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ABSTRACT 
 
 
 

SAMPLING METHODOLOGY TRADEOFFS: EVALUATING MONITORING 

STRATEGIES FOR THE ENDANGERED HUMPBACK CHUB (GILA CYPHA) IN THE 

LITTLE COLORADO RIVER, ARIZONA 

 

Implementation of a reliable monitoring program is essential to informed population 

management.  When recovering a sensitive species, priority should be on minimizing human 

induced negative effects, given already reduced population abundance.  Thus, it is crucial to 

evaluate monitoring programs and make changes when more efficient techniques become 

available.     

To assess tradeoffs in sampling effort first necessitates obtaining accurate demographic 

parameter estimates.  However, obtaining such estimates may be challenging especially when 

assessing a migratory species monitored on its spawning ground.  Due to concerns regarding 

sampling availability, in such cases, it may be necessary to evaluate temporary emigration from 

the study site to avoid generating biased estimates of survival, detection and spawning 

probabilities.  Evaluating temporary emigration is especially important when non-annual 

spawning is anticipated, as skipped spawners may be unavailable for detection during annual 

sampling events.   

Since the late 1980s, population monitoring for the potamodromous humpback 

chub (HBC) Gila cypha within the Lower Colorado River Basin (LCRB) has focused on hoop-

net sampling within their primary spawning ground, the Little Colorado River (LCR).  However, 

questions remain unanswered regarding their spawning strategy.  Thus, due to the likely presence 
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of both resident and migratory fish and suspected non-annual spawning, I evaluated temporary 

emigration from the LCR, which I equate to skipped spawning.  Using, robust design mark-

recapture methodologies, I was able to generate unbiased estimates of survival and skipped 

spawning probabilities as well as spawner abundance.  

Given concern for handling induced stress due to intensive hoop-net sampling and to gain 

additional insight into HBC life history strategies and population dynamics, in 2009, a passive 

detection system (i.e. full duplex PIT tag antenna array) was implemented in the LCR.  With the 

addition of the array, this afforded an opportunity to evaluate sampling methodology tradeoffs 

between hoop-netting and array detections.  Thus, using simulation analysis, and demographic 

parameter estimates generated from my skipped spawning analysis, I assessed the potential 

benefits and shortcomings of reducing hoop-net sampling effort and supplementing recapture 

data with passive array detections. 

From my analysis, I found considerable evidence for skipped spawning among both male 

and female HBC.  Females on average had a higher probability of failing to spawn in a year 

subsequent to spawning (i.e. 𝛾̅�𝑚𝑎𝑙𝑒"  = 0.46 (95% credible interval [CRI]: 0.11, 0.81) and 𝛾̅�𝑓𝑒𝑚𝑎𝑙𝑒" = 

0.55 (95% CRI: 0.30, 0.75), although better sexing data is necessary to confirm this 

difference.  Annual variability in skipped spawning probability was high (i.e. process variance 

(σ2) = 0.306) while survival probability remained stable throughout the study period (i.e. 𝑆̅̂ = 0.75 

(95% CRI: 0.66, 0.82), σ2 = 0.005).  Based on my most reliable skipped spawning probability 

estimates, (i.e. probability a spawner transitions to a skipped spawner (𝛾̅�ʺ) = 0.45 (95% CRI: 

0.10, 0.80) and a skipped spawner remains a skipped spawner (𝛾̅�ʹ) = 0.60 (95% CRI: 0.26, 0.83)) 

which exclude sex, I found HBC in the LCRB have an average breeding cycle of every 2.12 

years, conditional on survival.   
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By employing these estimates in simulation analysis, I found that hoop-net sampling can 

be reduced and supplemented with array detections without negatively affecting estimability of 

adult HBC survival and skipped spawning probabilities, given detection efficiency of the array 

remains sufficiently high.  Because the array provides insight outside of traditional sampling 

periods and does not require repeated handling of this imperiled fish, it affords a viable means of 

reducing hoop-net sampling effort, thus, offering a potentially more efficient monitoring 

strategy.      
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CHAPTER 1: HUMPBACK CHUB (GILA CYPHA) SPAWNING STRATEGY IN THE 

LITTLE COLORADO RIVER, ARIZONA 

 
 

Introduction 

The humpback chub (HBC) Gila cypha, originally described by R. R. Miller in 1945 

(Miller 1946), is a long-lived cyprinid endemic to the Colorado River Basin (CRB; Holden and 

Minckley 1980).  Its distribution within the CRB is patchy and primarily restricted to canyon-

bound reaches characterized by deep-water and swift currents (Douglas and Marsh 1996).  

Although its historic abundance is not fully understood, it is surmised to currently occupy 68% 

of its historic range (Tyus 1998; USFWS 2011).  Six populations have been identified, of which 

five occur in the Upper Colorado River Basin (UCRB) in the Yampa, Green and Colorado 

Rivers.  The largest of the six populations occupies the Lower Colorado River Basin (LCRB), in 

which HBC primarily reside in the Colorado (CR) and Little Colorado Rivers (LCR; Douglas 

and Marsh 1996; USFWS 2002).   

Due to its limited abundance, the HBC was included on the first list of endangered 

species published in the Federal Register in 1967 and has retained its endangered status since 

that time, with current protection afforded by the Endangered Species Act of 1973 (USOFR 

1967; USFWS 2011).  Primary threats impacting population persistence include: habitat loss due 

to flow modifications and water temperature reduction resulting from dam construction, as well 

as the introduction of non-native predatory and competing species (Marsh and Douglas 1997; 

Valdez and Ryel 1997; Clarkson and Childs 2000; USFWS 2002; Yard et al. 2011).  

Although HBC in the LCRB were thought to originally spawn throughout the CR in 

Grand Canyon, in recent years, successful breeding and larval rearing has been predominantly 
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restricted to the lower 14.2 km of its largest tributary, the LCR (Valdez and Ryel 1995; Robinson 

et al. 1998; Gorman and Stone 1999).  Hypolimnetic releases from Glen Canyon Dam have been 

implicated in reducing available breeding habitat within the LCRB (Valdez and Ryel 1995; 

Kaeding and Zimmerman 1983; Douglas and Marsh 1996; USFWS 2002).  Since dam 

construction, year-round water temperatures in the CR downstream of Lees Ferry typically range 

from 8 to 12°C as compared to pre-dam summer temperatures ranging between 25 to 30°C 

(Wright et al. 2009).  The unregulated LCR provides annual high water temperatures similar to 

pre-dam conditions found within the CR (Van Haverbeke et al. 2013).  Despite temperature 

limitations in the CR, observations have been made of larval HBC in warm springs within the 

CR, indicating small scale spawning may occur.  However, evidence is sparse for recruitment 

success beyond the LCR (Valdez and Masslich 1999; Andersen et al. 2010).   

Unlike many large river potamodromous fishes, undergoing long distance migrations to 

complete their life cycles, HBC movement within the LCRB has been largely restricted to the 

lower 14.75 km of the LCR and a 20 km section of the CR centered on the LCR confluence 

(Valdez and Ryel 1995; Paukert et al. 2006).  Limited numbers of HBC have exhibited longer 

distance migrations; however, in all documented cases, movement occurred between the CR and 

the LCR.  Regardless of distance migrated, HBC demonstrate strong site fidelity even over 

extended periods of time.  Consequently, the LCR provides an ideal location for monitoring 

abundance trends for the entire LCRB population of HBC (Paukert et al. 2006). 

Traditional sampling and population estimation techniques for the LCRB population of 

HBC have focused on tracking changes in abundance and recruitment within the LCR through 

mark-recapture methodologies.  Since 2000, the U.S. Fish and Wildlife Service (USFWS) has 

employed a Chapman modified Petersen closed population estimator (Seber 1982) to estimate 
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seasonal abundance (Van Haverbeke et al. 2013).  In more recent years, an age structured open 

population model was developed to evaluate age specific annual mortality probabilities as well 

as abundance and recruitment trends (Coggins et al. 2006).  One primary assumption of these 

estimation techniques is that HBC spawn annually, and are, therefore, available for detection 

during LCR sampling events.  However, questions remain unanswered regarding whether a 

portion of the adult population fails to enter the LCR annually as a result of skipped spawning.   

Due to uncertainty regarding sampling availability, annual spawning migrations present 

challenges when estimating demographic parameters.   

While iteroparous fishes, such as HBC, have traditionally been considered annual 

breeders, more recent research supports the idea that not all fishes spawn with annual regularity 

(Rideout and Tomkeiwicz 2011).  Life-history theory suggests skipping reproductive events may 

have evolved as a mechanism to maximize lifetime fitness, especially in response to poor 

environmental conditions (Jørgensen et al. 2006).  Most commonly, fisheries research has 

attributed skipped spawning to density-dependent effects resulting from dietary deficiencies 

(Rideout and Tomkeiwicz 2011; Skjæraasen et al. 2012).   A recent study presents unequivocal 

evidence for high rates of skipped spawning among female Northeast Arctic cod.  In this 

population, individuals that skipped spawning were estimated to be equally abundant as 

spawners and principally remained on feeding grounds while spawners migrated southward to 

breeding habitats (Skjæraasen et al. 2012).  Although the majority of fisheries research regarding 

skipped spawning has focused on females, limited evidence of skipped spawning has also been 

documented in males with spawning probability as low as 0.75 (Rideout and Tomkiewicz 2011).  

Such research motivates the importance of evaluating skipped spawning, especially when 

resources are thought to be limiting.  Understanding annual spawning probabilities in migratory 



4 
 

populations is especially important when sampling occurs on breeding grounds because skipped 

spawners would be unavailable for detection.              

In the LCRB, additional challenges arise when evaluating HBC demographic parameters, 

particularly skipped spawning, due to the presence of both resident and migratory individuals 

(Douglas and Marsh 1996; Gorman and Stone 1999).  Resident HBC are believed to inhabit the 

LCR year-round, while migratory adults primarily reside in the CR and enter the LCR to spawn.  

This form of life history heterogeneity, in which residents and migrants breed sympatrically but 

overwinter in different habitats, is known as ‘non-breeding partial migration’ (Chapman et al. 

2011).  Accounting for such differences in life history strategies is difficult, given uncertainty 

regarding the age or size at which individuals begin displaying migratory behavior.  Research by 

Gorman and Stone (1999) suggests once a HBC reaches 300 mm total length (TL), migratory 

behavior appears obligatory and residency transitions from the LCR to the CR.  However, 

Douglas and Marsh (1996) conclude two distinct populations exist: one that resides year-round 

in the LCR and a second that migrates between the two rivers for spawning purposes, regardless 

of age or size.  If a portion of the LCRB population fails to spawn annually and instead resides 

year-round in the CR, they would be unavailable for detection during annual LCR monitoring 

events.  If unavailability is not accounted for, demographic parameter estimates, such as survival 

and spawning probability, may be biased (Kendall and Nichols 1995; Kendall et al. 1997).   

Thus, to increase understanding of HBC demographic parameters and minimize 

uncertainty regarding sampling availability, I evaluated long-term mark-recapture data from the 

LCRB using closed robust design mark-recapture models (Kendall et al. 1997).  I generated 

estimates of annual skipped spawning, survival and detection probabilities, as well as spawner 

abundance, while incorporating multiple datasets to account for potential differences in 
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demographic parameters based on sex and migratory status.  The primary focus of my research 

was to determine if, and at what probability, HBC in the LCRB fail to spawn annually, as this 

would have important implications for estimating abundance and survival probabilities used to 

evaluate population status and trends.  

Methods 

Little Colorado River Sampling  

The USFWS, in cooperation with the U.S. Geological Survey, Grand Canyon Monitoring 

and Research Center (GCMRC), has been largely responsible for collecting HBC monitoring 

data in the LCRB.  Since fall of 2000, they have consistently conducted four annual stratified 

hoop-net surveys in the lower 13.57 km of the LCR.  Two surveys occur in the spring, typically 

in April and May, during the HBC spawning season, followed by two fall surveys in September 

and October.  To conduct surveys, the lower 13.57 km of the LCR has been divided into three 

primary reaches and each primary reach has been subdivided into three secondary reaches 

(Figure 1.1).  Three crews, generally consisting of 3 – 4 individuals are deployed to each primary 

reach for simultaneous sampling.  Sampling typically takes place for three consecutive nights per 

secondary reach in which twenty hoop-nets (0.5 – 0.6 m diameter, 1.0 m long, single throat, 3 – 4 

hoops, and covered with 6 mm mesh) are set in locations expected to yield catches of HBC.  

Hoop-nets are moved between nights within a secondary reach if catches are negligible or when 

alternative sites are available.  Each crew fishes hoop-nets for nine consecutive nights, yielding a 

total of 540 net nights of sampling effort per survey (Van Haverbeke et al. 2013).   

Upon capture, HBC ≥ 150 mm TL and at times down to 100 mm TL are uniquely marked 

with a passive integrated transponder (PIT) tag (Biomark Inc., Boise, ID; Persons et al. 2013).  
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Length, sex, reproductive status, external parasite data, and location of capture are all recorded 

prior to release (Van Haverbeke et al. 2013).   

Additional HBC surveys in the LCR have been conducted by the Arizona Game and Fish 

Department (AGFD) since 1987.  Sampling effort concentrated on the lower 1.2 km of the LCR 

consists of fishing 13 hoop-nets (1.0 m diameter, 5.0 m long, two throats, 7 hoops, and covered 

with 6.3 mm mesh) placed in standardized locations for 20 – 30 consecutive nights during April 

and May (Persons et al. 2009).  Tagging protocols and data collected are consistent with those of 

the USFWS (Persons et al. 2013). 

In May of 2009, a full duplex PIT tag antenna array (Biomark Inc., Boise, ID) was 

installed in the LCR by the GCMRC 1.78 km upstream of the confluence with the CR, to 

passively detect the passage of HBC moving into and out of the LCR (Figure 1.1).  However, 

functionality has been variable primarily due to damage caused by annual high flow events, with 

additional limitations in early years caused by insufficient power to the array as a result of 

reduced sun exposure to the solar charging panels in winter months (W. Persons, U. S. 

Geological Survey, Grand Canyon Monitoring and Research Center, pers. comm.).  In recent 

years, the array has been operational year-round.      

Robust Design Closed Population Models 

Using the USFWS long-term monitoring data along with GCMRC array detections, I 

estimated annual survival (S), detection (p), recapture (c), and skipping probabilities (γ) for adult 

HBC along with spawner abundance (𝑁𝑠).  I defined an adult as any HBC greater than or equal 

to 200 mm TL, which was based on research indicating reproductive maturity is typically 

reached after three years of age and a minimum TL of 200 mm (Valdez and Ryel 1995; Gorman 

and Stone 1999; Meretsky et al. 2000; USFWS 2002).  To conduct my analysis, I employed 
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closed robust design mark-recapture models (Kendall et al. 1997) in program MARK (White and 

Burnham 1999).  Because the USFWS’s sampling protocols include repeated hoop-net sampling 

over short time intervals within a sampling “season” (i.e. a given survey), this provided an ideal 

opportunity to evaluate temporary emigration from the LCR through the use of Pollock’s robust 

design (Pollock 1982).  Under this model, within-season sampling periods are defined as 

secondary sampling occasions and are generally completed over consecutive days such that 

population closure can be assumed.  Longer periods of time typically occur between primary 

sampling occasions (i.e. annual events) in which the population is assumed to be open.  Between 

annual sampling events, HBC can remain in the LCR (if resident), return to the LCR, temporarily 

emigrate to the CR or die.  One of the benefits of implementing this robust design model is the 

ability to separate availability (i.e. HBC that are in the LCR during sampling events) from true 

detection probability given presence in the study area (p* = the probability of being detected at 

least once during a primary sampling occasion given presence in the study area).  I assumed 

absence from the LCR during the spawning season is reflective of a failure to spawn, and I 

equate temporary emigration from the LCR with skipped spawning.  Thus, I analyzed available 

hoop-net and array data from the LCR to evaluate evidence for skipped spawning in light of 

uncertainty regarding migratory status.  I completed this modeling analysis by subdividing the 

data into three subsets to assess the importance of accounting for residency and sex specific 

parameterization.   

Additional assumptions specific to the closed robust design mark-recapture model I 

implemented include: within season demographic (see Figure 1.2) and geographic closure (but 

see Kendall 1999), no tag loss or handling mortality, all marked animals must be identifiable as 

such and recorded correctly, all individuals grouped together (i.e. age, sex etc.) have the same 
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probability of capture, survival and emigrating, survival of the unobservable state is equal to the 

observable state, and each animal acts independently with respect to survival, movement and 

detection.    

Data Sub-setting  

To evaluate evidence for skipped spawning and facilitate unbiased parameter estimation, 

I first distinguished individuals appearing to display a migratory life history strategy from those 

that may be residing solely in the LCR.  Based on the assumption resident adults live year-round 

in the LCR regardless of spawning status, they would presumably be available for detection 

year-round.  However, because migratory HBC are assumed to only enter the LCR when 

reproductive, if HBC do not spawn annually, skipped spawning individuals would be unavailable 

for detection during LCR sampling events.  Therefore, I selected only known migratory adults to 

evaluate skipped spawning.  Although inclusion of residents would provide confidence for 

estimating survival probability, skipped spawning probability could be biased when equating 

availability with spawning probability.   

My designation of a migratory spawner was any adult HBC captured in the lower reach 

of the LCR downstream of the PIT tag antenna array with initial release occurring above the 

array.  I used all available data from the LCR to distinguish these individuals, which included 

USFWS and AGFD hoop-net captures, as well as GCMRC array detections.  I incorporated 

AGFD detections solely to aid in designation of migratory individuals, given sampling was 

restricted to the lower 1.2 km of the LCR.  I chose this approach because it likely provides a 

conservative estimate of migratory behavior, and I refer to this dataset as ‘known migrant’.  My 

strategy for defining ‘known migrant’ individuals was motivated by research from Gorman and 

Stone (1999) indicating a higher proportion of individuals captured in the lower reach of the 
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LCR (i.e. 0.0 – 3.0 km) were also captured in the confluence (i.e. CR) as compared to those 

captured in the upper reach (i.e. 10.5 – 13.57 km). Their findings are suggestive of a higher 

proportion of non-migratory HBC residing in the upper reach of the LCR.  Additional support for 

my reasoning comes from research by Van Haverbeke et al. (2013), in which they found the 

majority of spawning and overwintering HBC occupy the upper reaches of the LCR (i.e. 5.0 – 

13.6 km), indicating there is likely better spawning and overwintering habitat in this section of 

the river.   

For comparison purposes, and to increase sample size due to the restrictive nature of the 

‘known migrant’ data sub-setting, I relaxed my migratory assumption and instead assumed all 

adults were migratory.  I refer to this larger dataset as ‘all adults’.  By making this assumption, I 

was able to use all HBC detections for reproductively mature adults from the USFWS long-term 

monitoring dataset along with array detections.  Using all adult HBC detections greatly increased 

sample size (Table 1.1), as well as my ability to evaluate annual variability, and to more 

thoroughly evaluate skipped spawning and assess sex specific differences in demographic 

parameters.  Using all adult HBC detections also allowed me to evaluate the importance of 

accounting for residency when evaluating skipped spawning.  If a large portion of the population 

consisted of resident adults, I expected skipped spawning probability would be reduced under the 

‘all adults’ dataset because resident individuals would be present in the LCR regardless of 

spawning status.  However, when comparing skipped spawning probability estimates between 

the ‘known migrant’ and ‘all adults’ datasets, if I did not see a negative bias in skipped spawning 

probability when including all adults, accounting for residency may not be necessary when 

assessing skipped spawning.  
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Given concern regarding potential sex specific differences in annual skipped spawning, 

survival and detection probabilities, I also analyzed the ‘all adults’ dataset while accounting for 

sex.   To do so, I restricted the data to detections of ripe individuals due to challenges in sexing 

individuals when gametes are not expressible.  As a result, sample size was significantly reduced 

from the ‘all adults’ dataset (Table 1.1).  Interestingly, the resulting dataset was also heavily 

male biased (i.e. 95% males).  Finding a high proportion of ripe males did not indicate the 

population was male biased, but suggested males may have been expressing gametes for a longer 

period of time or their gametes were easier to detect.  I refer to this dataset as ‘known sex’. 

Sampling Occasions 

Because my primary focus was to evaluate skipped spawning, I only included spring 

sampling occasions (i.e. April and May) and detections of adult HBC.  Using a robust design 

framework, I designated the first day of USFWS hoop-net sampling at a given location as the 

first of three secondary sampling occasions.  I then pooled the subsequent 2 days of sampling at a 

given location into a single detection event, yielding my second secondary sampling occasion 

(Figure 1.2).  I repeated this process for both April and May sampling occasions and combined 

the datasets by pooling the first days of sampling into the first detection period and all 

subsequent days of sampling into the second detection period.  Pooling was done to mitigate the 

possible effect of closure violation.  My third secondary sampling occasion consisted of all 

spring PIT tag antenna array detections from May.  An example within season capture history of 

101, where “1” indicates capture and “0” no capture, would denote an individual was captured 

on day 1 of USFWS hoop-net sampling at a given location, was not recaptured on days 2 or 3 of 

hoop-net sampling but was detected by the array.   Ideally, I would have also pooled array 

detections across March and April to include any fish crossing the array earlier in the season as 
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they migrate upstream to spawn.  However, during the years for which I had available data, the 

array was not operational during March and April and in some years was only operational for a 

portion of May.   

Although consistent hoop-net sampling by the USFWS began in 2001, detections from 

2001 to 2003 were not included in the ‘known migrant’ dataset due to the number of sampling 

periods necessary to designate a migratory individual.  However, due to elimination of the 

migratory assumption, the ‘all adults’ and ‘known sex’ datasets include detections from 2001 to 

2011.  Array detections were only available from 2009 to 2011, resulting from its recent 

installation.  Therefore, the third secondary sampling occasion was only available for the last 

three years of the study.  Additionally, initial release of individuals was based on hoop-net data 

alone because a fish must be captured before being released, and array detections are not valid 

for this purpose.   

Modeling Analysis 

When evaluating evidence for skipped spawning, I tested three hypotheses regarding the 

process driving this behavior.  I began by modeling spawning as a function of reproductive status 

in the previous year and define this as a first-order Markov process.  Under this hypothesis, the 

mechanism responsible for a HBC skipping a spawning event in a subsequent year is biological, 

indicating a need to build up resources prior to spawning.  Markovian breeding processes have 

been documented in various species, including sea turtles, amphibians and birds (Kendall and 

Bjorkland 2001; Rivalan et al. 2005; Barbraud and Weimerskirch 2012; Prince and Chaloupka 

2012).  In a robust design framework, I tested my Markovian hypothesis by allowing transition 

from an observable state (i.e. spawner) at time (t) to an unobservable state (i.e. skipped spawner) 

at time (t+1) (i.e. 𝛾𝑡") to differ from remaining in an unobservable state (i.e. skipped spawning 
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state (𝛾𝑡′ )).  My second hypothesis predicted spawning was a completely random process in 

which environmental factors were driving reproductive ability due to fluxes in resource 

availability.  Under a random spawning process, the probability of spawning at time (t+1) is 

independent of spawning status at time (t), indicating current environmental conditions dominate 

the decision to spawn.  I tested this hypothesis by setting the transition probability of a spawner 

becoming a skipped spawner (𝛾ʺ) equal to the probability of a skipped spawner remaining a 

skipped spawner (𝛾ʹ).  My third hypothesis predicted all reproductively mature HBC in the 

LCRB spawn annually.  To model this hypothesis, I set 𝛾ʺ equal to zero, indicating no transitions 

were taking place, and I refer to this as a no skipped spawning model.  I allowed the Markovian 

and completely random skipped spawning models to vary over time or remain constant. 

To thoroughly evaluate demographic parameters, I also allowed survival probability 

estimates to vary over time or remain constant, given constraints.  Because HBC detections were 

limited to the LCR, this required assuming survival of unobservable individuals (i.e. skipped 

spawners) equals survival of observable individuals (i.e. spawners).  However, current 

understanding is limited regarding potential similarities or differences in river specific (i.e. CR or 

LCR) or reproductive status (i.e. spawners or skipped spawners) specific survival probabilities.  

Although, a concurrent LCRB study, found that during a period of consistently warmer water 

temperatures in the CR, HBC survival was higher in the CR than in the LCR (Yackulic et al. 

2014).  Additionally, terminal time-specific skipped spawning probability estimates (i.e. 𝛾𝑘" and 

𝛾𝑘′ ) are confounded with terminal time specific survival estimates under a Markovian emigration 

process (Kendall et al. 1997, Schaub et al. 2004).  To account for this parameter inestimability 

required constraining 𝛾𝑘"  and 𝛾𝑘′ .  Therefore, to evaluate annual variation in survival probability 
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while accounting for this limitation, I set 𝛾𝑘−1"  =  𝛾𝑘"  and 𝛾𝑘−1′  =  𝛾𝑘′ .  I selected this constraint a 

priori, because they were likely the most similar. 

I also accounted for differences in detection probability based on time and trap response.    

I evaluated trap response by allowing initial within season capture probability (p) to differ from 

within season recapture probability (c) with no annual variation or trap response across years.  I 

refer to this as model p(.), c(.), indicating a behavioral effect only. I created a second behavior 

model, this time allowing for annual and within season variability, and I refer to this as model 

p(t,j), c(t).  Because the final capture and recapture probabilities both reflect array detections, I 

set these values equal, thus allowing for within season variation in p during the years in which 

array detections were available.  However, when array detections were not available, fully time 

varying, within season detection probabilities were not estimable in conjunction with a trap 

response.  Thus, I set p(t,1) = p(t,2).  I then created a time varying model excluding a behavior 

effect which allowed for full time variation in p, both within and among years, and I refer to this 

as model  p(t,j).  I also created a time varying model with only annual variability, again 

constraining p(t,1) = p(t,2), and I refer to this as model p(t).  My final detection probability 

model was both time constant and excluded a behavior effect.  I considered this a null model, 

and I refer to it as model p(.).  Additionally, I did not allow for a trap response based on array 

detections because this is a passive detection process and unlikely to elicit a response based on 

previous detection.   

The closed robust design model I employed, based on work by Otis et al. (1978) and 

Kendall et al. (1995), includes within season abundance estimates (Nt) in the likelihood, thus 

providing a reasonable method for estimating LCR spawner abundance (𝑁𝑠).  From my 

abundance estimates, I was able to make comparisons between my estimation methods and the 
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traditional Chapman modified Petersen closed population estimation techniques implemented by 

the USFWS.  To employ the standard closed robust design abundance estimator, I assumed the 

entire spawning population was available for detection (i.e. there were no places in the LCR 

where spawning HBC were not being sampled), and the timing of sampling corresponded with 

their spawning season (i.e. spawners were not migrating in and out of the LCR between sampling 

events).  In all models, spawner abundance was time varying (𝑁𝑡𝑠).      

I then created all possible combinations of the parameters of interest for a total of 60 

models.  All of which are reasonable in this light.  To evaluate sex specific parameterization, I 

allowed all parameter estimates to vary between males and females and compared those to sex 

constant models for a total of 120 models.  A full list of models and estimable parameters is 

available in the Appendix.   

In program MARK, for each model, parameters were estimated using a sin link.  

However, when generating the most reliable parameter estimates, I implemented a Markov Chain 

Monte Carlo (MCMC) parameter estimation procedure using a logit link because the logit link is 

a monotonic transformation and is less prone to errors than the sin link.  I report MCMC 

estimates because this method provides 95% credible intervals (CRI) which may perform better 

than a ‘frequentist’ (i.e. profile likelihood-based 95% confidence intervals [CI]) approach  when 

estimability issues near the 0 – 1 bounds arise (Cooch and White 2013).  From the MCMC 

analysis, I was able to estimate a grand mean (µ) and process variance (σ2), given sufficient time-

varying estimates, for S and γ using a random effects model.  To generate MCMC parameter 

estimates, I used 4000 “tuning” samples, 1000 “burn in” samples and stored enough samples to 

yield convergent iteration plots (i.e. ‘known migrant’ = 200,000, ‘all adults’ = 50,000, ‘known 
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sex’ = 100,000).  I used a default prior mean of 0 and standard deviation of 1.75 for beta 

parameters not included in random effects.   

Model Selection 

For each dataset, model selection was based on information theory, while initial 

parameter estimates were based on a maximum likelihood approach.  I determined model support 

using Akaike Information Criteria with a small-population correction factor (i.e. AICc), and I 

refined parameter estimates from my most parsimonious models using MCMC.  I determined the 

theoretical number of estimable parameters, and adjusted AICc values from MARK to account 

for any discrepancies due to parameter inestimability as a result of data limitations.  

Additionally, any model displaying convergence issues was eliminated from the analysis.  

Attempts were made using alternative optimization techniques and providing starting values to 

remedy convergence issues; however, in most cases attempts were unsuccessful.  When reporting 

top models, I included all models with ∆AICc ≤ 7.  Analysis by Burnham et al. (2011), indicates 

strong support for models with ∆AICc ≤ 2; however, they emphasize this should not be used as 

an arbitrary cutoff.  Additional support can be found for models in the ∆AICc 2 – 7 range and 

should not be dismissed. 

Because model selection approaches rely on the most general model adequately fitting 

the data (Burnham and Anderson 1998), I used the median 𝑐̂ procedure in program MARK to 

evaluate goodness of fit (Cooch and White 2013).  Although this method cannot be directly 

applied to a robust design model, using a multistate framework, I created a model with an 

unobservable state (i.e. skipped spawners), which allowed me to employ the median 𝑐̂  

procedure.  Thus, I was able to partially test the assumptions underlying my models by 

evaluating the amount of overdispersion in the data.   
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Results 

I found overwhelming support for skipped spawning as indicated by all top models (i.e. 

AICc ≤ 7.0) including a skipped spawning process, with no support for consistent annual 

reproduction (Table 1.2).  When accounting for a resident adult population, my most 

parsimonious model indicated skipped spawning was a completely random process, with time-

constant S and γ, and annual variability in detection probability.  Under this model, I saw 

evidence for a negative trap response based on average p and c estimates of 0.47 and 0.20, 

respectively.  Although, my most parsimonious model revealed a completely random skipped 

spawning process, considerable model selection uncertainty was apparent based on total model 

weight (i.e. wrandom = 0.60 and wMarkovian = 0.40).  When analyzing the ‘all adults’ dataset, I found 

reduced model selection uncertainty and strong support for a Markovian skipped spawning 

process.  I also saw a shift to annually varying S, 𝛾" and 𝛾′, likely due to increased sample size.  

When accounting for sex, my most parsimonious model also provided support for a Markovian 

skipped spawning process and time-varying 𝛾",  𝛾′and p.  However, estimates of S were time-

constant.  Additionally, substantial support for sex-specific parameterization was indicated by all 

top models including unique parameter estimates for males and females.  Although a trap 

response was indicated in the ‘known migrant’ analysis, no support was found for a trap response 

in either the ‘all adults’ or ‘known sex’ analyses. 

Skipped Spawning Probability 

When estimating skipped spawning probability, I evaluated all three datasets to assess the 

importance of accounting for residency and sex specific parameterization.  First, I compared 

estimates from the most parsimonious model under my ‘known migrant’ dataset to the same 

model under my ‘all adults’ dataset.  My time constant estimate of γ when evaluating only 
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‘known migrants’ was 0.65 (95% CRI: 0.57, 0.73) as compared to 0.69 (95% CRI: 0.66, 0.71) 

when including ‘all adults’.  The observed difference in γ was opposite in direction from my 

expectation if a large proportion of this population were resident adults.  Additionally, to avoid 

any potential bias that may be generated because resident individuals are unlikely to be detected 

by the array, I then excluded array detections from the analysis and found γ was equal across 

datasets (i.e. γ(‘known migrant’) = 0.49 (95% CRI: 0.29, 0.64), γ(‘all adults’) = 0.49 (95% CRI: 

0.45, 0.53) .  Therefore, I concluded, accounting for residency may not be necessary when 

evaluating skipped spawning.  By incorporating all adult detections this provided larger sample 

size and in turn greater power to evaluate annual variability in demographic parameters.  

Because my conclusions regarding skipped spawning were not influenced by residency and my 

‘known sex’ dataset was heavily male biased, my most reliable demographic estimates come 

from my analysis of the ‘all adults’ dataset.   

Since a Markovian skipped spawning process was strongly supported by the ‘all adults’ 

and ‘known sex’ datasets and some support was found under the ‘known migrant’ dataset, I 

estimated differences in future skipped spawning probabilities based on current spawning state.  

The average probability of an adult HBC skipping a spawning event in a year subsequent to 

spawning (𝛾̅�") was 0.45 (95% CRI: 0.10, 0.80), and the average probability of remaining a 

skipped spawner (𝛾̅� ′) was 0.60 (95% CRI: 0.26, 0.83), which translates to an expected 2.12 years 

between spawning events, conditional on survival.  Annual variability in γʺ was high (i.e. σ2 = 

0.306), indicating the probability of a spawner transitioning to a skipped spawner was highly 

dynamic over the study period (Figure 1.3).  However, annual variability in 𝛾′ was reasonably 

low (i.e. σ2 = 0.085).  After accounting for sex, I found females appear to have a higher 

probability of skipped spawning in a year subsequent to spawning than males based on 𝛾̅�𝑚"  = 0.46 
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(95% CRI: 0.11, 0.81) and 𝛾̅�𝑓" = 0.55 (95% CRI: 0.30, 0.75), although estimates reveal 

considerable sampling variability (Figure 1.4).  I also found high process variance for 𝛾𝑚" , 

indicating the probability of a male transitioning from a spawner at time (t) to a skipped spawner 

at time (t+1) was highly dynamic.  I found, on average, males have a higher probability of 

remaining a skipped spawner (i.e. 𝛾̅�𝑚′  = 0.60 (95% CRI: 0.26, 0.90)) than transitioning from a 

spawner to a skipped spawner.  I present annually varying estimates for the probability of a 

female remaining a skipped spawner in a subsequent time period (i.e. 𝛾𝑓′); however, I was unable 

to generate a reliable mean and process variance estimate due to data limitations.  Although 

males and females, on average, appear to skip spawning with differing probabilities, better 

sexing data is necessary to confidently determine sex specific estimates.  

Survival Probability 

Annual adult survival probability estimates were reasonably consistent across datasets 

(Table 1.3) and over time (Figure 1.3).  Under the ‘known migrant’ analysis, my most reliable 

estimate for annual adult survival probability was a constant 0.79 (95% CRI: 0.70, 0.88) over the 

study period (i.e. 2004 – 2011).  I found annual survival probability did not differ significantly 

between males and females, with an estimated constant survival probability of 0.78 (95% CRI: 

0.73, 0.83) for males and 0.76 (95% CRI: 0.63, 0.90) for females.  When I included ‘all adults’ in 

the analysis, survival probability was annually variable. although the majority of annual 

variability was attributable to sampling variance (Figure 1.3).  However, I did see a decrease in S 

in 2006, with an estimated probability of 0.57 (95% CRI: 0.48, 0.68), which warrants further 

exploration as to the mechanism.  Survival probability was also reduced for the terminal two 

years of the study (i.e. 2009 and 2010), which may be attributable to modeling constraints 

(Langtimm 2009).  Thus, I reran my MCMC random effects model excluding 2009 and 2010 
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estimates and found identical results (i.e. 0.75 (95% CRI: 0.68, 0.83)) as compared to when 

including all time intervals (0.75 (95% CRI: 0.66, 0.82)).  Based on the grand mean estimate 

from my MCMC random effects model, I believe my most reliable estimate of annual adult 

survival probability is 0.75 as generated from my ‘all adults’ analysis.   

Spawner Abundance 

My estimates of spawner abundance (𝑁𝑡𝑠, where s = current year spawning adult) show a 

fairly stable trend from 2001 until 2006 with an average of 1027 (Range: 835 to 1342) spawners, 

excluding 2002, when I estimated 𝑁𝑠 to be 56 (95% CRI: 53, 70; Figure 1.5).  Beginning in 2007 

and continuing until 2010, I show a steady increase in spawner abundance up to a high of 3950 

(95% CRI: 3427, 4574), with a slight decline in 2011.  Because my 2002 estimate is 

considerably lower than all other estimates during the study period, this reduction is likely 

attributable to changes in sampling effort and not truly reflective of spawner abundance for that 

year.   

Detection Probability 

Time varying capture probability estimates indicated detectability via hoop-net sampling 

was dynamic over the study period (Figure 1.6), with an average day 1 detection probability 

estimate of 0.19 and a pooled day 2 and 3 estimate of 0.30.  Array detection probability estimates 

were consistently low, as was expected, because the array was only operational for a portion of 

the HBC migratory period.  On average, I estimated array detection probability was 0.03, ranging 

from 0.01 in 2009 and 2010 to 0.06 in 2011.  Pooled detections across all gear types and within 

season sampling periods (i.e. p constant) showed low sampling variation but high annual 

variation, with detection probability estimates ranging from 0.07 to 0.24 and mean of 0.18.   
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Goodness of Fit 

Median 𝑐̂ estimates from the ‘known migrant’ and ‘all adults’ datasets indicate minimal 

overdispersion in the data, given median 𝑐̂ of 1.187 (95% CI: 1.163, 1.210) and 1.177 (95% CI: 

1.157, 1,197), respectively.  Due to data limitations for the ‘known migrant’ dataset, my median 

𝑐̂ estimate was based on the most parsimonious model.  However, given larger sample size, I was 

able to apply the median 𝑐̂ procedure to my most general model for the ‘all adults’ dataset, 

barring one exception.  The multistate model used to evaluate goodness of fit does not account 

for differences in trap response; therefore, my most general model did not include this 

parameterization.  Because all median 𝑐̂ estimates were sufficiently close to 1, indicating good fit 

of the model to the data, I did not adjust model selection values.       

Discussion 

Regardless of migratory status assumptions, my evidence strongly suggests adult HBC 

are skipping spawning events and as a result are not annually available for detection within the 

LCR.    Although I do not formally evaluate spawning probability based on assessment of 

physical ripeness, given HBC in the LCRB are migratory and sampling was conducted on their 

spawning ground, I believe temporary emigration is an appropriate measure of skipped 

spawning.  Due to strong site fidelity and limitations in suitable breeding habitat outside the 

LCR, research indicates HBC are unlikely to spawn in locations outside of the LCR (Ryel and 

Valdez 1995; Robinson et al. 1998; Gorman and Stone 1999; Paukert et al. 2006).  If migratory 

adults enter the LCR during the breeding season for purposes other than spawning, which at this 

point has not been evaluated, my migratory status assumption would lead to negatively biased 

skipped spawning probabilities.  However, given spawning omission is likely attributable to 

maximizing long-term fitness through increased survival and greater future spawning success 
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due to energy savings (Rideout et al. 2005); it is improbable adult HBC expend energy to 

migrate when non-reproductive.   

When accounting for the possibility of a resident population within the LCR, I found 

nearly identical skipped spawning probability estimates as when including all adults, indicating 

either most adult HBC are migratory or my method for distinguishing migrants is invalid.  

Without further monitoring of movement patterns within this population or greater detections of 

HBC in the CR, inferences regarding residency of HBC in the LCR remain limited.  However, 

support for a small resident LCR population comes from recently published research by Yackulic 

et al. (2014) in which they estimated 82% of adult HBC in the LCRB are migratory.  Similar 

findings were reported by Limburg et al. (2013) based on otolith microchemistry in which they 

found 18% residency.  However, all resident individuals were juveniles, while all adults migrated 

to the CR.    

Although the spawning decision is apparently dependent on spawning status in the 

previous year, I can reasonably conclude, on average, a minimum of 50% of the adult population 

fails to spawn annually based on pooled estimates of γʺ and γʹ.  Similar findings are reported by a 

concurrent study revealing skipped spawning probabilities of 0.69 and 0.39, respectively for 

small (i.e. 200-250 mm TL) and large (i.e. 250+ mm TL) adults (reported as spawning 

probabilities (i.e. 1- skipped spawning probability; Yackulic et al. 2014)).  When I evaluated my 

‘all adults’ and ‘known sex’ datasets as compared to my ‘known migrant’ dataset, I found 

skipped spawning is best represented with a Markov process.  It is not surprising, analysis of my 

‘known migrant’ dataset indicated a completely random skipped spawning process because often 

with small datasets there is insufficient power to detect more complex effects.  However, due to 

the likely presence of both resident and migratory HBC in the LCRB, an alternative hypothesis 
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for a completely random process appearing Markovian when incorporating all adult detections is 

inclusion of resident individuals.  If both resident and migratory adults are present but all are 

treated as migratory, resident individuals would inflate the estimate of spawners remaining 

spawners (1- γʹ), causing a completely random process to appear Markovian.  Nevertheless, 

because average skipped spawning probability was similar under both datasets, I see no evidence 

for this latter possibility. 

Given sufficient sample size, I found considerable annual variability in skipped spawning 

probability estimates, highlighting the importance of accounting for temporal variance to gain a 

better understanding of HBC spawning dynamics.  Therefore, when estimating population 

demographic parameters, it is not only essential to include skipped spawning, but also to allow 

for annual variation in skipped spawning probabilities.  This need for time-dependent modeling 

reinforces the value of collecting data under the robust design.  Because abundance estimates 

include only those individuals available for detection, it may be necessary to evaluate sampling 

availability, in this case skipped spawning, to determine what portion of the total population is 

included in the abundance estimate.  If recovery plans are dependent upon reaching a given 

population threshold, incorrect interpretation of abundance estimates could falsely prevent 

attainment of recovery goals.  Due to overwhelming model support for sex specific 

parameterization and substantial differences in transition probability estimates, I acknowledge 

accounting for sex specific heterogeneity is likely essential to the accurate estimation of 

demographic parameters.  However, sex specificity should be further explored because available 

data was heavily male biased. 

In addition, estimates of average annual survival probabilities were nearly equivalent 

across datasets.  In all cases, my survival estimates were reasonably similar to previous work 
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from the LCRB.  Coggins et al. (2006) presented an age-structured open population model based 

on LCRB humpback chub sampling from 1989 to 2002.  They concluded survival varies by age 

class with estimated annual survival probabilities for 4 year olds of 0.60 up to 0.80 for HBC ≥ 11 

years.  Due to the high number of parameters necessary to fit their models, they were unable to 

account for the possibility of temporary emigration.  Although my study includes all adult HBC 

(i.e. 4+ years), my estimates are more reflective of Coggins et al.’s survival probabilities for 

older adults.  A possible explanation for this difference is likely due to accounting for a 

Markovian temporary emigration process (i.e. skipped spawning).  Research by Kendall et al. 

(1997) shows under standard Cormack-Jolly-Seber open population models, which do not 

account for temporary emigration due to confounding of detection probability and availability, 

the result is negatively biased survival and detection probability estimates under Markovian 

temporary emigration, especially at the end of the time series.  When employing a Jolly-Seber 

model, temporary emigration from the study site, in part, appears to be resolved by reducing 

survival estimates (Zehfuss et al. 1999).  Thus, by accounting for Markovian temporary 

emigration, I reduce the probability of generating biased parameter estimates.  An additional 

explanation for my estimates being more in-line with survival estimates for older adults, is 

simply due to increased survival probability during my study period.  This explanation is 

probable given increasing abundance estimates in recent years as compared to declines in the 

1990s (Coggins et al. 2006; Van Haverbeke et al. 2013).       

Although survival estimates were fairly consistent across time, using the ‘all adults’ 

dataset, my most parsimonious model includes time varying annual survival probabilities.  

Nevertheless, my estimate of process variance is low (i.e. σ2 = 0.005), indicating survival does 

not vary considerably over time.   All survival probability estimates do not deviate from within 



24 
 

the 95% credible interval bounds of my grand mean estimate except during 2006 and the 

terminal two years of the study (i.e. 2009 and 2010).  During 2009 and 2010, I saw significantly 

reduced survival probability estimates.  In 2006, annual adult survival probability may have truly 

been reduced, warranting further exploration into the mechanism causing such a substantial 

decrease. However, I believe the estimated drop in 2009 and 2010 may be an artifact of either 

individual heterogeneity in detection probabilities or temporary emigration of marked individuals 

from the study site.  Research by Pe𝑛�aloza et al. (in press) has shown heterogeneity in detection 

probability as well as temporary emigration can cause negative bias in terminal time specific 

survival estimates, with the greatest bias introduced due to temporary emigration.  Similarly, 

Langtimm (2009) found when using a closed robust design mark-recapture model to estimate 

time varying survival and Markovian temporary emigration probabilities, improper constraint of 

𝛾𝑘"  and 𝛾𝑘′  (i.e. terminal skipped spawning probabilities) resulted in negatively biased terminal 

survival estimates.  They also found the magnitude of the bias increased as S increased and as the 

difference between 𝛾k−1  and 𝛾𝑘increased.  Because my estimates of 𝛾"and 𝛾′were time varying, 

and I implemented similar a priori constraints (i.e. 𝛾𝑘 =
"  𝛾𝑘−1" and 𝛾𝑘 =

′  𝛾𝑘−1′ ) to estimate time 

varying survival probabilities, it is possible this resulted in a negative bias of the two terminal 

survival probabilities.   

From my modeling analysis, I also estimated annual adult HBC abundance in the LCR, 

which aids in determining fulfillment of population monitoring objectives.  However, because 

sampling occurred solely on their spawning ground and HBC are skipping spawning events, 

abundance estimates are not reflective of total population abundance but instead spawner 

abundance.  Therefore, when comparing my abundance estimates to those generated by the 

USFWS, employing a Chapman modified Petersen closed population estimator, I would expect 
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similar results, as both depict spawner abundance and not total population abundance.  However, 

when comparing my spawner abundance estimates to those generated during the same time 

period by the USFWS (Van Haverbeke et al. 2013), my estimates were consistently lower, 

although following the same trends.  The consistently higher estimates generated by the USFWS 

may be attributable to violations of population closure assumptions, because they allowed a 

greater time period to elapse between initial capture and recapture events.  To estimate 

abundance, the USFWS uses April hoop-net sampling as the first capture period and May hoop-

net sampling as the second capture period; therefore, assuming the population is closed to births, 

deaths, immigrations and emigrations between these sampling periods.  However, because this is 

a period of peak spawning, in which HBC are likely moving into and out of the LCR, it is 

probable both immigrations and emigrations are occurring during this time.  If true, this type of 

movement would cause abundance estimates generated using a Lincoln-Petersen estimator to be 

positively biased for either sampling period (Williams et al. 2002).  When generating spawner 

abundance estimates using a closed robust design mark- recapture model, I ensured population 

closure by defining secondary sampling periods differently, only allowing one to two days to 

pass between first and second capture events.  Therefore, I believe my estimates of spawner 

abundance are likely more robust.  

When evaluating a potential behavior effect in detection probability, using my ‘known 

migrant’ dataset, I found evidence for a negative trap response.  Avoidance of hoop-nets is 

reasonable given they are not baited, and the handling and tagging process may condition fish to 

evade capture.  However, when evaluating my ‘all adults’ and ‘known sex’ datasets, I did not 

find evidence for a trap response.  Due to sample size limitations under the ‘known migrant’ 

dataset, I attribute this discrepancy to spurious results.  Additionally, because I pooled over all 
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subsequent days of sampling for my second detection period, this may have mitigated a trap 

response.  Thus, I believe further evaluation of a trap response is warranted.  Concern has been 

raised as to potential trap shyness in older HBC, because they have been continually exposed to 

trapping and may have lower detection due to a behavioral response.  Therefore, because I did 

not evaluate a between season trap response (i.e. across annual sampling events), I believe this 

would be a logical next step.   

Generating unbiased demographic parameter estimates was reliant on fulfillment of 

closed robust design model assumptions, which in part include: no tag loss and no affect on 

survival due to tagging.  PIT tag retention and mortality studies using surrogate species for 

juvenile HBC, found high survival (i.e. > 98%) and low tag loss (i.e. 3%), 30 days post 

abdominal tagging (Childs 2002; Ward et al. 2008), indicating there is likely minimal tag loss 

and negligible effects on HBC survival due to tagging.  Because PIT tags are inserted into the 

abdominal cavity, tags are not discernable to visual predators, likely making a tagged fish no 

more susceptible to predation by such species.  Additionally, swimming studies have shown PIT 

tagging and handling has little effect on swimming ability (Ward 2003).  However, a 2005 study 

by Paukert et al. evaluating the effects of repeated hoop-netting and handling on bonytail chub 

(Gila elegans), found reduced growth in fish recaptured multiple times as compared to those 

never recaptured.  These findings raise concern that survival and reproductive success may be 

negatively affected due to reduced growth in fish handled repeatedly, which warrants evaluation.   

A thorough assessment of all model assumptions and constraints is essential to 

understanding the strengths and limitation of my modeling analysis.  Goodness of fit tests 

showed minimal overdispersion in the data, indicating adult HBC are acting independent from 

one another, thus fulfilling an important model assumption.  Concern, however, has been raised 
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when using robust design models due to the necessary constraint that survival of the 

unobservable state (i.e. skipped spawner) is equal to survival of the observable state (i.e. 

spawner).  In the LCRB, uncertainty exists regarding fulfillment of this assumption due to 

differences in habitat usage and energy exertion between spawners and skipped spawners.  

Although I was unable to evaluate fulfillment of this assumption, this is an important aspect of 

HBC life history that should be assessed.  If however, a substantial difference existed, this 

difference would likely have been detected in my median c-hat assessment.   

My findings reveal, under current environmental conditions, all adult HBC in the LCRB 

do not spawn annually, but instead need to build up resources prior to spawning in a subsequent 

year (i.e. Markovian spawning process).  I also show skipped spawning probability has been 

highly dynamic over time, which suggests there is an environmental component influencing 

reproduction.  Not only do my findings improve understanding of HBC reproductive habits, but 

they also inform availability for detection during annual sampling events used to evaluate HBC 

demographic parameters.  My research further illustrates how violating estimation model 

assumptions can bias abundance and demographic parameter estimates, and I demonstrate the 

importance of accounting for such violations.  Thus, the results of my study can be used to aid in 

HBC management and to strengthen insight into the spawning dynamics of this long-lived fish.   
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Tables 

Table 1.1. Effective sample size based on estimation procedures from program MARK for all 
datasets used to evaluate demographic parameters for the Little Colorado River population of 
humpback chub from 2001 to 2011. 
 

Dataset Effective Sample Size 
Known Migrant 883 
All Adults 9481 
Known Sex 3731 
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Table 1.2. Top robust design mark-recapture models, based on AICc ≤ 7, used for evaluating 
demographic parameters of the Little Colorado River population of humpback chub.  The most 
parsimonious model is indicated by ΔAICc = 0.0.  Three datasets were incorporated to account 
for potential differences in demographic parameters based on migratory status and sex.  p(t) c(t) 
indicates annual time variation and behavior effect in detection probability.  p(t,j) indicates both 
within and between season variability in detection probability.  I evaluated both time constant (.) 
and time varying (t) survival (S) and skipped spawning probabilities (γʺ (i.e. a spawner 
transitions to a skipped spawner) and γʹ (i.e. a skipped spawner remains a skipped spawner)) and 
tested three hypotheses for the process driving skipped spawning (i.e. random, Markovian or no 
skipping).   
 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Dataset Top Models ∆AICc Likelihood Weight
Known Migrant Random  - S(.) γ(.) p(t) c(t) 0.0000 1.0000 0.5149

Markovian - S(.) γ"(.) γ'(.) p(t) c(t) 1.8163 0.4033 0.2077
Markovian - S(t) γ"(.) γ'(.) p(t) c(t) 1.9532 0.3766 0.1939
Random - S(.) γ(t) p(t) c(t) 4.0189 0.1341 0.0690

All Adults Markovian - S(t) γ"(t) γ'(t) p(t,j) 0.0000 1.0000 0.5671
Markovian - S(.) γ"(t) γ'(t) p(t,j) 1.6601 0.4360 0.2473
Random - S(t) γ(t) p(t,j) 2.2353 0.3271 0.1855

Known Sex Markovian - S(.) γ"(t) γ'(t) p(t,j) - sex variation 0.0000 1.0000 0.6309
Random - S(t) γ(.) p(t,j) - sex variation 3.0619 0.2163 0.1365
Random - S(.) γ(t) p(t,j) - sex variation 3.3099 0.1911 0.1206
Markovian - S(t) γ"(.) γ'(.) p(t,j) - sex variation 3.5378 0.1705 0.1076
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Table 1.3. Parameter estimates from the most parsimonious robust design mark-recapture models 
under each of the three datasets used to evaluate humpback chub demographic parameters for the 
Lower Colorado River Basin population.  Estimates are from MCMC random effects models.  µ 
indicates the grand mean and 𝜎2 indicates the associated process variance.  If the most 
parsimonious model included time constant parameterization, I did not include an estimate of 
process variance, which is indicated by NA*.  Estimates are included for survival (S) and 
skipped spawning probabilities (γʺ (i.e. a spawner transitions to a skipped spawner) and γʹ (i.e. a 
skipped spawner remains a skipped spawner)) with sex specific parameterization, if applicable.  
The grand mean and process variance for female γ’ were unknown (i.e. Unk.) owing to parameter 
estimability issues.  
 

Analysis µ(S) σ2(S) µ(γʺ) σ2(γʺ) µ(γ') σ2(γ') 
Known Migrant 0.79 NA* 0.65 NA* 0.65 NA* 
All Adults 0.75 0.005 0.45 0.306 0.60 0.085 
Known Sex: male 0.78 NA* 0.46 0.277 0.60 0.065 
                    female 0.76 NA* 0.55 0.016 Unk. Unk. 
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Figures 

 
 

Figure 1.1. U.S. Fish and Wildlife Service (USFWS) primary hoop-net sampling reaches for the 
federally endangered humpback chub (Gila cypha; HBC) in the Little Colorado River (LCR), 
Arizona as indicated by km markers (i.e. Boulders Reach: 0.0 – 5.0, Coyote Reach: 5.0 – 9.6, 
Salt Reach: 9.6 – 13.57).  Each primary reach has been subdivided into three secondary reaches 
for a total of nine secondary reaches.   Addition hoop-net sampling, conducted by the Arizona 
Game and Fish Department, occurs from the confluence to km 1.2 in the LCR.  Included is the 
location of the U. S. Geological Survey, Grand Canyon Monitoring Research Center (GCMRC), 
full duplex PIT tag antenna array showing proximity to the Colorado River (CR). 
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Figure 1.2. Robust design mark-recapture model used to evaluate demographic parameters for 
the Lower Colorado River Basin population of humpback chub.  Data is from U.S. Fish and 
Wildlife Service hoop-net surveys from the Little Colorado River (LCR), Arizona and LCR PIT 
tag antenna array detections provided by the U.S. Geological Survey, Grand Canyon Monitoring 
and Research Center. S = annual survival probability, γ = annual skipped spawning probability, 
p1 = hoop-net detection probability - day 1 of sampling at a given location (pooled across April & 
May), p2 =  hoop-net detection probability - days 2 and 3 of sampling at a given location (pooled 
across April & May), p3 = array detection probability - pooled across May, p* = probability of 
being detected at least once within a season [1-(1-p1)(1-p2)(1-p3)]  
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Figure 1.3. Time varying annual survival (S) and skipped spawning probability estimates (γʺ (i.e. 
a spawner transitions to a skipped spawner) and γʹ (i.e. a skipped spawner remains a skipped 
spawner)) for all adult (i.e. ≥ 200 mm total length) humpback chub in the Lower Colorado River 
Basin.  µ indicates the grand mean over the duration of the study and σ2 gives the process 
variance.  The distribution on the right illustrates the amount of variability in time varying 
estimates.  Error bars show 95% credible intervals for each estimate. 
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Figure 1.4. Time varying skipped spawning probability (γʺ (i.e. a spawner transitions to a 
skipped spawner) and γʹ (i.e. a skipped spawner remains a skipped spawner)) estimates for 
‘known sex’ adult (i.e. ≥ 200 mm total length, m = male, f = females) humpback chub in the 
Lower Colorado River Basin.  µ indicates the grand mean over the duration of the study, and σ2 
gives the process variance.  The distribution on the right illustrates the amount of variability in 
the time varying estimates.  Error bars show the 95% credible intervals for each estimate.  
Estimates for γʹ(f) µ and σ2 are not reported owing to estimability issues. 
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Figure 1.5. Annual spawner abundance estimates for humpback within the Little Colorado River, 
Arizona with corresponding 95% credible intervals.   
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Figure 1.6. Time varying detection probability (p) estimates for ‘all adult’ (i.e. ≥ 200 mm total length) humpback chub in the Lower 
Colorado River Basin.  µ indicates the mean detection probability estimate over the duration of the study.  p(day 1) indicates day 1 
hoop-net sampling detection probability estimates, p(all sub) gives detection probability estimates pooled across all subsequent days f 
sampling at a given locations (i.e. days 2 and 3), p(array) is array detection probability estimates pooled across May and p(pooled) is 
pooled detection probability estimates across all within season sampling and gear types (i.e. p constant). 
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CHAPTER 2: SAMPLING METHODOLOGY TRADEOFFS 

 
 

Introduction 

Monitoring sensitive populations is central to informing species recovery.  To evaluate 

population status and trends, monitoring efforts often focus on abundance estimation (USFWS 

2002).  However, assessment of additional demographic parameters, such as survival and 

spawning probability, can provide insight into drivers of population change.  Generating 

unbiased demographic estimates presents challenges, primarily due to limited biological 

understanding, as well as funding, personnel and time constraints.  Although, improved 

parameter estimability may be possible, using technologically advanced and less invasive 

techniques.   

When monitoring sensitive populations, it is ethically and statistically important to 

minimize human induced negative effects, especially when those effects are a direct result of the 

monitoring program (Rahel et al. 1999).  Handling-induced stress, leading to decreased fitness or 

mortality, is of utmost concern when population abundance is low.  Although handling may not 

result in direct mortality, stress in fishes has been shown to have cumulative negative effects, 

including reduced growth and condition (Wedemeyer et al. 1990; Paukert et al. 2001).  Research 

by Paukert et al. (2005) reveals an inverse relationship between growth rate and handling in 

bonytail chub (Gila elegans).  Because changes in growth have been found to affect mortality, 

recruitment dynamics, susceptibility to environmental alterations and trophic interactions (Quist 

et al. 2012), these findings evoke concern for numerous fish species.  For example, fisheries 

managers are concerned about the potential implications of extensive handling on the federally 

endangered humpback chub (HBC; Gila cypha).  Closely related to the bonytail chub, the HBC 
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is a long-lived species (USOFR 1967; USFWS 2002) experiencing similar handling frequencies 

(Van Haverbeke et al. 2013).  Thus, apprehension has been expressed regarding the current level 

of handling employed to assess HBC population status and trends in the Lower Colorado River 

Basin (LCRB).  Minimizing human-induced negative effects remains a priority for the LCRB 

monitoring program, as well as improving understanding of HBC life history strategies and 

population dynamics (USFWS 2002).  

Current monitoring for the LCRB population of HBC has focused on repeated hoop-net 

sampling within their primary spawning ground, the Little Colorado River (LCR).  Due to strong 

site fidelity (Paukert et al. 2006) and minimal breeding outside the LCR (Valdez and Ryel 1995; 

Gorman and Stone 1999), it is believed the LCR provides an ideal location for monitoring the 

entire LCRB population (Paukert et al. 2006).  Therefore, the U.S. Fish and Wildlife Service 

(USFWS), in cooperation with the U.S. Geological Survey, Grand Canyon Monitoring and 

Research Center (GCMRC), has annually conducted hoop-net sampling in the LCR, to estimate 

HBC abundance and recruitment (Coggins and Walters 2009; Van Haverbeke et al. 2013).  

During each sampling event, HBC are evaluated following standard handling procedures, 

unmarked fish are uniquely marked with Passive Integrated Transponder (PIT) tags, and 

recaptures are recorded (Persons et al. 2013).   

Using a passive detection system for detecting PIT tagged individuals may increase the 

potential efficacy of monitoring programs. Advantages of supplementing physical recaptures 

with passive detections include: increased precision of demographic parameter estimates from 

extra detections and increased understanding of fish dynamics and movement outside of 

traditional sampling periods. Potential advantages of partially replacing capture effort with 
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passive detections include: decreasing impacts on fish due to handling and reducing sampling 

costs while maintaining statistical performance.  

To assess the efficacy of passive detection in the LCRB, the GCMRC installed a full 

duplex PIT tag antenna array (Biomark Inc., Boise, ID), within the LCR, just upstream of the 

confluence with the Colorado River (CR), to passively detect the passage of tagged fish 

migrating into and out of the LCR.  Placement of the array near the mouth of the confluence 

suggests the majority of detections will likely consist of migratory HBC, as they move into and 

out of the LCR to spawn (Douglas and Marsh 1996; Gorman and Stone 1999), and tagged 

juveniles transitioning to the CR (Limburg et al. 2013).  Because the majority of assumed 

resident HBC are thought to primarily reside in the upper reach of the LCR (Douglas and Marsh 

1996; Gorman and Stone 1999; Van Haverbeke et al. 2013), the array was not anticipated to be a 

reliable method for monitoring resident HBC.  However, based on my findings in Chapter 1, as 

well as work by Yackulic et al. (2014) and Limburg et al. (2013), resident adult HBC (i.e. ≥ 200 

mm total length (TL)) likely account for only a small portion of the adult population.   

Installation of the array afforded an opportunity to assess the effectiveness of using a 

passive detection system for evaluating HBC demographic parameters.  However, tradeoffs in 

sampling effort may only be possible if demographic parameter estimation is not negatively 

affected (USFWS 2002).  Therefore, I evaluated tradeoffs between hoop-netting and array 

detections by comparing bias and precision of survival and skipped spawning probability 

estimates using a simulation analysis that represents the range of scenarios of current interest.  I 

also evaluated the detection potential of the array by empirically estimating detection efficiency.  

Lastly, I discuss the implications of reduced hoop-net sampling effort on abundance estimation.   
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Methods 

Little Colorado River HBC Monitoring 

Repeated hoop-net sampling within the LCR began in the 1980s (Coggins et al. 2006).  

However, it was not until fall of 2000 that a standard sampling protocol was implemented.  Since 

that time, the USFWS has consistently conducted four annual hoop-net sampling events.  Two 

events occur in the spring (i.e. April and May), to estimate spawner abundance and two in the 

fall (i.e. September and October), to estimate recruitment.  During each sampling trip, three 

crews are deployed to the lower 13.57 km of the LCR, simultaneously sampling three primary 

reaches (Salt, Coyote, and Boulders; Figure 1.1).  Each primary reach has been divided into three 

sub-reaches such that the entire lower 13.57 km of the LCR are sampled.  Twenty hoop-nets (0.5 

– 0.6 m diameter, 1.0 m long, single throat, 3 – 4 hoop, and covered with 6 mm mesh) are 

deployed in each sub-reach for three consecutive nights.  The sampling design results in 180 net 

nights of sampling effort per primary reach for a total of 540 net nights of sampling effort per 

event (i.e. 2160 net nights annually).  Upon capture, fish are measured, sexed, checked for 

gametes and parasites, uniquely marked with a 12 mm full duplex PIT tag and released (Van 

Haverbeke et al. 2013; Biomark Inc., Boise, ID). 

The PIT tag antenna array, originally installed in May of 2009, is comprised of multiple 

individual antennas working in concert with one another (Figure 2.1).  The array was designed to 

cover the full wetted width of the LCR under base flow conditions (~ 220 cfs) and operate year-

round.  However, spring and summer high flow events, which routinely exceed 2,000 cfs, reduce 

coverage of the array.  Since installation, the array has experienced variable functionality, 

initially due to an insufficient solar power system used to keep the array functional during winter 

months as well as high flow events washing out individual antennas.  However, the solar power 
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system was upgraded in 2010 and all damaged arrays have since been replaced.  Thus, in recent 

years, the array has been operational year-round.   

Tradeoffs in Sampling Effort 

To address possible tradeoffs between hoop-netting effort versus array detections, I 

considered the following monitoring objectives and practical considerations.  First, a priority of 

the USFWS and GCMRC spring monitoring effort is to assess HBC spawning in the LCR.  

Second, abundance estimates are key to assessing population status, while survival and skipped 

spawning probabilities are important for interpreting the causes of population change.  However, 

one question is whether trading hoop-netting effort for array detections negatively affects 

estimability of abundance, survival or skipped spawning probability. 

Reduction in monitoring effort can be achieved by fewer net nights of effort per sampling 

event, or a reduced number of events.  Given the fixed monetary costs of transporting crew and 

equipment into and out of the study area for a given sampling event, there is a bigger cost 

savings by reducing the number of events rather than the number of net nights within a sampling 

event.  Therefore, I focused on whether the entire May hoop-netting event could be discontinued.   

I chose to evaluate 5 scenarios of spring sampling effort, to assess sampling methodology 

tradeoffs between hoop-netting and array detections (Table 2.1).  My scenarios incorporate 

variable combinations of hoop-netting and array intensities, and I make comparisons between 

bias and precision of survival (S) and skipped spawning probabilities (γʺ and γʹ).  I define γʺ as 

the probability a spawner in one year skips spawning in the subsequent year, and γ́ is the 

probability a skipped spawner remains a skipped spawner in the subsequent year.  Throughout 

this study, I sought to answer two main questions.  First, can May hoop-netting be discontinued 

and replaced with spring array detections, without negatively affecting demographic estimates?  
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Second, do array detections contribute additional value to April and May hoop-netting, or should 

one component be modified or discontinued?    

Parameter Values     

In part, I obtained parameter values for my simulations from  Chapter 1, in which I 

showed that survival, skipped spawning, and detection probabilities varied annually.  I then 

simulated detection histories based on annual estimates of survival and skipped spawning 

probabilities (Table 2.2).  However, to determine hoop-netting detection probability estimates for 

April only sampling, I reconstructed my most parsimonious model excluding May detections.   

From this model, I was also able to estimate HBC spawner abundance based solely on April 

hoop-net detections.  I used the findings from my April only evaluation to assess the potential 

implications of reduced hoop-net sampling effort on abundance estimation.  By employing the 

time-varying survival and spawning probability estimates presented by Pearson et al., in addition 

to discrete detection probability estimates, I generated data for each of the 5 unique scenarios of 

interest.  Because the array was not fully operational during the period in which my detection 

estimates were generated, and the array has been experiencing better functionality in recent 

years, I selected the highest annual array detection probability estimate (i.e. p(array) = 0.06) to 

represent low end array detectability (i.e. p(array) low).  Thus, the differences between my 5 

generating models are due to changes in detection probability.   

Empirical Detection Probability Estimation 

To thoroughly assess tradeoffs in sampling effort, thus identifying a best case scenario for 

the array, I conducted a field evaluation of the array to determine its detection potential.  I 

estimated detection efficiency of the array in 2012 and 2013 during the month of May when the 

LCR was at base flow.  From this analysis, I was able to generate a high end detection 
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probability estimate (i.e. p(array) high), which I used in my generating models to better depict 

the array’s range of detectability.   

I conducted multiple evaluations to gain a deeper understanding of the array’s 

functionality by decomposing in situ detection efficiency (IE) into path efficiency (PE) and 

antenna efficiency (AE; Zydlewski et al. 2006).  Path efficiency is the proportion of the cross-

sectional area of the river along the path of the array covered by the read range of the antennas.  

Antenna efficiency is the proportion of tags detected by the array from all tags passing within the 

read range of the antenna (i.e. if a tag passes within the detectable range of the antenna, what is 

the probability it will be detected?).  In situ efficiency, therefore, is the overall detection 

efficiency of the array and the product of PE x AE (Zydlewski et al. (2006)).  Thus, IE informs 

the probability a tagged fish crossing the array will pass within its detectable range and be 

detected.       

I evaluated path efficiency by attaching a PIT tag to the end of a meter stick and slowing 

moving the tag away from the antenna until it was no longer detectable.  I measured the 

maximum detection distance from each antenna by taking multiple measurements over evenly 

spaced increments (i.e. every 1.5 m).  Given the rectangular design of the antennas and their 

placement within the water column, I took measurements on both the upstream and downstream 

sides.  In certain areas, fish could cross both above and below the antennas, so I measured 

detection distance from the top and bottom edges for portions of the antennas that were not 

anchored directly to the bottom of the river.  All measurements were taken with the PIT tag 

oriented perpendicularly to the horizontal plane of the antenna, because this orientation has been 

shown to provide optimal detectability (Bubb et al. 2002; Hill et al. 2006; Bond et al. 2007).  I 

completed three measurements at each 1.5 m increment for a total of 318 estimates in 2012 and 
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192 in 2013.  The reduction in measurements taken between years is attributable to one of the 

antennas not functioning in May of 2013.  After determining maximum detection distances from 

the antennas, I then measured the cross-sectional area of the river along the array.  Using both 

measurements, I estimated the proportion of the cross-sectional area along the path of the array 

in which a tagged fish could be detected when crossing:  

(PE = Area covered by the read range of the array
Cross−sectional area of the river along the array

). 

To measure AE, I implemented two evaluation techniques.  The first focused on tag 

orientation (AE-Stick) and the second fish behavior (AE-Fish).  When evaluating AE-stick, I 

used a PIT tag attached to the end of a meter stick and passed it within the read range of the 

antenna at three different orientations (i.e. parallel, perpendicular and 45˚ angle), using the same 

locations as when measuring path efficiency.  I completed a total of two passes for each 

orientation at each location, yielding a total of 576 passes in 2012 and 646 in 2013.  After each 

pass, I documented whether or not the tag was detected and used this data to determine the 

proportion of tags detected at each orientation.  To better incorporate fish behavior, I employed 

caged, tagged humpback chub, bluehead suckers (BHS; Catostomus discobolus) and 

flannelmouth suckers (FMS; Catostomus latipinnis) to measure antenna efficiency (AE-Fish).  A 

total of 20 fish, ranging in size from 173 to 440 mm TL, were used in 2012 (11 HBC, 5 FMS and 

3 BHS), and 30 in 2013 (16 HBC, 8 FMS, and 6 BHS).  I supplemented my limited sample of 

adult HBC with BHS and FMS to increase sample size.  I attached an approximately 1.5 m x 1.5 

m, mesh bottom, floating PVC cage above a single antenna in the array and marked the top of the 

detectable range (Figure 2.2).  I then released a tagged fish into the cage and allowed it to swim 

freely for 15 minutes.  During this time, I observed when the fish passed within the detectable 

range and noted whether or not it was detected by the array and calculated: 



45 
 

(AE-Fish =  # of detections
Total # of crosses

 ).  The same formula was used to calculate AE-Stick for each 

orientation. 

Using my average estimates of PE and AE, I indirectly estimated IE as the product of PE 

and AE.  Due to the rectangular shape of each antenna and the limited read range inside the 

antennas, a fish has two opportunities to be detected when crossing a single antenna.  Therefore, 

the probability of being detected at least once when crossing within the detectable range of an 

antenna is [1-(1-p1)*(1-p2)], where p1 is the probability of being detected on the downstream side 

and p2 is the probability of being detected on the upstream side.  The equation then for overall 

detection efficiency is: IE = 1-(1-𝐴𝐸����� *𝑃𝐸����� )2. 

I also estimated IE directly through an intensive hoop-net sampling effort.  To do so, I 

fished 40 unbaited hoop-nets within 500 meters of the array.  Twenty nets were placed upstream 

and twenty downstream.   Hoop-nets were fished for 7 consecutive nights, and checked every 

morning.  All captures were measured, sexed, checked for gametes and parasites, scanned for an 

existing PIT tag, and if the fish was of sufficient size (≥ 100 mm TL) and had not been 

previously tagged, it was implanted with a 12 mm full duplex PIT tag and released (Biomark 

Inc., Boise, ID).  Any fish, which included HBC, BHS and FMS, captured both upstream and 

downstream of the array were evaluated to determine if they were detected by the array when 

crossing (N2012 = 37, N2013 = 26).  In 2012, I also included USFWS hoop-net captures from this 

area as sampling was concurrent, which increased sample size from 13 to 37.  I then directly 

estimated in situ efficiency as: IE = # tagged �ish detected by the array
# tagged �ish known to have crossed the array

.   

By using intensive hoop-net sampling to estimate detection efficiency, I was able to 

better incorporate the path a fish might take when crossing the array and how they are oriented 

relative to the antenna.  Thus, I believe my direct IE estimates likely provide the most reliable 
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estimates of PIT tag detectability using the array, under base flow conditions.  Therefore, I 

employed these estimates to represent the detection potential of the array when simulating 

sampling methodology tradeoffs.  Because HBC may be crossing the array under higher flows, I 

believe these estimates likely represent maximum detectability.          

Simulations 

Although my primary objective was to evaluate tradeoffs in the performance of parameter 

estimators for my 5 proposed sampling scenarios, I also wanted to assess my ability to detect 

effects regarding HBC skipped spawning as related to life history strategies.  In Chapter 1, I 

found that HBC in the LCRB skip spawning events, and this process appears to be Markovian.  

Therefore, I generated data under Markovian skipped spawning probabilities. I then evaluated 

the power to detect this Markovian process, by analyzing generated data assuming Markovian, 

completely random, or no skipping strategies (Table 2.3).  I completed 500 simulations for each 

skipped spawning model, for a total of 1500 evaluations per sampling scenario.  From these 

simulation models, I compared bias and precision using April and May hoop-net sampling as a 

reference condition.  I generated average bias estimates for each parameter by determining the 

absolute difference between its generating parameter value and its estimate.  I also computed an 

average coefficient of variation (CV) for each estimator.  I allowed all parameters to vary 

annually and calculated averages across all 500 simulations for both bias and CV. 

All simulations were run in Program MARK (White and Burnham 1999) using a 

multistate closed robust design model (Kendall et al. 1997).  I chose this model because it can 

account for a reduction in the number of tagged fish due to discontinuing May hoop-netting. I 

estimated initial spawner population size using average spawner abundance estimates from 2007 

to 2011, as I presented in Chapter 1.  I then employed annual survival and skipped spawning 
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probability estimates from Chapter 1 to estimate the number of new recruits needed to maintain 

stable population abundance for simulation analysis.  Thus, I was able to account for both 

changes in detection probability and number of tagged fish when evaluating these sampling 

methodology tradeoffs. 

Results 

Detection Efficiency 

In situ detection efficiency of the array was consistent across years, despite variability in 

the number of functional antennas, with an estimated detectability of 0.42 based on intensive 

hoop-net sampling (Table 2.4).  However, due to a single antenna not being operational in May 

2013, I estimated a decrease in path efficiency, leading to a decrease in indirect in situ efficiency 

estimates, while direct estimates remained unchanged.  These findings suggest HBC may have 

been traveling similar paths when crossing the array that excluded the non-functional antenna.  

Interestingly, average read range from the array increased from 7.5 (95% CI: 7.0, 8.0) cm in 

2012 to 15.6 (95% CI: 15.1, 16.1) cm in 2013, when there were fewer operational antennae 

within the array, potentially indicating a tradeoff in the number of functional antennas in the 

array and the read range of each antenna.  Although I found slight differences in indirect in situ 

efficiency estimates, overall my results were reasonably consistent across years and evaluation 

methods, with an average detection efficiency estimate of 0.41 (95% CI: 0.38, 0.43 ). 

I found that tag orientation appears to play a significant role in antenna efficiency.  When 

a tag was oriented parallel to the plane of an antenna it was rarely detected (i.e. average 0.02 

(95% CI: 0.00, 0.03) across years). However, when oriented at a 45̊  angle, detectability was 

greatly increased (i.e. average 0.81 (95% CI: 0.77, 0.85) across years) and the highest 

detectability (i.e. 0.92 (95% CI: 0.89, 0.95)) occurred when the tag was orientated 
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perpendicularly.  Thus, average antenna efficiency, based on tag orientation, was 0.58 (95% CI: 

0.55, 0.61), assuming equal probability of each tag orientation, and increased slightly when 

incorporating fish behavior (i.e. 0.67 (95% CI: 0.63, 0.72) in 2012 to 0.73 (95% CI: 0.68, 0.77) 

in 2013). This suggests HBC do not cross antennas with equal probability of each orientation.   

Simulation: Bias and Precision 

When reducing capture effort by replacing May hoop-netting with array detections, I 

found that bias and precision of demographic parameters (i.e. S, γ", γ') were nominally affected.  

If detection probability on the array was low (i.e. 0.06), minimal bias in survival and skipped 

spawning probabilities were introduced, 1 – 2% over current hoop-net sampling, and precision 

was reduced by 2 – 7% (Table 2.5, Figure 2.3).   However, when detection probability on the 

array was high (i.e. 0.42), parameter estimability was actually improved, and in certain cases, 

considerably (i.e. precision of γ" increased by 15%). 

When assessing the value of conducting all three sampling efforts, I found small-sample 

bias was reduced and precision was increased.  On average, bias was decreased by 2% and 

precision was increased by up to 18%.  Even when detection probability on the array was low, I 

still found a slight improvement over hoop-netting alone (i.e. precision increased by 1% for S, 

2% for γ′ and 7% for γ").  However, bias was minimally affected (i.e. <1% reduction for S, γ″ 

and γ′).  It is important to note that even under the current best case scenario, which includes all 

three sampling methods and high detection probability on the array, I still found slight bias in 

survival and skipped spawning probability estimates (avg. = 2 – 3%; Figure 2.3). 

Across all bias and precision comparisons for each of the 5 sampling scenarios, 𝑆̂ was the 

least affected by changes in sampling effort, while estimates of skipped spawning probabilities 
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were most sensitive to changes therein (Figure 2.3).  Not surprisingly, I also found that change in 

precision was more sensitive to sampling methodology tradeoffs than change in bias. 

Simulation: Model Selection 

I found all simulations resulted in the generating model being most parsimonious, with 

one exception.  When May hoop-netting was replaced with array detections and detection 

probability on the array was low, 1% of simulations yielded a completely random skipped 

spawning process as most parsimonious.  Overall, evaluations of all 5 sampling scenarios 

indicated sufficient power to detect the presence of non-annual spawning and under the majority 

of sampling scenarios, the results correctly indicated the spawning process was Markovian.    

Abundance Estimation 

 Based on hoop-net captures from 2001 to 2011, the discontinuation of May hoop-net 

sampling resulted in an overall negative bias in HBC spawner abundance in the LCR (Figure 

2.4).  With the exception of 2006, all other annual abundance estimates are below those 

presented in Chapter 1 which include both April and May hoop-net sampling periods.  

Discussion 

Our study reveals that hoop-net sampling within the LCR can be reduced and 

supplemented with array detections without negatively affecting adult survival and skipped 

spawning probability estimates, given detection probability of the array reaches its full potential.  

Alternatively, if array detection efficiency remains low, I expect minimal increase in bias and 

variability of demographic parameter estimates.  Thus, regardless of the detection efficiency of 

the array, given a minimum detectability of 0.06, parameter estimability should not be 

substantially affected when replacing May hoop-netting with array detections.  However, based 

on past sampling effort, the discontinuation of May hoop-netting will likely lead to negatively 
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biased spawner abundance estimates, due to the probable absence of a substantial number of 

spawners in April, unless ideal timing can be determined when all spawners are present in the 

LCR.  By accounting for a reduction in the number of tagged fish, due to the hypothesized 

discontinuation of May hoop-netting, my findings provide a robust depiction of potential future 

monitoring efforts in the LCR.    

It is important to note that my evaluation accounts for all spawning HBC having some 

probability of being detected by the array.  If, however, resident individuals are remaining in the 

upper portions of the LCR and, as a result, never cross the array, resident fish would only be 

detectable using hoop-net sampling.  Thus, when making the decision to discontinue May hoop-

netting this factor should be considered.   

Given the array has experienced better functionality in recent years, I expect array 

detection probability will increase over the low estimates I presented in Chapter 1.  Instead, array 

detection probability will likely approach my in situ estimate of 0.42, if current functionality is 

maintained.  If array detection probability reaches this level, parameter estimability for survival 

and skipped spawning probabilities would actually improve over hoop-netting alone.  Because 

the array allows for decreased handling of HBC through replacement of hoop-net sampling, 

while also improving understanding of HBC dynamics outside traditional sampling periods, I 

believe the array provides a more effective sampling method over hoop-netting alone, especially 

given my findings of the array’s detection potential.   

I acknowledge that in some instances my estimates of the array’s detectability may be too 

conservative and in others too optimistic.  First, my in situ estimate only accounts for detection 

on a single array.  However, I know that migratory adult HBC will likely cross the array at least 

twice in any given reproductive year, once when swimming upstream to spawn and second when 
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migrating back to the CR after breeding (Douglas and Marsh 1996; Gorman and Stone 1999).  

Therefore, detection by the array will likely exceed my low array detection probability that only 

accounts for a single detection.   Additionally, the installation of a second array in May 2012 

should further increase the detection potential of this passive detection system.  However, 

detection by the array could be lower than I expect during in-migration because HBC enter the 

LCR during the descending limb of the spring hydrograph, when the river exceeds base flow 

conditions (Gorman and Stone 1999) and it is likely, detection probability is reduced during this 

time.  Although, during out-migration, HBC are likely exiting the LCR during base flow 

conditions (Gorman and Stone 1999), thus supporting my high in situ estimate. 

By employing multiple evaluation techniques and decomposing empirical detection 

efficiency into its component parts (Zydlewski et al. 2006), I was able to gain an in-depth 

understanding of the detection potential of the array.  For a more thorough evaluation, 

measurements should be taken under multiple flows.  However, assessing detection efficiency 

under higher flows poses many inherent dangers and may not be possible. Although it is 

reasonable to conclude that detection efficiency decreases under higher flows, tagged fish may 

travel along consistent paths, remaining close to individual antennas, in which case detection 

efficiency may be stable.   

 While bias and precision of survival and skipped spawning probability estimates were 

not greatly affected when May hoop-netting was replaced with array detections, it is important to 

note that discontinuing May hoop-netting limits the ability to estimate spawner abundance.  

Obviously, the array cannot detect unmarked HBC and therefore cannot be used to determine the 

ratio of marked to unmarked individuals (Seber 1982).  Therefore, if May hoop-netting is 

discontinued, abundance estimates would only be based on April hoop-netting.  However, array 
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detections can be used to augment estimability of other demographic parameters, including 

survival and skipped spawning probabilities.  If all migratory spawners are available for 

detection during April, then accurate spawner abundance estimates can be generated under this 

reduction in hoop-net sampling.  Research indicates peak spawning occurs in mid-April into 

early May (Douglas and Marsh 1996; Gorman and Stone 1999), thus it may be possible that all 

spawners are available during a single detection event.  However, from my comparative analysis 

of annual spawner abundance, I found an overall negative bias in abundance estimates with the 

exception of 2006, indicating past hoop-net sampling in April was not conducted at a time when 

all spawning adults were present in the LCR. 

Alternatively, reduced sampling effort can be implemented by decreasing the number of 

days sampled per trip, thus maintaining hoop-net sampling during April and May. One of the 

benefits of this type of sampling reduction would be reduced bias in N as when compared to 

eliminating May hoop-netting, although precision would still suffer.  However, simply 

decreasing sampling days would likely not aid budget savings due to high transportation costs. 

When determining additional benefits to be gained from continuing all three sampling 

efforts, I found that bias and precision of S, γ″ and γ′ were improved regardless of whether array 

detections supplemented April and May hoop-netting or replaced a portion.  Additionally, using 

array detections will improve understanding of HBC life history strategies outside traditional 

sampling periods, as well as evaluating directionality of movement and informing residence time 

in the LCR.  

The installation of a PIT tag antenna array in the LCR allowed me to explore the benefits 

and potential shorting comings of employing a passive detection system for monitoring HBC 

demographic parameters.  Although important questions remain unanswered, regarding HBC life 
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history strategies and population dynamics, array detections can be used to help answer many of 

these questions.  Given concern over handling induced stress, I believe the array also provides an 

opportunity to reduce handling of this imperiled fish.  However, due to uncertainty regarding the 

functionality of the array and a likely negative bias in annual spawner abundance estimates, 

current effort should focus on using array detections to improve understanding of HBC life 

history strategies and population dynamics.  Thus, information gained from array detections can 

be used to refine HBC monitoring programs.  Nevertheless, my findings reveal substitution of 

physical capture with a passive detection system provides a viable means for monitoring HBC in 

the LCR without negatively affecting estimation of adult HBC survival and skipped spawning 

probabilities.  Based on field evaluation, I found detection potential of the array is significantly 

higher than my original estimates.  Although assessments of PIT tag antennas often reveal 

detection efficiencies approaching 100% (Axel et al. 2005; Aymes and Rives 2009), I found that 

when compared to hoop-netting, a detection efficiency of only 42% was sufficiently high to 

improve demographic estimability, especially given average hoop-net detection probabilities 

were only p(day 1) = 0.19 and p(all sub) = 0.30.  With better functionality of the array in recent 

years, including year-round operation, additional insight can be gained regarding HBC 

movement outside traditional sampling periods.   

Assessment of monitoring strategies for sensitive populations is integral to species 

recovery.  As I have demonstrated, technological advances provided an opportunity to implement 

an alternative monitoring strategy for HBC in the LCRB, allowing for decreased handling of this 

endangered fish.  In light of widespread use of PIT tag technology for monitoring aquatic 

species, antenna arrays provide a realistic method for passive detection (Zydlewski et al. 2006).  

Given the potential implication of handling induced stress on fishes (Paukert et al. 2005; Baker et 



54 
 

al. 2013), I argue that all monitoring programs should evaluate the feasibility of implementing 

passive detection techniques.  As scientists and managers, it is important to mitigate any negative 

impacts on population persistence especially those resulting from the monitoring program.     
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Tables 

Table 2.1. Sampling scenarios with associated detection probability estimates (p(day 1) = 1st day 
of hoop-net sampling at a given location, p(all sub) = pooled days 2 and 3 of hoop-net sampling 
at a given location, p(array) = pooled PIT tag antenna array detections from May) for monitoring 
humpback chub demographic parameters in the Little Colorado River, Arizona.  Estimates were 
generated using U.S. Fish and Wildlife Service hoop-net sampling data and U.S. Geological 
Survey, Grand Canyon Monitoring and Research Center PIT tag antenna array detections.  
Hoop-netting and low array detection probability estimates are based on research from Chapter 1 
of this study, while high array estimates were generated by empirical evaluation. 
 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

p(day1)  p(all sub) 
Sampling Method hoop-netting  hoop-netting p(array) 
April hoop-netting & low array detections    0.10 0.23 0.06 
April hoop-netting & high array detections    0.10 0.23 0.42 
April & May hoop-netting   0.19 0.30 0.00 
April & May hoop-netting w/ low array detections    0.19 0.30 0.06 
April & May hoop-netting w/ high array detections    0.19 0.30 0.42 

Detection Probability Estimates 
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Table 2.2. Humpback chub (HBC) time varying survival and skipped spawning probability 
estimates based on my findings from Chapter 1 in which I evaluated HBC demographic 
parameters in the Lower Colorado River Basin. St = survival probability, γʺt = probability of 
transitioning to the skipped spawning state, γʹt = probability of remaining in the skipped 
spawning state 

 

Parameter Estimate   Parameter Estimate   Parameter Estimate 
S1 0.7697 

 
γ"1 0.9701 

 
γ'1 0.0000 

S2 0.7817 
 

γ"2 0.4180 
 

γ'2 0.5134 
S3 0.7511 

 
γ"3 0.6738 

 
γ'3 0.8094 

S4 0.7233 
 

γ"4 0.1825 
 

γ'4 0.3783 
S5 0.7835 

 
γ"5 0.8042 

 
γ'5 0.7858 

S6 0.6653 
 

γ"6 0.1398 
 

γ'6 0.4871 
S7 0.7562 

 
γ"7 0.2846 

 
γ'7 0.5309 

S8 0.7404 
 

γ"8 0.2426 
 

γ'8 0.6480 
S9 0.6877 

 
γ"9 0.3713 

 
γ'9 0.4766 

S10 0.7061   γ"10 0.3713   γ'10 0.4766 
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Table 2.3. Generating and estimation models used in simulation analysis to evaluate tradeoffs in 
sampling effort for the Lower Colorado River Basin (LCRB) population of humpback chub 
(HBC).  Models are based on my findings from Chapter 1 in which I evaluated HBC 
demographic parameters in the LCRB.  S = survival probability, γʺ = probability of transitioning 
to the skipped spawning state, γʹ = probability of remaining in the skipped spawning state, p = 
detection probability, t = annual variability, j = within season variability 

 

Generating Model Skipped Spawning Process 
S(t), γ"(t), γ'(t), p(.,j) Markovian (i.e. γ" ≠ γ') 

  Estimation Model Skipped Spawning Process 
S(t), γ = 0, p(t,j) No skipped spawning (i.e. γ = 0) 
S(t), γ"(t), γ'(t), p(t,j) Markovian (i.e. γ" ≠ γ') 
S(t), γ(t), p(t,j) Random (i.e. γ" = γ') 
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Table 2.4. Empirical detection efficiency estimates for the full duplex PIT tag antenna array 
installed in the Little Colorado River, Arizona.   

 

    Year Evaluated 

  
2012 2013* 

Path Efficiency (PE) 0.40 0.32 
Antenna Efficiency (AE) 

  
 

Caged Fish 0.67 0.73 

 
Stick: parallel orientation 0.00 0.03 

 
Stick: perpendicular orientation 0.93 0.90 

  Stick: 45˚ angle 0.81 0.82 
In situ Efficiency (IE) 

  

 

Direct: intensive hoop-net 
sampling 0.42 0.42 

 
Indirect: PE x AE fish 0.46 0.41 

  Indirect: PE x AE stick 0.41 0.32 
Average Read Range 7.5 cm 15.6 cm 
* An antenna was not functioning during the 2013 evaluation that had been in 2012. 

 

 

 

 

 

 

 

 

 

 

 



59 
 

Table 2.5. Change in bias and precision of HBC survival (S) and skipped spawning probabilities (γʺ = spawner transitions to a skipped 
spawner and γʹ = skipped spawner remains a skipped spawner) from simulation analysis evaluating tradeoffs in sampling effort 
between hoop-netting (A = April, M = May) and PIT tag antenna array detections (low = low array detection probability, high = high 
array detection probability) for the Lower Colorado River Basin population of humpback chub.  
 

 

 

 

 

 

 

Sampling
Method April    May      Array S γ" γ' Direction S γ" γ' Direction
A+low yes no low 0.012 0.010 0.019 ↑ bias -0.022 -0.057 -0.069 ↓ precision
A+high yes no high -0.013 -0.017 -0.021 ↓ bias 0.023 0.149 0.060 ↑ precision
A+M* yes yes no 0.000 0.000 0.000 N/A 0.000 0.000 0.000 N/A
A+M+low yes yes low -0.004 -0.006 -0.009 ↓ bias 0.007 0.065 0.021 ↑ precision
A+M+high yes yes high -0.018 -0.021 -0.029 ↓ bias 0.031 0.179 0.079 ↑ precision
*All bias and precision comparisons use April & May hoop-netting as a reference

Simulation Results
Change  in BIAS Change  in PRECISION Hoop-netting
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Figures 

  
 

Figure 2.1. Layout of the full duplex PIT tag antenna array installed by the U.S. Geological 
Survey, Grand Canyon Monitoring and Research Center in the Little Colorado River, Arizona. 
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Figure 2.2. Cage used to confine fish for evaluating detection efficiency of the full duplex PIT 
tag antenna array located in the Little Colorado River, Arizona.   
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Figure 2.3. Average bias and coefficient of variation (CV) estimates from simulation analysis 
evaluating sampling methodology tradeoffs between USFWS hoop-net sampling and U.S. 
Geological Survey Grand Canyon Monitoring and Research Center PIT tag antenna array 
detections for the Lower Colorado River Basin population of humpback chub. A = April hoop-
netting, M = May hoop-netting, low = low array detections, high = high array detections, S = 
survival probability, γʺ = probability of transitioning to the skipped spawning state, γʹ = 
probability of remaining in the skipped spawning state. Y-axes are not equal across plots. 
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Figure 2.4. Comparison of humpback chub (HBC) spawner abundance estimates with associated 95% credible intervals from the Little 
Colorado River, Arizona based on varying levels of U.S. Fish and Wildlife Service hoop-net sampling effort.  Spawner abundance 
estimates using hoop-net detections from April and May were presented in Chapter 1. 
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APPENDIX: CHAPTER 1 MODEL STRUCTURES 

 

Robust design mark-recapture model structures and number of estimable parameters used to 
evaluate humpback chub (HBC) skipped spawning (γ), survival (S) and detection (p and c) 
probabilities along with spawner abundance (𝑁𝑠), based on detections of adult HBC from 2001 
to 2011 in the Little Colorado River, Arizona. 

 

# Model Constraints & exceptions S γ" γ' p c
1 {Markovian - S(t), γ"(.), γ'(.), p(.), c(.)} pt3 = ct3 10 1 1 2 1
2 {Markovian - S(.), γ"(.), γ'(.), p(.), c(.)} pt3 = ct3 1 1 1 2 1
3 {Markovian - S(.), γ"(t), γ'(t), p(.), c(.)} pt3 = ct3 1 10 9 2 1
4 {Markovian - S(t), γ"(t), γ'(t), p(.), c(.)} γ10 = γ11, pt3 = ct3 10 9 8 2 1
5 {Markovian - S(t), γ"(.), γ'(.), p(.)} pt3 = ct3 10 1 1 2 0
6 {Markovian - S(.), γ"(.), γ'(.), p(.)} pt3 = ct3 1 1 1 2 0
7 {Markovian - S(.), γ"(t), γ'(t), p(.)} pt3 = ct3 1 10 9 2 0
8 {Markovian - S(t), γ"(t), γ'(t), p(.)} γ10 = γ11, pt3 = ct3 10 9 8 2 0
9 {Markovian - S(t), γ"(.), γ'(.), p(t,j)} pt3 = ct3 10 1 1 25 0

10 {Markovian - S(.), γ"(.), γ'(.), p(t,j)} pt3 = ct3 1 1 1 25 0
11 {Markovian - S(.), γ"(t), γ'(t), p(t,j)} pt3 = ct3 1 10 9 25 0
12 {Markovian - S(t), γ"(t), γ'(t), p(t)} γ10 = γ11, pt1 = pt2 & pt3 = ct3 10 9 8 14 0
13 {Markovian - S(t), γ"(t), γ'(t), p(t,j)} γ10 = γ11, pt3 = ct3 10 9 8 25 0
14 {Markovian - S(t), γ"(.), γ'(.), p(t)} pt1 = pt2 & pt3 = ct3 10 1 1 14 0
15 {Markovian - S(.), γ"(.), γ'(.), p(t)} pt1 = pt2 & pt3 = ct3 1 1 1 14 0
16 {Markovian - S(.), γ"(t), γ'(t), p(t)} pt1 = pt2 & pt3 = ct3 1 10 9 14 0
17 {Markovian - S(t), γ"(.), γ'(.), p(t,j), c(t)} pt1 = pt2 - except t = 9, 10, 11 & pt3 = ct3 10 1 1 17 11
18 {Markovian - S(.), γ"(.), γ'(.), p(t,j), c(t)} pt1 = pt2 - except t = 9, 10, 11 & pt3 = ct3 1 1 1 17 11
19 {Markovian - S(.), γ"(t), γ'(t), p(t,j), c(t)} pt1 = pt2 - except t = 9, 10, 11 & pt3 = ct3 1 10 9 17 11
20 {Markovian - S(t), γ"(.), γ'(.), p(t), c(t)} pt1 = pt2 & pt3 = ct3 10 1 1 14 11
21 {Markovian - S(.), γ"(.), γ'(.), p(t), c(t)} pt1 = pt2 & pt3 = ct3 1 1 1 14 11
22 {Markovian - S(.), γ"(t), γ'(t), p(t), c(t)} pt1 = pt2 & pt3 = ct3 1 10 9 14 11
23 {Markovian - S(t), γ"(t), γ'(t), p(t,j), c(t)} γ10 = γ11, pt1 = pt2 - except t = 9, 10, 11 & pt3 = ct3 10 9 8 17 11
24 {Markovian - S(t), γ"(t), γ'(t), p(t), c(t)} γ10 = γ11, pt1 = pt2 & pt3 = ct3 10 9 8 14 11
25 {No Skipping - S(.), γ"(t), γ'(t), p(.), c(.)} γ = 0, pt3 = ct3 1 0 0 2 1
26 {No Skipping - S(t), γ"(t), γ'(t), p(.), c(.)} γ = 0, pt3 = ct3 10 0 0 2 1
27 {No Skipping - S(t), γ"(.), γ'(.), p(.)} γ = 0, pt3 = ct3 10 0 0 2 0
28 {No Skipping - S(.), γ"(.), γ'(.), p(.)} γ = 0, pt3 = ct3 1 0 0 2 0
29 {No Skipping - S(.), γ"(.), γ'(.), p(t)} γ = 0, pt1 = pt2 & pt3 = ct3 1 0 0 14 0
30 {No Skipping - S(t), γ"(.), γ'(.), p(t)} γ = 0, pt1 = pt2 & pt3 = ct3 10 0 0 14 0
31 {No Skipping - S(.), γ"(.), γ'(.), p(t,j)} γ = 0, pt3 = ct3 1 0 0 25 0
32 {No Skipping - S(t), γ"(.), γ'(.), p(t,j)} γ = 0, pt3 = ct3 10 0 0 25 0
33 {No Skipping - S(.), γ"(.), γ'(.), p(t,j), c(t)} γ = 0, pt1 = pt2 - except t = 9, 10, 11 & pt3 = ct3 1 0 0 17 11
34 {No Skipping - S(t), γ"(.), γ'(.), p(t,j), c(t)}γ = 0, pt1 = pt2 - except t = 9, 10, 11 & pt3 = ct3 10 0 0 17 11
35 {No Skipping - S(.), γ"(.), γ'(.), p(t), c(t)} γ = 0, pt1 = pt2 & pt3 = ct3 1 0 0 14 11
36 {No Skipping - S(t), γ"(.), γ'(.), p(t), c(t)} γ = 0, pt1 = pt2 & pt3 = ct3 10 0 0 14 11

Number of parameters
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# Model Constraints & exceptions S γ" γ' p c
37 {Random - S(t), γ"(.), γ'(.), p(.), c(.)} pt3 = ct3 10 1 0 2 1
38 {Random - S(.), γ"(.), γ'(.), p(.), c(.)} pt3 = ct3 1 1 0 2 1
39 {Random - S(.), γ"(t), γ'(t), p(.), c(.)} pt3 = ct3 1 10 0 2 1
40 {Random - S(t), γ"(t), γ'(t), p(.), c(.)} γ10 = γ11, pt3 = ct3 10 9 0 2 1
41 {Random - S(t), γ"(.), γ'(.), p(.)} pt3 = ct3 10 1 0 2 0
42 {Random - S(.), γ"(.), γ'(.), p(.)} pt3 = ct3 1 1 0 2 0
43 {Random - S(.), γ"(t), γ'(t), p(.)} pt3 = ct3 1 10 0 2 0
44 {Random - S(t), γ"(t), γ'(t), p(.)} γ10 = γ11, pt3 = ct3 10 9 0 2 0
45 {Random - S(t), γ"(.), γ'(.), p(t,j)} pt3 = ct3 10 1 0 25 0
46 {Random - S(.), γ"(.), γ'(.), p(t,j)} pt3 = ct3 1 1 0 25 0
47 {Random - S(.), γ"(t), γ'(t), p(t,j)} pt3 = ct3 1 10 0 25 0
48 {Random - S(t), γ"(t), γ'(t), p(t)} γ10 = γ11, pt1 = pt2 & pt3 = ct3 10 9 0 14 0
49 {Random - S(t), γ"(t), γ'(t), p(t,j)} γ10 = γ11, pt3 = ct3 10 9 0 25 0
50 {Random - S(t), γ"(.), γ'(.), p(t)} pt1 = pt2 & pt3 = ct3 10 1 0 14 0
51 {Random - S(.), γ"(.), γ'(.), p(t)} pt1 = pt2 & pt3 = ct3 1 1 0 14 0
52 {Random - S(.), γ"(t), γ'(t), p(t)} pt1 = pt2 & pt3 = ct3 1 10 0 14 0
53 {Random - S(t), γ"(.), γ'(.), p(t,j), c(t)} pt1 = pt2 - except t = 9, 10, 11 & pt3 = ct3 10 1 0 17 11
54 {Random - S(.), γ"(.), γ'(.), p(t,j), c(t)} pt1 = pt2 - except t = 9, 10, 11 & pt3 = ct3 1 1 0 17 11
55 {Random - S(.), γ"(t), γ'(t), p(t,j), c(t)} pt1 = pt2 - except t = 9, 10, 11 & pt3 = ct3 1 10 0 17 11
56 {Random - S(t), γ"(.), γ'(.), p(t), c(t)} pt1 = pt2 & pt3 = ct3 10 1 0 14 11
57 {Random - S(.), γ"(.), γ'(.), p(t), c(t)} pt1 = pt2 & pt3 = ct3 1 1 0 14 11
58 {Random - S(.), γ"(t), γ'(t), p(t), c(t)} pt1 = pt2 & pt3 = ct3 1 10 0 14 11
59 {Random - S(t), γ"(t), γ'(t), p(t,j), c(t)} γ10 = γ11, pt1 = pt2 - except t = 9, 10, 11 & pt3 = ct3 10 9 0 17 11
60 {Random - S(t), γ"(t), γ'(t), p(t), c(t)} γ10 = γ11, pt1 = pt2 & pt3 = ct3 10 9 0 14 11

Models continued
Number of parameters


