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ABSTRACT 
 
 
 

MODELING PLANT HOTSPOTS IN NEW GUINEA AND VILLAGE-SCALE LAND 

CHANGE DYNAMICS IN PAPUA NEW GUINEA  

 
 

The island of New Guinea harbors the third largest tropical forest in the world, after Amazonia 

and the Congo. Forest cover changes in New Guinea are occurring at a fast rate and it is vital to 

improve our understanding of the drivers of forest change and identify how these changes impact 

human livelihoods and biotic diversity. New Guinea is politically split into two countries; the 

western half is Indonesia and the eastern half is Papua New Guinea. The first part of this 

dissertation focuses on Papua New Guinea, where logging and subsistence agriculture account 

for 92% of forest cover changes. Since a large majority of the population is dependent on 

subsistence agriculture (swidden), understanding how subsistence strategies evolve over time can 

be used to inform land-use and land-cover (LULC) changes. To assess how subsistence strategies 

relate to LULC changes, I compare remote sensing analyses alone to a mixed methods approach 

or participatory remote sensing (PRS) that combines land-use mapping exercises, household 

surveys, remote sensing classifications, and the validation of image analyses. The remote sensing 

analyses alone were two and a half times larger than what land managers and the PRS methods 

identified. The inclusion of participatory data showed that the increase in food production to 

support the growing population was achieved by implementing a variety of strategies rather than 

continual expansion of the swidden area. Participatory data also better described that swidden 

LULC changes were based more on social, climatic, and environmental conditions than 

population growth pressures. To further my investigation of subsistence strategies and swidden 



iii 

 

LULC changes I conducted a long-term swidden LULC study using 40 Landsat scenes between 

1972 and 2015. We found that swidden trends were not significant over the time period and 

therefore there was not a causal relationship between population growth and swidden trends. 

This result is different than national and provincial scale observations. Overall, the inclusion of 

participatory information via PRS methods should be used to understand swidden system LULC 

complexities and land-management strategies. Such information can improve LULC trend 

assessments at wider extents and be more informative for national forest cover change 

assessments. 

The other part of this dissertation has a wider extent and looks at New Guinea as a whole. 

Although it is known for high rates of biodiversity, there are few quantitative studies that have 

assessed plant diversity on the island. Here, I model vascular and non-vascular terrestrial plants 

at the genus taxonomic level to predict the biodiversity hotspots. To do this, I used an ecological 

niche model called MaxEnt and occurrence data from online, herbarium, and museum databases 

are paired with environmental variables. The results from this study identify sampling efforts, 

sampling biases, and predict plant distributions and biodiversity hotspots (richness). I found that 

richness increases west to east along the central mountain range and increases from south to 

north across the island. Even though MaxEnt is capable of minimizing sampling biases, I 

speculate that sampling biases may influence the richness pattern observed south to north 

because the southern third of the island is under sampled and the geologic history is markedly 

different.  At higher elevations in regions with complex topography the predicted genera richness 

are smaller in area but more numerous. Comparatively, larger areas of higher predicted richness 

occur at lower elevations and where the topography is more homogeneous. While modeling with 

genus level data supplies baseline information about plant distributions, some genera are more 
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speciose than others, so this effort may not capture the full scope of richness or endemism in 

New Guinea. However, these results can be used to prioritize future sampling needs, support 

conservation strategies, compare genus diversity to other regions of the world, and discuss 

principles and drivers of biogeography. 
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 

Land use and land cover change assessments are of global interest in the tropics because forest 

ecosystems greatly influence climate, maintain high rates of biodiversity, and support 

subsistence based livelihoods for millions of people. Understanding the ecological impacts of 

land change and how subsistence-based communities are dependent on these forest ecosystems is 

paramount. Such efforts have presented many challenges due to the complexity and 

heterogeneity of socio-ecological systems and lack of data in many underdeveloped regions. 

Therefore to assess land-changes methods from many disciplines have been fused, and some 

include physical, natural, social, and spatial sciences (Turner et al. 2007; Rindfuss et al. 2004). 

Satellite imagery has improved spatial and temporal estimates of land change, but even 

high-resolution imagery are innately limited by temporal resolution, spatial resolution, and cloud 

cover, all of which influence the ability to capture and assess land-use and land-cover (LULC) 

(IPCC Core Writing Team 2001, Ziegler et al. 2011, Hett et al. 2012). The union of spatial and 

social sciences has established a way to more comprehensively explore the socio-ecological 

interface and identify the driving forces between livelihood decisions and LULC changes. The 

inclusion of participatory data is one way to provide essential information to link observed 

patterns and trends from local, ground-level activities to remotely sensed data (Fox et al. 2003, 

Herrmann et al. 2014). Participatory methods have produced intriguing changes in the 

representation and validation of LULC and changes therein (McCall 2003, Dunn 2007, Lynam et 

al. 2007, Matthews et al. 2007, Voinov and Bousquet 2010, Fritz et al. 2012). This 
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interdisciplinary framework has also improved results (Lynam et al. 2007, Voinov and Bousquet 

2010) and shows that detailed land-use knowledge can refine remote sensing LULC 

classifications and change detection (Schmidt-Vogt et al. 2009a, Leisz and Rasmussen 2012). 

There are many examples of participatory research being used in LULC analyses, and some of 

recent include sea grass changes in the Solomon Islands (Lauer and Aswani 2010), coastal 

management in Hawaii (Levine and Feinholz 2015), invasive species management in Ethiopia 

(Wakie et al. 2016), vegetation changes in the Sahel (Herrmann et al. 2014), and swidden 

agricultural changes (Leisz and Rasmussen 2012). 

Across the globe around 450 million people employ some form of subsistence agriculture 

(Mertz et al. 2009; Morton 2007). Subistence agriculture is defined as farming 3 ha of land or 

less and the yields are consumed directly with few supplemental needs purchased (Morton 2007). 

Subsistence agriculture is a highly diverse and this stems from the heterogeneity of climatic and 

environmental variables (e.g. precipitation, temperature, topography, hill slope, and soil 

nutrients), cultures, and techniques used (e.g. crop-fallow cycle lengths, plot sizes, terracing, and 

crop selection; Fox et al. 2009) across the globe. Land-use decisions are in response to different 

biophysical conditions, social and economic underpinnings, and cultural values (Lambin et al. 

2003). Biophysical conditions that influence a change in subsistence strategy and land-use 

include weather and climate variability (e.g. flood, drought, and severe storm), environmental 

changes (e.g. fire, landslide, and insect or disease outbreaks) and species composition shifts (e.g. 

increased weeds). Social mechanisms influenced by infrastructure, social, and political changes 

result in a change of economic opportunities (Aphangthong and Yasuyuki 2009).  

In Papua New Guinea, subsistence agricultural changes have receive little to no attention 

and such analyses are vital in a country where approximately 85% of the population depends on 
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such means to fulfill subsistence and livelihood needs. An analysis of forest cover change at the 

national level cited swidden agriculture as one of the leading causes of forest degradation and 

loss, after timber extraction (Shearman et al. 2009). While national and regional land-use and 

land-cover studies provide a wealth of information and identify general trends, local level studies 

are also of great importance. Local level studies show how similar or opposing trends can occur 

at different scales and understanding these phenomenon can help link local level processes to 

wider extents (Wilbanks and Kates 1999, Wu 2004).  

The forest cover loss and degradation is also associated with the loss of biodiversity. The 

forests on the island of New Guinea (PNG and Indonesian Papua and West Papua) are estimated 

to harbor 5-10% of the world’s biodiversity and 60-90% of the species are thought to be 

endemic. For plants, New Guinea ranks second to Amazonia in plant biodiversity and this 

equates to approximately 17,000 different species, and 10,200 of these species are thought to be 

endemic (Mittermeier et al. 2003). Yet, the evidence to support the high rates of diversity and 

endemism are not based on comprehensive taxonomic collections and instead on expert opinions.  

This dissertation looks at the impacts of land-change at two different scales, first, at the 

local scale, for a village in Papua New Guinea, and second, at the regional scale, for the island of 

New Guinea. I apply spatial concepts and tools to ask research questions and analyze landscape 

level phenomena. These topics are conducted at disparate spatial scales with the goal to 

contribute to the ecological research for this region, as it is vastly understudied in many scientific 

fields. Within the land change context, one focus of this dissertation is to improve our 

understanding of how land change occurs in subsistence agricultural systems and to what extent 

remote sensing tools and participatory methods assist in defining and delineating changes. The 

other focus of this research is to advance our understanding of plant distributions and predict 
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regions of high biodiversity. We aim to objectively and quantitatively show collection density, 

biases, and predict genus richness to inform sampling needs, support conservation strategies, 

compare genus diversity to other regions of the world, and discuss principles and drivers of 

biogeography. With a greater understanding of plant richness and subsistence agricultural land-

use the trends and impacts of land change can be used to better inform policies and conservation 

strategies in PNG.  

1.1. Research questions and objectives  

This dissertation is structured as three manuscripts and each is composed of an introduction, 

objectives, methods, results, discussion, and conclusion. The manuscripts are in the process of 

being published in peer reviewed academic journals.  

1.1.1. Manuscript 1: Comparing and combining Landsat satellite imagery and participatory 

data to assess land-use and land-cover changes in a coastal village in Papua New 

Guinea  

This manuscript uses Landsat satellite imagery and participatory research to examine differences 

between land-cover maps made by using remote sensing analysis alone and land-cover maps 

made using a multidisciplinary approach that combines land manager participatory information 

and remote sensing data. The goals of this study are to: 

1) Examine differences between these two datasets; and 

2) Identify how the addition of participatory information and feedback amends the 

image analyses. 

1.1.2. Manuscript 2: Using high temporal resolution Landsat imagery to assess land-cover and 

relating trends to land-use and subsistence strategies in a coastal village in Papua New 

Guinea.  
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There are very few village level studies that assess swidden trends and we aim to understand if 

trends at wider scales are similar to those at the village scale. The goals of this study are to: 

1) Use Landsat imagery to identify swidden land-use and associated land-cover 

trends between 1972 and 2015 at the village scale;  

2) Use participatory land-use information to discuss how land-use decisions by land 

managers influence land-cover changes and trends; and 

3) Discuss how the trends we found in this village are similar to or differ from trends 

at wider extents. 

1.1.3. Manuscript 3: Modeling hotspots of plant diversity in New Guinea 

This manuscript explores vascular and non-vascular terrestrial plant distributions for the island of 

New Guinea at the genus taxonomic level. To predict regions of potentially high richness 

occurrence points from online, herbarium, and museum databases are paired with environmental 

variables (elevation, temperature) and an ecological niche model, MaxEnt, is used to predict 

distributions and richness. The goals of the study are to: 

1)  Identify sampling intensity and bias; 

2)  List the abiotic drivers that are most influential to plant distributions;  

3)  Identify the regions of New Guinea that harbor high genus richness; and  

4)  Discuss the implications of land-use and land-cover changes. 
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CHAPTER 2 
 
 
 

COMPARING AND COMBINING LANDSAT SATELLITE IMAGERY AND 

PARTICIPATORY DATA TO ASSESS LAND-USE AND LAND-COVER CHANGES IN A 

COASTAL VILLAGE IN PAPUA NEW GUINEA1 

 
 
 
2.1. Introduction 

Satellite imagery has improved spatial and temporal estimates of land changes, yet even high-

resolution imagery can result in poor enumeration and an oversimplification of land changes 

(Hett et al., 2012; IPCC Core Writing Team, 2001; Ziegler et al., 2011). To better understand the 

drivers of land change ancillary data have been paired with satellite imagery to support 

observations. For example, logging exports in board lengths are used to estimate the amount of 

forest cleared (Mather 2005, Kohl et al. 2015). However, compiling and incorporating ancillary 

data for all types of land change remains a challenge, as the drivers of change are often complex. 

Recognizing this, it is important to utilize ancillary data to create the most accurate land-use and 

land-cover (LULC) analysis possible if land change data are to be used to inform policy, develop 

conservation strategies, and create the best management plans.  

Participatory information derived from local knowledge is an important type of ancillary 

data that provides essential information to link observed patterns and trends of land-cover from 

remotely sensed data to ground-level land-use activities (Rindfuss et al. 2003; Herrmann et al. 

2005; Leisz & Rasmussen 2012). Integrating spatial and social sciences is a way to 

comprehensively explore the human-environment interface and identify the driving forces 

                                                           
1
 This chapter is co-authored by Stephen J. Leisz and Melinda Laituri and has been accepted in Human Ecology. 
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causing changes in livelihood decisions and LULC (Rindfuss et al. 2003, Herrmann et al. 2014). 

Recent research demonstrates that more comprehensive understanding of local environmental 

and livelihood dynamics is achieved when stakeholders are included in research efforts (Ostrom 

2009, McCall and Dunn 2012, Wakie et al. 2016). Stakeholders are those who have social or 

economic interests in the research results as it can influence their livelihoods or objectives 

(Estrella et al. 2000; Ramanath & Gilbert 2004). Stakeholders can include indigenous people, 

land-managers, community and development organizations, and policy makers. 

In LULC change studies participatory research is conducted in collaboration with local 

land-managers and provides the means to assemble and quantify local peoples’ environmental 

perspectives, knowledge, and resource use through discussions, interviews, and various activities 

(e.g. resource mapping, resource use ranking). This type of integrated research provides an 

opportunity to discuss past trends and future perspectives of change that may not be available in 

other empirical datasets. Participatory information and local knowledge can be made spatially 

explicit by using remote sensing imagery and geographical information systems (GIS) to provide 

further conceptualization of linear and non-linear connections between resource decisions and 

LULC changes (An 2012). These methods are broadly categorized as participatory GIS (PGIS). 

However, when the focus is to improve LULC classifications from satellite imagery we believe 

that a more accurate description is participatory remote sensing (PRS) because the participatory 

contributions are focused on the validation of LULC analyses and pairing satellite image analysis 

with resource maps. The advantage of PRS is that local land managers’ spatial knowledge of the 

LULC can be recorded and explored in greater detail with the use of spatially explicit imagery 

and participatory maps (PPM). Also, the local land managers are included in and contribute to 

data analysis.  



8 

 

Participatory methods have produced intriguing changes in the representation and 

validation of LULC and changes therein (McCall 2003, Dunn 2007, Lynam et al. 2007, 

Matthews et al. 2007, Voinov and Bousquet 2010, Fritz et al. 2012). This interdisciplinary 

framework has also improved results (Lynam et al. 2007, Voinov and Bousquet 2010) and shows 

that detailed land-use knowledge can refine remote sensing LULC classifications and change 

detection (Schmidt-Vogt et al. 2009a, Leisz and Rasmussen 2012). There are many examples of 

participatory research being used in LULC analyses, and some of the more recent include sea 

grass changes in the Solomon Islands (Lauer and Aswani 2010), coastal management in Hawaii 

(Levine and Feinholz 2015), vegetation changes in the Sahel (Herrmann et al. 2014), invasive 

species management strategies in Kenya (Wakie et al. 2016) and swidden agricultural changes in 

Vietnam (Leisz and Rasmussen 2012, Laney and Turner 2015). 

Swidden agriculture systems, the focus of this paper, have land-cover that is dynamic and 

heterogeneous and poses many challenges in developing land-cover maps based on satellite 

image analyses alone. Swidden agriculture is also referred to as slash-and-burn agriculture and 

shifting cultivation (from here on we will use the term swidden). Swidden is usually part of a 

subsistence livelihood system. Swidden shifts between cultivated and fallow periods, where tree 

cover is cut, dried, burned, crops planted and harvested, and fields fallowed for a length of time 

so that natural vegetation regenerates until it is bush or tree cover again, at which point it is 

cleared for agriculture. Across the globe over 300 million people employ some form of swidden 

(Mertz et al. 2009). As a result, land-cover associated with swidden systems is highly diverse. 

The diversity stems from the heterogeneity of climatic and environmental variables (e.g. 

precipitation, temperature, topography, hill slope, and soil nutrients), cultures, and techniques 

used (e.g. amount of time under crop or fallow, plot sizes, terracing, and crop selection; Fox et 
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al. 2009). Also, swidden plots often follow natural contours, have swaths of natural vegetation 

between and within plots, and avoid unfavorable areas (e.g. low points with standing water).  

The variation found in swidden systems challenges our capabilities to accurately map it. 

Within a 100-meter radius a large number of swidden land-uses can exist at one time (e.g. newly 

cleared land, cultivated land with young crops, recent fallow used for pasture, older fallow used 

for collecting non-timber forest products, etc.) and each could have a different land-cover. In this 

small area, swidden multiple land-covers exist as well and can include a recently cleared plot 

with new sprouts, an early fallow plot that is dominated by young grass and herb growth, a 

cultivated plot with a mix of fruit trees, ground cover crops, and bush-like crops (i.e. cassava), 

and areas of woody growth that include mature trees. In addition to spatial variability, swidden 

land-covers are also temporally variable, meaning land-covers are not permanent and can change 

over relatively short time scales (e.g. after a few months, annually). The spatial and temporal 

dynamics of swidden land-covers are influenced by local conditions and management decisions. 

Another aspect that makes swidden difficult to assess is that tree cover on older fallow land and 

tree cover of natural forest areas are nearly indistinguishable in satellite imagery due to spectral 

similarities.  

In response to such challenges, numerous remote sensing methods have been developed 

to classify the diversity of swidden land-covers. Worldwide there are numerous remote sensing 

techniques that have been used to identify swidden. A review by Li et al. (2014) describes 

techniques used in Southeast Asia and these include integrating spectral classification (optical 

and radar), phonological (morphological and physiological responses), statistical (binomial 

logistical regressions, machine learning), and landscape ecology (land-cover composition 

patterns).  
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In Papua New Guinea (PNG) identifying and classifying swidden LULC changes have 

received little to no attention. However, such analyses are vital in a country where approximately 

85% of the population depends on swidden to fulfill subsistence and livelihood needs. An 

analysis of forest cover change at the national level cited swidden as one of the leading causes of 

forest degradation and loss, after timber extraction (Shearman et al. 2009). Based on the 

assessment that 85% of the population relies on swidden, their analysis uses population growth 

to extrapolate the expansion of swidden and therefore, population growth equals growth in 

swidden area. Using population growth estimates, they speculate that swidden expansion will 

continue to be a major cause of forest degradation and losses. However, since 2000 the land-

cover change literature has conclusively shown that such simplistic use of population as a driver 

of land-cover change is not valid (Geist and Lambin 2002). Recent reviews of swidden and forest 

interactions worldwide, further show that LULC dynamics are not so simple (Fox et al. 2000, 

Mather and Needle 2000, Lambin et al. 2001, Schmidt-Vogt et al. 2009a, van Vliet et al. 2012). 

The Shearman et al. (2009) study does not account for these recent studies and falls short in 

describing the multifaceted and complex drivers of land change by citing population growth 

alone (Bourke 2001, Filer et al. 2009).  

The Shearman et al. (2009) study is at the national level and LULC change assessments 

that focus on swidden at the national or regional level are challenging due to the extensive data 

collection required and the necessity to aggregate the data at this coarse scale (Li et al. 2014). 

Rindfuss et al. (2004) show that a relationship between population growth and deforestation 

found at a national level is an artifact of scale and when data are disaggregated to sub-national or 

local levels the relationship can be lost. To accurately understand drivers of deforestation and the 

role that population growth does or does not play, it is necessary to link remote sensing land-
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cover observations to ground level activities at the local or village level. In PNG, this means that 

a large sample of village level case studies is vital to identify the true drivers of land-cover 

change in the country. Such case studies should incorporate livelihood and swidden system 

management decisions and the associated influences on LULC trends. A literature search of peer 

reviewed articles at the village scale resulted in three LULC studies in PNG and these were 

conducted in a single region, the highlands (Ohtsuka, 1994; Umezaki et al., 2000; Umezaki et al., 

2002). Other articles found assess livelihood changes in response to major resource extraction 

from oil palm (Koczberski and Curry 2005, Koczberski et al. 2009, 2012) and mining (West, 

2006).  

 

2.2. Goals and objectives 

As noted above, remote sensing methods alone are not sufficient to assess the dynamic nature of 

swidden. Therefore, the goal of this paper is to examine the difference between LULC 

assessment results obtained from using remote sensing data analysis alone and those obtained 

from using a multidisciplinary approach that integrates participatory data into remote sensing 

analysis. This study is conducted at the village scale and uses participatory and Landsat satellite 

data for 1999 and 2011. Using the results we aim to discuss and compare land-cover changes at 

the village and national levels (Shearman et al. 2009) and demonstrate the implications of the 

scale of analysis on the results. 

  

  



12 

 

2.3. Methods 

2.3.1. Study area 

The study village is a coastal community approximately 60 km south-southeast from Lae, the 

second largest city in PNG (Fig. 2.1). The customary territory contains diverse flora and fauna in 

both the terrestrial (330 km2) and marine (170 km2) habitats (Bein et al., 2007; Longenecker, et. 

al. 2011). Customary land tenure governs how land is used in the livelihood system, which is 

subsistence based and includes land-use activities (swidden, forest, animal husbandry, and 

hunting) and marine resources (ocean and reef). Swidden is the primary means of subsistence 

production. The main swidden area is located 5 km north of the village in a river delta. Some 

smaller swidden plots are scattered around the village. Seasonal deposits of rich fluvial 

sediments from rainy season floods replenish soil fertility and allow for shorter fallow periods. 

As a result, the fallow periods are typically five to seven years and have not been longer than 10 

to 12 years throughout the village history. Because of the fertile soils and the large expanse of 

the delta, cultivation has remained contained in the flat land of the delta area. The crops include 

sago palm, root crops (cassava, taro, sweet potato, yam), fruit trees (betel nut, mango, coconut, 

banana, papaya), melons, cucumbers (which are actually a type of melon), pineapple, sugar cane, 

pit-pit (local variety of sweet cane), and leafy greens.  
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Figure 2.1. Papua New Guinea, the surrounding countries, and the approximate location of the 
village study site. 

 

There are many reasons that this village is an ideal site to assess land-cover changes 

within a swidden system. First, swidden in this village is located atop a fertile delta and, while 

this is locally unique, McAlpine & Freyne (2001) report that 4% of the PNG land surface are 

littoral and alluvial fans and support approximately 19% of the population. Therefore, it is 

representative of areas where a fifth of PNG’s population lives. Second, the village’s land has 

not experienced any major logging or other resource extraction to date, which limits village 

resource degradation and losses. The lack of such resource extraction also eliminates the 

possibility of confounding land-cover classifications between logging and swidden, which is 



14 

 

common in tropical regions. Third, there is no road access to the village (access is by boat only) 

so additional pressure on resources from an influx of migrants are limited. Last, the population 

growth rate between 1980 and 2011 in the village is 6% per year, higher than the national 

average of 4.5% per year, allowing us to test the view that population increase can be used to 

forecast swidden land expansion.  

2.3.2. Satellite image processing and analysis 

Landsat scenes from 1999 and 2011, corresponding to interview data, were selected. The 1999 

image is a Landsat 5 TM image and 2011 is a Landsat 7 ETM+ image. Both scenes were 

captured during the dry season (September – December) when the differences between land-

covers are more spectrally distinguishable and land is more intensively cultivated. A single scene 

covers the entire village area. Image preprocessing included atmospheric corrections, 

georectification, and cloud masking. The classification process includes tasseled cap 

transformation, wetness –brightness difference index (Helmer et al., 2009), and K-means 

unsupervised classification. A binary classification of swidden and non-swidden land-covers was 

created (Table 2.1). A detailed description of image classification methods and accuracy 

assessments can be found in Appendix 2, 9.2. 

 

Table 2.1. Land classification categories for swidden and other cover types. 

Swidden-fallow Other 

 Cleared of vegetation 

 Burned plots 

 Sparse crop cover (wide spacing or early growth) 

 Denser crop cover  

 Early fallow (weeds and grass) 

 Moderate fallow (grass, bushes and small trees (2-3 

meters in height)) 

 Late fallow (Small and medium trees (5-6 m in 

 Built structures 

 Forest 

 Riparian  

 Wetland 

 Water bodies  

 Sandy beach 

 Clouds  

 Shadows 
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height)) 

 

Independent, high resolution imagery (satellite imagery or aerial photos) is not available 

for the period of time when the 1999 Landsat scene was obtained for an accuracy assessment and 

therefore, visual interpretation of the raw imagery was used in combination with GPS ground-

truth points from the Bein et al. (2007) paper to assess the accuracy of the 1999 land-cover 

results. To conduct classification accuracy assessments for the 2011 Landsat image analysis, an 

independent image from the GeoEye satellite is available for 2010. The GeoEye image has a 

finer resolution (2 m) than the Landsat image (30 m) and is useful for visually interpreting land-

cover accuracy for the 2011 classification results.  

2.3.3. Participatory data 

We gathered information about land management and land-use from the local land-managers 

using participatory methods including semi-structured surveys, structured interviews (Chambers 

1994), and participatory resource and land-use mapping (King 2002, Dunn 2007). The semi-

structured surveys and discussions were conducted with knowledgeable community members to 

gain a comprehensive understanding of the framework of the customary land tenure system and 

swidden practices. Fieldwork was done in 2011 and 2014. Similar structured interviews 

conducted in 1999 by Bein et al. (2007) and Wagner (2002) to assess swidden land-use were 

referenced to add a temporal aspect to the study. 

2.3.4. Surveys and interviews 

Through structured interviews we obtained information about household resource use. There 

were 32 randomly selected households and informants were divided equally between male and 

female. The interviews followed a list of questions that were consistent across informants and 

focused on swidden resources. Each informant described household swidden plots as the area 
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currently cultivated. We observed that fallowed land is not reported by village land-managers as 

part of their swidden area. This is due either to the phrasing of interview questions or to how 

land-managers perceive swidden land. Numerical values obtained from the interviews (e.g. plot 

area) were averaged across the 32 households and scaled up to represent the village population. 

Qualitative information, such as opinions about the drivers of resource use changes, typically fell 

into 3-4 categories and was generalized. To account for the total area utilized in the swidden 

cycle (cultivated swidden and fallowed swidden land), the cultivated swidden area is multiplied 

by the total time of the swidden cycle for 1999 (7 years; Bein et al. 2007) and 2011 (5.75 years). 

2.3.5. Participatory mapping of the swidden area  

A hand-drawn participatory map (PPM) map of the village and swidden area was created. 

Ground-truthing of swidden plots was done with a GPS and tape measure to confirm plot 

location, size, orientation, and the phase (newly cleared, cultivated, or fallow). The PPM was 

digitized and georeferenced to the 2011 Landsat image. Reference points were added to a 

GeoEye image captured in 2010, as the finer resolution assists in comparing land-cover and the 

PPM in greater detail.  

2.3.6. Participatory remote sensing and data validation  

A critical component of participatory data collection, which is often skipped, is for researchers to 

incorporate and seek feedback from stakeholders before results are published (McCall 2003, 

Laituri 2011). The data validation process has been shown to facilitate additional discussions, 

information sharing, and collective learning among collaborators, and also improve resource and 

management negotiation and decision-making (Ruankaew et al. 2010, Laituri 2011). To validate 

our results we returned to the village in 2014. The results of PRS data analysis were presented to 

a 20-person group and the community as a whole. Posters were created and translated into Pidgin 



17 

 

(national language) and each poster was presented orally and hung in the community center so 

that anyone could review and comment on the results. Everyone was encouraged to ask 

questions, discuss the results, and make edits to the posters. In the smaller 20-person group 

specific questions were posed, detailed notes taken, and map edits made to assure the accuracy of 

LULC classifications. Edits and corrections to the data and analyses were recorded and 

incorporated into final products. The remote sensing and participatory methods are processed 

independently and then paired for comparison and the summarization of results (Fig. 2.2).  

 
Figure 2.2. Remote sensing and participatory methods are shown side by side to illustrate how 
data were merged for analyses and results. 
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2.4 Results  

2.4.1. Satellite image analyses  

The maps in Figure 2.3 show swidden and village land-cover for 1999 and 2011. The village area 

is composed of smaller swidden plots, fruit trees, and the village settlement (e.g. houses, 

schools). The northern arm of delta and land boundary changes over time, as it is influenced by 

the meandering river. Evidence of the river changing course can be observed between the scenes. 

Most of the non-swidden area between the two arms of the delta remains naturally vegetated 

because the soil is too moist to be successfully cultivated. This causes the swidden area to 

maintain a similar shape over time. There are two areas with notable increases in swidden area in 

the 2011 classification. First, swidden associated land-cover is wider along both arms of the 

delta. Second, swidden associated land-cover is more extensive in the area between the delta and 

the village.  

 
Figure 2.3. Swidden land-cover using remote sensing data alone for 1999 and 2011. 



19 

 

2.4.2. Participatory data 

2.4.2.1. Structured interviews 

Data compiled from our 2011 interviews and the 1999 data from the Bein et al. (2007) and 

Wagner (2002) studies are presented in Table 2. Between 1999 and 2011 the population grew by 

371 people and the number of households in the village increased from 80 to 128. The length of 

the swidden cycle (cultivated and fallowed) was 7 years in 1999 and 5.75 years in 2011. To 

accommodate these changes the duration of the cultivated swidden lengthened from 1.2 to 2.75 

years and the fallowed area shortened from 5.8 to 3 years. The average cultivated swidden area 

per household decreased from 0.404 ha (64 m2) in 1999 to 0.323 ha (57 m2) in 2011. While the 

number of cultivated swidden plots per household increased from 3.1 in 1999 to 3.8 in 2011, the 

average swidden area of a single plot decreased from 0.13 (36 m2) to 0.095 (30 m2) ha, 

respectively. Households maintained a greater number of smaller plots with the total area per 

plot decreasing over time.  

2.4.2.2. Combining participatory and remote sensing datasets 

Figure 2.4 shows the hand-drawn land-use map or PPM overlaid on the 2011 classified Landsat 

image. The subsets compare the output from remote sensing analysis alone and from the 

integrated PRS method for two locations, the main swidden (4a and 4b) and swamp (4c and 4d) 

areas. The swidden area in Subsets 4a and swamp land in Subset 4c show the land-cover 

classification using remote sensing analysis alone. Land managers reviewed these results during 

the PRS review and analyses decided that the swidden area in subsets 4a and 4c (remote sensing 

classifications alone) includes too much swidden land-cover. Therefore, Subsets 4b (swidden) 

and 4d (swamp) show the swidden land-cover area (dark grey) that should be merged with the 

non-swidden class. The dark grey land-cover will be referred to as the adjacent- non-swidden 
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area. Land managers described that the adjacent- non-swidden area (Subset 4b) is made up of 

forest land-cover and is not used for swidden (cultivated or fallow). The PPM overlay further 

supports the land managers’ perspectives, as the swidden plots in the PPM have a tighter fit 

within the swidden land-cover class in Subset 4b than in Subset 4a. Also, when the adjacent-

swidden area is allocated to the non-swidden class, the blocks of natural vegetation that are 

scattered within the swidden area are identified. Land managers explain that these blocks of 

natural vegetation are common and can include fallow vegetation, groups of large trees (fruit 

trees, shade trees), natural fences, or vegetation on land not suitable for cultivation.  

 
Figure 2.4. The participatory map (PPM) of village and swidden LU is overlaid with the 2011 
Landsat classified image. Subsets a and b show the delta swidden area and subsets c and d show 
a swamp area. Subsets a and c are land-cover classifications using remote sensing analysis alone. 
Subsets b and d are the classifications after the land managers delineated misclassified swidden 
LC, shown in dark grey, and these areas should be merged with the non-swidden class.  
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Subset 4c is dominated by swamp vegetation and land managers explained that this area 

is too wet for swidden, and any land-cover classified as swidden is incorrect. Therefore, nearly 

all of the land in this region is misclassified as swidden when only remote sensing analytical 

methods are used and should be non-swidden. The adjacent- non-swidden area in Subset 4d 

greatly reduces the amount of swamp land included in the swidden class. Both subset groups b 

and d show the portion of the swidden land-cover class that should be merged with the non-

swidden class and this change reduces areas of misclassified swidden land-cover.  

Figure 2.5 shows georeferenced swidden plots atop the classified Landsat (30 m) and raw 

GeoEye (2 m) images. The pixilated structure and different spatial resolution of these images 

shows how scale influences the interpretation of swidden LULC. Due to the difference in the 

fieldwork and capture dates of the GeoEye image, some of the listed LULCs have changed. In 

general, this figure better shows the complex and fragmented nature of swidden land-cover and 

why it is difficult to assess using remote sensing methods alone. First, swidden plots differ in 

orientation, size, and shape. Regardless of size, a swidden plot can be contained within a single 

Landsat cell or cross into multiple cells. Also, even though the georeferenced plots are 

rectangular, plots were often irregular in shape and often follow natural contours or features. 

Second, the land-covers do not always match the land-use and plots can have multiple uses and 

be classified as a single land-cover. Third, the newly cleared plots are easier to identify 

compared to plots with crop or fallow land-covers and can influence reflectance qualities 

disproportionally as bare soil has higher reflective qualities in some wavelengths.  
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Figure 2.5. The ground-truthed points and swidden plots shown are accurate area, location, 
orientation, and LU and land-cover type. The GeoEye image resolution is 2 m pixels and shows 
the swidden landscape in greater detail than the Landsat image which has a resolution of 30 m. A 
grid is overlaid on the GeoEye image for resolution comparison. 
 

Figure 2.6 compares the swidden area in hectares classified using remote sensing analysis 

alone and the PRS methods for 1999 and 2011. The remote sensing classifications without land 

manager inputs are 993 ha in 1999 and 1395 ha in 2011. The PRS method results in an output 

that includes two land-cover classes, swidden and adjacent-non-swidden. These two classes are 

combined for the 1999 and 2011 PRS methods to illustrate how much of the land-cover from 
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remote sensing analysis alone is classified as adjacent-non-swidden by land managers. The 

amount of swidden area is 455 ha and 491 ha and the adjacent-non-swidden area is 537 ha and 

905 ha for 1999 and 2011, respectively. The adjacent-non-swidden area accounts for 35% and 

45% of the swidden land classified by remote sensing analysis alone.  

 
Figure 2.6. Total swidden area classified using remote sensing analysis alone and PRS methods 
for 1999 and 2011.  
 

Each dataset in Figure 2.6 shows an increase in swidden area over time. The larger 

increase in swidden area is for remote sensing analysis alone at 402 ha. The PRS swidden area 

increased (without the adjacent-non-swidden class) by 35 ha between 1999 and 2011. The 

percent increase over time for the remote sensing analysis alone is 40% and PRS is 8%. 

 

2.5. Discussion 

The land-cover datasets for PRS and remote sensing analysis alone present different 

information about swidden area and changes at the village scale. The PRS methods results show 

that when these data are paired a more in depth and comprehensive understanding of swidden 

area LULCs are achieved than when either data set are used alone. The integration of land-
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manager perspectives and knowledge via PRS methods offers a unique insight into local land-

use. 

The classification of swidden area land-cover using remote sensing analysis alone is over 

two and a half times larger than the results using PRS methods. In part, the differences in area 

are a result of transforming a continuous landscape into the discrete and categorical format of the 

imagery and analysis, respectively. Some land-cover categories are classified correctly, but 

swidden areas are made up of highly complex land-covers and it proves more difficult to 

accurately classify swidden using Landsat data alone. The overlay of the PPM shows areas that 

are actively cultivated swidden plots. Land managers identified in the PPM that the area between 

the swidden plots is a combination of fallow and non-swidden (natural vegetation) land. As 

recommended by the land-managers during PRS methods, an additional adjacent-non-swidden 

class (dark grey; Fig. 2.4) is added to the land-cover classification to show how much land was 

misclassified. The area classified as swidden is consequently reduced and land managers agreed 

that merging the adjacent- non-swidden area with the non-swidden class is more representative 

of the land-covers found in the swidden areas and that fallowed and non-swidden natural 

vegetation are better identified.  

The increase in swidden LULC area seen between 1999 and 2011 on maps produced 

using PRS methods is minimal compared to the increases observed using remote sensing analysis 

alone (Fig. 2.6). Remote sensing analysis alone does not differentiate between these two land-

covers, whereas the inclusion of PRS methods allows the classifications to be more accurately 

allocated.  

At the national extent, Shearman et al. (2009) classified land-covers that were adjacent to 

swidden areas and villages as land deforested by swidden activities because these areas could not 



25 

 

be attributed to other causes of forest loss. This contrasts with information supplied by land 

managers at the village level, as the land-cover adjacent to the swidden area was reassigned to 

the non-swidden class. For large areas with a coarse resolution data, land-cover classifications 

that rely on remote sensing analysis alone are likely to allocate more forest loss to swidden in 

regions where resource extraction and villages and swidden areas border one another. To 

improve the delineation of land-cover associated with swidden land-use systems at wider extents, 

a finer spatial resolution may help. However, if such data are not available for the time series 

desired, the inclusion of PRS methods would assist in refining land-cover classifications to more 

accurately distinguish among the different land-covers found in swidden landscapes.  

For our study village LULC assessments and changes are not confounded by logging yet 

classifying swidden with remote sensing analysis alone still over classified swidden LULC. 

However, collaborative PRS methods allow us to refine the land-cover classification and we 

identify multiple areas that were misclassified as swidden in the output of the remote sensing 

analysis alone. Although Shearman et al. (2009) preformed ground-truthing and accuracy 

assessments for land-cover classifications, none of their methods included land manager 

participation. It is highly likely that many swidden areas are over classified because, as we find, 

the land-cover adjacent to swidden proves difficult to categorize at a 30 m resolution without 

knowledgeable land manager input. We argue that in regions where swidden is a major land-use, 

additional LULC classification strategies should be incorporated into land-cover classification 

processes, such as PRS. Also, swidden should be allocated as a separate LULC category at 

national and wider extents because there are a range of different LULC types and the ecological 

impacts among these differ (Rerkasem et al. 2009, Ziegler et al. 2011, Kremen and Miles 2012, 

Delang and Li 2013). 
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The georeferenced plots and finer resolution of the GeoEye image (Fig. 2.5) demonstrate 

and confirm that the swidden area is a patchwork of land-covers that has countless different 

combinations in one Landsat (30 m) pixel. We find that the size and orientation of swidden plots 

in the PPM do not align with Landsat pixels and plots often cross into multiple pixels or only 

occupy a portion of a pixel. We posit that the over estimation of swidden area using remote 

sensing analysis alone is a artifact of mixed pixels that include different proportions of swidden, 

fallow, and natural vegetation land-covers and have a spectral signature that is different than 

natural and forested land-cover. Regardless of a finer resolution, the pixilated nature of satellite 

imagery does not match how swidden plots are organized, since plots are created in response to 

the topographic and vegetation characteristics of the landscape in order to maximize crop yields.  

2.5.1. Potential sources of error 

A potential source of error from participatory data collection is that swidden plots could have 

been misestimated during the data collection phase when land-managers were asked to describe 

their plots in approximate length and width measurements. Although ground-truthing efforts 

measured plots and assured that estimates were accurate in area, all of the plots in the swidden 

area were not measured. Also, length and width area measurements do not account for natural 

and irregularly shaped plots, which are widespread in this swidden area (Fig. 2.4). While these 

methods capture the approximate area of a plot, it is likely that the true area slightly differs, 

which would affect cultivated and total swidden area calculations. As land-use results show, a 

large majority of the total swidden area is under fallow or natural vegetation, yet not much 

information was collected about the fallow periods aside from the duration. Simply multiplying 

the cultivated swidden area by the swidden cycle length may not be a good representative of total 

swidden area because land may be used and rotated in a different manner. In general, more 
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information is needed about fallow and naturally vegetated areas and this is another area where 

land-cover information could be usefully paired with land-use information from local land 

managers to estimate how much land is devoted to the complete swidden-fallow cycle. 

The second aspect that influences land-cover assessment is the resolution of the satellite 

imagery in relation to the mean swidden plot area. Land-managers described single swidden 

plots ranging from 12 m2 to 105 m2, with a mean of approximately 30 m2. The average plot size 

is equivalent to the area of one Landsat pixel but this does not account for the smallest 

identifiable object in an image (spatial resolution). To visually identify individual swidden plots 

multiple Landsat pixels are needed and we found that approximately 100 m2 or just over a 3x3 

pixel area is needed to identify a plot. Such a large area only accounts for larger plots and we 

surmise that the spatial resolution of Landsat data is too coarse to identify swidden plots on an 

individual basis. The finer resolution (2 m) of the GeoEye imagery allowed for smaller swidden 

plots to be identified, but deciphering the different land-uses and associated land-covers is still a 

challenge due to the fragmented and varied landscape created by swidden land-use. While the 

GeoEye data have a finer resolution, it does not have the temporal or spatial coverage available 

from the Landsat archives, and thus Landsat data will continue to be used for time series analysis 

of swidden LULC changes in the future. This reality makes it imperative to find methods for 

using Landsat data to accurately classify land-uses and their associated land-covers, such as 

swidden, that many rural populations worldwide continue to make use of and rely upon for their 

livelihoods. 

 

2.6. Conclusion 

Overall, swidden landscapes are difficult to classify and more prone to mixed pixels than other 

agricultural land-uses and their associated land-covers. Although finer resolution satellite data 
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may be better suited for swidden LULC detection and change analyses, these data are often 

costly and do not have the same historical extent as the Landsat archives. Therefore refining 

Landsat classifications of swidden LULC is vital as many people in the world continue to rely 

upon swidden for their livelihoods. 

Participatory data from local land-managers may be just as important as satellite data for 

understanding observed LULC trends. Therefore, in regions where swidden is the mainstay of 

subsistence livelihoods, the inclusion of participatory data is essential for accurate LULC 

assessments. We demonstrate that although the information derived from the participatory and 

Landsat datasets differ, the data can be used together to improve LULC assessments and 

understand temporal dynamics. Importantly, the assessment of swidden area from PRS methods 

is more accurate than that from a single disciplinary remote sensing analysis. 

PRS methods reveal the differences between Landsat analyses and land manager 

information. Landsat smoothes the fragmented landscape into pixels representing single land-

covers and overestimates the swidden area by two and a half times compared to land manager 

land-cover descriptions. One reason these datasets differ is that land managers described swidden 

area as only actively cultivated land, whereas Landsat analyses include cultivated swidden, 

fallowed, and natural vegetation indiscriminately. When both datasets are used in tandem, the 

distinctions among actively cultivated swidden, fallow, and natural vegetation can be extracted. 

We suggest that the cultivated swidden area, as described by the land managers, could be 

subtracted from the total swidden area classified using Landsat to distinguish how much land is 

cultivated, fallowed, or under non-fallow natural vegetation. 

In conclusion, if only LULC classifications from remote sensing analysis methods alone 

are used when assessing swidden LULC then people’s swidden livelihood systems will continue 
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to be misclassified and mischaracterized. This has arguably happened for land-cover change 

analysis in PNG at the national extent. We show at the village level how PRS methods, 

combination of the remote sensing and participatory data, is one avenue of refining swidden 

LULC assessments to more accurately reflect the reality of swidden land-use and the associated 

land-covers. 
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CHAPTER 3 
 
 
 

ASSESSING SWIDDEN LAND-USE IN A COASTAL VILLAGE IN PAPUA NEW GUINEA2 
 
 
 

3.1. Introduction 

Subsistence agriculture is a dominant land-use in Papua New Guinea and over 85% of the 

population depend on it for livelihood needs (Ramakrishna and Bang 2015), yet very few studies 

specifically focus on this type of land-use and land-cover (LULC) change. In PNG subsistence 

agriculture takes the form of a swidden-fallow system, where individual plots are cycled between 

cultivation and fallow periods. The swidden-fallow system follows a pattern where first tree 

cover is cut, dried, and burned, crops planted and harvested, and then fields are abandoned or 

fallowed so that natural vegetation regenerates. The swidden-fallow cycle, or sum of cultivation 

and fallow periods, can range from less than 5 years to over 25 years depending on local 

environmental conditions and management. Swidden-fallow agriculture is also referred to as 

shifting cultivation and slash-and-burn. Across PNG the heterogeneity of climatic and 

environmental characteristics (e.g. precipitation, temperature, topography, hill slope, and soil 

nutrients) influences diverse swidden techniques and cycles (e.g. swidden-fallow cycle lengths, 

plot sizes, terracing, and crop selection; Fox et al., 2009).  

Although remote sensing analyses provide a wealth of information, assessments and 

change detection are challenging in swidden-fallow landscapes (Fox et al., 2003; Leisz & 

Rasmussen, 2012; Rindfuss et al., 2004; Schmidt-Vogt et al., 2009). Unlike plantations, mono-

cropping, or industrial agriculture where growing seasons and fields are highly structured, 

swidden-fallow systems are more difficult to detect and differentiate because the land-use is 
                                                           
2
 This chapter is co-authored by Stephen J. Leisz and Melinda Laituri and is in review at Human Ecology. 
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highly mosaicked (Schmidt-Vogt et al. 2009). This mosaic is created because cultivated plots are 

selected for local conditions, can be any shape or size, and the swidden-fallow cycle has multiple 

phases, each of which has a unique land-use and associated land-cover. For example, the land-

cover of a single plot can range from cleared forest to burned forest to cultivated crops to 

different stages of fallow regrowth (weeds and grass, grass and bushes, bush, bush and small 

trees, and small and medium size trees). Fallows can often be nearly indistinguishable from 

neighboring forest in satellite imagery. Therefore, the remote sensing methods used to assess and 

track the location and changes in a swidden-fallow system are numerous and have included 

spectral (optical and radar), phenological (morphological and physiological responses), statistical 

(binomial logistical regressions, machine learning), and landscape ecology (land-cover 

composition patterns) see Li et al. (2014) for a review of Southeast Asia. Such diverse methods 

stem from attempts to optimize the detection of swidden-fallow and other forms of subsistence 

agriculture for nearly a billion people, across 64 countries in Latin America, Central Africa, and 

South and Southeast Asia (Li et al. 2014; Mertz et al. 2009). 

The inclusion of participatory data is one way to minimize remote sensing classification 

challenges and provide essential information to link observed patterns and trends from local, 

ground-level activities to remotely sensed data (Rindfuss et al. 2003, Herrmann et al. 2014). The 

union of spatial and social sciences has begun to more comprehensively explore human-

environment interactions and identify the driving forces between livelihood decisions and land 

changes. Participatory methods have produced changes in the representation and validation of 

LULC and changes therein (McCall 2003, Dunn 2007, Lynam et al. 2007, Matthews et al. 2007, 

Voinov and Bousquet 2010, Fritz et al. 2012), and are valuable in data-poor regions where 

ancillary data lack. This interdisciplinary framework also has improved results (Lynam et al. 
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2007, Voinov and Bousquet 2010) and showed that detailed land-use knowledge can refine 

remote sensing land-cover classifications and change detection (Schmidt-Vogt et al. 2009; Leisz 

& Rasmussen 2012). The inclusion of participatory data at wide geographical extents, e.g. 

national, is too laborious. Therefore local-level studies are vital and provide a wealth of 

information to link local-level processes to wider geographical extents (Wilbanks and Kates 

1999, Wu 2004). There are many examples of participatory research being used in recent LULC 

analyses (Lauer and Aswani 2010, Leisz and Rasmussen 2012, Herrmann et al. 2014, Laney and 

Turner 2015, Levine and Feinholz 2015, Wakie et al. 2016). 

In PNG, very few LULC change studies exist. Those at the national scale have 

confounding perspectives on the degree to which swidden-fallow land-use has influenced 

changes. Shearman et al. (2009) cites swidden-fallow as a major driver of LULC change between 

1972 and 2002 and associates population growth as the cause of change. Whereas, Filer et al. 

(2009) and Bourke et al. (2000) identify that swidden-fallow intensification strategies were more 

common than expansion, and therefore the amount of land change caused by swidden-fallow is 

much less. In a follow up study, Bryan & Shearman (2015) assess the drivers of forest cover 

change and identify that land classified as swidden-fallow did not change between 2002 and 

2015. They suggest that for a majority of the population swidden-fallow intensification has been 

used to accommodate the larger population, whereas the remainder of the population has become 

more dependent on a cash-based economy due to resource extraction operations (oil palm, 

mining, and logging). Although the national level studies break down analyses into provinces, 

there is only one study that focuses on a single province (Ningal et al. 2008) and village level 

studies are limited in spatial distribution and number. Village scale studies include two studies in 

the Highlands (Umezaki et al. 2000, Bailey et al. 2008), one in southwest PNG (Eden 1993), and 
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one along the northern coast (Bein et al. 2007; Chapter 3). Across four of these studies 

intensification strategies are cited as the primary means to increase yields whereas expansion of 

swidden-fallow areas is only identified in one village (Umezaki et al. 2000).  

Subsistence strategies and land-use decisions are influenced by a large and complex set 

of factors and draw from dynamics that are situation-specific and occur at different spatial and 

temporal scales (Lambin et al. 2001; Schmidt-Vogt et al. 2009; Fox et al. 2000; Mather & 

Needle 2000; Sirén 2007; Lambin et al. 2003). Therefore, to explain LULC phenomenon and 

trends in adequate detail, participatory data are needed. This study uses 40 dry-season satellite 

images and participatory information from local land-managers to assess swidden-fallow land-

use over time. The goals of this study are to:  

1) use Landsat imagery to identify swidden LULC trends between 1972 and 2015 at a 

village scale;  

2) use participatory information from land-managers to determine how land-use and 

subsistence decisions influence swidden-fallow land-cover trends; and 

3) analyze how the trends we found in this village are similar to or differ from trends at 

wider geographic extents. 

 

3.2. Study area 

The study village is a coastal community 65 km south-southeast from Lae, which is the second 

largest city in PNG (Figure 3.1). To preserve the anonymity of this community, we will not refer 

to it by name. The customary territory is approximately 500 km2 and includes terrestrial (330 

km2) and marine (170 km2) habitats that contain diverse flora and fauna (Bein et al. 2007, 

Longenecker et al. 2011). Over 90% of the customary land is made up of primary, lowland 
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forest. In PNG lowland forests constitute 65% of forest cover, and have experienced the highest 

rates of change, show the greatest likelihood for future change, and have the least amount of 

conservation area (Shearman and Bryan 2011, Bryan and Shearman 2015). To date, no 

commercial logging or other major resource extraction has occurred in the village.  

 
Figure 3.1. Papua New Guinea, the surrounding countries, and the approximate location of the 
village study site. 
 

The village livelihood system is subsistence based and includes land-use activities 

(swidden-fallow, forestry, animal husbandry, and hunting) and marine resources (ocean and 

reef). Swidden-fallow agriculture is the primary means of subsistence. The main swidden-fallow 

area is located 5 km north of the village in a river delta and smaller swidden-fallow plots 

scattered around the village. Seasonal deposits of rich fluvial sediments from rainy season floods 

replenish soil fertility and allow for shorter fallow periods. The population of the village has 

grown from approximately 300 people in 1972 to 950 people in 2015 (village elders and land-
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manger estimates;  Wagner 2002). This is an increase of 5% per year and is slightly less than the 

national average of 6% per year (Kenneth 2012, World Bank 2016).   

3.3. Methods 

3.3.1. Satellite data, classifications, and statistics 

This study spans 1972 to 2015. Forty images are used from multiple Landsat platforms (Table 1). 

We limited our scene collection to Landsat platforms to maintain data consistencies and together 

these images form a comparatively densely spaced time series for a tropical location. The images 

selected are captured during the dry season (October 1 – December 31), when agricultural areas 

are more intensively cultivated and spectrally defined. A single Landsat scene is sufficient to 

achieve total coverage of the village and all of the customary land, and eliminates the need for 

mosaicking. Landsat 7 scenes with scan-line correction (SLC) errors are used because the center 

of each path coincides with the agricultural area and is gap free so all spectral data has been 

maintained. However, the full extent of the village has data gaps from the SLC error, most of 

which overlap with cloud cover and were masked in latter processes. Because there are very few 

cloud-free scenes available for the entire geographical extent, an image is selected if it was 

cloud-free over the village and swidden-fallow areas. To assess forest cover changes for the 

entire customary land area an additional analysis is preformed using scenes with minimal cloud 

cover and these include 1987, 1992, 2003, and 2015 (details in Appendix 2, 9.1.2.). Cloud cover, 

on average, accounted for 4% of the extent for the scenes in the forest cover change analyses.  

All satellite scenes between 1987 and 2015 have a spatial resolution of 30 m2 and were 

processed using the same methods. The 1972-282 MSS scene has a resolution of 60 m2 and was 

processed slightly different because it has 4 reflectance bands compared to 7 or more bands of 

the other satellites. Because this is such a small geographical extent, visual methods for 



36 

 

classifying the land-uses and associated land-covers could have been used, but we wanted to 

process the scenes to be more similar to automated processes conducted at wider geographical 

extents. In this paper we focus on the participatory component of the study and therefore the 

details of the image analyses are provided in Appendix 2, 9.1.  

The study area was classified into two categories, swidden-fallow and non-swidden 

(Table 3.1). The swidden-fallow class for each scene was used in the trend analyses. A linear 

model was fit to the 40-scene dataset to assess swidden-fallow area trends over time. The 1972 

data have a larger pixel resolution, a different spectral range, and different processing methods, 

which may influence classifications. While such disparities could influence analyses and skew 

trends, we did not want to exclude potentially informative data. Thus, the model was run with 

and without land-cover data from 1972.  

 

Table 3.1. Land classification categories for swidden and other cover types 

Swidden-fallow Other 

 Cleared of vegetation 

 Burned plots 

 Sparse crop cover (wide spacing or early growth) 

 Denser crop cover  

 Early fallow (weeds and grass) 

 Moderate fallow (grass, bushes and small trees (2-3 

meters in height)) 

 Late fallow (small and medium trees (5-6 m in height)) 

 Built structures 

 Forest 

 Riparian  

 Wetland 

 Water bodies  

 Sandy beach 

 Clouds  

 Shadows 

 

3.3.2. Participatory data 

Local land-managers or informants contributed swidden-fallow and livelihood information. 

Detailed livelihood and land-use information was collected in 2011 to understand LULC changes 

in the village. Our participatory methods included semi-structured surveys, a ranking exercise, 

structured interviews (questions in Appendix 1), and resource mapping. The semi-structured 
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surveys or discussions were conducted with various knowledgeable community members to gain 

a more comprehensive understanding of the framework of the customary land tenure system, 

swidden-fallow practices, fishing methods, and the socioeconomic structure. The semi-structured 

surveys were conducted as a free-form discussion that was guided by a list of questions and 

included the specific events, general trends, observed changes over time, and speculation of 

future changes of the topics. A ranking exercise was conducted to understand how the different 

resources changed in importance, quality, and dependence over time.  

3.3.3. Accuracy assessments 

To assess the accuracy of the classifications, multiple methods were used and included ground-

truth points collected using a Global Positioning System (GPS), accuracy assessments and Kappa 

statistic analysis, and participatory information. First, GPS points were collected in 2011 and 

2013 to ground truth land classes. Independent, high resolution imagery from NASA displayed 

on Google Earth (GE: 2010, 2014) was available for two Landsat scenes. Google Earth is 

increasingly being used in accuracy assessments due to the ease of access, enormous database of 

global coverage, and high spatial resolution (1 m; Yu & Gong 2012). The GE images captured 

on 2010-289 and 2014-054 were used to assess the classification accuracy for the Landsat 

classifications for 2010-295 and 2014-042, respectively. For each GE image 100 random points 

were generated and accuracy assessments preformed. For the remaining scenes, independent 

imagery was not available and accuracy assessments and the Kappa statistic were derived from 

the raw, unprocessed satellite images. For each of the 40 images, we generated 100 random 

points and visually interpreted the land-use at each point. The average accuracy and kappa 

statistic are provided in the results, for more detailed information see the Appendix 2, 9.2. Last, 

in 2013 the results of our analysis were described to land-managers who were then asked to 
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systematically review, discuss, and edit 13 of the 40 scenes. Any changes or issues identified 

were incorporated into the analysis prior to final results.  

 

3.4. Results 

3.4.1. Accuracy assessments 

Informants from participatory focus groups in the village reviewed the classified swidden-fallow 

maps and any changes identified were incorporated into the analysis prior to final results (see 

Chapter 2). For the independent GE images the overall accuracy and Kappa statistic for the GE 

2010 image is 92% and 84%, respectively. The GE 2013 image achieved 95% for overall 

accuracy and 90% for the Kappa statistic. For the 40-scene dataset, the mean overall accuracy is 

93% and Kappa statistic is 83% (Appendix 2, 9.2).  

3.4.2. Forest cover changes 

Local land-managers indicated that no major forest cover changes had occurred during their 

tenure which began circa 1900. They also indicated that no community members access the 

forests further than 5 to7 km from the village for subsistence needs (e.g. firewood, house 

materials) and swidden-fallow areas are confined to areas around the village and in the river 

delta. Across all images cloud cover hinders approximately 4% of the customary extent. Image 

analyses showed that on average 95% of the customary extent experienced reflectivity and land-

cover changes that were less than 4% and this percentage of change was not identified as land-

cover change, but likely attributed to seasonal or yearly variation among the scenes. One percent 

of extent experienced changes greater than 4% and these areas were identified in the swidden 

area, riparian areas, coast line, and some locations near the village. Manual assessments of each 
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image further supported a lack of major or patterned forest cover changes that would suggest 

large tracts of forest removal, aside from changes in the swidden-fallow and village areas.  

3.4.3. Swidden land-cover and land-use  

The swidden-fallow area trends derived from all scenes is presented in Figure 3.2. The mean 

swidden-fallow area inclusive of all years is 680 ±101 ha and shows a significant trend over time 

with a p=value < 0.001 and an r2 of 0.2421. However, the 1972-282 and 1988-322 swidden-

fallow areas are identified as outliers. Because both scenes are early in the time series, they have 

a greater influence on the slope of the regression and trend significance. When the 1972-282 and 

1988-322 swidden-fallow areas are excluded from the linear model, swidden-fallow area changes 

overtime are non-significant with a p=value of 0.1681 and an r2 = 0.0258. The mean of the 

swidden-fallow area when the outliers are excluded is 695 ±78 ha. The inclusion of the 1972-282 

and 1988-322 data strengthens the r2 value more than when theses data are excluded, yet much of 

the variability is still unaccounted for as the r2 values are low in both cases. The percentage that 

swidden-fallow area increases over time is 143% between 1972 and 2015. However, when 1972 

data are excluded, the sw idden-fallow area increased by 18% and equates to 123 ha.  

 
Figure 3.2. Swidden-fallow area in hectares (ha) according to each year. The trend line of the 
linear regression is shown with all data (dashed) and without outlier scenes (solid). The outlier 
scenes are indicated with the * symbol. 
 



40 

 

There is variability in swidden-fallow areas from scene to scene and over time. There are 

some scenes that were captured relatively close in time, e.g. a week apart, but show different 

swidden-fallow areas. For example 1999-304, 1999-313, and 1999-361 are all captured in the 

same season and year, but the 1999-313 has the largest area (~900ha) of the entire time series. 

The 1999-304 and 1999-361 scenes sandwich the 1999-313 scene and have slightly below 

average areas at 550 ha and 615 ha, respectively. For pairs and triplet date sets during the same 

year swidden-fallow area can differ by 100 ha or more (e.g. 2008) or by less than 30 ha (e.g. 

2005). For the years that have only one scene (e.g. 1990-1998) the swidden-fallow areas are 

more similar to the mean area. 

Land-cover maps were selected to show the spatial distribution of swidden-fallow 

changes in relation to specific participatory information (Figure 3.3). In general, the northern arm 

of the delta fluctuates in area without major increases or decreases over time. Swidden-fallow 

plots near the southern arm and surrounding the village increase in density over time. The 1972 

data do not show swidden-fallow area along the southern arm of the river delta, whereas the 

remaining scenes have swidden-fallow along both north and south arms of the delta. Participants 

explain that all households have become more and more dependent on swidden-fallow resources 

over time and this, in part, supports why the 1972 scene has the smallest swidden-fallow area. 

Since there are no images available between 1972 and 1987 identifying when swidden plots were 

established is not possible and reliance on participatory information is necessary. The shift in 

resource dependence was described to begin during the late 1970’s, when the marine resources 

began to decline. Fish populations are perceived as undependable due to a continued decline in 

quantity and quality, even though fishing equipment has improved catch success, e.g. bone hooks 

to barbed metal hooks. Therefore, land-managers have placed more dependence on swidden-
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fallow agriculture as the primary and most important resource. This resulted, first, in the 

development of additional swidden plots along the northern arm of the delta. Second, in 1986 

new swidden plots were developed along the southern arm of the delta when greater demands for 

land and changes in swidden productivity occurred. This development is visible in 1987-287 

(Figure 3.3). 

 
Figure 3.3. Land-cover maps showing swidden-fallow area for 1972, 1987, 1999, 2008, and 2015 
during the dry season (October-December).  
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Swidden productivity began to decline during the early 1980’s due to beetle infestations 

in taro and an extreme weather event. Taro is a staple crop and while growing taro was not 

necessary to fulfill subsistence needs, it is culturally important. Although unsuccessful, different 

strategies were used to improve taro cultivation such as lengthening fallow periods, rotating 

crops, developing new swidden plots along the southern arm of the delta, and introducing a new 

variety of taro referred to locally as Singapore taro (sp. Xanthosoma). However, none of these 

strategies were successful for long and eventually taro was not a viable crop. This resulted in a 

greater reliance on other crops such as sweet potato and cassava. The second change in swidden 

productivity was caused by the 1982-1983 El Nino events, which was recorded in climate 

records as ‘very strong’. Strong and very strong El Nino events cause major ocean surges and 

river flooding and, because the swidden-fallow area is located in a river delta, fresh and salt 

water inundate the crops and cause crop losses.  

Informants describe that there is an initial response after such extreme weather events to 

increase the number of swidden plots and the hardships of the food shortages influences 

swidden-fallow strategies for multiple years after a severe event. A second ‘very strong’ El Nino 

event occurred during 1997-1998 and drought plagued most of the nation. This El Nino event 

was considered one of the most severe El Nino events in the past 100 years (Barr 1999). Serious 

food and drinking water shortages were widespread and led to food ration distributions from the 

government and international organizations (Barr 1999, Minnegal and Dwyer 2000). Many 

informants believe that the slightly larger swidden-fallow areas observed between 1999 and 2004 

were in response to food shortages experienced during the 1997-1998 droughts. The 1999-313 

scene shows the largest swidden-fallow area in the time series and when participants reviewed 

the 1999-313 scene they described that, first, the expansion was in response to recent droughts 
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and food shortages. Also, they describe that December is a month of celebration and there are 

times when they harvest yields and start new plantings so that they don’t have to work as much 

over the holidays. They said that it was likely that they just harvested a lot of the crops to prepare 

for festivities. This was also detailed in an annual calendar of swidden-fallow and community 

activities (Appendix 1). The larger swaths of freshly cleared plots have a higher reflectance due 

to soil exposure and therefore more area is identified as swidden-fallow in the imagery. Because 

there are 48 days until the next scene is captured, there is ample time for vegetation to grow and 

reach a stage where vegetated ground cover is dense. When crops are near maturity, deciphering 

swidden-fallow from natural vegetation becomes more difficult due to spectral similarities and 

classifying a smaller swidden-fallow area is more likely. 

The three 2008 scenes are an example of swidden-fallow area differences over a short 

period of time, and the smallest swidden-fallow area 2008-322 is selected for Figure 3.3. For 

2008 the capture dates are closer in time and the swidden-fallow area successively increases. The 

first two scenes, 2008-322 and 2008-330, are 8 days apart and the swidden-fallow area increases 

by 86 ha, whereas the second two scenes, 2008-330 and 2008-354, are 14 days apart and the 

swidden-fallow area increases by 125 ha. In total, the first and third scenes are separated by 32 

days and the difference in swidden-fallow area by 211 ha. This observation follows the seasonal 

participatory data that indicated more plots were harvested and cleared as the Christmas holiday 

approached.  

The 2015-341 image has the third largest swidden-fallow area in the time series and of 

the last six scenes, four show above average swidden-fallow area. In 2012 pesticides were 

applied to the swidden-fallow area to eradicate the taro beetle and the increase in taro cultivation 

influences land-use classifications in these scenes. At first, taro was planted in small areas to test 
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its success and after successful harvests more and more taro was planted. Land managers 

described that they decreased the number of sweet potatoes and increased taro. Sweet potatoes 

are planted in mounds and grow outward as an untamed ground cover, whereas taro are planted 

individually in rows and grows vertically. Spectrally, the change from a vegetated groundcover 

to organized rows results in higher proportions of bare soil exposed. Bare soils reflect more light 

and make cultivated swidden-fallow areas more distinct, thus more swidden-fallow area is 

observed. 

An El Nino event that has been classified as ‘very strong’ has been listed for 2015-2016. 

The response to this El Nino event is yet to be apparent in the swidden-fallow area. However, 

informants described that they have begun to prepare for such events by planting more sago 

palm, a native and staple crop that can feed a family for one to two months. Sago palm is planted 

and grows wildly in this region and is very resilient to flooding and drought conditions. Each 

informant described having 50 to 500 sago palms in different stages of growth. From a remote 

sensing perspective, it is also nearly impossible to identify or enumerate the palms using satellite 

imagery, because they are in natural vegetation areas, along rivers and streams, and there are 

many other varieties of palms. 

Land-managers described changes in swidden-fallow strategies to increase crop yields 

that cannot be accounted for in the satellite analyses such as 1) shortening fallow periods, 2) 

increasing crop density, 3) introducing new crop varieties, and 4) selling more fish to purchase 

goods. The money gained from fish sales is usually used to purchase items such as clothes, 

kerosene, fishing equipment, axes, machetes, and nails. Supplemental food (e.g. canned meat and 

rice) was rarer because it is more of a treat than a necessity. From the interview information, data 

show between 1999 (Bein et al. 2007) and 2011 fallow periods were shortened and cropping 
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periods lengthened (Table 3.2). Even though all informants acknowledged that shortening the 

fallow period results in reduced soil fertility, more pests, and more weeds compared to longer 

fallow periods, such methods are still used to increase crop production. The changes in crop 

density and the introduction of new crop varieties were also a way to increase harvests without 

expanding overall area.  

Swidden-fallow changes were also influenced by a change in household structure. 

Traditionally in PNG, men and women live in separate, gender-specific houses. A shift towards 

nuclear family houses is challenging this norm and creates a change in household needs and the 

division of labor. This gendered to nuclear-family house shift began in the early 1990’s and has 

impacted how individual swidden plots are shared and divided among family members. 

Individual swidden plots were larger when gender-specific houses were common and the plots 

were maintained and harvests shared by multiple generations and the extended family. While 

crops are still shared among extended families, plots are more commonly split up so that each 

nuclear family has a portion. Similarly, when a couple weds, they are given their own swidden 

plot, and this is usually a subdivision of a larger family plot. The decrease in the area of a single 

plot and area of all household plots is observed between 1999 and 2011 and can be reviewed in 

Table 3.2. 
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Table 3.2. The 2011 data were collected during household structured surveys. Data in the 1999 

column were derived from (Bein et al. 2007)and some values in this column were calculated 

using the available data.  

 

3.5. Discussion 

This village presents a unique opportunity to identify agricultural changes over time because we 

combine land-use and agricultural strategy information from participatory data with 38 Landsat 

scenes across a 28-year period. The inclusion of participatory information is vital, as it explains 

general swidden-fallow trends, land-use during imagery gaps, scenes with swidden-fallow area 

anomalies, and resource use changes that would otherwise be excluded. Understanding changes 

in land-use are a key component to identifying how and why the associated land-cover changes 

occur in areas where swidden-fallow systems are found. From a remote sensing perspective, the 

 1999 2011 

Total population 479 850 

Number of households interviewed 26 32  

Approximate number of households in the village 80 128 

Average people per household 6.1 6.4 

Average cultivated & fallow length (yr) 1.2 & 5.8 2.75 & 3 

Total swidden-fallow cycle (yr)  7 5.75 

Average swidden area of a single plot (ha) 0.13 0.095 

Average area of all plots per household (ha) 0.40 0.36 

Average number of plots per household 3.1 3.8 
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study area is free of large-scale logging, scenes were not mosaicked, and the high-temporal 

resolution of the data presents a clear assessment of swidden-fallow land-use changes.  

Our results are in agreement with McAlpine & Freyne (2001) at the provincial level and 

by Bourke (2001; 2012) at national level and show that swidden-fallow areas were not expanded 

to accommodate the growing population but land most favorable for swidden-fallow agriculture 

was intensified. These results are also similar to the few village level studies that exist (Eden 

1993, Umezaki et al. 2000, Bailey et al. 2008). Our participatory data support that the increase in 

food production is achieved by implementing a variety of strategies (e.g. intensification, cultivar 

selection, subdividing large plots), rather than continual expansion of the swidden-fallow area. 

Also, due to the high fertility of the delta area, intensification has been the most common way to 

increase production. Land-managers describe that environmental impacts and extreme weather 

events that are associated with climate change play more of a role in subsistence strategy 

changes and influence decisions to expand or contract the swidden-fallow area on a seasonal and 

annual basis. For example, cleared swidden-fallow areas often increase in response to prolonged 

pest infestations, drought, and frequent ocean surges and flooding. Conversely, when 

environmental and weather patterns are more predictable the yearly clearing of swidden-fallow 

areas tend to remain constant.  

Information from land-managers also helps inform some of the general fluctuations 

across the time series. Two severe El Nino years (1982-83 and 1997-98) were mentioned as one 

reason for subsistence strategy changes. Although we lack imagery for the first El Nino event, 

the 1997-98 event shows slight increases in swidden-fallow area for years afterward. We posit 

that the impacts felt from these events will only continue to influence swidden-fallow strategies 

as extreme events strengthen and become more frequent in the years to come. Because land-
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mangers described planting more sago palm, it is unknown if swidden-fallow area changes will 

occur in a predictable fashion. An increase in taro plantings may also confound future 

assessments because taro fields are reflectively more distinct. However, pesticide resistance may 

influence crop selections to revert back to sweet potato cultivation. Identifying these changes is 

not possible with satellite imagery alone and more participatory involvement is required.  

Acquiring a spatial dataset that has multiple dates is also essential to capture the long-

term change trends as swidden-fallow is a highly adaptable land-use system that constantly 

changes to accommodate subsistence needs (Mertz et al. 2009; Padoch et al. 2007). Thus, the 

inclusion of all possible dry-season scenes between October and December allows us to observe 

the swidden-fallow area over multiple scenes during the same period and assess how slight 

differences in spectral qualities and classifications influence changes in swidden-fallow area. We 

identify that the stage of growth of the swidden crops influence classifications when multiple 

dates for the same year and season are available, e.g. 1999 and 2008 scenes. Even when scenes 

are relatively close in time, there can be large differences in the swidden-fallow area assessed. 

These differences often relate to the reflectance qualities of the swidden-fallow cycle phase 

(cleared, newly planted, mature crops, fallow) or type of crops (taro, sweet potato, etc) in the 

cultivated plot. Understanding the nuances of swidden-fallow agriculture is a key component to 

identifying slight differences among scenes and for overall trends. Without local land-use 

information, such nuances may go unnoticed and influence trends in an erroneous way.  

The high number of scenes also gives us a high confidence in the legitimacy of the 

swidden-fallow trends identified at the village level. If only a handful of scenes were used to 

assess swidden-fallow area, then the outliers in those trends could influence the analyses. While 

the longest time series is typically favorable to observe trends, careful consideration of these data 
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and results is necessary. Swidden-fallow area significantly increased over time (p-value<0.001) 

when all 40 scenes (1972-2015) are analyzed. However, when the outlier scenes, 1972-282 and 

1988-322, are excluded from the linear model, the swidden-fallow area change over time is not 

significant. Even though this dataset has an ample number of scenes to assess temporal trends, 

outliers can still influence trends. Identifying outliers is not common in LULC analyses because 

acquiring a large number of scenes is challenging, especially for wide geographic extents and in 

regions with nearly continuous cloud cover. One possibility that may cause the 1972-282 scene 

to be an outlier is that it was captured with a Landsat MSS sensor, which differs in radiometric 

and spatial resolution than the remaining scenes and as a result slightly different methods were 

used to classify the swidden-fallow area. Participatory data supports that the 1972 swidden-

fallow area was smaller due to a greater dependence on marine resources and fewer issues with 

swidden cultivation. However, without additional scenes for comparison, we still do not have 

confidence that including this scene better informs the trends in swidden-fallow land-use 

changes. Comparatively, the 1988-322 scene is not affected by sensor or classification 

differences but still is an outlier. Because there are two scenes for 1988, 322 and 290, a 

comparison of the swidden-fallow areas is possible. These two dates are separated by 32 days, 

yet the decrease in swidden-fallow area by 160 ha. This suggests that the 1988-290 scene has 

larger swaths of bare soil and new vegetation whereas the land-cover in the 1988-322 scene had 

more established crop cover, the latter of which made spectral similarities between crop cover 

and natural vegetation less distinguishable. Participatory information confirmed this observation. 

Our results differ from the Shearman et al. (2009) and Ningal et al. (2008) studies that 

draw strong and causal relationships between population and swidden-fallow land-use trends. 

These two studies fail to incorporate reasons other than those influenced by population growth 
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and population density for LULC changes and rely on a perceived relationship between 

population growth and land-use change to explain swidden-fallow expansion and subsequent 

forest cover changes. At the village level, we neither found a significant temporal trend for 

swidden-fallow area expansion, nor do we believe that population growth and swidden-fallow 

expansion are causally related. Also, in this study, the 1972-282 data have a large influence on 

temporal trends. Even when nearly identical methods are used to analyze the Landsat scenes, 

there is a substantial difference in swidden-fallow area in 1972-282 scene compared to the 

remaining 39 scenes and, as a result, the trend significance differs. Another factor to consider is 

that land-cover changes the Shearman et al. (2009) and Ningal et al. (2008) studies used two 

(1972 and 2002) and three (1972, 1990, and 2002)scenes to analyze trends over time, 

respectively. When additional dates are added to the analyses and fill in some of the temporal 

gaps, the relationship between population and swidden-fallow area is likely to change. In our 

time series 1972-282 is the smallest and 2002-305 is about average in area, and a trend line 

between these two scenes does not fully or accurately portray swidden-fallow area trends over 

the whole time period. With the inclusion of 13 additional scenes between 1972-282 and 2002-

305, a different pattern of swidden-fallow agricultural area emerges. The pattern of slightly 

expanding and contracting swidden-fallow area is further supported with 38 scenes. Thus, the 

swidden-fallow expansion observed at the national and provincial scale may be an artifact of the 

1972 data used and the limited number of Landsat scenes in the time series.  

 

3.6. Conclusion 

Understanding changes in land-use and subsistence strategies is a key component to identifying 

how and why land-cover changes occur in areas where swidden-fallow systems are found, 
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especially when population growth is an overly simplistic explanation. The inclusion of 

participatory information and noted changes in swidden-fallow strategies, land-use, and land 

allocation better links land-use to land-cover trends. The coastal village studied here is unique 

because no commercial logging has occurred. Additionally, a single Landsat image covers the 

village extent and all scenes that are used in the analysis are captured during the same season. 

This allows the identification of swidden-fallow land-use changes by minimizing confounding 

land-covers and data inconsistencies, and allows us to form a clearer relationship between land-

use trends and subsistence strategies. 

The 38 scenes used to assess swidden-fallow area do not show a significant temporal 

change trend. Instead, our results show that as the population grew, swidden-fallow area 

fluctuated over time. We find that such dynamics are based on swidden-fallow land-use 

characteristics and the land-cover reflective properties associated with different phases of crop 

growth and harvest schedules. Land-use decisions are influenced more by local social, climatic, 

and environmental conditions than by population growth pressures. This finding is different from 

findings of studies at the provincial and national extents, which draw a strong relationship 

between population and swidden-fallow LULC changes. Across PNG, approximately 19% 

population practice swidden-fallow on littoral and alluvial fans, similar to those found in the 

study village. However, it is unknown what swidden-fallow trends exist in other villages because 

there are few village scale studies. 

Overall, assessing swidden-fallow land-use and the associated land-cover change patterns 

at multiple scales is important to assure that critical information is not skewed when spatial 

scales change. As more data become available, it is essential to increase the number of scenes 

used to assess LULC change in areas where swidden-fallow systems are found and such land-use 
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patterns dominate. To better inform policy and land management planning, additional research 

should be conducted at the village level to assess whether the change patterns we have identified 

occur elsewhere in PNG. This type of high temporal resolution analysis should also be done in 

other locations throughout the world where people still rely on subsistence agriculture systems. 
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CHAPTER 4 
 

 

 

MODELING HOTSPOTS OF PLANT DIVERSITY IN NEW GUINEA3 

 
 
 

4.1. Introduction 

New Guinea is estimated to harbor 5-10% of the world’s biodiversity in only 0.5% of earth’s 

land area (Supriatna et al. 1999, Mittermeier et al. 2003). For plant biodiversity, New Guinea 

ranks second to Amazonia and this equates roughly to 17,000 unique species, 10,200 of which 

are thought to be endemic (Mittermeier et al. 2003). While it is difficult to deny the diversity of 

the biota in New Guinea, the evidence to support the high rates of diversity and endemism are 

not based on comprehensive taxonomically vouchered collections. This is especially the case for 

embryophyta or vascular and non-vascular terrestrial plants, the focus of this study (hereafter 

referred to as terrestrial plants). Estimates of diversity have been based on expert opinion 

(Vollering et al. 2015), and endemism rates for terrestrial plants have been estimated using the 

richness of taxonomic groups, such as orchids and ferns  (Supriatna et al. 1999). However, in 

Ecuador, Mandl et al. (2010) showed that epiphytic plant diversity differs from other terrestrial 

plant diversity due to differing environmental requirements. Other more systematic approaches 

have used topographic and climatic data to identify unique biogeographical environments where 

high diversity is likely to occur (Heads 2006, Vollering et al. 2015). Phylogenetic molecular 

techniques for identifying dispersal and speciation for the tropical South Pacific have been 

conducted but are limited to a handful of species and higher level taxa and likewise, New Guinea 

is poorly represented (Keppel et al. 2009).  

                                                           
3
 This chapter is co-authored by all committee members and is currently in review at Tropical Ecology 
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There are two widely accepted explanations for the high biological diversity in New 

Guinea. First, island biogeography theory states that islands larger in areas with higher elevation 

and closer in proximity to source areas have the richest species diversity (Heads 2001, Roos et al. 

2004, Cronk et al. 2005, Brooks et al. 2006, Neall and Trewick 2008, Keppel et al. 2009, 

Vollering et al. 2015). The island of New Guinea fits all of these characteristics as it is the largest 

in the Pacific, has the highest mean elevation (highest point at 4884 m in Southeast Asia and 

Oceania), and is proximal to many source areas, such as Southeast Asia, Australia, and multiple 

island archipelagos across Malesia, Micronesia, and Polynesia. Second, the tectonic history of 

New Guinea along the northern coast was formed by the accretion of 32 distinct terrains, each 

with unique origins, histories, and biota (Heads 2001, 2006, Hill and Hall 2003), whereas the 

southern portion of New Guinea is the northern reach of the Australian Craton (Hill and Hall 

2003, Baldwin et al. 2012). Therefore, the processes of dispersal and vicariance are believed to 

largely influence patterns of plant distributions (Cronk et al. 2005, Heads 2009, Keppel et al. 

2009). 

New Guinea is comparatively understudied compared to other tropical areas (Heads 

2001, 2006, Keppel et al. 2009, Vollering et al. 2015) and even the more systematic approaches 

and sound theories lack adequate taxonomic catalogues to verify or comprehensively assess the 

distribution of biota and richness therein (Roos et al. 2004). Tropical forests rarely have 

complete catalogues of biota because these ecosystems have high species richness and surveying 

efforts are laborious, expensive, and spatially biased. In New Guinea, survey efforts are spatially 

biased in multiple ways. First, there are more specimens collected in areas that are easier to 

access (near towns, rivers and roads). This is exacerbated in New Guinea as travel on the island 

is greatly limited due to the lack of infrastructure. Second, collection densities in New Guinea 
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increase from west to east and from south to north (Takeuchi 2007). Even though Indonesia is 

known for high rates of biodiversity, the full scope of diversity is unknown because the 

Indonesian territories in New Guinea are severely under sampled. Although collections are still 

low, the number of specimens collected in Papua New Guinea (PNG) is over 30 times greater 

than Indonesia’s collections in New Guinea. This can be easily visualized online at biodiversity 

data websites such as Global Biodiversity Information Facility (GBIF; http://www.gbif.org/) and 

iDigBio (https://www.idigbio.org/). Third, survey efforts increase with elevation, and this is 

especially the case in the highland areas of Papua New Guinea (PNG) (Takeuchi 2007). Fourth, 

it is a challenge to gain land access to study biodiversity or collect specimens because land is 

under customary land tenure and foreigners are viewed as untrustworthy. Even though 

researchers approach land managers with transparent intentions, government agencies and 

resource extraction companies have had a long history of corruption and illegal operations and 

this history has caused distrust of all types of surveying (PNG specific, A. Allison, personal 

comm.). Last, the biological surveys that have occurred in recent decades are rapid biological 

assessments (RAP surveys), which are conducted over a short period of time, cover small areas, 

are often in response to pending resource extraction or development (e.g., dams and mining; 

Katovai et al. 2015), and are published in grey literature (Leisz et al. 2000, Mack and Alonso 

2000, McGavin 2009, Richards and Gamui 2011). 

The ability to identify distribution patterns is interesting theoretically to the scientific 

community but also can be used for land-use planning and management and conservation 

strategies (Heads 2001, de Barros Ferraz et al. 2012, Anderson 2013). Information on the spatial 

patterns of terrestrial plant species richness in New Guinea is not available, and it is urgently 

needed to address threats to biodiversity due to habitat losses via resource extraction and 
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development (logging, mining, fiber, and oil palm), which have cleared or degraded 

approximately 30% of forests across New Guinea and the surrounding islands (Shearman et al. 

2009, Abood et al. 2015, Bryan and Shearman 2015). Higher rates of forest losses are observed 

in areas that are more easily accessed such as coastal lowlands and islands and in PNG over 43% 

of forests cleared at least once between 1972 and 2014. Regulations are violated often across 

New Guinea with repeat harvests occurring on too short of a time scale (e.g., 15 years instead of 

35 years), illegal logging, and industries expanding outside set boundaries (Bryan and Shearman 

2015). Across the whole of Indonesia, around 55% of resource extractions occurred outside of 

set boundaries (Abood et al. 2015).  

Although the biological knowledge of the island is far from complete, recent interest in 

understanding the spatial distribution of biota has been ignited with efforts that have 

amalgamated and digitized specimen data from herbaria, museums, and private collections into 

online databases. These databases along with ecological niche models (ENM; also called species 

distribution models (SDMs)) have become a valuable tool in biogeographic research. ENMs are 

based on the fundamental and realized niche concepts and approximate a species’ distribution 

using occurrence data and environmental conditions (e.g., climate, topographic; Peterson et al. 

2011). 

To date there have been few attempts that systematically and objectively assessed 

terrestrial plant distribution (Heads 2001; Vollering et al. 2015; Roos et al. 2004) and none to 

date have used all available occurrence data. In this study our aim was to map the distribution of 

terrestrial plants at the genus taxonomic level using maximum entropy model or MaxEnt 

(Phillips et al. 2006). The specific goals of this study were to: 1) identify sampling intensity and 

sampling bias; 2) identify the most influential abiotic drivers associated with terrestrial plant 
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distributions; 3) identify the regions of New Guinea that are likely to harbor high terrestrial plant 

richness; and 4) discuss the implications of threatened habitat and biodiversity losses due to 

resource development and land use changes. 

 

4.2. Materials and methods 

4.2.1. Study area 

This study was conducted on the island of New Guinea, which is politically divided into the 

Republic of Indonesia to the west and the Independent Nation of Papua New Guinea (PNG) to 

the east. Many of the surrounding islands were also included in this study and some of the major 

island groups are the Bismarck Archipelago and Admiralty Islands of PNG, Biak and Yapen of 

Indonesia, and the autonomous island nation Bougainville, which is part of the Solomon 

Archipelago (Figure 4.1).  
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Figure 4.1. The island of New Guinea is occupied by two countries, Indonesia to the west and 
Papua New Guinea to the east. Included in this study are the Indonesian islands Biak and Yapen, 
and Papua New Guinea’s Admiralty Islands and Bismarck Archipelago. Also part of the study is 
the autonomous island of Bougainville, which is part of the Solomon Archipelago. The 
projection is Albers Equal Area projection, WGS84. 

 

The total landmass of New Guinea is 786,000 km2, excluding the surrounding island 

archipelagos. New Guinea is the second largest island in the world and tallest landmass in the 

south Pacific, which includes Southeast Asia, Australia, and New Zealand. Elevation ranges 

from sea level to 4884 m and is typically divided into coastal lowlands (0-1000m), lower 

montane (1000-2800m), and upper montane (2800-4900) (Bryan and Shearman 2008). On 

average temperatures are 28°C at sea level, 26°C for inland and mountain areas, and 23°C for 

higher elevations. The temperature variability ranges between 6.8 and 14.6°C, with the greatest 

degree changes in the lower and upper montane zones. Precipitation varies greatly across the 
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island from 970 mm to 7500 mm per year. Peaks in the upper montane zone still retain glaciers, 

but the snowlines have been rapidly retreating in the past century (Hope 2014). 

New Guinea is composed of three distinct geologic formations, the Stable Platform, Fold 

Belt, and Mobile Belt. The Stable Platform is a continuation of the Australian Craton and the 

Fold belt is the northern edge of this Craton (Hill and Hall 2003, Heads 2006). The Fold Belt or 

central mountain range spans east-west across New Guinea was the result of fold and thrust 

deformations from arc-continent collisions (Polhemus and Polhemus 1998, Hill and Hall 2003, 

Baldwin et al. 2012). The Mobile belt was created over the past 40 million years from a series of 

32 island arcs, some composite, that accreted to the Fold Belt (Heads 2001, 2006, Hill and Hall 

2003). The Bismarck Archipelago is in route to collide with New Guinea in the next 10 million 

years (Polhemus and Polhemus 1998).   

4.2.2. Occurrence data 

All georeferenced specimen occurrence records were combined from the PNGPlant database 

(Conn et al. 2004), Herbarium Pacificum, Bernice P. Bishop Museum (www.bishopmuseum.org, 

2015), and Global Biodiversity Information Facility (GBIF) data portal (GBIF 2015). Generic 

taxonomy was updated based on Angiosperm Phylogeny Group (APG) IV classification (Chase 

et al. 2016). To maximize the number of unique occurrences and ensure data quality the genus 

taxonomic level was used, as the species level data had many inconsistencies and too few 

occurrences per species. The original dataset contained around 3,000 unique genera with over 

100,000 specimens. All occurrences with incomplete location information, missing or incorrect 

taxon names were removed from the dataset. Any occurrence records of cultivated or introduced 

taxa in New Guinea were removed from the dataset. Of the remaining occurrences, 36% of the 

genera were not used in the study because there were fewer than 10 specimens. 
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 Duplicates were removed using occurrence identification numbers and location 

information. If multiple records of the same genus were found in the same 1 km2 grid cell, only a 

single record was included. To account for spatially auto-correlated occurrence points and avoid 

model overfitting, all points were spatially filtered at 5 km. Spatial filtering also ensured that the 

test and training data were independent when cross-validation evaluation techniques were used 

(Veloz 2009, Boria et al. 2014, de Oliveira et al. 2014, Radosavljevic and Anderson 2014, Sidder 

et al. 2016). After spatial filtering, genera with fewer than 10 occurrences constituted 7% of the 

dataset and were not included because there were too few occurrences for a general model 

(Austin 2002, Bell and Schlaepfer 2016). The final dataset contained 1,354 genera with 85,481 

occurrence points. There were around 5,000 occurrence points in Indonesia and 80,000 points in 

PNG. Appendix 3A provides a table of the genera used in this study and the number of 

occurrences. The genera that lacked adequate occurrences are also in the Appendix 3B, so that 

future surveys can focus on data deficient genera.  

4.2.3. Sampling intensity and biases 

To identify the spatial distribution of collection efforts across New Guinea and surrounding 

archipelagos a 50 km grid was created. The occurrence data were counted per grid cell in two 

ways. First, all occurrences were counted to show overall sampling efforts per 50 km grid cell. 

The second method counted the number of unique genera or genus richness per grid cell. The 

spatial biases for sampling efforts was created using Gaussian kernel density estimate tool from 

the SDMToolbox (Brown 2014). 

4.2.4. Environmental data 

Environmental data from three different sources were used and these included 19 bioclimatic and 

elevation variables from the WorldClim dataset (Hijmans et al. 2005), global habitat 
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heterogeneity (GHH; Tuanmu & Jetz 2015), and soil data from the ISRIC (ISRIC 2015; Table 

4.1). Multiple variables were generated from the altitude data including slope (in degrees), 

aspect, and topographic exposure. The GHH data were all based on texture features of the 

enhanced vegetation index (EVI) and aimed to quantify spatial heterogeneity (Tuanmu and Jetz 

2015). The northness and eastness variables were derived from the cosine and sine 

transformation of the aspect, respectively. Topographic exposure was calculated using the 

difference between the altitude layer and a transformed altitude raster where a 3x3 neighborhood 

mean was applied. All environmental data were continuous variables and had a spatial resolution 

of 1 km2. 
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Table 4.1. Environmental variables used in the model. The * indicates the variables used when 
occurrence points are between 10 and 25.  
Predictor Description Source 

ALT* Altitude from digital elevation model 

BioClim 
http://www.worldclim.org/ 

BIO4* 
Temperature seasonality (standard 

deviation *100) 

BIO7* 
Temperature annual range 

(Max T. of warmest month - Min T. of 
coldest month) 

BIO12* Annual precipitation 

BIO15 
Precipitation seasonality (Coefficient of 

variation) 
BIO18 Precipitation of warmest quarter 

pH Ph of water in soil at 10 cm depth 

ISRIC World Soil 
http://www.isric.org/ 

BD 
Bulk Density: ratio of soil mass to soil 

volume at 10 cm depth 
CEC Cation exchange capacity at 10 cm depth 

Clay* 
Fraction of clay by weight at 10 cm 

depth 

CF 
Coarse fragments >2mm in volumetric 

percent at 10 cm depth 
OC Organic carbon at 10 cm depth 
Silt Fraction of silt by weight at 10cm depth 

Exposure* Topographic exposure 
A 3x3 cell mean was calculated on the 
ALT layer; the difference between the 

ALT and 3x3 mean layers is calculated. 
Slope* Slope in degrees Calculated using the ALT layer 

Eastness* Sine of aspect Aspect calculated using the ALT layer; 
sine or cosine is calculated Northness* Cosine of aspect 

Correlation 
Linear dependency of EVI on adjacent 

pixels 

Global habitat heterogeneity 
http://www.earthenv.org/texture.html 

evenness Evenness of EVI 

Uniform Orderliness of EVI 

Variance* 
Dispersion of EVI combinations 

between adjacent pixels 
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 For this study, the Pearson correlation coefficient (r) among environmental variables was 

used to account for multicollinearity (Dormann et al. 2013). If two variables were highly 

collinear (|r| > 0.75) one was removed and the variable retained was the one that was perceived 

to be more ecologically influential to terrestrial plants. The number of environmental predictor 

variables used in the modeling was reduced to 21 (Table 4.1). All 21 variables were considered 

when the occurrence counts were greater than 25. For the group of genera with occurrences 

between 10 and 25 the number of environmental variables was reduced to 10 so to not over or 

under predict the distribution based on limited collections. The 10 environmental variables 

selected were the ones that were directly measured (e.g., altitude and temperature) and were least 

correlated (Table 4.1). All environmental and occurrence data were projected to an equal area 

projection (Cylindrical Equal Area Conic, Datum WGS84). 

4.2.5. Model calibration and validation 

The maximum entropy model or MaxEnt (version 3.3.3; Phillips et al. 2006) was used to map the 

distribution of terrestrial plants in New Guinea. Of the current models available, MaxEnt was the 

top choice for this study for multiple reasons. First, MaxEnt uses presences-only data. Second, it 

generally outperforms other niche models (Evangelista et al. 2008). Third, it has performed well 

with small sample sizes (Wisz et al. 2008) and found to be suitable for our dataset as some of the 

genera have a minimum of 10 occurrence records.  Last, MaxEnt can be used to run models for 

thousands of species at a time.  

 In general, default settings were used, and when this is not the case we describe changes 

below. The dataset was split into two groups of occurrences, between 10 and 25 (group1) and 

greater than 25 (group2), so that different set of variables could be considered in the MaxEnt 

model; fewer number of variables for group 1 and higher number for group 2. This was done 



64 

 

specifically for Feature selection and the number of iterations. Auto Features was selected for all 

genera unless the genera had too few occurrences and in such case the Linear (L) and Quadratic 

(Q) to L, Q and Product (P), L to L, Q, and hinge threshold defaults were retained in the 

experimental tab. The number of iterations was set to 10 for 10-fold cross-validation to test 

model accuracy. The number of background points was left at the default value of 10,000 

because this relates to the overall extent of the study area and is appropriate for New Guinea. The 

background points were not randomly assigned but adjusted to account for to the sampling bias 

(Elith et al. 2011, Syfert et al. 2013). Although there may be datasets collected in New Guinea 

with non-bias sampling strategies, the data are from multiple different sources and all were 

treated as biased. The bias surface was created using a kernel density estimate in the 

SDMToolbox (Brown 2014), and it was used to constrain background samples so that there was 

similar bias between the occurrence and background points. This essentially canceled out the 

bias within the model (Phillips et al. 2009). Fade-by-clamping was selected as predictions were 

not be made where clamping occurred, resulting in more accurate predictions(Owens et al. 

2013). 

4.2.6. Binary map creation 

To minimize an overfit model a 5th percentile sensitivity threshold was calculated for each genus 

and was applied to the average occurrence probability outputs from MaxEnt. The occurrence 

data points were used to identify the 5th percentile value. If the 5th percentile value landed 

between two points, the value was rounded to the nearest integer or point and this point value 

was used as the 5th percentile sensitivity threshold. This value was then used to create binary 

maps of presence-absence. For each occurrence probability map, the cell values lower than the 

5th percentile value were converted to 0 (species absence) and those higher were converted to 1 
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(species presence). All of the binary maps were summed to create a map that showed genus 

richness.  

4.2.7. Analyzing model results 

To evaluate model performance, the area under the receiver operating characteristic (ROC) curve 

(AUC) and test sensitivity was used. The AUC is the probability that a randomly selected 

presence site is ranked above a randomly selected absence site and is a quantitative assessment 

of performance because it is independent of a chosen threshold. AUC values greater than 0.75 

indicate that the model is able to accurately predict test points (Phillips and Dudık 2008) and 

values greater than 0.9 are considered very good (La Manna et al. 2011).  By contrast, AUC 

scores lower than 0.5 indicate a worse than random predicted distribution. We reviewed each 

genus with a low AUC score (<0.5) and the genera with greater than 50 occurrences were 

retained in the model. We felt that occurrences greater than 50 were representative distributions 

of each of the genera and that the lower AUC scores more likely corresponded to a more widely 

distributed genus (Elith et al. 2006, Raes and ter Steege 2007) than a poorly fit model. We report 

the mean AUC in our results; AUC scores for all individual genera are provided in Appendix 3A.  

 We acknowledge that some of the genus distributions may not be accurate as the 

occurrence data may not represent the realized niche (e.g. sink-source populations, biased, low 

number of occurrences, time since collection). Likewise, the generalized model parameters may 

miss unique environments where a genus could occur. To improve our distribution modeling 

efforts and test the assumption that the distributions are driven by environmental parameters, we 

used Raes & ter Steege (2007) null-model approach. While running MaxEnt 999 times for each 

taxa is valid when the number of different taxa is reasonable low, it is computationally 

exhaustive for over 1300 genera. Also, statistically comparing null-model AUC scores to our test 



66 

 

AUC scores did not improve model performance or predictive power and we did not want to 

exclude additional taxa from the study due to significant differences in AUC scores. However, 

we did compare null-model results to four genera with narrow to wide ranging distributions 

(Nothofagus, Rhododendron, Alstonia, and Acaena). We found that the AUC scores were higher 

than the Null AUC scores for all except Alstonia, which had nearly equal scores. These 

comparisons are available in the Appendix 3A. We hope that other researchers collect more 

occurrence data in different locations in New Guinea to validate or refute this baseline 

information in the future.  

 

4.3. Results  

The sampling intensity (Figure 4.2) shows the number of genera collected per 50 km cell. Much 

of the Indonesian side has not been sampled, or at the very least, voucher specimen collections 

have yet to be digitized and data mobilized. Also, many cells that contain occurrences had five or 

fewer specimens (yellow). Sampling efforts on the Eastern half of New Guinea showed that a 

majority of the cells contained less than 500 collections per 50 km cell, and although this is 

substantially higher than the western half of New Guinea, it is still quite low.  

Figure 4.3 shows genus richness or the number of different genera accounted for in each 

50 km cell. The retention of a single genus for each cell does not account for the number of 

different species that were present but it provided a relative idea of the diversity of genera 

collected in each area. In Indonesia, the majority of cells had five or fewer genera collected and 

only seven cells had more than 100 genera. PNG had a larger number of collected samples 

overall and therefore the number of genera represented is greater.
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Figure 4.2. The total number of specimens collected per 50 km grid cell shows collection efforts. A single cell can have one or more 
of the same genus. The projection is Albers Equal Area projection, WGS84.  
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Figure 4.3. Genus richness shows the number of unique genera collected per 50 km grid cell. The projection is Albers Equal Area 
projection, WGS84.
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While the total number of collected specimens alluded to a more comprehensive 

sampling effort, many of the 50 km cells with higher genus counts in Figures 4.2 and 4.3 were 

subject to sampling bias (Figure 4.4). Due to the very low sampling effort across all of Indonesia, 

biases were virtually nonexistent. In PNG sampling biases were higher along the roads and near 

areas with larger populations (towns and the Highlands region), but these areas are relative to the 

areas around them, that are very low. Because sampling efforts along the coast, along rivers, and 

near airports have occurred, low sampling biases were observed (maroon). However, these show 

up only because the areas around these locations had fewer, if any occurrences.  

 

Figure 4.4. (a) Sampling bias created using kernel density estimate at a 10 km resolution with 
some locations identified. (b) Roads and airports show the influence of infrastructure on 
sampling bias. The projection is Albers Equal Area projection, WGS84.  
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4.3.1. Model performance 

The 10-fold cross-validation test AUC (AUCcv) scores ranged between 0.42 and 0.99 with a 

mean of 0.7. There were 83 genera with AUCcv scores lower than the 0.50 threshold. The genera 

with an AUCcv lower than 0.50 and greater than 50 occurrences totaled 21 and achieved a mean 

AUCcv of 0.48. The number of occurrences was not correlated to the AUCcv score (Appendix 

3A). A list of the genera with low AUCcv scores that were not included in the analysis is 

provided in Appendix 3B. Elevation, slope, and temperature annual range (BIO7) ranked, in 

order, as the most influential environmental and climate variables in the model. The average 

contribution of each environmental variable is provided in the Appendix 3A. Figure 4.5 shows 

genus richness in relation to elevation. Genus richness was greatest at elevations between 100 

and 600 m and slightly decreased as elevation increased. Elevations between 0-100m had the 

largest area comparatively, but the lowest generic richness. 

 

Figure 4.5. Generic richness in relation to elevation. 

The relative, predicted genus richness for New Guinea and the surrounding islands is 

shown in Figure 4.6. Across the study, the predicted number of genera per 1 km cell ranged 
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between 120 and 1020, where the total number of genera possible was 1354. Warmer colors 

show regions with higher predicted genus richness, whereas cooler colors show lower predicted 

richness. Across New Guinea there was higher variation in predicted richness, yet in general, the 

northern two-thirds of New Guinea showed higher predicted richness than the southern third. 

Regardless of area, the generic richness across the different geologic land forms was 

similar (Figure 4.7). The Islands achieved the highest predicted richness with a mean of 594 and 

were smallest in area (8% of land area). Accreted Arcs closely followed the Islands for predicted 

genus richness with a mean of 587, but covered 19% of the land area. The Mobile Belt and Fold 

Belt were similar in (563 and 564, respectively) predicted genus richness but the Mobile Belt had 

slightly more land area at 25% compared to 19%. The Stable Belt had the lowest predicted 

richness with a mean of 454 and was largest in area at 28% of the study area.
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Figure 4.6. The number of genera predicted to occur across New Guinea and the surrounding islands. This map is the sum of binary 
occurrence maps using the 5th percentile sensitivity threshold for 1354 genera. Darker colors indicate areas with higher predicted 
richness (1 km spatial resolution). The projection is Albers Equal Area projection, WGS84. 
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Figure 4.7. (a) Major Geologic formations, (b) the predicted genus richness per geologic 
formation, and (c) percentage of land area each formation covers in the study area. The predicted 
richness box plot shows the mean number of genera per formation with outliers. The projection 
of the map (a) is Albers Equal Area projection, WGS84.  

 

 4.3.2. Conservation implications  

Our results show predicted genus richness without consideration to land-use and land-cover 

(LULC) changes which would influence plant distribution and community composition. The five 

major contributors to deforestation and land degradation were logging, subsistence agriculture, 

fiber, mining, and oil palm development (Shearman et al. 2009, Abood et al. 2015, Bryan and 

Shearman 2015). In PNG Special Agricultural and Business Leases (SABL) are designated for 

industrial agricultural activities, such as oil palm development (Nelson et al. 2014). We provided 

c 
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a conservation areas and resource extraction map with data from multiple sources (Figure 4.8a) 

and population density in people per km2 (Figure 4.8b). Conservation areas are loosely defined 

as land under a type of protection or conservation, and ranges from community-based Wildlife 

Management Area (PNG specific), marine reserve, hunting reserves, national parks, and 

internationally recognized conservation areas (IUCN and UNEP-WCMC 2016).   

 

Figure 4.8. New Guinea conservation areas and resource extraction (a) and population density 
(b). For PNG, oil palm area data were derived from Nelson et al. (2014) and Bryan and 
Shearman (2015) and most areas were simplified into composites; logging concessions 
(Shearman et al. 2009); conservation areas (IUCN and UNEP-WCMC 2016), and oil and natural 
gas (World Resources Institute 2016). For Indonesia spatial data were derived for oil palm, 
logging, (Ministry of Forestry 2010, ESRI ArcGIS online data 2016), and conservation areas 
(IUCN and UNEP-WCMC 2016). The projection is Albers Equal Area projection, WGS84.  
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4.4. Discussion 

Our study provides a foundation for terrestrial plant distributions at the genera taxonomic level 

across New Guinea and for the surrounding islands. These results objectively and quantitatively 

show collection density and spatial sampling biases and predict patterns of genus richness at the 

finest spatial resolution (1 km). The collection density and sampling bias maps provide guidance 

for future sampling strategies. However, there may be areas that have been sampled that are yet 

to be digitized and georeferenced, and these data may fill some gaps. Likewise, there are 

collections data that have not been released to the public and could also be informative to a wide 

audience and for other efforts such as this. Biogeography in this region of the world is complex 

and is a result of a combination of abiotic and biotic drivers that influence terrestrial plant 

distributions and richness. The predicted patterns of genus richness conform to and differ from 

previous observations and theories, and we acknowledge that there is much work to be done to 

confirm or refute our analyses and observations. 

4.4.1. Influence of sampling bias and density 

After spatial biases and filtering, around 1083 genera had to be excluded from the analyses due 

to fewer than 10 occurrences.  Approximately 23% or 252 of these are genera with only a single 

available specimen record. Specimen occurrence data eliminated from studies due the lack of 

presence points is not limited to New Guinea as similarities are observed for the African 

continent. Africa has one of the longest sampling histories, yet Stropp et al. (2010) identified that 

31% of species in their dataset contained only one specimen. The lack of numerous collections 

for single taxon greatly inhibits using the modeling framework to predict distributions and 

inhibits our understanding of the ecology and community structure of the region. 
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The number of genera found in the highest sampled areas of New Guinea (Figure 4.3) 

show that over 1000 different genera are present. Although collection biases are typically a 

negative aspect of distribution modeling, we can use the cells with the highest genera richness 

and ecological principles of the tropics to posit that the potential genera abundance across the 

study area may be similar. While we cannot assume that all regions in New Guinea have 1000 

different genera, tropical areas typically harbor high taxonomic abundance compared to other 

biomes, such as grasslands. Grasslands have hundreds of different plant species but are 

dominated by only a few, and the abundance of the non-dominant species is quite low.  

In general, tropical forests lack dominant species and instead have a larger number of 

different taxa. ENMs are unable to predict abundance, yet they can identify environments that 

are more suitable for a larger number of genera according to occurrence data. Because the 

regions that are more comprehensively sampled are not predicted to have particularly high 

generic richness, it is unknown if under sampled regions would have a similar amount of generic 

richness or even similar communities. For locations that are progressively distant from well 

sampled areas we lack the data to assess beta-diversity and question if the principle of distance-

decay is applicable (Tobler 1970, Nekola and White 1999, Condit et al. 2016). As found in the 

first law of geography and in island biogeography, the species assemblages in communities that 

are closer in proximity have more similarities than those more distant and this is influenced by 

environmental gradients and dispersal limitations (Nekola and White 1999, Stropp et al. 2016). 

This was shown by Condit et al. (2016) in Panama and Amazonia (Peru and Ecuador), where 

specie similarities declined rapidly with distance. In Panama, only 1-15% of the species were 

similar for plots separated by 50 km and in Amazonia only 30-40% of species were similar for 

plots separated by 100 km. There is a greater decline in species similarities found in New Guinea 
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by Katovai et al. (2015) who found that across a 13 km transect species composition similarities 

ranged between 4% and 18%. From these results, Katovai et al. (2015) proposed that beta 

diversity may be higher than expected in New Guinea due to the diverse terrain that exits across 

the island. Overall, diversity in the tropics changes with distance and thus community 

composition in one location may not be similar across a larger extent, even if environmental 

variables are similar. 

 Vollering et al. (2015) suggested that the higher orchid richness observed in eastern New 

Guinea is not favored by higher collection densities because environmental conditions of 

occurrences are well represented and spatial biases were accounted for when modeling. We agree 

with this on an east-west basis for New Guinea because we also found that predicted generic 

richness increased west to east along the central mountain range. However, on a north-south 

gradient we speculate that low collection counts may influence differences in communities, as 

sampling intensities are very low and the environmental characteristics and geologic histories are 

markedly different. For instance, there is a large region of lower genus richness (genus 

predictions ranging between 120 and 400) which coincides with the area with the lowest 

sampling intensities (Figures 4.2 and 4.3). Similarly, the Stable Belt has fewer pockets of high 

genus richness compared to the Fold and Mobile Belts. We posit that the Stable Belt may be in, 

and of itself, unique or taxonomically similar to northern Australia, as both are part of the 

Australian Craton. Although these landmasses are separated by higher sea levels today, they 

have been united twice in the past 120,000 years during glacial maxima when sea levels dropped 

90 m. Therefore, vicariance also may explain the lower or different genus richness in the Mobile 

Belt.  Vicariance is when a species exists in an area and then through continental drift, sea level 

changes, or mountain formations the taxa are separated into two locations and over time, and 
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speciation occurs. Biota along the mountain range of the Fold Belt may share taxonomic lineage 

with biota found in the Stable Belt, but many have adapted to higher elevation environments. 

The Fold Belt also separates the Stable Belt from the Mobile Belt, and thereby the interactions 

between communities are minimized. The Mobile Belt biota also may differ from the Stable Belt 

because it has experienced various island accretion events and with each event, different taxa are 

in tow. Overall, due to the low number of samples, different geologic histories and 

biogeographical processes, and mountain barrier splitting New Guinea, we question whether the 

model performs adequately for Stable Belt. More occurrence records are needed across the 

Stable belt to confirm this hypothesis. 

4.4.2. Geologic drivers and environmental variables 

The geologic history, topography, and the location of New Guinea are believed to be the main 

drivers of plant distribution and richness. New Guinea sits at the crossroads of Southeast Asia, 

Australia, and many Pacific Islands, it is both at the receiving end and acts as a source area for 

dispersal events. Since most of these Pacific Islands east of New Guinea (Solomon Islands, 

Bismarck Archipelago, Fiji, Vanuatu, Samoa, and Tonga) were formed from volcanic activity 

and tectonic plate shifts, colonization of taxa occurs from long and short distance dispersal 

events. New Guinea is believed to be a primary source of biota for many of the Pacific islands 

and the farther an island is from New Guinea, the fewer genera are present (Keppel et al. 2009). 

Dispersal events are continuous, yet much is left to chance and the resilience of the traveling 

disperser. The populations that make it to these islands are genetic subset of the larger population 

and are isolated for long periods of time so speciation often results. As in the past, these isolated 

islands shift towards and will eventually accrete to the northern coast of New Guinea. As these 

islands move closer to one another dispersal is facilitated by proximity, in a stepping stone 
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fashion or transported by carriers such as birds, bats, or humans (Keppel et al. 2009, Boivin et al. 

2016). 

Areas of higher predicted richness are not consistent across all areas outlined as accreted 

islands. We observed that it is not the accreted land that harbors the highest richness but the 

margins or collision zones between these accreted terrains and the Mobile Belt. As an island 

moves toward the north coast of New Guinea and begins the accretion process a collision zone 

forms. Collision zones or successor basins overlap terrain boundaries and help to constrain the 

time of accretion. Successor basins can begin as submerged alluvial sediments that either dry out 

as ocean inlets close or are pushed above sea level from continued plate movements. Our results 

suggest that the interiors of nearly all basins are associated with lower richness, except the 

Bintuni Basin (130-135°E and 1-4°S) and have higher predicted richness. However, for the 

remaining basins higher predicted richness occurs outside the borders of the basins. For example, 

there are two large successor basins with locations centered at 137°E and 3°S (Meervlakte Basin) 

and 142°E and 4°S (Sepik Basin), that show genus richness to be low within the basin and higher 

outside the basin. We posit that this is what causes higher genus richness across the Mobile Belt 

(Figure 4.7). In theory, collision zones are areas where the rates of species interactions and 

dispersal is the greatest, yet many of these regions have yet to be identified or investigated as 

regions with potentially high richness. 

Successor basins and the surrounding areas with high genus richness are topographically 

homogenous areas (see Appendix 3A) for topographic heterogeneity map). Topographic 

heterogeneity and unique abiotic environments are often used as proxy data to identify regions of 

higher diversity rates because there are more opportunities for niche partitioning. We found the 

opposite to be true in some regions of New Guinea, where topographic homogeneity was 
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associated with higher genus richness. This is supported by Allouche et al. (2012) who showed 

that environmental heterogeneity has a unimodal response rather than a positive effect on species 

richness. They suggest that richness is more dependent on available area than a diverse 

environment. This seems to be the case in our study area, as the larger, more homogenous areas 

(e.g. Figure 4.6 at approximately 137°E and 2.5°S) are associated with higher richness. 

Comparatively, we find that areas with higher environmental heterogeneity are smaller in area 

and tend to occur at higher elevations and where elevation gradients rapidly change. It is this 

response that causes slope to be one of the second most influential environmental variables. 

The other type of basin is a foreland basin, and these occur adjacent and parallel to 

mountain belts and are formed through mountain belt growth and lithosphere flexion and 

stretching. The foreland basin (Mapenduma) is located between 135°E-140°E and 5°S-5.5°S and 

in this case higher predicted richness occurs along the northern edge of the basin where the 

mountain range begins (Mapenduma anticline). This conforms to the relationship between 

heterogeneous environment and higher richness. 

4.4.3. Land-cover changes 

New Guinea remains one of the last high-biodiversity wilderness areas, meaning on average 

there are fewer than 5 people per km2 (Mittermeier et al. 2003) and the loss of wilderness and 

forest cover is occurring at a more rapid rate than the Amazonia (Hansen et al. 2013). In PNG 

rates of forest loss between 2002 and 2014 to 0.49% per year and again accessible forests show 

higher rates of loss at 0.61% per year. While the lack of successful conservation areas is an issue 

(Shearman and Bryan 2011), more attention should be drawn to illegal resource extraction, the 

disregard for regulations and laws, and the transparency of land leases and concessions for 

customary land managers (Nelson et al. 2014). The rates of forest loss in Indonesia are similar to 
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those in PNG but have increased since 2000. It is estimated that Indonesia is losing 1% of 

primary forests per year (Miettinen et al. 2011). Approximately 30% of Indonesian forests in 

New Guinea forests have been degraded or deforested via industrial concessions (oil palm, 

logging, fiber, mixed concessions) (Potapov et al. 2008, Abood et al. 2015). Across the whole of 

Indonesia, 41% of forests are under some type of preservation, however, Abood et al. (2015) 

identified that over 55% if Indonesian deforestation has occurred outside industrial concessions 

and regulations are weakly enforced. It is unknown how much of the boundary violations occur 

next to preserved land in the Indonesian territory in New Guinea.  

Many of the logging concession data sources are outdated for both Indonesia and PNG. 

Although logging has been and will continue to be a major threat to forests in New Guinea, oil 

palm is resulting in forest changes quite rapidly and this is especially so in Southeast Asia 

(Dislich et al. 2016). It is estimated that oil palm accounts for 3.4% of deforestation in Indonesia 

and 3.0% of deforestation in PNG (Abood et al. 2015, Bryan and Shearman 2015). However, for 

many areas oil palm spatial data were not available and this is shown in PNG where dots and 

triangles in Figure 4.8a represent oil palm concessions and mills locations instead of geographic 

extents (Nelson et al. 2014). Likewise, Indonesian lacks adequate spatial oil palm data, as the 

areas devoted to it are much fewer in number and smaller in area compared to PNG.  

The ecological and social impacts of oil palm were recently comprehensively addressed 

in a review by Dislich et al. (2016). Oil palm development in peat swamp forests, which 

constitutes 21% of concessions across the nation of Indonesia, result in long-term greenhouse gas 

emissions, flooding, salinization of freshwater, and high fire risk (Abood et al. 2015, Dislich et 

al. 2016). Slightly different ecological impacts influence the SABL land that is designated for oil 

palm in PNG because these areas are often used for unsustainable logging even though contracts 
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are explicitly for industrial agricultural development. Twelve percent of PNG land area is 

designated as SABLs and concession boundaries are often disputed, overlap with customary 

tenured territories or other concessions, and do not inform or seek consent from landowners 

(Nelson et al. 2014).  

The comparison of Figures 4.8a and 4.8b shows that population densities are slightly 

higher (11-50 people per km2) in the mountains of PNG, but remain relatively low (0-10 people 

per km2) for much of the study extent. Subsistence agriculture is the dominant land-use for the 

majority of the people in New Guinea, yet there are few studies to assess the land-cover changes 

associated with subsistence agriculture. In PNG between 1972 and 2002 Shearman et al. (2009) 

found that subsistence agriculture was responsible for 43% of the 36% of forests degraded or 

cleared. However, in a follow up study between 2002 and 2014 by Bryan and Shearman (2015) 

that subsistence agriculture did not claim any additional land. These slightly confounding results, 

suggest an opportunity to study how much population density may influence plant biodiversity 

and conservation measures. 

4.4.4. Methodological limitations and considerations 

Selecting the genus taxonomic level for occurrence data improved data quality for this study. 

Species level data were littered with issues that included a large number species with fewer than 

10 occurrences, numerous data entry errors (e.g. misspelling, incorrect species identifications 

according to genus listed) and missing information (e.g. coordinates). The genus level data may 

not fully capture the richness or endemism because some genera are more speciose than others. It 

is also likely that many of the rarer genera were excluded from the model because there were 

either too few collection points initially or after biases were accounted for the occurrence 

dropped below 10.  
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ENMs are based on the assumption that taxa are in equilibrium with the climatic 

envelope in which they are present, and absent in unsuitable climates. This translates to ENMs 

assuming the fundamental niche, or all of the locations where the species could exist. The 

realized niche is where the taxa actually occur.  However taxa found in the realized niche could 

be source or sink populations and not represent the true niche of the taxa. Due to the history of 

island accretion and mountain orogeny there have been relatively rapid changes in environmental 

gradients, which has assisted dispersal and created unique community assemblages. This violates 

dispersal limitations and shifts plant communities to exist in unsuitable climates for a short time 

periods. For example, a portion of a coastal community could be uplifted to an alpine 

environment over a short period of time(e.g., one million years), and while some taxa in the 

alpine environment will go extinct and others will persist (Heads 2006, Trigas et al. 2013).  

ENMs also do not integrate taxa range limitations (biotic and environmental), traits 

(biotic interactions, dispersal type, pollination type, lifespan (short or long lived)), or intra-

species competition and this influences the predictive performance (Hanspach et al. 2010). In 

part, this is an issue of scale as the predicted distributions use climatic and environmental 

variables that are at regional and continental scales and biotic interactions and competition are at 

a local scale (Austin 2002, Kumar et al. 2015).  

The predictive performance (AUC scores) ranged among genera. Low predictive 

performance was observed for taxa that have a large range (low specialization) because there are 

fewer contrasts among the occurrence locations (Evangelista et al. 2008). We found this to be the 

case for Ficus and Syzygium, which have more than 700 occurrence points and achieved AUC 

scores of approximately 0.5. Similarly, highly specialized taxa do not perform well in ENM 

models, as the environmental conditions in which they exist are localized. A low AUC score 
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could be caused by a narrow or wide ranging genus but due to sampling bias and the limited 

spatial distribution of collections, it is unknown which is the case.  

Land-use and land-cover (LULC) changes are also important to understanding terrestrial 

plant distributions and potential changes. Much of the biased sampling across the New Guinea 

occurs near airports, the coast, and populated areas. The taxa in these regions have likely been 

influenced by human induced LULC changes where viable habitats have been limited or seed 

sources reduced and ultimately influence the long-term survival of certain taxa. Yet, there are 

large tracts of forest that rarely experience human alterations because of the relatively low 

population densities across the island, the lack of a water source, and the remote nature of some 

locales.   

 

4.5. Conclusion 

It is extraordinarily difficult to tease apart the nuances and drivers of diversity in New Guinea 

because it is necessary to examine the ecology and evolutionary biology throughout geographic 

space and geologic time. While relationships can be drawn to support or refute nearly every 

theory concerning the biodiversity in New Guinea, such conclusions will not be adequate until 

there are ample collection data in which to do so and a greater understanding of biological and 

environmental interactions.  

As suspected, we identified many areas with high genus richness in regions of high 

elevation and topographically heterogeneous locations. What differs from previous expectations 

is that we also found areas of high genus richness at low elevations, in regions that are 

topographically homogeneous. The difference between these two results is the area that each 

covers. At higher elevations and in transition zones, where topography is more complex, there 
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are numerous smaller areas with higher richness. Comparatively, lower elevations are associated 

with more homogenous topography and have larger tracts of predicted genus richness. The 

environmental variables that most influenced these results are elevation, slope, and temperature 

annual range. 

The geologic history is an important driver of genus richness and accreted islands often 

are the focus of diversity. Our results suggest that more focus should be drawn to the regions 

between these accretions (successor basins) as they offer ample space for niche partitioning and 

show many areas of predicted high genus richness.  Sampling strategies can be approached in a 

few ways, but any additions to the occurrence database are welcomed. Sampling efforts could 

focus on specific genera that have low overall occurrences or on regions that are poorly sampled. 

Sampling could also be focused in regions with high or low predicted richness to assess our 

results. Review maps and Supplemental Materials for regions and genera to focus on, as there are 

ample opportunities whatever avenue chosen. 

The results can be used to prioritize sampling needs, support conservation strategies, 

compare genus diversity to other regions of the world, and discuss principles and drivers of 

biogeography. There are ample avenues identified for future work throughout this text, most of 

which cite the need for increased sampling efforts and data quality improvements. Identifying the 

most current LULC trends will assist in improving the success of current conservation areas and 

prioritizing new conservation strategies. To do this, finer resolution remote sensing data (≤30 m) 

should be paired with data from various sources, such as, government sanctioned concessions, 

small-scale resource extractions, illegal concessions and operations, Food and Agricultural 

Organization (FAO) data, and land-manager land-use. Collaborating with land-managers and 

communities to thwart resource development and incentivize preservation is also vital. 
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CHAPTER 5 
 
 
 

CONCLUSION 
 
 

 
This dissertation contributes to the body of knowledge at a regional level for New Guinea 

and at the village level in Papua New Guinea. The three primary research objectives I focus on 

are 1) comparing PRS methods to remote sensing classifications and identifying how 

participatory contributions influence swidden area classifications; 2) identifying long-term 

swidden LULC tends using 40 Landsat scenes between 1972 and 2015; and 3) assessing 

sampling biases and predict genus richness for the island of New Guinea and surrounding 

archipelagos.  

In regions where swidden is the mainstay of subsistence livelihoods, participatory data 

are essential so that LULC assessments do not misestimate land actually in use. PRS methods 

complement satellite image analyses in swidden landscapes because swidden is difficult to 

classify, changes frequently, is a mosaicked LULC, and is prone to mixed pixels compared to 

other agricultural types. PRS methods reveal that Landsat data smooth the fragmented swidden 

landscape into homogenous land-cover categories and over estimates the swidden area by two 

and a half times. Land managers indicated that there were large, naturally vegetated areas that 

should not be counted as swidden and it is this that causes the overestimation of swidden when 

remote sensing analyses are used alone.  

The results from the PRS methods guided land-cover classifications so that I could 

conduct a long-term assessment of swidden trends for the study village. Participatory research 

improved the level of detail for swidden strategy, land-use, and land allocation to better link 
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land-use to land-cover for a clearer understanding of trends. I was able to identify that the 1972 

and one of the 1988 image results are outliers for two reasons. First, the 1972 data are likely 

subject to methodological and data differences because it was captured with a different type of 

satellite sensor. Second, both swidden areas could be smaller due to the reflectance and 

classification challenges in swidden landscapes, where the similarities between swidden and 

natural vegetation cover are minimal. Last, during the 1970’s there was equal dependence on 

swidden and fishing resources and this may contribute to why the swidden area is so much 

smaller. Since there were two scenes available in 1988 and I could verify swidden areas 

differences are likely due to reflectance similarities because the two images were a month apart. 

When the 1972 and 1988 data are included in the linear model, swidden area significantly 

increases over time. When these two outliers are removed from the analysis, the swidden 

changes over time are not significant. I have more confidence in the trends when the outlier data 

are excluded for two reasons. First, the large number of scenes supports that the smaller areas are 

outside of the norm, and second, these two dates are in the beginning of the dataset and have 

more of an effect on the slope of the trend. Because there is not a significant trend for swidden 

expansion over time, I could not link population growth as the driving cause of change. Instead, I 

identified that swidden changes are based on local social, climatic, and environmental conditions 

and food production is increased by implementing a variety of strategies (e.g. cultivar selection, 

subdividing large plots). These results at the village scale are important because they differ from 

studies in PNG at wider extents that strongly correlate population and swidden to forest cover 

losses.  

Across New Guinea patterns of biodiversity hotspots align with and differ from theories 

of island biogeography theory. The areas of predicted genus richness (biodiversity hotspots) are 
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available at a resolution of 1 km, which are the finest resolution to date and provide baseline 

information to inform sampling strategies, management plans, and prioritize conservation areas. 

Identifying the drivers of diversity for New Guinea and surrounding archipelagos requires a 

detailed knowledge of ecology and evolutionary biology through geographic space and geologic 

time. Different hypotheses suggest that accreted terrains and topographically complex areas are 

the most likely drivers of richness. While this may be true in theory, my results show that 

accreted terrains are often associated with lower richness. Instead I suggest that successor basins, 

the areas filling the space between accretions, have higher richness, as there is more space is 

available for niche partitioning and interactions. Another hypothesis within the literature is that 

high elevation and topographically complex areas result in greater biotic richness. While I found 

this to be true in the eastern half of New Guinea, I also identified that there were large regions at 

low elevations with homogenous topography that also have high richness in the western half of 

New Guinea. The difference between these two topographies is that the complex terrains had 

numerous smaller areas of higher richness compared to the fewer, yet larger richness areas in 

homogenous terrains. A caveat of the predicted richness maps is that the genus level data will not 

fully capture the richness or endemism that exists across New Guinea because some genera are 

significantly more speciose than others. In addition, niche modeling makes estimates of 

distributions based on environmental factors and does not include biotic interactions, 

competition, dispersal capabilities, or human influenced LULC changes, which may also 

influence taxon distributions. All areas across New Guinea should be subjected to additional 

sampling, or groundtruthing, to verify if the predicted genus distributions are valid. 

Overall, more research in New Guinea is needed to understand basic biology and the 

socio-ecological dynamics of one of the world’s most culturally rich and biologically diverse 
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tropical areas. There are many avenues of research that need attention, from my research I 

believe that comprehensively assessing the drivers of LULC change at multiple scales and with 

the assistance of local land managers is most important so that management policies are better 

informed. Likewise, the inclusion of land-manager information and participation can insure that 

conservation or land management policies are established in a way that promotes long-term 

success and the preservation of this unique region of the world.  
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CHAPTER 6 
 
 
 

REFLECTIONS ON THE PHD EXPERIENCE  
 
 
 

Human judgment and perspective inevitably influence the scientific process, yet science strives 
for objectivity and is continually subjected to critical examination and reevaluation in the light 

of new or different evidence. 
 
 
 
I feel honored to receive a PhD in Ecology and contribute to the cumulative body of knowledge 

organized as science. Throughout graduate school, you are reminded of this quote by Isaac 

Newton, “if I have seen further than others, it is by standing on the shoulders of giants”. Because 

Newton is celebrated as making great scientific discoveries, this quote has been used to time and 

again to show gratitude to predecessors and justify new discoveries and ideas. I never really put 

much thought into this quote until I began write this reflection piece and thought about to whom 

I am grateful for this accomplishment. I thought about the ‘giants’ who paved the way, but the 

people that are typically listed as the totem giants (Copernicus, Kepler, Einstein, Galileo, etc) of 

scientific discovery and advances don’t really do it for me. Before anyone screams obscenities or 

throws down this dissertation with disgust, I will explain my point. During my comprehensive 

exams I was asked to define and discuss science in a historical context and identify how my 

research fits into this paradigm. I began to question how science could be objective if human 

perspectives and judgment are so influential in the processes. My opposition to the ‘shoulders of 

giants’ quote stems from an understanding of the history of science and how the selection of the 

noteworthy figures is highly flawed. For instance, there is a distinction between the written 

history of science and science as the pursuit of knowledge but both are strongly intertwined in 
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their powers to define phenomena. The history of science is about the power to define and tell 

the story of science’s progress (Tuhiwai Smith 2012) and it is wrought with biases, arrogance, 

prejudices, and the theft of ideas and recognitions. If one was to acquire a list of the people who 

were most influential in science, the “giants” and what their discoveries entailed, the individuals 

are all white European men and not all of the discoveries were original thought.  

There are examples littered throughout history that Western science has been the driver 

of advancing science and society for millennia. However, this skewed perspective, hunt for 

power, and convenient history has ultimately resulted in the oppression and lack of recognition 

of science as a global, human phenomenon. It is this struggle for power that has caused many 

women to be neglected from ranking as notable scientific contributors, a.k.a. not ‘Giants’. The 

women that have been recognized as important contributors were done so retroactively (e.g. 

Caroline Herschel, Marie Curie, Barbara McClintock, and Rosalind Franklin) and often their 

bios that are littered with love stories, child bearing, and how a significant male figure in their 

life facilitated their scientific curiosity. There is very little information about their scientific 

achievements and contributions to science. Also, common in Western sciences’ history is the 

disregard of other cultures’ contributions, traditional or otherwise. For example, the Chinese 

were particularly innovative, but Europeans (Westerners) easily and quickly adopted Chinese 

advancements as their own (e.g. paper, moveable print-type, irrigation, gunpowder, and the 

compass). Such advances and exchanges were largely neglected by Western historical records or 

are given less attention. This occurs to such an extent that Albert Einstein, who is arguably 

highly educated, didn’t believe that India or China had ever sought to understand the natural 

world by means of scientific inquiry, even though his algebraic equation E=mc2 is entirely 
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derived from the early mathematical contributions from Islamic scholars and Indian numerical 

concepts.  

The scientific process or way to organize and understand the world is evident in all 

cultures in the world. There is an innate ability in humans to recognize patterns in nature and 

allowed humans to decipher poisonous plants from nutritious ones, track constellations, navigate 

the globe, and develop agriculture, among other things. However, what has shaped me as a 

researcher is recognizing that the face and formalization of observation, experimentation, and 

knowledge exchange are different among cultures and this awareness is fundamental to working 

with the indigenous communities in Papua New Guinea. While my experiences traveling abroad 

and working with diverse populations greatly influenced how I regard people different than me 

with dignity and respect, adapting these skills into my scientific pursuits was vital. The book 

Decolonizing Methodologies by Tuhiwai Smith was perhaps one of the most influential things I 

read in grad school. I think it should be mandatory reading for all students at the university level, 

regardless of their field of study. 

I recognize that my research falls into the scientific paradigm that scientific methods and 

theories are the best ways to produce information and improve knowledge (Schick and Vaughn 

2011). This cultural lens also determines whether my research questions are worth asking and 

what methods should be used to answer them. For example, Westerners’ view biodiversity as 

ecologically valuable and the need to map it a valid research endeavor. However, if we were to 

ask someone from New Guinea what type of research would be most beneficial to their village or 

country, I doubt that they would say ‘map the biodiversity of plants, we need to know!’. In all 

likelihood, they indigenous people probably have a really good idea of the diversity and 

distribution of plants proximal to their villages. But such information has yet to be adequately 
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catalogued by Western science. Therefore, here I am to do so and fulfill the other component to 

my research, which aimed to quantify, collect, and organize information from an indigenous 

community. Then I will publish this information and claim this information as newly 

‘discovered’. This is not really so different than the early days of imperialistic ventures and 

personal gains, but my gains will be through publications and not land grabbing or mineral 

riches. Because I am not native to PNG and my way of thinking and defining livelihoods and 

land changes will be skewed to my Western perspective. Recognizing this, I have made an effort 

to minimize biases and the imperialist nature of my research and have used various measures to 

improve research objectives and results. For example, I integrated community members into the 

research process at various stages, data collection and analysis. I also sought feedback on 

preliminary land-cover change results. Getting the community members to correct and change 

the land-cover maps was challenging because many have been led to believe that their 

knowledge is inferior to scientific methods. To overcome this I had to really work hard to extract 

information and opinions from the community members that differed from the results I 

presented. 

Overall, there are many aspects that are challenging during a PhD and finding the 

tenacity to complete it is a major part. After spending years reading, writing, re-doing analyses, 

and questioning your sanity, it is important to sit back and think about what it all means in two 

ways. First, what does it mean to you personally, and second, how does it contribute to science 

as a whole. It is one thing to charge ahead and just finish it, and another to really focus on the 

philosophy aspect of the doctoral degree and your impact on the world and scientific community.  

I think this latter part lacks in the university setting, because everyone is more focused on results 

and degrees and less focused on critical thinking. For me, the classes and aspects of my research 
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that facilitated critical thinking and applying knowledge to solve ‘problems’ were much more 

rewarding and helped me advance as a student to a greater extent. It is important to apply this 

same line of thought to my next stage in life, the job search. I am just ready for a job, to do 

something different, and I feel desperate. However, when I take a moment to question if what 

kind of impact to I want to make, I hesitate to take the job for the sake of a job. This is because I 

never sought my PhD for the degree, and instead as a means to try to gain skills to positively 

impact the world and do some good. If I ever feel ‘stuck’ or fear changing my job or career path 

for financial or other reasons, I must remind myself of these things: 1) just cut the cord, 2) don’t 

misuse your energy, and 3) don’t fear the unknown. Aside from this self-reminder, I have also 

included a list of lessons learned and suggestions for future graduate students.  

 
 
6.1 Recommendations to future students 
I decided to write this list of suggestions for future or current graduate students in bullet fashion, 
to make it easy and quick to read. I hope it helps.  

 Find support in your cohort and lab, share ideas, and ask questions. 
 Talk about your research with people outside of grad school. Sometimes the obvious 

questions are not obvious when you are entrenched in your field and around people doing 
the same thing. 

 Create the elevator speech that leads people to ask questions.  

 Go to talks on a variety of subjects. 
 Completely finish one degree before starting the next. 

 Practice writing a lot. 
 Tailor your publications and research towards the career you want  

o Try not to pigeon-hole yourself with an overly specific skill set/field of study, 
research and trends can change. 

 Have good outlets. No one can be science-y all the time. Go for a run, drink some beers, 
whatever.  

 Think other places: Back of the napkin ideas are not drafted in a lab or behind a 
computer… change the scene some times. 

 Schedule time off and don’t work, every week!  

 Be open and honest with a trusted committee member or advisor. 
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 Find a good committee, how? Ask yourself these questions: 
o How quickly do they respond to emails? Timely? 
o Do you like them and get along with them as a person? 

 While this isn’t a necessity, it helps. 
o Talk to other students about their advisor – find commonalities/differences and 

assess if this is OK with you and what you want as a student. 
o What is their track record with other students? How many graduate students have 

finished, quit, or changed advisors? 
o Does your advisor have a specific interest in your topic; this will fuel their interest 

to be more involved and more eager to talk with you. 

 Create a timeline, and then rewrite it often. 
 Push yourself, but don’t beat yourself up too much. 
 Realize that academia is a fickle dick and sometimes it is lame. 

 Treat yourself.  
 Shoot me an email, ask anything (never be afraid to ask questions…) 
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APPENDIX 1 
 
 
 

SUPPLEMENTARY INFORMATION FOR CHAPTER 2 AND 3: 
 
 
 
8.1.  Structured Survey questions 
8.1.1. Coastal and Reef resources 

1. Do you collect coastal or reef resources?   
2. If yes, what coastal resources do you collect? 
3. Resource name: 
4. Method used to collect: 
5. How often do you collect (resource) per week? 
6. Number amount collected per week: 
7. For consumption [C] or sale [S]?  How much do you consume (%)? How much do you 

sell (%)? 
8. If for sale, how many (kilograms) of (resource) do you sell each year? 
9. Has the amount you sell changed since 10 years ago? Why? 
10. Where do you go to collect it (local name of location; direction from village)? 
11. Is this the same place you went to collect it 10 years ago? 
12. Do you collect it year round?  If not, what seasons can you collect it in? Why? 
13. Do you collect the same amount of (resource) as you did 10 yrs ago? 
14. Why has the amount you collect changed? 

8.1.2. Land resources 
15. Do you cultivate land for crops? If yes, what kind of crops do you cultivate: 
16. Crop name: 
17. How much area is it grown on? 
18. Is it mono-cropped or planted with other crops? 
19. How much did you harvest last year? 
20. How do you plant your crops? (By hand or with a machine?) 
21. How do you cultivate your crops (e.g. how do you weed your crops)? (By hand or with a 

machine?) 
22. How do you harvest your crops? (By hand or with a machine?) 
23. Is this crop used for home consumption [C] or for sale [S]? How much do you consume 

(%)? How much do you sell (%)? 
24. If for sale, how many (kilograms) of (crop) do you sell each year? 
25. Has the amount you sell changed since 10 years ago? Why? 
26. Where is the field you grow this crop (local name of area / direction and distance from 

home)? 
27. Do you plant this crop every year? 
28. If not, why do you decide to grow this crop? 
29. Did you grow it regularly 10 years ago? 
30. If not, why did you start to include it in the crops you grow? 
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8.1.3. Animal husbandry 
31. Do you raise animals (animal husbandry)?  Yes  No  If yes, what animals do you 

raise: 
32. Animal name: 
33. How many do you raise? 
34. Are your animals penned? Or do they range freely through the community? 
35. Where do they forage or where do you get forage for them? 
36. Is this animal raised for home consumption [C] or for sale [S]?  
37. If for consumption, how many do you consume per year? 
38. Do you consume more today than you did 10 years ago? 
39. If for sale, how many do you sell each year? Why? 
40. Do you sell more today than you did 10 years ago? Why? 
41. Did you raise this animal 10 years ago? If not, why did you start to raise it? 

8.1.4. Forest Resources 
42. Do you collect forest resources (including hunting)? Yes No  If yes, what kind of 

resources do you collect: 
43. Name of resource: 
44. Method used to collect it: 
45. Do you collect this resource year round or seasonally? 
46. How much do you collect in a week (when you are able to collect it)? 
47. Is this resource for home consumption [C] or for sale [S]? 
48. Where do you go to collect it (local name of location; direction from village)? 
49. Is this the same place you went to collect it 10 years ago? 
50. Do you collect it year round?  If not, what seasons can you collect it in? Why? 
51. Do you collect the same amount of (resource) as you did 10 yrs ago? 
52. Why has this changed? 

8.1.5. Comparison of resources used 
53. Which location is most important for your livelihood: 
54. Coastal areas 
55. Reef areas 
56. Agricultural land areas 
57. Forest areas 
58. Why? _____________________________________________________ 

8.1.6. Other 
59. Do you purchase other resources?  Yes No  If yes, what kind of resources do buy: 
60. Name of resource: 
61. What time of the year/season do you buy this resource?  
62. How much do you buy? 
63. Has the amount you buy increased or decreased since 10 years ago? 
64. Why has the amount you buy changed since 10 years ago? 
65. Does the price change seasonally? 
66. Has this changed since10 years? 
67. Why has this changed? 
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8.2. Annual calendar of activities 
 
Table 8.1. Observations of resource quality and importance, household organization and population growth over time as recalled 
during the oral history interview. Household is referred to as HH. 

Approximate 
time or year 

 
Households divisions 
Estimated Population 

Garden  Reef   Ocean 
Resource 
importance 
(among garden, 
reef and ocean) 

Other observations and notes: 

Rank 0-5 (worst to best) 
Before WWII 
(early 1940’s) 

10 male households – 
usually 1-2 men 
(brothers) per HH / 3-4 
women in HH/per 1 man 
 
Estimated 100 people 

5 5 5 Equal 
importance 

-could get reef/ocean fish along the 
coast easily 
-so many fish you could fill up a 
canoe 
-taro in gardens was very productive 

Rubin marries 
(early 1960’s) 

Same as above 
Estimated 150 people 

5 5 5 Equal 
importance 

same as above 

Gabo was born 
(1969) 

Same as above 
Estimated 200 people 

5 5 5 Equal 
importance 

-still abundant resources 
-same as above 

School was built 
(1976) 

3 bigger men HH – clans 
combined to reduce 
fighting caused by more 
people 
Estimated 300 people 

5 3 3 Garden is more 
important  

-population grows and more fish are 
fished so garden becomes more 
dependable 

Flood 1983 

Same as 1976 
Estimated 400 people 

3 3 3 Garden is more 
important 

-taro is taken out by an insect 
problem 
-food is disturbed because the soil is 
inundated with salt from ocean 
flooding 
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Fight with 
neighboring 
village (1985) 

Clans become one group 
Estimated 450 people 

3 3 3 Garden is more 
important 

 

Guesthouse built 
(1996) 

Same as 1985 
Estimated 600 people 

2 2 2 Garden is more 
important 

-population increases even more – 
many kids 
-kids fish more by diving, pole and 
spear so fish population begins to go 
down 
-taro is totally gone and replaced by 
cassava, banana and sweet potato – 
these new crops also have bug 
problems 
-taro is traditionally the best because 
ancestors used it – the ancestors only 
knew how to plant taro 
-many fishing techniques have 
changed: nets, hooks, poles are used 
more and boats are used more so 
access to on the reef and ocean is 
increased. 
-fish are frightened by boat motors 
and the petrol pollutes the water 
-nets bother the fish and catch turtles 
which is bad so many fish are scared 
of nets and goes to the ‘deep’ ocean 
-white man fishes too much – not 
enough for the locals 

Today (2011) 

Family houses are built 
Gara and Tabari are 
recognized but 
considered one group 
Estimated 1000 people 
(census year- 2011) 

2 2 1 Garden is more 
important 
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APPENDIX 2 
 
 
 

SUPPLEMENTARY INFORMATION FOR CHAPTER 2 AND 3:  
 
 
 

9.1. Methods 

9.1.1. Satellite image analysis 

Figure 8.1 shows the satellite image processing and land-cover classification methods. The first 

step was to preprocess the scenes with the NASA Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS) tool. The LEDAPS tool transforms Landsat data into surface 

reflectance data through an atmospheric correction process (Vermote and Saleous 2007) and 

provides top of atmosphere reflectance, cloud masking, and atmospheric corrections. Cloud 

masks were created for each scene and compiled to create a single cloud mask. A two-pixel 

buffer expanded the cloud mask area to account for thin clouds not detected by LEDAPS, small 

gaps between clouds, and cloud shadows. The cloud mask was applied to each scene so that all 

scenes had the same processing extent. Next, the tasseled cap transformation (Kauth and Thomas 

1976) was performed on each scene to create brightness, wetness, and greenness components or 

bands. The brightness band was subtracted from the wetness band for a wetness-brightness 

difference index (WBDI). The WBDI was used by Helmer et al. (2009) to classify forest 

succession in Brazil and proved useful for differentiating forest and agricultural land-cover. Due 

to the spectral range of the 1972-282 scene, the tasseled cap transformation for MSS data results 

in a yellowness band instead of a wetness band so the WBDI could not be calculated and was 

omitted for the 1972-282 scene. The results from the WBDI were classified using the K-means 

unsupervised classifier into 12 spectrally distinct land-cover classes for each scene. The 12 land-
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cover classes were reviewed and combined to create a binary map of swidden and non-swidden 

land-cover. For the 1972-282 scene the k-means classification was performed on the Tasseled 

Cap bands and land-cover classes were designated appropriately.  

 

Figure 9.1. Image processing methods used to create and verify the land-cover maps. 

 

9.1.2. Forest cover change analyses 

Since only the swidden and village areas are included in the swidden change analyses, we 

wanted to also assure that larger tracts of forest did not change across the study extent. Thus, 

change detection was conducted for the available cloud-free images (1987-287, 1992-285, 2003-

276, and 2015-301). The 1987 and 1992 scenes were used in the swidden-change time series 

because they were captured during the dry season, whereas the 2003 and 2015 scenes were 

captured during other times of the year and not used in the swidden change analyses. In this 

instance selecting scenes from different seasons was acceptable because we wanted to identify 

major, anthropogenic changes in forest cover over time (i.e. logged forests). To identify forest 

cover changes a Normalized Difference Vegetation Index (NDVI) was conducted for each scene. 

Then the percent of change between time steps was calculated for 1987-1992, 1992-2003, and 

2003-2015, and for the whole temporal extent (1987-2015). Any major disturbance in forest 

cover would result in a high percentage of change between scenes and would form a distinct 

pattern. To assess any changes in forest cover, we manually reviewed each map for any tracts of 
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forest change that would be akin to resource extraction, such as large swaths of timber 

extraction, road development, mining, or any other major change in forest cover. Because 

tropical forests can regenerate quickly, four scenes that are more widely spaced in time may not 

account for changes between dates. To confirm our results, which show a lack of forest cover 

changes, we sought ancillary land-cover change information via participatory research (Reed 

2008; Raymond et al. 2010).  

9.2. Results 

9.2.1. Accuracy assessments 

For the independent GE images the overall accuracy and Kappa statistic for the GE 2010 image 

is 92% and 84%, respectively (Table 8.2). The GE 2013 image achieved 95% for overall 

accuracy and 90% for the Kappa statistic. For the 40-scene dataset, the mean overall accuracy is 

93% and Kappa statistic is 83% in Table 8.3. 

  



116 

 

Table 9.2. Classification accuracy results of the Landsat land-cover maps when referenced 
against the Google Earth images for 2010 and 2013. 

2010 Google Earth Image 

2010 
Landsat 
Land-
Cover 
Map 

Class Non-
swidden 

Swidden Row 
Total 

Users 
accuracy  

Commission 
error 

Non-swidden 40 5 45 95% 5% 

Swidden 3 52 55 89% 11% 

Column Total 43 57 92  

Producers accuracy  93% 91%  

Omission error 7% 9% 

Overall Accuracy 92% 

Kappa Statistic 84% 

2013 Google Earth Image 

2013 
Landsat 
Land-
Cover 
Map 

Class Non-
swidden 

Swidden Row 
Total 

Users 
accuracy  

Commission 
error 

Non-swidden 40 3 43 96% 4% 

Swidden 2 55 43 93% 7% 

Column Total 42 58 85   

Producers accuracy  94% 95%  

Omission error 6% 5% 

Overall Accuracy 95% 

Kappa Statistic 90% 

 

Table 9.3. Classification accuracy results of the Landsat land-cover maps using visual 
interpretation of the raw images, averaged across all 40 images. 

Visual interpretation of 40 scenes 
 

Landsat 
Land-
Cover 
Map 

Class Swidden Non-
swidden 

Row Total Users 
accuracy  

Commission 
error 

Swidden  948 104 1052 90% 10% 

Non-swidden 142 2210 2352 94% 6% 

Column Total 1090 2314 3158   

Producers accuracy  87% 96%  

Omission error 13% 4% 

Overall Accuracy 93% 

 Kappa Statistic    83% 
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APPENDIX 3 
 
 
 

SUPPLEMENTARY INFORMATION FOR CHAPTER 4 
 
 
 
10.1. Appendix 3A: Additional Figures and List of Genera Used in Analysis with AUC 
Scores 

 
Figure 10.1. Topographic heterogeneity was derived using altitude layer at 1km spatial resolution 
and the SDMTools in ArcGIS. Green colors represent lower topographic heterogeneity and 
warm colors represent more topographic heterogeneity. The projection is in Albers Equal-area, 
WGS84. 
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Figure 10.2. The relationship between occurrences per genus and AUC scores, where hollow 
dots are genera with AUC scores less than 0.5 and black dots are genera with an AUC greater 
than 0.5. 
 
Table 10.3. The average percentage of contribution for environmental variables used in the 
model. 

Environmental Variable  Average % contribution 

Altitude  28.1 

Temperature annual range  6.2 

Slope (degrees)  6.1 

Precipitation seasonality  5.6 

Temperature seasonality  5.4 

Sine of aspect  4.9 

Cosine of aspect  4.7 

Variance  4.1 

Bulk density  4.0 

Annual precipitation  3.8 

Coarse fragmentation  3.5 

Exposure  3.0 

Uniformity  2.8 

Precipitation of warmest quarter  2.6 

Correlation  2.5 

Cation exchange  2.5 

Silt  2.3 

Organic Carbon  2.2 
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Evenness  2.1 

Soil pH  2.0 

Clay  1.7 

 
 

Table 10.4. Summary and mean results for the genera used in the analyses 

 Occurrences Test AUC 
Mean 63 0.6944 

Standard deviation 73 0.1285 
Most # of occurrences 766 0.9904 
Least # of occurrences 10 0.4240 

Total genera 1354 
Total occurrences 85481 

 
 
Table 10.5. Results for genera with test AUC scores greater than 0.5 and genera with test AUC 
scores less than 0.5 if occurrences were greater than 50. 

Family Genus 
Occurrences 
after rarify, 

biases 
Test AUC 

Acanthaceae Acanthus 25 0.7101 

Acanthaceae Avicennia 26 0.7682 

Acanthaceae Calophanoides 10 0.6981 

Acanthaceae Calycacanthus 59 0.6936 

Acanthaceae Dicliptera 27 0.6738 

Acanthaceae Eranthemum 12 0.5742 

Acanthaceae Graptophyllum 89 0.6054 

Acanthaceae Hemigraphis 96 0.6128 

Acanthaceae Hulemacanthus 32 0.6018 

Acanthaceae Hygrophila 23 0.7404 

Acanthaceae Jadunia 18 0.7185 

Acanthaceae Justicia 38 0.5844 

Acanthaceae Lepidagathis 34 0.61 

Acanthaceae Pseuderanthemum 29 0.6204 

Acanthaceae Ptyssiglottis 17 0.5196 

Acanthaceae Ruellia 16 0.5729 

Acanthaceae Rungia 45 0.7044 

Acanthaceae Staurogyne 10 0.5532 

Acanthaceae Thunbergia 14 0.5027 

Achariaceae Erythrospermum 38 0.7846 

Achariaceae Pangium 45 0.6311 
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Achariaceae Trichadenia 22 0.5767 

Actinidiaceae Saurauia 373 0.5862 

Aizoaceae Sesuvium 13 0.7587 

Alangiaceae Alangium 30 0.56 

Amaranthaceae Achyranthes 20 0.7692 

Amaranthaceae Alternanthera 36 0.5924 

Amaranthaceae Amaranthus 26 0.6375 

Amaranthaceae Celosia 16 0.6005 

Amaranthaceae Cyathula 26 0.717 

Amaranthaceae Deeringia 22 0.5618 

Amaranthaceae Iresine 10 0.6606 

Anacardiaceae Buchanania 110 0.5937 

Anacardiaceae Campnosperma 52 0.5416 

Anacardiaceae Dracontomelon 40 0.5799 

Anacardiaceae Euroschinus 37 0.7652 

Anacardiaceae Evia 13 0.6291 

Anacardiaceae Mangifera 37 0.5309 

Anacardiaceae Pleiogynium 12 0.6184 

Anacardiaceae Rhus 65 0.5374 

Anacardiaceae Semecarpus 136 0.5974 

Anacardiaceae Spondias 28 0.6075 

Anastrophyllaceae Anastrophyllum 11 0.9759 

Anastrophyllaceae Chandonanthus 21 0.9294 

Anastrophyllaceae Plicanthus 30 0.9411 

Aneuraceae Aneura 12 0.8901 

Aneuraceae Riccardia 77 0.8354 

Annonaceae Artabotrys 13 0.5286 

Annonaceae Cananga 51 0.7053 

Annonaceae Cyathocalyx 67 0.6258 

Annonaceae Drepananthus 51 0.7402 

Annonaceae Goniothalamus 104 0.5626 

Annonaceae Haplostichanthus 49 0.6075 

Annonaceae Maasia 21 0.6728 

Annonaceae Oncodostigma 10 0.6561 

Annonaceae Phaeanthus 27 0.6079 

Annonaceae Polyalthia 117 0.6039 

Annonaceae Popowia 55 0.5902 

Annonaceae Pseuduvaria 98 0.6158 

Annonaceae Uvaria 39 0.5071 

Annonaceae Xylopia 52 0.5635 

Anthocerotaceae Anthoceros 26 0.8003 
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Apiaceae Centella 27 0.782 

Apiaceae Chaerophyllum 38 0.9471 

Apiaceae Hydrocotyle 85 0.836 

Apiaceae Oenanthe 51 0.8534 

Apiaceae Oreomyrrhis 20 0.9505 

Apiaceae Trachymene 103 0.8653 

Apocynaceae Alstonia 116 0.503 

Apocynaceae Alyxia 142 0.5713 

Apocynaceae Anodendron 20 0.5377 

Apocynaceae Cerbera 94 0.589 

Apocynaceae Cryptolepis 15 0.593 

Apocynaceae Cynanchum 14 0.6818 

Apocynaceae Dischidia 50 0.6382 

Apocynaceae Heterostemma 14 0.6367 

Apocynaceae Hoya 223 0.5814 

Apocynaceae Ichnocarpus 54 0.5479 

Apocynaceae Lepiniopsis 19 0.7396 

Apocynaceae Marsdenia 90 0.514 

Apocynaceae Melodinus 99 0.5798 

Apocynaceae Micrechites 18 0.57 

Apocynaceae Neisosperma 13 0.6755 

Apocynaceae Ochrosia 69 0.6579 

Apocynaceae Parsonsia 167 0.5725 

Apocynaceae Tabernaemontana 122 0.6117 

Apocynaceae Toxocarpus 10 0.572 

Apocynaceae Voacanga 40 0.6725 

Apocynaceae Wrightia 23 0.7281 

Aquifoliaceae Ilex 133 0.6771 

Araceae Alocasia 65 0.5318 

Araceae Cryptocoryne 10 0.8235 

Araceae Cyrtosperma 40 0.6571 

Araceae Epipremnum 15 0.647 

Araceae Holochlamys 24 0.6422 

Araceae Homalomena 52 0.5746 

Araceae Pothos 66 0.6063 

Araceae Rhaphidophora 42 0.509 

Araceae Schismatoglottis 20 0.5679 

Araceae Scindapsus 13 0.5006 

Araceae Spathiphyllum 14 0.6337 

Araliaceae Gastonia 23 0.7933 

Araliaceae Harmsiopanax 60 0.8004 
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Araliaceae Mackinlaya 73 0.5317 

Araliaceae Osmoxylon 115 0.5676 

Araliaceae Polyscias 172 0.6329 

Araliaceae Schefflera 264 0.538 

Araucariaceae Agathis 34 0.6332 

Araucariaceae Araucaria 50 0.6992 

Arecaceae Areca 59 0.6433 

Arecaceae Arenga 18 0.5872 

Arecaceae Brassiophoenix 14 0.665 

Arecaceae Calamus 166 0.4997 

Arecaceae Calyptrocalyx 90 0.5442 

Arecaceae Caryota 22 0.5763 

Arecaceae Cyrtostachys 21 0.5496 

Arecaceae Heterospathe 83 0.6349 

Arecaceae Hydriastele 102 0.4727 

Arecaceae Korthalsia 20 0.6242 

Arecaceae Licuala 71 0.6603 

Arecaceae Linospadix 24 0.64 

Arecaceae Livistona 18 0.5383 

Arecaceae Metroxylon 10 0.8108 

Arecaceae Orania 30 0.6137 

Arecaceae Ptychococcus 23 0.6395 

Arecaceae Ptychosperma 44 0.6939 

Arecaceae Rhopaloblaste 14 0.5663 

Aristolochiaceae Aristolochia 41 0.6968 

Asparagaceae Cordyline 117 0.5638 

Asparagaceae Dracaena 45 0.558 

Aspleniaceae Asplenium  517 0.535 

Aspleniaceae Diplora 44 0.5148 

Aspleniaceae Neottopteris 52 0.5896 

Asteliaceae Astelia 39 0.918 

Asteraceae Acmella 16 0.5504 

Asteraceae Adenostemma 18 0.7973 

Asteraceae Ageratum 46 0.5312 

Asteraceae Albizia 51 0.6947 

Asteraceae Anaphalioides 36 0.9579 

Asteraceae Anaphalis 32 0.9556 

Asteraceae Arrhenechthites 35 0.9078 

Asteraceae Bidens 36 0.6481 

Asteraceae Blumea 111 0.5628 

Asteraceae Chromolaena 16 0.7367 
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Asteraceae Crassocephalum 44 0.5106 

Asteraceae Cyanthillium 23 0.6685 

Asteraceae Dichrocephala 52 0.793 

Asteraceae Eclipta 20 0.6572 

Asteraceae Elephantopus 10 0.5785 

Asteraceae Emilia 21 0.636 

Asteraceae Erechtites 14 0.5257 

Asteraceae Erigeron 69 0.7474 

Asteraceae Euchiton 48 0.9483 

Asteraceae Gnaphalium 15 0.9498 

Asteraceae Ischnea 16 0.9574 

Asteraceae Ixeridium 54 0.8934 

Asteraceae Keysseria 56 0.9086 

Asteraceae Lactuca 12 0.9278 

Asteraceae Lagenophora 27 0.8313 

Asteraceae Leptinella 10 0.9898 

Asteraceae Melanthera 39 0.6465 

Asteraceae Microglossa 43 0.7696 

Asteraceae Mikania 49 0.5054 

Asteraceae Olearia 118 0.9249 

Asteraceae Papuacalia 19 0.9748 

Asteraceae Pluchea 10 0.9761 

Asteraceae Senecio 44 0.8646 

Asteraceae Sigesbeckia 28 0.72 

Asteraceae Sonchus 14 0.9269 

Asteraceae Synedrella 14 0.5628 

Asteraceae Tetramolopium 34 0.9304 

Asteraceae Tridax 11 0.6764 

Asteraceae Vernonia 65 0.4691 

Asteraceae Xerochrysum 18 0.9011 

Asteraceae Youngia 16 0.6924 

Athyriaceae Callipteris 42 0.6711 

Athyriaceae Lunathyrium 22 0.8421 

Azollaceae Azolla 26 0.7497 

Balanophoraceae Balanophora 10 0.6709 

Balsaminaceae Impatiens 100 0.7187 

Bartramiaceae Breutelia 28 0.9274 

Bartramiaceae Philonotis 63 0.7445 

Begoniaceae Begonia 265 0.5828 

Begoniaceae Symbegonia 32 0.9079 

Bignoniaceae Deplanchea 12 0.8368 
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Bignoniaceae Dolichandrone 11 0.6436 

Bignoniaceae Tecomanthe 95 0.6196 

Bixaceae Bixa 16 0.5496 

Blechnaceae Blechnum 223 0.6678 

Blechnaceae Diploblechnum 12 0.94 

Blechnaceae Doodia 12 0.7037 

Blechnaceae Stenochlaena 67 0.5197 

Boraginaceae Cordia 44 0.6405 

Boraginaceae Cynoglossum 40 0.8584 

Boraginaceae Heliotropium 18 0.6744 

Boraginaceae Myosotis 33 0.9166 

Boraginaceae Tournefortia 34 0.5105 

Boraginaceae Trigonotis 82 0.9015 

Brassicaceae Brassica 14 0.6928 

Brassicaceae Cardamine 68 0.8336 

Brassicaceae Nasturtium 12 0.8244 

Brassicaceae Rorippa 37 0.7711 

Bruchiaceae Trematodon 11 0.8722 

Bryaceae Brachymenium 28 0.8796 

Bryaceae Bryum 97 0.8461 

Bryaceae Gemmabryum 32 0.7951 

Bryaceae Leptostomum 16 0.9144 

Bryaceae Rhodobryum 41 0.8781 

Bryaceae Rosulabryum 18 0.8995 

Burmanniaceae Burmannia 57 0.6307 

Burseraceae Canarium 203 0.5584 

Burseraceae Garuga 21 0.5866 

Burseraceae Haplolobus 43 0.6244 

Burseraceae Protium 33 0.6461 

Calophyllaceae Calophyllum 151 0.5554 

Calymperaceae Arthrocormus 23 0.6331 

Calymperaceae Calymperes 56 0.6067 

Calymperaceae Exostratum 23 0.6894 

Calymperaceae Leucophanes 48 0.678 

Calymperaceae Mitthyridium 35 0.772 

Calymperaceae Syrrhopodon 62 0.641 

Campanulaceae Isotoma 12 0.8238 

Campanulaceae Lobelia 68 0.8061 

Campanulaceae Wahlenbergia 47 0.8289 

Cannabaceae Celtis 64 0.673 

Cannabaceae Gironniera 62 0.7025 
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Cannabaceae Parasponia 44 0.6835 

Cannabaceae Trema 110 0.4723 

Capparaceae Capparis 58 0.6858 

Cleomaceae Cleome 17 0.7689 

Capparaceae Crateva 25 0.6517 

Caprifoliaceae Triplostegia 16 0.9207 

Cardiopteridaceae Cardiopteris 29 0.6561 

Caryophyllaceae Cerastium 55 0.9334 

Caryophyllaceae Drymaria 33 0.7556 

Caryophyllaceae Sagina 58 0.8811 

Caryophyllaceae Stellaria 16 0.9265 

Casuarinaceae Casuarina 57 0.5134 

Casuarinaceae Gymnostoma 86 0.5663 

Celastraceae Celastrus 34 0.746 

Celastraceae Loeseneriella 10 0.7732 

Celastraceae Perrotettia 70 0.7563 

Celastraceae Perrottetia 52 0.7205 

Celastraceae Salacia 43 0.5419 

Celastraceae Siphonodon 19 0.5724 

Celastraceae Stackhousia 20 0.7309 

Restionaceae Centrolepis 35 0.8908 

Restionaceae Gaimardia 14 0.8531 

Ceratophyllaceae Ceratophyllum 18 0.6144 

Cheiropleuriaceae Cheiropleuria 12 0.5654 

Chloranthaceae Ascarina 63 0.7458 

Chloranthaceae Chloranthus 81 0.6675 

Chloranthaceae Sarcandra 11 0.9125 

Chrysobalanaceae Atuna 25 0.6273 

Chrysobalanaceae Maranthes 48 0.6326 

Chrysobalanaceae Parastemon 13 0.5217 

Chrysobalanaceae Parinari 42 0.629 

Cleomaceae Arivela 12 0.7806 

Clusiaceae Garcinia 317 0.4753 

Clusiaceae Pentaphalangium 14 0.6659 

Combretaceae Combretum 37 0.6303 

Combretaceae Lumnitzera 24 0.7313 

Combretaceae Terminalia 214 0.56 

Commelinaceae Amischotolype 27 0.6698 

Commelinaceae Aneilema 11 0.5889 

Commelinaceae Belosynapsis 13 0.635 

Commelinaceae Floscopa 29 0.6191 
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Commelinaceae Murdannia 29 0.5454 

Commelinaceae Pollia 40 0.6135 

Connaraceae Connarus 20 0.6443 

Connaraceae Rourea 14 0.6874 

Convolvulaceae Erycibe 44 0.6076 

Convolvulaceae Evolvulus 14 0.7138 

Convolvulaceae Ipomoea 71 0.5494 

Convolvulaceae Lepistemon 21 0.7178 

Convolvulaceae Merremia 49 0.6898 

Coriariaceae Coriaria 21 0.7586 

Myssaceae Mastixia 38 0.7287 

Corsiaceae Corsia 31 0.7793 

Corynocarpaceae Corynocarpus 27 0.5468 

Costaceae Cheilocostus 36 0.5777 

Costaceae Tapeinochilos 34 0.5518 

Cryphaeaceae Schoenobryum 11 0.8423 

Crypteroniaceae Crypteronia 11 0.6542 

Cucurbitaceae Cucumis 12 0.6139 

Cucurbitaceae Diplocyclos 12 0.6504 

Cucurbitaceae Gynostemma 17 0.773 

Cucurbitaceae Luffa 12 0.6885 

Cucurbitaceae Melothria 25 0.6438 

Cucurbitaceae Momordica 24 0.5357 

Cucurbitaceae Mukia 12 0.8001 

Cucurbitaceae Neoachmandra 20 0.8644 

Cucurbitaceae Neoalsomitra 17 0.7363 

Cucurbitaceae Pilogyne 10 0.7812 

Cucurbitaceae Trichosanthes 67 0.5975 

Cucurbitaceae Urceodiscus 20 0.8903 

Cucurbitaceae Zehneria 51 0.6968 

Cunoniaceae Acsmithia 24 0.6015 

Cunoniaceae Aistopetalum 16 0.5264 

Cunoniaceae Caldcluvia 168 0.7386 

Cunoniaceae Ceratopetalum 31 0.6186 

Cunoniaceae Gillbeea 14 0.5952 

Cunoniaceae Opocunonia 59 0.7747 

Cunoniaceae Pullea 48 0.7333 

Cunoniaceae Schizomeria 140 0.6656 

Cunoniaceae Spiraeanthemum 24 0.7679 

Cunoniaceae Spiraeopsis 87 0.835 

Cunoniaceae Weinmannia 71 0.6451 



127 

 

Cupressaceae Papuacedrus 113 0.8261 

Cyatheaceae Cyathea 421 0.6095 

Cyatheaceae Dicksonia 89 0.7897 

Cyatheaceae Plagiogyria 54 0.8851 

Cycadaceae Cycas 67 0.6389 

Cyperaceae Bulbostylis 27 0.7808 

Cyperaceae Carex 171 0.8307 

Cyperaceae Carpha 24 0.9557 

Cyperaceae Cyperus 203 0.5572 

Cyperaceae Eleocharis 74 0.6469 

Cyperaceae Fimbristylis 171 0.5275 

Cyperaceae Fuirena 22 0.6705 

Cyperaceae Gahnia 47 0.7923 

Cyperaceae Hypolytrum 40 0.5031 

Cyperaceae Isolepis 35 0.8737 

Cyperaceae Kyllinga 50 0.6081 

Cyperaceae Lipocarpha 36 0.7028 

Cyperaceae Machaerina 44 0.7597 

Cyperaceae Mapania 51 0.5968 

Cyperaceae Oreobolus 37 0.9168 

Cyperaceae Paramapania 34 0.5242 

Cyperaceae Pycreus 61 0.7021 

Cyperaceae Rhynchospora 71 0.424 

Cyperaceae Schoenoplectiella 33 0.6477 

Cyperaceae Schoenus 81 0.7793 

Cyperaceae Scirpus 32 0.7732 

Cyperaceae Scleria 104 0.5635 

Cyperaceae Trichophorum 17 0.8454 

Cyperaceae Uncinia 28 0.9332 

Cyrtopodaceae Bescherellia 17 0.9022 

Daphniphyllaceae Daphniphyllum 98 0.8641 

Datiscaceae Octomeles 40 0.6415 

Datiscaceae Tetrameles 10 0.7073 

Davalliaceae Davallia 241 0.5988 

Davalliaceae Davallodes 44 0.8595 

Davalliaceae Humata 186 0.6004 

Davalliaceae Leucostegia 23 0.5517 

Davalliaceae Scyphularia 18 0.7319 

Dendrocerotaceae Megaceros 15 0.6479 

Dennstaedtiaceae Dennstaedtia 136 0.6713 

Dennstaedtiaceae Histiopteris 66 0.81 
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Dennstaedtiaceae Hypolepis 49 0.8712 

Dennstaedtiaceae Lindsaea 349 0.5343 

Dennstaedtiaceae Microlepia 78 0.6442 

Dennstaedtiaceae Odontosoria 74 0.6154 

Dennstaedtiaceae Orthiopteris 16 0.597 

Dennstaedtiaceae Pteridium 52 0.7562 

Dichapetalaceae Dichapetalum 62 0.599 

Dicksoniaceae Calochlaena 47 0.779 

Dicranaceae Atractylocarpus 12 0.9653 

Dicranaceae Braunfelsia 19 0.9512 

Dicranaceae Campylopodium 15 0.8298 

Dicranaceae Campylopus 90 0.8968 

Dicranaceae Cryptodicranum 51 0.85 

Dicranaceae Dicranella 11 0.9151 

Dicranaceae Dicranoloma 188 0.7584 

Dicranaceae Dicranum 16 0.9749 

Dicranaceae Holomitrium 18 0.8841 

Dicranaceae Leucobryum 82 0.7086 

Dicranaceae Leucoloma 11 0.9621 

Dicranaceae Octoblepharum 29 0.7106 

Dilleniaceae Dillenia 132 0.5535 

Dilleniaceae Tetracera 18 0.5031 

Dioscoreaceae Dioscorea 87 0.5106 

Dioscoreaceae Tacca 15 0.6914 

Dipteridaceae Dipteris 75 0.6625 

Dipterocarpaceae Anisoptera 49 0.7299 

Dipterocarpaceae Hopea 57 0.7019 

Dipterocarpaceae Vatica 43 0.7268 

Ditrichaceae Ditrichum 18 0.7147 

Droseraceae Drosera 30 0.6756 

Drynariaceae Aglaomorpha 68 0.5643 

Dryopteridaceae Arachniodes 40 0.748 

Dryopteridaceae Bolbitis 76 0.6037 

Dryopteridaceae Ctenitis 25 0.8127 

Dryopteridaceae Didymochlaena 37 0.6285 

Dryopteridaceae Dryopolystichum 15 0.705 

Dryopteridaceae Dryopteris 96 0.8069 

Dryopteridaceae Elaphoglossum 117 0.7122 

Dryopteridaceae Lastreopsis 17 0.7729 

Dryopteridaceae Lomagramma 55 0.6355 

Dryopteridaceae Polystichum 113 0.7758 
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Dryopteridaceae Rumohra 17 0.9492 

Dryopteridaceae Stenolepia 40 0.9212 

Dryopteridaceae Teratophyllum 30 0.5783 

Dumortieraceae Dumortiera 31 0.7044 

Ebenaceae Diospyros 206 0.5361 

Elaeagnaceae Elaeagnus 17 0.5416 

Elaeocarpaceae Aceratium 131 0.5315 

Elaeocarpaceae Dubouzetia 34 0.6034 

Elaeocarpaceae Elaeocarpus 415 0.494 

Elaeocarpaceae Sericolea 105 0.8632 

Elaeocarpaceae Sloanea 203 0.5323 

Entodontaceae Entodon 28 0.9248 

Entodontaceae Erythrodontium 11 0.7827 

Entodontaceae Mesonodon 21 0.9613 

Epacridaceae Acrothamnus 71 0.9326 

Epacridaceae Leucopogon 38 0.9402 

Epacridaceae Styphelia 61 0.9104 

Epacridaceae Trochocarpa 67 0.9232 

Equisetaceae Equisetum 83 0.6882 

Ericaceae Agapetes 48 0.9242 

Ericaceae Decatoca 11 0.9222 

Ericaceae Dimorphanthera 331 0.7709 

Ericaceae Diplycosia 90 0.8488 

Ericaceae Gaultheria 98 0.8922 

Ericaceae Paphia 20 0.9594 

Ericaceae Rhododendron 458 0.7947 

Ericaceae Vaccinium 314 0.7569 

Eriocaulaceae Eriocaulon 121 0.7533 

Erythroxylaceae Erythroxylum 27 0.5623 

Escalloniaceae Carpodetus 106 0.804 

Escalloniaceae Polyosma 164 0.7135 

Escalloniaceae Quintinia 91 0.8615 

Euphorbiaceae Acalypha 94 0.5984 

Euphorbiaceae Alchornea 19 0.6813 

Euphorbiaceae Aleurites 21 0.7324 

Euphorbiaceae Aporusa 14 0.5687 

Euphorbiaceae Blumeodendron 27 0.6606 

Euphorbiaceae Claoxylon 211 0.5891 

Euphorbiaceae Cleidion 24 0.6077 

Euphorbiaceae Codiaeum 48 0.5576 

Euphorbiaceae Croton 58 0.5345 



130 

 

Euphorbiaceae Endospermum 100 0.5899 

Euphorbiaceae Euphorbia 106 0.5639 

Euphorbiaceae Excoecaria 12 0.7501 

Euphorbiaceae Hancea 16 0.6535 

Euphorbiaceae Homalanthus 117 0.5727 

Euphorbiaceae Macaranga 368 0.5067 

Euphorbiaceae Mallotus 180 0.5805 

Euphorbiaceae Melanolepis 20 0.6829 

Euphorbiaceae Neoscortechinia 16 0.5808 

Euphorbiaceae Pimelodendron 85 0.6141 

Euphorbiaceae Shirakiopsis 12 0.7561 

Eupomatiaceae Eupomatia 31 0.7031 

Fabaceae Abrus 15 0.77 

Fabaceae Acacia 115 0.8341 

Fabaceae Adenanthera 32 0.6237 

Fabaceae Aeschynomene 20 0.7243 

Fabaceae Alysicarpus 20 0.6625 

Fabaceae Andira 11 0.6677 

Fabaceae Archidendron 139 0.5864 

Fabaceae Bauhinia 28 0.6079 

Fabaceae Caesalpinia 40 0.5628 

Fabaceae Cajanus 23 0.8063 

Fabaceae Calopogonium 13 0.5073 

Fabaceae Canavalia 28 0.7176 

Fabaceae Cassia 26 0.5486 

Fabaceae Chamaecrista 33 0.7226 

Fabaceae Codariocalyx 25 0.6978 

Fabaceae Crotalaria 140 0.6426 

Fabaceae Crudia 11 0.639 

Fabaceae Cynometra 26 0.5752 

Fabaceae Dalbergia 33 0.5888 

Fabaceae Dendrolobium 34 0.7244 

Fabaceae Derris 84 0.5964 

Fabaceae Desmodium 150 0.5337 

Fabaceae Entada 26 0.6465 

Fabaceae Erythrina 22 0.5133 

Fabaceae Falcataria 57 0.6779 

Fabaceae Glycine 15 0.707 

Fabaceae Hanslia 18 0.7004 

Fabaceae Hylodesmum 36 0.7983 

Fabaceae Indigofera 39 0.7345 
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Fabaceae Inocarpus 32 0.609 

Fabaceae Intsia 53 0.7021 

Fabaceae Kingiodendron 17 0.7176 

Fabaceae Leucaena 11 0.5889 

Fabaceae Macropsychanthus 16 0.583 

Fabaceae Macroptilium 10 0.5048 

Fabaceae Maniltoa 84 0.6746 

Fabaceae Millettia 11 0.582 

Fabaceae Mimosa 27 0.773 

Fabaceae Mucuna 161 0.4871 

Fabaceae Ormocarpum 15 0.6187 

Fabaceae Paraserianthes 70 0.5926 

Fabaceae Phaseolus 12 0.6059 

Fabaceae Phylacium 25 0.5863 

Fabaceae Phyllodium 13 0.6381 

Fabaceae Pithecellobium 18 0.5207 

Fabaceae Pongamia 41 0.6024 

Fabaceae Pterocarpus 29 0.5857 

Fabaceae Pueraria 35 0.5787 

Fabaceae Pycnospora 15 0.7406 

Fabaceae Racosperma 10 0.8873 

Fabaceae Rhynchosia 16 0.706 

Fabaceae Schleinitzia 21 0.8133 

Fabaceae Senna 44 0.5935 

Fabaceae Serianthes 39 0.5908 

Fabaceae Smithia 13 0.6816 

Fabaceae Strongylodon 59 0.5244 

Fabaceae Stylosanthes 22 0.7041 

Fabaceae Tadehagi 12 0.7449 

Fabaceae Tephrosia 52 0.6764 

Fabaceae Trifolium 10 0.7549 

Fabaceae Uraria 22 0.6432 

Fabaceae Vigna 42 0.6258 

Fagaceae Castanopsis 110 0.6745 

Fagaceae Lithocarpus 217 0.5951 

Fissidentaceae Fissidens 87 0.8054 

Flacourtiaceae Itoa 14 0.7161 

Flacourtiaceae Osmelia 24 0.7154 

Flacourtiaceae Ryparosa 40 0.539 

Flagellariaceae Flagellaria 64 0.6467 

Frullaniaceae Frullania 146 0.7432 
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Funariaceae Funaria 18 0.9232 

Gentianaceae Exacum 19 0.5524 

Gentianaceae Fagraea 265 0.5553 

Gentianaceae Gentiana 86 0.9256 

Gentianaceae Swertia 17 0.9243 

Geocalycaceae Lophocolea 31 0.8428 

Geocalycaceae Notoscyphus 11 0.8744 

Geocalycaceae Saccogynidium 15 0.8169 

Geraniaceae Geranium 39 0.94 

Gesneriaceae Aeschynanthus 193 0.6244 

Gesneriaceae Agalmyla 57 0.6546 

Gesneriaceae Boea 48 0.8034 

Gesneriaceae Cyrtandra 296 0.5802 

Gesneriaceae Dichrotrichum 17 0.6967 

Gesneriaceae Rhynchoglossum 13 0.8368 

Gesneriaceae Rhynchotechum 13 0.6873 

Gleicheniaceae Dicranopteris 94 0.497 

Gleicheniaceae Diplopterygium 28 0.8721 

Gleicheniaceae Gleichenia 136 0.7497 

Gleicheniaceae Sticherus 154 0.7228 

Gnetaceae Gnetum 188 0.5712 

Goodeniaceae Scaevola 120 0.5641 

Grammitidaceae Calymmodon 77 0.7889 

Grammitidaceae Ctenopterella 24 0.839 

Grammitidaceae Ctenopteris 210 0.6744 

Grammitidaceae Prosaptia 128 0.7732 

Grammitidaceae Tomophyllum 11 0.9226 

Grammitidaceae Xiphopteris 36 0.7473 

Gunneraceae Gunnera 72 0.8227 

Haloragaceae Gonocarpus 47 0.8061 

Haloragaceae Halorrhagis 25 0.8407 

Haloragaceae Myriophyllum 18 0.8566 

Hamamelidaceae Sycopsis 12 0.582 

Hanguanaceae Hanguana 10 0.7036 

Heliconiaceae Heliconia 23 0.5248 

Herbertaceae Herbertus 43 0.9417 

Hernandiaceae Hernandia 38 0.7076 

Himantandraceae Galbulimima 83 0.7779 

Hookeriaceae Callicostella 16 0.6839 

Hookeriaceae Chaetomitriopsis 14 0.9103 

Hookeriaceae Chaetomitrium 58 0.7715 
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Hookeriaceae Cyathophorum 13 0.8394 

Hookeriaceae Cyclodictyon 11 0.7432 

Hookeriaceae Distichophyllum 27 0.7247 

Hookeriaceae Hypopterygium 28 0.8171 

Hookeriaceae Lopidium 21 0.8917 

Hydrangeaceae Dichroa 33 0.5347 

Hydrocharitaceae Blyxa 21 0.7572 

Hydrocharitaceae Najas 12 0.7023 

Hydrocharitaceae Vallisneria 16 0.6548 

Hylocomiaceae Macrothamnium 30 0.9177 

Hymenophyllaceae Abrodictyum 21 0.5687 

Hymenophyllaceae Cephalomanes 123 0.605 

Hymenophyllaceae Crepidomanes 139 0.582 

Hymenophyllaceae Hymenophyllum 264 0.6708 

Hymenophyllaceae Macroglena 26 0.6404 

Hymenophyllaceae Mecodium 46 0.7942 

Hymenophyllaceae Meringium 86 0.6883 

Hymenophyllaceae Microgonium 15 0.6635 

Hymenophyllaceae Microtrichomanes 31 0.6744 

Hymenophyllaceae Nesopteris 24 0.577 

Hymenophyllaceae Pleuromanes 44 0.7249 

Hymenophyllaceae Reediella 13 0.6811 

Hymenophyllaceae Selenodesmium 74 0.6893 

Hymenophyllaceae Trichomanes 234 0.5905 

Hymenophyllaceae Vandenboschia 37 0.5359 

Hypericaceae Hypericum 103 0.8837 

Hypnaceae Ctenidium 11 0.8582 

Hypnaceae Ectropothecium 89 0.6986 

Hypnaceae Elmeriobryum 10 0.9438 

Hypnaceae Isopterygium 15 0.5477 

Hypnaceae Vesicularia 18 0.7093 

Hypnodendraceae Hypnodendron 149 0.8231 

Hypoxidaceae Curculigo 28 0.537 

Cardiopteridaceae Citronella 26 0.5284 

Stemonuraceae Gomphandra 83 0.6458 

Cardiopteridaceae Gonocaryum 67 0.5774 

Stemonuraceae Medusanthera 62 0.6223 

Metteniusaceae Platea 57 0.587 

Icacinaceae Polyporandra 23 0.6476 

Icacinaceae Pseudobotrys 26 0.5949 

Icacinaceae Rhyticaryum 102 0.5648 
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Stemonuraceae Stemonurus 32 0.6686 

Iridaceae Libertia 31 0.9506 

Isoetaceae Isoetes 17 0.9904 

Jackiellaceae Jackiella 18 0.9617 

Jamesoniellaceae Denotarisia 11 0.8758 

Jamesoniellaceae Jamesoniella 14 0.9618 

Jamesoniellaceae Syzygiella 18 0.9214 

Juglandaceae Engelhardia 33 0.5929 

Juglandaceae Engelhardtia 37 0.6627 

Juncaceae Juncus 75 0.9064 

Juncaceae Luzula 12 0.9511 

Jungermanniaceae Jungermannia 58 0.8658 

Lamiaceae Anisomeles 24 0.8295 

Lamiaceae Callicarpa 177 0.603 

Lamiaceae Clerodendrum 175 0.5392 

Lamiaceae Coleus 42 0.8468 

Lamiaceae Faradaya 68 0.5558 

Lamiaceae Gmelina 92 0.608 

Lamiaceae Hyptis 49 0.6103 

Lamiaceae Leucas 12 0.7847 

Lamiaceae Ocimum 31 0.5211 

Lamiaceae Petraeovitex 26 0.5065 

Lamiaceae Platostoma 10 0.8883 

Lamiaceae Plectranthus 138 0.6462 

Lamiaceae Pogostemon 45 0.5038 

Lamiaceae Premna 109 0.5875 

Lamiaceae Salvia 10 0.6048 

Lamiaceae Scutellaria 26 0.8343 

Lamiaceae Teijsmanniodendron 53 0.7255 

Lamiaceae Vitex 98 0.6759 

Lamiaceae Viticipremna 15 0.6973 

Lamiaceae Volkameria 18 0.7008 

Lauraceae Actinodaphne 59 0.6483 

Lauraceae Alseodaphne 11 0.6683 

Lauraceae Beilschmiedia 43 0.6337 

Lauraceae Cassytha 28 0.6492 

Lauraceae Cinnamomum 70 0.6213 

Lauraceae Cryptocarya 254 0.5388 

Lauraceae Endiandra 104 0.4868 

Lauraceae Litsea 240 0.5502 

Lauraceae Neolitsea 34 0.6911 
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Lauraceae Phoebe 13 0.5366 

Lecythidaceae Barringtonia 143 0.5652 

Lecythidaceae Planchonia 33 0.6575 

Leeaceae Leea 162 0.6278 

Lejeuneaceae Acrolejeunea 32 0.7622 

Lejeuneaceae Caudalejeunea 19 0.7473 

Lejeuneaceae Cheilolejeunea 61 0.8504 

Lejeuneaceae Dendrolejeunea 17 0.6676 

Lejeuneaceae Drepanolejeunea 37 0.8589 

Lejeuneaceae Lejeunea 98 0.7932 

Lejeuneaceae Lepidolejeunea 14 0.7514 

Lejeuneaceae Lopholejeunea 46 0.7586 

Lejeuneaceae Mastigolejeunea 60 0.8387 

Lejeuneaceae Ptychanthus 28 0.8129 

Lejeuneaceae Pycnolejeunea 11 0.7314 

Lejeuneaceae Schiffneriolejeunea 25 0.7102 

Lejeuneaceae Spruceanthus 32 0.889 

Lejeuneaceae Thysananthus 69 0.7643 

Lembophyllaceae Camptochaete 13 0.8309 

Lentibulariaceae Utricularia 51 0.5623 

Lepicoleaceae Lepicolea 24 0.9088 

Lepidoziaceae Acromastigum 10 0.6231 

Lepidoziaceae Bazzania 75 0.8223 

Lepidoziaceae Kurzia 10 0.7055 

Lepidoziaceae Lepidozia 74 0.841 

Lepidoziaceae Telaranea 19 0.6866 

Linaceae Durandea 13 0.7884 

Linaceae Hugonia 50 0.5945 

Linderniaceae Lindernia 50 0.5163 

Lindsaeaceae Cystodium 24 0.5956 

Lindsaeaceae Sphenomeris 42 0.6177 

Lindsaeaceae Tapeinidium 97 0.6553 

Loganiaceae Geniostoma 109 0.6683 

Loganiaceae Mitrasacme 20 0.7222 

Loganiaceae Neuburgia 140 0.5547 

Loganiaceae Strychnos 50 0.585 

Lomariopsidaceae Lomariopsis 35 0.6501 

Lomariopsidaceae Nephrolepis 216 0.5372 

Lophocoleaceae Chiloscyphus 17 0.8834 

Lophocoleaceae Heteroscyphus 88 0.8112 

Lophopyxidaceae Lophopyxis 14 0.8993 
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Loranthaceae Amyema 257 0.6691 

Loranthaceae Dactyliophora 15 0.554 

Loranthaceae Decaisnina 117 0.5125 

Loranthaceae Dendrophthoe 54 0.5819 

Loranthaceae Macrosolen 26 0.6622 

Loranthaceae Sogerianthe 39 0.6335 

Loxogrammaceae Loxogramme 117 0.6852 

Lycopodiaceae Huperzia 245 0.6331 

Lycopodiaceae Lycopodiella 123 0.5703 

Lycopodiaceae Lycopodium 283 0.7065 

Lygodiaceae Lygodium 141 0.5671 

Lythraceae Duabanga 25 0.5895 

Lythraceae Lagerstroemia 38 0.6732 

Lythraceae Sonneratia 36 0.7277 

Magnoliaceae Magnolia 63 0.662 

Malpighiaceae Ryssopterys 24 0.7078 

Malpighiaceae Stigmaphyllon 26 0.7637 

Malvaceae Abelmoschus 41 0.6444 

Malvaceae Abutilon 11 0.9028 

Malvaceae Althoffia 34 0.6125 

Malvaceae Bombax 13 0.7342 

Malvaceae Brachychiton 25 0.803 

Malvaceae Brownlowia 19 0.7183 

Malvaceae Colona 19 0.6449 

Malvaceae Commersonia 112 0.5493 

Malvaceae Corchorus 13 0.6988 

Malvaceae Gonystylus 15 0.5108 

Malvaceae Grewia 48 0.7502 

Malvaceae Gyrinops 26 0.7451 

Malvaceae Helicteres 10 0.7695 

Malvaceae Heritiera 34 0.5273 

Malvaceae Hibiscus 138 0.5334 

Malvaceae Kleinhovia 38 0.5722 

Malvaceae Melochia 54 0.5487 

Malvaceae Pimelea 18 0.8522 

Malvaceae Pterocymbium 15 0.5834 

Malvaceae Pterygota 15 0.7143 

Malvaceae Sida 84 0.6249 

Malvaceae Sterculia 162 0.5162 

Malvaceae Talipariti 81 0.6201 

Malvaceae Thespesia 85 0.6811 
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Malvaceae Trichospermum 87 0.6051 

Malvaceae Triumfetta 66 0.6315 

Malvaceae Urena 62 0.5187 

Marantaceae Cominsia 29 0.6354 

Marantaceae Donax 54 0.6312 

Marantaceae Phrynium 54 0.529 

Marattiaceae Angiopteris 43 0.685 

Marattiaceae Marattia 139 0.6475 

Marattiaceae Ptisana 75 0.6458 

Marchantiaceae Marchantia 56 0.8181 

Mastigophoraceae Mastigophora 62 0.8753 

Melastomataceae Astronia 160 0.5778 

Melastomataceae Astronidium 81 0.6422 

Melastomataceae Beccarianthus 39 0.8526 

Melastomataceae Catanthera 15 0.6184 

Melastomataceae Conostegia 17 0.7199 

Melastomataceae Dissochaeta 25 0.6026 

Melastomataceae Medinilla 312 0.5563 

Melastomataceae Melastoma 167 0.527 

Melastomataceae Memecylon 83 0.5074 

Melastomataceae Miconia 11 0.6724 

Melastomataceae Osbeckia 40 0.7709 

Melastomataceae Otanthera 22 0.6209 

Melastomataceae Poikilogyne 105 0.6736 

Melastomataceae Pternandra 17 0.5596 

Meliaceae Aglaia 368 0.5566 

Meliaceae Amoora 30 0.5011 

Meliaceae Aphanamixis 80 0.6235 

Meliaceae Chisocheton 188 0.5842 

Meliaceae Dysoxylum 303 0.5204 

Meliaceae Toona 18 0.5563 

Meliaceae Vavaea 63 0.5316 

Meliaceae Xylocarpus 21 0.7396 

Menispermaceae Hypserpa 25 0.57 

Menispermaceae Legnephora 10 0.7446 

Menispermaceae Parabaena 16 0.647 

Menispermaceae Pycnarrhena 14 0.6165 

Menispermaceae Tinospora 19 0.546 

Menyanthaceae Nymphoides 22 0.6651 

Meteoriaceae Aerobryopsis 40 0.836 

Meteoriaceae Aerobryum 11 0.8744 
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Meteoriaceae Barbellopsis 19 0.9124 

Meteoriaceae Cryptopapillaria 15 0.8335 

Meteoriaceae Dicladdiella 19 0.8819 

Meteoriaceae Floribundaria 90 0.8546 

Meteoriaceae Meteoriopsis 39 0.8488 

Meteoriaceae Meteorium 74 0.8698 

Meteoriaceae Papillaria 15 0.922 

Metzgeriaceae Metzgeria 50 0.8724 

Mniaceae Orthomnion 11 0.6991 

Mniaceae Plagiomnium 18 0.9404 

Monimiaceae Dryadodaphne 53 0.7745 

Monimiaceae Kairoa 10 0.6544 

Monimiaceae Kibara 165 0.5862 

Monimiaceae Levieria 101 0.7406 

Monimiaceae Palmeria 119 0.8198 

Monimiaceae Steganthera 126 0.5635 

Moraceae Antiaris 21 0.5312 

Moraceae Antiaropsis 38 0.7074 

Moraceae Artocarpus 112 0.5101 

Moraceae Ficus 766 0.4963 

Moraceae Maclura 27 0.6184 

Moraceae Streblus 83 0.711 

Moraceae Trophis 23 0.7675 

Myristicaceae Endocomia 27 0.7111 

Myristicaceae Gymnacranthera 99 0.5883 

Myristicaceae Horsfieldia 254 0.5669 

Myristicaceae Myristica 444 0.5092 

Myristicaceae Virola 12 0.5917 

Myrsinaceae Conandrium 110 0.596 

Myrsinaceae Moesa 103 0.6546 

Myrsinaceae Rapanea 228 0.7685 

Myrsinaceae Tapeinosperma 13 0.6681 

Myrtaceae Asteromyrtus 33 0.9529 

Myrtaceae Corymbia 95 0.8888 

Myrtaceae Decaspermum 210 0.6167 

Myrtaceae Eucalyptopsis 22 0.7095 

Myrtaceae Eucalyptus 123 0.7448 

Myrtaceae Eugenia 238 0.5076 

Myrtaceae Kania 51 0.772 

Myrtaceae Lophostemon 15 0.8417 

Myrtaceae Mearnsia 14 0.7819 
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Myrtaceae Melaleuca 94 0.8779 

Myrtaceae Metrosideros 72 0.645 

Myrtaceae Myrtella 13 0.8172 

Myrtaceae Octamyrtus 92 0.6582 

Myrtaceae Rhodamnia 76 0.6181 

Myrtaceae Rhodomyrtus 113 0.5813 

Myrtaceae Syzygium 733 0.4872 

Myrtaceae Tristaniopsis 12 0.8046 

Myrtaceae Uromyrtus 19 0.7205 

Myrtaceae Welchiodendron 14 0.9218 

Myrtaceae Xanthomyrtus 130 0.8685 

Myrtaceae Xanthostemon 23 0.8904 

Neckeraceae Himantocladium 38 0.6977 

Neckeraceae Homaliodendron 64 0.8586 

Neckeraceae Neckeropsis 40 0.6021 

Neckeraceae Pinnatella 25 0.6845 

Nepenthaceae Nepenthes 101 0.5774 

Nephrolepidaceae Arthropteris 45 0.5815 

Nothofagaceae Nothofagus 175 0.8419 

Notothyladaceae Phaeoceros 13 0.8703 

Nyctaginaceae Boerhavia 19 0.7321 

Nyctaginaceae Ceodes 14 0.5995 

Nyctaginaceae Pisonia 117 0.5683 

Nymphaeaceae Nymphaea 21 0.8249 

Ochnaceae Schuurmansia 126 0.6227 

Oleaceae Chionanthus 109 0.5743 

Oleaceae Jasminum 95 0.6445 

Oleaceae Ligustrum 17 0.9069 

Oleandraceae Oleandra 101 0.553 

Onagraceae Epilobium 107 0.8831 

Onagraceae Ludwigia 71 0.6086 

Ophioglossaceae Botrychium 17 0.9328 

Ophioglossaceae Helminthostachys 45 0.7715 

Ophioglossaceae Ophioderma 29 0.6573 

Ophioglossaceae Ophioglossum 111 0.6329 

Opiliaceae Cansjera 10 0.8454 

Opiliaceae Opilia 12 0.7042 

Orchidaceae Acanthephippium 11 0.709 

Orchidaceae Acriopsis 17 0.6536 

Orchidaceae Aglossorrhyncha 21 0.7032 

Orchidaceae Agrostophyllum 140 0.6497 
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Orchidaceae Apostasia 18 0.6874 

Orchidaceae Appendicula 61 0.5156 

Orchidaceae Bryobium 12 0.6824 

Orchidaceae Bulbophyllum 249 0.612 

Orchidaceae Cadetia 64 0.5929 

Orchidaceae Calanthe 122 0.6402 

Orchidaceae Ceratostylis 123 0.7348 

Orchidaceae Coelogyne 65 0.729 

Orchidaceae Corybas 31 0.804 

Orchidaceae Crepidium 23 0.7117 

Orchidaceae Cryptostylis 11 0.757 

Orchidaceae Dendrobium 488 0.5719 

Orchidaceae Dendrochilum 39 0.8412 

Orchidaceae Diplocaulobium 56 0.5798 

Orchidaceae Epiblastus 73 0.8518 

Orchidaceae Eria 48 0.7072 

Orchidaceae Eurycentrum 14 0.5741 

Orchidaceae Glomera 155 0.7607 

Orchidaceae Glossorhyncha 103 0.7814 

Orchidaceae Goodyera 38 0.6442 

Orchidaceae Grastidium 23 0.6388 

Orchidaceae Hetaeria 27 0.7502 

Orchidaceae Lepidogyne 19 0.6075 

Orchidaceae Liparis 112 0.6512 

Orchidaceae Malaxis 46 0.5408 

Orchidaceae Mediocalcar 99 0.8315 

Orchidaceae Microtatorchis 12 0.9527 

Orchidaceae Neuwiedia 14 0.7383 

Orchidaceae Oberonia 66 0.698 

Orchidaceae Octarrhena 39 0.9304 

Orchidaceae Pedilochilus 33 0.8281 

Orchidaceae Pedilonum 19 0.8543 

Orchidaceae Peristylus 35 0.6983 

Orchidaceae Phaius 21 0.7429 

Orchidaceae Pholidota 25 0.5314 

Orchidaceae Phreatia 149 0.6535 

Orchidaceae Plocoglottis 34 0.5945 

Orchidaceae Podochilus 26 0.5608 

Orchidaceae Pseuderia 27 0.6267 

Orchidaceae Pseudovanilla 14 0.6273 

Orchidaceae Pterostylis 49 0.9516 
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Orchidaceae Spathoglottis 105 0.5326 

Orchidaceae Spiranthes 29 0.6643 

Orchidaceae Taeniophyllum 35 0.6885 

Orchidaceae Tainia 15 0.8448 

Orchidaceae Thelymitra 41 0.8768 

Orchidaceae Thrixspermum 17 0.5254 

Orchidaceae Trichoglottis 11 0.5859 

Orchidaceae Trichotosia 19 0.6534 

Orchidaceae Vrydagzynea 21 0.5389 

Orchidaceae Zeuxine 10 0.6164 

Orobanchaceae Buchnera 22 0.7084 

Orobanchaceae Euphrasia 29 0.959 

Orthotrichaceae Desmotheca 16 0.9018 

Orthotrichaceae Macromitrium 159 0.6876 

Orthotrichaceae Schlotheimia 74 0.9004 

Orthotrichaceae Zygodon 13 0.9442 

Osmundaceae Leptopteris 53 0.8136 

Oxalidaceae Averrhoa 12 0.6422 

Oxalidaceae Oxalis 89 0.7474 

Pandaceae Galearia 44 0.5691 

Pandanaceae Freycinetia 196 0.5436 

Pandanaceae Pandanus 127 0.4857 

Passifloraceae Adenia 17 0.6839 

Passifloraceae Hollrungia 22 0.5114 

Passifloraceae Passiflora 94 0.6088 

Pentaphragmataceae Pentaphragma 18 0.7205 

Pentaphylacaceae Archboldiodendron 19 0.8407 

Pentaphylacaceae Eurya 191 0.7416 

Pentaphylacaceae Ternstroemia 113 0.5482 

Peranemaceae Acrophorus 24 0.817 

Philesiaceae Geitonoplesium 56 0.712 

Mazaceae Mazus 20 0.8698 

Phyllanthaceae Actephila 22 0.5448 

Phyllanthaceae Antidesma 217 0.5049 

Phyllanthaceae Aporosa 96 0.5151 

Phyllanthaceae Baccaurea 45 0.6467 

Phyllanthaceae Breynia 206 0.5846 

Phyllanthaceae Bridelia 46 0.6308 

Phyllanthaceae Cleistanthus 35 0.6238 

Phyllanthaceae Glochidion 340 0.4683 

Phyllanthaceae Phyllanthus 198 0.5438 
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Phyllocladaceae Phyllocladus 75 0.896 

Picrodendraceae Choriceras 10 0.9706 

Pinaceae Pinus 10 0.8501 

Piperaceae Peperomia 111 0.6085 

Piperaceae Piper 449 0.5832 

Piperaceae Pothomorphe 13 0.7949 

Pittosporaceae Pittosporum 306 0.6334 

Plagiochilaceae Plagiochila 130 0.7873 

Plagiochilaceae Plagiochilion 28 0.917 

Plantaginaceae Callitriche 11 0.9881 

Plantaginaceae Hebe 31 0.9399 

Plantaginaceae Limnophila 44 0.5771 

Plantaginaceae Plantago 51 0.9034 

Plantaginaceae Veronica 22 0.9525 

Pleuroziaceae Pleurozia 47 0.8737 

Poaceae Agrostis 90 0.9057 

Poaceae Alloteropsis 31 0.7351 

Poaceae Anthoxanthum 38 0.9191 

Poaceae Apluda 50 0.6687 

Poaceae Aristida 20 0.7752 

Poaceae Arthraxon 59 0.8615 

Poaceae Arundinella 69 0.7145 

Poaceae Bothriochloa 16 0.7683 

Poaceae Brachiaria 46 0.7277 

Poaceae Brachypodium 29 0.851 

Poaceae Calamagrostis 51 0.8506 

Poaceae Capillipedium 42 0.8528 

Poaceae Cenchrus 68 0.6926 

Poaceae Centotheca 63 0.5752 

Poaceae Chionachne 27 0.6119 

Poaceae Chloris 20 0.6605 

Poaceae Chrysopogon 33 0.7441 

Poaceae Coelachne 13 0.9299 

Poaceae Coelorachis 20 0.6771 

Poaceae Coix 63 0.5668 

Poaceae Cortaderia 60 0.9107 

Poaceae Cymbopogon 31 0.6934 

Poaceae Cynodon 13 0.6967 

Poaceae Cyrtococcum 57 0.642 

Poaceae Deschampsia 71 0.8974 

Poaceae Dichanthium 24 0.7954 
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Poaceae Dichelachne 58 0.9196 

Poaceae Digitaria 112 0.6586 

Poaceae Dimeria 40 0.709 

Poaceae Echinochloa 70 0.6193 

Poaceae Echinopogon 33 0.9108 

Poaceae Ectrosia 13 0.928 

Poaceae Ehrharta 21 0.9305 

Poaceae Eleusine 55 0.5946 

Poaceae Elionurus 13 0.7358 

Poaceae Eragrostis 136 0.6116 

Poaceae Eremochloa 10 0.8036 

Poaceae Eriachne 34 0.76 

Poaceae Eulalia 110 0.7042 

Poaceae Festuca 36 0.9129 

Poaceae Garnotia 33 0.5066 

Poaceae Germainia 15 0.9214 

Poaceae Hackelochloa 20 0.7879 

Poaceae Heteropogon 16 0.9364 

Poaceae Hierochloe 31 0.8493 

Poaceae Hymenachne 15 0.6663 

Poaceae Hyparrhenia 14 0.8491 

Poaceae Imperata 89 0.6356 

Poaceae Isachne 158 0.6716 

Poaceae Ischaemum 145 0.5812 

Poaceae Lachnagrostis 13 0.9421 

Poaceae Leersia 35 0.7168 

Poaceae Leptaspis 63 0.6646 

Poaceae Leptochloa 36 0.7674 

Poaceae Lophatherum 25 0.5438 

Poaceae Melinis 21 0.7464 

Poaceae Microstegium 19 0.6868 

Poaceae Miscanthus 65 0.8384 

Poaceae Mnesithea 36 0.7917 

Poaceae Nastus 101 0.7566 

Poaceae Neololeba 31 0.6267 

Poaceae Ophiuros 34 0.6972 

Poaceae Oplismenus 88 0.582 

Poaceae Oryza 20 0.8598 

Poaceae Ottochloa 12 0.663 

Poaceae Panicum 116 0.7181 

Poaceae Paspalum 171 0.5841 
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Poaceae Pennisetum 33 0.5704 

Poaceae Perotis 17 0.7944 

Poaceae Phragmites 40 0.6385 

Poaceae Poa 102 0.8789 

Poaceae Pogonatherum 42 0.647 

Poaceae Pseudechinolaena 13 0.7712 

Poaceae Pseudopogonatherum 21 0.8246 

Poaceae Pseudoraphis 17 0.9208 

Poaceae Racemobambos 23 0.7765 

Poaceae Rottboellia 14 0.7825 

Poaceae Rytidosperma 76 0.879 

Poaceae Saccharum 40 0.5572 

Poaceae Sacciolepis 101 0.6576 

Poaceae Schizachyrium 14 0.7843 

Poaceae Schizostachyum 28 0.595 

Poaceae Scrotochloa 22 0.6735 

Poaceae Setaria 136 0.6491 

Poaceae Sorghum 73 0.7584 

Poaceae Sporobolus 38 0.6996 

Poaceae Themeda 105 0.6821 

Poaceae Thysanolaena 28 0.7733 

Podocarpaceae Dacrycarpus 154 0.8692 

Podocarpaceae Dacrydium 66 0.6934 

Podocarpaceae Decussocarpus 14 0.737 

Podocarpaceae Falcatifolium 19 0.78 

Podocarpaceae Nageia 35 0.5688 

Podocarpaceae Podocarpus 229 0.6214 

Podocarpaceae Prumnopitys 15 0.6633 

Podocarpaceae Sundacarpus 41 0.741 

Polygalaceae Eriandra 19 0.6097 

Polygalaceae Polygala 132 0.6626 

Polygalaceae Securidaca 33 0.5403 

Polygalaceae Xanthophyllum 43 0.5654 

Polygonaceae Homalocladium 14 0.5862 

Polygonaceae Muehlenbeckia 56 0.8309 

Polygonaceae Persicaria 146 0.6489 

Polygonaceae Polygonum 115 0.6478 

Polygonaceae Rumex 18 0.9261 

Polypodiaceae Belvisia 200 0.7922 

Polypodiaceae Colysis 14 0.6164 

Polypodiaceae Crypsinus 57 0.758 
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Polypodiaceae Drynaria 99 0.472 

Polypodiaceae Goniophlebium 64 0.7896 

Polypodiaceae Grammitis 153 0.8118 

Polypodiaceae Lecanopteris 55 0.563 

Polypodiaceae Lemmaphyllum 89 0.6342 

Polypodiaceae Lepisorus 23 0.9107 

Polypodiaceae Leptochilus 23 0.5835 

Polypodiaceae Merinthosorus 18 0.631 

Polypodiaceae Microsorum 354 0.5277 

Polypodiaceae Oreogrammitis 47 0.905 

Polypodiaceae Phymatosorus 65 0.5735 

Polypodiaceae Platycerium 12 0.6788 

Polypodiaceae Polypodium 41 0.7242 

Polypodiaceae Pyrrosia 185 0.4902 

Polypodiaceae Schellolepis 72 0.7221 

Polypodiaceae Scleroglossum 17 0.7449 

Polypodiaceae Selliguea 243 0.7053 

Polypodiaceae Themelium 25 0.798 

Polytrichaceae Dawsonia 74 0.8801 

Polytrichaceae Pogonatum 37 0.8391 

Porellaceae Porella 58 0.916 

Portulacaceae Portulaca 34 0.6617 

Potamogetonaceae Potamogeton 16 0.6593 

Pottiaceae Anoectangium 16 0.9449 

Pottiaceae Barbula 54 0.8203 

Pottiaceae Didymodon 10 0.9532 

Pottiaceae Hyophila 37 0.8016 

Pottiaceae Oxystegus 12 0.9562 

Pottiaceae Pseudosymblepharis 35 0.9073 

Pottiaceae Trichostomum 12 0.8151 

Primulaceae Aegiceras 29 0.7271 

Primulaceae Ardisia 182 0.5464 

Primulaceae Discocalyx 66 0.6191 

Primulaceae Embelia 94 0.5786 

Primulaceae Lysimachia 30 0.928 

Primulaceae Maesa 172 0.6088 

Primulaceae Myrsine 288 0.7532 

Proteaceae Alloxylon 13 0.9624 

Proteaceae Banksia 38 0.8485 

Proteaceae Finschia 62 0.5955 

Proteaceae Gevuina 13 0.8547 
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Proteaceae Grevillea 58 0.7073 

Proteaceae Helicia 228 0.6426 

Proteaceae Stenocarpus 14 0.8265 

Psilotaceae Psilotum 89 0.6074 

Pteridaceae Acrostichum 34 0.6175 

Pteridaceae Adiantum 147 0.6638 

Pteridaceae Antrophyum 162 0.5965 

Pteridaceae Ceratopteris 26 0.7312 

Pteridaceae Cheilanthes 63 0.6554 

Pteridaceae Coniogramme 24 0.6777 

Pteridaceae Doryopteris 25 0.6823 

Pteridaceae Monogramma 25 0.5918 

Pteridaceae Pityrogramma 28 0.5144 

Pteridaceae Pteris 258 0.5636 

Pteridaceae Syngramma 58 0.5932 

Pteridaceae Taenitis 83 0.6471 

Pteridaceae Vittaria 205 0.5487 

Pteridiaceae Paesia 22 0.8981 

Pterobryaceae Calyptothecium 55 0.8522 

Pterobryaceae Garovaglia 100 0.8081 

Pterobryaceae Neolindbergia 10 0.8953 

Pterobryaceae Trachyloma 31 0.8581 

Putranjivaceae Drypetes 30 0.5499 

Racopilaceae Powellia 17 0.878 

Racopilaceae Racopilum 129 0.7961 

Radulaceae Radula 86 0.7211 

Ranunculaceae Clematis 121 0.5835 

Ranunculaceae Ranunculus 100 0.9011 

Rhamnaceae Alphitonia 161 0.5438 

Rhamnaceae Colubrina 26 0.5618 

Rhamnaceae Emmenosperma 21 0.6969 

Rhamnaceae Gouania 44 0.604 

Rhamnaceae Rhamnus 57 0.8177 

Rhamnaceae Ventilago 13 0.6611 

Rhamnaceae Ziziphus 41 0.6185 

Rhizogoniaceae Hymenodon 35 0.8161 

Rhizogoniaceae Hymenodontopsis 25 0.9225 

Rhizogoniaceae Pyrrhobryum 43 0.717 

Rhizogoniaceae Rhizogonium 15 0.5399 

Rhizophoraceae Bruguiera 54 0.7201 

Rhizophoraceae Ceriops 14 0.7246 
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Rhizophoraceae Gynotroches 58 0.5148 

Rhizophoraceae Rhizophora 40 0.7466 

Rosaceae Acaena 28 0.8881 

Rosaceae Potentilla 94 0.9073 

Rosaceae Prunus 220 0.614 

Rosaceae Pygeum 22 0.7145 

Rosaceae Rubus 220 0.6268 

Rubiaceae Aidia 29 0.6089 

Rubiaceae Airosperma 19 0.7191 

Rubiaceae Amaracarpus 152 0.5915 

Rubiaceae Anthorrhiza 13 0.7913 

Rubiaceae Antirhea 28 0.5921 

Rubiaceae Argostemma 41 0.7357 

Rubiaceae Atractocarpus 93 0.5098 

Rubiaceae Borreria 34 0.5545 

Rubiaceae Canthium 79 0.5113 

Rubiaceae Coelospermum 12 0.594 

Rubiaceae Coprosma 80 0.921 

Rubiaceae Coptosapelta 12 0.6085 

Rubiaceae Dolianthus 60 0.8637 

Rubiaceae Dolicholobium 48 0.7033 

Rubiaceae Exallage 10 0.6519 

Rubiaceae Galium 51 0.9231 

Rubiaceae Gardenia 142 0.4986 

Rubiaceae Geophila 22 0.6181 

Rubiaceae Guettarda 14 0.7318 

Rubiaceae Hedyotis 120 0.6045 

Rubiaceae Hydnophytum 146 0.4949 

Rubiaceae Ixora 151 0.5252 

Rubiaceae Knoxia 16 0.6161 

Rubiaceae Lasianthus 109 0.5297 

Rubiaceae Lucinaea 35 0.5227 

Rubiaceae Mastixiodendron 52 0.4535 

Rubiaceae Mitracarpus 12 0.6229 

Rubiaceae Mitragyna 13 0.6827 

Rubiaceae Morinda 110 0.5744 

Rubiaceae Mussaenda 197 0.5562 

Rubiaceae Mycetia 27 0.6635 

Rubiaceae Myrmecodia 82 0.5607 

Rubiaceae Nauclea 56 0.6196 

Rubiaceae Neanotis 19 0.8178 
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Rubiaceae Neolamarckia 23 0.6603 

Rubiaceae Neonauclea 151 0.5574 

Rubiaceae Nertera 62 0.8898 

Rubiaceae Oldenlandia 81 0.5223 

Rubiaceae Ophiorrhiza 98 0.6507 

Rubiaceae Pachystylus 29 0.5805 

Rubiaceae Pavetta 76 0.6188 

Rubiaceae Porterandia 13 0.5498 

Rubiaceae Psychotria 465 0.5129 

Rubiaceae Psydrax 35 0.6165 

Rubiaceae Randia 114 0.5005 

Rubiaceae Rhadinopus 10 0.7028 

Rubiaceae Saprosma 12 0.5267 

Rubiaceae Schradera 52 0.5408 

Rubiaceae Spermacoce 92 0.6223 

Rubiaceae Tarenna 83 0.5612 

Rubiaceae Timonius 292 0.5234 

Rubiaceae Uncaria 91 0.5181 

Rubiaceae Urophyllum 82 0.6932 

Rubiaceae Versteegia 24 0.5594 

Rubiaceae Wendlandia 53 0.669 

Rubiaceae Xanthophytum 15 0.6346 

Rutaceae Acronychia 147 0.6892 

Rutaceae Citrus 25 0.6731 

Rutaceae Clausena 11 0.6755 

Rutaceae Euodia 74 0.6171 

Rutaceae Evodiella 16 0.8138 

Rutaceae Flindersia 93 0.5545 

Rutaceae Geijera 11 0.9716 

Rutaceae Glycosmis 18 0.6851 

Rutaceae Halfordia 43 0.5157 

Rutaceae Lunasia 33 0.6806 

Rutaceae Melicope 462 0.5848 

Rutaceae Micromelum 79 0.6322 

Rutaceae Murraya 10 0.8501 

Rutaceae Tetractomia 19 0.6185 

Rutaceae Wenzelia 19 0.6266 

Rutaceae Zanthoxylum 55 0.5841 

Sabiaceae Meliosma 91 0.7039 

Salicaceae Casearia 160 0.5481 

Salicaceae Flacourtia 41 0.6825 
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Salicaceae Homalium 57 0.6322 

Santalaceae Cladomyza 76 0.8639 

Santalaceae Dendromyza 67 0.7475 

Santalaceae Dendrotrophe 20 0.632 

Santalaceae Exocarpos 66 0.77 

Santalaceae Notothixos 30 0.5582 

Santalaceae Santalum 32 0.9481 

Santalaceae Scleropyrum 34 0.58 

Santalaceae Viscum 28 0.5673 

Sapindaceae Alectryon 61 0.6836 

Sapindaceae Allophylus 96 0.6128 

Sapindaceae Arytera 44 0.5252 

Sapindaceae Cardiospermum 10 0.5905 

Sapindaceae Cnesmocarpon 10 0.5297 

Sapindaceae Cupaniopsis 73 0.5998 

Sapindaceae Dictyoneura 35 0.6608 

Sapindaceae Dodonaea 83 0.8281 

Sapindaceae Elattostachys 31 0.7194 

Sapindaceae Ganophyllum 21 0.525 

Sapindaceae Guioa 98 0.5447 

Sapindaceae Harpullia 209 0.5843 

Sapindaceae Jagera 39 0.6161 

Sapindaceae Lepisanthes 22 0.5155 

Sapindaceae Mischocarpus 61 0.634 

Sapindaceae Pometia 65 0.6184 

Sapindaceae Sarcopteryx 52 0.5641 

Sapindaceae Toechima 30 0.5919 

Sapindaceae Tristiropsis 28 0.582 

Sapotaceae Burckella 30 0.7005 

Sapotaceae Chrysophyllum 12 0.6426 

Sapotaceae Madhuca 14 0.724 

Sapotaceae Magodendron 10 0.6999 

Sapotaceae Palaquium 71 0.6431 

Sapotaceae Planchonella 148 0.5967 

Sapotaceae Pleioluma 46 0.6232 

Sapotaceae Pouteria 80 0.5769 

Saxifragaceae Astilbe 21 0.8728 

Scapaniaceae Gottschelia 15 0.9657 

Scapaniaceae Scapania 17 0.9215 

Schistochilaceae Gottschea 32 0.9213 

Schistochilaceae Schistochila 72 0.844 
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Schizaeaceae Schizaea 127 0.5932 

Scrophulariaceae Buddleja 30 0.7153 

Scrophulariaceae Parahebe 50 0.8988 

Selaginellaceae Selaginella 285 0.5224 

Sematophyllaceae Acroporium 60 0.7383 

Sematophyllaceae Meiothecium 12 0.7303 

Sematophyllaceae Sematophyllum 10 0.918 

Sematophyllaceae Trismegistia 45 0.7168 

Sematophyllaceae Warburgiella 15 0.9164 

Simaroubaceae Ailanthus 18 0.688 

Simaroubaceae Picrasma 13 0.6801 

Simaroubaceae Quassia 19 0.6102 

Smilacaceae Smilax 92 0.4474 

Solanaceae Lycianthes 80 0.7378 

Solanaceae Nicotiana 13 0.621 

Solanaceae Solanum 279 0.6274 

Sphagnaceae Sphagnum 71 0.8588 

Sphenostemonaceae Sphenostemon 76 0.8034 

Spiridentaceae Spiridens 66 0.8452 

Splachnaceae Tetraplodon 10 0.9771 

Staphyleaceae Turpinia 62 0.6775 

Stemonaceae Stemona 10 0.756 

Sterculiaceae Ambroma 13 0.6352 

Styracaceae Bruinsmia 16 0.5499 

Styracaceae Styrax 18 0.6291 

Symplocaceae Symplocos 262 0.6733 

Tectariaceae Pleocnemia 55 0.6747 

Tectariaceae Tectaria 123 0.6266 

Theaceae Adinandra 43 0.5158 

Theaceae Gordonia 68 0.5825 

Theaceae Terustroemia 59 0.4857 

Thelypteridaceae Amphineuron 33 0.5947 

Thelypteridaceae Christella 38 0.5966 

Thelypteridaceae Coryphopteris 48 0.7776 

Thelypteridaceae Cyclosorus 88 0.5295 

Thelypteridaceae Macrothelypteris 18 0.5671 

Thelypteridaceae Parathelypteris 23 0.9298 

Thelypteridaceae Plesioneuron 62 0.6897 

Thelypteridaceae Pneumatopteris 117 0.5346 

Thelypteridaceae Pronephrium 55 0.6531 

Thelypteridaceae Pseudophegopteris 14 0.9231 
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Thelypteridaceae Sphaerostephanos 272 0.5392 

Thelypteridaceae Thelypteris 61 0.5456 

Thuidiaceae Pelekium 18 0.633 

Thuidiaceae Thuidium 85 0.672 

Thymelaeaceae Drapetes 38 0.9112 

Thymelaeaceae Kelleria 34 0.9484 

Thymelaeaceae Phaleria 145 0.5751 

Thymelaeaceae Thecanthes 19 0.7012 

Thymelaeaceae Wikstroemia 39 0.7917 

Tiliaceae Microcos 132 0.6122 

Trachypodaceae Trachypus 10 0.9484 

Trichocoleaceae Trichocolea 56 0.8242 

Trimeniaceae Trimenia 79 0.7708 

Triuridaceae Sciaphila 22 0.5558 

Typhaceae Typha 19 0.8718 

Urticaceae Boehmeria 39 0.6472 

Urticaceae Cypholophus 172 0.6314 

Urticaceae Debregeasia 24 0.7162 

Urticaceae Dendrocnide 92 0.5273 

Urticaceae Elatostema 294 0.5848 

Urticaceae Gonostegia 37 0.6855 

Urticaceae Laportea 67 0.5171 

Urticaceae Lecanthus 17 0.9172 

Urticaceae Leucosyke 113 0.5934 

Urticaceae Maoutia 78 0.6076 

Urticaceae Nothocnide 67 0.5317 

Urticaceae Oreocnide 54 0.5842 

Urticaceae Pilea 177 0.7562 

Urticaceae Pipturus 245 0.5618 

Urticaceae Poikilospermum 112 0.5027 

Urticaceae Pouzolzia 51 0.6001 

Urticaceae Procris 132 0.6072 

Urticaceae Urticastrum 32 0.6994 

Verbenaceae Calocarpa 28 0.5757 

Verbenaceae Clerodendron 45 0.6572 

Verbenaceae Lantana 11 0.6038 

Verbenaceae Stachytarpheta 39 0.5017 

Verbenaceae Verbena 16 0.8861 

Violaceae Rinorea 42 0.5887 

Violaceae Viola 115 0.8447 

Vitaceae Cayratia 82 0.5397 
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Vitaceae Cissus 106 0.4926 

Vitaceae Nothocissus 25 0.5505 

Vitaceae Tetrastigma 80 0.5031 

Vittariaceae Vaginularia 16 0.615 

Winteraceae Belliolum 22 0.7237 

Winteraceae Bubbia 96 0.7427 

Winteraceae Drimys 159 0.8215 

Winteraceae Takhtajania 42 0.8194 

Winteraceae Tasmannia 143 0.868 

Winteraceae Zygogynum 160 0.7737 

Woodsiaceae Athyrium 46 0.7835 

Woodsiaceae Deparia 13 0.8259 

Woodsiaceae Diplazium 290 0.609 

Xanthorrhoeaceae Dianella 98 0.5318 

Xyridaceae Xyris 40 0.6122 

Zingiberaceae Alpinia 220 0.5458 

Zingiberaceae Curcuma 44 0.6085 

Zingiberaceae Etlingera 58 0.6326 

Zingiberaceae Hornstedtia 43 0.6012 

Zingiberaceae Pleuranthodium 38 0.5944 

Zingiberaceae Riedelia 206 0.565 

 

Table 10.6. Comparison of test AUC and null AUC scores for select genera. 

Family Genus 

Occurrences 
after rarify, 

biases Test AUC Null AUC 
Nothofagaceae Nothofagus 175 0.8419 0.503006 
Ericaceae Rhododendron 458 0.7947 0.504158 
Apocynaceae Alstonia 116 0.503 0.505113 
Rosaceae Acaena 28 0.8881 0.504384 
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10.2.  Appendix 3B: Genera Not Included In Study Due To Low Auc Scores 

Table 10.7. Summary of results for genera not included in the study 
 Occurrences Test AUC 
Mean 21 0.4434 
Standard deviation  11 0.0532 
Most # of occurrences 46 0.4995 
Least # of occurrences 10 0.1989 
   
Total genera  62  
Total occurrences 1284  

 

Table 10.8. Genera with test AUC scores less than 0.5 and occurrences fewer than 50. 
Family Genus Occurrences 

(after rarify, 
biases) 

Test AUC 

Acanthaceae Leptosiphonium 22 0.4226 

Annonaceae Mitrella 31 0.4372 

Apocynaceae Asclepias 10 0.3692 

Apocynaceae Kopsia 10 0.4843 

Apocynaceae Papuechites 35 0.4856 

Apocynaceae Tylophora 43 0.4409 

Araceae Amydrium 20 0.4167 

Araceae Colocasia 12 0.4328 

Arecaceae Gronophyllum 26 0.4675 

Aristolochiaceae Pararistolochia 12 0.4312 

Asclepiadaceae Sarcolobus 30 0.4937 

Bignoniaceae Pandorea 37 0.4217 

Calophyllaceae Mammea 18 0.4973 

Celastraceae Lophopetalum 14 0.3376 

Clethraceae Clethra 10 0.4374 

Commelinaceae Commelina 37 0.4995 

Euphorbiaceae Briedelia 10 0.3589 

Euphorbiaceae Omalanthus 35 0.4656 

Euphorbiaceae Spathiostemon 27 0.4984 

Fabaceae Centrosema 10 0.4407 

Fabaceae Flemingia 20 0.4842 

Fabaceae Paraderris 11 0.3842 

Fabaceae Sesbania 11 0.3959 

Hymenophyllaceae Gonocormus 12 0.3397 
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Hypoxidaceae Molineria 11 0.4991 

Lamiaceae Dysophylla 13 0.468 

Lamiaceae Orthosiphon 15 0.468 

Lejeuneaceae Leptolejeunea 10 0.4921 

Malvaceae Abroma 19 0.4248 

Melastomataceae Creochiton 10 0.4229 

Menispermaceae Stephania 46 0.4193 

Moraceae Parartocarpus 25 0.4128 

Moraceae Prainea 15 0.3919 

Musaceae Musa 13 0.483 

Myrsinaceae Fittingia 21 0.4653 

Myrtaceae Acmena 12 0.4534 

Olacaceae Anacolosa 14 0.497 

Orchidaceae Chilopogon 11 0.493 

Orchidaceae Corymborkis 12 0.4518 

Orchidaceae Dipodium 13 0.1989 

Orchidaceae Habenaria 34 0.4794 

Orchidaceae Robiquetia 14 0.492 

Orchidaceae Thelasis 11 0.4925 

Orchidaceae Tropidia 14 0.4769 

Orobanchaceae Striga 15 0.4851 

Phyllanthaceae Bischofia 41 0.463 

Poaceae Axonopus 19 0.4775 

Poaceae Bambusa 46 0.4959 

Poaceae Ichnanthus 22 0.4269 

Rhizophoraceae Carallia 42 0.4469 

Rubiaceae Cyclophyllum 34 0.4892 

Rubiaceae Gynochthodes 31 0.4476 

Sabiaceae Sabia 14 0.4606 

Salicaceae Xylosma 15 0.4724 

Sapindaceae Sarcotoechia 10 0.3707 

Scrophulariaceae Lymnophila 10 0.3838 

Sematophyllaceae Taxithelium 24 0.4682 

Solanaceae Physalis 30 0.417 

Vitaceae Ampelocissus 11 0.42 

Vittariaceae Haplopteris 35 0.4669 

Zingiberaceae Amomum 33 0.3868 

Zingiberaceae Zingiber 16 0.4904 
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10.3. Appendix 3c: Genera with too few occurrences to be included in the model 

Table 10.9. Summary of genera with too few occurrences to run initially and after rarify and 
biases were conducted. 

 Number of Genera Occurrences 
Too few to run (after rarify, 
biases) 

178 ~1600 

Too few occurrences initially 905 3241 
 

Table 10.10. List of genera with too few occurrences to run after rarify and biases were 
conducted and too few occurrences initially. 

Too few occurrences to run (after rarify, 
biases, all are <10) 

Too few occurrences initially 

Family Genus Family Genus 
Occ
urre
nces 

Acanthaceae Asystasia Acanthaceae Ancylacanthus 1 
Achariaceae Hydnocarpus Acanthaceae Aphelandra 3 
Acoraceae Acorus Acanthaceae Barleria 2 
Alismataceae Caldesia Acanthaceae Blechum 6 
Amaryllidaceae Crinum Acanthaceae Brunoniella 2 
Anacardiaceae Gluta Acanthaceae Dipteracanthus 5 
Annonaceae Fissistigma Acanthaceae Gendarussa 3 
Annonaceae Friesodielsia Acanthaceae Geunsia 6 
Annonaceae Meiogyne Acanthaceae Isoglossa 2 
Annonaceae Miliusa Acanthaceae Nelsonia 3 
Annonaceae Rauwenhoffia Acanthaceae Odontonema 1 
Apocynaceae Allamanda Acanthaceae Pachystachys 1 
Apocynaceae Carissa Acanthaceae Peristrophe 4 
Apocynaceae Catharanthus Acanthaceae Phlogacanthus 2 
Apocynaceae Secamone Acanthaceae Polytrema 2 
Araceae Aglaonema Acanthaceae Psacadocalymma 1 
Araceae Amorphophallus Acanthaceae Rhaphidospora 5 
Araceae Pistia Acanthaceae Sanchezia 5 
Araceae Syngonium Acanthaceae Strobilanthes 2 
Araceae Typhonium Acrobolbaceae Lethocolea 1 
Arecaceae Elaeis Acrobolbaceae Tylimanthus 8 
Arecaceae Pinanga Adelanthaceae Wettsteinia 2 
Asparagaceae Agave Adoxaceae Viburnum 2 
Asteraceae Cosmos Aizoaceae Trianthema 6 
Asteraceae Eleutheranthera Alismataceae Sagittaria 5 
Asteraceae Epaltes Alseuosmiaceae Periomphale 1 
Asteraceae Helianthus Alseuosmiaceae Wittsteinia 4 
Asteraceae Tithonia Alstroemeriaceae Luzuriaga 3 
Asteraceae Zinnia Amaranthaceae Aerva 2 
Balantiopsidaceae Isotachis Amaranthaceae Chenopodium 8 
Bignoniaceae Spathodea Amaranthaceae Psilotrichum 1 
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Bignoniaceae Tecoma Amaranthaceae Ptilotus 1 
Bixaceae Cochlospermum Amaryllidaceae Proiphys 1 
Boraginaceae Argusia Amblystegiaceae Calliergon 9 
Boraginaceae Ehretia Amblystegiaceae Drepanocladus 2 
Brassicaceae Capsella Amblystegiaceae Limprichtia 3 
Cannaceae Canna Anacardiaceae Anacardium 4 
Caprifoliaceae Lonicera Anacardiaceae Koordersiodendron 1 
Caricaceae Carica Anacardiaceae Solenocarpus 3 
Caryophyllaceae Silene Anacardiaceae Toxicodendron 7 
Celastraceae Bhesa Annonaceae Alphonsea 3 
Celastraceae Euonymus Annonaceae Anaxagorea 1 
Celastraceae Gymnosporia Annonaceae Annona 2 
Chrysobalanaceae Hunga Annonaceae Cyathostemma 3 
Commelinaceae Tradescantia Annonaceae Desmos 1 
Convolvulaceae Operculina Annonaceae Enicosanthum 3 
Convolvulaceae Porana Annonaceae Huberantha 7 
Cucurbitaceae Benincasa Annonaceae Mitrephora 3 
Cucurbitaceae Cucurbita Annonaceae Petalolophus 6 
Cucurbitaceae Lagenaria Annonaceae Rollinia 1 
Cucurbitaceae Sechium Antheliaceae Anthelia 1 
Cyperaceae Actinoscirpus Apiaceae Andriana 2 
Cyperaceae Diplacrum Apiaceae Apium 2 
Cyperaceae Lepironia Apiaceae Cyclospermum 4 
Cyperaceae Remirea Apiaceae Lisaea 1 
Ditrichaceae Garckea Apiaceae Osmorhiza 2 
Euphorbiaceae Hevea Apiaceae Scandix 3 
Euphorbiaceae Jatropha Apocynaceae Bleekeria 1 
Euphorbiaceae Manihot Apocynaceae Brachystelma 3 
Euphorbiaceae Ricinus Apocynaceae Calotropis 4 
Fabaceae Aganope Apocynaceae Chilocarpus 2 
Fabaceae Brownea Apocynaceae Clitandropsis 2 
Fabaceae Butea Apocynaceae Delphyodon 8 
Fabaceae Calliandra Apocynaceae Dischidiopsis 1 
Fabaceae Castanospermum Apocynaceae Ervatamia 5 
Fabaceae Clitoria Apocynaceae Gymnema 9 
Fabaceae Cullen Apocynaceae Nerium 1 
Fabaceae Dumasia Apocynaceae Pachycarpus 1 
Fabaceae Enterolobium Apocynaceae Rejoua 9 
Fabaceae Eriosema Apocynaceae Saba 1 
Fabaceae Galactia Apocynaceae Trachelospermum 2 
Fabaceae Gliricidia Araceae Anthurium 1 
Fabaceae Lablab Araceae Arum 1 
Fabaceae Lathyrus Araceae Lasia 7 
Fabaceae Lonchocarpus Araceae Lemna 4 
Fabaceae Lupinus Araceae Pedicellarum 1 
Fabaceae Macrotyloma Araceae Raphidophora 1 
Fabaceae Mundulea Araceae Spirodela 9 
Fabaceae Neptunia Araceae Xanthosoma 1 
Fabaceae Ormosia Araliaceae Boerlagiodendron 5 
Fabaceae Pachyrhizus Araliaceae Delarbrea 4 
Fabaceae Peltophorum Araliaceae Meryta 2 
Fabaceae Pericopsis Araliaceae Plerandra 4 
Fabaceae Prosopis Arecaceae Borassus 4 
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Fabaceae Psophocarpus Arecaceae Clinostigma 5 
Fabaceae Saraca Arecaceae Cocos 1 
Fabaceae Sophora Arecaceae Corypha 1 
Fabaceae Tamarindus Arecaceae Drymophloeus 8 
Fabaceae Vicia Arecaceae Gulubia 8 
Fabaceae Zornia Arecaceae Iguanura 1 
Goodeniaceae Goodenia Arecaceae Nypa 4 
Halimedaceae Halimeda Arecaceae Oraniopsis 3 
Hydrocharitaceae Enhalus Arecaceae Paralinospadix 2 
Hydrocharitaceae Halophila Arecaceae Physokentia 2 
Hydrocharitaceae Ottelia Arecaceae Sabal 1 
Hymenophyllaceae Callistopteris Arecaceae Saribus 2 
Icacinaceae Merrilliodendron Arecaceae Thrinax 1 
Lamiaceae Ceratanthus Arecaceae Veitchia 1 
Lamiaceae Tectona Asclepiadaceae Gymnanthera 5 
Lauraceae Dehaasia Asclepiadaceae Ischnostemma 2 
Lauraceae Nothaphoebe Asclepiadaceae Phyllanthera 7 
Lauraceae Persea Asclepiadaceae Stephanotis 1 
Loganiaceae Spigelia Asparagaceae Arthropodium 4 
Lythraceae Pemphis Asparagaceae Eustrephus 5 
Malpighiaceae Tristellateia Asparagaceae Romnalda 6 
Malvaceae Camptostemon Asparagaceae Thysanotus 6 
Malvaceae Ceiba Aspleniaceae Hymenasplenium 6 
Malvaceae Durio Aspleniaceae Loxoscaphe 2 
Malvaceae Gossypium Asteraceae Acanthospermum 2 
Malvaceae Malvastrum Asteraceae Artemisia 1 
Malvaceae Ochroma Asteraceae Aster 1 
Melastomataceae Pachycentria Asteraceae Bedfordia 3 
Melastomataceae Sonerila Asteraceae Brachycome 2 
Meliaceae Melia Asteraceae Brachyscome 6 
Menispermaceae Macrococculus Asteraceae Camptacra 9 
Molluginaceae Mollugo Asteraceae Celmisia 1 
Monimiaceae Matthaea Asteraceae Centratherum 8 
Moraceae Broussonetia Asteraceae Cirsium 1 
Moraceae Morus Asteraceae Conyza 5 
Myrtaceae Gossia Asteraceae Cotula 6 
Myrtaceae Kjellbergiodendron Asteraceae Crepis 3 
Myrtaceae Leptospermum Asteraceae Dicoma 1 
Myrtaceae Myrtus Asteraceae Glossocardia 3 
Myrtaceae Psidium Asteraceae Helichrysum 3 
Nelumbonaceae Nelumbo Asteraceae Hypochaeris 1 
Nyctaginaceae Mirabilis Asteraceae Lagenocypsela 6 
Ochnaceae Brackenridgea Asteraceae Laphangium 2 
Orchidaceae Cleisostoma Asteraceae Lepidaploa 4 
Orchidaceae Eulophia Asteraceae Myriactis 8 
Orchidaceae Flickingeria Asteraceae Phacellothrix 2 
Orchidaceae Grammatophyllum Asteraceae Phrygia 1 
Orchidaceae Hylophila Asteraceae Piora 4 
Orchidaceae Nervilia Asteraceae Pterocaulon 8 
Phyllanthaceae Sauropus Asteraceae Pyrethrum 1 
Plantaginaceae Angelonia Asteraceae Raoulia 2 
Plantaginaceae Russelia Asteraceae Rhamphogyne 1 
Plumbaginaceae Aegialitis Asteraceae Solidago 1 
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Plumbaginaceae Plumbago Asteraceae Sparganophorus 1 
Poaceae Dactyloctenium Asteraceae Sphaeranthus 5 
Poaceae Dendrocalamus Asteraceae Sphaeromorphaea 7 
Poaceae Ectrosiopsis Asteraceae Spilanthes 6 
Poaceae Elymus Asteraceae Strobocalyx 1 
Poaceae Eriochloa Asteraceae Tanacetum 4 
Poaceae Lepturus Asteraceae Vittadinia 2 
Poaceae Lolium Asteraceae Wedelia 7 
Poaceae Thuarea Asteraceae Xanthium 3 
Podocarpaceae Retrophyllum Athyriaceae Acystopteris 2 
Polygalaceae Salomonia Athyriaceae Anisocampium 1 
Polygonaceae Antigonon Athyriaceae Diplaziopsis 9 
Pteridaceae Gaga Athyriaceae Dryoathyrium 3 
Restionaceae Dapsilanthus Balanophoraceae Langsdorffia 6 
Rubiaceae Bikkia Bartramiaceae Anacolia 4 
Rubiaceae Cinchona Bartramiaceae Conostomum 2 
Rubiaceae Coffea Bartramiaceae Fleischerobryum 3 
Rubiaceae Paederia Bartramiaceae Leiomela 8 
Rubiaceae Pentas Bataceae Batis 4 
Rubiaceae Sarcocephalus Batrachospermaceae Batrachospermum 3 
Rubiaceae Scyphiphora Berberidaceae Caulophyllum 1 
Rutaceae Clymenia Bignoniaceae Jacaranda 2 
Rutaceae Triphasia Bignoniaceae Lamiodendron 6 
Santalaceae Ginalloa Bignoniaceae Saritaea 1 
Sapindaceae Dimocarpus Blechnaceae Woodwardia 8 
Sapindaceae Nephelium Boraginaceae Bothriospermum 5 
Sapindaceae Rhysotoechia Boraginaceae Carmona 7 
Sapindaceae Synima Boraginaceae Coldenia 3 
Sapotaceae Manilkara Boraginaceae Halgania 1 
Sapotaceae Mimusops Boraginaceae Lithospermum 1 
Sapotaceae Pichonia Boraginaceae Trichodesma 2 
Sematophyllaceae Radulina Brachytheciaceae Cirriphyllum 1 
Simaroubaceae Soulamea Brachytheciaceae Eurhynchium 1 
Solanaceae Capsicum Brachytheciaceae Platyhypnidium 8 
Solanaceae Datura Brachytheciaceae Rhynchostegiella 4 
Talinaceae Talinum Brachytheciaceae Unclejackia 3 
Tectariaceae Pteridrys Brassicaceae Papuzilla 3 
Verbenaceae Duranta Brassicaceae Raphanus 2 
Verbenaceae Phyla Bryaceae Imbribryum 5 
Zingiberaceae Globba Bryaceae Mielichhoferia 4 
Zingiberaceae Hedychium Bryaceae Orthodontium 4 
Zygophyllaceae Tribulus Bryaceae Ptychostomum 1 
 

 
Burmanniaceae Thismia 2 

 
 

Burseraceae Bursera 1 
 

 
Burseraceae Rosselia 4 

 
 

Burseraceae Scutinanthe 2 
 

 
Buxbaumiaceae Buxbaumia 6 

 
 

Calymperaceae Thyridium 1 
 

 
Calypogeiaceae Mnioloma 1 

 
 

Campanulaceae Cyclocodon 9 
 

 
Campanulaceae Hippobroma 4 

 
 

Campanulaceae Pratia 6 
 

 
Campanulaceae Ruthiella 2 
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Capparaceae Celome 4 
 

 
Cardiopteridaceae Peripterygium 4 

 
 

Caryophyllaceae Agrostemma 1 
 

 
Caryophyllaceae Colobanthus 2 

 
 

Caryophyllaceae Polycarpaea 7 
 

 
Caryophyllaceae Scleranthus 9 

 
 

Casuarinaceae Ceuthostoma 2 
 

 
Caulacanthaceae Catenella 1 

 
 

Caulerpaceae Caulerpa 6 
 

 
Celastraceae Maytenus 7 

 
 

Celastraceae Pleurostylia 2 
 

 
Cephaloziaceae Cephalozia 1 

 
 

Cephaloziaceae Metahygrobiella 3 
 

 
Cephaloziaceae Nowellia 3 

 
 

Cephaloziaceae Odontoschisma 3 
 

 
Cephaloziaceae Schiffneria 1 

 
 

Cephaloziellaceae Cephaloziella 1 
 

 
Cephaloziellaceae Cylindrocolea 3 

 
 

Characeae Lychnothamnus 1 
 

 
Chenopodiaceae Salicornia 1 

 
 

Chrysobalanaceae Cyclandrophora 1 
 

 
Chrysobalanaceae Dactyladenia 2 

 
 

Chrysobalanaceae Licania 3 
 

 
Cladophoraceae Chaetomorpha 1 

 
 

Cladophoraceae Pithophora 1 
 

 
Cladophoraceae Rhizoclonium 2 

 
 

Cleomaceae Hemiscola 3 
 

 
Cleomaceae Tarenaya 2 

 
 

Clusiaceae Kayea 9 
 

 
Clusiaceae Mesua 9 

 
 

Clusiaceae Nouhuysia 2 
 

 
Clusiaceae Ochrocarpos 1 

 
 

Colchicaceae Gloriosa 3 
 

 
Combretaceae Quisqualis 9 

 
 

Commelinaceae Aclisia 3 
 

 
Commelinaceae Cartonema 1 

 
 

Commelinaceae Cyanotis 8 
 

 
Commelinaceae Dictyospermum 5 

 
 

Commelinaceae Forrestia 4 
 

 
Commelinaceae Rhopalephora 1 

 
 

Commelinaceae Tricarpelema 1 
 

 
Convolvulaceae Hewittia 1 

 
 

Convolvulaceae Xenostegia 1 
 

 
Corallinaceae Cheilosporum 1 

 
 

Corallinaceae Jania 1 
 

 
Costaceae Costus 1 

 
 

Crassulaceae Bryophyllum 3 
 

 
Crassulaceae Kalanchoe 1 

 
 

Cryphaeaceae Acrocryphaea 1 
 

 
Cucurbitaceae Bryonia 2 

 
 

Cucurbitaceae Bryonopsis 7 
 

 
Cucurbitaceae Cyclanthera 1 

 
 

Cucurbitaceae Gomphogyne 2 
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Cucurbitaceae Muckia 2 
 

 
Cucurbitaceae Muellerargia 4 

 
 

Cucurbitaceae Papuasicyos 5 
 

 
Cucurbitaceae Thladiantha 2 

 
 

Culcitaceae Culcita 7 
 

 
Cunoniaceae Geissois 1 

 
 

Cupressaceae Cryptomeria 3 
 

 
Cupressaceae Libocedrus 2 

 
 

Cyatheaceae Alsophila 5 
 

 
Cyatheaceae Sphaeropteris 4 

 
 

Cymodoceaceae Cymodocea 9 
 

 
Cymodoceaceae Halodule 6 

 
 

Cymodoceaceae Syringodium 3 
 

 
Cyperaceae Baumea 2 

 
 

Cyperaceae Bolboschoenus 3 
 

 
Cyperaceae Capitularia 1 

 
 

Cyperaceae Capitularina 9 
 

 
Cyperaceae Cladium 8 

 
 

Cyperaceae Exocarya 4 
 

 
Cyperaceae Lepidosperma 2 

 
 

Cyperaceae Scirpodendron 4 
 

 
Cyperaceae Thoracostachyum 4 

 
 

Cystocloniaceae Fimbrifolium 3 
 

 
Daltoniaceae Distichophyllidium 3 

 
 

Daltoniaceae Lepidopilum 3 
 

 
Dennstaedtiaceae Ithycaulon 2 

 
 

Dicksoniaceae Cibotium 2 
 

 
Dicnemonaceae Eucamptodon 3 

 
 

Dicnemonaceae Synodontia 3 
 

 
Dicranaceae Campylopodiella 3 

 
 

Dicranaceae Chorisodontium 3 
 

 
Dicranaceae Cladopodanthus 4 

 
 

Dicranaceae Dichodontium 4 
 

 
Dicranaceae Dicranodontium 9 

 
 

Dicranaceae Dicranoweisia 2 
 

 
Dicranaceae Microcampylopus 3 

 
 

Dipteridaceae Phymatodes 3 
 

 
Dipterocarpaceae Shorea 9 

 
 

Ditrichaceae Rhamphidium 4 
 

 
Ditrichaceae Wilsoniella 7 

 
 

Dryopteridaceae Arcypteris 4 
 

 
Dryopteridaceae Chlamydogramme 9 

 
 

Dryopteridaceae Hypodematium 4 
 

 
Dryopteridaceae Stenosemia 3 

 
 

Elaeocarpaceae Peripentadenia 2 
 

 
Elatinaceae Elatine 4 

 
 

Encalyptaceae Encalypta 1 
 

 
Entodontaceae Plagiotheciopsis 6 

 
 

Entodontaceae Trachyphyllum 5 
 

 
Eriocaulaceae Syngonanthus 3 

 
 

Euphorbiaceae Agrostistachys 3 
 

 
Euphorbiaceae Bischoffia 1 

 
 

Euphorbiaceae Chamaesyce 6 



161 

 

 
 

Euphorbiaceae Dimorphocalyx 4 
 

 
Euphorbiaceae Flueggia 2 

 
 

Euphorbiaceae Fontainea 6 
 

 
Euphorbiaceae Gymnanthes 1 

 
 

Euphorbiaceae Hura 2 
 

 
Euphorbiaceae Koilodepas 5 

 
 

Euphorbiaceae Leptopus 1 
 

 
Euphorbiaceae Octospermum 1 

 
 

Euphorbiaceae Ptychopyxis 7 
 

 
Euphorbiaceae Ryparia 1 

 
 

Euphorbiaceae Sapium 1 
 

 
Euphorbiaceae Suregada 9 

 
 

Euphorbiaceae Syndyophyllum 4 
 

 
Euphorbiaceae Trigonostemon 6 

 
 

Euphorbiaceae Wetria 4 
 

 
Fabaceae Abarema 9 

 
 

Fabaceae Acaciella 1 
 

 
Fabaceae Anadenanthera 4 

 
 

Fabaceae Aphyllodium 4 
 

 
Fabaceae Archidendropsis 9 

 
 

Fabaceae Austrosteenisia 8 
 

 
Fabaceae Calpurnia 1 

 
 

Fabaceae Colvillea 2 
 

 
Fabaceae Desmanthus 1 

 
 

Fabaceae Lotononis 1 
 

 
Fabaceae Lotus 1 

 
 

Fabaceae Lysiphyllum 4 
 

 
Fabaceae Neonotonia 2 

 
 

Fabaceae Ototropis 1 
 

 
Fabaceae Pararchidendron 9 

 
 

Fabaceae Prioria 3 
 

 
Fabaceae Solori 2 

 
 

Fagaceae Pasania 9 
 

 
Fagaceae Quercus 8 

 
 

Flacourtiaceae Scolopia 7 
 

 
Funariaceae Physcomitrium 3 

 
 

Galaxauraceae Galaxaura 2 
 

 
Gelidiaceae Gelidium 5 

 
 

Gentianaceae Centaurium 1 
 

 
Gentianaceae Cotylanthera 8 

 
 

Gentianaceae Lisianthus 1 
 

 
Gesneriaceae Dichotrichum 1 

 
 

Gesneriaceae Episcia 1 
 

 
Gesneriaceae Epithema 1 

 
 

Gesneriaceae Monophyllaea 7 
 

 
Gesneriaceae Oxychlamys 1 

 
 

Gesneriaceae Paraboea 1 
 

 
Gesneriaceae Sinningia 1 

 
 

Gesneriaceae Trichosporum 2 
 

 
Gnetaceae Thoa 1 

 
 

Goodeniaceae Calogyne 2 
 

 
Goodeniaceae Leschenaultia 2 

 
 

Goodeniaceae Velleia 4 
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Grammitidaceae Acrosorus 5 
 

 
Grammitidaceae Chrysogrammitis 3 

 
 

Grammitidaceae Nematopteris 1 
 

 
Grammitidaceae Radiogrammitis 7 

 
 

Grimmiaceae Grimmia 5 
 

 
Gymnomitriaceae Gymnomitrion 1 

 
 

Halymeniaceae Halymenia 2 
 

 
Hernandiaceae Illigera 1 

 
 

Himantandraceae Himantandra 1 
 

 
Hookeriaceae Bryobrothera 1 

 
 

Hookeriaceae Calyptrochaeta 5 
 

 
Hookeriaceae Eriopus 6 

 
 

Hookeriaceae Hookeria 1 
 

 
Hookeriaceae Hookeriopsis 5 

 
 

Hookeriaceae Pterygophyllum 6 
 

 
Hydrocharitaceae Hydrilla 6 

 
 

Hydrocharitaceae Hydrocharis 3 
 

 
Hydrocharitaceae Thalassia 7 

 
 

Hymenophyllaceae Didymoglossum 1 
 

 
Hymenophyllaceae Polyphlebium 4 

 
 

Hypnaceae Ectropotheciopsis 4 
 

 
Hypnaceae Giraldiella 1 

 
 

Hypnaceae Glossadelphus 9 
 

 
Hypnaceae Gollania 4 

 
 

Hypnaceae Hypnum 3 
 

 
Hypnaceae Leucomium 4 

 
 

Hypnaceae Macrothamniella 6 
 

 
Hypnaceae Rhizohypnella 3 

 
 

Hypnaceae Taxiphyllum 7 
 

 
Hypnaceae Trachythecium 9 

 
 

Hypnodendraceae Mniodendron 8 
 

 
Hypnodendraceae Sciadocladus 1 

 
 

Hypoxidaceae Hypoxis 3 
 

 
Icacinaceae Iodes 1 

 
 

Icacinaceae Phytocrene 7 
 

 
Iridaceae Sisyrinchium 7 

 
 

Iridaceae Tritonia 4 
 

 
Joinvilleaceae Joinvillea 3 

 
 

Jubulaceae Jubula 4 
 

 
Juncaginaceae Cycnogeton 2 

 
 

Juncaginaceae Triglochin 2 
 

 
Lamiaceae Clinopodium 1 

 
 

Lamiaceae Cymaria 3 
 

 
Lamiaceae Glossocarya 7 

 
 

Lamiaceae Marsypianthes 4 
 

 
Lamiaceae Mesona 7 

 
 

Lamiaceae Mesosphaerum 1 
 

 
Lamiaceae Satureja 2 

 
 

Lamiaceae Teucrium 4 
 

 
Lamiaceae Teysmanniodendron 1 

 
 

Lauraceae Brassiodendron 1 
 

 
Lauraceae Lindera 3 

 
 

Lauraceae Notaphoebe 1 
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Lejeuneaceae Acanthocoleus 2 
 

 
Lejeuneaceae Diplasiolejeunea 1 

 
 

Lejeuneaceae Harpalejeunea 1 
 

 
Lejeuneaceae Leucolejeunea 5 

 
 

Lejeuneaceae Metalejeunea 4 
 

 
Lejeuneaceae Microlejeunea 3 

 
 

Lejeuneaceae Myriocoleopsis 1 
 

 
Lejeuneaceae Otolejeunea 5 

 
 

Lejeuneaceae Papillolejeunea 9 
 

 
Lejeuneaceae Phaeolejeunea 2 

 
 

Lejeuneaceae Plagiolejeunea 1 
 

 
Lejeuneaceae Prionolejeunea 1 

 
 

Lejeuneaceae Stictolejeunea 1 
 

 
Lejeuneaceae Trachylejeunea 1 

 
 

Lejeuneaceae Trocholejeunea 9 
 

 
Lejeuneaceae Tuyamaella 4 

 
 

Lepidoziaceae Arachniopsis 3 
 

 
Lepidoziaceae Neolepidozia 2 

 
 

Lepidoziaceae Psiloclada 9 
 

 
Lepidoziaceae Zoopsis 8 

 
 

Leptodontaceae Caduciella 8 
 

 
Leskeaceae Duthiella 3 

 
 

Leskeaceae Lindbergia 6 
 

 
Leskeaceae Pseudoleskeopsis 4 

 
 

Leskeaceae Schwetschkea 3 
 

 
Leucodontaceae Forsstroemia 6 

 
 

Liliaceae Drakaina 7 
 

 
Linaceae Ixionanthes 1 

 
 

Lindsaeaceae Osmolindsaea 1 
 

 
Loganiaceae Mitreola 1 

 
 

Lomariopsidaceae Cyclopeltis 9 
 

 
Lomariopsidaceae Thysanosoria 1 

 
 

Lomentariaceae Gelidiopsis 1 
 

 
Lophocoleaceae Conoscyphus 4 

 
 

Lophocoleaceae Leptoscyphus 3 
 

 
Lophoziaceae Denotrarisia 3 

 
 

Loranthaceae Amylotheca 9 
 

 
Loranthaceae Bakerella 4 

 
 

Loranthaceae Cyne 4 
 

 
Loranthaceae Loranthus 5 

 
 

Loranthaceae Phrygilanthus 4 
 

 
Loranthaceae Scurrula 1 

 
 

Lythraceae Ammannia 5 
 

 
Lythraceae Cuphea 7 

 
 

Lythraceae Lawsonia 1 
 

 
Lythraceae Lythrum 3 

 
 

Magnoliaceae Talauma 1 
 

 
Malpighiaceae Malpighia 3 

 
 

Malpighiaceae Rhyssopteris 1 
 

 
Malvaceae Aquilaria 5 

 
 

Malvaceae Eleutherostylis 3 
 

 
Malvaceae Fioria 5 

 
 

Malvaceae Hildegardia 1 
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Malvaceae Kosteletzkya 1 
 

 
Malvaceae Malachra 1 

 
 

Malvaceae Malva 3 
 

 
Malvaceae Malvaviscus 2 

 
 

Malvaceae Melhania 3 
 

 
Malvaceae Papuodendron 9 

 
 

Malvaceae Pentapetes 1 
 

 
Malvaceae Pterospermum 1 

 
 

Marantaceae Calathea 1 
 

 
Marantaceae Clinogyne 1 

 
 

Marantaceae Megaphrynium 1 
 

 
Marantaceae Phacelophrynium 4 

 
 

Marantaceae Stachyphrynium 1 
 

 
Marattiaceae Marrattia 4 

 
 

Marattiaceae Pecopteris 1 
 

 
Matoniaceae Phanerosorus 5 

 
 

Melastomataceae Bamlera 2 
 

 
Melastomataceae Clidemia 4 

 
 

Melastomataceae Diplectria 8 
 

 
Melastomataceae Everettia 3 

 
 

Melastomataceae Hederella 5 
 

 
Melastomataceae Heteroblemma 2 

 
 

Melastomataceae Heterocentron 6 
 

 
Melastomataceae Hypenanthe 1 

 
 

Melastomataceae Kibessia 1 
 

 
Melastomataceae Macrolenes 1 

 
 

Melastomataceae Phyllapophysis 1 
 

 
Melastomataceae Tibouchina 3 

 
 

Meliaceae Anthocarapa 6 
 

 
Meliaceae Carapa 1 

 
 

Meliaceae Clemensia 1 
 

 
Meliaceae Didymocheton 2 

 
 

Meliaceae Epicharis 1 
 

 
Meliaceae Lansium 2 

 
 

Meliaceae Pseudoclausena 1 
 

 
Meliaceae Reinwardtiodendron 1 

 
 

Meliaceae Sandoricum 7 
 

 
Meliaceae Synoum 7 

 
 

Meliaceae Turraea 9 
 

 
Menispermaceae Albertisia 8 

 
 

Menispermaceae Carronia 4 
 

 
Menispermaceae Cocculus 1 

 
 

Menispermaceae Limacia 1 
 

 
Menispermaceae Pachygone 5 

 
 

Menispermaceae Sarcopetalum 4 
 

 
Menispermaceae Tinomiscium 9 

 
 

Meteoriaceae Barbella 8 
 

 
Meteoriaceae Chrysocladium 1 

 
 

Mimosaceae Albizzia 9 
 

 
Mniaceae Orthomniopsis 7 

 
 

Monachosoraceae Monachosorum 4 
 

 
Monimiaceae Anthobembix 2 

 
 

Monimiaceae Faika 2 
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Monimiaceae Hedycarya 7 
 

 
Monimiaceae Monimia 1 

 
 

Monimiaceae Tetrasynandra 1 
 

 
Monimiaceae Wilkiea 6 

 
 

Moraceae Dammaropsis 2 
 

 
Moraceae Malaisia 2 

 
 

Moraceae Paratrophis 1 
 

 
Moraceae Pseudotrophis 1 

 
 

Moringaceae Moringa 5 
 

 
Musaceae Ensete 3 

 
 

Myristicaceae Knema 3 
 

 
Myrsinaceae Grenacheria 7 

 
 

Myrsinaceae Hymenandra 1 
 

 
Myrsinaceae Labisia 5 

 
 

Myrsinaceae Loheria 9 
 

 
Myrtaceae Acmenosperma 2 

 
 

Myrtaceae Baeckea 9 
 

 
Myrtaceae Cleistocalyx 2 

 
 

Myrtaceae Mosiera 1 
 

 
Myrtaceae Myrceugenia 1 

 
 

Myrtaceae Osbornia 6 
 

 
Myrtaceae Pilidiostigma 2 

 
 

Myrtaceae Syncarpia 3 
 

 
Neckeraceae Neomacounia 1 

 
 

Neckeraceae Porotrichum 1 
 

 
Neckeraceae Thamnobryum 7 

 
 

Nelumbonaceae Nelumbium 1 
 

 
Notothyladaceae Notothylas 4 

 
 

Nymphaeaceae Hydrostemma 8 
 

 
Olacaceae Ximenia 7 

 
 

Oleaceae Linociera 5 
 

 
Oleaceae Myxopyrum 7 

 
 

Ophioglossaceae Japanobotrychum 1 
 

 
Ophioglossaceae Sceptridium 2 

 
 

Opiliaceae Champereia 1 
 

 
Opiliaceae Lepionurus 2 

 
 

Orchidaceae Acanthophippium 5 
 

 
Orchidaceae Adenoncos 4 

 
 

Orchidaceae Amblyanthe 7 
 

 
Orchidaceae Anoectochilus 9 

 
 

Orchidaceae Aphyllorchis 2 
 

 
Orchidaceae Ascoglossum 1 

 
 

Orchidaceae Calcearia 1 
 

 
Orchidaceae Calochilus 2 

 
 

Orchidaceae Calymmanthera 2 
 

 
Orchidaceae Cephalantheropsis 3 

 
 

Orchidaceae Cestichis 1 
 

 
Orchidaceae Chamaeanthus 3 

 
 

Orchidaceae Cheirostylis 8 
 

 
Orchidaceae Chitonanthera 5 

 
 

Orchidaceae Chrysoglossum 2 
 

 
Orchidaceae Cirrhopetalum 1 

 
 

Orchidaceae Claderia 1 
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Orchidaceae Coelandria 2 
 

 
Orchidaceae Collabium 2 

 
 

Orchidaceae Corymborchis 2 
 

 
Orchidaceae Cylindrolobus 3 

 
 

Orchidaceae Cymbidium 8 
 

 
Orchidaceae Cyphochilus 6 

 
 

Orchidaceae Cystorchis 2 
 

 
Orchidaceae Didymoplexis 3 

 
 

Orchidaceae Dienia 2 
 

 
Orchidaceae Diglyphosa 3 

 
 

Orchidaceae Dimorphorchis 4 
 

 
Orchidaceae Epidendrum 2 

 
 

Orchidaceae Epipogium 9 
 

 
Orchidaceae Erythrodes 6 

 
 

Orchidaceae Eucosia 1 
 

 
Orchidaceae Euphlebium 2 

 
 

Orchidaceae Galeola 5 
 

 
Orchidaceae Geodorum 5 

 
 

Orchidaceae Giulianettia 7 
 

 
Orchidaceae Hapalochilus 1 

 
 

Orchidaceae Herpethophytum 1 
 

 
Orchidaceae Hippeophyllum 7 

 
 

Orchidaceae Hymeneria 2 
 

 
Orchidaceae Kuhlhasseltia 1 

 
 

Orchidaceae Laelianthe 1 
 

 
Orchidaceae Lecanorchis 4 

 
 

Orchidaceae Luisia 7 
 

 
Orchidaceae Malleola 6 

 
 

Orchidaceae Micropera 4 
 

 
Orchidaceae Microstylis 1 

 
 

Orchidaceae Mycaranthes 4 
 

 
Orchidaceae Myrmechis 1 

 
 

Orchidaceae Oxyglossellum 2 
 

 
Orchidaceae Oxysepala 2 

 
 

Orchidaceae Parapteroceras 1 
 

 
Orchidaceae Pelma 2 

 
 

Orchidaceae Phalaenopsis 1 
 

 
Orchidaceae Pinalia 6 

 
 

Orchidaceae Platanthera 1 
 

 
Orchidaceae Platylepis 1 

 
 

Orchidaceae Poaephyllum 6 
 

 
Orchidaceae Porphyrodesme 2 

 
 

Orchidaceae Pristiglottis 5 
 

 
Orchidaceae Pseudoliparis 1 

 
 

Orchidaceae Pteroceras 2 
 

 
Orchidaceae Renanthera 7 

 
 

Orchidaceae Rhinerrhiza 1 
 

 
Orchidaceae Rhinerrhizopsis 7 

 
 

Orchidaceae Rhynchophreatia 3 
 

 
Orchidaceae Ridleyella 8 

 
 

Orchidaceae Saccoglossum 6 
 

 
Orchidaceae Saccolabiopsis 1 

 
 

Orchidaceae Salacistis 6 
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Orchidaceae Sarcanthopsis 6 
 

 
Orchidaceae Sarcochilus 8 

 
 

Orchidaceae Sarcoglottis 2 
 

 
Orchidaceae Sayeria 2 

 
 

Orchidaceae Schoenorchis 7 
 

 
Orchidaceae Sepalosiphon 1 

 
 

Orchidaceae Sestochilos 1 
 

 
Orchidaceae Stereosandra 2 

 
 

Orchidaceae Stigmatodactylus 8 
 

 
Orchidaceae Trachoma 3 

 
 

Orchidaceae Tuberolabium 3 
 

 
Orchidaceae Vanda 9 

 
 

Orchidaceae Vandopsis 4 
 

 
Orchidaceae Vanilla 8 

 
 

Orobanchaceae Aeginetia 9 
 

 
Orobanchaceae Centranthera 7 

 
 

Orthotrichaceae Groutiella 3 
 

 
Orthotrichaceae Macrocoma 4 

 
 

Orthotrichaceae Orthotrichum 9 
 

 
Osmundaceae Cladophlebis 1 

 
 

Osmundaceae Osmunda 1 
 

 
Oxalidaceae Biophytum 5 

 
 

Oxalidaceae Xanthoxalis 2 
 

 
Pallaviciniaceae Podomitrium 5 

 
 

Pallaviciniaceae Symphyogyna 7 
 

 
Pallaviciniaceae Symphyogynopsis 4 

 
 

Pandanaceae Benstonea 7 
 

 
Pandanaceae Sararanga 6 

 
 

Papaveraceae Argemone 1 
 

 
Passifloraceae Tacsonia 2 

 
 

Pedaliaceae Ceratotheca 1 
 

 
Pentoxylaceae Taeniopteris 1 

 
 

Peraceae Chaetocarpus 1 
 

 
Peranemaceae Diacalpe 5 

 
 

Phellinaceae Phelline 3 
 

 
Philydraceae Helmholtzia 4 

 
 

Phyllanthaceae Distichirhops 6 
 

 
Phyllanthaceae Flueggea 3 

 
 

Phyllanthaceae Margaritaria 2 
 

 
Phyllanthaceae Notoleptopus 1 

 
 

Phyllanthaceae Synostemon 1 
 

 
Phyllodrepaniaceae Mniomalia 1 

 
 

Phyllogoniaceae Phyllogonium 3 
 

 
Phytolaccaceae Phytolacca 2 

 
 

Picrodendraceae Austrobuxus 7 
 

 
Picrodendraceae Petalostigma 4 

 
 

Piperaceae Macropiper 6 
 

 
Pittosporaceae Citriobatus 7 

 
 

Plagiochilaceae Chiastocaulon 6 
 

 
Plagiotheciaceae Plagiothecium 8 

 
 

Plantaginaceae Adenosma 7 
 

 
Plantaginaceae Antirrhinum 2 

 
 

Plantaginaceae Bacopa 7 
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Plantaginaceae Ellisiophyllum 8 
 

 
Plantaginaceae Gratiola 3 

 
 

Plantaginaceae Lophospermum 6 
 

 
Plantaginaceae Maurandya 5 

 
 

Plantaginaceae Mecardonia 3 
 

 
Plantaginaceae Scoparia 7 

 
 

Plantaginaceae Stemodia 5 
 

 
Poaceae Aegopogon 4 

 
 

Poaceae Ancistragrostis 4 
 

 
Poaceae Andropogon 3 

 
 

Poaceae Australopyrum 4 
 

 
Poaceae Bromus 9 

 
 

Poaceae Chionochloa 2 
 

 
Poaceae Cleistochloa 8 

 
 

Poaceae Danthonia 9 
 

 
Poaceae Deyeuxia 3 

 
 

Poaceae Dinochloa 1 
 

 
Poaceae Diplanche 2 

 
 

Poaceae Enneapogon 9 
 

 
Poaceae Enteropogon 5 

 
 

Poaceae Entolasia 3 
 

 
Poaceae Gastridium 1 

 
 

Poaceae Gigantochloa 3 
 

 
Poaceae Hemarthria 8 

 
 

Poaceae Manisuris 2 
 

 
Poaceae Monostachya 1 

 
 

Poaceae Muhlenbergia 6 
 

 
Poaceae Perostis 1 

 
 

Poaceae Phalaris 5 
 

 
Poaceae Polytrias 3 

 
 

Poaceae Spinifex 5 
 

 
Poaceae Stenotaphrum 4 

 
 

Poaceae Stipa 2 
 

 
Poaceae Tripogon 8 

 
 

Poaceae Tripsacum 3 
 

 
Poaceae Triraphis 1 

 
 

Poaceae Trisetum 3 
 

 
Poaceae Urochloa 6 

 
 

Poaceae Vulpia 6 
 

 
Podostemaceae Torrenticola 6 

 
 

Polygalaceae Bredemeyera 4 
 

 
Polypodiaceae Dendroconche 1 

 
 

Polypodiaceae Dendroglossa 1 
 

 
Polypodiaceae Drymoglossum 6 

 
 

Polypodiaceae Drynariopsis 7 
 

 
Polypodiaceae Grammatopteridium 2 

 
 

Polypodiaceae Holostachyum 2 
 

 
Polypodiaceae Microsorium 1 

 
 

Polypodiaceae Paragramma 2 
 

 
Polypodiaceae Phymatopsis 1 

 
 

Polypodiaceae Thylacopteris 6 
 

 
Polypodiaceae Xiphopterella 3 

 
 

Polytrichaceae Atrichum 2 
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Polytrichaceae Notoligotrichum 5 
 

 
Polytrichaceae Oligotrichum 2 

 
 

Polytrichaceae Psilopilum 1 
 

 
Pontederiaceae Eichhornia 5 

 
 

Pontederiaceae Monochoria 6 
 

 
Pottiaceae Chionoloma 5 

 
 

Pottiaceae Gymnostomiella 3 
 

 
Pottiaceae Hydrogonium 1 

 
 

Pottiaceae Streptopogon 4 
 

 
Pottiaceae Timmiella 2 

 
 

Pottiaceae Tortella 2 
 

 
Pottiaceae Tortula 1 

 
 

Pottiaceae Weissia 5 
 

 
Primulaceae Samolus 4 

 
 

Proteaceae Bleasdalea 7 
 

 
Proteaceae Leucadendron 2 

 
 

Proteaceae Oreocallis 8 
 

 
Proteaceae Ptychocarpa 2 

 
 

Pseudolepicoleaceae Temnoma 7 
 

 
Pteridaceae Aleuritopteris 9 

 
 

Pteridaceae Austrogramme 9 
 

 
Pteridaceae Calciphilopteris 4 

 
 

Pteridaceae Craspedodictyum 2 
 

 
Pterobryaceae Euptychium 4 

 
 

Pterobryaceae Pireella 1 
 

 
Pterobryaceae Pterobryidium 3 

 
 

Pterobryaceae Symphysodontella 4 
 

 
Ptychomniaceae Hampeella 4 

 
 

Racopilaceae Powelliopsis 4 
 

 
Racopilaceae Timokoponenia 9 

 
 

Restionaceae Leptocarpus 4 
 

 
Rhabdoweisiaceae Rhabdoweisia 1 

 
 

Rhamnaceae Berchemia 2 
 

 
Rhamnaceae Cryptandra 1 

 
 

Rhamnaceae Rhamnella 6 
 

 
Rhamnaceae Sageretia 4 

 
 

Rhipogonaceae Rhipogonum 6 
 

 
Rhipogonaceae Ripogonum 4 

 
 

Rhizophoraceae Agatea 1 
 

 
Rhizophoraceae Crossostylis 1 

 
 

Rhizophoraceae Pellacalyx 1 
 

 
Rhodomelaceae Chondrophycus 3 

 
 

Rhodomelaceae Laurencia 4 
 

 
Rhodomelaceae Lophocladia 1 

 
 

Rhodomelaceae Murrayella 3 
 

 
Rhodomelaceae Polysiphonia 4 

 
 

Rhodomelaceae Stictosiphonia 3 
 

 
Ricciaceae Riccia 2 

 
 

Rosaceae Fragaria 3 
 

 
Rosaceae Spiraea 5 

 
 

Rubiaceae Adina 1 
 

 
Rubiaceae Anotis 5 

 
 

Rubiaceae Arcytophyllum 2 
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Rubiaceae Badusa 1 
 

 
Rubiaceae Breonia 1 

 
 

Rubiaceae Caelospermum 2 
 

 
Rubiaceae Calycosia 9 

 
 

Rubiaceae Cephaelis 5 
 

 
Rubiaceae Chaetostachydium 2 

 
 

Rubiaceae Chassalia 2 
 

 
Rubiaceae Cowiea 4 

 
 

Rubiaceae Dentella 9 
 

 
Rubiaceae Diodia 4 

 
 

Rubiaceae Diplospora 2 
 

 
Rubiaceae Discospermum 1 

 
 

Rubiaceae Guettardella 1 
 

 
Rubiaceae Gynochtodes 1 

 
 

Rubiaceae Houstonia 1 
 

 
Rubiaceae Hyperacanthus 1 

 
 

Rubiaceae Hypobathrum 1 
 

 
Rubiaceae Kajewskiella 7 

 
 

Rubiaceae Litosanthes 1 
 

 
Rubiaceae Mapouria 1 

 
 

Rubiaceae Maschalocorymbus 1 
 

 
Rubiaceae Maschalodesme 6 

 
 

Rubiaceae Metadina 4 
 

 
Rubiaceae Oxyceros 4 

 
 

Rubiaceae Palicourea 8 
 

 
Rubiaceae Petunga 1 

 
 

Rubiaceae Pogonolobus 3 
 

 
Rubiaceae Psilanthus 2 

 
 

Rubiaceae Rhodopentas 1 
 

 
Rubiaceae Richardia 2 

 
 

Rubiaceae Tarennoidea 3 
 

 
Rubiaceae Thecagonum 5 

 
 

Rubiaceae Trukia 3 
 

 
Rutaceae Aegle 2 

 
 

Rutaceae Atalantia 8 
 

 
Rutaceae Echinocitrus 1 

 
 

Rutaceae Luvunga 5 
 

 
Rutaceae Medicosma 1 

 
 

Rutaceae Merope 1 
 

 
Rutaceae Monanthocitrus 2 

 
 

Rutaceae Perryodendron 8 
 

 
Saccolomataceae Saccoloma 3 

 
 

Salviniaceae Salvinia 6 
 

 
Sapindaceae Aphania 1 

 
 

Sapindaceae Crossonephelis 1 
 

 
Sapindaceae Diploglottis 8 

 
 

Sapindaceae Euphoria 1 
 

 
Sapindaceae Harpulia 3 

 
 

Sapindaceae Lepiderema 2 
 

 
Sapindaceae Mischarytera 7 

 
 

Sapindaceae Sapindus 5 
 

 
Sapotaceae Achradotypus 2 

 
 

Sapotaceae Beccariella 2 
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Sapotaceae Chelonespermum 2 
 

 
Sapotaceae Niemeyera 3 

 
 

Sapotaceae Pycnandra 2 
 

 
Sapotaceae Sarcosperma 2 

 
 

Sapotaceae Sersalisia 9 
 

 
Scapaniaceae Diplophyllum 2 

 
 

Schistochilaceae Paraschistochila 1 
 

 
Schizaeaceae Actinostachys 8 

 
 

Scrophulariaceae Artanema 1 
 

 
Scrophulariaceae Derwentia 1 

 
 

Scrophulariaceae Ilysanthos 1 
 

 
Scrophulariaceae Masus 2 

 
 

Seligeriaceae Blindia 3 
 

 
Sematophyllaceae Acanthocladium 2 

 
 

Sematophyllaceae Acanthorrhynchium 5 
 

 
Sematophyllaceae Clastobryophilum 1 

 
 

Sematophyllaceae Clastobryopsis 1 
 

 
Sematophyllaceae Clastobryum 7 

 
 

Sematophyllaceae Mastopoma 5 
 

 
Sematophyllaceae Meiotheciella 1 

 
 

Sematophyllaceae Papillidiopsis 2 
 

 
Sematophyllaceae Rhaphidorrhynchium 2 

 
 

Sematophyllaceae Rhaphidostegium 3 
 

 
Simaroubaceae Brucea 6 

 
 

Simaroubaceae Samadera 5 
 

 
Siphonocladaceae Boergesenia 1 

 
 

Siphonocladaceae Ventricaria 2 
 

 
Solanaceae Browallia 1 

 
 

Solanaceae Brugmansia 4 
 

 
Solanaceae Brunfelsia 3 

 
 

Solanaceae Cestrum 7 
 

 
Solanaceae Cyphomandra 4 

 
 

Solanaceae Nicandra 3 
 

 
Solanaceae Salpichroa 2 

 
 

Solanaceae Solandra 1 
 

 
Solanaceae Streptosolen 1 

 
 

Sorapillaceae Sorapilla 3 
 

 
Sphenophyllaceae Sphenophyllum 1 

 
 

Splachnobryaceae Splachnobryum 6 
 

 
Staphyleaceae Staphylea 1 

 
 

Stemonuraceae Hartleya 7 
 

 
Stemonuraceae Urandra 9 

 
 

Stemonuraceae Whitmorea 5 
 

 
Sterculiaceae Keraudrenia 2 

 
 

Sterculiaceae Leptonychia 5 
 

 
Styracaceae Simplocos 1 

 
 

Symplocaceae Cordyloblaste 1 
 

 
Tectariaceae Ataxipteris 2 

 
 

Tectariaceae Ctenitopsis 6 
 

 
Tectariaceae Dryopsis 1 

 
 

Tectariaceae Heterogonium 2 
 

 
Theaceae Camellia 3 

 
 

Thelypteridaceae Mesophlebion 5 
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Thelypteridaceae Metathelypteris 5 
 

 
Thuidiaceae Aequatoriella 3 

 
 

Thuidiaceae Herpetineuron 1 
 

 
Thuidiaceae Orthothuidium 8 

 
 

Tiliaceae Pentace 1 
 

 
Trachypodaceae Diaphanodon 4 

 
 

Trentepholiaceae Printzina 2 
 

 
Treubiaceae Treubia 3 

 
 

Trichocoleaceae Leiomitra 3 
 

 
Triuridaceae Andruris 1 

 
 

Udoteaceae Chlorodesmis 3 
 

 
Udoteaceae Tydemania 1 

 
 

Udoteaceae Udotea 2 
 

 
Urticaceae Distemon 4 

 
 

Urticaceae Elatostemma 9 
 

 
Urticaceae Gibbsia 7 

 
 

Urticaceae Parietaria 5 
 

 
Urticaceae Pellionia 5 

 
 

Urticaceae Pseudopipturus 7 
 

 
Urticaceae Villebrunea 7 

 
 

Verbenaceae Lippia 1 
 

 
Vitaceae Parthenocissus 1 

 
 

Vitaceae Vitis 6 
 

 
Vittariaceae Rheopteris 4 

 
 

Wiesnerellaceae Wiesnerella 3 
 

 
Woodsiaceae Allantodia 1 

 
 

Woodsiaceae Gymnocarpium 4 
 

 
Xanthorrhoeaceae Caesia 8 

 
 

Zingiberaceae Eriolopha 3 
 

 
Zingiberaceae Geanthus 6 

 
 

Zingiberaceae Plagiostachys 3 
 

 
 

  
 

 
 

  
 


