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Ab1tract- This paper provides a set of algorithms 
which allow qualitative information regarding the connec­
tivity of configuration space to be quickly established. A 
mechanism is presented which utilizes these results to de­
te~:mine the effects of the motions of one manipulator on 
the configuration space of the other. These algorithms m·e 
then used as a basis fo~: a simple planner which is capable of 
rapidly computin·g collision-f~:ee paths fo1: multiple SCARA 
manipulators operating within ovedapping wo~:kspaces. 

I. INTRODUCTION 

Recently, there has been a growing recognition of the 
advantages achievable by placing more than one manipula­
tor in a common workspace. Besides being able to perform 
tasks in parallel, the manipulators may be used coopera­
tively, thereby increasing the dexterity and load carrying 
capabilities which may be brought to bear on a particular 
task. Unfortunately, these advantages come at a cost, in­
cluding the problem of determining paths for each of the 
manipulators which will avoid striking obstacles in the 
environment while, at the same time, avoiding collisions 
with the other robot. 

In the past several years there have been numerous 
approaches to this problem including treating the manipu­
lators as a redundant system [1] and the use of cellular de­
composition techniques [2]. Among the numerous related 
algorithms which consider the motion of robots moving 
amidst obstacles are the spatial indexing of configuration 
space-time [3], and the use of the relative velocities of the 
objects and the robots to transform the problem into one 
of several static problems. 

One particularly popular approach [4] imposes priori­
ties upon the manipulators and then plans the paths of one 
robot at a time, using the higher priority robots as obsta­
cles in the configuration space-time representation of the 
lower priority robots. Another common approach to plan­
ning paths for robots which must avoid moving obstacles 
is to decompose the problem into a two phase approach, 
commonly referred to as Path-Velocity Decomposition [5]. 
In this approach, the problem is simplified by solving for 
the motion amongst the static obstacles and subsequently 
planning the velocity along these paths so as to avoid the 
moving obstacles. Although this approach is both con­
ceptually as well as computationally appealing, it suffers 
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Fig. 1. A typical situation in which the initial choice of paths 
keeps a path-velocity decomposition planner from finding a solution 
during velocity planning. The arrows indicate the volume which will 
be swept thruugh by the links. 

from being unable to find paths in situations in which a 
solution may be intuitively obvious. In particular, as il­
lustrated in Fig. 1, there are cases in which the solution 
to the first phase of planning results in paths along which 
no appropriate velocity profile exists. Often, if the path 
planning phase had chosen some other path for either of 
the two manipulators, then a solution to the overall prob­
lem would have been found. This work focuses on this 
issue and attempts to find a solution in such a sitnation. 

A. Notation/Terminology 

Throughout the paper, the following notation will be 
employed. 

w 
c 
B; 
B 
CB; 
CB 
Cjree 

012 
C; 

S; 

= the workspace 
= the configuration space 
= an obstacle in the workspace 
= all of the obstacles in W 
= the configuration space representation of the B; 
= all of the obstacles in C 
= the manipulator's free space 
= 01 + 02 
=cosO; 
=sinO; 



Furthermore, the following terms will be used. A "region" 
will be considered a path-connected subspace of C which 
has the same pair of obstacles to its left and right in con­
figuration space. A "channel" will be some sequenc~ of 
regions and a "path" will be a sequence of configuratiOns 
in Cjree· 

B. Assumptions 

A number of simplifying assumptions were made in 
this work. The most obvious was to model obstacles in 
the workspace as points and the SCARA manipulators as 
line segments. The purpose of these initial simplifications 
was to focus the presentation on fundamental aspects of 
the algorithm. Section III develops a more general charac­
terization of obstacles and [6] discusses robot links which 
have been modeled as polygons. 

C. Overview of Paper 

The remainder of this paper is organized as follows: 
Section II reviews basic results from forward and inverse 
kinematics. Algorithms for establishing the presence of in­
tersections between obstacles in Care developed in Section 
III. Section IV begins by presenting a mechanism for map­
ping connected regions in one manipulator's configuration 
space into the other manipulator's configuration space. 
It concludes by using the various algorithms which have 
been developed as the basis for a simple planner which 
computes collision-free motions for multiple manipulators. 
Section V illustrates the operation of this planner. Finally, 
Section VI provides a discussion of the results of this work 
and indicates some of its limitations. 

II. KINEMATICS 

The benefits of path planning in a robot's configu­
ration space [7] have been well established in the litera­
ture [8][9]. The underlying concept of this approach is ~he 
recognition that a robot may be represented as a pomt 
in configuration space traveling through a set of obstacles 
which are obtained as the result of a transformation on the 
real obstacles in the manipulator's workspace. The pro­
cess of path planning is then heavily dependent on the re­
lationship between the manipulator's configuration space, 
C, and its workspace, W. In this section, the nature of 
the relationship between these two spaces is presented at. 
both the position level and the velocity level. 

For the manipulator depicted in Fig. 2, the transfor­
mation which describes the relationship between a manip­
ulator's configuration, (81 , 82 ), and the Cartesian position 
of the end effector, (xeff, YeJJ ), is easily calculated using 
forward kinematics [10] as 

(I) 

where L 1 and L 2 are the lengths of links I and 2. 
Solving ( 1) for 81 and 82 yields the equally well-known 

inverse transformation describing the inverse kinematics 
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Fig. 2. The geometry of a SCARA-type manipulator. 

for this manipulator: 

-I Yeff ± -1 x;ff + Y;Jf + Li- L~ 
81 = tan -- cos (2) 

X 2L I 2 2 efj 1yXejj+Yejj 

and 
2 2 2 2 

-1 Xefj + Yejj- Ll- L2 
82=±cos 2LlL2 (3) 

The relationship between the end effector velocities and 
the joint velocities is readily obtained by differentiating 
( 1) to obtain 

[ 
Xejj ] 
YeJ f 

Recall that the ultimate goal of this development is 
to provide a mechanism for rapidly determining whether 
obstacles in C intersect. Computing this intersection us­
ing (2) and (3) would require the simultaneous solution 
of nonlinear equations, a task which is, in general, non­
trivial. However, for many of the purposes of this work, 
it will suffice to establish the presence of an intersection 
without knowing precisely where it occurs. As will be 
shown in Section III, a characterization of configuration 
space obstacles has been developed which is sufficient for 
establishing the presence of intersections between configu­
ration space obstacles. The basis of this characterization is 
a representation of the obstacle by its tangents. As shown 
in [6], the tangent of an obstacle in C corresponding to a 
point in W is readily obtained as 

(5) 

where e2 is the length along the second link at which the 
contact with the obstacle occurs. 

Ill. THE TOPOLOGY OF Cjru 

The notion of utilizing topological properties in gen­
erating obstacle representations for planning has been 



studied extensively. Several researchers [11] [12] have gen­
erated representations of C by convolving a representation 
of a free flying robot with a representation for an obsta­
cle. Because the mechanism which was used for perform­
ing these convolutions tended to produce a small number 
of vertices, edges, and faces which were either redundant 
or otherwise non-realizable, a second stage was employed 
which utilized topological information to cull out these 
extraneous pieces of information. Additional researchers 
[13] have chosen to characterize the topology of W rather 
than C and use an octree representation to evaluate the 
connectivity of the free workspace. Here, the topological 
properties of the obstacles are used as a filter for removing 
regions of C in which a collision-free path cannot be found. 

Before discussing the details of calculating topologi­
cal features of C, it is instructive to consider what type 
of global features can be used to improve the efficiency of 
most path planners. One important feature of free space 
for two-dimensional revolute manipulators which has been 
previously identified, is the existence of "highways" [14]. 
Physically, a highway is a distinguished subspace of config­
uration space for which a collision free path can be pla.nned 
simply by using a line segment parallel to the 81 ax1s for 
some relatively large range of 82 values. Other global fea­
tures of free space which are not guaranteed to exist in­
clude a path from one highway to the other, referred to 
as an "isthmus." If this feature does not exist then this 
implies that the free space is further partitioned. Regions 
of free space that are connected to only one of the two 
highways will be referred to as "peninsulas". Additional 
details on these properties and their computation may be 
found in [6], however it should be apparent from their d~f­
initions that the ability to determine whether obstacles 111 

C intersect will be critical to any algorithm which will be 
used. The purpose of the remainder of this section is to 
address the question of how to best determine whether 
such an intersection exists. 

A. Intersections Between Point Obstacles in W 

Consider the ways in which a SCARA manipulator 
may come into contact with a pair of point obstacles: 

1. both contacts may take place along the first link, 

2. one contact may be along the first link and the other 
along the second link, 

3. both contacts may take place along the second link. 

Testing for the first condition is trivial. If the two obsta­
cles are represented in polar coordinates as (p 1, </> 1) and 
(f!g, ¢ 9 ), then the obstacles intersect if both are a~ a ra­
dms less than L 1 and </> 1 = ¢9 . The second case 1s only 
slightly more complicated since one must only check to see 
whether the two values of 01 for the end effector to be in 
contact with the one obstacle bracket the value of </> for 
the obstacle at p ~ L 1 . The remainder of this section will 
consider the final case. 

Let 81 and 8 9 be point obstacles in W which have 
the Cartesian coordinates (x 1, YJ) and (x9 , y9 ) with re­
spect to the base of the manipulator. If the points are 
both assumed to be at a radius greater than L 1 , then the 

following lemma provides a necessary condition for test­
ing for an intersection between obstacles in configuration 
space. 

Lemma 1: If CB1 ncs9 f. 0 then CB, nc.r.c f. 0 
and CB9 nc.r.c f. 0 where 

C:F.C = { (81,82) I 81 + 82 = tan-
1 (~~ = ~:)}. (6) 

The proof to this can be readily seen by recognizing 
that Lemma 1 merely states that the second link of the 
manipulator must be parallel to the line supporting the 
two obstacles if it is to be in contact with both of them 
simultaneously. Unfortunately, because the inverse tan­
gent function does not return a unique value, application 
of this lemma would require checking for the intersection 
of the configuration space obstacles with each of the lines 
which have slope -1 and an appropriate intercept. How­
ever, by simply choosing a particular member of this set of 
functions, not only does this lemma become easier to ap­
ply, but it is also strengthened in such a way as to become 
sufficient. In particular, if the direction in polar coordi­
nates of the vector from 89 to 81 is denoted by ¢6, then 
the intersection between CB9 and CB J can be established 
by testing for intersection with the particular line 

(7) 

If the set of configurations which lie along this line are 
denoted C.C where 

(8) 

then one can obtain the following lemma. 

Lemma 2: Given the assumptions and definitions of 
the previous paragraphs, cs, ncsg f. 0 if and only if 
CB1 nc.c f. 0 and CB9 nc.c f. 0. 

Physically, this condition states that if PJ ;::: p9 > L, 
then the second link of the manipulator must point in 
the direction defined by the vector from the obstacle at 
a smaller radius to the obstacle at a larger radius. The 
necessity of this condition may be established fairly eas­
ily from Lemma 1. The sufficiency condition may also be 
established by using a simple geometric construction to 
examine the elements which are members of the intersec­
tionsofC.C with CB1 and CB9 . 

At first glance, it may appear that the benefits of 
having established this property are negligible since the 
net effect appears to have been to eliminate the need to 
calculate the intersection between two nonlinear functions 
at the expense of now having to twice calculate the inter­
section between nonlinear functions with a straight line. 
Fortunately, however, the obstacles in configuration space 
have additional properties which prove particularly useful. 

Recall from calculus that the local extrema in dis­
tance from a curve to a line is at the points along the 
curve at which the tangent matches the slope of the line. 
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CONFIGURATION SPACE 

Fig. 3. An example in which the intersection test succeeds. F, and 
G; represent the points which must be computed in order to apply 
the test. 

Setting the slope of the obstacle as described by ( 5) equal 
to the slope of the constraint equation results in 

£2 + L1c2 __ 
1 -£2 - ' (9) 

which has the solution 02 = ±1r /2. If the obstacle does 
not extend past 02 = ±1r /2, then the local extrema with 
respect to these lines will be at those points which cor­
respond to the end effector resting upon the obstacle. 
Hence, the local extrema of an obstacle with respect to the 
line along which an intersection must lie may be calculated 
via two applications of the inverse kinematics function. 
Thus, an algorithm to determine if the line defined by 
(8) intersects a configuration space obstacle, would evalu­
ate the curve describing the obstacle at only two points, 
i.e. those at 02 = ±1r /2, and determine if they lie in the 
opposing half spaces defined by the line along which the 
intersection must take place. Similar results exist for ob­
stacles which are not constrained to lie at a radius greater 
than £ 1 . An example of this test succeeding is illustrated 
in Fig. 3. 

B. Intersections Between Points and Line Obstacles 

In the previous section, the manner in which a manip­
ulator may come into contact with multiple point obsta­
cles was analyzed. This yielded an easily computed test 
for establishing the presence of intersections between the 
representation of point obstacles in C. This section follows 
an analogous development for somewhat more general ob­
stacles, namely line segments and circles. The interest in 
these particular classes of obstacles will become apparent 
in Section IV where the effects of motions through regions 
in one manipulator's configuration space are studied with 
regards to their effects on the connectivity of the other 
manipulator's configuration space. 

As in the test developed above, the first step in de­
veloping this algorithm is to characterize the line segment 

with regards to its local extrema inC with respect to lines 
of slope -1. Clearly, these extrema must take place along 
the boundary of the configuration space obstacle. If one 
considers the manner in which the manipulator may be in 
contact with the obstacle then it becomes clear that this 
boundary can be decomposed into simpler curves corre­
sponding to cases in which either the second link of the 
manipulator slides along the end points of the line seg­
ment, or by the end effector of the manipulator traversing 
the interior of the line segment in a manner which is de­
scribed by (4). The extrema of the obstacle may be com­
puted by determining the extrema along each of the four 
portions of the boundary and applying appropriate logic. 

Let Bs be a line segment in W with endpoints 81 = 
(x,,y1 ) and 8 9 = (x ,y9 ). A necessary first step in the 
characterization of CEs is then to characterize CB1 and 
CBg_ as in the previous section. The extrema of the re­
maming portions of CBs may be computed by consider­
ing the obstacle at the velocity level. If it is assumed that 
[8x, 8y] is a vector along the line segment, then the tan­
gent of those portions of the boundary due to the traversal 
of the end effector along the interior of the line segment 
is obtained by solving ( 4) as 

= 
-L1c18x- L2c128x- LtstDY- L2s128y 

L2c128x + L2s128y 
( 10) 

Setting this slope to -1 and solving for 01 yields the 
condition that 

( 11) 

which must be satisfied in order to be at a local extrema 
along the interior portions of CBs. Before continuing, it 
should be stressed that this result is not limited to line seg­
ments. In fact, the extrema of any obstacle with respect 
to lines in C of slope -1 which place the end effector on 
the obstacle will always satisfy this condition, so long as 
the obstacle may be represented by a differentiable curve. 

From ( 11), the specific configurations at which the 
extrema occur are given by 

( 
;l:j- X ) 01 = tan- 1 

----9 
. 

YJ- Yg 
(12) 

Determining the corresponding value of 02 may be per­
formed via the inverse kinematic equations. 

Now, consider a point obstacle at (xi,y;). If I<1 = 
tan- 1 (Yr=Y·) and K 2 = tan- 1 (Y•=Y· ), then the poten-x1 x. Xg x, 

tial orientations of the second link which bring it simul­
taneously in contact with both the point obstacle and the 
line segment may be described by the family of lines 

where it has been assumed, without loss of generality, that 
K 1 :=:; K 2. Given this information, and the characteriza­
tion of CBs which is illustrated in Fig. 4, an algorithm to 
test for intersections between the representations of points 
and line segments is readily obtained. 
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CONFIGURATION SPACE 

Fig. 4. The characterization of an obstacle due to a line seg­
ment. The solid lines are those portions of the obstacle due to the 
manipulator sliding along the end points of the line segment. The 
bold dashed lines represent those portions of the obstacle due to the 
traversal of the end effector along the interior of the line segment. 
The normal weight dashed lines are the extrema of the obstacle with 
respect to lines of slope -1 . 

C. Intersections Between Point and Circular Obstacles 

Characterizing configuration space obstacles which 
represent circles or arcs may be done in a manner di­
rectly analogous to the method presented for character­
izing line segments. First, consider the situation in which 
the end effector is lying along a circle x = x 0 +r cos( 'If) and 
y = y0 + rsin(,P). Differentiating the equations describ­
ing such a circle and applying (11) yields a description of 
those configurations in which the end effector is in contact 
with the circle while the corresponding obstacle in C is at 
a local extrema. This condition is described by, 

(14) 

In other words, the first link must be parallel to the line 
segment between the center (x 0 , y0 ) and the point at which 
the end effector touches the obstacle. Substituting this 
condition into the forward kinematic equations and solv­
ing for those configurations which place the end effector 
on the circle yields those configurations as 

_ 1 yo _ 1 d+(±L,-r)-L2 ( ) ( 
2 2 2) 

fh =tan xo ±cos 2L,d (15) 

and 

() _ _ 1 (d
2
-(±L1-r)

2
-L~) 

2 - =t= cos 2(L
1

- r)L2 ' (16) 

where d = Jx5 + Y5· 
Determining the configuration which places the con­

tact somewhere within the interior of the second link 
is most readily accomplished by recognizing two critical 
facts. First, the necessary condition on the relationship 
between () 1 and the polar coordinates of the contact given 

by (14) continues to hold, so () 1 = '1/-' + mr. Second, for 
the configuration to lie along the boundary of Ccircle, the 
second link of the manipulator must lie along a tangent of 
the circle, hence ()1 + ()2 = 'If± t- When these facts are 
combined, it is clear that Ot ='If+ mr and 02 =±f. 

It is easy to show that the location along the link at 
which the contact takes place is given by 

( 17) 

If the evaluation of ( 17) results in 0 ~ f2 ~ L2 , then the 
configurations satisfying this condition are given by 

7r 
=t=-

2 
( 18) 

An approach similar to the one described for line segments 
would then result in an intersection test. 

IV 0 A SIMPLE PLANNER 

The key to our approach to planning collision-free 
paths is a mechanism for meshing channels in different 
configuration spaces. The method for accomplishing this 
is based upon mapping regions in one configuration space 
into the configuration space of the other manipulator as 
an obstacle. Clearly, this approach is heavily motivated 
by the work of (4] in that the motions of one manipulator 
are modeled as an obstacle in the configuration space-time 
of the other manipulator. The difference in this work is 
that the choice of a specific path within the region is not 
considered until after the global planning stage has been 
completed. Instead the set of all possible paths through a 
region are, in effect, considered when generating the con­
figuration space-time obstacle. The remainder of this sec­
tion deals first with the mechanism chosen for transform­
ing the set of possible motions of one manipulator into 
obstacles in the other manipulator's configuration space 
and then proceeds to describe the planner which has been 
implemented. 

As mentioned above, the principal result of this sec­
tion is an ability to study the sets of possible motions of 
one manipulator with regard to their effects on the topol­
ogy of another manipulator's configuration space. More 
specifically, a representation is built that approximates the 
set of all possible postures of the robot when it is in any 
configuration within a region. The approach which was 
used to perform this operation relies heavily on the com­
putation. of those portions in the workspace called "shad­
ows" (15] which describe the regions through which the 
link of the manipulator will sweep while it stays in con­
tact with the obstacle. When an approximation is built 
which encloses the shadows of all of those points obtained 
by interpolating between the polar coordinates of the two 
obstacles along the boundaries of the region, the result­
ing area is a conservative approximation of the set of all 
postures in which the manipulator may find itself when 
it is at any configuration within the region. This is illus­
trated in Fig. 5. The resulting region may then be mapped 
into the configuration space of the other robot and treated 
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WORK SPACE 

Fig. 5. The process used for determining the potential postures 
of a manipulator when it is in any configuration in a region. The 
region in C filled with grey is being mapped into its corresponding 
manipulator postures. Also depicted is the c-space representation of 
the artificial obstacle obtained by interpolating in polar coordinates 
between the actual obstacles. The corresponding workspace is also 
depicted. The bold, filled circles represent the actual obstacles. The 
bold line between them depicts the artificial obstacle. The normal 
weight curves represent the shadows of some of the points along the 
artificial obstacle. 

as though it were a static obstacle in this manipulator's 
workspace. Finally, the effects of this artificial obstacle 
on the topology of the second manipulator's freespace are 
determined using the tests of the previous section. 

First, consider the portion of W in which the manip­
ulator may lie when it is in any configuration which brings 
it into contact with a point obstacle. Let B; denote such 
a point obstacle which is at the polar coordinates (p;, ¢;) 
with respect to the base of the manipulator. The curve 
drawn with a solid line in Fig. 6 illustrates the path fol­
lowed by the end effector as the manipulator moves under 
such constraints. The equation describing this curve may 
be obtained in polar coordinates as 

e( ) _1 [p 2 + (L2- r) 2
- Lr] r =cos 

2p(L2- r) 
(19) 

where e is measured with respect to the line passing be­
tween the origin of the manipulator's base coordinate sys­
tem and the point obstacle and r is measured with respect 
to the obstacle. Note that the relationship between this 
curve and the robot's configuration as it tracks this curve 
is given by e = 01 + 02- ¢. 

The set of points swept out by the entire link as it 
slides along B; may be determined by expanding the area 
enclosed by (19) to include all those points which may be 
reached by projecting a line segment of length L2 from 
each of the points along (19) through B;. The line seg­
ments which form the boundaries of this region are quickly 
obtained by recognizing that they must represent the po­
sitions of the second link when it is tangent to the curve 
of (19) and its end point is at an extrema in 0. Further­
more, the robot configurations which place the second link 
in such a position are given by noting that these extrema 
in e occur when 02 = ±~. 

Finally, the construction is completed by considering 
those points which come into contact with the first link. 
This is accomplished by considering the sector of radius 
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WORK SPACE 

Fig. 6. Generating the shadow of one of the region's bounding 
obstacles. The solid line in the depiction of the workspace represents 
the path followed by the end effector as it slides along the point 
obstacle. The dashed line illustrates the portions of W which must 
be added to this area to obtain the shadow of the obstacle. 

CONFIGURATION SPACE 

Fig. 7. The bold lines approximate the set of all possible positions 
for the manipulator when it is in any configuration in the region 
illustrated in grey. The figure also depicts the shadows of the two 
bounding obstacles. 

L 1 which subtends the angle formed by the end points of 
the two line segments computed in the previous step and 
the base of the manipulator. The area which results from 
this construction is illustrated with dashed lines in Fig. 6. 
For the sake of notation, the portion of this region which 
lies at a radius greater than Pi will be referred to as the 
"outer shadow" of B;. The remainder of this region will 
be denoted the "inner shadow" of obstacle B;. 

An approximation for the area in W in which the 
manipulator may lay when it is in any configuration for 
an entire region is illustrated in Fig. 7. This area is con­
structed by first establishing the shadows of each of the 
two obstacles forming the boundaries of the region. Then, 
it is expanded by extending the line segments forming the 
boundaries of the outer shadows so that an arc centered 
at the base of the manipulator and passing through the 
end points of these segments will be of sufficient radius to 
enclose both of the outer shadows. This approximation is 
then completed by including the inner shadows of the two 
obstacles along with the area which lies between them. 



At this point, a conservative approximation has been 
developed which represents the entire area in W in which a 
manipulator may be when it is at any configuration within 
the region. The utility of this information comes when de­
termining the effects of choosing any path through a region 
in one configuration space on the topology of the other ma­
nipulator's configuration space. Since the approximation 
which has been developed is composed entirely of line seg­
ments and arcs, considering this approximation to be an 
obstacle in the other robot's workspace permits the tests 
of Section III to be utilized in establishing the effects of 
one robot's motions on the topology of the other robot's 
freespace without knowing a priori which particular path 
will be chosen. 

Given these results, a simple planning algorithm can 
be readily described. The basis of the work being pre­
sented, as well as that of our earlier work (6] is that the 
planning process may be broken into a two phase ap­
proach during which the free space is first searched for 
a channel using qualitative information on its topology 
and then fitted with a specific path using local geometric 
information. The process of searching for the channels is 
simplified by limiting the search to those which use the 
highways as intermediate goals, not unlike the approach 
employed in (14]. Furthermore, the search is guided by us­
ing the heuristic that the channel be the one most likely 
to yield the shortest path. These channels are then tested 
for potential conflicts by using the results of the previous 
sections. If a conflict is found via the tests of the previous 
section then a velocity planner is invoked to modify the 
rate at which the channel will be traversed. If the veloc­
ity planning does not yield a pair of conflict-free channels 
then the planner continues by iterating through pairs of 
channels of increasing length until it finds a solution. 

More specifically, the planner is initialized by eval­
uating the topology of each manipulator's free space, a 
process which involves computing the sets of isthmuses 
and to which highways, if any, the initial and goal con­
figurations are connected. Having done this, the planner 
proceeds by choosing the pair of channels which have not 
yet been examined and which are most likely to yield the 
shortest paths. By using its extent in ()2 as an approx­
imation for the time required to pass through a region, 
the two channels are then temporally synchronized. Once 
this is accomplished, the results of Sections III and IV are 
used to determine whether the traversal of a particular 
region will affect the connectivity of the other manipu­
lator's configuration space in such a way as to indicate 
a potential collision. If so, the planner generates a new 
pair of channels and estimates the amount of time which 
would be required to traverse these new channels. If the 
time required to traverse the new pair exceeds the time 
to traverse the pair which has just failed, then the plan­
ner attempts to modify the manipulator velocities along 
the older pair of channels in an attempt to avoid colli­
sions, as in Path-Velocity Decomposition. If the result of 
this attempt at velocity planning is a set of trajectories 
which require no more time than the estimated time to 
traverse the new set of channels, then the planner returns 
the trajectories as the result. If at some point a pair of 
conflict-free channels is found, then a local path planner 
is invoked to choose a particular path within each of the 
channels. Finally, if, at some point, the planner hits some 
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predetermined limit on the estimated length of the path, 
then it returns with a failure. 

v. AN EXAMPLE 

In this section, the operation of the planner on a typ­
ical problem is illustrated. Consider the problem of plan­
ning a path between the configurations labeled (I) and (G) 
in Fig. 8(a). In the example which is illustrated, the plan­
ner first attempts to plan a path which leads the robot 
on the left along the path illustrated, while having the 
robot on the right traverse the isthmus closest to the ini­
tial configuration. Both solutions would be reasonable if 
considered individually, as they would be close to being 
the shortest paths in C for each manipulator. If, how­
ever, the robots were i·n fact to traverse these channels, 
then they would sweep through the regions in W illus­
trated in Fig. S(b ). and it is clear that a collision would 
occur regardless of the velocity profiles chosen along the 
paths. Hence, if a Path-Velocity Decomposition were em­
ployed in this situation, it is not unreasonable to believe 
that it would not be able to find a solution. However, by 
utilizing the algorithms described above, the planner is ca­
pable of quickly recognizing that the two proposed paths 
are unacceptable. It then chooses an alternate channel 
for one of the robots and tests this pair of channels for 
collisions. The resulting motions of the manipulators are 
shown in Fig. S(c). In this case, the new pair of channels 
do not bring the manipulators into potentially dangerous 
situations and, as a result, it is not necessary to invoke 
the velocity planning phase. Computing this solution re­
quired approximately 130 ms of CPU time on a SPARC 
II workstation. 

VI. RESULTs/CoNCLUSIONs 

This paper has described an approach to the problem 
of planning collision-free motions for multiple SCARA ma­
nipulators operating within overlapping workspaces. The 
primary results have been the development of two funda­
mental concepts, namely: 

1. the ability to quickly establish the presence of cer­
tain topological feature in Cjree, and 

2. the ability to quickly compute an approximation of 
the effects of one robot's motion on the topology of 
the other robot without a priori knowledge of the 
particular path which will be chosen through the 
region. 

These concepts have been illustrated by the development 
of a simple planning system for multiple SCARA manipu­
lators which finds solutions which form a superset of those 
found through a straightforward implementation of Path­
Velocity Decomposition. Furthermore, the low compu­
tational costs of generating candidate paths and testing 
them for interactions tends to offset the combinatoric na­
ture of the search process to yield a relatively quick al­
gorithm. The major drawbacks of the planner which has 
been presented is that it is not complete and some of the 
paths which result may be considerably less than optimal. 
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C·SPACE FOR LEFT ROBOT 

(a) 
C·SPACE FOR RIGHT ROBOT 

DASHED PATH (COLLISION) 

(b) 

DOTTED PATH (SOLUTION) 

(c) 

Fig. 8. An example of a situation in which a Path- Velocity De­
composition will not yield a solution although one exists. The con­
figuration spaces in (a) depict the paths which are tried for each of 
the manipulators as it attempts to find a solution. The path for the 
manipulator to the right depicted with a dashed line yields a colli­
sion which cannot be avoided via velocity planning (see (b) ). After 
the planner determines that a path is not possible, it backtracks 
and computes the path shown in (c), which is collision-free. This 
solution required approximately 130 ms. on a Spare- II workstation. 


