CFA was

designed for access to the tool through the Environmental Risk Assessment and Management

System (eRAMS) website. eRAMS was developed at Colorado State University to facilitate

geospatial manipulation of data for use with environmental modeling. eRAMS is built on a web-

based geospatial analyst, similar to ArcGIS, allowing data manipulation, environmental

modeling and results analysis, and the sharing of geospatial information. The map-based

59

structure of eRAMS allows unique location based searches and access to stream flow monitoring

sites and their relevant information like drainage area, elevation, and watershed/sub-basin

location. Included on eRAMS is a base layer of all of the stream flow monitoring locations in the

USGS’ National Water Information System (NWIS) and U.S.EPA’s STORET/WQX databases.

This point layer acts as the first set of inputs for the CFA tool and its analyses allowing the

eRAMS CFA interface to pre-process and auto-populate many of the necessary inputs

simplifying the overall process of running a flow analysis with CFA. Appendix V, Figure 47

contains the eRAMS GUI and Figure 48, Figure 49, Figure 50, Figure 51, Figure 52, Figure 53,

and Figure 54 show example CFA analyses reports for a station on the Cache La Poudre River,

CO.

Additionally, included in the CFA tool is an automatic data extraction for stream flow

and water quality information from the USGS’ NWIS and EPA’s STORET/WQX databases. The

dynamic access to these databases allows the CFA tool to retrieve the most recent flow and water

quality data for stream locations and combine it with local sampling data that a user may have

for a quicker analysis with minimal input file data manipulation. The web access to the CFA tool

on eRAMS is made possible by the development and inclusion of the CFA tool into the Cloud

Services Innovation Platform (CSIP). Simply put, eRAMS is used as an input preprocessor and

interface to the CFA tool while the actual analysis of CFA is carried out through a request to

CSIP, as illustrated below in Figure 37.

60

Figure 37: CFA’s Interaction with eRAMS, CSIP, and External Databases

3.2.3: SCALABILITY

In order to provide a more scalable infrastructure for the flow analysis tool, CFA was

incorporated into CSIP. CSIP deploys its modeling engine using Eucalyptus Infrastructure-as-a-

Service Cloud (IaaS) virtual machines (VMs) (Lloyd et al., 2012). CSIP uses Eucalyptus for its

ability to provide an elastic modeling platform to manage cloud infrastructure. Within CSIP,

Eucalyptus manages the launching, destroying, and modifications to VMs to provide a scalable

infrastructure for the CFA tool.

61

3.2.4: ACCESSIBILITY

As mentioned earlier, the main access to the CFA analyses was incorporated into eRAMS

through the development of a graphical user interface (GUI). Additionally, eRAMS provides

access to a number of the necessary inputs for CFA as base-layers to the interface. The station

name and ID, used for data retrieval within the tool, are provided by the aforementioned base

layer of flow stations for USGS and U.S. EPA.

Special data and information for some of the analyses in CFA are also provided by

eRAMS as background inputs to the GUI. An example of this additional input is the flood

analysis in CFA. CFA’s flood analysis performs an automated Bulletin 17B Log-Pearson Type-

III distribution regression on available annual flood data. The Bulletin 17B is current the

standard practice for analyzing floods on gauged U.S. rivers and streams (WRC-HC, 1967;

IACWD, 1982). A complication of the flood analysis recommendations by the Inter-Agency

Committee on Water Data (1982) is the requirement of a regionalized flood skewness coefficient

in the analysis. A national scale resolution map is provided with the regionalized flood skewness

coefficients is provided in the Bulletin 17B documentation, Figure 38, but since it’s conception

there have been a number of state-scale improvements to this map by state agencies (e.g. Parrett

and Johnson, 2004; Soong et al., 2004; Cooper, 2005; Atkins et al., 2009; Olson, 2009; Pomeroy

and Timpson, 2010). To simplify the access to the regionalized flood skewness values, a

literature review was undertaken to find all the available agency report maps and station

skewness coefficient values in addition to the map provided by IACWD (1982). Each state map

was then digitized and merged into the IACWD (1982) map to provide a nationwide unified

base-layer map used by eRAMS for preprocessing this input for CFA’s flood analysis with

higher spatial resolution than the original national map where information is available.

62

Preprocessing this information allows the eRAMS GUI for CFA to automatically extract the

regionalized flood skewness coefficient based on the selected station’s location.

Figure 38: Regionalized Flood Skewness Coefficient Map, Adapted from IACWD, 1982

3.2.5: CFA ANALYSES

The simplest analysis method included in CFA is a time series graphing and statics tool

which summarizes available flow data or water quality data, an example of the output for this

analysis is shown in Appendix V, Figure 48. As with all the analyses of CFA, the time series

analysis is capable of querying the USGS’ NWIS and U.S. EPA’s STORET/WQX databases for

available information based on the provided inputs. A subsequent, and more complex, method in

CFA is the flood analysis which, aforementioned, performs an automated Log-Pearson Type-III

regression on available flood data based on the provided regionalized flood skewness coefficient

(IACWD, 1982). An example of the output for this analysis is shown in Appendix V, Figure 49.

63

An opposite but equally important aspect of stream flows is the consideration and

analysis of droughts from the available stream flow record. Therefore, CFA includes an

automated drought analysis method based on the work by Salas et al. (2005). The main

component of the drought analysis fits a regression, an autoregressive (AR) or autoregressive-

moving average (ARMA), model to annual stream flow data and uses the statistical properties of

the original dataset to simulate a much larger dataset which includes rarer long-length, large-

deficit ‘droughts’. The projected dataset is subsequently compared against a provided long term

average drought limit to determine the length, severity, and average recurrence interval of these

new ‘droughts.’ The resulting recurrence interval, severity, and length of each historic drought

and projected drought are then summarized graphically. An example of the output for this

analysis is shown in Appendix V, Figure 50, Figure 51, and Figure 52 broken into multiple

figures due to the size of the output.

Another approach to the analysis of stream flow data is the application of duration curves

to graph statistically ranked flow data based on its occurrence. CFA contains two methods that

use a duration curve approach, the Flow Duration Curve tool (FDC) and the Load Duration

Curve tool (LDC). FDC uses a Weibull plotting position rank to graph daily average stream

flows on a scale of percent exceedence allowing a quick visualization of the various flows a river

has undergone, an example of the output for this analysis is shown in Appendix V, Figure 53.

The LDC follows the same process and takes the analysis a step further and converts the FDC

curve into a daily load curve based on a target water quality standard. Furthermore, it

superimposes available sampled water quality concentration data (converted based on daily flow

values into daily load values) onto the curve to graphically illustrate water quality concentration

changes as flow regime changes. LDCs for nutrient can be used to help identify, based on where

64

water quality observations exceed the target curve, probable pollution sources (Cleland, 2002;

Cleland, 2003; Cleland, 2007) as well as a basis for establishing total maximum daily load

(TMDL) requirements of a watershed. An example of the output for this analysis is shown in

Appendix V, Figure 54.

Two additional flow analysis capacities in CFA are provided by the inclusion of currently

available software packages for load estimation and base-flow separation. The water quality load

estimation software, LOADEST developed by the USGS (Runkel et al., 2004), is built into CFA

to act similar to the other analyses and provides an estimation of constituent water quality stream

loads between observed data points, an example of the output for this analysis is shown in

Appendix V, Figure 55. CFA also includes the base-flow separation software BFLOW,

developed by Arnold et al. (1995a; Arnold and Allen, 1999a). BFLOW is an automated multi-

pass digital-filter base-flow separation tool to separate the groundwater contribution from total

stream flow, an example of the output for this analysis is shown in Appendix V, Figure 56. A

technical manual documenting the process of each of the analyses of the CFA tool is provided in

Appendix VI.

3.2.6: STUDY AREA

A demonstration of the analysis capabilities of CFA was applied to the Cache La Poudre

River Basin in Colorado, Figure 39. A description of the analysis locations shown in Figure 39 is

provided in Table 8.

65

Figure 39: Cache La Poudre River Watershed Location, South Platte River Basin, CO

The Cache La Poudre River (Poudre) is an 1887 square mile watershed in northern

Colorado. The Poudre’s headwaters original in Rocky Mountain National Park and flows out of

the mountains through its canyon before entering the cities of Fort Collins, Windsor, and

Greeley, respectively. Upstream of the canyon mouth, Point 1 Figure 39, the basin is relatively

undeveloped representing a more natural background state. The lower portion of the watershed is

a mix of urban and agricultural land uses before its confluence with the South Platte River

downstream of Greeley.

66

Table 8: CFA’s Cache La Poudre River Downstream Analysis Locations

Map

Point
Location

USGS Station

ID

Flow Data

Dates

Nitrogen

Data Dates
Comments

1 Mouth of Poudre Canyon 06752000

1/1/1900

–

9/30/2007

7/29/1992

–

8/10/1995

Minimal upstream

development, representative

of natural background

2
Lincoln Street Fort

Collins, CO
06752260

4/8/1975

–

3/23/2014

10/25/1979

–

4/15/1994

Urban drainage and some

waste water treatment plant

impacts

3
Above Confluence with

Boxelder Creek
06752280

10/1/1979

–

3/23/2014

10/24/1979

–

4/15/1994

Contains impacts and treatment

plants from the City of Fort

Collins

4
Downstream of Greeley,

CO
06752500

4/1/1903

–

9/30/1998

7/30/1992

–

1/12/1995

Contains impacts from Fort

Collins, Windsor, agriculture,

and Greeley

3.3: RESULTS AND DISCUSSION

3.3.1: DOWNSTREAM APPLICATION

The map-based interface for the CFA tool facilitates a “downstream application” of flow

analyses using the tool’s standardized approach to better understand and compare flow and

nutrient dynamics along the length of a river. This was applied to a stretch of the Poudre River

for the four points shown in Figure 39, described in Table 8. A load duration curve (LDC)

analysis was applied to each of the four locations analyzing available flow data and total nitrogen

tests (USGS water quality code 006000) for the stations from USGS’ NWIS. For the analysis a

target nitrogen concentration of 2 mg/L was used in conjunction with the flow data to determine

a total allowable nitrogen load based on flow recurrence interval.

As show in Figure 40, at Point 1, all observed nitrogen concentrations are below the

target standard and roughly parallel to the total LDC. The water quality points are also

67

highlighted to reflect which part of the season they occur in, the points highlighted in black were

witnessed from April to October. This season of stream flows was selected to highlight the

impacts of the annual snow melt hydrograph from the winter seasonal low flows typical for

rivers in this area. In addition to the water quality points, a boxplot of the observed nitrogen

concentrations is provided for each of the five flow intervals of the duration curve. Additionally,

each of the annual LDCs, plotted in grey, are clustered near the red LDC for the complete period

of record which indicates minimal variation in stream flows over time, which supports the use of

this station as a natural background indicator.

Figure 40: CFA’s Load Duration Curve for Point 1, Cache La Poudre River at Mouth of Canyon

At Point 2, in Fort Collins, it is quickly evident that the natural flow regime has been

disturbed from urban development due to the wider spread in the annual LDCs in Figure 41.

Additionally, nitrogen concentrations are elevated closer to the target concentration than for

Point 1. This is due to some agricultural and urban storm water influences which drain to this

portion of the river. The shape of the LDC has also changed to reflect the impacts of urbanization

on a watershed which is a tendency towards higher peak flows more frequently due to added

68

imperviousness. The smaller magnitude of “Low Flows” portion of the LDC relative to Point 1 is

due to water diversions out of the river between the canyon mouth and Fort Collins.

Figure 41: CFA’s Load Duration Curve for Point 2, Cache La Poudre River at Fort Collins, CO

Point 3 further illustrates the urban impacts of the City of Fort Collins on the flow regime

of the Poudre River. Again, the flood peaks are further heightened and their frequency reduced.

The Dry Conditions and Low Flows section remain at a lower magnitude than that of upstream.

Additionally, the added complexity and variability of urban drainage and some agricultural

return flow impacts is reflected in the wider spread of the annual LDCs. A further illustration of

the downstream dynamics of the river as affected by the city, are the elevated nitrogen levels

which now regularly exceed the target concentration of 2 mg/L.

69

Figure 42: CFA’s Load Duration Curve for Point 3, Cache La Poudre River above Boxelder Creek

Point 4, Figure 43, illustrates a very different flow regime of the Poudre River than that

before Fort Collins. After Fort Collins and before Greeley, agricultural groundwater return flows

have contributed to the river elevating the Dry Conditions and Low Flow sections of the LDC.

However, due to the urban drainage of Fort Collins, Windsor, and Greeley, the High Flows

remain high. As with the previous points, the overall nitrogen concentration have again increased

dramatically above the target concentration illustrating downstream impacts of urban and

agricultural areas on this river. A downstream analysis, like this one, can shed light on different

influences to a river system and help sort out where things start to change. It can also assist

regulating agencies in assessing the viability of future regulation standards against currently

available data.

70

Figure 43: CFA’s Load Duration Curve for Point 4, Cache La Poudre River near Greeley, CO

3.3.2: SCALABILITY

In order to test the expected scalability of the CFA tool, a series of test cases were

generated for each of the analyses. These test cases were then sent for execution to a cloud

environment using 2-core, extra-large, Amazon-cloud, virtual machines. Based on an

understanding of the behind the scenes of CFA’s analyses, a preliminary scalability test was

performed using estimated request rates that were expected to stress the scalability of the system.

These rates were estimated based primarily on the complexity of the analysis, simple analyses

were tested at higher request rates, complex analyses were tested at lower request rates. Table 9

below summarizes the initial scalability request rates for each of the various models in the CFA

tool; these rates are approximate in practice due to overhead computational costs of setting up

the testing infrastructure and other similar limitations.

71

Table 9: CFA’s Preliminary Scalability Request Rates

CFA Analysis Preliminary Request Rate

Time Series/Statistics 10 req/sec

Flood (Bulletin 17B) 25 req/sec

Drought (Salas et al., 2005) 2 req/sec

Flow Duration Curve 10 req/sec

Load Duration Curve 2 req/sec

Base-flow Separation (BFLOW) 2 req/sec

Load Estimator (LOADEST) 2 req/sec

The results of this preliminary scalability testing are shown below in Figure 44. The high

request rates for time-series/statistics and the flow duration curve illustrate the expected decrease

in analysis execution time with increased available infrastructure (VMs). However, the similarly

simple load duration curve and drought analyses show almost no improvement with increased

number of VMs due to their lower request rates, meaning that the initial infrastructure of the first

4 VMs are likely sufficient to complete the analyses at the given request rates. The irregularity in

the flood analysis results was unexpected and examined further. It was discovered that the high

request rate of the flood analysis testing coupled with how quickly the flood analyses completed,

new VMs were unable to launch properly for the next step of the testing cycle resulting in an

irregular execution time versus available infrastructure curve.

72

Figure 44: CFA’s Preliminary Scalability Testing Results

The base-flow separation (BFLOW) and load estimator (LOADEST) models, due to their

greater complexity, were tested over a broader range of number of virtual machines in an attempt

to view a more complex response to available infrastructure. However, the preliminary testing,

Figure 44, revealed that after an initial amount of VMs are supplied to those particular models,

minimal or negative additional computational benefit is gained with the addition of more virtual

machines. Additionally, after preliminary testing it was found that only 37% of the LOADEST

test cases ran to completion. Upon a re-examination of the test cases, the majority of the

LOADEST test cases were found to be faulty and were replaced and re-verified before any

additional scalability testing to ensure proper results. Then the LOADEST and BFLOW analyses

were re-tested for scalability at a variety of new request rates in an attempt to better stress the

scalability of these particular models. Only the load estimation and base-flow separation analyses

were tested because based on the preliminary testing these were the only analysis in CFA that

appeared to have a significant computational burden.

73

Shown below in Figure 45, the scalability results for the load estimation illustrate a

general trend that with increased cyberinfrastructure, number of VMs, and the average runtime

decreases. Additionally, as request rates are increased, there is a trend to increase the average run

time. However, for this particular analysis the additional benefit of more than 12 virtual

machines does not appear to assist with quicker model execution. Load estimation tests

converged to an average value of about 7 seconds after only 12 virtual machines became

available.

Figure 45: CFA’s Additional Load Estimator (LOADEST) Scalability Testing Results

The scalability results for the base-flow separation were more complex. As shown below

in Figure 46, the BFLOW analysis appeared to reach a much more stable average execution time

for its models, approximately 8 seconds despite having different request rates. The base-flow

separation analysis also showed the same increase in execution time with increased request rate

for a given set of initial VMs. Both the load estimator and base-flow separation analyses support

the claim of scalability with their decreased execution time for both greater available

infrastructure (number of VMs) and for lower request rates.

74

Figure 46: CFA’s Additional Base-flow Separation (BFLOW) Scalability Testing Results

3.3.3: LIMITATIONS

One issue that the scalability testing revealed is that some of the analyses in CFA; FDC,

LDC, flood, and drought analysis, are very simple. This in turn requires a very large, possibly

unrealistic, web-request rate to identify and illustrate scalability benefits with cloud-based VMs

in CSIP. Even on a globally available website with thousands of users, a request rate 25 requests

per second is probably not realistic; thus the scalability benefits of the simple CFA analyses are

likely minimal. The flood analysis testing also illuminated a bottle neck of the current

implementation of the infrastructure to launch new VMs for testing due to the quick execution of

the analyses. However, due to how quickly the analyses completed it is likely unnecessary to

launch new VMs to handle an increase in this particular analyses’ demand because the current

infrastructure will be available to handle the requests in a very short amount of time anyway.

3.4: CONCLUSIONS

Water will continue to be an important component in cities, agriculture, and industry. To

better understand existing stream systems requires more tools and analysis techniques that need

75

to be easily available and make use of recent advancements in computer technology. As tools

become more complex, proper management of computational resources become more important.

A current solution to proper management of cyberinfrastructure is the use and development of

flow analysis software using cloud-based cyberinfrastructure to combine various analyses into

single tool and provide a scalable modeling infrastructure. A single unified tool requires data to

be preprocessed once rather than once for each analysis and software package being used

resulting in more efficient use of time and resources. Additionally, web support for flow analyses

will continue to be an important step in use of a tool; otherwise limitations like access to

complicated inputs, like regional flood skewness coefficients, will remain beyond the reach of

many users. The Comprehensive Flow Analysis (CFA) tool provides this software package unity

allowing multiple flow analyses on a single formatted dataset. Furthermore, the scalability of the

various CFA flow analyses under different cyberinfrastructure hardware configurations and

request rates demonstrates that this is a scalable tool. The scalable infrastructure combined with

the database access built into CFA creates a more streamlined analysis process from data

collection to analysis to results.

76

CHAPTER 4: CONCLUSIONS

The complex issues of water demand and environmental change in watersheds have

driven the desire to simulate and model watersheds and the impacts of various management and

climate change scenarios. The pseudo-distributed watershed model SWAT and the finite-

difference groundwater model MODFLOW are at the forefront of popular available watershed

models. Inabilities of these models to simulate complex groundwater response as well as erosion,

plant growth, nutrient cycling, and agricultural management has led to multiple attempts to link

the models. However, these models are unavailable and have drawbacks like required identical

spatial discretization and monthly coupling. As a result the aforementioned work was undertaken

to create a generalized spatial linkage between SWAT and MODFLOW which retains the

respective strengths of the two models coupled on a daily time-step. This linkage facilitates the

use of existing spatially dis-similar SWAT and MODFLOW models while increasing the overall

quality of simulation for a more reliable result than previously possible.

This daily coupling between SWAT and MODFLOW has resulted in realistic and

accurate stream flow results for the North Fork of the Sprague River in Oregon. Additionally,

groundwater representation within SWAT was increased by the inclusion of MODFLOW and

accurate groundwater table elevations were simulated as a result. However, at the high elevation

edge of the watershed a reduced volume of recharge to the aquifer caused lower water table

elevations relative to the original MODFLOW model for the Upper Klamath Basin. The new

SWAT-MODFLOW coupling resulted in a more accurate representation of both the frequency

and magnitude of streams flows than the original calibrated SWAT model only. This model

77

coupling also provided these results without additional calibration. It is likely calibration of the

coupled SWAT-MODFLOW model will improve all the results herein discussed.

Additionally, as better ways to access and implement flow analyses become available it is

important to leverage these advances. Water will continue to be an important component in

cities, agriculture, and industry. To better understand existing stream systems requires more tools

and analysis techniques that need to be easily available and make use of recent advancements in

computer technology. As tools become more complex, proper management of computational

resources become more important. A current solution to proper management of

cyberinfrastructure is the use and development of flow analysis software using cloud-based

cyberinfrastructure to combine various analyses into single tool and provide a scalable modeling

infrastructure. A single unified tool requires data to be preprocessed once rather than once for

each analysis and software package being used resulting in more efficient use of time and

resources. Additionally, web support for flow analyses will continue to be an important step in

use of a tool; otherwise limitations like access to complicated inputs, like regional flood

skewness coefficients, will remain beyond the reach of many users. The Comprehensive Flow

Analysis (CFA) tool provides this software package unity allowing multiple flow analyses on a

single formatted dataset. Furthermore, the scalability of the various CFA flow analyses under

different cyberinfrastructure hardware configurations and request rates demonstrates that this is a

scalable tool. The scalable infrastructure combined with the database access built into CFA

creates a more streamlined analysis process from data collection to analysis to results.

78

REFERENCES

Ahmadi, M., R. Records, and M. Arabi. 2013. Impacts of climate change on diffuse pollutant

fluxes at the watershed scale. Hydrologic Process. Published online. doi:

10.1002/hyp.9723.

Arnold, J. G., and N. Fohrer. 2005. SWAT2000: Current capabilities and research opportunities

in applied watershed modeling. Hydrological Processes. 19(3): 563‐572.

Arnold, J.G. and P.M. Allen. 1999a. Automated methods for estimating baseflow and ground

water recharge from streamflow records. Journal of the American Water Resources

Association 35(2): 411-424.

Arnold, J. G., R. Srinivasan, R. S. Muttiah, P. M. Allen, and C. Walker. 1999b. Continental‐scale

simulation of the hydrologic balance. Journal of American Water Resources Association.

35(5): 1037‐1052.

Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R. 1998. Large area hydrologic modeling

and assessment Part I Model development. Journal of American Water Resources

Association. (JAWRA), 34(1): 73-89.

Arnold, J. G., P. M. Allen, R. Muttiah, & G. Bernhardt. 1995a. Automated base flow separation

and recession analysis techniques. Ground Water, 33(6): 1010-1010.

79

Arnold, J. G., J. R. Williams, and D. R. Maidment. 1995b. Continuous‐time water and sediment‐

routing model for large basins. Journal of Hydrologic Engineering ASCE 121(2): 171‐

183.

Arnold, J. G., and J. R. Williams. 1987. Validation of SWRRB: Simulator for water resources in

rural basins. Journal of Water Resources Planning and Management ASCE 113(2): 243‐

256.

Atkins, Jr., J.T., J.B. Wiley, and K.S. Paybins. 2009. Generalized Skew Coefficients of Annual

Peak Flows for Rural, Unregulated Streams in West Virginia. U.S. Geological Survey:

Open-File Report: 2008-1304.

Baffaut, C., and V.W. Benson. 2009. Modeling Flow and Pollutant Transport in a Karst

Watershed with SWAT. Trans. ASABE 52(2): 469-479.

Bailey, R.T., Gates, T.K., and M. Ahmadi. 2014. Simulating reactive transport of selenium

coupled with nitrogen in a regional-scale irrigated groundwater system. Journal of

Hydrology, accepted.

Bailey, R.T., T.K. Gates, and A.D. Halvorson. 2013a. Simulating variably-saturated reactive

transport of selenium and nitrogen in agricultural groundwater systems. Journal of

Contaminant Hydrology, 149, 27-45.

Bailey, R.T., E.D. Morway, R. Niswonger, and T.K. Gates. 2013b. Modeling variably saturated

multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D.

Groundwater, 51(5), 752-761.

80

Bailey, R.T., J.H. William, and T.K. Gates. 2012. The Influence of Nitrate on Selenium in

Irrigated Agricultural Groundwater Systems.

Beven, Keith, R. Lamb, P. Quinn, R. Romanowicz, and J. Freer (V. P. Singh). "Topmodel."

Computer models of watershed hydrology. 1995: 627-668.

Booth, N.L., E.J. Everman, I. Kuo, L. Sprague, and L. Murphy. 2011. A Web-based Decision

Support System for Assessing Regional Water-Quality Conditions and Management

Actions. Journal of the American Water Resources Association 47(5): 1136-1150.

Borah, D. K., G. Yagow, A. Saleh, P. L. Barnes, W. Rosenthal, E. C. Krug, and L. M. Hauck.

2006. Sediment and nutrient modeling for TMDL development and implementation.

Trans. ASABE 49(4): 967‐986.

Brown, L. C., and T. O. Barnwell, Jr. 1987. The enhanced water quality models QUAL2E and

QUAL2E‐UNCAS: Documentation and user manual. EPA document EPA/600/3‐87/007.

Athens, Ga.: USEPA.

Burger C.M., S. Kollet, J. Schumacher, and D. Bosel. 2012. Introduction of a web service for

cloud computing with the integrated hydrologic simulation platform ParFlow. Computers

and Geosciences 48(2012): 334-336.

Camporese, M., C. Paniconi, M. Putti, and S. Orlandini. 2010. Surface-subsurface flow modeling

with path-based runoff routing, boundary condition-based coupling, and assimilation of

multisource observation data. Water Resources Research. 46:W022512,

doi:10.1029/2008WR007536.

81

CHESS. 2001. Climate, hydrochemistry, and economics of surface‐water systems. Available at:

www.nwl.ac.uk/ih/www/research/images/chessreport.pdf. Accessed 6 February 2014.

Christenson, S., N.I. Osborn, C.R. Neel, J.R. Faith, C.D. Blome, J. Puckette, and M.P. Pantea.

2011. Hydrogeology and Simulation of the Groundwater Flow in the Arbuckle-Simpson

Aquifer, South-Central Oklahoma. U.S. Geological Survey Scientific Investigations

Report 2011-5029.

Chu, T. W., and A. Shirmohammadi. 2004. Evaluation of the SWAT model's hydrology

component in the Piedmont physiographic region of Maryland. Trans. ASAE 47(4):

1057‐1073.

Chung, I., N. Kim, J. Lee, and M. Sophocleous. 2010. Assessing distributed groundwater

recharge rate using integrated surface water-groundwater modelling: application to

Mihocheon watershed, South Korea. Hydrogeology Journal 18: 1253-1264.

Cleland, Bruce. August 2007. "An Approach for Using Load Duration Curves in the

Development of TMDLs."National TMDL Science and Policy.

Cleland, Bruce. November 2003. "TMDL Development from the 'Bottom Up' - Part III: Duration

Curves and Wet-Weather Assessments." National TMDL Science and Policy.

Cleland, Bruce. August 2002. “TMDL Development from the ‘Bottom Up’ Part II: Using

Duration Curves to Connect the Pieces.” National TMDL Science and Policy 2002.

82

Clement, T.P., Y. Sun, B.S. Hooker, and J.N. Petersen. 1998. Modeling Multispecies Reactive

Transport in Ground Water. Groundwater Monitoring & Remediation 18(2): 79-92.

Conan, C., F. Bouraoui, N. Turpin, G. de Marsily, and G. Bidoglio. 2003. Modeling flow and

nitrate fate at catchment scale in Brittany (France). Journal of Environmental Quality

32(6):2026–2032.

Cooper, R.M., 2005. Estimation of Peak Discharges for Rural, Unregulated Streams in Western

Oregon. U.S. Geological Survey: Scientific Investigations Report 2005-5116.

Council, G. W. 1999. A Lake Package for MODFLOW (LAK2): Documentation and User’s

Manual, Version 2.2. HIS Geotrans, Sterling, Virginia, USA.

Ferguson, I.M., and R.M. Maxwell. 2010. Role of groundwater in watershed response and land

surface feedbacks under climate change. Water Resources Research. 46:W00F02,

doi:10.1029/2009WR008616.

Flynn, K.M., W.H. Kirby, and P.R. Hummel. 2006. User’s Manual for Program PeakFQ, Annual

Flood-Frequency Analysis Using Bulletin 17B Guidelines. U.S. Geological Survey:

Techniques and Methods 4-B4.

Galbiati L, F. Bouraoui, F.J. Elorza, and G. Bidoglio. 2006. Modeling diffuse pollution loading

into a Mediterranean lagoon: development and application of an integrated surface-

subsurface model tool. Ecological Modeling. 193(1–2):4–18.

83

Gannett, M.W., B.J. Wagner, and K.E. Lite Jr. 2012. Groundwater simulation and management

models for the Upper Klamath Basin, Oregon and California. U.S. Geological Survey

Scientific Investigations Report 2012-5062.

Gannett, M.W., K.E. Lite, Jr., J.L. La Marche, B.J. Fisher, and D.J. Polette. 2010. Groundwater

hydrology of the Upper Klamath Basin, Oregon and California. U.S. Geological Survey

Scientific Investigations Report 2007-5050, Version 1.1.

Gassman, P.W., M.R. Reyes, C.H. Green, J.G. Arnold. 2007. The Soil and Water Assessment

Tool: Historical Development, Applications, and Future Research Directions. Trans.

ASABE: 50(4): 1211-1250.

Gobindaraju, R.S., B. Engel, D. Ebert, B. Fossum, M. Huber, C. Jafvert, S. Kumar, V. Merwade,

D. Niyogi, L. Loliver, S. Prabhakar, G. Rochon, C. Song, and L. Zhao. 2009. Vision of

Cyberinfrastructure for End-to-End Environmental Exploration (C4E4). Journal of

Hydrologic Engineering American Society of Civil Engineers, 12, 1:56-64.

Harbaugh A.W. 2005. MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water

Model-The Ground-Water Flow Process. USGS Techniques and Methods 6-A16.

Harbaugh, A.W., E.R. Banta, M.C. Hill, and M.G. McDonald. 2000. MODFLOW-2000, The

U.S. Geological Survey modular ground-water model – User guide to modularization

concepts and the ground-water flow process. USGS Open-File Report: 2000-92.

Hargreaves, G. L., G. H. Hargreaves, and J. P. Riley. 1985. Agricultural benefits for Senegal

River basin. J. Irrig. Drain. Eng. 108(3): 225‐230.

84

Hay, L.E., S.L. Markstrom, and C. Ward-Garrison. 2011. Watershed-scale response to climate

change through the twenty-first century for selected basins across the United States. Earth

Impact. 15(17): 1-37.

Interagency Advisory Committee on Water Data (IACWD). 1982. "Guidelines for determining

flood flow frequency." Bulletin No. 17B (revised and corrected), Hydrology

Subcommittee, Washington, D.C.

Izaurralde, R. C., J. R. Williams, W. B. McGill, N. J. Rosenberg, and M. C. Quiroga Jakas. 2006.

Simulating soil C dynamics with EPIC: Model description and testing against long‐term

data. Ecological Modeling 192(3‐4): 362‐384.

Jeppsen, E., B. Kronvang, M. Meerhoff, M. Sondergaard, K.M. Hansen, H.E. Andersen, T.L.

Lauridsen, L. Liboriussen, M. Beklioglu, A. Ozen, and J.E. Olesen. 2007. Climate change

effects on runoff, catchment phosphorus loading and lake ecological state, and potential

adaptations. Journal of Environmental Quality. 38(5): 1930-41.

Kim NW, I.M. Chung, Y.S. Won, J.G. Arnold. 2008. Development and application of the

integrated SWAT-MODFLOW model. Journal of Hydrology 356:1–16.

Knisel, W. G. 1980. CREAMS, a field‐scale model for chemicals, runoff, and erosion from

agricultural management systems. USDA Conservation Research Report No. 26.

Washington, D.C.: USDA.

85

Kollet, S.J., and R.M. Maxwell. 2006. Integrated surface-groundwater flow modeling: A free-

surface overland flow boundary condition in a parallel groundwater flow model.

Advances in Water Resources 29: 945-985.

Leonard, R. A., W. G. Knisel, and D. A. Still. 1987. GLEAMS: Groundwater loading effects of

agricultural management systems. Trans. ASAE 30(5): 1403‐1418.

Lettenmaier, D.P., A.W. Wood, R.N. Palmer, E.F. Wood, and E.Z. Stakhiv. 1999. Water

resources impacts of global warming: A US regional perspective. Climate Change 43(3):

537-579.

Lim K.J., B.A. Engel, Z. Tang, J. Choi, K. Kim, S. Muthukrishnan, and D. Tripathy. 2005.

Automated Web GIS Based Hydrograph Analysis Tool, WHAT. Journal of the American

Water Resources Association 41(6): 1407-1416.

Lloyd, W., O. David, J. Lyon, K.W. Rojas, J.C. Ascough II, T.R. Green, and J.R. Carlson. 2012.

The Cloud Services Innovation Platform Enabling Service-Based Environmental

Modelling Using Infrastructure-as-a-Service Cloud Computing. International

Environmental Modelling and Software Society 2012 Conference Proceedings.

Luo, Y., and M. Sophocleous. 2011. Two-way coupling of unsaturated-saturated flow by

integrating the SWAT and MODFLOW models with application in an irrigation district

in arid region of West China. Journal of Arid Land. 3(3): 164-173. doi:

10.3724/SP.J.1227.2011.00164.

86

Markstrom, S.L., R.G. Niswonger, R.S. Regan, D.E. Prudic, and P.M. Barlow. 2008. GSFLOW-

Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the

Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow

Model (MODFLOW-2005). U.S. Geological Survey Techniques and Methods 6-D1:

240p.

Mashburn, S.L., D.W. Ryter, C.R. Neel, S.J. Smith, and J.S. Magers. 2013. Hydrogeology and

Simulation of Groundwater Flow in the Central Oklahoma (Garber-Wellington) Aquifer,

Oklahoma, 10987 to 2009, and Simulation of Available Water in Storage, 2010-2059.

U.S. Geological Survey Scientific Investigations Report 2013-5219.

McDonald, M.G., and A.W. Harbaugh.1988. A modular three-dimensional finite-differences

ground-water flow model. U.S. Geological Survey. Techniques of Water-Resources

investigations Book 6, Ch. Al., p. 596.

Menking, K. M., R. Y, Anderson, N. G. Shafike, K. H. Syed, and B. D. Allen. 2004. Wetter or

colder during the last glacial maximum? Revisiting the pluvial lake question in

southwestern North American Quaternary Research. 62(3): 280‐288.

Menking K.M., K.H. Syed, R.Y. Anderson, N.G. Shafike, and J.G. Arnold. 2003. Model

estimates of runoff in the closed, semiarid Estancia basin, central New Mexico, USA.

Hydrological Sciences Journal 48(6):953–970.

87

Monteith, J. L. 1965. Evaporation and the environment. In The State and Movement of Water in

Living Organisms, Proc. 19th Symp. Swansea, U.K.: Society of Experimental Biology,

Cambridge University Press.

Morway, E.D., T.K. Gates, and R.G. Niswonger. 2013. Appraising Options to Reduce Shallow

Groundwater Tables and Enhance Flow Conditions Over Regional Scales in an Irrigated

Alluvial Aquifer System. Journal of Hydrology 495(2013): 216-237.

Neitsch, S. L., J. G. Arnold, J. R. Kiniry, and J. R. Williams. 2011. Soil and Water Assessment

Tool Theoretical Documentation, Version 2009. Temple, Tex.: Texas Water Resources

Institute Technical Report No. 406. Available at:

http://twri.tamu.edu/reports/2011/tr406.pdf Accessed 7 February 2014.

Neitsch, S. L., J. G. Arnold, J. R. Kiniry, and J. R. Williams. 2005. Soil and Water Assessment

Tool Theoretical Documentation, Version 2005. Temple, Tex.: USDA‐ARS Grassland,

Soil and Water Research Laboratory. Available at:

http://swat.tamu.edu/media/1292/SWAT2005theory.pdf. Accessed 7 February 2014.

Niswonger, R.G., S. Panday, and M. Ibaraki. 2011. MODFLOW-NWT, A Newton formulation

for MODFLOW-2005: USGS Survey Techniques and Methods 6–A37.

Niswonger, R.G., D.E. Prudic, and R.S. Regan. 2006. Documentation of the unsaturated-zone

flow (UZF1) package for modeling unsaturated flow between the land surface and the

water table with MODFLOW-2005, USGS Techniques and Methods 6-A19.

88

Olson, S.A., 2009. Estimation of Flood Discharges at Selected Recurrence Intervals for Streams

in New Hampshire. U.S. Geological Survey: Scientific Investigations Report 2008-5206.

Parrett, C., D.R. Johnson. 2004. Methods for Estimating Flood Frequency in Montana Based on

Data through Water Year 1998. U.S. Geological Survey: Water-Resources Investigations

Report 03-4308.

Paschke, S.S. 2011. Groundwater Availability of the Denver Basin Aquifer System, Colorado.

U.S. Geological Survey Professional Paper 1770.

Perkins, S.P., and M. Sophocleous. 1999. Development of a comprehensive watershed model

applied to study stream yield under drought conditions. Ground Water 37(3):418–426.

Peterson, J. R., and J. M. Hamlet. 1998. Hydrologic calibration of the SWAT model in a

watershed containing fragipan soils. Journal of American Water Resources Association

34(3): 531‐544.

Pomeroy, C.A., and A.J. Timpson. 2010. Methods for Estimating Magnitude and Frequency of

Peak Flows for Small Watersheds in Utah. U.S. Geological Survey: Report No UT-10.11.

Priestly, C. H. B., and R. J. Taylor. 1972. On the assessment of surface heat flux and evaporation

using large‐scale parameters. Monthly Weather Rev. 100(2): 81‐92.

Prommer, H., D.A. Barry, and C. Zheng. 2003. MODFLOW/MT3DMS-Based Reactive

Multicomponent Transport Modeling. Groundwater 42(2): 247-257.

89

Prudic, D.E., L.F. Konikow, and E.R. Banta. 2004. A New Streamflow Routing (SFR1) Package

to Simulate Stream-Aquifer Interaction with MODFLOW-2000. U.S. Geological Survey

Open-File Report 2004-1042.

Rathjens, H., and N. Oppelt. 2012. SWATgrid: An interface for setting up SWAT in a grid-based

discretization scheme. Computers & Geosciences. 45: 161-167.

Records, R. 2013. Water Quality Benefits of Wetlands under Historic and Potential Future

Climate in the Sprague River Watershed, Oregon. MS Thesis, Colorado State University,

Fort Collins, CO.

Rumman, M.A., and D.F. Payne. 2003. Model Framework and Preliminary Results of the

Regional MODFLOW Ground-Water Flow Model of Costal Georgia, South Carolina,

and Florida. 2003. Proceedings of the 2003 Georgia Water Resources Conference held

April 23-24, 2003, at the University of Georgia.

Runkel, R.L., C.G. Crawford, and T.A. Cohn. 2004. Chapter A5: Load Estimator (LOADEST):

A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers. U.S.

Geological Survey Techniques and Methods Book 4.

Seaber, P. R., F. P. Kapinos, and G. L. Knapp. 1987. Hydrologic units maps. USGS Water‐

Supply Paper No. 2294. Reston, Va.: U.S. Geological Survey.

Sloto, R.A., and M.Y. Crouse. 1996. HYSEP: A Computer Program for Streamflow Hydrograph

Separation and Analysis: U.S. Geological Survey Water-Resources Investigations Report

96-4040, 46 p.

90

Solheim, A.L., K. Austnes, T.E. Eriksen, I. Seifert, and S. Holen. 2010. Climate change impacts

on water quality and biodiversity: Background report for EEAA European Environment

State and Outlook Report 2010 ETC Water Technical Report 1/2010. Prague, Czech

Republic.

Soong, D.T., A.L. Ishii, J.B. Sharpe, and C.F. Avery. 2004. Estimating Flood-Peak Discharge

Magnitudes and Frequencies for Rural Streams in Illinois. U.S. Geological Survey:

Scientific Investigations Report 2004-5103.

Sophocleous, M., and S.P. Perkins. 2000. Methodology and application of combined watershed

and ground-water models in Kansas. Journal of Hydrology 236(3–4):185–201.

Spruill, C. A., S. R. Workman, and J. L. Taraba. 2000. Simulation of daily and monthly stream

discharge from small watersheds using the SWAT model. Trans. ASAE 43(6): 1431‐

1439.

Srivastava, P., J. N. McNair, and T. E. Johnson. 2006. Comparison of process‐based and

artificial neural network approaches for streamflow modeling in an agricultural

watershed. Journal of American Water Resources Association 42(2): 545‐563.

USDA‐NRCS. 2004. Part 630: Hydrology. Chapter 10: Estimation of direct runoff from storm

rainfall: Hydraulics and hydrology: Technical references. In NRCS National Engineering

Handbook. Washington, D.C.: USDA National Resources Conservation Service.

Available at:

91

http://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=17752.wba.

Accessed 4 April 2014.

Vallabhaneni, S., CC. Chan, and S.J. Campbell. 2012. SSOAP Toolbox Enhancements and Case

Study. U.S. EPA 600/R-12/690.

Water Resources Council, Hydrology Committee (WRC-HC). 1967. "A Uniform Technique for

Determining Flood Flow Frequencies." Bulletin No. 15, Washington, D.C.

Williams, J. R., and H. D. Berndt. 1977. Sediment yield prediction based on watershed

hydrology. Trans. ASAE 20(6): 1100‐4.

Wood, A.W., L.R. Leung, V. Sridhar, and D.P. Lettenmaier. 2004. Hydrologic implications of

dynamical and statistical approaches to downscaling climate model outputs. Climate

Change 62(1-3): 189-216.

Zheng, C., and P.P. Wang. 1999. MT3DMS: A Modular Three-Dimensional Multispecies

Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of

Contaminants in Groundwater Systems; Documentation and User’s Guide. U.S. Army

Corps of Engineers Contract Report SERDP-99-1.

Zheng, C. 1990. MT3D, A modular three-dimensional transport model for simulation of

advection, dispersion and chemical reactions of contaminants in groundwater systems.

Report to the U.S. Environmental Protection Agency, Robert S. Kerr Environmental

Research Laboratory, Ada, OK.

92

APPENDIX I: SWAT-MODFLOW LINKAGE INPUT FILE INSTRUCTIONS

ARCGIS SHAPEFILE MANIPULATION

1. Modify the MODFLOW grid shapefile (FISHNET can be used to create a gridded

shapefile in ArcGIS, http://arcscripts.esri.com/details.asp?dbid=12807)

a. Add new field (grid_id) integer

i. See “HOW TO SORT AND NUMBER GRID CELLS FOR EXPECTED

GRID ID NUMBER SEQUENCE” on how to populate this field

b. Add new field (Col_Row) string

i. Populate the field by the column index of the grid cell then a space then a

dash then a space then the row "index of the grid cell

ii. Example: The grid cell in column 71 and row 33 would have Col_Row =

“71 – 33”

2. Copy “reach” shapefile (name it reach_new) then:

a. Add new field (riv_id) integer, which is the river id

i. Populate as "field calculator" as = SUBBASIN

3. Determine the SWAT/MODFLOW river interaction

a. Intersect reach_new with the MODFLOW grid shapefile (name it rivergrid)

http://arcscripts.esri.com/details.asp?dbid=12807

93

b. After intersecting add a new field (rgrid_len) float, the length of each river

segment within the MODFLOW grid

i. populate the field by "calculate geometry"

ii. Note: this needs to be in units of meters

c. Export this attribute table as a csv file (name it rivergrid.csv)

4. Copy FullHRU and name it “FullHRU_edit” and modify it

a. add new field (riv_id) integer, the river this HRU drains to

i. Populate the field by "field calculator" = SUBBASIN

ii. Or by the river IDs that you have previously created (note: only 1 river per

subbasin)

b. add new field (hru_id) integer

i. First list the attribute table in increasing order by the column of "HRUgis"

ii. Populate by numbering this new field 1,2,...,n this should result such that

"HRU 1" is the first HRU in subbasin 1

c. Take FullHRU_edit _sort and apply the GIS operation "Multipart to singlepart" to

get a layer (name it FullDHRU) of disaggregated HRUs (DHRU)

5. Modify the FullDHRU shapefile

a. add new field (DHRU_area) float

94

i. Populate the field by "calculate geometry"

b. add new field (DHRU_id) long integer

i. populate the field by "field calculator" as = FID + 1

c. export attribute table (name it FullDHRU.csv)

6. Intersect the MODFLOW grid shapefile (AllCells_sort) with FullDHRU (name it

DHRU_grid)

a. add new field (overlap_a) float, the overlap area between DHRUs and grid cells

i. Populate the field by "calculate geometry"

b. add new field (grid_area) float, the area of a grid cell

i. Populate the field by "field calculator" as = the area of the MODLFOW

grid cell, in meters

ii. Example: A 250 meter by 250 meter grid would have area = 250*250 =

62500 square meters

c. Export attribute table as a csv file (name it DHRU_grid.csv)

7. Run createSWAT_MODFLOW_files.java

a. See Appendix II

95

HOW TO SORT AND NUMBER GRID CELLS FOR EXPECTED GRID ID NUMBER

SEQUENCE

1. Open the Geoprocessing > Python window

2. Copy the below code after filling in the correct file path and file name for your database

on the env.workspace line (replace “C:/Projects/mydatabase.mdb” with your file path and

name of your database)

import arcpy

from arcpy import env

env.workspace = "U:/ArcGIS/Default.mdb"

arcpy.Sort_management("AllCells", "AllCells_sort", [["row", "ASCENDING"], ["col",

"ASCENDING"]], "PEANO")

3. Then Modify the AllCells_sort shapefile:

a. Add new field (grid_id) long int

b. Open the Field Calculator to populate this field as equal to objectID

96

APPENDIX II: AUTOMATED SWAT-MODFLOW LINKAGE INPUT FILE CREATION

JAVA CODE

CREATESWAT_MODFLOW_FILES.JAVA

package SWAT_MODFLOW;

import java.io.IOException;

import javax.swing.JOptionPane;

/**

* Last Updated: 28-February-2014

* @author Tyler Wible

* @since 31-July-2013

*/

public class createSWAT_MODFLOW_files {

 public static void main(String[] args) throws IOException {

 //Ask user for inputs

 String directory = fetchDirectory();

 int num_Grids = fetchGrids();

 int num_HRUs = fetchHRUs();

 int num_DHRUs = fetchDHRUs();

 String mfRiverFile = fetchMFriverFile();

 int num_RiverGrids = fetchRiverGrids();

 //Set inputs

 String[] inputs = new String[3];

 inputs[0] = directory;

 //Create grid2dhru file

 inputs[1] = String.valueOf(num_Grids);

 inputs[2] = String.valueOf(num_DHRUs);

 map_grid2dhru.main(inputs);

 //Create dhru2grid file

 inputs[1] = String.valueOf(num_Grids);

 inputs[2] = String.valueOf(num_DHRUs);

 map_dhru2grid.main(inputs);

 //Create dhru2hru file

97

 inputs[1] = String.valueOf(num_HRUs);

 inputs[2] = String.valueOf(num_DHRUs);

 map_dhru2hru.main(inputs);

 //Create river2grid file

 inputs[1] = mfRiverFile;

 inputs[2] = String.valueOf(num_RiverGrids);

 map_river2grid.main(inputs);

 }

 static String fetchDirectory(){

 String fileString = JOptionPane.showInputDialog("Please enter the file path to the

directory where the input files are located. Ex: 'C:/myFolder/myOtherFolder'", "Enter file

directory");

 return fileString;

 }

 static int fetchGrids(){

 String gridString = JOptionPane.showInputDialog("Please enter the total number

(including inactive cells) of MODFLOW grid cells in the MODFLOW model", "Enter

Number of Grid Cells");

 int gridInt = Integer.parseInt(gridString);

 return gridInt;

 }

 static int fetchHRUs(){

 String hruString = JOptionPane.showInputDialog("Please enter the total number of

SWAT Hydrologic Response Units (HRUs) in the SWAT model", "Enter Number of

HRUs");

 int hruInt = Integer.parseInt(hruString);

 return hruInt;

 }

 static int fetchDHRUs(){

 String dhruString = JOptionPane.showInputDialog("Please enter the total number of

Disaggregated-Hydrologic Response Units (DHRUs) in the SWAT/MODFLOW/UZF-

RT3D model", "Enter Number of DHRUs");

 int dhruInt = Integer.parseInt(dhruString);

 return dhruInt;

 }

 static String fetchMFriverFile(){

 String fileString = JOptionPane.showInputDialog("Please enter the name of the river

pakage file in the MODFLOW model (ex: 'myMODFLOWFile.riv')", "Enter

MODFLOW river file name");

 return fileString;

 }

 static int fetchRiverGrids(){

98

 String dhruString = JOptionPane.showInputDialog("Please enter the total number of

MODFLOW river grid cells in the MODFLOW model", "Enter Number of river grid

cells");

 int dhruInt = Integer.parseInt(dhruString);

 return dhruInt;

 }

}

MAP_DHRU2GRID.JAVA

package SWAT_MODFLOW;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Formatter;

import java.util.Scanner;

/**

* Last Updated: 10-March-2014

* @author Tyler Wible

* @since 11-April-2013

*/

public class map_dhru2grid {

 public static void main(String[] args) throws IOException {

 //Inputs

 String directory = args[0];

 int num_Grids = Integer.parseInt(args[1]);

 int num_DHRUs = Integer.parseInt(args[2]);

 System.out.println("Creating map_dhru2grid.txt...");

 readFile(directory, num_Grids, num_DHRUs);

 System.out.println("Done");

 }

 /**

 * Reads the attribute table file MOD_HRU.csv containing the grid IDs, HRU IDs, their

respective areas and their area of overlap

 * @param directory the path to the input file (ex. C:/temp)

 * @param numGrids the total number of grid cells (active and inactive) in the

MODFLOW model

 * @param num_DHRUs the total number of disaggregated HRUs in the SWAT model

 * @throws IOException

 */

 public static void readFile(String directory, int numGrids, int num_DHRUs) throws

IOException {

99

 // read the file

 String path = directory + "/DHRU_grid.csv";

 File file = new File(path);

 Scanner scanner = new Scanner(file);

 // Read header

 String[] header = scanner.nextLine().split(",");

 //Get indices for the desired columns

 int index_grid_id = 0;

 int index_grid_area = 0;

 int index_dhru_id = 0;

 int index_overlap_area = 0;

 for(int i=0; i<header.length; i++){

 header[i] = header[i].replace('"', '%');

 header[i] = header[i].replaceAll("%", "");

 if(header[i].equalsIgnoreCase("grid_id")){

 index_grid_id = i;

 }else if(header[i].equalsIgnoreCase("grid_area")){

 index_grid_area = i;

 }else if(header[i].equalsIgnoreCase("dhru_id")){

 index_dhru_id = i;

 }else if(header[i].equalsIgnoreCase("overlap_a")){

 index_overlap_area = i;

 }

 }

 //Check for missing information

 if(index_grid_id == 0){

 throw new IOException("Error encountered, there is no attribute column 'grid_id' in

DHRU_grid.csv");

 }

 if(index_grid_area == 0){

 throw new IOException("Error encountered, there is no attribute column 'grid_area'

in DHRU_grid.csv");

 }

 if(index_dhru_id == 0){

 throw new IOException("Error encountered, there is no attribute column 'dhru_id' in

DHRU_grid.csv");

 }

 if(index_overlap_area == 0){

 throw new IOException("Error encountered, there is no attribute column 'overlap_a'

in DHRU_grid.csv");

 }

100

 // Read and parse text file

 ArrayList<String> DHRU_Num = new ArrayList<String>(); // DHRU Num

 ArrayList<Double> percent_Area_GRID = new ArrayList<Double>(); // area DHRU

inside given grid / total area grid

 ArrayList<String> grid_Num = new ArrayList<String>(); // Grid number

 while(scanner.hasNextLine()){

 String line = scanner.nextLine();

 // Split the read data

 String[] data_Splitted = line.split(",");

 // Grab values from text file

 double total_area_of_GRID = Double.parseDouble(data_Splitted[index_grid_area]);

 double area_of_HRU_within_GRID =

Double.parseDouble(data_Splitted[index_overlap_area]);

 //Calculate percent area of HRU within grid

 double percent_area_of_GRID_Double = area_of_HRU_within_GRID /

total_area_of_GRID;

 //Save values from text file

 DHRU_Num.add(data_Splitted[index_dhru_id]);

 percent_Area_GRID.add(percent_area_of_GRID_Double);

 grid_Num.add(data_Splitted[index_grid_id]);

 }

 scanner.close();

 write_modified_HRU_MOD(directory, DHRU_Num, percent_Area_GRID, grid_Num,

numGrids, num_DHRUs);

 }

 /**

 * Takes the list of grid/hru ids and the percent area of HRUs contributing to a given

grid and creates the SM linkage file

 * map_hru2grid.txt

 * @param directory the path to the output file (ex. C:/temp)

 * @param DHRU_Num list of HRU ID numbers

 * @param percent_Area_GRID list of percent grid within the above HRU ID

 * @param grid_Num list of grid ID numbers

 * @param numGrids the total number of grid cells (active and inactive) in the

MODFLOW model

 * @param num_DHRUs the total number of disaggregated HRUs in the SWAT model

 * @throws IOException

 */

 public static void write_modified_HRU_MOD(String directory,

 ArrayList<String> DHRU_Num,

 ArrayList<Double> percent_Area_GRID,

101

 ArrayList<String> grid_Num,

 int numGrids,

 int num_DHRUs) throws IOException {

 String path = directory + "/map_dhru2grid.txt";

 File file = new File(path);

 boolean fileTF = file.isFile();

 if(fileTF){

 boolean fileDeleteTF = file.delete();

 if(!fileDeleteTF){

 System.out.println("The file (" + path + ") could not be deleted");

 }

 }

 ArrayList<ArrayList<String>> gridIndexList = new ArrayList<ArrayList<String>>();

 int maxSize = 0;

 for(int j=1; j <= numGrids; j++){ // iterating over grid number

 System.out.println(j);

 // Find all positions containing current Grid number

 ArrayList<String> DHRUindex_for_currentGrid = new ArrayList<String>(); //

arraylist containing all HRUs within current Grid Num"

 for(int i = 0; i < grid_Num.size(); i++){

 if(j == (int) Double.parseDouble(grid_Num.get(i))){

 // Gives me an array containing all positions of HRUs which contribute to current

grid

 DHRUindex_for_currentGrid.add(String.valueOf(i));

 }

 }

 if(DHRUindex_for_currentGrid.size() > maxSize) maxSize =

DHRUindex_for_currentGrid.size();

 gridIndexList.add(DHRUindex_for_currentGrid);

 }

 // Format for which the text file will be written

 Formatter HRU_MOD = new Formatter(new FileWriter(file, true));

 // Write out the total number of MODFLOW grid cells which intersect with the SWAT

hrus and what the maximum number of SWAT hrus is that intersect this

 HRU_MOD.format("%1$12s%2$12s%n", numGrids, maxSize);

 for(int j=1; j <= numGrids; j++){ // iterating over grid number

 ArrayList<String> currentGrid_DHRUindexList = gridIndexList.get(j-1);

 // format the grid number as first column and the number of HRUs contributing to this

grid as the second column

 HRU_MOD.format("%1$12s%2$12s%n", j, currentGrid_DHRUindexList.size());

102

 //Print ID of HRUs contributing to the current grid

 for(int i = 0; i < currentGrid_DHRUindexList.size(); i++){

 int hruIndex = Integer.parseInt(currentGrid_DHRUindexList.get(i));

 int hruNumber = (int) Double.parseDouble(DHRU_Num.get(hruIndex));

 HRU_MOD.format("%1$12s", hruNumber);

 }

 HRU_MOD.format("%n", "");

 //Print Percent areas of each HRU contributing to the current grid

 for(int i = 0; i < currentGrid_DHRUindexList.size(); i++){

 int hruIndex = Integer.parseInt(currentGrid_DHRUindexList.get(i));

 HRU_MOD.format("%1$12.5f", percent_Area_GRID.get(hruIndex));

 }

 HRU_MOD.format("%n", "");

 }

 gridIndexList.clear();

 HRU_MOD.close();

 }

}

//Format of output

//390 59 (total number of grids to be read in) (the maximum number of dhrus that

contribute to a single grid)

//1 4 (grid#) (# of dhrus contributing to this grid)

//hru2_ID hru12_ID hru31_ID hru37_ID (list of dhru id #s contributing to grid#)

//0.36 0.25 0.04 0.35 (list of %areas of dhru contributing to grid#, adds to 1)

MAP_DHRU2HRU.JAVA

package SWAT_MODFLOW;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Formatter;

import java.util.Scanner;

/**

* Last Updated: 10-March-2014

* @author Tyler Wible

* @since 11-June-2013

*/

public class map_dhru2hru {

103

 public static void main(String[] args) throws IOException {

 //Inputs

 String directory = args[0];

 int num_HRUs = Integer.parseInt(args[1]);

 int num_DHRUs = Integer.parseInt(args[2]);

 System.out.println("Creating map_dhru2hru.txt...");

 readFile(directory, num_DHRUs, num_HRUs);

 System.out.println("Done");

 }

 /**

 * Reads the attribute table file MOD_HRU.csv containing the grid IDs, HRU IDs, their

respetive areas and their area of overlap

 * @param directory the path to the input file (ex. C:/temp)

 * @param num_DHRUs the total number of disaggregated HRUs in the SWAT model

 * @param num_HRUs the total number of aggregated (normal SWAT) HRUs in the

SWAT models

 * @throws IOException

 */

 public static void readFile(String directory, int num_DHRUs, int num_HRUs) throws

IOException {

 // read the file

 String path = directory + "/FullDHRU.csv";

 File file = new File(path);

 Scanner scanner = new Scanner(file);

 // Read header

 String[] header = scanner.nextLine().split(",");

 //Get indices for the desired columns

 int index_hru_id = 0;

 int index_hru_area = 0;

 int index_sub_id = 0;

 int index_dhru_id = 0;

 int index_dhru_area = 0;

 for(int i=0; i<header.length; i++){

 header[i] = header[i].replace('"', '%');

 header[i] = header[i].replaceAll("%", "");

 if(header[i].equalsIgnoreCase("hru_id")){

 index_hru_id = i;

 }else if(header[i].equalsIgnoreCase("Shape_Area")){

 index_hru_area = i;

 }else if(header[i].equalsIgnoreCase("SUBBASIN")){

 index_sub_id = i;

 }else if(header[i].equalsIgnoreCase("dhru_id")){

 index_dhru_id = i;

104

 }else if(header[i].equalsIgnoreCase("dhru_area")){

 index_dhru_area = i;

 }

 }

 //Check for missing information

 if(index_hru_id == 0){

 throw new IOException("Error encountered, there is no attribute column 'hru_id' in

FullDHRU_intersect.csv");

 }

 if(index_hru_area == 0){

 throw new IOException("Error encountered, there is no attribute column

'Shape_Area' in FullDHRU_intersect.csv");

 }

 if(index_sub_id == 0){

 throw new IOException("Error encountered, there is no attribute column

'SUBBASIN' in FullDHRU_intersect.csv");

 }

 if(index_dhru_id == 0){

 throw new IOException("Error encountered, there is no attribute column 'dhru_id' in

FullDHRU_intersect.csv");

 }

 if(index_dhru_area == 0){

 throw new IOException("Error encountered, there is no attribute column 'dhru_area'

in FullDHRU_intersect.csv");

 }

 // Read and parse now reduced text file (should have 1 line per dhru)

 ArrayList<String> HRU_Num = new ArrayList<String>(); //HRU Num

 ArrayList<Double> percent_Area_HRU = new ArrayList<Double>(); //area DHRU

inside given HRU / total area HRU

 ArrayList<String> dhru_Num = new ArrayList<String>(); //DHRU number

 ArrayList<Integer> subbasin_id = new ArrayList<Integer>(); //subbasin id number

containing the current river ID number

 while(scanner.hasNextLine()){

 // Split the read data

 String[] data_Splitted = scanner.nextLine().split(",");

 // Grab values from text file

 double total_area_of_HRU = Double.parseDouble(data_Splitted[index_hru_area]);

 double area_of_Dhru_within_HRU =

Double.parseDouble(data_Splitted[index_dhru_area]);

 //Calculate percent area of dhru within HRU

105

 double percent_area_of_HRU_Double = area_of_Dhru_within_HRU /

total_area_of_HRU;

 //Save values from text file

 HRU_Num.add(data_Splitted[index_hru_id]);

 percent_Area_HRU.add(percent_area_of_HRU_Double);

 dhru_Num.add(data_Splitted[index_dhru_id]);

 subbasin_id.add(Integer.parseInt(data_Splitted[index_sub_id]));

 }

 scanner.close();

 write_map_grid2hru(directory, HRU_Num, percent_Area_HRU, dhru_Num,

subbasin_id, num_DHRUs, num_HRUs);

 }

 /**

 * Takes the list of dhru/hru ids and the percent area of dhrus contributing to a given

HRU and creates the SM linkage file

 * map_dhru2hru.txt

 * @param directory the path to the output file (ex. C:/temp)

 * @param HRU_Num list of HRU ID numbers

 * @param percent_Area_hru list of percent dhru within the above HRU ID

 * @param dhru_Num list of dhru ID numbers

 * @param subbasin_id list of subbasin ID numbers

 * @param num_DHRUs the total number of disaggregated HRUs in the SWAT model

 * @param num_HRUs the total number of aggregated (normal SWAT) HRUs in the

SWAT model

 * @throws IOException

 */

 public static void write_map_grid2hru(String directory,

 ArrayList<String> HRU_Num,

 ArrayList<Double> percent_Area_hru,

 ArrayList<String> dhru_Num,

 ArrayList<Integer> subbasin_id,

 int num_DHRUs,

 int num_HRUs)throws IOException {

 String path = directory + "/map_dhru2hru.txt";

 File file = new File(path);

 boolean fileTF = file.isFile();

 if(fileTF){

 boolean fileDeleteTF = file.delete();

 if(!fileDeleteTF){

 System.out.println("The file (" + path + ") could not be deleted");

 }

 }

106

 ArrayList<ArrayList<String>> hruIndexList = new ArrayList<ArrayList<String>>();

 int maxSize = 0;

 for(int j=1; j <= num_HRUs; j++){ // iterating over hru number

 System.out.println(j);

 // Find all positions containing current hru number

 ArrayList<String> DHRUindex_for_currentHRU = new ArrayList<String>(); //

arraylist containing all dhrus within current HRU

 for(int i = 0; i < HRU_Num.size(); i++){

 if(j == (int) Double.parseDouble(HRU_Num.get(i))){

 // Gives an array containing all the indexes of dhrus which contribute to current

HRU

 DHRUindex_for_currentHRU.add(String.valueOf(i));

 }

 }

 if(DHRUindex_for_currentHRU.size() > maxSize) maxSize =

DHRUindex_for_currentHRU.size();

 hruIndexList.add(DHRUindex_for_currentHRU);

 }

 // Format for which the text file will be written

 Formatter outputFile = new Formatter(new FileWriter(file, true));

 // Write out the total number of disaggregated HRUs contained in this file

 outputFile.format("%1$12s%2$12s%n", num_HRUs, maxSize);

 for(int j=1; j <= num_HRUs; j++){ // iterating over hru number

 ArrayList<String> currentHRU_DHRUindexList = hruIndexList.get(j-1);

 // format the HRU number as first column and the number of dhrus contributing to

this HRU as the second column

 int index = Integer.parseInt(currentHRU_DHRUindexList.get(0));

 int sub_id = subbasin_id.get(index);

 outputFile.format("%1$12s%2$12s%3$12s%n", j,

currentHRU_DHRUindexList.size(), sub_id);

 //Print the dhru ids for the grids contributing to the current dhru

 for(int i = 0; i < currentHRU_DHRUindexList.size(); i++){

 int gridIndex = Integer.parseInt(currentHRU_DHRUindexList.get(i));

 int rowNumber = (int) Double.parseDouble(dhru_Num.get(gridIndex));

 outputFile.format("%1$12s", rowNumber);

 }

 outputFile.format("%n", "");

 //Print Percent areas of each grid contributing to the current dhru

 for(int i = 0; i < currentHRU_DHRUindexList.size(); i++){

 int gridIndex = Integer.parseInt(currentHRU_DHRUindexList.get(i));

 outputFile.format("%1$12.5f", percent_Area_hru.get(gridIndex));

107

 }

 outputFile.format("%n", "");

 }

 outputFile.close();//tcw

 }

}

//Format of output:

//390 (total number of disaggregated HRUs to be read in)

//1 4 1 (aggregated hru#) (# of dhrus contributing to this hru) (subbasinID)

//dhru1_ID dhru12_ID dhru31_ID dhru37_ID (list of dhru id #s contributing to hru#)

//0.36 0.25 0.04 0.35 (list of %areas of dhru contributing to hru#, adds to 1)

MAP_GRID2DHRU.JAVA

package SWAT_MODFLOW;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Formatter;

import java.util.Scanner;

/**

* Last Updated: 10-March-2014

* @author Tyler Wible

* @since 11-June-2013

*/

public class map_grid2dhru {

 public static void main(String[] args) throws IOException {

 //Inputs

 String directory = args[0];

 int num_Grids = Integer.parseInt(args[1]);

 int num_DHRUs = Integer.parseInt(args[2]);

 System.out.println("Creating map_grid2dhru.txt...");

 readFile(directory, num_Grids, num_DHRUs);

 System.out.println("Done");

 }

 /**

 * Reads the attribute table file MOD_HRU.csv containing the grid IDs, HRU IDs, their

respective areas and their area of overlap

 * @param directory the path to the input file (ex. C:/temp)

 * @param numGrids the total number of grid cells (active and inactive) in the

MODFLOW model

 * @param numDHRUs the total number of disaggregated HRUs in the SWAT model

108

 * @throws IOException

 */

 public static void readFile(String directory, int numGrids, int numDHRUs) throws

IOException {

 // read the file

 String path = directory + "/DHRU_grid.csv";

 File file = new File(path);

 Scanner scanner = new Scanner(file);

 // Read header

 String[] header = scanner.nextLine().split(",");

 //Get indices for the desired columns

 int index_col_row = 0;

 int index_grid_id = 0;

 int index_dhru_id = 0;

 int index_dhru_area = 0;

 int index_overlap_area = 0;

 for(int i=0; i<header.length; i++){

 header[i] = header[i].replace('"', '%');

 header[i] = header[i].replaceAll("%", "");

 if(header[i].equalsIgnoreCase("Col_Row")){

 index_col_row = i;

 }else if(header[i].equalsIgnoreCase("grid_id")){

 index_grid_id = i;

 }else if(header[i].equalsIgnoreCase("dhru_id")){

 index_dhru_id = i;

 }else if(header[i].equalsIgnoreCase("dhru_area")){

 index_dhru_area = i;

 }else if(header[i].equalsIgnoreCase("overlap_a")){

 index_overlap_area = i;

 }

 }

 //Check for missing information

 if(index_col_row == 0){

 throw new IOException("Error encountered, there is no attribute column 'Col_Row'

in DHRU_grid.csv");

 }

 if(index_grid_id == 0){

 throw new IOException("Error encountered, there is no attribute column 'grid_id' in

DHRU_grid.csv");

 }

 if(index_dhru_id == 0){

 throw new IOException("Error encountered, there is no attribute column 'dhru_id' in

DHRU_grid.csv");

109

 }

 if(index_dhru_area == 0){

 throw new IOException("Error encountered, there is no attribute column 'dhru_area'

in DHRU_grid.csv");

 }

 if(index_overlap_area == 0){

 throw new IOException("Error encountered, there is no attribute column 'overlap_a'

in DHRU_grid.csv");

 }

 // Read and parse text file

 ArrayList<String> DHRU_Num = new ArrayList<String>(); // HRU Num

 ArrayList<Double> percent_Area_HRU = new ArrayList<Double>(); // area grid

inside given HRU / total area HRU

 ArrayList<String> grid_Num = new ArrayList<String>(); // Grid number

 ArrayList<String> grid_row = new ArrayList<String>(); // Grid row id

 ArrayList<String> grid_col = new ArrayList<String>(); // Grid column id

 while(scanner.hasNextLine()){

 String line = scanner.nextLine();

 // Split the read data

 String[] data_Splitted = line.split(",");

 // Grab values from text file

 double total_area_of_DHRU =

Double.parseDouble(data_Splitted[index_dhru_area]);

 double area_of_GRID_within_DHRU =

Double.parseDouble(data_Splitted[index_overlap_area]);

 //Calculate percent area of grid within HRU

 double percent_area_of_DHRU_Double = area_of_GRID_within_DHRU /

total_area_of_DHRU;

 //Save values from text file

 DHRU_Num.add(data_Splitted[index_dhru_id]);

 percent_Area_HRU.add(percent_area_of_DHRU_Double);

 grid_Num.add(data_Splitted[index_grid_id]);

 grid_row.add(columnRow(data_Splitted[index_col_row], false)); //grid row#

 grid_col.add(columnRow(data_Splitted[index_col_row], true)); //grid column#

 }

 scanner.close();

 write_map_grid2dhru(directory, DHRU_Num, percent_Area_HRU, grid_Num,

grid_row, grid_col, numGrids, numDHRUs);

 }

 /**

110

 * Converts the column - row string (ex. "3 - 49" is column 3 row 49) into either its

column or row index only

 * @param column_row the "column - row" string (ex. "3 - 49")

 * @param columnTrue if true, this returns the column index (ex. "3") if false it returns

the row index (ex. "49")

 * @return The column or row index dependiong on the value of columnTrue

 */

 public static String columnRow(String column_row, boolean columnTrue){

 //Convers the strin Col - row into

 String[] array = column_row.substring(1, column_row.length() - 1).split("-");

 String column = array[0].trim();

 String row = array[1].trim();

 String returnValue = row;

 if(columnTrue){

 returnValue = column;

 }

 return returnValue;

 }

 /**

 * Takes the list of grid/hru ids and the percent area of grids contributing to a given

HRU and creates the SM linkage file

 * map_grid2hru.txt

 * @param directory the path to the output file (ex. C:/temp)

 * @param DHRU_Num list of HRU ID numbers

 * @param percent_Area_HRU list of percent grid within the above HRU ID

 * @param grid_Num list of grid ID numbers

 * @param grid_row list of grid row numbers

 * @param grid_col list of grid column numbers

 * @param numGrids the total number of grid cells (active and inactive) in the

MODFLOW model

 * @param numDHRUs the total number of disaggregated HRUs in the SWAT model

 * @throws IOException

 */

 public static void write_map_grid2dhru(String directory,

 ArrayList<String> DHRU_Num,

 ArrayList<Double> percent_Area_HRU,

 ArrayList<String> grid_Num, //unused

 ArrayList<String> grid_row,

 ArrayList<String> grid_col,

 int numGrids, //unused

 int numDHRUs)throws IOException {

 String path = directory + "/map_grid2dhru.txt";

111

 File file = new File(path);

 boolean fileTF = file.isFile();

 if(fileTF){

 boolean fileDeleteTF = file.delete();

 if(!fileDeleteTF){

 System.out.println("The file (" + path + ") could not be deleted");

 }

 }

 ArrayList<ArrayList<String>> dhruIndexList = new ArrayList<ArrayList<String>>();

 int maxSize = 0;

 for(int j=1; j <= numDHRUs; j++){ // iterating over dhru number

 System.out.println(j);

 // Find all positions containing current Grid number

 ArrayList<String> gridIndex_for_currentDHRU = new ArrayList<String>(); //

arraylist containing all grids within current HRU

 for(int i = 0; i < DHRU_Num.size(); i++){

 if(j == (int) Double.parseDouble(DHRU_Num.get(i))){

 // Gives an array containing all the indexes of grids which contribute to current

HRU

 gridIndex_for_currentDHRU.add(String.valueOf(i));

 }

 }

 if(gridIndex_for_currentDHRU.size() > maxSize) maxSize =

gridIndex_for_currentDHRU.size();

 dhruIndexList.add(gridIndex_for_currentDHRU);

 }

 // Format for which the text file will be written

 Formatter MOD_HRU = new Formatter(new FileWriter(file, true));

 // Write out the total number of dissaggregated hrus which intersect with the

MODFLOW grid cells and the maximum number of MODFLOW grid cells that intersect

a single dhru

 MOD_HRU.format("%1$12s%2$12s%n", numDHRUs, maxSize);

 for(int j=1; j <= numDHRUs; j++){ // iterating over dhru number

 ArrayList<String> currentDHRU_gridIndexList = dhruIndexList.get(j-1);

 // format the dHRU number as first column and the number of grids contributing to

this HRU as the second column

 MOD_HRU.format("%1$12s%2$12s%n", j, currentDHRU_gridIndexList.size());

 //Print the row ids for the grids contributing to the current dhru

 for(int i = 0; i < currentDHRU_gridIndexList.size(); i++){

 int gridIndex = Integer.parseInt(currentDHRU_gridIndexList.get(i));

 int rowNumber = (int) Double.parseDouble(grid_row.get(gridIndex));

112

 MOD_HRU.format("%1$12s", rowNumber);

 }

 MOD_HRU.format("%n", "");

 //Print the column ids for the grids contributing to the current dhru

 for(int i = 0; i < currentDHRU_gridIndexList.size(); i++){

 int gridIndex = Integer.parseInt(currentDHRU_gridIndexList.get(i));

 int columnNumber = (int) Double.parseDouble(grid_col.get(gridIndex));

 MOD_HRU.format("%1$12s", columnNumber);

 }

 MOD_HRU.format("%n", "");

 //Print Percent areas of each grid contributing to the current dhru

 for(int i = 0; i < currentDHRU_gridIndexList.size(); i++){

 int gridIndex = Integer.parseInt(currentDHRU_gridIndexList.get(i));

 MOD_HRU.format("%1$12.5f", percent_Area_HRU.get(gridIndex));

 }

 MOD_HRU.format("%n", "");

 }

 MOD_HRU.close();//tcw

 }

}

//Format of outout: tcw

//390 62 (total number of dHRUs to be read in) (the maximum number of grids

that contribute to a single dhru)

//1 4 (hru#) (# of grids contributing to this dhru)

//grid2_row_ID grid12_row_ID grid31_row_ID grud37_row_ID (list of grid row id #s

contributing to dhru#)

//grid2_col_ID grid12_col_ID grid31_col_ID grud37_col_ID (list of grid column id #s

contributing to dhru#)

//0.36 0.25 0.04 0.35 (list of %areas of grid contributing to

dhru#, adds to 1)

MAP_RIVER2GRID.JAVA

package SWAT_MODFLOW;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Formatter;

import java.util.Scanner;

113

/**

* Last Updated: 28-February-2014

* @author Tyler Wible

* @since 18-April-2013

*/

public class map_river2grid {

 public static void main(String[] args) throws IOException {

 //Inputs

 String directory = args[0];

 String mfRiverFile = args[1];

 int num_RiverGrids = Integer.parseInt(args[2]);

 System.out.println("Creating map_river2grid.txt...");

 writeResults(directory, mfRiverFile, num_RiverGrids);

 System.out.println("Done");

 }

 /**

 * Converts the column - row string (ex. "3 - 49" is column 3 row 49) into either its

column or row index only

 * @param column_row the "column - row" string (ex. "3 - 49")

 * @param columnTrue if true, this returns the column index (ex. "3") if false it returns

the row index (ex. "49")

 * @return The column or row index depending on the value of columnTrue

 */

 public static String columnRow(String column_row, boolean columnTrue){

 //Convers the strin Col - row into

 String[] array = column_row.substring(1, column_row.length() - 1).split("-");

 String column = array[0].trim();

 String row = array[1].trim();

 String returnValue = row;

 if(columnTrue){

 returnValue = column;

 }

 return returnValue;

 }

 /**

 * Reads the attribute table file as a CSV file containing information on the river

 * segments in SWAT intersected with the MODFLOW grid and pull out information on

grid

 * cell IDs and the subbasins of the river

 * @param fileLocation the path to the input file (ex. C:/temp)

 * @return selected contents of the CSV as a String[][] array

114

 * @throws IOException

 */

 public static String[][] readRiverGridFile(String fileLocation) throws IOException{

 //Open a reader for the results file

 String path = fileLocation + "/rivergrid.csv";

 FileReader file_to_read = new FileReader(path);

 BufferedReader reader = new BufferedReader(file_to_read);

 //Read out some of the contents of the input file

 ArrayList<String> data = new ArrayList<String>();

 String currentLine = "";

 while((currentLine = reader.readLine()) !=null){

 data.add(currentLine);

 }

 reader.close();

 file_to_read.close();

 //Populate data

 String[][] resultArray = new String[data.size()-1][4];

 int index_col_row = 0;

 int index_riv_id = 0;

 int index_sub_id = 0;

 int index_riv_len = 0;

 for(int i=0; i<data.size(); i++){//Loop rows of data

 String[] currentRow = data.get(i).split(",");

 if(i == 0){

 for(int j=0; j<currentRow.length; j++){

 currentRow[j] = currentRow[j].replace('"', '%');

 currentRow[j] = currentRow[j].replaceAll("%", "");

 if(currentRow[j].equalsIgnoreCase("Col_Row")){

 index_col_row = j;

 }else if(currentRow[j].equalsIgnoreCase("riv_id")){

 index_riv_id = j;

 }else if(currentRow[j].equalsIgnoreCase("Subbasin")){

 index_sub_id = j;

 }else if(currentRow[j].equalsIgnoreCase("rgrid_len")){

 index_riv_len = j;

 }

 }

 //Check for missing information

 if(index_col_row == 0){

 throw new IOException("Error encountered, there is no attribute column

'Col_Row' in rivergrid.csv");

 }

115

 if(index_riv_id == 0){

 throw new IOException("Error encountered, there is no attribute column 'riv_id' in

rivergrid.csv");

 }

 if(index_sub_id == 0){

 throw new IOException("Error encountered, there is no attribute column 'Subbasin'

in rivergrid.csv");

 }

 if(index_riv_len == 0){

 throw new IOException("Error encountered, there is no attribute column 'rgrid_len'

in rivergrid.csv");

 }

 }else{

 //Keep desired information

 resultArray[i-1][0] = currentRow[index_riv_id]; //riverID#

 resultArray[i-1][1] = currentRow[index_riv_len]; //lengthOfRiver in

grid#

 resultArray[i-1][2] = columnRow(currentRow[index_col_row], true); //grid

column#

 resultArray[i-1][3] = columnRow(currentRow[index_col_row], false); //grid row#

 }

 }

 return resultArray;

 }

 /**

 * read the MODLFOW river package file to get the order/info. about the river grid cells

so the right

 * SWAT river information is passed to the correct MODFLOW river grid cell

 * @param filePath the full file path to the river package file (ex.

C:/tempFolder/myRivepackage.txt)

 * @param num_RiverGrids the total number of MODFLOW river grids in the model

 * @return selected contents of the river package as a String[][] array

 * @throws IOException

 */

 public static int[][] readMODFLOWrivFile(String filePath, int num_RiverGrids) throws

IOException{

 // intialize scanner (reader)

 File file = new File(filePath);

 Scanner scanner = new Scanner(file);

 //Read in header information information

 boolean readNextLine = true;

 while(readNextLine){

116

 String currentLine = scanner.nextLine();

 try{

 if(currentLine.substring(0,1).equals("#")){

 readNextLine = true;

 }else{

 currentLine = scanner.nextLine();

 readNextLine = false;

 }

 }catch(IndexOutOfBoundsException e){

 currentLine = scanner.nextLine();

 readNextLine = false;

 }

 }

 //Populate data

 int[][] resultArray = new int[num_RiverGrids][3];

 for(int i=1; i<=num_RiverGrids; i++){//Loop for number of river cells

 String[] columns = scanner.nextLine().split("\\s+");

 //Keep desired information

 resultArray[i-1][0] = i; //river grid #

 resultArray[i-1][1] = Integer.parseInt(columns[2]); //grid row#

 resultArray[i-1][2] = Integer.parseInt(columns[3]); //grid column#

 }

 return resultArray;

 }

 /**

 *

 * @param fileLocation

 * @param subbasinMax

 * @throws IOException

 */

 public static void writeResults(String fileLocation, String mfRiverFile, int

num_RiverGrids) throws IOException{

 //Read River/grid Attribute table file

 String[][] riverGridData = readRiverGridFile(fileLocation);

 //Read MODFLOW .riv file

 int[][] mfRiverData = readMODFLOWrivFile(fileLocation + "/" + mfRiverFile,

num_RiverGrids);

 //Delete the old map_rive2grid.txt if it exists

 String path = fileLocation + "/map_river2grid.txt";

117

 File file = new File(path);

 boolean fileTF = file.isFile();

 if(fileTF){

 boolean fileDeleteTF = file.delete();

 if(!fileDeleteTF){

 System.out.println("The file (" + path + ") could not be deleted");

 }

 }

 // Format for which the text file will be written

 Formatter riverFile = new Formatter(new FileWriter(file, true));

 riverFile.format("%1$12s%n", num_RiverGrids);//Write the total number of

MODFLOW grids for dimensioning purposes

 for(int j=1; j <= num_RiverGrids; j++){ // iterating over river grid number

 System.out.println(j);

 int mfRow = mfRiverData[j-1][1];

 int mfColumn = mfRiverData[j-1][2];

 // Find all positions containing current grid number

 ArrayList<Integer> index_for_river_Num_for_Current_grid_Num = new

ArrayList<Integer>(); // arraylist containing all river within current grid number

 for(int i = 0; i < riverGridData.length; i++){

 int row = (int) Double.parseDouble(riverGridData[i][3]);

 int column = (int) Double.parseDouble(riverGridData[i][2]);

 if(mfRow == row && mfColumn == column){

 // Gives me an array containing all positions of rivers which contribute to current

grid

 index_for_river_Num_for_Current_grid_Num.add(i);

 }

 }

 riverFile.format("%1$12s%2$12s%n", j,

index_for_river_Num_for_Current_grid_Num.size()); // format the grid number as first

column and the number of rivers contributing to this as the second column

 //Print ID of rivers contributing to the current grid

 for(int i = 0; i < index_for_river_Num_for_Current_grid_Num.size(); i++){

 int riverIndex = index_for_river_Num_for_Current_grid_Num.get(i);

 int riverNumber = (int) Double.parseDouble(riverGridData[riverIndex][0]);

 riverFile.format("%1$12s", riverNumber);

 }

 riverFile.format("%n", "");

118

 //Print length of river within current grid

 for(int i = 0; i < index_for_river_Num_for_Current_grid_Num.size(); i++){

 int riverIndex = index_for_river_Num_for_Current_grid_Num.get(i);

 double riverLength = Double.parseDouble(riverGridData[riverIndex][1]);

 riverFile.format("%1$12.5f", riverLength);

 }

 riverFile.format("%n", "");

 index_for_river_Num_for_Current_grid_Num.clear();

 }

 riverFile.close();//tcw

 }

}

//Format of outout: tcw

//

//57 (total # of river cells in MODFLOW)

//36.2 591.25 299.04 350.12 (list of thickness of lengths of river segments of

grid cell)

//1 4 (grid#) (# of river segments contributing to this grid)

//rivr2_ID rivr12_ID rivr31_ID rivr37_ID (list of river id #s which are in this grid

cell)

//36.2 591.25 299.04 350.12 (list of lengths of river segment in this grid cell)

119

APPENDIX III: EXAMPLE SWAT-MODFLOW LINKAGE INPUT FILES

GENERAL FORMATTING NOTES

 These files are space separated, aka the number of spaces between each value does not

matter (i.e. “1 2” is read in the same as “1 2”).

 The function of the file is included in the name, the first element is the current format of a

variable in the model; the second element is the desired/converted output of that variable

for use in the model.

o For example with, map_dhru2grid.txt

o The first element is “dhru” meaning data is in a format of an array with an

element per spatially disaggregated HRU.

o The second element, “grid,” is the desired conversion of the variable to a 2D array

of grid rows and columns, a format used by MODFLOW.

o Therefore this file contains information of which dhrus contribute to each grid cell

listed in this file to allow conversion of variables in this fashion.

EXPLANATION OF: “map_dhru2grid.txt”

This file contains an entry for every MODFLOW grid cell ID (inactive or active) as

documented in Appendix I to create. The file starts with the first grid cell ID and ends with last

grid cell ID (i.e. 1 to number of grid cells). Listed below are terms used in the next section to

label the content of the file.

 tLines = number of grids in the MODFLOW model to read in

 DHRU = Disaggregated Hydrologic Response Unit

120

 A-HRU = the percent area of an DHRU inside a given grid cell # (Area DHRU inside

grid # / Area of grid #)

 Grid # = the grid cell ID number for the MODFLOW model

 maxContr = the maximum number of DHRUs contributing to any grid cell used for

dimensioning variables within the code

EXAMPLE FILE CONTENTS, WITH LABELS:

 6 4 “tLines” “maxContr”

1 0 “Grid#” “# DHRUs inside Grid#”

“leave a blank line”

“leave a blank line”

2 2 “Grid#” “# DHRUs inside this Grid#”

17 32 “DHRU#” “DHRU#”

0.08 0.12 “A-HRU” “A-HRU”

3 4 “Grid#” “# DHRUs inside this Grid#”

17 32 39 43 “DHRU#” “DHRU#” “DHRU#” “DHRU#”

0.16 0.32 0.04 0.16 “A-HRU” “A-HRU” “A-HRU” “A-HRU”

EXPLANATION OF EXAMPLE FILE CONTENTS

 There are a total of 6 grid cells in the MODFLOW model and the grid cell in the

MODFLOW model with the most DHRUs contributing to it has 4.

121

 The first grid cell has 0 disaggregated HRUs which contribute to it. This is likely because

the grid cell is located outside of the boundaries of the SWAT model.

o When a grid cell has no DHRUs contributing to it, leave 2 blank lines before the

next entry.

 The second grid cell has 2 DHRUs which contribute to it.

o The first DHRU contributing to grid-ID 2 is number 17.

o The second DHRU contributing to grid-ID 2 is number 32.

o The first DHRU comprises 8% of the area of grid-ID 2

o The second DHRU comprises 12% of the area of grid-ID 2

o Because this percent area does not add up to 100% this grid cell is likely only

partially covered by the SWAT model, which is allowed with this coupling.

 The third grid cell has 4 DHRUs which contribute to it.

o The first DHRU contributing to grid-ID 3 is number 17.

o The second DHRU contributing to grid-ID 3 is number 32.

o The third DHRU contributing to grid-ID 3 is number 39.

o The fourth DHRU contributing to grid-ID 3 is number 43.

o The first DHRU comprises 16% of the area of grid-ID 3

o The second DHRU comprises 32% of the area of grid-ID 3

o The third DHRU comprises 4% of the area of grid-ID 3

o The fourth DHRU comprises 16% of the area of grid-ID 3

o Because this percent area does not add up to 100% this grid cell is likely only

partially covered by the SWAT model, which is allowed with this coupling.

122

EXPLANATION OF: “map_dhru2hru.txt”

This file contains an entry for every SWAT HRU as created by the ArcSWAT interface. The

file starts with the first HRU and ends with last HRU (i.e. 1 to number of HRUs in entire

watershed). Listed below are terms used in the next section to label the content of the file.

 DHRU = Disaggregated Hydrologic Response Unit

 HRU = AHRU = Aggregated Hydrologic Response Unit (normal ArcSWAT HRUs)

 sub# = the subbasin number that the AHRU currently resides in

 A-HRU = the percent area of DHRU inside an AHRU (DHRU Area / AHRU Area)

 DHRU id = The global id of the DHRU

 maxContr = the maximum number of DHRUs within any HRU used for dimensioning

variables within the code

EXAMPLE FILE CONTENTS, WITH LABELS:

35 4 “Total # of HRUs” “maxContr”

1 2 1 “AHRU #” “# DHRUs inside AHRU ID = 1” “Sub#”

14 15 “DHRU id” “DHRU id”

0.08 0.92 “A-HRU” “A-HRU”

2 4 1 “AHRU #” “# DHRUs inside AHRU ID = 2” “Sub#”

1 3 4 7 “DHRU id” “DHRU id” “DHRU id” “DHRU id”

0.08 0.12 0.4 0.4 “A-HRU” “A-HRU” “A-HRU” “A-HRU”

123

EXPLANATION OF EXAMPLE FILE CONTENTS

 There are a total of 35 HRUs in the SWAT model and the HRU in the SWAT model with

the most DHRUs contained within it has 4.

 The first SWAT HRU has 2 DHRUs within it and is located in sub-basin 1.

o The first DHRU contained in HRU-1 is number 14.

o The second DHRU contained in HRU-1 is number 15.

o The first DHRU comprises 8% of the area of HRU-1

o The second DHRU comprises 92% of the area of HRU-1

 The second SWAT HRU has 4 DHRUs within it and is located in sub-basin 1.

o The first DHRU contained in HRU-2 is number 1

o The second DHRU contained in HRU-2 is number 3

o The third DHRU contained in HRU-2 is number 4

o The fourth DHRU contained in HRU-2 is number 7

o The first DHRU comprises 8% of the area of HRU-2

o The second DHRU comprises 12% of the area of HRU-2

o The third DHRU comprises 40% of the area of HRU-2

o The fourth DHRU comprises 40% of the area of HRU-2

EXPLANATION OF: “map_grid2dhru.txt”

This file contains an entry for every DHRU to create as documented in Appendix I. The file

starts with the first DHRU-ID and ends with last DHRU-ID (i.e. 1 to number of DHRUs). Listed

below are terms used in the next section to label the content of the file.

 tLines = number of DHRUs in the coupled model to read in

124

 DHRU# = Disaggregated Hydrologic Response Unit ID number

 Row-ID = the row ID for the grid cell contributing to the DHRU

 Col-ID = the column ID for the grid cell contributing to the DHRU

 A-grid = the percent area of an grid cell inside a given DHRU# (Area grid cell inside

DHRU# / Area of DHRU#)

 Grid # = the grid cell ID number for the MODFLOW model

 maxContr = the maximum number of grid cells contributing to any DHRU, used for

dimensioning variables within the code

EXAMPLE FILE CONTENTS, WITH LABELS:

 400 7 “tLines” “maxContr”

1 0 “DHRU#” “# grid cells inside DHRU#”

“leave a blank line”

“leave a blank line”

“leave a blank line”

2 1 “Grid#” “# DHRUs inside this Grid#”

5 “Row-ID”

3 “Col-ID”

1.0 “A-grid”

3 4 “Grid#” “# DHRUs inside this Grid#”

125

2 2 3 3 “Row-ID” “Row-ID” “Row-ID” “Row-ID”

3 4 3 4 “Col-ID” “Col-ID” “Col-ID” “Col-ID”

0.125 0.125 0.375 0.375 “A-grid” “A-grid” “A-grid” “A-grid”

EXPLANATION OF EXAMPLE FILE CONTENTS

 There are a total of 400 DHRUs in the coupled model and the DHRU with the most grid

cells contributing to it has 7.

 The first DHRU has 0 grid cells which contribute to it. This is likely because the DHRU

derived from the SWAT model is located outside of the boundaries of the MODFLOW

model.

o When a DHRU has no grid cells contributing to it, leave 3 blank lines before the

next entry.

 The second DHRU has 2 grid cells which contribute to it.

o The first grid cell contributing to DHRU-2 is row number 5

o The first grid cell contributing to DHRU-2 is column number 3

o The first grid cell comprises 100% of the area of DHRU-2

 The third DHRU has 4 grid cells which contribute to it.

o The first grid cells contributing to DHRU-3 is row number 2

o The second grid cells contributing to DHRU-3 is row number 2

o The third grid cells contributing to DHRU-3 is row number 3

o The fourth grid cells contributing to DHRU-3 is row number 3

o The first grid cells contributing to DHRU-3 is column number 3

o The second grid cells contributing to DHRU-3 is column number 4

126

o The third grid cells contributing to DHRU-3 is column number 3

o The fourth grid cells contributing to DHRU-3 is column number 4

o The first grid cells comprises 12.5% of the area of DHRU-3

o The second grid cells comprises 12.5% of the area of DHRU-3

o The third grid cells comprises 37.5% of the area of DHRU-3

o The fourth grid cells comprises 37.5% of the area of DHRU-3

o Because this percent area row does not add up to 100% this DHRU is likely only

partially covered by the MODFLOW model, which is allowed with this coupling.

EXPLANATION OF: “map_river2grid.txt”

This file contains an entry for every MODFLOW river cell as provided by MODFLOW’s

river package file. The file starts with the first river cell and ends with last river cell (i.e. 1 to

number of river grid cells). Listed below are terms used in the next section to label the content of

the file.

 DHRU = Disaggregated Hydrologic Response Unit

 ID = identification number

 T-RCells = total number of river cells in MODFLOW

 R-Grid# = the river grid cell #

 N-Grid = the # unique rivers (from different SWAT sub-basins) which are contained by

this grid cell

 RivID = river IDs, which contribute to the current river cell

 L-Riv = length of river within current "R-Grid#"

127

EXAMPLE FILE CONTENTS, WITH LABELS:

4 “T-RCells”

1 1 “R-Grid#” “N-Grid”

9 “RivID”

70.7107 “L-Riv”

2 2 “R-Grid#” “N-Grid”

9 8 “RivID” “RivID”

100.0 212.132 “L-Riv” “L-Riv”

EXPLANATION OF EXAMPLE FILE CONTENTS

 There are a total of 4 river cells in the MODFLOW model

 The first MODFLOW river cell has 1 SWAT river contained within it.

o The SWAT river number, which is also the sub-basin ID, for this river is “9”

o The length of the SWAT river within this grid cell is “70.71070” meters

 The second MODFLOW river cell has 1 SWAT rivers contained within it.

o The first SWAT river number that contributes to this MODFLOW river cell is “9”

o The second SWAT river number that contributes to this MODFLOW river cell is

“8”

o The length of the first SWAT river within this grid cell is “100.0” meters

o The length of the second SWAT river within this grid cell is “212.132” meters

128

APPENDIX IV: SWAT-MODFLOW FORTAN CODE

MODEVENT.F

 module modevent

!! ~ ~ ~ Author ~ ~ ~

!! Andre Dozier, PhD student

!! Colorado State University 2012-2016

!! Comment initials "aqd"

!!

!! ~ ~ ~ PURPOSE ~ ~ ~

!! Implements a generic code event that can be subscribed to by any number of

subscribers with two different structures:

!! - a subroutine with the following format can be subscribed to an event by "call

my_event%subscribe(my_subscriber)"

!! subroutine my_subscriber(eventdata)

!! class (ieventdata), pointer :: eventdata

!! <my_work>

!! end subroutine

!!

!! - a subclass with the following format can be subscribed to an event by "call

my_event%subscribe_object(my_subscriber)"

!! type, public, extends(isubscriber) :: my_subscriber_class

!! <my_data>

!! contains

!! procedure, pass :: run => my_subscriber_subroutine

!! end type

!!

!! subroutine my_subscriber_subroutine(subsc, eventdata)

!! class (my_subscriber_class), intent(inout) :: subsc

!! class (ieventdata), pointer :: eventdata

!! <my_work>

!! end subroutine

!!

!! An event can be instantiated by "type(event), target :: my_event"

!! An event can be "fired" by "call my_event%fire()".

!!

 implicit none

 ! Parameters

 logical :: verbose = .false.

 ! Define a generic subscriber

 type, public, abstract :: isubscriber

129

 integer :: ind = -1

 class (isubscriber), pointer :: next => null()

 contains

 procedure(abstrun), deferred, pass :: run

 end type

 ! Define the interface for event data

 type, public, abstract :: ieventdata

 end type

 ! Define abstrun

 abstract interface

 subroutine abstrun(subsc, eventdata)

 import :: isubscriber

 import :: ieventdata

 class (isubscriber), intent(inout) :: subsc

 class (ieventdata), pointer :: eventdata

 end subroutine

 end interface

 ! Running a simplified subscriber's subroutine

 interface

 subroutine simple(eventdata)

 import :: ieventdata

 class (ieventdata), pointer :: eventdata

 end subroutine simple

 end interface

 ! Define the simplified subscriber

 type, public, extends(isubscriber) :: subscriber

 procedure (simple), pointer, nopass :: simple => null()

 contains

 procedure, pass :: run => simplerun

 end type subscriber

 ! Define the event class

 type, public :: event

 integer :: subindex = 0

 class (ieventdata), pointer :: data => null()

 class (isubscriber), pointer :: first => null()

 class (isubscriber), pointer :: last => null()

 contains

 procedure :: subscribe

 procedure :: subscribe_object

 procedure :: unsubscribe

 procedure :: fire

130

 end type event

 contains

 ! Run the subscriber's event

 subroutine simplerun(subsc, eventdata)

 class (subscriber), intent(inout) :: subsc

 class (ieventdata), pointer :: eventdata

 if (associated(subsc%simple)) call subsc%simple(eventdata)

 end subroutine

 ! Subscribe to the event

 function subscribe(self, newsubscriber)

 integer :: subscribe

 class(event), intent(inout) :: self

 type (subscriber), pointer :: subsc

 class(isubscriber), pointer :: isubsc

 interface

 subroutine newsubscriber(eventdata)

 import :: ieventdata

 class (ieventdata), pointer :: eventdata

 end subroutine newsubscriber

 end interface

 ! set the subscriber's run method to the new method

 allocate(subsc)

 subsc%simple => newsubscriber

 ! allocate the subscriber pointer

 allocate(isubsc, source=subsc)

 ! subscribe the object

 call self%subscribe_object(isubsc)

 ! return the index of the subscriber (for unsubscription later)

 subscribe = isubsc%ind

 end function

 ! Subscribes a subscriber object

 subroutine subscribe_object(self, newsubscriber)

 class(event), intent(inout) :: self

 class(isubscriber), pointer :: newsubscriber

 ! assign the subscribers index

131

 newsubscriber%ind = self%subindex

 if (verbose) print *,'adding index ',self%subindex

 ! ensure the first subscriber is allocated

 if (.not.associated(self%first)) then

 self%first => newsubscriber

 self%last => newsubscriber

 else

 self%last%next => newsubscriber

 self%last => self%last%next

 end if

 ! increment the index of the subscriber

 self%subindex = self%subindex + 1

 end subroutine

 ! Unsubscribe to the event

 subroutine unsubscribe(self, unsubi)

 class(event), intent(inout) :: self

 integer :: unsubi

 class (isubscriber), pointer :: prev, sub

 ! exit if there are no subscribers

 if (.not.associated(self%first)) return

 ! find the subscriber with the same index

 prev => null()

 sub => self%first

 if (verbose) print *,'looking for index ',unsubi

 do while (sub%ind /= unsubi)

 if (.not.associated(sub%next)) return

 prev => sub

 sub => sub%next

 end do

 ! remove the subscriber and deallocate it

 if (associated(prev)) then

 ! remove sub

 if (associated(sub%next)) then

 ! point to the next subscriber

 prev%next => sub%next

 else

 ! point to the second to last subscriber

 if (verbose) print *,'removing end subscriber'

 deallocate(prev%next)

 self%last => prev

132

 end if

 deallocate(prev)

 deallocate(sub)

 else

 ! delete the first subscriber

 if (associated(sub%next)) then

 ! point to the second subscriber if existent

 if (verbose) print *,'removing first subscriber'

 self%first => sub%next

 deallocate(sub)

 else

 ! the first subscriber is the only one left

 if (verbose) print *,'removing all subscribers'

 deallocate(self%first)

 end if

 end if

 end subroutine

 ! Fire the event

 subroutine fire(self)

 class(event), intent(in) :: self

 integer :: i

 class (isubscriber), pointer :: sub, nextsub

 ! exit if there are no subscribers

 if (.not.associated(self%first)) return

 ! run all the subscribers

 sub => self%first

 do ! while (associated(sub%next))

 if (associated(sub%next)) nextsub => sub%next

 call sub%run(self%data)

 if (.not.associated(sub%next)) return

 sub => nextsub

 end do

 deallocate(sub)

 end subroutine

 end module modevent

PKG_MODFLOW.F

 subroutine pkg_modflow

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

133

!! Comment initials "tcw"

!!

!! Andre Dozier, PhD student

!! Colorado State University 2012-2016

!! Comment initials "aqd"

!!

!! ~ ~ ~ PURPOSE ~ ~ ~

!! Adds the SM package to MODFLOW

!!

 use modevent !event class

 use global, only: OnRivPkg,OnRechPkg,OnUZFPkg,MFrunTop !MODFLOW

events

 implicit none

 integer :: pkg_i

 interface

 subroutine sm_mfRiver(eventdata)

 import :: ieventdata

 class(ieventdata), pointer :: eventdata

 end subroutine

 end interface

 interface

 subroutine sm_recharge(eventdata)

 import :: ieventdata

 class(ieventdata), pointer :: eventdata

 end subroutine

 end interface

 interface

 subroutine sm_uzf(eventdata)

 import :: ieventdata

 class(ieventdata), pointer :: eventdata

 end subroutine

 end interface

 interface

 subroutine sm_mf_read(eventdata)

 import :: ieventdata

 class(ieventdata), pointer :: eventdata

 end subroutine

 end interface

 ! River stage is provided by SWAT

 pkg_i = OnRivPkg%subscribe(sm_mfRiver)

134

 ! Recharge is provided by SWAT

 pkg_i = OnRechPkg%subscribe(sm_recharge)

 ! Infiltration and ET is provided by SWAT

 pkg_i = OnUZFPkg%subscribe(sm_uzf)

 ! If SM is used, de-activate mf_read and SLMT7PNT insided of mf_run because it

has already been called by the linkage

 pkg_i = MFrunTop%subscribe(sm_mf_read)

 end subroutine pkg_modflow

PKG_SWAT.F

 subroutine pkg_swat

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! Andre Dozier, PhD student

!! Colorado State University 2012-2016

!! Comment initials "aqd"

!!

!! Ryan Bailey, Post-Doc student (2012-2013), Assistant Professor (2013-)

!! Colorado State University 2012-

!! Comment initials "rtb"

!!

!! ~ ~ ~ PURPOSE ~ ~ ~

!! Adds the SM package to SWAT replacing the groundwater modeling

!! component with MODFLOW

!!

 use modevent !event class

 use parm, only: OnInit,normOutUpdate,OnCommand19,OnSoilTempCalc,

 & OnCropGrowthCalc,OnRouteInitialize !SWAT events

 use sm_getgw !Groundwater Related events

 implicit none

 integer :: pkg_i

 interface

 subroutine sm_init_mf(eventdata)

 import :: ieventdata

 class (ieventdata), pointer :: eventdata

 end subroutine

135

 end interface

 interface

 subroutine sm_mf_run(eventdata)

 import :: ieventdata

 class (ieventdata), pointer :: eventdata

 end subroutine

 end interface

 interface

 subroutine sm_normOut(eventdata)

 import :: ieventdata

 class (ieventdata), pointer :: eventdata

 end subroutine

 end interface

 ! Initialize modflow

 pkg_i = OnInit%subscribe(sm_init_mf)

 !Check if SWAT should update it's groundwater output variables

 pkg_i = normOutUpdate%subscribe(sm_normOut)

 ! Call MODFLOW

 pkg_i = OnCommand19%subscribe(sm_mf_run)

 !Calculate GW contribution from MODFLOW

 pkg_i = OnSoilTempCalc%subscribe(sm_getgwcontr)

 !Compute nutrient loading from MODFLOW

 pkg_i = OnCropGrowthCalc%subscribe(sm_getgwnutr)

 !Determine if initializing the swat reach loss variable is necessary

 pkg_i = OnRouteInitialize%subscribe(sm_getrechloss)

 end subroutine pkg_swat

SM_ALLOCATE.F

 subroutine sm_allocate()

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! ~ ~ ~ PURPOSE ~ ~ ~

136

!! this subroutine allocates array sizes for variables used in the SM linkage between

SWAT, MODFLOW

 use parm, only: msub !SWAT

 use sm_parm !sm linkage

 implicit none

! Allocate the size of the river-to-grid variables

 allocate(grid2riv_id(nriver_cells, msub))

 allocate(grid2riv_len(nriver_cells, msub))

 grid2riv_id = 0.

 grid2riv_len = 0.

! Allocate the size of disaggregated hru variables before MODFLOW and UZF-RT3D

runs

 allocate(etremain_dhru(dhru))

 allocate(sepbtm_dhru(dhru))

 etremain_dhru = 0.

 sepbtm_dhru = 0.

 return

 end

SM_CLOSE.F

 subroutine sm_close

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! ~ ~ ~ Purpose ~ ~ ~

!! This subroutine deallocates the variables from sm_parm and some

!! additional MODFLOW which had their deallocate calls moved

! Import variables

 use GWFRIVMODULE, only: RIVAUX, RIVR !MODFLOW

 use sm_parm !sm linkage

 implicit none

! Deallocate MODFLOW variables

 deallocate(RIVAUX)

 deallocate(RIVR)

! Deallocate sm variables

 deallocate(g2d_r)

137

 deallocate(g2d_c)

 deallocate(g2d_area)

 deallocate(d2g_id)

 deallocate(d2g_area)

 deallocate(d2h_id)

 deallocate(d2h_area)

 deallocate(grid2riv_id)

 deallocate(grid2riv_len)

 deallocate(etremain_dhru)

 deallocate(sepbtm_dhru)

 return

 end

SM_CONVERSION2MF.F

 subroutine sm_conversion2mf

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! ~ ~ ~ PURPOSE ~ ~ ~

!! This subroutine converts the necessary SWAT variables (per hru) into SM variables

!! (per disaggregated hru, dhru) then converts these into the proper units for

MODFLOW

!!

!! ~ ~ ~ Variables Used~ ~ ~

!! name |units |definition

!! ~

!! LENUNI |unit_in |the MODFLOW variable for which length units are

being used

!! ITMUNI |unit_out |the MODFLOW variable for which time units are

being used

!! sepbtm(:) |mm H2O |percolation from bottom of soil profile for

!! | |the day in HRU

!! etremain(:) |mm H2O |remaining et to be passed from SWAT to

!! | |MODFLOW-UZF, etremain(j) = pet_day-etday

!! etremain_dis(:) |mm H2O (in) |remaining et to be passed from SWAT to

!! |LENUNI**3/ITMUNI (out)|MODFLOW-UZF per disaggregated hru

(dhru)

!! ~

!!

!! ~ ~ ~ Variables Modified ~ ~ ~

!! name |units |definition

138

!! ~

!! sepbtm_dhru(:) |mm H2O (in) |percolation from bottom of the soil profile

!! | |populated from sepbtm and sm_hru2dhru conversion

!! |LENUNI**3/ITMUNI (out)|for the day in HRU, now in MODFLOW units

!! etremain_dis(:) |mm H2O (in) |remaining et to be passed from SWAT to

!! |LENUNI**3/ITMUNI (out)|MODFLOW-UZF per disaggregated hru

(dhru)

!! | |populated from etremain and sm_hru2dhru conversion

!! ~

!!

!! ~ ~ ~ Local Definitions ~ ~ ~

!! name |units |definition

!! ~

!! mf_lengthUnit |MODFLOW length unit |the modified inteteger to represent

!! | |the MODFLOW unit of length for units

!! mf_timeUnit |MODFLOW time unit |the modified integer to represent

!! | |the MODFLOW unit of time for units

!! ~

!!

!! ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~

 !Import variables

 use parm, only:sepbtm,etremain,leapyr !SWAT

 use GLOBAL, only:LENUNI,ITMUNI !MODFLOW

 use sm_parm !sm linkage

 implicit none

 !Define local variables

 integer mf_lengthUnit,mf_timeUnit

 mf_lengthUnit = LENUNI + 10

 mf_timeUnit = ITMUNI

 !Convert SWAT hru based variables into SM dis-aggregated hrus for more accurate

surface/groundwater interaction

 call sm_hru2dhru(sepbtm, sepbtm_dhru)

 call sm_hru2dhru(etremain, etremain_dhru)

 !Convert SM variables into MODFLOW units

 call units(sepbtm_dhru, 14, mf_lengthUnit, 1, dhru, leapyr)! to convert units (mm/day

to LENUNI/day)

 call units(sepbtm_dhru, mf_timeUnit, 4, 1, dhru, leapyr)! to convert time units

(LENUNI/days to LENUNI/ITMUNI)

 call units(etremain_dhru, 14, mf_lengthUnit, 1, dhru, leapyr)! to convert length units

(mm/day to LENUNI/day)

 call units(etremain_dhru, mf_timeUnit, 4, 1, dhru, leapyr)! to convert time units

(LENUNI/days to LENUNI/ITMUNI)

139

 return

 end

SM_CONVERSION2SWAT.F

 subroutine sm_conversion2swat

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! ~ ~ ~ Purpose ~ ~ ~

!! This subroutine converts all the MODFLOW variables, to pass into SWAT, into the

proper units and SWAT variables

!!

!! ~ ~ ~ Variables Used ~ ~ ~

!! name |units |definition

!! ~

~ ~ ~

!! gw_q(:) |mm H2O |groundwater contribution to streamflow from

!! | |HRU on current day

!! gw_qdeep(:) |mm H2O |groundwater contribution to streamflow from deep

aquifer

!! | |from HRU on current day

!! gwht(:) |m |groundwater height

!! | |HRU on current day

!! hru_fr(:) |none |fraction of subbasin area in HRU

!! hrutot(:) |none |number of HRUs in subbasin

!! leapyr |none |leap year flag

!! | |0 leap year

!! | |1 regular year

!! msub |none |max number of subbasins

!! nhru |none |number of HRUs in watershed

!! rttlc(:) |m^3 H2O |transmission losses from reach on day

!! sub_fr(:) |none |fraction of watershed area in subbasin

!! sub_km(:) |km^2 |area of subbasin in square kilometers

!! LENUNI |MODFLOW length |the MODFLOW variable for which length

units are being used

!! ITMUNI |MODFLOW time |the MODFLOW variable for which time units

are being used

!! NROW |n/a |the MODFLOW variable for number of rows of grids

!! NCOL |n/a |the MODFLOW variable for number of columns of grids

!! NLAY |n/a |the MODFLOW variable for number of layers of grids

!! HNEW(:,:,:) |LENUNI |MODFLOW variable for the new head in the aquifer

!! BOTM(:,:,:) |LENUNI |MODFLOW variable for the elevation of the

140

!! | |bottom of each grid cell layer

!! RIV(6,:) |LENUNI |MODFLOW variable for properties of the river cells

!! |n/a |(1,:) cell layer index

!! |n/a |(2,:) cell row index

!! |n/a |(3,:) cell column index

!! |LENUNI |(4,:) cell river stage (bottom elevation + depth)

!! |LENUNI/ITMUNI |(5,:) cell conductance

!! |LENUNI |(6,:) cell river bottom elevation

!! grid2riv_id |none |a list per MODFLOW river grids (cols) containing

!! | |the SWAT river IDs within that grid cell

!! grid2riv_len |m |a list per MODFLOW river grids (cols) containing

!! | |the SWAT river lengths within that grid cell

!! nriver_cells |n/a |the total number of river grid cells in MODFLOW

!! ~

~ ~ ~

!!

!! ~ ~ ~ Variables Modified ~ ~ ~

!! name |units |definition

!! ~

~ ~ ~

!! gwht(:) |m |groundwater height SWAT variable, populated by

MODFLOW's HNEW

!! gw_q(:) |mm H2O |groundwater contribution to streamflow from

!! | |HRU on current day

!! ~

~ ~ ~

!!

!! ~ ~ ~ Local Definitions ~ ~ ~

!! name |units |definition

!! ~

~ ~ ~

!! mf_lengthUnit |MODFLOW length unit |the modified integer to represent

!! | |the MODFLOW unit of length for units

!! mf_timeUnit |MODFLOW time unit |the modified integer to represent

!! | |the MODFLOW unit of time for units

!! IL |none |the layer index for getting info. from RIVR

!! IC |none |the column index for getting info. from RIVR

!! IR |none |the row index for getting info. from RIVR

!! h |none |the hru index for looping over subbasin's hrus

!! sum_rivrate(1) |LENUNI**3/ITMUNI |holder for the sum of river rates

contributing to a

!! | |given subbasin to be mapped to rivSegPar

!! wtlocation(:,:) |n/a |sm variable of the rows and columns of

!! | |MODFLOW grid cells with a value indicating

!! | |which layer the water table is located in

141

!! gw_tot |m**3/day |The total amount of groundwater discharge from the

current

!! | |grid cell to the subbasin outlet

!! ~

~ ~ ~

!! ~ ~ ~ ~ ~ ~ End Specifications ~ ~ ~ ~ ~ ~

 !Import variables

 use parm, only: gw_q,gw_qdeep,gwht,hru_fr,hru1,hrutot, !SWAT

 & leapyr,msub,nhru,rttlc,sub_fr,sub_km

 use GLOBAL,only:LENUNI,ITMUNI,NROW,NCOL,NLAY,HNEW,BOTM

!MODFLOW

 use GWFRIVMODULE, only:RIVR !MODFLOW

 use sm_parm !sm linkage

 implicit none

 !define local variables

 integer mf_lengthUnit,mf_timeUnit,subID,dhruID

 integer IL,IC,IR,i,j,k,h

 DOUBLE PRECISION HHNEW,CHRIV,RRBOT,CCRIV

 real grid_rivlen, HRIV, CRIV, RBOT, RATE, gw_tot

 real wtlocation(NCOL,NROW)

 real rt_cnew_location(NCOL,NROW)

 real sum_rivrate(1)

 real gwht_dhru(dhru)

 mf_lengthUnit = LENUNI + 10

 mf_timeUnit = ITMUNI

 wtlocation = 1 !Set default water table location

 subID = 0

 gw_tot = 0

 gwht_dhru = 0

 h = 1 !set starting hru index

 !Loop through MODFLOW variables and pull out information

 do j=1, NROW

 do i=1, NCOL

 do k=1, NLAY

 !Loop through and find which layer the water table is in

 if(HNEW(i,j,k).LT.BOTM(i,j,k-1) .and. !BOTM(J,I,0) contains the top of layer1

 & HNEW(i,j,k).GT.BOTM(i,j,k)) then

 wtlocation(i,j) = k

 endif

 enddo

 enddo

 enddo

142

 !Preprocess replacing the values of gw_q and gw_qdeep which will be populate with

data from MODFLOW

 rttlc = 0.

 do i=1, nhru

 do j=1, d2h_size

 dhruID = d2h_id(i,j)

 if(dhruID.ne.0)then

 gw_q(i) = 0

 gw_qdeep(i) = 0 !also zero the deep groundwater flow to streams because

MODFLOW only passes back 1 baseflow value

 endif

 enddo

 enddo

 do i=1, nriver_cells

 !reset averaged river properties

 grid_rivlen = 0.

 sum_rivrate(1) = 0.

 RATE = 0.

 !Use original MODFLOW code to calculate the rate of loss/gain from/to rivers

(LENUNI^3/ITMUNI)

 !the below code is borrowed from the MODFLOW subroutine LMT7RIV7 to

calculate RATE

 IL=RIVR(1,i)

 IR=RIVR(2,i)

 IC=RIVR(3,i)

 !--GET RIVER PARAMETERS FROM RIVER LIST.

 HRIV=RIVR(4,i)

 CRIV=RIVR(5,i)

 RBOT=RIVR(6,i)

 HHNEW=HNEW(IC,IR,IL)

 CHRIV=CRIV*HRIV

 CCRIV=CRIV

 RRBOT=RBOT

 !--COMPARE HEAD IN AQUIFER TO BOTTOM OF RIVERBED.

 IF(HHNEW.GT.RRBOT) RATE=CHRIV-CCRIV*HHNEW !--AQUIFER HEAD

> BOTTOM THEN RATE=CRIV*(HRIV-HNEW).

 IF(HHNEW.LE.RRBOT) RATE=CRIV*(HRIV-RBOT) !--AQUIFER HEAD <

BOTTOM THEN RATE=CRIV*(HRIV-RBOT)

 !end MODFLOW code

 !Get total segments length within current grid cell

 do j=1, msub

 grid_rivlen = grid_rivlen + grid2riv_len(i,j)

 enddo

143

 !Apply only a portion of the river seepage/discharge rate to each river segment

within the

 !current grid cell based on the relative length of the river segment within the grid

cell

 do j=1, msub !j should only be used as an index for grid2riv_id and grid2riv_len, but

NOT as the actual subbasin index

 !determine if the current river cell is part of this subbasin

 subID = grid2riv_id(i,j)

 if(subID.ne.0)then

 sum_rivrate(1) = RATE * (grid2riv_len(i,j)/grid_rivlen)

 !for example, if subID's river is all of the river length in the grid, the

 !subbasin would get 100% of the river rate, if 2 rivers (from 2 subbasins) of

 !equal length are within the grid, each subbasin would get 50% of the river rate

 if(sum_rivrate(1).lt.0) then !a negative rate indicates water leaving the aquifer,

aka discharge to river

 !take the groundwater discharge rate and convert it into SWAT units

 sum_rivrate(1) = -sum_rivrate(1)

 call units(sum_rivrate, mf_lengthUnit, 15, 3, 1, leapyr)! convert length unit

(LENUNI**3/ITMUNI to km**3/ITMUNI)

 call units(sum_rivrate, 4, mf_timeUnit, 1, 1, leapyr)! convert time unit

(km**3/ITMUNI to km**3/day)

 call units(sum_rivrate, 15, 14, 1, 1, leapyr)!convert length unit (km**3/day to

mm-km**2/day)

 gw_tot = sum_rivrate(1)/sub_km(subID)!divide by the subbasin area, in km,

thus finishes converting units (mm-km**2/day to mm/day)

 !determine the starting HRU index for subID's HRUs

 h = hru1(subID)

 do k=1, hrutot(subID)

 !apply a portion of gw_tot to gw_q based on the % hru area in subID's subbasin

area

 gw_q(h)= gw_q(h) + (hru_fr(h)*sub_fr(subID))*gw_tot

 h = h + 1

 enddo

 else !a positive rate indicates water entering the aquifer, aka leakage from river

 !take the seepage to groundwater rate and convert it into SWAT units

 call units(sum_rivrate, mf_lengthUnit, 12, 3, 1, leapyr)! convert length unit

(LENUNI**3/ITMUNI to m**3/ITMUNI)

 call units(sum_rivrate, 4, mf_timeUnit, 1, 1, leapyr)! convert time unit

(m**3/ITMUNI to m**3/day)

 rttlc(subID) = rttlc(subID) + sum_rivrate(1)

144

 endif

 endif

 enddo

 enddo

 !Convert MODFLOW grid variable into SM dis-aggregated hru variable

 call sm_grid2dhru3D(HNEW, gwht_dhru,

wtlocation)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!reconsider this since SWAT never uses the value of

variable!!!!!!!!!!!!!!!!tcw

 !Convert SM variable into SWAT units

 call units(gwht_dhru, mf_lengthUnit, 12, 1, dhru, leapyr)!convert length unit

(LENUNI to m)

 !Convert SM variable into SWAT variable

 call sm_dhru2hru(gwht_dhru, gwht, 0)

 !Call additional MODFLOW to SWAT subfunctions

 call sm_upflux_to_soil

 !Update SWAT's output variables for output.std with the new groundwater results

from MODFLOW

 call sm_updateOutput

 return

 end

SM_DHRU2GRID2D.F

 subroutine sm_dhru2grid2D (smVar, mfVar2, mult_TF)

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! ~ ~ ~ Purpose ~ ~ ~

!! This subroutine converts SM-based disaggregated HRUs (dhrus) to 2D MODFLOW-

based grids.

!! Additionally, this subroutine multiplies a MODFLOW 2D variable by the grid area

of each

!! MODFLOW grid if mult_TF is 1, divides a MODFLOW 2D variable by the grid area

of each

!! MODFLOW grid if mult_TF is 2, or does nothing additional if mult_TF is 0.

!!

!! ~ ~ ~ Variables Used ~ ~ ~

145

!! name |units |definition

!! ~

!! d2g_id |none |Array per MODFLOW grid of the IDs of the

!! | |dhrus which contribute to this grid

!! d2g_area |none |Array per MODFLOW grid of the percent area of

!! | |the dhrus which contribute to this grid

!! d2g_size |none |the maximum number of dhrus which contribute

!! | |to a single grid, used for looping and

!! | |dimensioning variables

!! smVar |unknown |sm variable (list per dhru)

!! mfVar2 |unknown |2D MODFLOW variable (NCOL, NROW) to be

!! | |populated with the contents of the SM variable

!! mult_TF |n/a |integer, if "1" will multiply array

!! | |by the grid area, if "2" will divide

!! | |array by the grid area, if "0" will not

!! | |convert the variable based on MODFLOW area

!! DELR |LENUNI |MODFLOW variable, the thickness of the row per column

!! DELC |LENUNI |MODFLOW variable, the thickness of the column per row

!! ~

!!

!! ~ ~ ~ Variables Modified ~ ~ ~

!! name |units |definition

!! ~

!! mfVar2 |unknown |2D MODFLOW variable (NCOL, NROW) now populated

!! | |with the contents of the SM variable

!! ~

!!

!! ~ ~ ~ Local Definitions ~ ~ ~

!! name |units |definition

!! ~

!! newVar2 |unknown |2D MODFLOW variable (NCOL, NROW) that is

!! | |temporarily populated with the contents of

!! | |the SM variable before checking for remaining

!! | |grid area not contributed to by a dhru

!! areaUsed |% |2D MODFLOW variable (NCOL, NROW) that is

!! | |used to track how much of the grid area has

!! | |been contributed to by the dhrus so that any

!! | |remaining grid area not contributed to by a dhru

!! | |uses the original MODFLOW value

!! i |n/a |MODFLOW row loop index

!! j |n/a |MODFLOW column loop index

!! ctr |n/a |MODFLOW grid id index

!! k |n/a |d2g_size loop index

!! cellUsed |n/a |a true/false for whether the MODFLOW grid

!! | |has interacted with a SM dhru and should

!! | |therefore be converted for area/unit reasons

146

!! ~

!! ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~

! Import variables

 use GLOBAL, only: NCOL,NROW,DELR,DELC !MODFLOW

 use sm_parm, only: dhru,d2g_size,d2g_id,d2g_area !sm linkage

 implicit none

! Define local variables

 real smVar(dhru)

 real mfVar2(NCOL,NROW)

 real newVar2(NCOL,NROW)

 real areaRemain(NCOL,NROW)

 integer mult_TF, i, j, k, ctr, dhruID

 logical cellUsed

! Initialize local variables

 newVar2 = 0.

 areaRemain = 1.

 ctr = 1

 cellUsed = .false.

! Convert SM dhru variables into MODFLOW-grid variables by multiplying each

! contributing dhru variable by its percent area contributing to each grid

 do j=1, NROW

 do i=1, NCOL

 do k=1, d2g_size

 dhruID = d2g_id(ctr,k)

 if(dhruID.ne.0)then

 !Convert the dhru information into grid information

 newVar2(i,j) =newVar2(i,j)+smVar(dhruID)*d2g_area(ctr,k)

 !Track how much of the area of the grid has been contributed to (%)

 areaRemain(i,j) = areaRemain(i,j) - d2g_area(ctr,k)

 cellUsed = .true.

 endif

 enddo

 !If the grid cell was contributed to by dhrus, and

 !the units need to convert the area, do so here

 if(cellUsed .and. mult_TF.eq.1)then

 !Multiply variable by cell area

 newVar2(i,j) = newVar2(i,j)*DELR(i)*DELC(j)

 else if(cellUsed .and. mult_TF.eq.2)then

 !Divide variable by cell area

 newVar2(i,j) = newVar2(i,j)/(DELR(i)*DELC(j))

 endif

147

 !Store the converted dhru results into the MODFLOW variable

 if(areaRemain(i,j) > 0)then

 !If the dhrus do not completely cover the grid cell, retain a portion of the original

grid data

 mfVar2(i,j) = newVar2(i,j) + mfVar2(i,j)*areaRemain(i,j)

 else

 mfVar2(i,j) = newVar2(i,j)

 endif

 !reset the counters for the loop

 cellUsed = .false.

 ctr = ctr + 1

 enddo

 enddo

 return

 end

SM_DHRU2HRU.F

 subroutine sm_dhru2hru (smVar, swatVar, mult_TF)

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! ~ ~ ~ Purpose ~ ~ ~

!! This subroutine converts SM-based disaggregated HRUs (dhru) to SWAT HRUs.

!! Additionally, this subroutine multiplies a SWAT variable by the area, in

!! km**2, of each SWAT hru if mult_TF is true 1, divides a SWAT variable by

!! the area, in km**2, of each SWAT hru if mult_TF is false 2, or does nothing

!! additional if mult_TF is 0.

!!

!! ~ ~ ~ Variables Used ~ ~ ~

!! name |units |definition

!! ~

!! d2h_id |none |Array per SWAT hru of the IDs of the dhrus

!! | |which contribute to this hru

!! d2h_area |none |Array per SWAT hru of the percent area of

!! | |the dhrus which contribute to this hru

!! d2h_size |none |the maximum number of dhrus which contribute

!! | |to a single hru, used for looping and

!! | |dimensioning variables

!! smVar |unknown |SM variable (list of dhrus)

!! swatVar |unknown |SWAT variable (list of nhru) to be populated

148

!! | |with the contents of the SM variable

!! hru_km(:) |km**2 |area of HRU in square kilometers

!! ~

!!

!! ~ ~ ~ Variables Modified ~ ~ ~

!! name |units |definition

!! ~

!! swatVar |unknown |SWAT variable (list of nhru) to be populated

!! | |with the contents of the SM variable

!! ~

!!

!! ~ ~ ~ Local Definitions ~ ~ ~

!! name |units |definition

!! ~

!! i |none |SWAT HRU loop index

!! j |none |SM dhru loop index

!! cellUsed |n/a |a true/false for whether the SWAT hru

!! | |has interacted with a SM dhru and should

!! | |therefore be converted for area/unit reasons

!! ~

!! ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~

! Import variables

 use parm, only: nhru, hru_km !SWAT

 use sm_parm, only: dhru, d2h_size, d2h_id, d2h_area !sm linkage

 implicit none

! Define local variables

 real smVar(dhru)

 real swatVar(nhru)

 integer mult_TF, i, j, dhruID

 logical cellUsed

! Initialize local variables

 cellUsed = .false.

! Convert SM-dhru variables into SWAT-HRU variables by multiplying each

! contributing dhru variable by its percent area contributing to each HRU

 do i=1, nhru

 do j=1, d2h_size

 dhruID = d2h_id(i,j)

 if(dhruID.ne.0)then

 if(cellUsed)then

 !if this is the second or more time referencing this cell, add to its contents

149

 swatVar(i) = swatVar(i) + smVar(dhruID)*d2h_area(i,j)

 else

 !if this is the first time referencing this cell, overwrite its contents

 swatVar(i) = smVar(dhruID)*d2h_area(i,j)

 cellUsed = .true.

 endif

 endif

 enddo

 !If the hru was contributed to by dhrus, and

 !the units need to convert the area, do so here

 if(cellUsed .and. mult_TF.eq.1)then

 !Multiply variable by cell area, in km

 swatVar(i)=swatVar(i)*hru_km(i)

 else if(cellUsed .and. mult_TF.eq.2)then

 !Divide variable by cell area, in km

 swatVar(i)=swatVar(i)/(hru_km(i))

 endif

 !reset the counters for the loop

 cellUsed = .false.

 enddo

 return

 end

SM_GETGW.F

 module sm_getgw

!! ~ ~ ~ Authors ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! Andre Dozier, PhD student

!! Colorado State University 2012-2016

!! Comment initials "aqd"

!!

!! ~ ~ ~ Purpose ~ ~ ~

!! This subroutine sets up events for the groundwater portion of the

!! SWAT-MODFLOW linkage

!!

 use parm

 use modevent

 implicit none

150

 contains

 subroutine sm_getgwcontr(eventdata)

 class (ieventdata), pointer :: eventdata

 computegw = .false.

 end subroutine sm_getgwcontr

 subroutine sm_getgwnutr(eventdata)

 class (ieventdata), pointer :: eventdata

 computenutr = .true.

 end subroutine sm_getgwnutr

 subroutine sm_getrechloss(eventdata)

 class (ieventdata), pointer :: eventdata

 initializeRCHloss = .false.

 end subroutine sm_getrechloss

 end module sm_getgw

SM_GRID2DHRU2D.F

 subroutine sm_grid2dhru2D (mfVar2, smVar)

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! ~ ~ ~ Purpose ~ ~ ~

!! This subroutine converts 2D MODFLOW-based grids to SM-based disaggregated

HRUs (dhrus)

!!

!! ~ ~ ~ Variables Used ~ ~ ~

!! name |units |definition

!! ~

!! g2d_r |none |Array per SM dhru of the row IDs of the grids

!! | |which contribute to this dhru

!! g2d_c |none |Array per SM dhru of the column IDs of the grids

!! | |which contribute to this dhru

!! g2d_area |none |Array per SM dhru of the percent area of

!! | |the grids which contribute to this dhru

!! g2d_size |none |the maximum number of grids which contribute

!! | |to a single dhru, used for looping and

!! | |dimensioning variables

!! mfVar2 |unknown |2D MODFLOW variable (NCOL, NROW)

!! smVar |unknown |SM variable (list of dhrus) to be populated

151

!! | |with the contents of the MODFLOW variable

!! ~

!!

!! ~ ~ ~ Variables Modified ~ ~ ~

!! name |units |definition

!! ~

!! smVar |unknown |SM variable (list of dhrus) now populated

!! | |with the contents of the MODFLOW variable

!! ~

!!

!! ~ ~ ~ Local Definitions ~ ~ ~

!! name |units |definition

!! ~

!! i |none |SM dhru loop index

!! j |none |g2d_size loop index

!! row |none |row index for MODFLOW

!! col |none |column index for MODFLOW

!! ~

!! ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~

! Import variables

 use GLOBAL, only: NCOL,NROW !MODFLOW

 use sm_parm, only: dhru, g2d_size, g2d_r, g2d_c, g2d_area !sm linkage

 implicit none

! Define local variables

 real mfVar2(NCOL,NROW)

 real smVar(dhru)

 integer i, j, row, col

! Initialize variables

 smVar = 0.

! Convert MODFLOW-grid variables into SM-dhru variables by multiplying each

! contributing grid variable by its percent area contributing to each dhru

 do i=1, dhru

 do j=1, g2d_size

 row = g2d_r(i,j)

 col = g2d_c(i,j)

 if(col.ne.0 .and. row.ne.0)then

 smVar(i) = smVar(i) + mfVar2(col,row)*g2d_area(i,j)

 endif

 enddo

 enddo

152

 return

 end

SM_GRID2DHRU3D.F

 subroutine sm_grid2dhru3D (mfVar3, smVar, location)

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! ~ ~ ~ Purpose ~ ~ ~

!! This subroutine converts 3D MODFLOW-based grids to SM-based disaggregated

HRUs (dhrus)

!!

!! ~ ~ ~ Variables Used ~ ~ ~

!! name |units |definition

!! ~

!! g2d_r |none |Array per SM dhru of the row IDs of the grids

!! | |which contribute to this dhru

!! g2d_c |none |Array per SM dhru of the column IDs of the grids

!! | |which contribute to this dhru

!! g2d_area |none |Array per SM dhru of the percent area of

!! | |the grids which contribute to this dhru

!! g2d_size |none |the maximum number of grids which contribute

!! | |to a single dhru, used for looping and

!! | |dimensioning variables

!! mfVar3 |unknown |MODFLOW variable (NCOL, NROW, NLAY)

!! smVar |unknown |SM variable (list of dhru) to be populated

!! | |with the contents of the MODFLOW variable

!! location |none |an array(NCOL, NROW) with the value equal to which

!! | |layer(NLAY) the MODFLOW value is to be taken from

!! ~

!!

!! ~ ~ ~ Variables Modified ~ ~ ~

!! name |units |definition

!! ~

!! smVar |unknown |SM variable (list of dhrus) now populated

!! | |with the contents of the MODFLOW variable

!! ~

!!

!! ~ ~ ~ Local Definitions ~ ~ ~

!! name |units |definition

!! ~

!! i |none |SM dhru loop index

!! j |none |g2d_size loop index

153

!! row |none |row index for MODFLOW

!! col |none |column index for MODFLOW

!! lay |none |layer index for MODFLOW

!! ~

!! ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~

! Import variables

 use GLOBAL, only: NCOL,NROW,NLAY !MODFLOW

 use sm_parm, only: dhru, g2d_size, g2d_r, g2d_c, g2d_area !sm linkage

 implicit none

! Define local variables

! real sum

 double precision mfVar3(NCOL,NROW,NLAY)

 real smVar(dhru)

 real location(NCOL,NROW)

 integer i, j, row, col, lay

! Initialize variables

! sum = 0

 smVar = 0.

! Convert MODFLOW-grid variables into SM-dhru variables by multiplying each

! contributing grid variable by its percent area contributing to each dhru

! For 3D variable arrays taking specified layer value only

 do i=1, dhru

 do j=1, g2d_size

 row = g2d_r(i,j)

 col = g2d_c(i,j)

 if(col.ne.0 .and. row.ne.0)then

 lay = location(col,row)

 smVar(i) = smVar(i) +

 & mfVar3(col,row,lay)*g2d_area(i,j)

 endif

 enddo

 enddo

 return

 end

SM_HRU2DHRU.F

 subroutine sm_hru2dhru (swatVar, smVar)

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

154

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! ~ ~ ~ Purpose ~ ~ ~

!! This subroutine converts a SWAT HRU-variable to a SM disaggregated HRUs

(dhrus) variable

!!

!! ~ ~ ~ Variables Used ~ ~ ~

!! name |units |definition

!! ~

!! d2h_id |none |Array per SWAT hru of the IDs of the dhrus

!! | |which contribute to this hru

!! swatVar |unknown |SWAT variable (list of nhru)

!! smVar |unknown |SM variable (list of dhrus) to be populated

!! | |with the contents of the SWAT variable

!! ~

!!

!! ~ ~ ~ Variables Modified ~ ~ ~

!! name |units |definition

!! ~

!! smVar |unknown |SM variable (list of dhrus) to be populated

!! | |with the contents of the SWAT variable

!! ~

!!

!! ~ ~ ~ Local Definitions ~ ~ ~

!! name |units |definition

!! ~

!! i |none |SWAT HRU loop index

!! j |none |SM dhru loop index

!! ~

!! ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~

! Import variables

 use parm, only: nhru !SWAT

 use sm_parm, only: dhru, d2h_size, d2h_id, d2h_area !sm linkage

 implicit none

! Define local variables

 real swatVar(nhru)

 real smVar(dhru)

 integer i, j

! Initialize variables

 smVar = 0.

155

! Convert SWAT-HRU variables to SM-dhru variables

! The conversion does not involve a weighted average because the SWAT variables

! are calculated such that the variable's value is the same within each DHRU

! The Water Table in SWAT is a depth. The depth is the same everywhere in the HRU.

! Thus, any dhru will also have the same value. Hence, do not apply a weighted

average.

 do i=1, nhru

 do j=1, d2h_size

 if(d2h_id(i,j).ne.0)then

 smVar(d2h_id(i,j)) = swatVar(i)

 endif

 enddo

 enddo

 return

 end

SM_INIT_MF.F

 subroutine sm_init_mf(eventdata)

!! ~ ~ ~ Authors ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! Andre Dozier, PhD student

!! Colorado State University 2012-2016

!! Comment initials "aqd"

!!

!! Ryan Bailey, Post-Doc student (2012-2013), Assistant Professor (2013-)

!! Colorado State University 2012-

!! Comment initials "rtb"

!!

!! ~ ~ ~ PURPOSE ~ ~ ~

!! This subroutine initializes MODFLOW and the SWAT-MODFLOW (SM) linking

!! subroutines

!!

 use modevent

 implicit none

 class (ieventdata), pointer :: eventdata

! Set up MODFLOW data and allocate arrays

 print *, 'MODFLOW is being used' !rtb

 call mf_read !rtb

 call sm_read_grid2dhru !tcw

 call sm_read_dhru2grid !tcw

156

 call sm_read_dhru2hru !tcw

 call sm_read_river2grid !tcw

 end subroutine sm_init_mf

SM_MAIN.F

 program main

!! ~ ~ ~ Authors ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! Andre Dozier, PhD student

!! Colorado State University 2012-2016

!! Comment initials "aqd"

!!

!! ~ ~ ~ PURPOSE ~ ~ ~

!! This subroutine links sets up the SWAT-MODFLOW (SM) linking subroutines

!! and "events" and then calls SWAT-MODFLOW through "events"

!!

 use sm_parm, only: mf_active

 implicit none

 ! Read the swat-modflow input files

 call sm_read_link !tcw

 ! Subscribe to events within modflow and swat (in order to

 ! essentially wrap the models with connection routines)

 if (mf_active.eq.1) then

 call pkg_modflow

 call pkg_swat

 end if

 ! Run SWAT's main subroutine

 call swat_main

 ! MODFLOW is called within SWAT with Command 19

 ! Close swat-modflow (close files, deallocate variables, etc.)s

 call sm_close

 call mf_close

 end program main

SM_MF_READ.F

 subroutine sm_mf_read(eventdata)

157

!! ~ ~ ~ Authors ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! Andre Dozier, PhD student

!! Colorado State University 2012-2016

!! Comment initials "aqd"

!!

!! ~ ~ ~ Purpose ~ ~ ~

!! This subroutine converts the provided array to different units based on

!! provided flags for the incoming and outgoing units (based on a modified

!! set of MODFLOW's unit flags listed below)

!!

!! ~ ~ ~ Local Variables ~ ~ ~

!! name |units |definition

!! ~

!! leapyr |none |leap year flag for unit conversions

!! | |involving years

!! | |0 leap year

!! | |1 regular year

!! ~

!! ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~

! Initialize local variables

 use modevent

 use parm, only: leapyr !SWAT

 use GLOBAL, only: readMFinput, MF_leapyr !MODFLOW

 implicit none

 class (ieventdata), pointer :: eventdata

 !mf_read has already been called by SM linkage, so do not call it again

 readMFinput = .false.

 !make sure modflow's unit conversion for the time-step are based on years or leap

years correctly

 MF_leapyr = leapyr

 end

SM_MF_RUN.F

 subroutine sm_mf_run(eventdata)

!! ~ ~ ~ Authors ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

158

!! Comment initials "tcw"

!!

!! Andre Dozier, PhD student

!! Colorado State University 2012-2016

!! Comment initials "aqd"

!!

!! ~ ~ ~ PURPOSE ~ ~ ~

!! This subroutine calls conversions from SWAT to MODFLOW, then runs

MODFLOW

!! for one day, then converts back the groundwater results from MODFLOW to

!! SWAT

!!

 use modevent

 implicit none

 class (ieventdata), pointer :: eventdata

 !Convert SWAT units into MODFLOW units

 call sm_conversion2mf

 !water table

 !river discharge/seepage

 !pumping

 call mf_run

 !Convert MODFLOW units back to SWAT units

 call sm_conversion2swat

 end subroutine sm_mf_run

SM_MFRIVER.F

 subroutine sm_mfRiver(eventdata)

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! ~ ~ ~ PURPOSE ~ ~ ~

!! This subroutine converts the necessary SWAT variables used by MODFLOW's river

package into

!! the required hydrauilc conductivity and stage in MODFLOW one a daily timestep

!!

!! ~ ~ ~ Variables Used~ ~ ~

!! name |units |definition

!! ~

159

!! LENUNI |unit_in |the MODFLOW variable for which length units are being

used

!! dep_chan(:) |m |average daily water depth in channel

!! grid2riv_len |m |a list per MODFLOW river grids (cols) containing

!! | |the SWAT river lengths within that grid cell

!! nriver_cells |n/a |the total number of river grid cells in MODFLOW

!! ~

!!

!! ~ ~ ~ Variables Modified ~ ~ ~

!! name |units |definition

!! ~

!! RIVR(4,:) | |river stage (depth + bottom elevation) filled in with info from

SWAT per day

!! RIVR(5,:) | |river conducance, filled in with info from SWAT per day (in

order to overwrite re-reading the .RIVR file every timeset)

!! ~

!!

!! ~ ~ ~ Local Definitions ~ ~ ~

!! name |units |definition

!! ~

!! mf_lengthUnit |LENUNI |the modified inteteger to represent

!! | |the MODFLOW unit of length for units

!! rivlen |LENUNI |variable for total river length in current

!! | |river grid cell

!! rivdepth |ITMUNI |variable for weighted average (based on river

!! | |length) for depth of water in current river grid cell

!! ~

!!

!! ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~

 !Import variables

 use modevent

 use parm, only:msub,dep_chan,leapyr !SWAT

 use GLOBAL, only:LENUNI !MODFLOW

 use GWFRIVMODULE, only:RIVR !MODFLOW

 use sm_parm !sm linkage

 implicit none

 class (ieventdata), pointer :: eventdata

 !Define local variables

 integer mf_lengthUnit,mf_timeUnit,i,j,k,subIndex

 real rivlen(1)

 real rivdepth(1)

 mf_lengthUnit = LENUNI + 10

160

 ! Loop through the SWAT rivers to get channel depth (dep_chan) to pass into

MODFLOW's RIVR

 do i=1, nriver_cells

 !reset averaged river properties

 rivlen = 0.

 rivdepth = 0.

 !Loop through the SWAT rivers attributes needed to calculate depth

 do j=1, msub

 !Get the river's properties to be based on a weighted average with:

 !weights = subbasin's river segment length / total river length in grid cell (rivlen)

 rivlen(1) = rivlen(1) + grid2riv_len(i,j)

 rivdepth(1) = rivdepth(1)+dep_chan(j)*grid2riv_len(i,j)

 enddo

 if(rivlen(1).eq.0) rivlen(1) = 1. !prevent divide by zero problems

 !Take weighted average of river depth

 rivdepth(1) = rivdepth(1)/rivlen(1)

 !Convert into MODFLOW units

 call units(rivdepth, 12, mf_lengthUnit, 1, 1, leapyr);! to convert length units (m to

LENUNI)

 !Populate MODFLOW's RIVR variable for this time step's river stage

 RIVR(4,i) = rivdepth(1) + RIVR(6,i)! cell stage (depth + bottom elevation)

 enddo

 return

 end

SM_NORMOUT.F

 subroutine sm_normOut(eventdata)

!! ~ ~ ~ Authors ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! Andre Dozier, PhD student

!! Colorado State University 2012-2016

!! Comment initials "aqd"

!!

!! ~ ~ ~ PURPOSE ~ ~ ~

!! This subroutine updates a flag in SWAT to not save

!! groundwater discharge variables (gw_q and gw_qdeep)

161

!! as this is now taken care of in sm_updateOutput.f

!!

 use modevent

 use parm, only: normOut !SWAT

 implicit none

 class (ieventdata), pointer :: eventdata

 !Because SWAT-MODFLOW will update groundwater's output summary variables

itself, turn off the normal summary in sumv.f

 normOut = .false.

 end subroutine

SM_PARM.F

 module sm_parm

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! ~ ~ ~ PURPOSE ~ ~ ~

!! This module contains variables used for linking SWAT variables to MODFLOW and

!! MODFLOW variables to SWAT

!!

!! Declare global variables for SWAT-MODFLOW (SM) linkage

 real, dimension (:,:), allocatable :: g2d_r, g2d_c, g2d_area

 real, dimension (:,:), allocatable :: d2g_id, d2g_area

 real, dimension (:,:), allocatable :: d2h_id, d2h_area

 integer :: g2d_size, d2g_size, d2h_size

 real, dimension (:,:), allocatable :: grid2riv_id, grid2riv_len

!! Declare flag for whether modflow is active

 integer :: mf_active

!! SM Disaggregated HRU (dhru) variables

 real, dimension (:), allocatable :: etremain_dhru, sepbtm_dhru

 integer :: dhru

!! MODFLOW/SWAT River segment variables

 integer :: nriver_cells

 end module sm_parm

162

SM_READ_DHRU2GRID.F

 subroutine sm_read_dhru2grid

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! ~ ~ ~ Purpose ~ ~ ~

!! This subroutine reads in the file containing the information to convert

!! SM-based disaggregated hrus (dhru) variables to MODFLOW-based grid variables

!!

!! ~ ~ ~ Variables Used ~ ~ ~

!! name |units |definition

!! ~

!! NCOL |none |the current number of columns of MODFLOW grids

!! NROW |none |the current number of rowss of MODFLOW grids

!! ~

!!

!! ~ ~ ~ Variables Modified ~ ~ ~

!! name |units |definition

!! ~

!! d2g_id |none |Array per MODFLOW grid of the IDs of the dhrus

!! | |which contribute to this grid

!! d2g_area |none |Array per MODFLOW grid of the percent area of

!! | |the dhrus which contribute to this grid

!! d2g_size |none |the maximum number of dhrus which contribute

!! | |to a single grid, used for looping and

!! | |dimensioning variables

!! ~

!!

!! ~ ~ ~ Local Definitions ~ ~ ~

!! name |units |definition

!! ~

!! i |none |counter index for the number of MOFLOW grids

!! j |none |counter index for reading in contributing

!! | |areas and looping through all hrus

!! temp |none |index of current MODFLOW grid

!! nhru_current |none |index of the number of contributing areas

!! | |to loop through

!! ~

!! ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~

! Import variables

 use GLOBAL, only: NCOL, NROW, NLAY !MODFLOW

 use sm_parm, only: d2g_size, d2g_id, d2g_area !sm linkage

163

 implicit none

! Initialize local variables

 integer i, j, gridID, nhru_current, numGrid

! The first line of this file is the total number of MODFLOW grids (active and inactive)

= NROW * NCOL

 open (5005,file="map_dhru2grid.txt")

 read(5005,*) numGrid, d2g_size

! Initialize variables

 allocate(d2g_id(NCOL*NROW, d2g_size))

 allocate(d2g_area(NCOL*NROW, d2g_size))

 d2g_id = 0.

 d2g_area = 0.

 do i=1, numGrid

 read(5005,*) gridID, nhru_current ! grid # then the number of dhrus contributing to

this grid cell

 if(nhru_current.gt.0)then

 read(5005,*) (d2g_id(gridID,j),j=1,nhru_current) ! list of dhru ID numbers which

contribute to this grid cell

 read(5005,*) (d2g_area(gridID,j),j=1,nhru_current) ! list of % areas of that dhru

contributing to this grid cell

 else

 read(5005,*)

 read(5005,*)

 endif

 enddo

 close(5005)

 return

 end

SM_READ_DHRU2HRU.F

 subroutine sm_read_dhru2hru

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! ~ ~ ~ Purpose ~ ~ ~

!! This subroutine reads in the file containing the information to convert

164

!! SM-based disaggregated HRU (dhru) variables to SWAT-based normal/aggregated

HRU variables

!!

!! ~ ~ ~ Variables Used ~ ~ ~

!! name |units |definition

!! ~

!! nhru |none |the current number of SWAT hrus

!! ~

!!

!! ~ ~ ~ Variables Modified ~ ~ ~

!! name |units |definition

!! ~

!! d2h_id |none |Array per SWAT hru of the IDs of the dhrus

!! | |which contribute to this hru

!! d2h_area |none |Array per SWAT hru of the percent area of

!! | |the dhrus which contribute to this hru

!! d2h_size |none |the maximum number of dhrus which contribute

!! | |to a single hru, used for looping and

!! | |dimensioning variables

!! ~

!!

!! ~ ~ ~ Local Definitions ~ ~ ~

!! name |units |definition

!! ~

!! i |none |counter index for reading in contributing

!! | |areas and looping through all grids

!! j |none |counter index for the number of SM dhru

!! hruID |none |index of current SM dhru

!! dhru_current |none |index of the number of contributing areas

!! | |to loop through

!! ~

!! ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~

! Import variables

 use sm_parm, only: d2h_size, d2h_id, d2h_area !sm linkage

 implicit none

! Initialize local variables

 integer ahru,i,j,hruID,dhru_current,subID

 real, dimension (:,:), allocatable :: dhrulist

 real blah

! Read in the ID and percent area of each SM dhru contributing to each SWAT HRU

 open (5006,file="map_dhru2hru.txt")

165

! The first line of this file is the total number of HRUs in the watershed (aka, how

many will be read in)

 read(5006,*) ahru, d2h_size !must equal SWAT's nhru

! Initialize variables

 allocate(d2h_id(ahru, d2h_size))

 allocate(d2h_area(ahru, d2h_size))

 d2h_id = 0.

 d2h_area = 0.

 do i=1, ahru

 ! the HRU's global ID within the watershed, the number of dhrus contributing to this

HRU,

 ! the subbasin number for this HRU, the river ID that this HRU drains to, the

segement ID of

 ! the river that this HRU drains to, the strahlor stream order of this river

 read(5006,*) hruID, dhru_current, subID

 if(dhru_current.gt.0)then

 read(5006,*) (d2h_id(hruID,j),j=1,dhru_current) ! list of dhru ID numbers which

contribute to this hru

 read(5006,*) (d2h_area(hruID,j),j=1,dhru_current) ! list of % areas of that dhru

contributing to this hru

 else

 read(5006,*)

 read(5006,*)

 endif

 enddo

 close(5006)

 return

 end

SM_READ_GRID2DHRU.F

 subroutine sm_read_grid2dhru

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! ~ ~ ~ Purpose ~ ~ ~

!! This subroutine reads in the file containing the information to convert

!! MODFLOW-based grid variables to SM-based disaggregated HRU (dhru) variables

!!

166

!! ~ ~ ~ Variables Used ~ ~ ~

!! name |units |definition

!! ~

!! dhru |none |the total number of disaggregated HRUs in the

!! | |entire watershed (not just the current subbasin)

!! NCOL |none |the current number of columns of MODFLOW grids

!! NROW |none |the current number of rowss of MODFLOW grids

!! ~

!!

!! ~ ~ ~ Variables Modified ~ ~ ~

!! name |units |definition

!! ~

!! g2d_r |none |Array per SM dhru of the row IDs of the grids

!! | |which contribute to this dhru

!! g2d_c |none |Array per SM dhru of the column IDs of the grids

!! | |which contribute to this dhru

!! g2d_area |none |Array per SM dhru of the percent area of

!! | |the grids which contribute to this dhru

!! g2d_size |none |the maximum number of grids which contribute

!! | |to a single dhru, used for looping and

!! | |dimensioning variables

!! ~

!!

!! ~ ~ ~ Local Definitions ~ ~ ~

!! name |units |definition

!! ~

!! i |none |counter index for the number of SM dhru

!! j |none |counter index for reading in contributing

!! | |areas and looping through all grids

!! dhruID |none |index of current SM dhru

!! ngrid_current|none |index of the number of contributing areas

!! | |to loop through

!! ~

!! ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~

! Import variables

 use GLOBAL, only: NCOL, NROW, NLAY !MODFLOW

 use sm_parm, only: dhru, g2d_size, g2d_r, g2d_c, g2d_area !sm linkage

 implicit none

! Initialize local variables

 integer i, j, dhruID, ngrid_current

 real, dimension (:,:), allocatable :: gridlist

! Read in the ID and percent area of each MODFLOW grid contributing to each SM

dhru

167

 open (5004,file="map_grid2dhru.txt")

! The first line of this file is the total number of disaggregated hrus in the watershed

(aka, how many will be read in)

 read(5004,*) dhru, g2d_size

! Initialize variables

 allocate(g2d_r(dhru, g2d_size))

 allocate(g2d_c(dhru, g2d_size))

 allocate(g2d_area(dhru, g2d_size))

 g2d_r = 0.

 g2d_c = 0.

 g2d_area = 0.

 do i=1, dhru

 read(5004,*) dhruID, ngrid_current ! the dhru's global ID within the watershed, the

number of grids contributing to this dhru

 if(ngrid_current.gt.0)then

 read(5004,*) (g2d_r(dhruID,j),j=1,ngrid_current) ! list of grid row ID numbers

which contribute to this dhru

 read(5004,*) (g2d_c(dhruID,j),j=1,ngrid_current) ! list of grid column ID numbers

which contribute to this dhru

 read(5004,*) (g2d_area(dhruID,j),j=1,ngrid_current) ! list of % areas of that grid

contributing to this dhru

 else

 read(5004,*)

 read(5004,*)

 read(5004,*)

 endif

 enddo

 close(5004)

 return

 end

SM_READ_LINK.F

 subroutine sm_read_link

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! ~ ~ ~ Purpose ~ ~ ~

168

!! This subroutine reads in the file containing the information to linke

!! SWAT and MODFLOW

!!

!! ~ ~ ~ Variables Modified ~ ~ ~

!! name |units |definition

!! ~

!! mf_active |none |index whether or not to use MODFLOW to

!! | |calculate groundwater flow processes

!! | |instead of SWAT's gwmod

!! ~

!! ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~

! Import variables

 use sm_parm, only: mf_active !SM linkage

 implicit none

! Read in extra information for linking SWAT and MODFLOW

 open(5003,file="sm_link.txt")

 read(5003, '(I20)') mf_active

 close(5003)

 return

 end

SM_READ_RIVER2GRID.F

 subroutine sm_read_river2grid()

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! ~ ~ ~ Purpose ~ ~ ~

!! This subroutine reads in the file containing the information to calculate

!! river conductance for MODFLOW's river cells

!!

!! ~ ~ ~ Variables Used ~ ~ ~

!! name |units |definition

!! ~

!! subtot |none |number of subbasins in watershed

!! ~

!!

!! ~ ~ ~ Variables Modified ~ ~ ~

!! name |units |definition

!! ~

!! grid2riv_id |none |a list per MODFLOW river grids (cols) containing

169

!! | |the SWAT river IDs within that grid cell

!! grid2riv_len |m |a list per MODFLOW river grids (cols) containing

!! | |the SWAT river lengths within that grid cell

!! river_cells |LENUNI |an array of the properties of the river grid cells,

!! | |are the thicknesses of the river bed of the grid cells

!! nriver_cells |n/a |the total number of river grid cells in MODFLOW

!! ~

!!

!! ~ ~ ~ Local Definitions ~ ~ ~

!! name |units |definition

!! ~

!! i |none |counter index for the number of SWAT subbasins

!! j |none |counter index for reading contributing

!! | |MODFLOW rive grids

!! temp |none |index of current SWAT subbasin

!! ngrid_current |none |index of the number of contributing MODFLOW

!! | |river grids

!! ~

!! ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~

! Import variables

 use GLOBAL, only:LENUNI,ITMUNI !MODFLOW

 use sm_parm !sm linkage

 implicit none

! Initialize local variables

 integer i, j, temp, nriv_current

! Read in the id and percent area of each SWAT HRU contributing to each

! MODFLOW grid

 open (5007,file="map_river2grid.txt")

 read(5007,*) nriver_cells ! the total # of river cells in MODFLOW

! Allocate the variable sizes, which needs to be called here before reading the file

continues

 call sm_allocate()

! Read which SWAT river reaches are within each MODFLOW river cell, and their

associated river lengths

 do i=1, nriver_cells

 read(5007,*) temp, nriv_current ! grid #, then the number of river segments within

this grid

 if(nriv_current.gt.0)then

 read(5007,*) (grid2riv_id(i,j), j=1,nriv_current) ! list of river ID numbers which are

within the current grid

170

 read(5007,*) (grid2riv_len(i,j),j=1,nriv_current) ! list of length of river within the

current grid

 else

 read(5007,*)

 read(5007,*)

 endif

 enddo

 close(5007)

 return

 end

SM_RECHARGE.F

 subroutine sm_recharge(eventdata)

!! ~ ~ ~ Authors ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! Andre Dozier, PhD student

!! Colorado State University 2012-2016

!! Comment initials "aqd"

!!

!! ~ ~ ~ PURPOSE ~ ~ ~

!! This subroutine converts the necessary SWAT variables for the MODFLOW

recharge

!! (RCH) package's variables

!!

 use modevent

 use sm_parm, only: sepbtm_dhru

 use GWFRCHMODULE, only: RECH

 implicit none

 class (ieventdata), pointer :: eventdata

 call sm_dhru2grid2D(sepbtm_dhru,RECH,1)

 end subroutine sm_recharge

SM_UPDATEOUTPUT.F

 subroutine sm_updateOutput

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

171

!! Comment initials "tcw"

!!

!! ~ ~ ~ Purpose ~ ~ ~

!! This file is temporary only, please delete it later

!! This file update the SWAT output variables with corrected

!! groundwater flow values from MODFLOW

! Import variables

 use parm !SWAT

 implicit none

 integer :: subID,h, k

 !Update SWAT's output variables to reflect the changes to gw_q and gw_qdeep

from MODFLOW, like it is done in sumv.f

 do subID=1, msub

 h = hru1(subID)

 do k=1, hrutot(subID)

 !the below code is borrowed from SWAT's sumv.f

 if (curyr > nyskip) then

 !! HRU summations

 hrumono(6,h) = hrumono(6,h) + gw_q(h)

 hrumono(70,h) = hrumono(70,h) + gw_qdeep(h)

 !! watershed summations

 if (ffcst == 0 .and. iscen == 1) then

 wshddayo(104) = wshddayo(104) + gw_q(h) * hru_dafr(h)

 wshddayo(113) = wshddayo(113) + gw_qdeep(h) *hru_dafr(h)

 else if (ffcst == 1) then

 fcstaao(8) = fcstaao(8) + gw_q(h) * hru_dafr(h)

 end if

 end if

 !end borrowed SWAT code from sumv.f

 h = h + 1

 enddo

 enddo

 return

 end

SM_UPFLUXTOSOIL.F

 subroutine sm_upflux_to_soil

!! ~ ~ ~ Authors ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

172

!! Comment initials "tcw"

!!

!! Ryan Bailey, Post-Doc student (2012-2013), Assistant Professor (2013-)

!! Colorado State University 2012-

!! Comment initials "rtb"

!!

!! ~ ~ ~ Purpose ~ ~ ~

!! Add upflux water (calculated by UZF) to soil profile (SWAT)

!! Start with the bottom soil layer. When filled to Field Capacity, move to

!! next layer up.

!!

!! ~ ~ ~ Variables Used ~ ~ ~

!! name |units |definition

!! ~

!! sol_nly(:) |none |number of soil layers

!! sol_z(:,:) |mm soil |depth to bottom of soil layer

!! sol_st(:,:) |mm H2O |amount of water stored in the soil

!! | |layer on any given day (less wp water)

!! sol_up(:,:) |mm H2O/mm soil |water content of soil at -0.033 MPa

!! | |(field capacity)

!! sol_sw(:) |mm H2O |amount of water stored in soil profile

!! | |on any given day

!! sol_wpmm(:,:) |mm H20 |water content of soil at -1.5 MPa

!! | |(wilting point)

!! nhru |none |number of HRUs in watershed

!! LENUNI |unit_in |the MODFLOW variable for which length

!! | |units are being used

!! ITMUNI |unit_out |the MODFLOW variable for which time

!! | |units are being used

!! NCOL |n/a |the MODFLOW variable for number of

!! | |columns of grids

!! NROW |n/a |the MODFLOW variable for number of

!! | |rows of grids

!! NLAY |n/a |the MODFLOW variable for number of

!! | |layers of grids

!! GWET(:,:,:) |LENUNI**3/ITMUNI |a modflow variable for the et coming

!! | |from the groundwater UZF package

!! | |(only the UZF or EVT package is allowed

!! | |active, not both)

!! UZET(:,:,:) |LENUNI**3/ITMUNI |an added modflow variable for the et

!! | |coming from the groundwater UZF package

!! | |(only the UZF or EVT package is allowed

!! | |active, not both)

!! EVTvol(:,:,:) |LENUNI**3/ITMUNI |an added modflow variable for the et

!! | |coming from the groundwater EVT package

!! | |(only the UZF or EVT package is allowed

173

!! | |active, not both)

!! ~

!!

!! ~ ~ ~ Variables Modified ~ ~ ~

!! name |units |definition

!! ~

!! sol_st(:,:) |mm H2O |amount of water stored in the soil layer

!! | |on any given day (less wp water)

!! ~

!!

!! ~ ~ ~ Local Definitions ~ ~ ~

!! name |units |definition

!! ~

!! upflux(:) |mm H20 |depth of upflux water (as calculated

!! | |from GWET)

!! dg |mm soil |thickness of soil layer

!! sol_upmm |mm H2O |amount of water at field capacity

!! j |none |HRU number

!! sol_water |mm H20 |current amount of water in the soil layer

!! upflux_mm |mm H20 |depth of upflux water for the current HRU

!! sol_deficit |? |the amount of water that can potentially

!! | |be added to the soil layer (based on field capacity)

!! fract_upflux |none |determine fraction of total upflux water

!! | |that is directed to the current layer

!! no3mass_add |?? |based on fract_upflux this is how much of the no3 mass

!! | |should be added to the layer

!! mf_lengthUnit |MODFLOW length unit |the modified inteteger to represent

!! | |the MODFLOW unit of length

!! mf_timeUnit |MODFLOW time unit |the modified integer to represent

!! | |the MODFLOW unit of time

!! mf_et(:,:) |LENUNI**3/ITMUNI |variable to contain each MODFLOW

!! | |grid cell's et to pass to SWAT

!! | |= GWET

!! ~

!! ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~

! Import variables

 use parm, only: sol_nly,sol_z,sol_st,sol_up,sol_sw,sol_wpmm, !SWAT

 & nhru, leapyr

 use GLOBAL, only:LENUNI,ITMUNI,NCOL,NROW,NLAY,DELR,DELC,IUNIT

!MODFLOW

 use GWFUZFMODULE, only: GWET, UZET !MODFLOW UZF package

 USE GWFEVTMODULE,ONLY: EVTvol !MODFLOW EVT package

 use sm_parm, only: dhru !sm linkage

 implicit none

174

! Initialize local variables

 integer i,j,k,ly,mf_lengthUnit,mf_timeUnit,nlayers,layer

 real dg,upflux_mm,sol_upmm,sol_water,sol_deficit,fract_upflux

 real mf_et(NCOL,NROW)

 real upflux_dhru(dhru)

 real upflux(nhru)

 mf_et = 0.

 mf_lengthUnit = LENUNI + 10

 mf_timeUnit = ITMUNI

 !Calculate the total ET upflux from MODFLOW from its uzf groundwater ET

(GWET) variable for each grid cell

 do j=1, NROW

 do i=1, NCOL

 do k=1, NLAY

 !If using the EVT package, get ET from there

 if(IUNIT(5).gt.0)then

 mf_et(i,j) = mf_et(i,j) + EVTvol(i,j,k)/(DELR(i)*DELC(j))

 endif

 !If using the UZF package, get ET from there

 if(IUNIT(55).gt.0)then

 mf_et(i,j) = mf_et(i,j) + UZET(i,j,k)/(DELR(i)*DELC(j))

 endif

 enddo

 !If using the UZF package, get addtional ET from there

 if(IUNIT(55).gt.0)then

 mf_et(i,j) = mf_et(i,j) + GWET(i,j)/(DELR(i)*DELC(j))

 endif

 enddo

 enddo

! Convert MODFLOW variable into SM variable

 call sm_grid2dhru2D(mf_et, upflux_dhru)! Map the MODFLOW upflux from grids

to dhrus

! Convert SM variable into SWAT units

 call units(upflux_dhru, mf_lengthUnit, 15, 3, dhru, leapyr)! to convert length units

(LENUNI**3 to km**3)

 call units(upflux_dhru, mf_timeUnit, 4, 1, dhru, leapyr)! to convert time units

(ITMUNI to days)

 call units(upflux_dhru, 15, 14, 1, dhru, leapyr)! to convert length units (km to mm)

175

! Convert SM variable into SWAT variable

 call sm_dhru2hru(upflux_dhru, upflux, 2)! Map the MODFLOW upflux from dhrus

to HRUs and divide the SWAT variable by hru area (km**3/km**2 = km)

 do j=1, nhru

 !upflux_mm: the depth of upflux for the HRU (calculated by dividing the flow rate

of (UZET + GWET) by the area of the HRU)

 upflux_mm = upflux(j) !get the upflux for the HRU

 !add upflux water to the soil layers - beginning with the bottom layer ------------------

 !loop through the soil layers (beginning with the bottom layer)

 nlayers = sol_nly(j)

 do k=1,nlayers

 !only proceed if there is any upflux water remaining

 if(upflux_mm.gt.0) then

 layer = nlayers - (k-1)

 !calculate thickness of soil layer

 if(layer.gt.1) then

 dg = sol_z(layer,j) - sol_z(layer-1,j)

 else

 dg = sol_z(layer,j)

 endif

 !determine total water (mm) at Field Capacity (what the soil layer can hold)

 sol_upmm = sol_up(layer,j) * dg !(mm water / mm soil) * mm soil

 !determine the current amount of water in the soil layer

 !(must add wilting point water, since sol_st does not include it)

 sol_water = sol_st(layer,j) + sol_wpmm(layer,j)

 !calculate amount of water that can potentially be added to the soil layer

 !(based on field capacity)

 sol_deficit = sol_upmm - sol_water

 !calculate how much upflux water is added to the soil layer

 if(upflux_mm.ge.sol_deficit) then !Fill up all of the soil layer

 !fill the soil layer to field capacity (then subtract the wilting point

 !water, since this is part of the definition of sol_st)

176

 sol_st(layer,j)=(sol_water+sol_deficit)-sol_wpmm(layer,j)

 !decrease the amount of upflux that can be added to the above layers

 !(the next time through the loop)

 upflux_mm = upflux_mm - sol_deficit

 else !Fill up part of the soil layer

 !add all of the upflux (resulting water amount in soil layer should be less

 !than field capacity)

 sol_st(layer,j)=(sol_water + upflux_mm)-sol_wpmm(layer,j)

 upflux_mm = 0

 endif

 endif

 enddo !go to the above layer

 !update total soil water amount for the profile ---

 sol_sw(j) = 0.

 do ly = 1, sol_nly(j)

 sol_sw(j) = sol_sw(j) + sol_st(ly,j)

 enddo

 enddo

 return

 end

SM_UZF.F

 subroutine sm_uzf(eventdata)

!! ~ ~ ~ Authors ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! Andre Dozier, PhD student

!! Colorado State University 2012-2016

!! Comment initials "aqd"

!!

!! ~ ~ ~ PURPOSE ~ ~ ~

!! This subroutine converts the necessary SWAT variables for the MODFLOW

!! unsaturated zone flow (UZF1) package's variables

!!

 use modevent

 ! Inside of MODFLOW, infiltration and ET is

 ! provided by SWAT

177

 use sm_parm, only: sepbtm_dhru, etremain_dhru

 use GWFUZFMODULE, only: FINF, PETRATE

 implicit none

 class (ieventdata), pointer :: eventdata

 call sm_dhru2grid2D(sepbtm_dhru,FINF,1)

 call sm_dhru2grid2D(etremain_dhru, PETRATE,1)

 end subroutine

UNITS.F

 subroutine units(array,unit_in,unit_out,magnitude,asize,leapyr)

!! ~ ~ ~ Author ~ ~ ~

!! Tyler Wible, Masters student

!! Colorado State University 2012-2014

!! Comment initials "tcw"

!!

!! ~ ~ ~ Purpose ~ ~ ~

!! This subroutine converts the provided array to different units based on

!! provided flags for the incoming and outgoing units (based on a modified

!! set of MODFLOW's unit flags listed below)

!!

!! 0 = undefined

!! 1 = seconds

!! 2 = minutes

!! 3 = hours

!! 4 = days

!! 5 = years Note: a year is assumed to be equal to 365 days

!!

!! 11 = feet

!! 12 = meters

!! 13 = centimeters

!! 14 = millimeters

!! 15 = kilometers

!!

!! 21 = kilograms

!! 22 = grams

!! 23 = milligrams

!! 24 = micrograms

!!

!! 31 = square feet

!! 32 = square meters

!! 33 = hectacre (ha)

!!

!! ~ ~ ~ Variables Used ~ ~ ~

178

!! name |units |definition

!! ~

!! array(:) |unit_in units |the variable to have its units converted

!! | |currently in the units of unit_in that has

!! | |"asize" elements in the array

!! unit_in |none |integer representing the incoming unit of the

!! | |parameter following the codes listed above

!! unit_out |none |integer representing the outgoing unit of the

!! | |parameter following the codes listed above

!! magnitude |none |the exponent of the units to be converted

!! | |example: if converting from square feet (ft^2)

!! | |to square meeters (m^2), magnitude should have

!! | |a value of 2

!! asize | |the number of elements in array(:)

!! leapyr |none |leap year flag, this is only used if the in/out

!! | |units are time units involving years

!! | |0 leap year

!! | |1 regular year

!! ~

!!

!! ~ ~ ~ Variables Modified ~ ~ ~

!! name |units |definition

!! ~

!! array |unit_out units|the originally provided variable array now

!! | |in the units of unit_out

!! ~

!! ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~

! Initialize local variables

 implicit none

 integer asize, leapyr

 real array(asize)

 real conversion

 integer unit_in, unit_out, magnitude, i

 conversion = 1.

! Determine the time unit conversion

 if (unit_in.eq.1 .and. unit_out.eq.2) then

 conversion = 1./60. !!Convert seconds to minutes

 else if (unit_in.eq.1 .and. unit_out.eq.3) then

 conversion = 1./3600. !!Convert seconds to hours

 else if (unit_in.eq.1 .and. unit_out.eq.4) then

 conversion = 1./86400. !!Convert seconds to days

 else if (unit_in.eq.1 .and. unit_out.eq.5 .and. leapyr.ne.0) then

 conversion = 1./31536000. !!Convert seconds to non-leap years

 else if (unit_in.eq.1 .and. unit_out.eq.5 .and. leapyr.eq.0) then

179

 conversion = 1./31622400. !!Convert seconds to leap years

 else if (unit_in.eq.2 .and. unit_out.eq.1) then

 conversion = 60. !!Convert minutes to seconds

 else if (unit_in.eq.2 .and. unit_out.eq.3) then

 conversion = 1./60. !!Convert minutes to hours

 else if (unit_in.eq.2 .and. unit_out.eq.4) then

 conversion = 1./1440. !!Convert minutes to days

 else if (unit_in.eq.2 .and. unit_out.eq.5 .and. leapyr.ne.0) then

 conversion = 1./525600. !!Convert minutes to non-leap years

 else if (unit_in.eq.2 .and. unit_out.eq.5 .and. leapyr.eq.0) then

 conversion = 1./527040. !!Convert minutes to leap years

 else if (unit_in.eq.3 .and. unit_out.eq.1) then

 conversion = 3600. !!Convert hours to seconds

 else if (unit_in.eq.3 .and. unit_out.eq.2) then

 conversion = 60. !!Convert hours to minutes

 else if (unit_in.eq.3 .and. unit_out.eq.4) then

 conversion = 1./24. !!Convert hours to days

 else if (unit_in.eq.3 .and. unit_out.eq.5 .and. leapyr.ne.0) then

 conversion = 1./8760. !!Convert hours to non-leap years

 else if (unit_in.eq.3 .and. unit_out.eq.5 .and. leapyr.eq.0) then

 conversion = 1./8784. !!Convert hours to leap years

 else if (unit_in.eq.4 .and. unit_out.eq.1) then

 conversion = 86400. !!Convert days to seconds

 else if (unit_in.eq.4 .and. unit_out.eq.2) then

 conversion = 1440. !!Convert days to minutes

 else if (unit_in.eq.4 .and. unit_out.eq.3) then

 conversion = 24. !!Convert days to hours

 else if (unit_in.eq.4 .and. unit_out.eq.5 .and. leapyr.ne.0) then

 conversion = 1./365. !!Convert days to non-leap years

 else if (unit_in.eq.4 .and. unit_out.eq.5 .and. leapyr.eq.0) then

 conversion = 1./366. !!Convert days to leap years

 else if (unit_in.eq.5 .and. unit_out.eq.1 .and. leapyr.ne.0) then

 conversion = 31536000. !!Convert non-leap years to seconds

 else if (unit_in.eq.5 .and. unit_out.eq.2 .and. leapyr.ne.0) then

 conversion = 525600. !!Convert non-leap years to minutes

 else if (unit_in.eq.5 .and. unit_out.eq.3 .and. leapyr.ne.0) then

 conversion = 8760. !!Convert non-leap years to hours

 else if (unit_in.eq.5 .and. unit_out.eq.4 .and. leapyr.ne.0) then

 conversion = 365. !!Convert non-leap years days

 else if (unit_in.eq.5 .and. unit_out.eq.1 .and. leapyr.eq.0) then

 conversion = 31622400. !!Convert leap years to seconds

180

 else if (unit_in.eq.5 .and. unit_out.eq.2 .and. leapyr.eq.0) then

 conversion = 527040. !!Convert leap years to minutes

 else if (unit_in.eq.5 .and. unit_out.eq.3 .and. leapyr.eq.0) then

 conversion = 8784. !!Convert leap years to hours

 else if (unit_in.eq.5 .and. unit_out.eq.4 .and. leapyr.eq.0) then

 conversion = 366. !!Convert leap years days

! Determine the distance unit conversion

 else if (unit_in.eq.11 .and. unit_out.eq.12) then

 conversion = 1./3.28084 !!Convert feet to meters

 else if (unit_in.eq.11 .and. unit_out.eq.13) then

 conversion = 1./0.0328084 !!Convert feet to centimeters

 else if (unit_in.eq.11 .and. unit_out.eq.14) then

 conversion = 1./0.00328084 !!Convert feet to millimeters

 else if (unit_in.eq.11 .and. unit_out.eq.15) then

 conversion = 1./3280.84 !!Convert feet to kilometers

 else if (unit_in.eq.12 .and. unit_out.eq.11) then

 conversion = 3.28084 !!Convert meters to feet

 else if (unit_in.eq.12 .and. unit_out.eq.13) then

 conversion = 100. !!Convert meters to centimeters

 else if (unit_in.eq.12 .and. unit_out.eq.14) then

 conversion = 1000. !!Convert meters to millimeters

 else if (unit_in.eq.12 .and. unit_out.eq.15) then

 conversion = 1./1000. !!Convert meters to kilometers

 else if (unit_in.eq.13 .and. unit_out.eq.11) then

 conversion = 0.0328084 !!Convert centimeters to feet

 else if (unit_in.eq.13 .and. unit_out.eq.12) then

 conversion = 1./100. !!Convert centimeters to meters

 else if (unit_in.eq.13 .and. unit_out.eq.14) then

 conversion = 10. !!Convert centimeters to millimeters

 else if (unit_in.eq.13 .and. unit_out.eq.15) then

 conversion = 1./100000. !!Convert centimeters to kilometers

 else if (unit_in.eq.14 .and. unit_out.eq.11) then

 conversion = 0.00328084 !!Convert millimeters to feet

 else if (unit_in.eq.14 .and. unit_out.eq.12) then

 conversion = 1./1000. !!Convert millimeters to meters

 else if (unit_in.eq.14 .and. unit_out.eq.13) then

 conversion = 1./10. !!Convert millimeters to centimeters

 else if (unit_in.eq.14 .and. unit_out.eq.15) then

 conversion = 1./1000000. !!Convert millimeters to kilometers

181

 else if (unit_in.eq.15 .and. unit_out.eq.11) then

 conversion = 0.00328084 !!Convert kilometers to feet

 else if (unit_in.eq.15 .and. unit_out.eq.12) then

 conversion = 1000. !!Convert kilometers to meters

 else if (unit_in.eq.15 .and. unit_out.eq.13) then

 conversion = 100000. !!Convert kilometers to centimeters

 else if (unit_in.eq.15 .and. unit_out.eq.14) then

 conversion = 1000000. !!Convert kilometers to milimeters

! Determine the weight unit conversion

 else if (unit_in.eq.21 .and. unit_out.eq.22) then

 conversion = 1000. !!Convert kilograms to grams

 else if (unit_in.eq.21 .and. unit_out.eq.23) then

 conversion = 1000000. !!Convert kilograms to milligrams

 else if (unit_in.eq.21 .and. unit_out.eq.24) then

 conversion = 1000000000. !!Convert kilograms to micrograms

 else if (unit_in.eq.22 .and. unit_out.eq.21) then

 conversion = 1./1000. !!Convert grams to kilograms

 else if (unit_in.eq.22 .and. unit_out.eq.23) then

 conversion = 1000. !!Convert grams to milligrams

 else if (unit_in.eq.22 .and. unit_out.eq.24) then

 conversion = 1000000. !!Convert grams to micrograms

 else if (unit_in.eq.23 .and. unit_out.eq.21) then

 conversion = 1./1000000. !!Convert milligrams to kilograms

 else if (unit_in.eq.23 .and. unit_out.eq.22) then

 conversion = 1./1000. !!Convert milligrams to grams

 else if (unit_in.eq.23 .and. unit_out.eq.24) then

 conversion = 1000. !!Convert milligrams to micrograms

 else if (unit_in.eq.24 .and. unit_out.eq.21) then

 conversion = 1./1000000000.!!Convert micrograms to kilograms

 else if (unit_in.eq.24 .and. unit_out.eq.22) then

 conversion = 1./1000000. !!Convert micrograms to grams

 else if (unit_in.eq.24 .and. unit_out.eq.23) then

 conversion = 1./1000. !!Convert micrograms to milligrams

! Determine the area unit conversion

 else if (unit_in.eq.31 .and. unit_out.eq.32) then

 conversion = 1./10.7639 !!Convert square feet to square meters

 else if (unit_in.eq.31 .and. unit_out.eq.33) then

182

 conversion = 1./107639. !!Convert square feet to hectacres

 else if (unit_in.eq.32 .and. unit_out.eq.31) then

 conversion = 10.7639 !!Convert square meters to square feet

 else if (unit_in.eq.32 .and. unit_out.eq.33) then

 conversion = 0.0001 !!Convert square meters to hectacres

 else if (unit_in.eq.33 .and. unit_out.eq.31) then

 conversion = 107639. !!Convert hectacres to square feet

 else if (unit_in.eq.33 .and. unit_out.eq.32) then

 conversion = 10000. !!Convert hectacres to square meters

 else

 conversion = 1. !!Conversion Error, conversion not accounted for

 endif

! Convert line by line the array into its new units

 do i=1,asize

 array(i) = array(i) * (conversion**magnitude)

 enddo

 return

 end

183

APPENDIX V: COMPREHENSIVE FLOW ANALYSIS EXAMPLE OUTPUT

Figure 47: eRAMS Graphical User Interface (GUI) to CFA Tool

184

Figure 48: CFA Example Report Output for Time series and Statistics Analysis

185

Figure 49: CFA Example Report Output for Flood Analysis

186

Figure 50: CFA Example Report Output for Drought Analysis, Part 1

187

Figure 51: CFA Example Report Output for Drought Analysis, Part 2

188

Figure 52: CFA Example Report Output for Drought Analysis, Part 3

189

Figure 53: CFA Example Report Output for Flow Duration Curve Analysis

190

Figure 54: CFA Example Report Output for Load Duration Curve Analysis

191

Figure 55: CFA Example Report Output for Daily Load Estimator (LOADEST) Analysis

192

Figure 56: CFA Example Report Output for Base-flow Separation (BFLOW) Analysis

193

APPENDIX VI: COMPREHENSIVE FLOW ANALYSIS (CFA) TECHNICAL MANUAL

1. INTRODUCTION

Stream flow data has become an increasingly important tool for assessing current stream

conditions and as a predictor for future conditions. However, there are numerous aspects of

stream flow to analyze as well as methods to do so:

 Stream flow variability and availability for water rights and allocations

 Extent and use of flood plains

 Amount of return flows from groundwater to streams, mostly for modeling purposes

 Impact and extent of droughts on municipal water supply

The foundation of all of these analyses is the stream flow record itself, but there is not

currently a uniform approach to each of these topics combined into a single comprehensive tool.

The manner and implementation of a new tool is of additional importance to its acceptance and

usage.

Current stream flow analysis tools and numerical techniques like base-flow separation

BFLOW (Arnold et al. 1995; Arnold and Allen 1999), hydrograph separation HYSEP (Sloto and

Michele 1996), the Bulletin 17B flood analysis method (IACWD 1982), Web-based Hydrograph

Analysis Tool WHAT (Lim et al. 2005), drought analysis (Salas et al. 2005; Mishra and Singh

2011), and others require installation and use of a software package on a single computer or

manual data manipulation and calculations. Numerical automation of data analysis can

streamline data processing and remove inherent uncertainties in manual data manipulation

techniques. Additionally, the benefit of a web-based tool is that it requires no software

194

installation and is platform independent. For these reasons web-based software is much easier to

deploy as well as simpler for people to use. A further complication of web-modeling

development is the scaling of usage to meet user demands. The utilization of cloud infrastructure

allows the intensive calculations to be moved from a single server to one or many cloud-based

virtual machines, as needed based on current demand/usage.

With the above features in mind the Comprehensive Flow Analysis, CFA, tool was

designed for the Environmental Risk Assessment and Management System, eRAMS. eRAMS is

a web-based geospatial analysis tool to facilitate open-source environmental modeling. The web-

deployment of eRAMS satisfies the design criteria for no software installation necessary for

users. Additionally, eRAMS’ utilizes the cloud-based modeling services provided by the Cloud

Services Innovation Platform, CSIP (David et al. 2012). The cloud services reached by eRAMS,

through CSIP, satisfies the second criteria to utilize virtual machine computation. CSIP provides

an open web interface to the models integrated with it, utilizing a Representational State

Transfer, REST, web service to facilitate initiating, interacting, and retrieving results from

modeling runs.

2. USER MANUAL

 Access

o The non-login version of CFA is available at www.erams.com/flowanalysis

o The login version of CFA is available at www.erams.com

 Log in

 Go to the Projects section of your profile

 Start a new project and use the “Flow Analysis” project type

 Click “GIS/Analysis” to go to the map interface

http://www.erams.com/flowanalysis
http://www.erams.com/

195

 Go to the “Flow Analysis” tab of the map

 Search for a flow/water quality monitoring station using either a:

o Keyword search

o Point buffer (circular area around a point clicked on the map)

o Line buffer (circular area around a line drawn on the map)

o Polygon (an arbitrary shape drawn on the map)

o Rectangle (a bounding box drawn on the map)

 After finding the station of interest, click on it on the map and select “Flow Analysis

Model” on the summary of the station

o This launches the CFA interface

o Further instructions are available under “Getting Started”

 Select the type of analysis model you wish to run from the tabs at the top (data, flood,

drought, base-flow, duration curves, LOADEST)

o Provide the request inputs for the model, tips and information are available from

the “Help” button

 Click the “Run Model” button

o If the raw data selected on the interface is desired click “Download Data”

 The results of CFA are then added to a results page in eRAMS and displayed.

o The result files, graphs, and summary page of model runs are available for

download.

3. CURRENT INFRASTRUCTURE

The Environmental Risk Assessment and Management System (eRAMS) website

developed by Dr. Mazdak Arabi at Colorado State University was created to facilitate geospatial

196

manipulation of data for environmental modeling. eRAMS works on a web-based geospatial

analyst, similar to ArcGIS, to manipulate, model, and share geospatial information. Additionally,

multiple models have been linked into eRAMS including watershed delineation, the Soil and

Water Analysis Tool (SWAT), a multi-criteria decision analysis tool, data extraction tools, the

High Country Solar Platform (HCSP) for determining solar panel feasibility. The CFA tool is

accessible on eRAMS through a scalable cloud-based framework called the Cloud Service

Infrastructure Platform (CSIP) developed by Olaf David and Wes Lloyd (2013).

The Comprehensive Flow Analysis (CFA) tool was developed by creating and integrating

a series of flow analysis methods into a single web tool and interface. CFA includes six flow

models: a time series and statistical analysis, a flood analysis, a drought analysis, a base-flow

separation tool, a flow and load duration curve tool, and a load estimator tool. The combination

of these models into a single program on an open-source-cloud-based platform allows for

multiple independent analyses on the same dataset using the same tool without the need to switch

programs or re-format input data for a different flow analysis. Beyond simply saving time, CFA

creates a standardized approach to the different aspects of flow analysis allowing site to site

comparisons of results.

Behind the scenes, a model run of CFA is accomplished by taking the inputs, for

example: which model is requested (flood, time series, base-flow, etc.), station ID, begin and end

dates, and other information. This is then passed them from eRAMS to CSIP via a

representational state transfer, REST using a JavaScript Object Notation (JSON) to list the inputs

of the desired CFA run. After receiving the REST request, CSIP initializes a model run of CFA,

waits for it to finish executing, then returns the result from CFA back to eRAMS. An outline of

this interaction is shown below in Figure 57.

197

Figure 57: CFA’s Interaction with eRAMS, CSIP, and External Databases

4. COMPREHENSIVE FLOW ANALYSIS (CFA) MODELS

Each of the analysis methods included in CFA is summarized below including an

explanation of method-specific inputs and outputs.

4.1. TIME SERIES ANALYSIS

The first model included in CFA is a simple time series analysis. The Time Series

Analysis Tool graphs temporal changes in available flow or water quality data for any given

station within the specified time period of interest. Time series also provides a summary of the

statistics of the graphed data, including its min, max, median, mean, upper and lower quartiles,

and standard deviation. An example of the output from the Time Series Analysis Tool is shown

below in Figure 58.

198

Figure 58: Example CFA's Time Series Analysis Tool Result Graph

4.2. FLOOD ANALYSIS

Of greater benefit than a simple time series of stream flows, CFA also includes a flood

analysis model. The Flood Analysis Tool in CFA follows the USGS Bulletin 17B approach

(IACWD 1982) for flood flow frequency analysis of unregulated streams. However, CFA is

unable to verify whether the stream gauging stations are unregulated or not. For this reason, as

with all models, users should have some prior knowledge about the model and its limitations as

well as knowledge of the area of interest. The USGS Bulletin 17B method follows the

recommendations of Bulleting 15 (WRC-HC 1967) for flood magnitude/frequency study, in

which a Log-Pearson Type III distribution is fitted to available flood data. By fitting a

distribution to available data, return periods for unobserved and historic floods can be calculated

using the parameters of the fitted distribution. This also allows for flood flows of standard return

periods, like the 100-year flood, to be interpolated from the fitted distribution.

199

Due to the sensitivity of the Log-Pearson Type III distribution to its skewness parameter

Bulletin 17B published by the Hydrology Subcommittee of the Interagency Advisory Committee

on Water Data (IACWD 1982) recommends the use of both a station skew value, derived from

available station data, and a generalized regional skew value. The generalized regional skew

value can be found from interpolation of the regional skew map included in the Bulletin 17B

documentation (IACWD 1982). For greater accuracy of the regionalized skewness, many states

have developed similar maps of their states and surrounding areas based on new regression

techniques (see Appendix VII for flood skewness coefficient references). Within CFA the state

skewness maps were digitized and interpolated on as well as the Plate I map (IACWD 1982) and

combined allowing the regional skewness value for each station to be auto-extracted. The

generalized skewness coefficients used in this particular tool are first attempted to be taken from

a state agency generated map; then if no state data is available the skewness is take from the

Plate I map (IACWD 1982). As per the recommendation of Bulletin 17B (IACWD 1982) the

final skewness used in the flood analysis is an average between the station skewness, calculated

from the available flood dataset, and the generalized skewness, found as described above. An

example of the result of the Flood Analysis Tool can be seen below in Figure 59. Following the

figure is an explanation of the methodology in CFA’s flood analysis tool using the Bulletin 17B

method.

200

Figure 59: Example CFA's Flood Analysis Tool Result Graph

 The methodology inside CFA’s Bulletin 17B method is to first check if there is sufficient

data for the analysis (greater than 10 and less than 149 flood peaks).

 Then the statistics (count, Log10 mean, standard deviation, and skewness) for the base

dataset are calculated.

 Based on the skewness value the outliers of the dataset (if any) are determined. The

statistics of the dataset are then recalculated with the new outlier-removed dataset. If the

skewness changes greatly between these steps a warning flag is conveyed to the user.

 Then the frequency/probabilities for each flood are linearly interpolated from the tables

provided in the Bulletin 17B documentation (IACWD 1982). If the flood is outside the

dataset for interpolation, those values are extrapolated.

201

 The frequencies/probabilities are then plotted against flood magnitudes in skewed

probability space (aka the spacing between the probabilities is not standard unless

skewness equals zero).

4.3. DROUGHT ANALYSIS

An opposite, but equally important, aspect of stream flows is the consideration and

analysis of droughts from stream flow records. For this reason a generalized drought analysis

tool was included in CFA. The drought analysis method included in CFA fits a regression model

to historic annual stream flow data and forecasts it to simulate a larger dataset in order to predict

high recurrence interval droughts (Salas, et al. 2005). The following is a step by step explanation

of the drought analysis method used and example outputs for each step.

The drought analysis begins by calculating annual flow values from available average

daily flow data. Figure 60 contains an annual time series of the flow data with the specified

annual drought limit as a reference.

202

Figure 60: Example CFA's Drought Analysis Tool Result Graph 1

Figure 61 contains a second time series containing the annual surplus or deficit between

the supplied annual flow and the drought demand limit; this is meant to highlight the occurrence

of droughts.

203

Figure 61: Example CFA's Drought Analysis Tool Result Graph 2

After calculating the annualized flow data, it is then converted to its stochastic

component (the mean is subtracted from the data and then divided by the standard deviation).

The stochastic data is then transformed into a normalized dataset using a Box-Cox

transformation. Then an Auto-Regressive (AR) or Auto-Regressive-Moving-Average (ARMA)

model is fitted to the dataset (Salas 1993). The purpose of fitting the regressive model to the

stochastic data is to increase the size of the dataset while maintaining its statistical properties,

mean and standard deviation. Figure 62 contains a plot of the original annual data versus the

predicted model data to illustrate the correlation between the datasets. If the correlation is poor

then further modifications need to be made to the regression model in order to improve the

reliability of the drought analysis.

204

Figure 62: Example CFA's Drought Analysis Tool Result Graph 3

After fitting the regression model, a 100,000 year forecasting is performed using the

fitted model to create a dataset sufficiently large to ‘observe’ high recurrence interval droughts.

Figure 63 contains a plot of the original data and the first portion of the 100,000 year projected

dataset used to analyze the drought impacts. This projected dataset is large to allow sufficient

'droughts' to occur illustrating high recurrence interval droughts that cannot be calculated from

minimal observed data. The first 100 years of this dataset are not used in the analysis and a

dropped as a model warm-up period. This allows for the model to operate independent of initial

conditions.

205

Figure 63: Example CFA's Drought Analysis Tool Result Graph 4

Next the drought analysis uses the projected dataset to calculate the average recurrence

interval of the 1yr, 2yr, 3yr, etc. droughts. These droughts are then categorized by their amount

of drought deficit (supplied annual flow - drought demand limit) and illustrated in Figure 64.

The original data and its corresponding recurrence intervals are included in Figure 64 as well to

illustrate the fit of the predicted data to that of the observed data. If the fit is poor, a better

correlation of the regression model will likely improve the fit of the drought recurrence intervals.

206

Figure 64: Example CFA’s Drought Analysis Tool Result Graph 5

4.4. BASE-FLOW SEPARATION (BFLOW)

Another useful aspect of stream flow analysis and hydrologic modeling of river basins is

river base-flow. Rather than write a numerical hydrograph separation tool, CFA has incorporated

the numerical base-flow separation program “BFLOW,” developed by the by Arnold et al.

(1995; Arnold and Allen 1999). BFLOW is an automated digital filter base-flow separation tool

which performs a multi-pass separation of base-flow from total stream flow. In order to

implement the windows executable BFLOW in CSIP, which uses a Linux platform, the windows

emulator WINE (WineHQ 2012) was used within CSIP (Lloyd et al. 2012). For the ease of use,

like the rest of the tools in CFA, BFLOW operates on uploaded or auto-extracted data. CFA also

automatically generates and formats the data into the necessary input files for the BFLOW

executable. Beyond simply performing the analysis and returning the results CFA’s base-flow

analysis also graphs the outputs of BFLOW’s separation overlaid onto total stream flow for a

207

visual understanding of groundwater contributions to stream flow, see Figure 65. The result file

of the BFLOW program is available for download like the other flow analysis modes in CFA.

Figure 65: Example CFA's Base-Flow Separation (BFLOW) Tool Result Graph

4.5. DURATION CURVE ANALYSIS

Another approach to stream flow data is the application of duration curves; which

statistically rank and graph available flow data. The Flow Duration Curve (FDC) tool in CFA

graphs Weibull plotting position ranks of stream flows on a scale of percent exceedence.

Graphing flow values in this way allows for a quick visualization of the variability of flow under

the different flow regimes and is useful numerically for thresholds such as the flow rate only

exceeded 10% of the time in the historical record. The plotting position used in CFA is a tied-

rank max. This means for example if there are 3 observations of a flow value of 30cfs that would

normally have ranks 13, 14, and 15 the rank of all three observations is re-set to the maximum

rank of the ties, in this case rank 15. An example of the output of CFA’s FDC tool is shown

208

below in Figure 66. The black line is the duration curve for the entire period of analysis while

there is a light grey line for each annual duration curve in the period of analysis.

Figure 66: Example CFA's Flow Duration Curve Analysis Tool Result Graph

An extension of the FDC is the Load Duration Curve (LDC) tool in CFA. A LDC is a

FDC multiplied by a target water quality concentration level to achieve a load per day value of a

particular water quality nutrient. In addition to the LDC itself, observed water quality samples

can be graphed as loads (flow * water quality concentration * conversion factors = load). If the

observed loads never occur above the LDC line then there is no indication of a water quality

problem for that desired target concentration, as shown in Figure 67.

209

Figure 67: Example CFA's Load Duration Curve Analysis Tool Result Graph 1

If there are observations which exceed the LDC, shown in Figure 68, it can sometimes

help determine, based on where the observations exceed the curve, what pollution sources are

probable contributors (Cleland 2007, Cleland 2003 and Cleland 2002). Based on the location of

these exceedences and the outline provided in (Cleland 2007, Cleland 2003 and Cleland 2002),

CFA’s LDC dynamically estimates possible nutrient pollution sources based on the location and

magnitude of the exceeded values on the graph and reports this back to the user. In addition to

the more complex analysis of identifying pollutant sources, LDCs can also be used to identify

Total Maximum Daily Loads (TMDLs) for different flow regimes of a river of interest (Cleland

2007). The value of the LDC at a given exceedence is equal to the TMDL for that river, minus a

margin of safety, for the specified pollutant and target water quality concentration.

210

Figure 68: Example CFA's Load Duration Curve Analysis Tool Result Graph 2

4.6. LOAD ESTIMATOR (LOADEST)

Another executable included in CFA is the Load Estimator which is a tool (LOADEST)

developed by the U.S. Geological Survey (Runkel et al. 2004). LOADEST is a FORTRAN

executable that estimates the amount of constituent loads in streams and rivers given a time

series of stream flows and constituent concentrations. Estimation of constituent loads occurs in

two steps, the calibration procedure and the estimation procedure, both of which are based on

three statistical estimation methods. These methods are Adjusted Maximum Likelihood

Estimation (AMLE), Maximum Likelihood Estimation (MLE) and Least Absolute Deviation

(LAD). The first two methods are appropriate when the calibration model errors, or residuals,

are normally distributed. Of these two, AMLE is best utilized when the calibration data (i.e.

stream flow and constituent concentration) are censored. The LAD is an alternative to maximum

likelihood estimation when the residuals are not normally distributed.

211

In the calibration step, known constituent concentrations with corresponding stream

flows are used to calibrate LOADEST so that it may be determined which of the preloaded

models in LOADEST may best be used for determining the load. Next, in the estimation step, all

of the known stream flows are used to estimate loads of constituent for each day. CFA then

provides a time series graph, see Figure 69, of the loads estimated by LOADEST. These loads

can be determined in either grams, kilograms, pounds or tons. CFA also provides a boxplot and

a statistical summary of the estimated loads for the given time period determined by the stream

flow data. Finally, if daily stream flow values are available, these daily loads (Figure 69) can be

summed in CFA to provide monthly (Figure 70) or even yearly (Figure 70) values of constituent

loads in streams and rivers and their corresponding time series and boxplots will be provided.

Figure 69: Example CFA's Load Estimator (LOADEST) Analysis Tool Result Daily Graph

212

Figure 70: Example CFA's Load Estimator (LOADEST) Analysis Tool Result Monthly Graph

Figure 71: Example CFA's Load Estimator (LOADEST) Analysis Tool Result Annual Graph

213

5. COMPREHENSIVE FLOW ANALYSIS TECHNICAL MANUAL REFERENCES

Arnold, J. G., P. M. Allen, R. Muttiah, & G. Bernhardt. 1995. “Automated base flow separation

and recession analysis techniques.” Ground Water, 33(6): 1010-1010.

Arnold, J.G. and P.M. Allen. 1999. "Automated methods for estimating baseflow and ground

water recharge from streamflow records." Journal of the American Water Resources

Association 35(2): 411-424.

Cleland, Bruce. August 2002. “TMDL Development from the ‘Bottom Up’ Part II: Using

Duration Curves to Connect the Pieces.” National TMDL Science and Policy 2002.

Cleland, Bruce. November 2003. "TMDL Development from the 'Bottom Up' - Part III: Duration

Curves and Wet-Weather Assessments." National TMDL Science and Policy.

Cleland, Bruce. August 2007. "An Approach for Using Load Duration Curves in the

Development of TMDLs."National TMDL Science and Policy.

David, Olaf, James P. Lyon, Wesley Lloyd, and Kenneth W. Rojas. 2012 “Model Services:

REST Specification and Service Signatures.”

Interagency Advisory Committee on Water Data (IACWD). 1982. "Guidelines for determining

flood flow frequency." Bulletin No. 17B (revised and corrected), Hydrology

Subcommittee, Washington, D.C.

Lim, Kyong Jae, Bernard A. Engel, Zhenxu Tang, Joongdae Choi, Ki-Sung Kim, Suresh

Muthukrishnan, and Dibyajyoti Tripathy. December 2005. “Automated Web GIS Based

214

Hydrograph Analysis Tool, WHAT.” Journal of the American Water Resources

Association. 1407-1416.

Lloyd, W., O. David, J. Lyon, K.W. Rojas, J.C. Ascough II, T.R. Green, J.R. Carlson. 2012.

“The Cloud Services Innovation Platform-Enabling Service-Based Environmental

Modelling Using Infrastructure-as-a-Service Cloud Computing.” International

Environmental Modelling and Software Society Conference 2012.

 Mishra, Ashok K. and Singh, Vijay P. 2011. “Drought Modeling – A Review.” Journal of

Hydrology 403: 157-175.

Runkel, Robert L., Charles G. Crawford, and Timothy A. Cohn. U.S. Department of the Interior,

U.S. Geological Survey. 2004. “Chapter A5: Load Estimator (LOADEST): A FORTRAN

Program for Estimating Constituent Loads in Streams and Rivers”. Techniques and

Methods Book 4. Reston, Virginia

Salas, Jose D., Chongjin Fu, Antonino Cancelliere, Dony Dustin, Dennis Bode, Andy Pineda,

and Esther Vincent. 2005. "Characterizing the Severity and Risk of Drought in the

Poudre River, Colorado." Journal of Water Resources Planning and Management 131(5):

383-393.

Salas, Jose D. 1993. "Chapter 19: Analysis and Modeling of Hydrologic Time Series." The

McGraw Hill handbook of hydrology. D. R. Maidment, ed., McGraw-Hill New York

Sloto, Ronald A., and Michéle Y Crouse. 1996. “HYSEP: A Computer Program For Streamflow

Hydrograph Separation and Analysis.” U.S. Geological Survey. Lemoyne, Pennsylvania.

215

Water Resources Council, Hydrology Committee (WRC-HC). 1967. "A Uniform Technique for

Determining Flood Flow Frequencies." Bulletin No. 15, Washington, D.C.

WineHQ – Run Windows applications on Linux, BSD, Solaris, and Mac OS X, 2012,

http://www.winehq.org/

216

APPENDIX VII: CFA STATE REGIONAL FLOOD SKEWNESS COEFFIECIENT

REFERENCES

Table 10: CFA's State Regional Flood Skewness Coefficient References

Alabama:

Olin, D. A. Magnitude and Frequency of Floods in Alabama. Rep. no. 84-4191. U.S.

Geological Survey. Web. 5 July 2012.

<http://pubs.usgs.gov/wri/1984/4191/report.pdf>.

Alaska:

Curran, Janet H., David F. Meyer, and Gary D. Tasker. Estimating the Magnitude and

Frequency of Peak Streamflows for Ungaged Sites on Streams in Alaska and

Conterminous Basins in Canada. Rep. no. 03-4188. U.S. Geological Survey. Web. 5

June 2012. <http://pubs.usgs.gov/wri/wri034188/pdf/wri034188_v1.10.pdf>.

Arizona:

Eychaner, James H. ESTIMATION OF MAGNITUDE AND FREQUENCY OF

FLOODS IN PIMA COUNTY, ARIZONA, WITH COMPARISONS OF

ALTERNATIVE METHODS. Rep. no. 84-4142 U.S. Geological Survey. Web. 5 July

2012. <http://pubs.usgs.gov/wri/1984/4142/report.pdf>.

California:

Parrett, Charles, Andrea Veilleux, and J. R. Stedinger. Regional Skew for California,

and Flood Frequency for Selected Sites in the Sacramento-San Joaquin River Basin,

Based on Data through Water Year 2006. Rep. no. 2010-5260. U.S. Geological

Survey. Web. 9 July 2012. <http://pubs.usgs.gov/sir/2010/5260/pdf/sir20105260.pdf>.

Colorado:
Vaill, J.E., 2000, Analysis of the magnitude and Frequency of Floods in Colorado: U.S.

Geological Survey Water Resources Investigations Report 99-4190.

Connecticut:

Ahearn, Elizabeth A. Peak-Flow Frequency Estimates for U.S. Geological Survey

Streamflow-Gaging Stations in Connecticut. Rep. no. 03-4196. U.S. Geological

Survey. Web. 8 June 2012. <http://pubs.usgs.gov/wri/wri034196/wrir03-4196.pdf>.

Delaware:

Ries III, Kernell G., and Jonathan J.A. Dillow. Magnitude and Frequency of Floods on

Nontidal Streams in Delaware. Rep. no. 2006-5146. U.S. Geological Survey. Web. 9

July 2012. <http://pubs.usgs.gov/sir/2006/5146/pdf/sir2006-5146.pdf>.

Florida:

Hammett, K. M., and M. J. DelCharco. Estimating the Magnitude and Frequency of

Floods for Streams in West-Central Florida, 2001. Rep. no. 2005-5080. U.S.

Geological Survey. Web. 10 July 2012.

<https://store.usgs.gov/yimages/PDF/205602.pdf>.

Georgia:

Gotvald, Anthony J., Toby D. Feaster, and J. Curtis Weaver. Magnitude and Frequency

of Rural Floods in the Southeastern United States, 2006: Volume 1, Georgia. Rep. no.

2009-5043. U.S. Geological Survey. Web. 10 July 2012.

<http://pubs.usgs.gov/sir/2009/5043/pdf/SIR2009_5043_book_508_V2.pdf>.

Hawaii:

Oki, Delwin S., Sarah N. Rosa, and Chui W. Yeung. Flood-Frequency Estimates for

Streams on Kauai, Oahu, Molokai, Maui, and Hawaii, State of Hawaii. Rep. no. 2010-

5035. U.S. Geological Survey. Web. 10 June 2012.

<http://pubs.usgs.gov/sir/2010/5035/sir2010-5035_text.pdf>.

217

Idaho:

Berenbrock, Charles. Estimating the Magnitude of Peak Flows at Selected Recurrence

Intervals for Streams in Idaho. Rep. no. 02-4170. U.S. Geological Survey, 2002. Web.

6 July 2012. <http://id.water.usgs.gov/PDF/wri024170/regression.pdf>.

Illinois

Soong, David T., Audrey L. Ishii, Jennifer B. Sharpe, and Charles F. Avery., 2004,

Estimating Flood-Peak Discharge Magnitudes and Frequencies for Rural Streams in

Illinois. Rep. no. 2004-5103. U.S. Geological Survey. Web. 10 June 2012.

<http://il.water.usgs.gov/pubs/sir2004-5103.pdf>.

Indiana:

Techniques For Estimating Magnitude And Frequency Of Floods On Streams In

Indiana. Rep. no. 84-4134. U.S. Geological Survey. Web. 6 July 2012.

<http://pubs.usgs.gov/wri/wrir_84-4134/pdf/wrir_84-4134_b.pdf>.

Iowa:

Eash, David A. TECHNIQUES FOR ESTIMATING FLOOD-FREQUENCY

DISCHARGES FOR STREAMS IN IOWA. Rep. no. 00-4233. U.S. Geological

Survey, 2001. Web. 6 June 2012. <http://ia.water.usgs.gov/pubs/reports/WRIR_00-

4233.pdf>.

Kansas:

Rasmussen, Patrick P., and Charles A. Perry. Estimation of Peak Streamflows for

Unregulated Rural Streams in Kansas. Rep. no. 00-4079. U.S. Geological Survey, 200.

Web. 6 June 2012. <http://ks.water.usgs.gov/pubs/reports/wrir.00-4079.pdf>.

Kentucky:

Hodgkins, Glenn A., and Gary R. Martin. Estimating the Magnitude of Peak Flows for

Streams in Kentucky for Selected Recurrence Intervals. Rep. no. 03-4180. U.S.

Geological Survey, 2003. Web. 26 June 2012.

<http://pubs.usgs.gov/wri/wri034180/pdf/wri034180.pdf>.

Maryland:

Pedersen, Neil J., and Jay G. Sakai. Application of Hydrologic Methods in Maryland.

Rep. 3rd ed, 2010. U.S. Geological Survey. Web. 26 June 2012.

<http://www.gishydro.umd.edu/HydroPanel/hydrology_panel_report_3rd_edition_fina

l.pdf>.

Massachusetts:

Wandle, Jr., William S. Estimating Peak Discharges of Small, Rural Streams in

Massachusetts. Rep. no. 2214. U.S. Geological Survey, n.d. Web. 11 July 2012.

<http://pubs.usgs.gov/wsp/2214/report.pdf>.

Michigan:

Croskey, H. M. Estimating Generalized Flood Skew Coefficients for Michigan, 1983.

Rep. no. 83-4194. U.S. Geological Survey. Web. 16 June 2012.

<http://pubs.usgs.gov/wri/1983/4194/report.pdf>.

Minnesota:

Lorenz, D. L. Generalized Skew Coefficients for Flood-Frequency Analysis in

Minnesota. Rep. no. 97-4089. U.S. Geological Survey. Web. 22 June 2012.

<http://pubs.usgs.gov/wri/1997/4089/report.pdf>.

Mississippi:

Landers, Mark N., and K. Van Wilson, Jr. FLOOD CHARACTERISTICS OF

MISSISSIPPI STREAMS. Rep. no. 91-4037. U.S. Geological Survey. Web. 11 June

2012. <http://pubs.usgs.gov/wri/1991/4037/report.pdf>.

Missouri:

Southard, Rodney E. Estimation of the Magnitude and Frequency of Floods in Urban

Basins in Missouri. Rep. no. 2010-5073. U.S. Geological Survey. Web. 25 June 2012.

<http://pubs.usgs.gov/sir/2010/5073/pdf/SIR2010-5073.pdf>.

218

Montana:

Parrett, Charles, and D. R. Johnson. Methods for Estimating Flood Frequency in

Montana Based on Data through Water Year 1998. Rep. no. 03-4308. U.S. Geological

Survey. Web. 20 June 2012. <http://pubs.usgs.gov/wri/wri03-

4308/pdf/wrir03_4308.pdf>.

Nebraska:

Soenksen, Philip J., Lisa D. Miller, Jennifer B. Sharpe, and Jason R. Watton. Peak-

Flow Frequency Relations and Evaluation of the Peak-Flow Gaging Network in

Nebraska. Rep. no. 99-4032. U.S. Geological Survey. Web. 26 June 2012.

<http://content.lib.utah.edu/utils/getfile/collection/wwdl-er/id/273/filename/image>.

New Hampshire:

Olson, Scott A. Estimation of Flood Discharges at Selected Recurrence Intervals for

Streams in New Hampshire. Rep. no. 2008-5206. U.S. Geological Survey. Web. 18

June 2012. <http://pubs.usgs.gov/sir/2008/5206/pdf/sir2008-5206.pdf>.

New Jersey:

Watson, Kara M., and Robert D. Schopp. Methodology for Estimation of Flood

Magnitude and Frequency for New Jersey Streams. Rep. no. 2009-5167. U.S.

Geological Survey. Web. 12 June 2012.

<http://pubs.usgs.gov/sir/2009/5167/pdf/sir2009-5167.pdf>.

New York:

Lumia, Richard, and Yvonne H. Baevsky. Development of a Contour Map Showing

Generalized Skew Coefficients of Annual Peak Discharges of Rural, Unregulated

Streams in New York, Excluding Long Island. Rep. no. 00-4022. U.S. Geological

Survey. Web. 11 June 2012. <http://ny.water.usgs.gov/pubs/wri/wri004022/WRIR00-

4022.pdf>.

North Carolina:

Pope, Benjamin F., Gary D. Tasker, and Jeane C. Robbins. Estimating the Magnitude

and Frequency of Floods in Rural Basins of North Carolina. Rep. no. 01-4207. U.S.

Geological Survey. Web. 11 June 2012.

<http://nc.water.usgs.gov/reports/wri014207/pdf/report.pdf>.

North Dakota:

Williams-Sether, Tara. Techniques for Estimating Peak-Flow Frequency Relations for

North Dakota Streams. Rep. no. 92-4020. U.S. Geological Survey. Web. 22 June

2012. <http://nd.water.usgs.gov/pubs/wri/wri924020/pdf/wri924020.pdf>.

Oklahoma:

Tortorelli, Robert L. Techniques for Estimating Peak-Streamflow Frequency for

Unregulated Streams and Streams Regulated by Small Floodwater Retarding

Structures in Oklahoma. Rep. no. 97-4202. U.S. Geological Survey. Web. 12 July

2012. <http://pubs.usgs.gov/wri/wri974202/pdf/wri97-4202.pdf>.

Oregon:

Cooper, Richard M. Estimation of Peak Discharges for Rural, Unregulated Streams in

Western Oregon. Rep. no. 2005-5116. U.S. Geological Survey. Web. 11 June 2012.

<http://pubs.usgs.gov/sir/2005/5116/pdf/sir2005-5116.pdf>.

Rhode Island:

Zarriello, Phillip J., Elizabeth A. Ahearn, and Sarah B. Levin. Magnitude of Flood

Flows for Selected Annual Exceedance Probabilities in Rhode Island Through 2010.

Rep. no. 2012-5109. U.S. Geological Survey. Web. 10 July 2012.

<http://pubs.usgs.gov/sir/2012/5109/pdf/sir2012-5109_report_508.pdf>.

219

South Carolina:

Feaster, Toby D., and Gary D. Tasker. Techniques for Estimating the Magnitude and

Frequency of Floods in Rural Basins of South Carolina, 1999. Rep. no. 02-4140. U.S.

Geological Survey. Web. 22 June 2012.

<http://pubs.usgs.gov/wri/wri024140/pdf/wrir02-4140.pdf>.

South Dakota:

Sando, Steven K. Techniques for Estimating Peak-Flow Magnitude and Frequency

Relations for South Dakota Streams. Rep. no. 98-4055. U.S. Geological Survey. Web.

6 July 2012. <http://pubs.usgs.gov/wri/wri98-4055/pdf/wri98-4055_new.pdf>.

Tennessee:

Wibben, Herman C. Application of the U.S. Geological Survey Rainfall-Runoff

Simulation Model to Improve Flood Frequency Estimates on Small Tennessee

Streams. Rep. no. 76-120. U.S. Geological Survey. Web. 12 July 2012.

<http://pubs.usgs.gov/wri/wri76-120/pdf/wrir_76-120_a.pdf>.

Texas:

Judd, Linda J., William H. Asquith, and Raymond M. Slade, Jr. TECHNIQUES TO

ESTIMATE GENERALIZED SKEW COEFFICIENTS OF ANNUAL PEAK

STREAMFLOW FOR NATURAL BASINS IN TEXAS. Rep. no. 96-4117. U.S.

Geological Survey. Web. 6 June 2012.

<http://pubs.usgs.gov/wri/wri964117/pdf/wri96-4117.pdf>.

Utah:

Pomeroy, Christine A., and Aaron J. Timpson. METHODS FOR ESTIMATING

MAGNITUDE AND FREQUENCY OF PEAK FLOWS FOR SMALL

WATERSHEDS IN UTAH. Rep. no. UT-10.11. U.S. Geological Survey. Web. 26

June 2012. <http://www.udot.utah.gov/main/uconowner.gf?n=15647703282821991>.

Vermont:

Olson, Scott A. Flow-Frequency Characteristics of Vermont Streams. Rep. no. 02-

4238. U.S. Geological Survey. Web. 26 June 2012. <http://pubs.usgs.gov/wri/wrir02-

4238/wrir02-4238.pdf>.

West Virginia:

Atkins, Jr., John T., Jeffrey B. Wiley, and Katherine S. Paybins. Generalized Skew

Coefficients of Annual Peak Flows for Rural, Unregulated Streams in West Virginia.

Rep. no. 2008-1304. U.S. Geological Survey. Web. 18 June 2012.

<http://pubs.usgs.gov/of/2008/1304/pdf/ofr2008-1304.pdf>.

Wisconsin:

Walker, J. F., and W. R. Krug. Flood-Frequency Characteristics of Wisconsin Streams.

Rep. no. 03-4250. U.S. Geological Survey. Web. 19 July 2012.

<http://pubs.usgs.gov/wri/wri034250/pdf/wrir-03-4250.pdf>.

Wyoming:

Miller, Kirk A. PEAK-FLOW CHARACTERISTICS OF WYOMING STREAMS.

Rep. no. 03-4107. U.S. Geological Survey. Web. 19 June 2012.

<http://pubs.usgs.gov/wri/wri034107/pdf/wri034107.pdf>.

