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ABSTRACT OF DISSERTATION 

DECAY AND GRIME BUILDUP IN EVOLVING OBJECT ORIENTED DESIGN 
PATTERNS 

Software designs decay as systems, uses, and operational environments evolve. As software ages the 

original realizations of design patterns may remain in place, while participants in design pattern realizations 

accumulate grime - non-pattern-related code. This research examines the extent to which software designs 

actually decay, rot and accumulate grime by studying the aging of design patterns in successful object 

oriented systems. By focusing on design patterns we can identify code constructs that conflict with well 

formed pattern structures. Design pattern rot is the deterioration of the structural integrity of a design 

pattern realization. Grime buildup in design patterns is a form of decay that does not break the structural 

integrity of a pattern but can reduce system testability and adaptability. Grime is measured using various 

types of indices developed and adapted for this research. Grime indices track the internal structural 

changes in a design pattern realization and the code that surrounds the realization. In general we find that 

the original pattern functionality remains, and pattern decay is primarily due to grime and not rot. We 

characterize the nature of grime buildup in design patterns, provide quantifiable evidence of such grime 

buildup, and find that grime can be classified at organizational, modular and class levels. Organizational 

level grime refers to namespace and physical file constitution and structure. Metrics at this level help us 

understand if rot and grime buildup play a role in fomenting disorganization of design patterns. Measures 

of modular level grime can help us to understand how the coupling of classes belonging to a design pattern 

develops. As dependencies between design pattern components increase without regard for pattern intent, 

the modularity of a pattern deteriorates. Class level grime is focused on understanding how classes that 

participate in design patterns are modified as systems evolve. For each level we use different 

measurements and surrogate indicators to help analyze the consequences that grime buildup has on 

testability and adaptability of design patterns. Test cases put in place during the design phase and initial 

implementation of a project can become ineffective as the system matures. The evolution of a design due 
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to added functionality or defect fixing increases the coupling and dependencies between classes that must 

be tested. We show that as systems age, the growth of grime and the appearance of anti-patterns (a form of 

decay) increase testing requirements. Additionally, evidence suggests that, as pattern realizations evolve, 

the levels of efferent and afferent coupling of the classifiers that participate in patterns increase. Increases 

in coupling measurements suggest dependencies to and from other software artifacts thus reducing the 

adaptability and comprehensibility of the pattern. In general we find that grime buildup is most serious at a 

modular level. We find little evidence of class and organizational grime. Furthermore, we find that 

modular grime appears to have higher impacts on testability than adaptability of design patterns. 

Identifying grime helps developers direct refactoring efforts early in the evolution of software, thus 

keeping costs in check by minimizing the effects of software aging. Long term goals of this research are to 

curtail the effects of decay by providing the understanding and means necessary to diminish grime buildup. 

Clemente Izurieta 
Department of Computer Science 

Colorado State University 
Fort Collins, Colorado 80523 

Summer 2009 
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1. INTRODUCTION 

Successful software systems continuously evolve in response to external demands 

for new functionality and bug fixes. One consequence of such evolution is an increase in 

code that does not contribute to the mission of the original intended design. The 

appearance of such code was not anticipated by the original designers of the system and 

may introduce faults. Such faults, along with changes to the operational environment of 

the software contribute to the deterioration and decay of system designs. When systems 

decay, they can become unmanageable and eventually unusable. 

Object oriented design patterns are an integral part of the design of systems today. 

They represent an agreed upon way of solving a problem; "Instead of code reuse, with 

patterns you get experience reuse " [34]. Design patterns have become popular for a 

number of reasons, including but not limited to claims of easier maintainability and 

flexibility of designs, reduced number of defects and faults [40], and improved 

architectural designs. We are interested in understanding to what extent such claims are 

true, and whether systems maintain early levels of quality as designs evolve. In general, 

it is difficult to analyze the evolution of an overall design. However, design patterns 

provide a frame of reference - a recognizable structure or micro-architecture. We can 

observe the effects of changes to design patterns over time. 

Design patterns provide an initial point of reference that can be extracted from a 

design and whose evolution can be followed. It is a common belief that software designs 

decay over time and we want to determine the extent of decay as it pertains to design 
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patterns. We show that as a consequence, the adaptability and testability of designs 

deteriorate, and that as systems built with design patterns evolve, added non-pattern code, 

or "grime", affects pattern participants of individual design patterns. 

We first characterize the nature of decay, rot, and grime in general purpose design 

patterns used in object oriented software systems and provide quantifiable evidence of 

such decay and grime. We then examine the consequences on test effectiveness and 

adaptability by using appropriate surrogate measures in an observational case study of 

three open source systems. We study different indices that track the internal structural 

changes of patterns as the software ages. 

1.1 Approach 

Initial empirical work and results [47] [48] suggest that design patterns do not 

structurally breakdown or rot, but as designs evolve, design pattern realizations tend to be 

obscured as new associations develop between classes. The number of associations that 

do not play a part in the intended use of the design pattern tend to increase, while the 

original pattern remains. We identify different levels of grime that can occur in design 

patterns as they evolve. Grime occurs at organizational, modular and class levels. 

Organizational level grime refers to namespace and physical file constitution and 

structure. Metrics at this level help us understand if decay and grime buildup play a role 

in fomenting disorganization of design patterns. Measures of modular level grime 

indicate the increase in coupling of evolving classes belonging to design patterns. As 

dependencies between design pattern components increase without regard for pattern 

intent, the modularity of a pattern deteriorates. Class level grime is focused on 
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understanding how classes that participate in design patterns are modified as systems 

evolve. 

Design pattern realizations in selected systems from the open source community 

are tracked over a number of releases, to study decay and grime buildup. We test 

hypotheses that focus on evaluating how the indices for decay and grime buildup affect 

evolution of patterns in designs. We analyze the consequences to testability as a result of 

grime buildup and observe how changes that are not consistent with extensibility 

mechanisms of design patterns increase grime and thus lower the adaptability of patterns. 

Empirical results suggest that deterioration of design patterns occurs mostly as a result of 

modular grime buildup. 

1.2 Contribution 

There have been few prior studies on software aging. Little or no prior work 

focuses on understanding how a design decays, and the consequences of decay on 

external quality attributes. We show that the original realization of the design pattern 

generally remains, and the decay consists of the grime that grows inside and around the 

pattern realization over a period of time. The intellectual merits and potential long term 

benefits of this research include the identification of design decay and grime, which helps 

with reallocation of resources, refactoring strategies, documentation, test re-engineering, 

reduction of error proneness, and decreases in maintenance effort of design patterns 

before they become unmanageable. 
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2. BACKGROUND 

This research progressed from an initial study of software evolution in general 

[58] [59] to a focus on the evolution of object oriented design patterns. Design patterns 

have become pervasive in software designs and the lack of studies associated with design 

pattern evolution coupled with claims of pattern-based improvements in software designs 

posed an interesting research challenge. In section 2.1 we describe major contributions to 

the field of software evolution. In Section 2.2 we present current research in software 

design decay and we describe the formation of anti-patterns that can occur as software 

ages. We find no evidence of design decay research performed specifically on design 

patterns. In order to understand how design patterns evolve and decay, a formal 

definition of design patterns is required. This led us to a number of pattern specification 

languages. Section 2.3 describes various languages for formalizing the specification of 

design patterns. In section 2.4 we present material on possible effects of decay on 

testability and adaptability of designs, and section 2.5 provides a summary. 

2.1 Software Evolution 

Software evolution refers to software system changes over time. Possible changes 

experienced by systems include changes in size, functionality, and features, along with 

internal structural and design changes. 

The study of software evolution began in earnest in the late 1960s. Lehman [59] 

introduced the study of software evolution. Belady and Lehman [10] first studied the 
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evolution of the OS/360 system. The data produced by this early study prompted 

Lehman to propose the first three laws of software evolution. There are now eight laws 

which continue to be revised. Lehman conducted numerous studies on commercial E-

type systems, where an E-type system is described by Scacchi [77] as "an application 

embedded in its setting of use." In other words, there is feedback between an E-type 

system and its operating environment causing continued evolution of the software 

system. Lehman's feedback ontology comes from the domain of control systems, which 

is traditionally tied to the physical sciences rather than software engineering. The 

feedback ontology's use to model software evolution does not take into account 

ontologies found in fields such as social networks, cultural demography, and lately 

communities of developers such as those found in the open source movement. The 

second and seventh laws are directly related to software decay. Lehman's second law of 

evolution—Increasing Complexity —states that as a system evolves, so does its 

complexity as measured by the size of the system. Lehman's seventh law of evolution— 

Declining Quality —describes how E-type systems, unless rigorously maintained, are 

perceived as having declining quality. 

Turski [83] provides additional evidence of increasing complexity, finding that 

the development of software follows an inverse square growth function. As a system 

evolves, the changes adopted by successive versions cause resources to be diverted to 

manage the increased complexity, thus causing the overall growth rate of a system to 

decline. 

Decay is a consequence of evolution that negatively affects the maintainability 

of systems. It manifests itself through the increasing complexity of a software system as 
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expressed by Lehman's second law. Continuing changes in the operational domain also 

affect the quality of the system. Lehman's seventh law of declining quality addresses this 

issue directly. The environment in which a system operates will change causing the 

perceived quality of an unchanged system to decline. S-type systems are also subject to 

implicit evolution as they relate to external environmental factors. According to Lehman 

[59], "an S-type system is a mathematically correct program relative to an existing and 

pre-stated specification." This research does not address S-type system evolution. 

The laws proposed by Lehman remain controversial, mainly because it is difficult 

to test them due to their subjective nature. Finding surrogate measures to represent 

changing attributes is at best an approximation exercise that requires heuristics, thus 

making the laws difficult to test. Scacchi [77] states that it is unclear how to objectively 

measure such attributes as "user satisfaction", used in Lehman's first law. There exists 

no direct accounting that correlates system growth to user levels of satisfaction. System 

"complexity" is another example. It is unclear how to measure the vaguely defined 

complexity of evolving software as used in Lehman's second law of "increasing 

complexity." While not directly tied to declining quality, Lehman's third law of "self-

regulation" states that software systems tend to dictate their own self-regulating 

processes, which seems to indicate a kind of internal stabilization method, but again there 

are no clear measures to track such self regulating processes. 

Many prior studies examine software evolution with a focus on overall size 

measurements of the subject systems. For example, Godfrey and Tu [38] studied 

evolution in terms of the size of the Linux operating system. They "expected to find that 

Linux was growing more slowly as it got bigger and more complex." They found that 
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certain sub-systems are growing at a super linear rate, which contradicted results from 

commercial systems. Super linear growth was only found in driver sub-systems of the 

development releases. Another study by Izurieta and Bieman [49] found no evidence of 

super-linear growth, even in the driver sub-systems. The latter study was carried out on 

stable releases of Linux and FreeBSD. 

Gustafsson et al. [43] studied the evolution of software from an architecture 

centric point of view. They developed Maisa, a system for measuring and predicting 

software quality during the design stages of the development process. Maisa computes 

these quality metrics from a given UML design. This methodology is an architecture-

centric approach that allows developers to mitigate deviation from the original design 

before entering the implementation phase of the project. During the implementation 

phase, they used a separate system, Columbus, to reverse engineer code and search the 

software for design patterns. These patterns can then be given as inputs to Maisa, and 

compared to the original UML design. 

Bieman et al. [11] studied five systems, three commercial and two open source 

systems, to observe changes to design patterns as systems evolve. The study found that 

class size is a factor in predicting the change effort in only two of the five systems. They 

also found that in four of the five systems pattern classes are more change prone than 

other classes. This result contradicts the expected evolution involving patterns where 

changes are made by adding new concrete classes rather than by changing existing 

pattern classes. 

Mattsson and Bosch [65] observe the evolution of Object Oriented Frameworks 

(OOF). Frameworks provide a base for building applications of a similar domain. They 
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study three frameworks from commercial and open source domains. Their studies 

examine three methods that allow management to make better decisions based on the 

evolution of frameworks. They identify change prone modules. 

Many additional studies in software evolution and feedback can be found in the 

book by Madhavji et al. [63]. This book is a comprehensive collection of revised 

academic papers that are concerned with the evolution of systems following their initial 

release. The book focuses on theoretical concepts and theory, as well as current 

practices. Various aspects of evolution are examined, including requirement changes, 

architectural evolution, object oriented evolution, open source systems, the laws of 

evolution, the gathering of feedback that drives evolution, etc. However, it contains no 

studies related to the deterioration and decay of software. 

Prior studies of software evolution focus on size and growth, architecture, 

frameworks, and change proneness. Although the body of work in software evolution 

studies is large, very few report on design decay, a consequence of evolution. The 

following section describes the state of research on design decay. 

2.2 Maintenance and Decay 

Evolution is directly tied to changes to a system that occur over time. Belady and 

Lehman [10] assert that it is impossible to inject new code to older systems without 

introducing new defects or faults, which represents decay. Software evolution involves 

changes to designs, architectural specifications, and code as a result of fault repairs, new 

or changing requirements for additional functionality, improved performance, improved 

storage and memory usage, etc. These changes, which are implemented under time and 

resource constraints, contribute to the decay of a system. Additionally, these changes 
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affect the test effectiveness, adaptability, reliability, and performance of a system. 

Fenton and Pfleeger [30] classify changes to software into various categories, but design 

decay is specifically related to the adaptive and corrective categories. These types of 

changes are dependent on external environment changes and bug reports, hence our 

interest in finding characterizations of negative changes (decay) to a system. 

It is safe to assume that as systems increase in size, the amount of resources spent 

creating new deltas to the source code increases. Some reasons for increases in 

maintenance [45] efforts for larger systems include: new developer staff that lack 

understanding of the overall code, poor architecture and designs, lack of documentation, 

deterioration of designs, and higher fault densities. Eick et al. [29] state that the difficulty 

in changing software is reflected in the time necessary to implement a change, the quality 

of the new code after a change, and the cost of a change as it relates to resources. In most 

commercial environments, time and quality of software development are controlled with 

tight schedules and quality regression test suites respectively. Resources are harder to 

control. As a system increases in size, more resources are necessary to maintain its 

quality. Turski [83] added that the increasing amount of resources is due to the higher 

psychological complexity exhibited by the software, and that an inverse square growth 

function can be expected over a sequence of releases. Since resources are finite, more 

resources are diverted to maintenance rather than developing new functionality. This 

research is concerned with internal negative changes to the structure of designs that affect 

maintainability. 
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Figure 2.1 from Izurieta and Bieman [49] displays the inverse growth functions 

for various stable releases of the Linux operating system. The growth functions are 

plotted per release, and clearly show evidence to support Turski's claim. 

Release Sizes by Branch 
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Figure 2.1 Linux Release sizes by development branch 

A system may incur higher cost due to reasons other than decay. Higher 

psychological complexity may indeed be due to truly complex problems and their 

solutions. Developers regularly make tradeoff decisions between efficiency and 

complexity when designing software solutions. A classical area in computer science is 

algorithms, where sometimes a linear time algorithm may be more efficient but harder to 

maintain. The maintenance [45] associated with it may be too high compared to a slower 

implementation that is easier to comprehend and has lower psychological complexity. 

Symptoms of code decay [31] include bloated code (too many if statements or 

nested loops, return statements in many sections of a function, etc.), hacks to fix specific 

defects, ownership by too many developers, lack of comments, and high coupling, among 

others. Causes of decay include short release cycles of software, imprecise requirements, 
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poor architecture, novice developers, lack of necessary development and process tools 

(change management), etc. Decay leads to higher maintenance costs [75], [29]. 

Parnas [71] uses an analogy between software systems and medicine to describe 

software aging. He uses the term software geriatrics, which equates re factoring to major 

surgery, applies the notion of second opinions, and describes the cost associated with 

preventative measures. His thesis is that we cannot expect to slow decay as long as 

complex systems are built by developers without adequate training. We opine that 

professional software engineers with the experience and necessary skills to build such 

systems are necessary. 

Eick et al. [29] use a number of generic code decay indices (CDIs) to analyze the 

change history of a telephone switching system. Statistical tests are carried out on the 

indices, and prediction models are analyzed. Although Eick et. al [29] describe such 

indices as indicative of decay, they more aptly indicate change and do not demonstrate 

that change is negative. Examples of Eick's CDIs include: number of deltas, lines added 

or deleted as part of a change, the number of developers implementing a change, the 

historical number of changes in a given time interval, the frequency of changes, and the 

span of changes in terms of the number of files that the change touches. These indices do 

not meet our definition of decay. 

In order to further understand design decay, we must find a way to accurately 

measure and characterize it in software systems. The body of research in software decay, 

specifically as it relates to object oriented systems is small. We propose a model for 

studying decay, especially decay in the context of object oriented design patterns. 
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2.3 Pattern Specification Languages 

Design patterns have become pervasive in the designs of complex software 

systems. Properly communicating designs require techniques that can adequately 

represent design patterns in a clear and understandable manner. This section provides 

background on some design pattern languages studied. It is a summary from Izurieta and 

Biery [50]. In order to clearly understand how grime buildup was affecting realizations 

of design patterns we needed to select a pattern language that would serve as a formal 

reference point to evaluate design pattern realizations. 

2.3.1 RBML 

RBML is the Meta Role Based Modeling Language, which is defined in terms of 

a specialization of the UML metamodel. While some methods for formal specifications 

of design patterns require sophisticated mathematical skills, RBML is an extension of 

UML, already a de-facto standard in the software industry. Like UML, RBML is visually 

oriented and different aspects of the language can be used to model structural as well as 

behavioral aspects of patterns. "The pattern specifications created by the technique are 

metamodels that characterize UML design models of pattern solutions. A pattern's 

metamodel is obtained by specializing the UML metamodel" [32]. Pattern specifications 

consist of a Structural Pattern Specification (SPS), and a set of Interaction Pattern 

Specifications (IPSs). The former represents the class diagram view of design patterns. 

An SPS specifies the static structure of patterns including participants, their properties 

and relationships. A set of IPSs specifies interactions inside design patterns and represent 

the dynamic aspects of the pattern. For in depth descriptions of RBML see Kim [56], and 

France et al. [33]. 
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Figure 2.2 from France et al. [32], displays an example of a part of the Observer 

design pattern that structurally conforms to its SPS in RBML. Each class in the 

realization maps to an RBML role in the specification. Class Kiln maps to the class role 

Subject, while class TempObs maps to the class role Observer. Similarly, each 

association in the pattern realization maps to an association in the RBML specification. 

Association obsTemp maps to the association role Observes. Essential methods and 

fields are also checked for compliance. Finally, class and association multiplicities are 

validated against the specification to check for violations. 

Kiln 

readyrM 
SempiTenip 

AeiaehTempObs (piTtempGfcs) 

binds to Class Role 
{Subject 

1..* 

[SubjettSttte: jSubjSiateType 1., 1 

(Ataeh (|obsv:|Obs«ver) 1..1 

i„i - • |SuM.:i 

dbsTetnp 

* *• |Obs 1..1 

TempOfcs 

eurrVenip: Temp ---

UpdateTemp (k:Kita) 

AsswabttOB Role 
lObserves 

Class Role 1. 
(Observer 

4 [ObscivcrStute:|ObsStalcTypc L.l 

[Update dsubj ̂ Subject) L.l 

Figure 2.2 A structurally conforming class diagram and its SPS 

Establishing structural conformance of a pattern realization to its SPS consists of 

the following steps, as specified by France et al. [33], and Kim [56]: 

a) Bind UML classes to SPS roles. 

b) Check compliance with classifier roles realization multiplicities. 

c) For every UML class bound to an SPS role: 

i) Check that all metamodel constraints are satisfied. 
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ii) Check that feature roles (structural and behavioral) in the UML class 

bound to an SPS role satisfy multiplicities, 

iii) Check that all mandatory features specified in the SPS are present in the 

UML class diagram, 

d) Establish conformance of relationship roles. 

By establishing structural conformance to an SPS, we can check that the syntactic 

properties expressed by the SPS are met. A pattern also has semantic properties that are 

expressed via constraint templates in RBML. Semantic properties are constraints placed 

on the behavioral aspects of a pattern. "Tools that mechanically discharge most proof 

obligations are not likely to appear in the near future." [32], although formal 

specification languages such as Z [51] do provide help in this area if the constraints of 

RBML can be adequately captured. Checking semantic constraints requires that proof 

obligations are dismissed by asserting that the operations supported by the class conform 

to behavioral feature roles. 

2.3.2 Spine 

SPINE [13] is a prolog like language that allows for the specification of design 

patterns. The underlying design behind SPINE allows patterns to be specified in terms of 

constraints of their implementation in Java. Design patterns are specified using functions 

and predicates; which are supported with some existential quantifiers such as for all, and 

exists. The language and these constructs allow patterns to be specified in terms of 

behavior and structure. Figure 2.3 shows a simple definition of the Singleton pattern. 
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realises('PublicSingleton' 
exists(constructorsGf(C) 
forAll(constructorsOf(C) 
Cn,isPrivate(Cn)), 

, [C]) :-
,true), 
» 

exists(fieldsQf(C)jF>and([ 
isStatic(F), 
isPublic(F), 
isFinal(F), 
typeOf(F,C), 
nonNull(F) 

D) 
Figure 2.3 SPINE definition of the Singleton pattern [13] 

The definition includes all the items that are essential to define a Singleton 

pattern. For example, all fields described by the class cannot be modified by anyone, 

including the methods within the class itself. All constructors in the class are also 

private, etc. SPINE is coupled with HEDGEHOG [14], a proof engine that processes 

pattern specifications written in SPINE, and then determines if such a specification can 

be matched to a selected set of classes in Java. HEDGEHOG builds a proof tree and 

processes declarative constraints to verify the realization of a design pattern. A number 

of static predicates are defined by HEDGEHOG to check the essential relationships that 

exist between classes of design patterns. Additionally, HEDGEHOG provides support 

for semantic predicates that need to be checked to see if the realization of a pattern 

conforms to the intended definition. Blewitt et al. [13] note that while some semantic 

problems are undecidable, most semantics that need to be checked in design pattern do 

not exhibit such traits and are for the most part manageable. 

Results of experiments performed by Blewitt et al. [13] show that of the twenty-

four patterns specified by Gamma et al. [36], a total of 7 of them cannot be represented 

with SPINE. These patterns were Builder, Facade, Chain of Responsibility, Command, 
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Interpreter, Mediator, and Memento. Defining these patterns in SPINE produces either a 

narrow definition or a vague definition that would match too many false positives in the 

former or too many false negatives in the latter case. 

SPINE and HEDGEHOG together provide a framework to specify, detect and 

model design patterns allowing the user to specify essential complexities of the patterns 

while keeping a relatively simple syntax. The lack of a visual aspect to the language may 

hinder more complex modeling. 

2.3.3 FUJ ABA 

The FUJABA (From UML to Java And Back Again) Tool Suite is a Computer 

Aided Software Engineering (CASE) tool developed by researchers at the Software 

Engineering Group at the University of Paderborn in Germany. FUJABA provides an 

extensive set of capabilities for the creation of UML models, story diagrams (described as 

by the creators as UML behavior diagrams), and graph transformations used for software 

design [35]. Source code generation from models, reverse engineering of existing source 

code to diagrams, and pattern detection are provided for FUJABA users. 

The pattern detection capabilities included within FUJABA are unique from many 

comparable solutions. While many other pattern inference tools attempt to pinpoint 

patterns with great precision, the creators of the pattern specification and inference tools 

used within FUJABA take a different approach. As evident in the GoF collection of 

patterns, pattern definitions are intentionally nondescript. The lack of a formal "recipe" 

for patterns allows developers flexibility in implementation details. While 

implementations of a pattern will have certain similarities, attempting to locate patterns 

embedded within source code based on a generic "cookie-cutter" approach may lead to 

16 



high false positive pattern detection rates and limit the usefulness of a detection tool. In 

order to provide more meaningful results, the tool associates two "fuzzy values" with the 

results from the pattern detection. These fuzzy values represent the believed likelihood 

that the pattern was found and a threshold that assists the user in helping determine 

whether the likelihood value implies the determination of the pattern should be accepted. 

0 Fujaba [Gang of Four Pattern Catalog] - GoFPatternCatalog.fpr.gz 333 
File Edit Diagrams Pattern Rule Import/Export Tools Options Help 
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Figure 2.4 FUJABA Rule for the Singleton pattern [80] 

Pattern detection begins with the creation of abstract syntax graphs (ASGs) from 

the source code in the requested code base that is generated by the Java Compiler 

Compiler (JavaCC) [68]. Once the graphs have been assembled, a unique "bottom up, 

top down" approach is used for pattern comparison. The algorithm will begin in the 

"bottom up" state of the algorithm, analyzing portions of the ASG against a collection of 

predefined pattern rules that are added to a priority queue. It is believed that this process 

helps quickly narrow the possible pattern candidates [68]. Pattern rules are defined in 
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FUJABA as graph transformation rules. These rules are broken up into sub-pattern rules 

that represent known aspects of a given pattern. An example of a pattern rule is shown 

above for the Singleton pattern in Figure 2.4. As a rule is successfully applied 

(annotations are added to the graph) in the "bottom up" state, subsequent rules for a 

specified pattern will be run. Once a rule is encountered where annotations on the graph 

necessary to proceed are missing and the current rule cannot be run in the "bottom up" 

state, a state change is made to "top down" [68]. The "top down" portion of the search 

attempts to apply rules more specific to the pattern. During the whole process, the fuzzy 

values associated with the likelihood of the pattern occurrence and the threshold for 

pattern acceptance is being continually updated. The final fuzzy value for the likelihood 

is no greater than the lowest sub-pattern likelihood value encountered during the process 

[69]. 

FUJABA provides some additional user capabilities. The inference process used 

is actually semi-automatic [68]. A user performing the reverse engineering may interact 

with the system during the process to view the intermediate results and manually 

intervene if necessary. Users may also specify their own pattern rules (beyond the GoF 

support already packaged) by creating graph transformation rules (graphs using specified 

notation) in the GUI and importing the newly created pattern rules. 

2.3.4 PINOT + MUSCA T 

The Pattern INference and recOvery Tool (PINOT) was created by software 

engineering researchers at the University of California-Davis in order to "reverse 

engineer" existing source code to detect software patterns. PINOT supports detection of 

nearly all "Gang of Four" (GoF) patterns and is limited to Java source code. 
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PINOT adds an embedded pattern detection engine inside the open source Java 

compiler Jikes. The pattern detection engine leverages many aspects of the compiler, 

namely the abstract syntax tree and symbol tables in order to help analyze potential 

patterns. The creators of PINOT partitioned the patterns under analysis into two 

categories: those classified by structural characteristics ("structure-driven patterns") and 

those classified by behavioral traits ("behavior-driven patterns"). Examples of structure-

driven patterns include Facade, Template Method, and Proxy [36]. Examples of 

behavior-driven patterns include Singleton, Decorator, and Strategy [36]. 

The detection algorithm begins by searching for classes that exhibit traits 

determined to be effective in locating a pattern. This allows the ability to quickly narrow 

the classes under analysis. Once a candidate group is formed, structural analysis is 

performed to identify structure-driven patterns and candidates for behavioral analysis. 

The structural analysis searches inter-class relationships and structures relevant to known 

patterns, and runs algorithms tailored to match each structure-driven pattern and potential 

behavior-driven patterns. Further behavioral analysis is applied to candidates identified 

as possible pattern participants by ensuring that the class(es) under study perform the 

correct function under specified behavior. This is verified through the use of data-flow 

analysis on the Abstract Syntax Tree (AST) generated by the compiler to create a control-

flow graph between elements identified as "basic blocks". 

In a head-to-head comparison, PINOT exhibited advantages in performance and 

detection accuracy against two other pattern detection applications, FUJABA and 

HEDGEHOG [14]. While PINOT exhibited advantages in speed and accuracy under 

given test sets, the application does contain limitations. The first is that the tool cannot 
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provide pattern inference information on incomplete source collections, unlike FUJABA 

[80]. While this ability may not seem useful from a reverse engineering standpoint, it 

may prove useful in efforts to refactor existing (but not complete) code to leverage 

known patterns or in analyzing applications that leverage third-party libraries where the 

source code is not available. Another limitation of PINOT is that it only detects common 

implementations of a given pattern. Any variation or deviation in source code from an 

expected pattern solution may not be properly categorized as the pattern. Perhaps the 

largest limitation of PINOT is that it is constrained to detection of GoF patterns. Support 

for custom patterns or other commonly used patterns would require modifications to the 

PINOT source code. 

Realizing that support for GoF patterns only limited the possible scope of the tool, 

the creators of PINOT created another tool for use with PINOT that allow for additional 

extensibility. The Minimal UML SpecifiCATion (MUSCAT) Language allows users to 

define their own patterns through the use of a subset of the UML, thereby providing the 

ability to detect these patterns through a "customized PINOT." Within MUSCAT, only 

class diagrams are used because the ability to relate elements of a diagram used to convey 

structural information (e.g. Class Diagram) back to a diagram used to represent behavior 

(e.g. Activity Diagram) would require additional annotation [79]. 

Afrsimctfactoey 
<<creates:Abst:ractProduct» x . 

P 

AbstractPiodt/ct 

Figure 2.5 MUSCAT Representation of the Abstract Factory Pattern [79] 
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A subset of notations used for UML class diagrams are leveraged by MUSCAT. 

Supported notations include: aggregation, inheritance, bidirectional association, 

dependency association, and directed associations [79]. MUSCAT also specifies a 

defined set of custom UML stereotypes referred to as "pattern rules." Pattern rules are 

used to define characteristics necessary to express the behavior associated with a given 

pattern. Rules are as generic as «creates:type» and «!creates:type> that signify a 

class creates or does not create a given type, or as specific as «s ing le ton» and 

« f a c a d e » where a class embodies a Singleton or Facade pattern. An example of the 

Abstract Factory pattern specified in MUSCAT is shown in Figure 2.5. 

After the appropriate diagram(s) have been created using the MUSCAT notation, 

the pattern definitions specified within the diagram may be added to PINOT in order to 

provide future detection. In order to do this, the diagrams must be saved as XML XMI is 

a commonly used format for storing UML diagrams in a vendor agnostic format. The 

XMI representation of the diagram(s) is passed to a python script that creates C++ code 

defining the elements of the pattern(s) required for detection that conforms to the PINOT 

API. The generated code is compiled and linked with PINOT to create a customized 

version of PINOT that will be able to detect the pattern(s). 

While MUSCAT does add a degree of extensibility to the PINOT application, the 

ability to define new patterns is constrained by the need to depict the pattern as a class 

diagram (exclusively) and the support provided for given pattern rules. 

2.3.5 LayOM 

LayOM is the layered object model language with explicit support for specifying 

design patterns. The code specified in LayOM is supported by an environment that 
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translates it into C++. Objects are encapsulated by layers, which represent different 

levels of abstraction. To communicate with an object, a message must pass through all 

the layers, which can represent different levels of functionality. Figure 2.6 illustrates the 

concept. 
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Figure 2.6 A layered object model [16] 

At the center lie the concrete objects which have concrete states. States can be 

abstracted at higher levels to form additional simpler dimensions. Categories are also a 

characteristic of objects that can be used to restrict the functionality afforded to different 

clients of the object. The idea is to use layers as higher abstraction layers to represent 

design patterns, where each layer can define either the structural, behavioral, or 

application relationships between objects that participate in the design pattern. Bosch 

[16] has created a number of layers that can be superimposed on top of traditional C++ 

objects to represent the functionality of various design patterns. The goal of these layers 

are primarily to add the ability to not just extend patterns, which is the intended method 
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for changing patterns, but also to have an ability to reuse the layers. Design patterns only 

provide general guidelines to implement a solution to a problem, leaving details to be 

application specific. In order to reuse a design pattern, the layers created in LayOM must 

be generic enough, yet provide a sophisticated level of essential complexity inherent in 

every design pattern. LayOM is a textual language, and its translation into C++ modules, 

allows the translated units to be included into other executable modules. Additional work 

is necessary to make sure that the C++ representation of the design pattern fits an 

application correctly. Figure 2.7 is an example of a simple layer created for the Facade 

pattern. 

c lass FacadeExample 
layers 

face : Facade(forward messi, mess2 to PartOl, forward mess3 to Part02); 
PartOl : PartOf(ClassOfOl); 
Part02 : PartOf(ClassOf02); 

end; / / c lass FacadeExample 

Figure 2.7 LayOM layer for the Facade pattern [16] 

The ability of LayOM to model concepts is poor due to its complex textual 

description. The strict syntax checking of the translator allows for easier detection and 

specification techniques. Both, behavioral and static aspects of design patterns can be 

represented with layers. 

2.3.6 LePus 

The LanguagE for Pattern Uniform Specification (LePUS) is an object-oriented 

modeling language that was devised by researchers at the University of Essex in the 

United Kingdom. LePUS is intended to be coupled with Class-Z, a formal language that 

is derived from Z [51]. The combination of LePUS and Class-Z provides the ability to 
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combine a visual representation specified in LePUS with a formally defined textual 

description in Class-Z. 

The creators of LePUS and Class-Z characterize it as "a subset of first-order 

predicate calculus" [26]. As a result, models created within LePUS/Class-Z are limited 

to depicting a particular state. No support is provided for higher-order logic or 

component interaction diagrams (e.g. Sequence Diagrams or Collaboration Diagrams) 

included within the UML. The language is built upon the use of terms and formulas. A 

term is an entity associated with a given type and dimension [84]. Native types are 

provided within the language for CLASS (classes), SIGNATURE (of a method), and 

HIERARCHY (a subtype of a CLASS collection). Another type is provided for 

METHOD, described as the "superimposition of a signature term over a class term" [84]. 

A dimension may be zero or one, where zero dimension terms are for single entities and 

one dimension terms are used for collections. Additional support is provided for unary 

(property), binary (e.g. aggregation, creation), and transitive relations, as well as a custom 

set of predicates. Each visual construct used within LePUS has a corresponding textual 

equivalent in Class-Z. 

As LePUS was created, care was given for design pattern specification support. 

The use of terms, formulas, and the native type and predicate constructs are everything 

needed to specify all of the GoF patterns. A library of the GoF design patterns 

represented in LePUS and Class-Z is available online [27]. An example of the Abstract 

Factory Pattern in LePUS and Class-Z is shown below in Figures 2.8 and 2.9. 
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Figure 2.8 The Abstract Factory Pattern in LePUS Notation [28] 
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Figure 2.9 The Abstract Factory Pattern in accompanying Class-Z Notation [28] 

One of the weaknesses of the LePUS approach is that there is a steep learning 

curve to use it. While starting from scratch allowed the language designers extensibility 

to build a language around the requirements of their domain (object-oriented design 

models and pattern specifications), other pattern languages are based on the widely-

adopted Unified Modeling Language (UML). Experienced object-oriented software 

designers would likely be familiar with the notation used within a UML-based language. 

Adoption of LePUS and Class-Z would require knowledge in both the unique modeling 

notation used and formal methods. 

Unlike all of the other pattern languages described in this paper, it is important to 

note that pattern detection capabilities are not provided by LePUS, Class-Z, or tools 

25 



tailored for LePUS and Class-Z modeling. The use of LePUS and Class-Z is intended for 

forward engineering purposes only. 

2.3.7 DeMIMA 

In this system, Gueheneuc and Antoniol [41] use a multilayered approach to 

identify possible design motifs. They identify micro-architectures in source code that are 

similar to design motifs. Micro-architectures refer to the structural characteristics of 

possible design patterns, and are composed of classes and their relationships. The term 

design motif is used instead of design pattern because patterns also encompass 

information not readily available from their identification. For example, intended use, 

motivation, and consequences are traits that cannot be observed in design patterns. 

Micro-architectures can match up with more than one motif. 

The motif identification process is divided into three tasks. The first task is 

automated and consists of matching up a candidate micro-architecture found in source 

code to a design motif that is represented with a UML-like class diagram. The second 

and third tasks consist of contextualizing and comprehending a micro-architecture in its 

setting of use and are dependent on a maintainer's level of experience. DeMIMA assists 

with the first task. It provides a multi-layered approach to match micro-architectures 

with design motifs by characterizing the constituents of a design motif using a meta-

model. The first layer uses the Pattern and Abstract-level Description Language (PADL) 

to describe relationships and build a UML-like model of the code. The language 

provides the ability to distinguish between association, use, aggregation, and composition 

relationships between classes. The original work to recover these relationships [42] 

provides the ability to recognize unidirectional binary relationships, which is a necessary 
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property required by the recognition algorithms in the second layer of DeMIMA. In the 

third layer, DeMIMA looks for micro-architectures in the second layer that may match a 

design motif. To identify micro-architectures, the model is transformed into a constraints 

systems and explanation based programming is used to find the best match. 

Gueheneuc and Antoniol apply DeMIMA to five open source systems and thirty 

three industrial components. On average they observed thirty-four percent precision with 

100 percent recall for the open source systems. Precision (# true design motifs found / # 

micro-architectures found) can be improved by adding more constraints that reduce the 

possible micro-architecture matches. Additionally, some design motifs, such as the 

Factory pattern have low precision because many micro-architectures found in the source 

code can match its structure. The identification algorithms would require additional 

semantic knowledge to distinguish between false positives and actual patterns. 

2.3.8 Pattern Language Comparison 

The creation and use of pattern languages is an emerging field. While the Gang-

of-Four (GoF) patterns have fueled wide adoption and interest in design patterns, there 

are still challenges in providing a complete pattern specification language that provides 

comprehensive support for modeling, specification, and pattern detection. Support for 

these functions varies between each of the languages evaluated within this research due 

to the scope, purpose, and original intent of their creators. 

While none of these languages are ideal for every desired pattern language 

purpose, the languages evaluated in this paper are among the best available options today. 

When choosing between possible options, users must evaluate language capabilities 

against their needs. Each offers adequate specification capabilities. Principal differences 
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between the languages are in style, modeling, and detection. The most effective 

languages for modeling were RBML and FUJABA. RBML offered the best alternative 

for specifying the blue print that is used to compare the realizations of design patterns in 

the code to make sure no violations occur. 

2.4 Adaptability and Testability of Software Designs 

Establishing relationships between external quality attributes of designs and 

internal measures is difficult. External attributes are affected by additional factors such 

as availability of adequate development tools, programmer experience, schedule 

constraints, scope of tasks, etc. Also, establishing a relationship does not necessarily 

imply causality, making this a difficult problem. 

Adaptability has many definitions, but in general we define adaptability of a 

design pattern as follows: 

• the effort required by a developer to make changes to a pattern, 

• the ability of the pattern to accommodate changes in its environment 

(changeability), and 

• The ease with which a design pattern can be pulled out from its current 

environment and reused in a different setting. 

The ISO standard for software engineering [46] based on studies by Lientz and 

Swanson [62] proposes different categories for software maintenance. In particular, 

adaptive maintenance describes "the modification of a software product performed after 

delivery to keep a computer program usable in a changed or changing environment. " 

Clearly if the evolution of design patterns exhibit evidence of decay, rot, or grime 
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accumulation as defined in this research, then all aspects of adaptability suffer. This 

includes not only usability, but further code modifications. 

The environment of a pattern realization is its setting of use. If a pattern 

realization evolves in the intended way, then it can be extended as defined when changes 

in the environment occur, thus it adapts to the environment. Typical changes in the 

environment involve the addition of new concrete classes. By definition, the pattern has 

the ability to accommodate such changes and the effort required is minimal. "Designs 

are more extensible when they are independent of implementation details, allowing them 

to adapt to new implementations without internal modification or breaking their existing 

contracts." [53] 

Many software metrics have been studied in procedural paradigms. Rombach 

[74] shows how some of these measures can predict maintainability (an external quality 

attribute) in a system. Metrics for object oriented systems first appeared in the early 

1990s. Chidamer and Kemerer [22] developed six measures in their work: depth of 

inheritance (DIT), Coupling between objects (CBO), number of children (NOB), 

response for a class (RFC), lack of cohesion (LCOM), and weighted methods per class 

(WMC). Results from Li and Henry [61] validate a relationship between Chidamer and 

Kemerer's metrics and maintenance effort as measured by the number of changes made 

to classes. 

Significant empirical evidence links the negative effects of coupling on 

adaptability and maintenance of systems. Arisholm and Sjoberg [2] focus on measuring 

changeability decay; the increased effort required to implement changes in object-

oriented systems. Subsequent work by Arisholm [3] shows that there are important 
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relationships between structural attributes of object-oriented systems and development 

effort. Arisholm's primary goal is to assess the extent to which structural properties of 

object-oriented systems affect changeability. He investigates static structural attributes as 

well as change profile measures. The latter depend on the former, but are weighed by the 

proportion of change experienced by the corresponding structural measure. Arisholm 

states that "change profile measures cannot be used as early indicators of changeability. 

Instead, their intended use is to indicate trends in changeability during the evolutionary 

development and maintenance of a software system." 

Most studies do not have accurate access to changeability data. Arisholm's study 

was set up from the beginning to have developers log every change in the system under 

study. He collected the number of hours spent in analysis, design, coding, testing, and 

documentation. He used multiple linear regression on change effort and determined that 

change profile measures were the most significant independent variables when predicting 

changeability. The structural measures focus on coupling and size. Other measures 

related to inheritance and cohesion were not used. Additional work by Arisholm et al. 

[4], finds evidence linking export (efferent) coupling to change proneness, the dependent 

variable measured as SLOC (source lines of code). Import (afferent) coupling does not 

play a significant role (beyond size measures) when explaining changes is SLOC. 

Basili et al. [5] use the probability of fault detection as a surrogate measure for 

fault proneness. The goal of their observational study was to assess Chidamer and 

Kemerer's object oriented metrics as predictors of fault prone classes. They collected 

data on eight C++ information management systems that were carefully setup in a 

university environment, and evaluated hypotheses for each metric. Relevant to this 
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research are the H-WMC (Weighted Methods per Class) and the H-CBO (Coupling 

Between Objects) hypotheses. Univariate and multivariate logistic regression show that 

there is a significant relationship between these measures and fault proneness. WMC and 

CBO are two among five measures that are shown to be good predictors of faults. 

Briand et al. [17] show that coupling measures are useful indicators of quality in 

object oriented designs. Their study also uses Chidamer and Kemerer's object oriented 

metrics; however they enhance the suite of C++ measures to include, among others, 

export and import coupling. Differentiating between coupling measures provides better 

insights into which type of coupling is more likely to increase error density and 

maintenance costs of designs. The study finds that import and export coupling measures 

appear to be significant predictors of fault proneness. Import and export coupling 

measures do not include generalization or specification relationships between classes. 

A study by Cain and McCrindle [20] finds a link between class coupling and team 

productivity; "if software is improperly coupled then people are improperly coupled. " 

They find that unmanaged growth in coupling measures will slow programmers due to 

the inability of the programmers to work in isolation. Cain and McCrindle make a 

distinction in the direction of the coupling and state that a high fan-out value indicates 

instability, whereas a high fan-in value indicates responsibility. A class lacks stability 

when it references many external classes, making the class susceptible to faults. A class 

has high responsibility when many external classes depend on it. A system with high 

coupling levels (responsibility and instability) exposes poor information hiding and thus 

has repercussions on team dynamics. 
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Further, negative effects of coupling can have ripple effects on more distant 

classes. Briand et al. [18] study the relationship between coupling and ripple effects. 

Directions of coupling between any pair of classes are given equal weight. This is 

because ripple changes can propagate in any direction along a coupling dimension. The 

investigation used coupling measures for identifying classes likely to contain ripple 

changes when another class is changed. They find that some coupling measures are 

related to a higher probability of common code changes, and that coupling measures are 

good indicators of ripple effects and can be used in decision models for ranking classes 

according to their probability to contain ripple effects. 

Testability of object oriented designs has been extensively studied. Binder [12] 

suggests that at its most abstract, tests should demonstrate the relationships that must hold 

for a system under test. The design of object oriented systems is driven in large part by 

the relationships of the objects and classes that make up the system. Evaluating a full 

design can be daunting. However, by focusing on the design patterns that make up the 

system we can gain a better understanding at a localized level. 

Fenton and Pfleeger [30] propose using the Test Effectiveness Ratio (a measure of 

code coverage) as a measure for knowing the "extent to which the test cases satisfy a 

particular testing strategy." The measure is defined as the number of paths exercised at 

least once divided by the total number of paths. The denominator of the ratio is a finite 

subset of all possible paths (an infinite number); such as linearly independent paths, visit-

each-loop once paths, simple paths, branch coverage, or statement coverage. They also 

suggest the minimum number of test cases needed to satisfy a strategy for a given 

specification. They equate a test case with a finite path through a flow graph. The 
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number of test cases helps identify the amount of time needed to test, and also with 

planning strategies. Both of these measures are presented in the context of procedural 

designs. 

Work by Hamlet and Voas [45] and Voas and Miller [85] propose methods for 

improving reliability of systems by improving the testability of systems. The crux of 

their idea is that highly testable systems uncover problems and failures early, thus 

producing a highly reliable system. 

Tsai et al. [82] categorizes design patterns into two distinct groups, static and 

dynamic. Static patterns are typically used where changes to the design are not 

anticipated. The Singleton pattern is an example of a static pattern. Dynamic patterns 

allow for extensibility either at runtime or compile time, and new functionality is 

achieved via polymorphic constructs. Examples of dynamic patterns include the Visitor 

pattern and the State pattern. Both static and dynamic realizations of design patterns are 

studied. 

To evaluate the consequences that decay and grime buildup has on testability, we 

select evaluation criteria described in section 4.4.1. We build on the equations proposed 

by Binder [12] and look for the formation of anti-patterns in code. 

2.5 Summary 

Studies in software evolution and its consequences on designs are ongoing. 

Significant prior work has increased our understanding of how evolution affects object 

oriented designs, and of the consequences to external quality attributes. Evolution studies 

have also prompted the investigation of the deterioration that occurs in designs. In 

particular, many empirical studies [3], [17], [5] are available that investigate the 
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relationship that may exist between independent object oriented measures and the 

negative effects they may have on design quality. 

This dissertation focuses not just on quantifying object oriented decay, but takes 

us a step further towards understanding the differences between decay, rot and grime 

buildup in design patterns as a result of evolution. Design patterns have a well-

understood structure. Thus, they are a natural subject for this study of design evolution. 

We can use this structure to accurately measure changes. However, the existing 

definitions of design patterns are informal. Formal design pattern languages can make the 

analysis of design pattern integrity more precise. 
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3. DECAY, ROT AND GRIME DEFINITIONS 

To measure decay, rot and grime we must first characterize them. Preliminary 

research [47] revealed that prior definitions of decay [71], [29] do not quite describe what 

was observed in design pattern realizations. Data mining and manual inspections of code 

showed that realizations of patterns tend to remain in place as the system evolves. The 

structure of a design pattern represented by its UML class diagram does not tend to break. 

Rather, the phenomenon observed revealed that the realization of patterns were becoming 

obscured by additions of software artifacts that were not part of the intended ways in 

which patterns were meant to be extended. The following definitions are a result of these 

observations. In sections 3.1, 3.2 and 3.3 we define the notions of decay, rot and grime 

as they pertain to design patterns. In section 3.4 we provide an example and show the 

process for verifying a pattern, and in section 3.5 we provide detailed descriptions of the 

measures used in our observational case study. 

3.1 Decay 

We define decay as the deterioration of the internal structure of system designs. 

Internal structural breakdown of a design is caused by changes that do not conform to 

intended architectural methodologies. Changes include violation of encapsulation, failure 

to follow predefined coding styles, and failure to meet agreed upon quality measures such 

as inheritance depth, cyclomatic-complexity, number of methods, etc. In general, 

accurately measuring decay is very difficult to do, because predefined quality measures 
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vary for individual designs. Decay is most apparent when the time required to make 

changes in a software system increases, regardless of the available resources. In other 

words, decay lowers the adaptability of the system leading to further atrophy and aging. 

Code decay can be thought of as a form of software (d)evolution that affects the 

performance, reliability, testability, and adaptability of a system, and is thus directly 

related to software maintenance. 

3.2 Design Pattern Rot 

By focusing on micro-architectures of designs we can examine well-formed 

structures against design quality violations much more accurately. Thus, we define 

Design pattern rot as the deterioration of the structural integrity of a design pattern 

realization. To experience rot, a pattern realization must undergo negative changes 

(deterioration) through subsequent releases and evolution. The structural integrity of a 

design pattern realization is determined by systematically checking its classifiers (classes, 

interfaces, etc.) and associations against its formal RBML specification. A single core 

deviation from the formal specification stops the realization from representing said 

pattern. For example, the absence of an intended association between two participant 

classes in a realization of a design pattern as a result of evolution represents a core 

deviation or pattern rot if the realization now fails to implement a key concept of the 

pattern. A developer may have unintentionally deleted such association as a result of a 

lack of understanding of design patterns, or because the pattern may not have been 

documented. 

We have observed near-instances of patterns. A near-instance is a close match to 

a pattern RBML specification that violates some requirements. For example, figure 3.1 
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displays a near-instance of the Observer pattern, where all elements are bound to an 

RBML classifier with the exception of the observer "Progresslndicator". This class 

cannot be bound to any concrete or abstract observer. The figure represents a distorted 

view, or near instance of a design pattern. A change that turns a pattern into a near-

instance represents a case of pattern rot. 
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b1 | Attach (|obsv : |Observer) 1 ..* 
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Figure 3.1 A near-instance of the Observer pattern 

3.3 Design Pattern Grime 

If design patterns do not show signs of pattern rot (a form of decay) as defined, 

then we want to understand how evolution is having an impact on them. Design pattern 
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grime is a form of decay that does not break the structural integrity of a pattern; instead, it 

is the buildup of unrelated artifacts in classes that play roles in a design pattern 

realization. Unrelated artifacts do not contribute to the intended role of a design pattern. 

We have identified different forms of grime. When a pattern realization is 

instantiated for the first time, all its classes will contain the necessary elements to make it 

conformant to its SPS. Elements include the necessary attributes and methods. If 

increases in such elements are detected as the system evolves while the pattern maintains 

its structural integrity, then these elements must be unnecessary from a design pattern 

point of view. Class grime is associated with the classes that play a role in the design 

pattern and grime is indicated by increases in the number of methods of the class and the 

number of public attributes. 

Grime can also be observed in the environment surrounding the realization of a 

pattern in the form of associations that are unrelated to how a pattern is meant to be 

extended. Figure 3.2 provides the visual intuition of this type of grime buildup. The 

pattern instance on the right hand side is shown with associations that develop over a 

period of time to other classes in the surrounding environment. The number of these 

couplings obscures the realization of the pattern. Grime can also be observed within the 

classes that participate in the realization of a pattern. Non-conformant associations can 

develop between classes. Modular grime is indicated by increases in the coupling of the 

pattern as a whole by tracking the number of relationships (generalizations, associations, 

dependencies) pattern classes have with external classes. 

When patterns become part of a design they are implemented as part of a Java 

package and are typically distributed as a number of Java files. The growth of a design 
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creates additional couplings to packages that contain design patterns. Additional files are 

also expected to increase as new concrete classes that extend a pattern are developed. 

Organizational grime refers to the distribution and organization of the files and 

namespaces that make up a pattern. 

Grime is relative to the role that a design pattern plays. What is considered grime 

from a design pattern point of view may be adequate functionality from a different design 

perspective. Grime buildup occurs as long as the changes that a pattern undergoes do not 

violate the constraints necessary for the pattern to remain compliant with its formal 

model definition. The pattern is said to maintain its structural integrity. 

Ctassl x * 

~7y 

Evolution over time 

Figure 3.2 A visual intuition of grime buildup. Relationships represent the grime that 
has accumulated as the pattern evolves 

3.3.1 Types of Grime 

To quantify decay and grime, we first characterize it. Results from a pilot project 

[46] identified distinct types of pattern rot and grime buildup in object oriented design 

patterns. Figure 3.3 depicts the landscape as observed from early results. 
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Figure 3.3 The landscape of design pattern rot and grime. Pattern rot and grime are 
mutually exclusive 

Any change with negative effects on testability or adaptability of a design 

represents decay. Design pattern rot destroys essential elements of the design pattern 

realization and indicates deterioration of the structural integrity of a design pattern. A 

single change to a pattern realization can break its conformance with its SPS. In other 

words, the realization ceases to be a pattern. Although preliminary results indicate that 

design pattern rot is rare, we have evidence to suggest that buildup of design pattern 

grime occurs frequently. These forms of grime are depicted by the white bubbles 

included inside the grime bubble. Each type of grime obscures the realization of the 

pattern. The three types of grime are disjoint, and grime and rot do not intersect. A 

negative change to a design pattern is categorized as either rot or grime, but not both. 

The following sections provide a definition of each form of grime buildup. In section 3.4 

of this document we describe the measurements used to track each form of grime. 
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3.3.1.1 Modular Grime 

Modular grime buildup of a pattern is manifested through its number of 

dependencies with classes that do not play a role in the design pattern. An increase in 

coupling with classes (possibly from other patterns), indicates deterioration of modularity 

and is a symptom of grime buildup. This form of grime also points to the deterioration of 

the surrounding environment of the design pattern. As dependencies increase, it is 

reasonable to expect that the system becomes harder to extend and the testability and 

adaptability of the pattern becomes restricted. Additionally, a higher number of 

dependencies decrease the comprehensibility of the pattern. Even though the design 

pattern realization remains as the system evolves, it becomes obscured. The effort 

required to extract the realization from a design, or to make changes to the pattern 

increases because the developer needs to understand and account for the additional 

couplings that distort the realization of the pattern. 

We measure this breakdown in modularity by looking at the realizations of SPS 

patterns over a period of time. Every relationship between classes that is not specifically 

part of the SPS model of the pattern indicates a type of grime buildup. A growing 

number of relationships forces classes to become tightly coupled, thus reducing 

maintainability. For example, Izurieta and Bieman [47] find instances of classes that 

belong to the Visitor pattern, that later develop inheritance associations from external 

interface classes. While this is not illegal, it breaks the intent in which the pattern was 

meant to be extended. 
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3.3.1.2 Class Grime 

Class grime occurs in object oriented systems regardless of whether classes 

belong to a design pattern or not. We can use well known measures such as depth of a 

class in the inheritance hierarchy, number of ancestors, number of public attributes, etc. 

If the inheritance depth of a structure becomes large, then dynamic binding faults can 

become hard to find. Public attributes that are directly accessible can cause encapsulation 

problems. Graves et al. [39] found that the number of times code has been changed is a 

better predictor of the number of faults than the code size. They develop a measure, 

"number of deltas", which tracks the number of changes of a software module over its 

entire change history. Many measures can indicate class grime. We focus on those that 

yield insights into what is happening to the pattern realization as a whole. 

As previously noted, not all class measure increases indicate grime buildup. 

Many classes experience change as a result of requests for new functionality or 

performance, however from the perspective of the pattern, if that functionality is not 

related to the responsibility of the pattern, then it is considered grime rather than rot. For 

example, once a realization of a pattern is verified, then we know it encapsulates the 

necessary class attributes, however an increase in class attributes is an indication of class 

grime. We expect that class measurements should remain stable for classes that belong to 

design patterns and this would be in line with the rationale of how design patterns are 

meant to evolve, in that they should only be expanded through concrete classes and not 

through modification to existing classes. However, studies by Bieman et al. [11] show 

that classes that participate in patterns are just as prone to changes as those that do not 

participate in patterns, thus providing strong evidence for this form of grime buildup. 
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3.3.1.3 Organizational Grime 

Organizational grime buildup refers to the namespace (such as Java packages) and 

physical (files and directories) organization of design patterns. The distribution and 

organization of the packages that make up a pattern tend to change over time and can 

clearly cause maintenance efforts to increase. The number of physical files that contain 

the actual implementation of patterns will grow if additional concrete classes are added. 

The case studies in this research are all Java open source systems, and in Java, all public 

classes must be in their own files. The addition of a few or no new files (and classes) to 

an evolving pattern realization along with measurable increases in attributes, LOC, or 

methods indicates that existing classes are being modified rather than extended via new 

concrete classes. Grime buildup can occur when the pattern realizations are not being 

extended via concrete classes. 

We observed organizational grime buildup of some patterns in a pilot study [47]. 

The study tracked organizational grime by counting the number of packages that a design 

pattern belongs to, the number of distinct files that make up the design pattern, and by the 

couplings experienced by the packages that contain the implementation of the design 

patterns. Grime occurs when a design pattern is spread across packages, or when the 

relationships between packages increase. A consequence is increased maintenance effort. 

Also, an overall increase in the size of the system (measured by the number of packages / 

number of patterns), while the number of pattern realizations remains constant, indicates 

grime buildup and decay. We used JDepend [53], design pattern finder [24], and custom 

scripts (available in appendix B) to gather metrics. 
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3.4 Structural Verification of Pattern Realizations 

Informal pattern definitions, such as those in Gamma et al. [36], are not sufficient 

for detecting decay. A precise specification is necessary in order to compare realizations 

found in designs against it. More importantly, the specification must be usable in a 

practical sense. Based on our investigation of pattern languages, we selected the Meta 

Role Based Modeling Language (RBML) [33], which is defined in terms of a 

specialization of the UML metamodel. 

To understand how realizations of design patterns decay or accumulate grime 

over time, we compare the UML diagram of a design pattern realization against its 

RBML specification as described in section 2.3.1. A threat to the validity of this study is 

the manual process used to verify that pattern realizations are conformant. Automating 

these tasks is beyond the scope of this work. 

The following example illustrates the deterioration of the environment 

surrounding a pattern (grime buildup) over a period of time, while the structure of the 

pattern itself remains intact and shows no signs of rot. Figure 3.4 from [56] displays the 

RBML Structural Pattern Specification (SPS) of the Visitor pattern. We demonstrate that 

the Visitor realizations found in JRefactory [54] are in structural conformance with their 

SPS from their initial release studied (V.2.6.12) to the current release (V.2 9.19). 

Structural changes observed in the last two releases do not affect conformance with the 

pattern's SPS and are thus considered grime buildup from the perspective of the design 

pattern. 

Observed changes to pattern realizations that do not affect the structural integrity 

of a pattern can also be benign, and may be the result of necessary changes to the existing 
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design, or the addition of new functionality. However; from the perspective of the 

intended design we classify those changes as grime if they are not in accordance with the 

extensibility principles of the design pattern. Whilst necessary, if they do not conform to 

intended guidelines they obscure the realization of the design pattern. 
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Figure 3.4 A Visitor SPS [56] 

We focus on the visitor hierarchy of the Visitor pattern. The subject hierarchy 

(also known as element hierarchy) is similar in that there are no observed evolutionary 

changes that affect the structural integrity of the design pattern. We find that all versions 

conform structurally to the Visitor SPS and show no sign of core deviations from the 

SPS. Figure 3.5 displays the structurally conforming version 2.6.12. For the sake of 

brevity we have omitted feature roles (operations or methods); however we have found 

that all classes of the pattern instance conform. 
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Figure 3.5 A structurally conforming visitor class diagram of a realization of the Visitor 

pattern in JRefactory version 2.6.12 

Pattern realizations in versions 2.6.12 through 2.8.00 exhibit full conformance, 

and we find no deviations from the SPS of the pattern. In versions 2.9.00 and 2.9.19, 

shown in figure 3.6, we observe that the Visitor realization has evolved to include 

additional classes and additional relationships; however they do not represent violations 

of SPS. 

46 



Is bound to 

Is bound to 

RealizationRole i GeneralizationRole 

{ at least 1} 

ClassifierRole | Visitor 

b1 | VisitElem (jelem : | 
ConcreteElement) 1„* 

Is bound to' 

ClassifierRole | 
AbstractElement 

ClassRole | 
ConcreteElement 1.. 

Static class 

ParseTreeVisitor 

i Is bound to 

JavaParserVisitor 
«interface» 

ChildrenVisitor 

SpecialTokenVisitor 

PrettyPrintVisitor 

StubPrintVisitor 

CompareParseTreeVisitor 

EqualTree 

LineCountVisitor 

SummaryLoadVisitor 

JavaParserVisitorAdapter 

Extends another interface 

AbstractRule 

Figure 3.6 A structurally conforming visitor class diagram of a realization of the Visitor 
pattern in JRefactory version 2.9.19 

While the realization of the Visitor pattern does conform to the SPS, the meta-

model constraints may not be satisfied if the SPS is strict. A strict SPS specifies many 

constraints that must be satisfied by a given realization, some of which may not be 

necessary. For example, an examiner may chose to reject a visitor pattern realization if 

the concrete classes of the subject hierarchy name the standard "accept" methods with 
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another name such as "receive". If the SPS is too lenient, then any structure that 

resembles a visitor realization would match. Thus, it is up to the examiner of a pattern to 

decide what constitutes an acceptable strictness level for matching a design pattern. If 

the SPS is strict, then we find two possible grime buildup examples in the Visitor SPS. 

The first case of grime buildup could occur with the ParseTreeVisitor class. While the 

class is indeed concrete, and thus bound to the ClassRole \ ConcreteElement role in the 

SPS, the class is also a static class. The second case occurs with the UML class 

AbstractRule. In this case, the class also inherits from an external interface, and we thus 

question the ability to bind this class to the Classifier Role \ AbstractElement role in the 

SPS. 

As said, when checking conformity to an SPS, the results are dependent on the 

strictness of the RBML model that characterizes the design pattern. A level of strictness 

must be present in the RBML, for otherwise all UML diagrams would conform. As we 

define the SPS of various patterns in our research, we strive to include the essential 

artifacts that are necessary to model a design pattern. In our example, both deviations 

were introduced in the second to last version of the software studied. If we use a lenient 

SPS, then the generalizations of the AbstractRule class in the UML model are not 

considered core violations, and can be accounted for as follows. The generalization of 

the JavaParserVisitorAdapter class is structurally conformant with the SPS, and the 

second realization to an external interface is considered grime buildup because it is not 

part of the SPS that we check the realization against. 
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3.5 Measurements 

This section describes the measurements used to evaluate the hypotheses and the 

effects that grime buildup has on testability and adaptability of systems. 

3.5.1 Modular Grime measurements 

Modular grime buildup of a pattern is manifested through increases in the number 

of dependencies in a pattern. An increase in coupling with classes (possibly with other 

patterns), indicates deterioration of modularity and is a symptom of grime buildup. This 

form of grime also indicates the deterioration of the surrounding environment of the 

design pattern. As dependencies increase, the system becomes harder to extend and the 

testability of the pattern is restricted. Additionally, a higher number of dependencies can 

potentially decrease the comprehensibility and thus adaptability of the pattern. Even 

though the design pattern realization remains as the system evolves, it becomes obscured. 

An obscured realization is much harder to maintain because developers need to uncover 

the pattern in order to fully understand the consequences of possible changes to members 

of the pattern. 

3.5.1.1 Relationship counts 

Various relationships such as associations, use-dependencies, realizations, and 

generalizations increase as a result of modular grime buildup. Relationship count 

increases contribute to obscuring the pattern realization as it evolves, because the pattern 

structure is not as clear in a class diagram. Some relationships that occur as a result of 

modular grime are harder to modify than others, thus contributing to an increased effort 

necessary for a developer to adapt or test a pattern. This accidental complexity that is 

now embedded in the pattern realization makes it potentially harder for the pattern to 
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accommodate valid extensions. We use Design Pattern Finder [24] to get an aggregate 

relationship count for every pattern under observation. 

3.5.1.2 Afferent coupling of a design pattern (fan in) 

We use afferent coupling [64] of a pattern realization Ca, as an indicator of 

modular grime. Afferent coupling represents a pattern's incoming dependencies. A 

consequence of higher Ca levels may mean that the pattern realization is less adaptable 

because there is a greater risk of affecting dependent modules when changes occur. Cain 

and McCrindle [20] refer to this measure as the "responsibility" of a class. Afferent 

coupling can also be described as the fan-in of a pattern. Afferent coupling is measured 

by counting a pattern's incoming edges from unidirectional associations to its 

participants. It is a subset of the relationship counts described previously. As modular 

grime buildup occurs, the value of the Ca of a given design pattern is likely to increase, 

potentially reducing its adaptability. 

3.5.1.3 Efferent coupling of a design pattern (fan out) 

We also use efferent coupling [64] of a pattern realization Ce, as another indicator 

of modular grime. Efferent coupling represents a pattern's dependencies on external 

classes that may or may not belong to other patterns. Cain and McCrindle [20] refer to 

this measure as the "instability" of a class. Outgoing dependencies can include 

inheritance, interface implementation, parameter types, and other temporal dependencies 

such as variable types if they are part of a method's local variables. Efferent coupling is 

a subset of the relationship counts described previously. An increasing count of outgoing 
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relationships indicates that the pattern is growing its dependencies, thus potentially 

making its testability much harder because of the added dependencies. 

3.5.2 Class Grime measurements 

We use well known measures such as the number of public methods and number 

of attributes that participate in realizations of design patterns. Any increases in such 

measures beyond the essential as defined by the design pattern's RBML specification are 

considered grime from a pattern realization's perspective. 

3.5.2.1 Number of Public Methods 

The number of public methods refers to the operations offered by classes that 

participate in design pattern definitions. Design patterns have certain operations for 

various classes that must be defined in order for a realization of the pattern to be 

considered conformant to its RBML specification. An increase in the number of public 

methods is an indication that functionality is being added. Some functionality may 

indeed be needed, but it may be considered grime from the perspective of the pattern if it 

is not essential to its functionality as a pattern. 

3.5.2.2 Number of Attributes 

The number of attributes refers to the data fields offered by classes that participate 

in design pattern definitions. Design patterns have certain attributes that must be defined 

in order for a realization of the pattern to be considered conformant to its RBML 

specification. For example, a Singleton pattern has a static attribute that references the 

instance of the class that it holds. As design pattern realizations evolve we measure the 

number of attributes. An increase in the number of attributes is an indication that 
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functionality is being added. Some functionality may indeed be needed, but it may be 

considered grime from the perspective of the pattern if it is not essential to its 

functionality as a pattern. 

3.5.3 Organizational Grime measurements 

Organizational grime buildup refers to the namespace (such as Java packages) and 

physical (files and directories) organization of design patterns. The distribution and 

organization of the packages that make up a pattern tend to change over time and can 

clearly cause maintenance efforts to increase. 

3.5.3.1 Afferent Coupling of a package 

We use afferent coupling of a pattern realization's package; Ca, as an indicator of 

organizational grime. With organizational grime, we focus on the dependencies 

developed at a package level where design pattern realizations are present. This is 

similar to afferent coupling at a class level; however we take the abstraction a level 

higher to examine what happens at an organizational level. 

3.5.3.2 Files containing the implementation 

It is important to count the number of files containing the implementation of the 

various design pattern realizations. A constant number of implementation files while the 

pattern realizations continue to evolve and develop grime, indicates that changes and 

code are being added to existing files rather than being modularized, thus contributing to 

grime buildup. 
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3.5.3.3 Packages containing the implementation 

The numbers of Java packages that participate in the implementation of design 

patterns give us another perspective into the organizational aspects of the implementation 

of the patterns. We track this measure, and expect that the number of packages that are in 

place at the beginning of a project will remain as is with very little change. Other 

measures track the way the packages are organized. Pattern organization is beyond the 

scope of this research. Studies by Booch et al. [15] for example, recommend namespace 

hierarchies no deeper than three levels, where namespace inheritance works just as with 

classes, where specializations inherit more general attributes. A specialized package can 

be used anywhere its parent can. 
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4. OBSERVATIONAL STUDY METHODOLOGY 

The goal of the observational study is to find empirical evidence of the 

accumulation of pattern grime and possible pattern rot in design pattern realizations. In 

sections 4.1 and 4.2 we describe three open source systems used in this study and the 

tools used to mine the data. In section 4.3 we present sixteen hypotheses to be evaluated 

based on observations made to the three open source systems. Section 4.4 provides a 

detailed methodology for verifying pattern realizations against the RBML specification, 

and we identify the consequences that grime may have on different aspects of design 

adaptability and testability. To quantify consequences we select various surrogate 

measures. 

4.1 Systems Studied 

To study the consequences of grime, we have chosen three Open Source systems. 

Commercially developed systems were considered, but given the constraints associated 

with obtaining permission to mine and publish findings, we decided to focus on open 

source systems only. Since most of the tools available for data mining operate on Java 

systems, this was an essential criterion for selection. We chose two development tools 

and one database system implemented using the Java language. Given the number of 

releases, their usage statistics, and the number of years under development [79], we 

deemed the two development systems to be widely used and successful. The database 

system eXist, was not as successful as its counterparts in the database space. 
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4.1.1 JRefactory 

JRefactory is written in the Java language and is available through 

SourceForge.net. JRefactory supports many refactoring operations in a system, and 

automatically updates the Java source files as appropriate. Typical refactorings supported 

include repackaging, removing empty classes, moving fields and methods up and down 

an inheritance hierarchy, and extracting methods. We studied versions 2.6.12, 2.6.38, 

2.7.05, 2.8.00, 2.9.00, and 2.9.19. These releases represent the evolution of the software 

over a period of almost four years. JRefactory also supports many integrated 

development environments, including j Edit, NetBeans, JBuilder, and Ant. 

4.1.2 ArgoUML 

ArgoUML is an open source UML modeling tool that includes support for all 

standard UML 1.4 diagrams. It runs on any Java platform and is available in ten 

languages with wide usage. ArgoUML features include reverse engineering with jar and 

class file support, OCL support, exporting of diagrams, XMI support, and the ability to 

run on any Java 5 or Java 6 platform. We studied versions 0.10.1, 0.12, 0.14, 0.16, 

0.18.1, 0.20, 0.22, and 0.24, which represent development for approximately five years. 

4.1.3 eXist 

eXist is an XML database management system and stores data according to the 

XML data model. eXist is designed to support many web technology standards including 

XQuery, XSLT, various HTTP interfaces (Soap, xmlrpc, rest), and other XML specific 

database interfaces such as XUpdate, XMLDB, etc. We studied versions 0.8, 0.8.1, 

0.8beta, 0.9, 0.9.2, and l.Obl. They represent development for approximately 6 years. 
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4.2 Tools 

Various tools are used to mine for data and understand the structure of the 

systems studied. Early tools were complemented by scripts written by the author. As 

better tools were found that supported the types of information we were mining for, we 

made a transition to them and less scripting was required. The following sections 

describe the tools used in this research. 

4.2.1 Eclipse 

Eclipse [25] is a widely used Open Source development IDE. It is an extensible 

framework with support for numerous plug-ins that extend the capabilities of the system. 

Eclipse is used in this research as a platform for the analysis of all source code under 

study. Eclipse provides us with an easy to use GUI that helps us organize and navigate 

the code. Additionally, it provides the capability to search for data and use readily 

available plug-ins to help with data mining. 

4.2.2 JDepend 

JDepend [53] is freely downloadable, and generates design quality metrics for the 

source code trees under study. A limitation of JDepend is that it "does not currently 

support the calculation of Ca (fan-in) and Ce (fan-out) in terms of the number of classes 

inside a package that have afferent or efferent couplings to classes inside other packages. 

Rather, JDepend calculates Ca and Ce strictly in terms of the number of packages with 

which a package has afferent or efferent couplings, based on the collective analysis of all 

imported packages." Thus, this tool helps our research in terms of gathering data that 

contributes to organizational grime. 
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4.2.3 JavaNCSS 

This is a command line utility that was used early in our research, but was later 

replaced by more powerful tools. It is designed for gathering code metrics for the Java 

programming language. JavaNCSS [52] allows the user to gather such metrics a 

McCabe's CCN (Cyclomatic Complexity Number), NCSS (Non commenting Source 

Statements), and average values. 

4.2.4 SemmleCode 

Semmle is a UK company based in Oxford that develops and distributes .QL, an 

object oriented query language for structured data. Queries are constructed using the .QL 

language to compute specific measures, check for coding conventions, and find bugs. 

.QL has a syntax that is similar to SQL, and is implemented as an Eclipse plug-in named 

SemmleCode [78], which can be used to query any Java project. We use .QL to create 

queries that are suitable for analyzing realizations of various design patterns. 

4.2.5 Pattern Seeker 

Pattern Seeker [72] is a tool developed at CSU to help with the identification of 

design pattern instances in code. Pattern seeker is a command line interface based tool 

that searches for specific strings that may indicate intentional patterns. We use Pattern 

Seeker to help identify possible patterns, however manual checking is necessary to verify 

possible hits. 

4.2.6 Design Pattern Finder 

Design Pattern Finder [24] is a GUI based tool very similar to Pattern Seeker to 

help with identification of design pattern instances in code. It is a Windows application 

that searches source code directories for Gang of Four patterns. It works with .php, .Java, 
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.vb, and .cs files. Results of searches can be saved to text files, and some patterns are 

configurable through xml files. 

4.2.7 AltovaUML 

AltovaUML [1] is a commercial suite of tools. It is a UML design tool with the 

added functionality to produce UML diagrams from code. When possible matches for 

design patterns are found, we reverse engineer the code using AltovaUML to create a 

UML diagram that can be checked against the RBML specification of a design pattern. 

This allows us to identify possible deviations of a pattern realization against the 

necessary elements described by the RBML. 

4.3 Hypotheses 

The following set of null hypotheses is tested throughout the observational case 

study. Hypotheses concerning class, modular, and organizational grime have been 

postulated. Additionally, hypotheses regarding the consequences of grime buildup on 

testability and adaptability are also tested. 

Decay, Rot, and Grime Buildup 

Hi=o: There is inconsequential pattern rot in design pattern realizations. The number of 

core deviations is minor as a system evolves. 

H2,o: There is inconsequential grime buildup in design pattern realizations. The amount 

of grime buildup is minor as a system evolves. 

H30: The number of pattern realizations do not increase as the system evolves over time. 
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Class Grime Buildup 

H40: The increases in the number of public methods in a class that belongs to a pattern, is 

inconsequential. 

H50: The increases in public attributes (fields) in a class that belongs to a pattern, is 

inconsequential. 

H6,o: The increases in the sizes of classes that belong to pattern realizations is 

inconsequential. 

Modular Grime Buildup 

H7;o: The afferent coupling Ca (fan-in) level increases of pattern realizations over time are 

inconsequential. 

Hgo: The efferent coupling Ce (fan-out) level increases of pattern realizations over time 

are inconsequential. 

Organizational Grime Buildup 

H90: The total number of packages that participate in the implementation of a design 

pattern remains constant over time. 

Hi0,0: The total number of physical files that make up the implementation of design 

patterns remains constant throughout the evolution of the system. 

59 



Hiiso: The package level afferent coupling Ca (fan-in) of packages containing pattern 

realizations is inconsequential. 

Consequences of Grime Buildup 

Hi2,o: There is no correlation between changes in LOC and design pattern grime buildup. 

Hi3j0: The adaptability of design patterns, measured by the Instability ratio of 

Ce / (Ca + Ce) tends to remain the same as patterns evolve. 

Hi4i0: The adaptability of design patterns, measured through its Abstractness value A, is 

inconsequential. 

H150: Grime buildup has a higher impact on the testability than the adaptability of design 

patterns. 

Hi6,o: The minimal number of test requirements necessary to maintain test effectiveness 

remains constant as grime buildup increases. 

4.4 Evaluating Hypotheses, Testability and Adaptability 

To evaluate the hypotheses and the effects of grime buildup on the external 

attributes of testability and adaptability of design pattern realizations, we track the 

evolution of the Factory, Adapter, Singleton, State, Iterator, Proxy, and Visitor patterns in 
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every system under investigation. The RBML for each pattern can be found in appendix 

A. For each realization we perform the following steps: 

1. Create the RBML pattern specification. RBML and the Unified Modeling Language 

(UML) are used to specify selected pattern structures. The RBML is used to describe 

the essential classifiers and relationships necessary for a pattern realization to be in 

compliance with the intended design. Pattern specifications are verified by field 

experts. 

2. Use Pattern Seeker and Design Pattern Finder to mine every version of software 

under study. These tools will provide coarse statistics to help identify the total 

number of realizations of a given pattern. Additionally, these tools help identify the 

number of references to such patterns. 

3. Use AltovaUML to reverse engineer the UML diagram of pattern realizations to check 

for conformance against the RBML specification. Checking for conformance is a 

manual process which could be automated [57]. 

4. Mine all versions of software using available tools, and develop queries in the . QL 

SemmleCode language to capture all measurements specified in section 3.4 for the 

participants of the realizations of the pattern under study. Each query is designed 

specifically for each pattern. All statistics are gathered and graphed. Because it is 

very difficult to gather statistics for each individual pattern realization, the statistics 

gathered are an aggregate of all realizations of a given design pattern. 

5. Analyze observations for the pattern realizations. 

6. Evaluate hypotheses. 
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The process of counting relationships that form as a result of grime buildup was 

automated (step four), however manual intervention was still required to distinguish 

between relationships that are not part of the intended role of the pattern, and those that 

extend the pattern in intended ways (step three). 

4.4.1 Testability 

We use two methods to evaluate testability: 

1. Look for the appearance of design anti-patterns, and 

2. Examine the effects of increases in relationships on test requirements. 

4.4.1.1 Anti-patterns 

The consequence of grime increase may manifest itself as anti-patterns in a 

design. Anti-patterns can make testability efforts unmanageable and can quickly render 

tests ineffective. This is especially true with dynamic patterns, where inheritance 

hierarchies can grow unbounded, causing the potential number of paths that need to be 

tested to grow very fast. 

To evaluate testability, we look for empirical evidence of the emergence of testing 

anti-patterns in designs. An anti-pattern "describes a commonly occurring solution to a 

problem that generates decidedly negative consequences. " [19] Anti-patterns develop as 

a result of increased coupling. 

To track the development of testing anti-patterns we follow the evolution of 

various realizations of the Visitor, State, and Singleton patterns over a period of four 

years in the JRefactory [54] open source system. We mine for different types of anti-

patterns, but in particular, we look for empirical evidence of anti-patterns described by 

the work of Baudry et al [6], [7], [8], and [9]. They describe two anti-patterns (testing 
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conflicts) that weaken design patterns. The effects of these anti-patterns are further 

compounded by inheritance hierarchies and polymorphism. Figure 4.1 shows the 

concurrent-use-relationship, where two paths exist from A to C. Class A has a transitive 

use-path through B and B' to C. This scenario is described as an anti-pattern because A 

can change the state of C through one path, and read C from another path. Thus, 

consistency needs to be maintained. Maintaining consistency can become difficult, 

especially when multiple paths exist through a polymorphic hierarchy. As the number of 

relationships in design patterns grow, some design pattern realizations are likely to 

develop this form of anti-pattern. 

A 

B 

B' 

i ' 

C 

1 1 

Figure 4.1 Concurrent-Use-Relationship 

The second anti-pattern is called self-usage. Figure 4.2 displays its structure. 

Self-usage identifies potential self referential loops in the design, which must be tested 

for potential infinite loops. Self references can occur at a single class level or through 

multiple transitive class paths. 

A 

i L 

B 

Figure 4.2 Self-Use-Relationship 
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In addition to the anti-pattems described by Baudry et al., we also look for 

additional anti-patterns as described by Brown et al. [19] that develop as a result of grime 

buildup. 

We look for evidence of the lava flow anti-pattern, where some occurrences of 

code remain unchanged through the lifecycle of a product. As the rest of the system 

evolves to conform to a new operational domain, this realization of a design patterns lies 

dormant. Test cases and requirements of the dormant realization of the design pattern 

may still be viable at a unit level, however when tested at a system level, this pattern may 

not work correctly because the environment and the other code in the system around it 

have changed. Dormant code, if not checked early, can lead to further deterioration of 

the system and testing requirements because new developers do not want to remove code 

that is not understood. 

We also look for evidence of the swiss army knife anti-pattern. In a swiss army 

knife, classes implement too many methods. They exhibit a constant increase in methods 

that may not have anything to do with the original intent of the class in the design pattern, 

or a sudden implementation of methods for added new interfaces. 

4.4.1.2 Testing requirements 

The second method used to evaluate testability examines the effects of increases 

in relationships (associations, realizations, and dependencies) that develop as a result of 

grime buildup on test requirements. 

Class relationships are subject to many kinds of faults which must be tested. 

Examples of faults include wrong multiplicities, which as a result can generate missing or 

erroneous links between classes, errors in the creation or deletion of the runtime objects 
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that must satisfy the constraints specified in the UML, etc. In the case of a binary 

association between classes, there exist four possible combinations that must be tested, 

Binder [12]. For each combination an accept and a reject test case is necessary, thus 

yielding eight possible scenarios. In the case of n-ary associations there exist 8« possible 

scenarios that must be tested. The formula 8n covers the basic boundary conditions, but 

an additional constant number of tests can be added to cover typical scenarios that are 

found from operational profiles. Thus, we express the minimum number of n-ary 

association test requirements necessary using the linear model A(n, k) = %nk + c, c>=0. 

The variable k indicates the total number of such relationships found in the release. The 

consequences of not testing such combinations increase the fault proneness of the system. 

In the case of aggregation, which is a special kind of association, there exists a 

relationship between the whole and its parts, however the lifetime of either is 

independent. Since aggregation is a kind of association, A(n, k) already covers the 

multiplicity tests, however additional test cases are necessary to cover the test 

requirement for independent creation and destruction of the whole and each of its parts. 

We express the minimum number of test requirements as AG{n, k) = A(n, k) + Ank. 

Composition is a kind of relationship that does require testing for the transitive 

property. Composition is also a kind of association where there exists a relationship 

between a whole and its parts, but one where the part is created and destroyed alongside 

the whole. In other words, the lifetime of a part is dependent on the whole. Since A(n, k) 

already covers the multiplicity tests, we express the minimum number of test 

requirements as C(rc, k) = A(n, k) + Ink. The last term of this equation covers the 

sequential creation and destruction of the whole and its parts. 
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Generalization is also a transitive relationship. For any hierarchy with depth 

greater than or equal to three, there are at least two test requirements. A class needs to 

checks its "isa" relationship with its immediate parent, and by transitivity the relation 

must also hold with its grandparent. The minimum number of test requirements 

necessary is thus expressed as G(n, k) = 2nk. 

Finally, the dependency relationship is fully application dependent and the 

number of test requirements to cover such temporal relationships varies. Thus, D(n, k) -

c,c>=0. 

The equations (referenced in section 6.4) are numbered as follows: 

I. A(n, k) = $nk+c, c>=0 

II. AG(», k) = A(w, k) + Ank 

III. C(n, k) = A(n, k) + Ink 

IV. G(n, k) = Ink 

V. D(n,k) = c,O=0 

As systems evolve, new relationships develop between classes. Added 

relationships represent added test requirements. These relationships may or may not have 

been intended in the original design. More often than not, such relationships are the 

consequence of modular grime buildup. Without the necessary updates to the testing 

suite of such systems, the possibility of faults, as expressed by the equations, grows. 

Further, these equations do not take into account the complications that arise from 

the formation of testing anti-patterns, which in turn, further deteriorate as inheritance 

hierarchies develop. Additional research is required to understand how these equations 

are affected by the development of anti-patterns. 
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The efferent coupling Ce (fan-out) metric is also used to evaluate the testability of 

design pattern realizations. Efferent coupling is measured at the package level as well as 

at the pattern realization level. We observe what happens to the package that contains the 

realization of the pattern under study by measuring its efferent coupling. Further, we also 

measure the efferent coupling of the pattern realization itself. 

4.4.2 Adaptability 

When grime buildup occurs, the effort required making changes potentially 

increases, and refactoring may be necessary in order for the pattern to accommodate 

further changes. It is also clear that detection of the pattern realization is made much 

harder because the realizations become obscured. Additionally, the fault proneness and 

ripple effects that result from the accumulation of modular grime buildup are well known 

[2], [5], and [17]. 

Adaptability is a non-functional attribute of software, and measures have been 

proposed by Gilb [37] to track the total number of changes to a system module, or to 

estimate the amount of time spent on a module [30]. These measures focus on overall 

designs however, rather than design patterns. In addition, these measures are not easily 

available in many Open Source systems, and it is not feasible to mine for such 

information. We use measures described in section 4.4 concerned with modular grime, 

class grime, and organizational grime that affect adaptability of design patterns. 

We observe what happens to grime measures Ca (afferent coupling), and Ce 

(efferent coupling), as a result of code changes (ALOC) made to participant classes in 

design patterns. If we observe that the value of afferent coupling increases, then the 

pattern's responsibility increases, which implies that the pattern is less adaptable as more 
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software artifacts depend on the pattern. Intuitively, it is much harder for a developer to 

make changes to the design pattern without affecting related classes. Increases in efferent 

coupling make a pattern unstable as the pattern becomes dependent on other classes. 

Thus, growth observed in the ALOC in existing design pattern participants can be 

indicative of concerns that affect adaptability if modular grime measures also grow. 

However, not all changes in lines of code are necessarily grimy and some patterns may 

exhibit changes in LOC without corresponding increases in grime measures. We also use 

the instability measure on all pattern realizations studied to evaluate a pattern's ability to 

accommodate change. A value of zero or one approaching zero indicates a pattern that is 

hard to modify. 

4.4.2.1 The Relationship between changes in LOC and grime counts 

Adaptable design patterns require less maintenance and are easier to comprehend. 

If design patterns are extended using agreed upon techniques then changes experienced in 

the number of lines of code that participate in design patterns will not contribute to grime 

buildup. Intuitively, classes that experience high number of changes require more 

maintenance. Thus, we use the number of changes in lines of code (ALOC) of participant 

design pattern classes to see if they are related to grime buildup. Changes in lines of code 

can either be additions or deletions. 

We perform statistical analyses designed to determine if ALOC are indicative of 

grime buildup. Correlation and multivariate regression analyses are performed using 

SAS statistical software [76]. Correlation coefficients are calculated using the Spearman 

method as opposed to Pearson's correlation because the sample sizes are small and non-

parametric techniques are necessary. Regression analysis is used to evaluate any possible 
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structural relationship between ALOC and grime measures; it is not used to predict 

dependent variables. Since grime buildup occurs as a result of changes in lines of code, 

we cannot speculate that ALOC can be predicted by grime measures; however we can use 

regression to find a relationship that is statistically significant. 

The simple linear regression model assumes the following [70]: 

• The expected errors for each independent variable all have a value of zero: 

£(s,) = 0 for all i. 

• The errors all have the same variance: Var(sj) = o £ 

• The errors are independent of each other. 

• The errors are all normally distributed; £j are all normally distributed for 

alii. 

These assumptions are a threat to validity; however we use them consistent with 

empirical research studies in software engineering. The multivariate regression model is 

written as: 

y = Po + Pi*i + P2X2 + ••• + Pk*k+£ 

where the y denotes the dependent variable ALOC, and the x\ denote the 

independent variables. In general, Pj where j ^ 0, represents the expected change in y for 

a unit increase in xt while holding all other xs constant. The parameter Po is the y-

intercept. 
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4.4.2.2 Instability of a design pattern 

Instability [64], [66], [67] is a measure of how hard it is to change a software 

artifact without changing other artifacts. This measure is used as a surrogate for 

adaptability of design patterns. The value is a ratio of its fan out to the total number of 

relationships. 

Instability = Ce / (Ca + Ce) 

A value of one represents high instability (unstable) and it is representative of 

new artifacts that have dependencies on already established artifacts. Brittle design 

patterns have high values, but are easier to adapt because the number of incoming 

dependencies is small. In other words, the pattern can be modified without significant 

consequence. A value of zero represents a stable artifact, and it is typical of artifacts that 

have been in place since early design of the software. These artifacts are hard to modify 

because many artifacts depend on it. It is much harder to adapt a design pattern with a 

low Instability value. 

Other notions of stability refer to parts of a design that show how characteristics 

tend to remain the same. Kelly [55] observes that "good software designs aim to stabilize 

parts of the software". The metric we calculate for design pattern realizations, namely 

instability, may have a constant, and hence "stable" value that is close to one, however 

this would be indicative of a young pattern. The instability metric is computed for every 

design pattern studied. 

4.4.2.3 Abstractness of a design pattern 

The abstractness (A) [64] of a design pattern can be measured as the ratio of 

abstract classes (including interfaces) to the total number of participating classes. The 

70 



range of this measure is [0..1], with 0 indicating that the pattern realization contains all 

concrete classes, and 1 indicating all abstract classes. Values approaching one indicate 

that the pattern is potentially more adaptable through extensibility. In order to understand 

how grime affects abstractness we need to set an expected value of abstractness for every 

design pattern studied. We can do this by referencing the RBML of a design pattern. 

This value may indeed be a range of accepted abstractness. As grime buildup occurs, 

classes that belong to a design pattern develop relationships with classes that do not play 

a role in the pattern as specified by the RBML. The "external" classes and/or interfaces 

contribute to changing the abstractness value of the pattern. 
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5. RESULTS 

Table 5.1 lists all the systems and versions of software studied. All versions of 

software were downloaded into individual directories and separate Eclipse projects were 

created for each. Eclipse allows for easy organization and navigation of the code. 

Additionally, we take advantage of Eclipse's built in features such as name completion, 

automatic coloring, and plug-in support to help explore the code base of the various 

systems. 

Table 5.1 Software versions and release dates studied 

JRefactory 
Version 

2.6.12 
2.6.38 
2.7.05 
2.8.00 
2.9.00 
2.9.19 

Release 
date 

1/2001 
2/2002 
7/2003 
8/2003 

10/2003 
5/2004 

ArgoUML 
Version 

0.10.1 
0.12.0 
0.14.0 
0.16.0 
0.18.1 
0.20.0 
0.22.0 
0.24.0 

Release 
Date 
10/2002 
8/2003 

12/2003 
7/2004 
4/2005 
2/2006 
8/2006 
2/2007 

eXist 
Version 

0.8beta 
0.8 
0.8.1 
0.9 
0.9.2 
l.Obl 

Release 
Date 
6/2002 
8/2002 
8/2002 
1/2003 
8/2003 

10/2006 

At a high level we gather statistics for many design patterns, however when 

observing trends at the realization level of individual patterns, we track the patterns 

described in table 5.2. 
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Table 5.2 Design patterns studied for each system 

JRefactory 
Singleton 
State 
Factory 
Adapter 
Visitor 

ArgoUML 
Singleton 
State 
Factory 
Adapter 

eXist 
Factory 
Adapter 
Iterator 
Proxy 

We use queries written in the .QL language, described in section 4.2, and 

customized scripts to generate the measurements. We graph the results against calendar 

dates. Since we are studying the evolution of software patterns over time, using calendar 

dates is a necessary and implied time scale. We also plotted results at discrete equidistant 

intervals representing the versions of the software; however the lines connecting the data 

points do not have any significance. Lehman et al. [60] suggest the latter approach in the 

study of the OS/360 system; however evolution studies of the Linux Operating System by 

Godfrey and Tu [38] suggest using calendar dates. 

5.1 Modular Grime Results 

Modular grime is measured by counting the number of relationships that design 

pattern realizations develop as they evolve. We observe how the overall number of 

references to design pattern realizations change. References describe what is occurring in 

the environment surrounding the pattern realization. An increase in these numbers 

suggests that pattern realizations are being used, thus changes in pattern realizations 

affect other parts of the system, and thus its adaptability. The total number of references 

is a superset of afferent coupling. Reference counts also include definitions used in 
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generic types, two way dependencies, and global definitions. References are obtained by 

using the Pattern Design Finder tool, which has less accuracy than other tools. For 

example, this tool accounts for references found in comments which are not valid but the 

tool has no way of discriminating between them. 

The ability to differentiate counts for every realization of a design pattern is cost 

and time prohibitive, thus we aggregate the measures for all realizations of individual 

patterns studied. Relationship counts for afferent and efferent couplings are obtained 

using the .QL language, and are only gathered for the patterns shown in Table 5.2. We 

only focus on classes that participate in a realization of a pattern and (to save on 

computational time) whose relationship count equals or exceeds five. 

Intentional Adapter patterns are typically named with classes that contain the 

"adapter" string as a suffix. There is no other way to really identify such patterns 

because the adaptee is typically named with its original name. This makes the search for 

Adapter patterns difficult. 

The Adapter pattern as described by Gamma et al. [36] has two common 

implementations. The first implementation is the class adapter version, where public 

inheritance is used to obtain the interface from the target class, and private inheritance is 

used to obtain the implementation from the adaptee class. Clearly this is not feasible in 

Java environments where multiple inheritance is not supported. An alternative 

implementation in Java is the realization of an interface that uses the "implements" 

keyword, and an extension of the adaptee via regular inheritance using the "extends" 

keyword. A second approach is the object adapter version, where object composition is 

used to combine classes with different interfaces. 
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We also note that the Java language provides a number of built in Adapters. Most 

of these adapters are found as part of the Windows [86] events interfaces to help simplify 

bookkeeping. Examples include Window Adapter, Container Adapter, FocusAdapter, 

MouseMotionAdapter, KeyAdapter, and MouseAdapter. We do not gather statistics for 

built in adapters. In some cases we find adapters that extend Windows built in adapters, 

and we do gather statistic for these patterns because they are clearly intentional and 

beyond what the Windows built-ins provide. 

We also calculate the Instability of design pattern realizations. Instability ranges 

between the values of zero and one and it is dependent on the afferent and efferent 

results. Section 4.4.2.2 provides a description of this measure. 

5.1.1 Reference Counts and Afferent Coupling 

Reference counts are less accurate than the afferent coupling measures gathered. 

We use Design Pattern Finder, which takes into account a much less specialized set of 

rules when counting and thus the counts are higher. Reference counts are gathered for all 

possible realizations of design pattern realizations that the tool "believes" it has found. In 

all three systems we see a slight and steady increase in all design pattern realizations. 

Notable exceptions are the reference counts in the ArgoUML system where pattern 

realizations tend to follow a constant path of evolution. 

Figures 5.1 and 5.2 display the reference count results for JRefactory. Figure 5.2 

is the same as 5.1 without the numbers for the State and Visitor patterns. Figure 5.2 helps 

us visualize the results for patterns with smaller counts. 
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Figure 5.1 JRefactory reference counts to all possible realizations of various design 
patterns 

References 

§ 

450 
400 
350 
300 
250 
200 
150 
100 
50 
0 

-*- — 

/ 
—J v ^-" ' 

• x^ 
^ * r — 

. ' . * . H W * 
—T r * — i 1 1 1 — — r * 1 

* £ * 

— ( • 

- •—Bu i l de r j 

- * — Factory j 

-A- • • Singleton , 

-K—Adapte r 

- * — C o m m a n d ! 

- • — Facade ! 

pN pN oN & & & jy> JS> <$> & & 
& ^ ©r & ^ <<r ^ ^ er & ^ 

Release 

Figure 5.2 Figure 5.1 minus the State and Visitor patterns 

JRefactory sees significant increases in reference counts beginning in August 

2003 (release 2.8.00). This is observed in most design patterns and is an indication of 

increased usage. The Visitor pattern shown in figure 5.1 however, exhibits a slight 
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decrease after the August 2003 release, and never experiences reference count increases 

similar to those encountered by other patterns. 

Figures 5.3 and 5.4 display the reference count results for ArgoUML, and eXist 

respectively. In ArgoUML's case, with the exception of the Facade pattern, reference 

counts tend to remain constant through all releases of the software. The observed 

increase in reference counts for the Facade pattern is significant, and begins in December 

2003 (release 0.14.0) and continues until July 2004 (release 0.16.0) before exhibiting a 

much lower rate of growth. eXist's reference counts increase at a steady rate until 

August 2003 (release 0.9.2) before they begin to increase more significantly for all 

patterns studied except the Proxy pattern. It is important to note that the release distance 

between versions 0.9.2 and l.Obl, measured in calendar months, is thirty eight months. 

All five previous releases were separated by at most seven months. Thus, the overall 

growth observed in reference counts appears to be consistent with previously observed 

growth rates. 
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Figure 5.4 eXist reference counts to all possible realizations of various design patterns 

Afferent coupling metrics are calculated and displayed in figures 5.5 through 5.8. 

We find realizations of the Adapter and Factory patterns in all systems studied. Adapter 

pattern realizations show evidence of afferent coupling growth in both JRefactory and 

eXist; however ArgoUML's realizations experience temporary growth between the 

December 2003 (release 0.14.0) and July 2004 (release 0.16.0) timeframes. The latter is 

attributed to a single instance that was later refactored. Not taking into account the 

temporary spike, we can safely conclude that ArgoUML's Adapter pattern realizations 

tend to remain constant. 

Figure 5.5 and 5.6 display the afferent coupling results for JRefactory. Figure 5.6 

is the same as 5.5 minus the numbers for the Visitor pattern. Figure 5.6 helps us visualize 

the results for patterns with smaller counts. 
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Figure 5.5 JRefactory afferent coupling counts to all possible realizations of various 
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Figure 5.6 Figure 5.5 minus the Visitor pattern counts 

Figures 5.7 and 5.8 display the afferent coupling count results for ArgoUML, and 

eXist respectively. 
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Figure 5.7 ArgoUML afferent coupling counts to all possible realizations of various 
design patterns 
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Factory pattern realizations also show a tendency to grow; however unlike 

JRefactory where growth of realization increases significantly, in the ArgoUML source 

code we find that the first four releases implement all realizations of the pattern using 

classes. Beginning in April 2005 (release 0.18.1), most of the Factory pattern classes are 
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converted to Java interfaces. The patterns retain their names, but they are now interfaces 

instead of classes. We had to modify our pattern recognition query in order to gather 

statistics of the now converted interfaces. The drop in afferent coupling between July 

2004 (release 0.16.0) and April 2005 (release 0.18.1) is due to the UmlFactory class. The 

class originally had a Ca count of fourty-four and when separated into an interface-

implementation combination its Ca count dropped to three, thus reducing the overall 

afferent coupling. After February 2006, versions 0.22.0 and 0.24.0 were refactored and 

the implementations of the various Factory realizations were removed and replaced by a 

different mechanism that uses a facade approach. We thus do not provide those numbers 

in our results because they would not make sense. The interfaces for the factories 

remain, however their implementations are gone. The reference counts for the Factory 

pattern in the ArgoUML system still see a slight increase after February 2006 in versions 

0.22.0, and 0.24.0, however these are references to the existing Factory realizations. The 

implementations of the factory classes stopped with version 0.20.0. eXist' s realizations 

of the Factory pattern tend to remain constant. We do not find evidence of the Factory 

pattern realizations in the last version of eXist studied. 

We find realizations of the Singleton pattern in JRefactory and ArgoUML. Only 

a single realization is available in the latter and its afferent level counts remain stable. 

JRefactory's afferent level counts show constant values until August 2003 (release 

2.8.00) when Ca levels climb sharply. 

State pattern realizations were found in both JRefactory and ArgoUML's code. 

The evolution of these realizations follows distinct paths. The State pattern in JRefactory 

yielded three instances. All three instances never changed (evolved) through all the 
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releases even though the number of references to the pattern realizations did increase. 

This indicates that the pattern realizations are not dead code and they indeed continue to 

be used. ArgoUML's realizations of the State pattern show a steady growth in its afferent 

coupling levels. We do not find any major refactoring efforts after close inspection of the 

code. 

The only viable realizations of the Visitor pattern were found in JRefactory. 

Similarly, we only find the Proxy and Iterator patterns in eXist. In all three cases we 

clearly see very defined and steady increases in afferent coupling counts. 

5.1.2 Efferent Coupling Counts 

Figures 5.9 and 5.10 display the efferent coupling results for JRefactory. Figure 

5.10 is the same as 5.9 minus the numbers for the Visitor pattern. Figure 5.10 helps us 

visualize the results for patterns with smaller counts. 
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Figure 5.9 JRefactory efferent coupling counts to all possible realizations of various 
design patterns 
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Figures 5.11 and 5.12 display the efferent coupling count results for ArgoUML, 

and eXist respectively. 
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Figure 5.12 eXist efferent coupling counts to all possible realizations of various design 
patterns 

We first focus on realizations of the Adapter and Factory patterns; which are 

found in all systems studied and shown in figures 5.9 through 5.12. All realizations in all 

systems studied show steady growth in efferent coupling. In the case of JRefactory, we 

see a marked increase after the July 2003 version (release 2.7.05), and in the eXist 

database system we observe a marked increase after the August 2003 version (release 

0.9.2). The realizations observed in the ArgoUML system shows more controlled growth 

in the case of the Factory pattern and an almost constant or bated growth in the case of 

the Adapter pattern. After February 2006, versions 0.22.0 and 0.24.0 of the Factory 

pattern were refactored and the implementations of the various Factory realizations were 

removed and replaced by a different mechanism that used a facade approach. 

The Singleton pattern is found in JRefactory (figure 5.10) and ArgoUML (figure 

5.11). As expected, Ce levels remain constant for both systems. In JRefactory we 

observe a slight increase in the May 2004 release, however this is attributed to one 
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additional realization of the pattern introduced in version 2.9.19. The Singleton pattern 

tends to remain unchanged once implemented and this is consistent with the results 

obtained. 

As already described, the State pattern realizations remain unchanged throughout 

their lifecycles in the JRefactory system. Figure 5.10 shows the efferent coupling count. 

Both Ca and Ce remain unchanged, however the reference counts do increase as the 

pattern ages. In ArgoUML we observe moderate and subdued growth. 

The Visitor pattern in JRefactory (figure 5.9) experiences continual and consistent 

growth throughout its lifecycle as do realizations of the Proxy and Iterator patterns in the 

eXist database (figure 5.12). 

5.2 Class Grime Results 

Class grime is measured by focusing on the classes rather than the relationships 

that form part of a design pattern. Measurements are taken for all classes that are 

intended participants of a design pattern as determined by the RBML. Every pattern 

realization studied maintained a constant number of classes throughout its lifecycle. In 

rare occasions we observe patterns extended via generalizations. 

5.2.1 Class Size 

All systems studied JRefactory, ArgoUML, and eXist exhibit growth in total lines 

of code (LOC) for every design pattern realization. JRefactory exhibits a sudden jump 

after July 2003; however the other systems tend to show a more consistent rate of growth. 

The Singleton pattern realizations found in JRefactory and ArgoUML show little change. 

It appears that once in place, the latter tends to remain as-is. 
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Figures 5.13 and 5.14 display the results for JRefactory. Figure 5.14 is the same 

as 5.13 minus the numbers for the Visitor pattern. Figure 5.14 helps us visualize the 

results for patterns with smaller counts. 
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Figure 5.13 JRefactory class sizes in LOC of all possible realizations of various design 
patterns 
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Figure 5.14 JRefactory class sizes in LOC of all possible realizations of various design 
patterns minus the Visitor pattern 
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Figures 5.15 and 5.16 display the LOC count results for ArgoUML, and eXist 

respectively. 

Class Sizes of Pattern Realizations 

4 0 0 0 -i 

3 0 0 0 

1 0 0 0 

O 

„ 

A 

. - ' 

.* 
* *-f 

, • ' A' 

' 

— 

=-« 

.*.' 

—•——— 

.-"* 

* 

^=-:-A^-= 

• —•— 

v 

• 

- • Singleton 

- State 

R e l e a s e s 

F a c t o r y 

-*s A d a p t e r 

Figure 5.15 ArgoUML class sizes in LOC of all possible realizations of various design 
patterns 
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5.2.2 Number of Attributes 

With the exception of only four design patterns, all realizations across all systems 

studied exhibit little change in terms of growth of additional attributes. This is a positive 

result because it tells us that no new state, beyond what is expected as a responsibility of 

a design pattern, is being added as the pattern evolves. In JRefactory we see modest 

growth in the Adapter and Visitor patterns. In ArgoUML we observe a steady growth in 

the State pattern, and in eXist we see a sharp increase in the last version of the Iterator 

pattern. 

Figures 5.17, 5.18, and 5.19 show the respective results for the total number of 

attributes measure of JRefactory, ArgoUML and eXist systems. 
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Figure 5.17 JRefactory number of attributes of all possible realizations of various design 
patterns 
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Figure 5.18 ArgoUML number of attributes of all possible realizations of various design 
patterns 
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Figure 5.19 eXist number of attributes of all possible realizations of various design 
patterns 

5.2.3 Number of Methods 

Similar to the number of attributes observations, we discern a modest growth for 

the total number of methods in the Adapter and Visitor patterns in the JRefactory system. 
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In ArgoUML we only observe a sharp increase in the total number of methods for the 

Factory pattern, and in the eXist system we observe modest increases in the Iterator 

pattern, and a very sharp increase in the Adapter pattern. 

Figure 5.20 and 5.21 display the results for JRefactory. Figure 5.21 is the same as 

5.20 minus the numbers for the Visitor pattern. Figure 5.21 helps us visualize the results 

for patterns with smaller counts. 
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Figure 5.21 JRefactory number of public methods of all possible realizations of various 
design patterns minus the Visitor pattern 

Figures 5.22 and 5.23 show the respective results for the total number of public 

methods measure of the ArgoUML and eXist systems. 
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Figure 5.23 eXist number of public methods of all possible realizations of various design 
patterns 

5.3 Organizational Grime Results 

Organizational grime gives us a different perspective into the evolution of 

software systems. We observe what is happening to the packages and the physical files 

that participate in the collection of software artifacts that implement the realizations of 

design patterns. In addition to observing sizing measures at the package and file levels, 

we also measure afferent coupling changes. Afferent coupling is a good indicator of 

whether the existing package is being referenced and imported by other packages. 

Efferent coupling measures at a package level were not collected as they do not provide 

compelling data. 

5.3.1 Afferent Coupling Counts at a Package Level 

Afferent coupling measured at package levels is similar to afferent coupling 

measured at the pattern realization levels but at a higher abstraction level. This can be 
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thought of as modular grime of packages that contain the implementation of the pattern. 

JavaNCSS is used to gather afferent coupling measurements which operate at this level. 

Figure 5.24 displays the afferent coupling of the packages that participate in the 

implementation of design patterns of JRefactory. 
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Figure 5.24 Afferent Coupling of packages in JRefactory that contain the realization of 
design patterns 

Figures 5.25 and 5.26 show the results for the afferent coupling of Java packages 

in ArgoUML. We use two graphs to reduce clutter. 

93 



s 

Ca Count for Packages 

O* <? /<? <? / <? / / d* <ĉ  /<? <? 
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Figure 5.25 Afferent Coupling of packages in ArgoUML that contain the realization of 
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Figure 5.26 Afferent Coupling of packages in ArgoUML that contain the realization of 
design patterns 

Figure 5.27 displays the afferent coupling of the packages that participate in the 

implementation of design patterns of eXist. 
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Figure 5.27 Afferent Coupling of packages in eXist that contain the realization of design 
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5.3.2 Number of Files that Participate in the Implementation 

We use Pattern Seeker and Design Pattern Finder to gather file statistics for 

various design patterns. The total number of files that participate in the implementation 

of design pattern realizations exhibit a constant value in the cases of JRefactory and 

ArgoUML. The State pattern in the latter does show steady growth, however this appears 

to be an exception. In the case of eXist, we observe a steady growth after August 2003. 

Figure 5.28 displays the total number of files that participate in the realization of 

various design patterns of JRefactory. 
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Figure 5.28 JRefactory number of files participating in the realization of design patterns 

Figures 5.29 and 5.30 show the results for the total number of files 

measure of ArgoUML. Figure 5.30 is the same as 5.29 minus the numbers for the State 

pattern. Figure 5.30 helps us visualize the results for patterns with smaller counts. 
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Figure 5.29 ArgoUML number of files participating in the realization of design patterns 
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Figure 5.30 ArgoUML number of files participating in the realization of design patterns 
minus the State pattern 

Figure 5.31 displays the total number of files that participate in the realization of 

various design patterns of eXist. 
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Figure 5.31 eXist number of files participating in the realization of design patterns 
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5.3.3 Number of Java Packages that Participate in the Implementation 

At a package level we can get a different perspective regarding the evolution and 

grime buildup of design pattern realizations. Rather than focusing on files, we focus on 

Java packages that participate in realizations of design patterns. Measures at a package 

level are considered organizational. 

The total number of packages that participate in the implementation of various 

design pattern realizations remain very steady for ArgoUML. In the case of eXist, the 

number of Java packages shows a tendency to grow over time, and in the case of 

JRefactory we observe steady numbers until the July 2003 release when a marked 

increase is observed until October 2003. The total number of packages settles again into 

a constant value after such date. 

Figure 5.32 displays the total number of packages that participate in the 

realization of various design patterns of JRefactory. 
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Figure 5.32 JRefactory number of packages participating in the realization of design 
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Figures 5.33 and 5.34 show the results for the total number of Java packages 

measure of ArgoUML. We use two graphs to reduce clutter. 
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Figure 5.33 ArgoUML number of packages participating in the realization of design 
patterns 
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Figure 5.34 ArgoUML number of packages participating in the realization of design 
patterns 

Figure 5.35 displays the total number of packages that participate in the 

realization of various design patterns of eXist. 
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6. ANALYSIS AND DISCUSSION 

Finding evidence of grime buildup in widely used systems is important. Each 

system studied has a significant number of downloads as reported by SourceForge [81]. 

This case study observed grime buildup in eXist, a widely used database system (almost 

250K downloads), and two applications; also widely used in their respective domains, 

JRefactory and ArgoUML (85K and 16K downloads respectively). We analyze the raw 

results described in section five and augment the data with additional derived measures. 

In all cases we summarize our observations and provide explanations for discernible 

grime buildup exhibited by pattern realizations in the systems studied. There are 

thousands of object oriented systems potentially available for study, and increasing the 

sample size is imperative to making stronger generalizations. 

We also investigate the consequences that the observed grime buildup has on the 

testability and the adaptability of design patterns. Consequences are described in sections 

6.4 and 6.5. We provide evidence and statistical analysis to support claims. Finally, we 

evaluate the set of hypotheses posed in section 6.6. 

6.1 Modular Grime 

All systems studied show that there are increases in modular grime for almost 

every design pattern studied. Table 6.1 lists all the design patterns that were carefully 

studied in each of the software systems. Each design pattern is given a nominal 

evaluation that describes the growth of afferent coupling. A Negative evaluation means 
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that afferent coupling tends to decrease as the pattern evolves. A Flat evaluation 

indicates that afferent coupling remains steady, and a Positive evaluation indicates 

growth in afferent coupling as the system evolves. 

Table 6.1 Observed growth of afferent coupling 

Singleton 
State 
Factory 
Adapter 
Visitor 
Iterator 
Proxy 

JRefactory 
Positive 

Flat 
Positive 
Positive 
Positive 

ArgoUML 
Flat 

Positive 
Flat 
Flat 

eXist 

Flat 
Positive 

Positive 
Positive 

Afferent coupling in all studied systems remains flat or exhibit a tendency to 

grow. Clearly additional patterns need to be observed. More importantly, the systems 

studied are deemed successful and this may be due in part, to their ability to keep afferent 

coupling counts in check. Studies by Basili et al. [5] and Briand et al. [17] provide 

evidence to support that coupling measures are useful indicators of quality. The results 

are the same after normalizing afferent coupling counts by the number of realizations of 

design patterns in a system. 

Similarly, table 6.2 lists all the design patterns in each of the software systems 

with their corresponding efferent coupling nominal classification. 
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Table 6.2 Observed growth of efferent coupling 

Singleton 
State 
Factory 
Adapter 
Visitor 
Iterator 
Proxy 

JRefactory 
Positive 

Flat 
Positive 
Positive 
Positive 

ArgoUML 
Flat 
Flat 

Positive 
Positive 

eXist 

Positive 
Positive 

Positive 
Positive 

The values for the different categories are similar. This is an indication that as 

design patterns evolve their couplings tend to increase. In our statistical evaluations of 

the consequences that grime buildup has on adaptability we further explore the degree to 

which afferent and efferent coupling measures are related to changes in lines of code. 

6.2 Class Grime 

When design patterns evolve, we expect to find that the total number of classes 

that make up a pattern grow in cases of dynamic patterns, and remain stable in cases of 

static patterns such as the Singleton pattern. Dynamic patterns are meant to be extended 

via realizations of interfaces or generalizations of abstract classes. This is in keeping 

with the notion that design patterns are extended through new concrete classes. Thus, we 

should expect the average number of methods and the average LOC will grow 

proportional to the number of classes and to each other. Grime buildup is indicated by an 

increase in the number of methods without an increase in the number of classes. We also 

expect that the number of attributes of patterns should remain constant as design patterns 

are not meant to be extended via state values. 
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6.2.1 Class Sizes, Number of Attributes, and Number of Methods 

The results presented in chapter five shows that in all systems studied, we see 

growth in the total number of lines of code in the classes that participate in design 

patterns. We also see little growth in the number of methods, and almost no growth in 

the total number of attributes. In order to better understand how classes that participate in 

the realizations of design patterns are evolving, we also compute the Average LOC per 

class [73], the average number of attributes per class, and the average number of 

methods per class. Increases in the average LOC per class are indicative of class bloating 

and possible buildup of grime. 

6.2.1.1 JRefactory 

It is clear that the State and Singleton patterns exhibit no average increases in 

LOC. Only the Adapter and Factory pattern realizations exhibit significant growth after 

the August 2003 release. Figures 6.1 through 6.3 display the observed values. 
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Clearly there is no evidence to indicate that the average number of methods or 

attributes is increasing in a manner that is not consistent with the expected evolution of 

design patterns. The Adapter pattern does experience a sudden growth of methods in 
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October 2003; however this is matched by the average LOC. We observe that only the 

Factory pattern is experiencing greater growth in the average LOC than that of the 

average number of methods. 

The Visitor pattern has much higher average number of methods and LOC 

averages. Figures 6.4 and 6.5 display the two graphs and how they relate to other 

patterns studied in JRefactory. Clearly growth in the average LOC and the average 

number of methods exhibit similar trends, thus no evidence of class grime can be 

inferred. Also, close inspection of the code shows that the growth in the number of 

methods in JRefactory's Visitor pattern realizations is consistent with the RBML of the 

Visitor pattern. The increase in methods is mainly due to conformant visitQ and acceptQ 

pair methods. 
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6.2.1.2 ArgoUML 

The analysis of ArgoUML also yields little evidence of class grime. Figures 6.6 

through 6.8 show the averages computed for ArgoUML. 
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Average Number of attributes per class 

Figure 6.8 ArgoUML average number of attributes per participant class 

The Adapter and Factory patterns exhibit high growth counts in average LOCs 

until the July 2004 release. The averages are quickly brought down after such release. 

Although grime buildup was beginning to form, it appears that a refactoring process took 

place. This conjecture about refactoring is supported by observing the average number of 

methods. The Factory pattern sees a significant increase in the average number of 

methods through all studied releases. The increase is matched by the average increase in 

LOC until July 2004. After this release, the average LOC begins to decrease while the 

average number of methods increases, which would point to possible refactoring. 

The State pattern shows a slight decrease in the average number of methods while 

the average LOC tends to remain constant which also indicates a form of class bloating. 

The Adapter pattern exhibits a spike in growth in the average number of methods and 

attributes in the July 2004 release, however this is also matched by a similar trend in the 

average LOC. 
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Only the State pattern in ArgoUML is experiencing growth in the average LOC as 

compared to the average number of methods because the average number of methods 

shows a steady decrease. 

6.2.1.3 eXist 

Figures 6.9 through 6.11 show the averages computed for eXist. 
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In eXist we see a general growth trend in average LOC for the Proxy, Adapter, 

and to a lesser extent the Factory pattern. The Iterator pattern sees a slight decrease after 
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the August 2003 release. We observe an increase in the average number of methods after 

the August 2003 release. The increases are only significant in the Adapter and Proxy 

patterns; however these increases are also matched by average LOC increases. These 

observations indicate healthy and measured growth for these patterns. In the eXist case, 

we observe no evidence to indicate class bloating for any participants of any class 

studied. 

6.3 Organizational Grime 

The afferent levels for all packages that participate in the implementation of 

design pattern realizations tend to remain constant, with only one exception: JRefactory 

after the August 2003 release. The relative adaptability of the packages that participate in 

design patterns does not appear to be affected by afferent coupling measured at this level. 

In Java, new classes are implemented in their own files. Thus, when a design 

pattern is extended in the originally intended way, we should see an increase in the total 

number of files participating in the realization of the pattern. However this is not the case 

in many of the realizations studied. We find that classes participating in design patterns 

are evolving as shown by the modest growth in total number of methods, and to a larger 

extent in lines of code. This would imply that design patterns become bloated, thus 

contributing to organizational grime. Similar trends occur in packages participating in 

design patterns. At an organizational level, there is not enough evidence to support grime 

buildup. 

112 



6.4 Testability Consequences of Grime 

The minimum number of test requirements necessary to provide adequate test 

coverage is computed, and the formation of anti-patterns is observed. Test requirements 

increased and anti-patterns developed as a result of grime buildup in systems studied. 

Section 4.4.1.2 provides detailed explanations of the derivations of the equations to 

compute test requirements, and details of the anti-patterns that are observed. 

We examine the effects of grime buildup on the testability of the JRefactory open 

source system. We studied versions 2.6.12, 2.6.38, 2.7.05, 2.8.00, 2.9.00, and 2.9.19. 

These releases represent the evolution of the software over a period of almost four years. 

6.4.1 Observed Effects on Test Requirements 

We evaluate the consequences of modular grime buildup on the adequacy of test 

requirements by counting the number of tests necessary to provide adequate coverage. 

First we analyze the impact that associations have on test requirements. Figure 6.12, and 

6.13, display the corresponding values for Visitor and Singleton design patterns in 

JRefactory. The equation for computing the number of tests for associations in 

JRefactory is given by equation I, A(n, k) = %nk + c, c>=0. The x-axis values represent 

equally spaced intervals for the various releases of the software. We used CurveExpert 

[23] statistical software to create our graphs. Although the Singleton realization yielded 

slightly different results than the Visitor pattern, both results are monotonically 

increasing. 

The test requirements for aggregation and composition yield no additional 

significant insights because they are both defined in terms of associations. Specifically, 

the equations for computing the number of tests for aggregation and composition are 
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given by equations II and III, AG(n, k) = A(n, k) + 4nk, and C(n, k) = A(n, k) + 2nk 

respectively. Plotting these curves yield multiples of the association information. 

Figure 6.12 Test requirement count for associations in the Visitor pattern of JRefactory 
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Figure 6.13 Test requirement count for associations in the Singleton pattern of 
JRefactory 

For dependencies (equation V), where D(n, k) = c, c>=0, we obtain the results 

shown in figure 6.14 for the Visitor pattern. 
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Figure 6.14 Test requirement count for dependencies in the Visitor pattern of JRefactory 

The Singleton instance yielded the values displayed in figure 6.15. 

Generalization consequences are defined by equation IV; G(n, k) = 2nk. There are no 

generalizations in the evolution of the Visitor realization studied. However, in the case of 

the Singleton pattern we found data as shown in figure 6.16. 
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Figure 6.15 Test requirements count for dependencies in the Singleton pattern of 
JRefactory 

115 



Release 

Figure 6.16 Test requirements count for generalization in the Singleton pattern of 
JRefactory 

In general we found that realizations of the Visitor and Singleton patterns show 

growth in the number of test cases necessary to test new grime buildup. 

6.4.2 Observed Appearances of Test Anti-patterns 

The following examples demonstrate the formation of testing anti-patterns in 

JRefactory. 

In the first example we observe the evolution of an inheritance hierarchy in a 

realization of the Visitor pattern. The new hierarchy formed approximately two years 

after the first release of JRefactory. In this example the gray arrows represent the 

inheritance hierarchies, the black arrows are associations, and the dashed line represents a 

use relationship. Figure 6.17 illustrates an example of the self-use-relationship anti-

pattern. 
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JavaParserVisitor 

JavaParserVisitorAdapter 
« u s e s > 

ParseTreeVisitor 

Figure 6.17 Self-Use-Relationship anti-pattern in JRefactory 

The self usage reference occurs because up to eight visit methods of the 

ParseTreeVisitor class call super, visitor() before entering their own logic, which creates a 

circular dependency. In the worst case, each visitor will visit every concrete element in 

the subject hierarchy, producing a quadratic in the number of paths that must be tested. 

The example circular dependency traverses a use dependency and a generalization 

relationship. 

We also find evidence of the formation of anti-patterns described by Brown et al. 

[19]. Three realizations of the State pattern were studied with no evidence of evolution 

found. The State pattern never evolves. This is an example of dead code. 

In another example, we find evidence of the swiss-army-knife anti-pattern. The 

original design pattern was not intended to implement the methods defined by a new 

interface. Figure 6.18 illustrates the example found in the JRefactory system. 
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Figure 6.18 Swiss army knife anti-pattern in JRefactory 

The JavaParserVisitorAdapter class did not appear until version 2.9.00, which is 

approximately two years after the original design. The AbstractRule class develops a 

realization from the Rule interface which affects the entire testing of the hierarchy that 

implements AbstractRule. This form of anti-pattern may be evidence of a lack of focus 

by the developers, and can lead to many potential testability issues. 

In some cases the anti-patterns are found in the original design studied and remain 

for the duration of the study. Such findings are considered foundational grime. Design 

pattern decay or grime is considered foundational if the first identified realization of a 

pattern studied has already undergone some form of deterioration from prior versions of 

the software. If no prior versions of the software exist, then no decay or grime buildup is 

possible, and such finding is considered bad design. 

Figure 6.19 illustrates the earliest version of a concurrent-use-relationship anti-

pattern found in all versions of a realization of the Visitor pattern in JRefactory. Clearly, 

the "summary" hierarchy of classes can be accessed through concurrent paths. A client 

of class MoveMethodRefactoring can reach various "summary" classes via two paths. 
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The concurrent access to the "summary" hierarchy is worsened by the inheritance 

hierarchies involved in both paths because polymorphism must be taken into account 

when testing. When an instance of the class MoveMethodRefactoring uses an instance of 

the MoveMethodVisitor class, then it must consider objects of type ChildrenVisitor as 

well. Baudry et al. [8] find that "the Visitor pattern is especially known to be difficult to 

test because of an extensive use of polymorphism. " They provide a testability grid for 

design patterns that considers the number of paths and self usages to test as a result of 

anti-patterns. 

ChildrenVisitor MethodRefactoring 
^ 

MoveMethodVisitor 

« u s e s » 

< • • • 

MoveMethodRefactoring 

Summary 

TypeSummary MethodSummary 

Figure 6.19 Concurrent-Use-Relationship anti-pattern in JRefactory 

The formation of anti-patterns as a consequence of grime buildup is likely to be 

pervasive. To evaluate this, other open source systems are under investigation and early 

evidence suggests similar results. 

119 



6.5 Adaptability Consequences of Grime 

A multiple linear regression model is used to understand how changes in LOC of 

participating pattern classes are related to modular grime. We also use the Spearman 

correlation model to obtain correlation coefficients. Two out of the three systems studied 

show that a relationship is clearly possible; while the third system suggests that possibly a 

non linear regression model may be necessary. Section 6.5.1 explores adaptability 

further. In section 6.5.2, Instability is measured for various design patterns and the 

values indicate that the Instability measure, calculated as the ratio of efferent to total 

coupling, tends to approach one. High values are indicative of young design patterns. 

Finally, in section 6.5.3 we discuss why Abstractness is not an appropriate measure to 

predict adaptability. 

6.5.1 Relationship between changes in LOC and grime 

We use Spearman's correlation because our samples are small and we need a non-

parametric technique. Table 6.3 suggests mixed results, with significant values 

highlighted in bold. The coefficients for coupling (afferent and efferent) show that for 

JRefactory and Exist there is a correlation with coupling, however this is not evident in 

ArgoUML. According to Ott and Longnecker [70], anything greater than six tenths 

implies that there is correlation. 
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Table 6.3 Spearman correlation coefficients for afferent(Ca) and efferent(Ce) coupling vs. 
changes in LOC with corresponding p-values in parentheses 

JRefactory 

Ca 

Ce 

Singleton 
0.78 (0.06) 

0.77 (0.07) 

Factory 
0.43 (0.38) 

0.51 (0.29) 

Adapter 
0.97 (< 0.01) 

0.88 (0.02) 

Visitor 
0.08 (0.87) 

0.65 (0.15) 

eXist 

Ca 

Ce 

Iterator 
0.93 (< 0.01) 

0.93 (< 0.01) 

Factory 
-0.20 (0.7) 

0.89 (0.01) 

Adapter 
0.35 (0.49) 

0.89 (0.01) 

Proxy 
0.95 (< 0.01) 

0.95 (< 0.01) 

ArgoUML 

Ca 

Ce 

Singleton 
-0.12(0.77) 

0.02 (0.96) 

Factory 
0.31 (0.54) 

-0.02 (0.95) 

Adapter 
0.69 (0.05) 

0.30 (0.46) 

State 
0.51 (0.19) 

0.19(0.64) 

For each system under study, multiple linear regression using independent 

variables Ca (afferent coupling) and Ce (efferent coupling) is performed. The regression 

is performed to see if there exists a structural relationship between ALOC and 

afferent/efferent coupling. 

Table 6.4 shows the results of the multi-linear regression results for all systems 

under study. The coupling model takes into account afferent and efferent coupling as 

independent variables and regresses them against the dependent variable ALOC. 

Significant values are displayed in bold. 

Table 6.4 The coupling model, p-values of a multi-linear regression for afferent(Ca) and 
efferent(Ce) coupling combined vs. changes in LOC 

JRefactory 
Singleton 

0.0004 
Factory 
0.3724 

Adapter 
0.1659 

Visitor 
0.1126 

Exist 
Iterator 
0.0059 

Factory 
0.0007 

Adapter 
0.0038 

Proxy 
0.0006 

ArgoUML 
Singleton 

0.6118 
Factory 
0.9540 

Adapter 
0.6745 

State 
0.4731 
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A p-value represents "the probability of observing a value of the test statistic 

more supportive, or as supportive, of Ha than the observed value" [21]. The p-value tells 

us whether we would reject a hypothesis for a specified a. The test statistic used in the 

multiple regression analysis is the F-statistic and is evaluated by the rule probability > F 

(the p-value). The underlying null hypothesis says that the independent variables have no 

predictive power, and the alternative hypothesis says that the independent variables do 

have predictive power over the dependent variable (a two sided test). The regression is 

not used to describe the predictive power that independent variables may have over the 

dependent variable, but merely to establish that a regression line that minimizes the 

horizontal distance to the average ALOC exists. The smaller the probability calculated 

(p-value), the more significant the relationship between coupling and ALOC. 

Considering the small number of data sets for all systems under study, both 

correlation and regression values are surprisingly high. Based on these results, it is clear 

that a strong structural relationship exists in eXist, and to a lesser extent in JRefactory; 

however we cannot make such conclusions for ArgoUML. JRefactory's Singleton 

pattern changes in LOC can be predicted with a = 0.01 accuracy and correlates well with 

coupling. The Adapter and Factory patterns are not statistically significant and the 

Visitor pattern's changes in LOC have a = 0.1 accuracy and a significant correlation 

value to efferent coupling only. In the case of eXist, we have very strong evidence that 

changes in LOC are structurally related to coupling for all patterns studied with a = 0.01 

accuracy. Additionally all correlation values are significant. ArgoUML however was 

different, and we have no evidence to reject the null hypothesis. Note that we use ninety 
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percent confidence intervals to evaluate all systems. While ninety-five percent would be 

more significant, ninety percent is acceptable in small statistical samples. 

We can summarize that modular grime counts correlate with changes in LOC in 

eXist and to a lesser extent JRefactory. However, the relationship between modular 

grime and changes in LOC in ArgoUML are not significant. This result suggests that not 

all changes to code in design patterns are necessarily grimy. Raw data used for 

calculating these statistics can be found in appendix C. 

6.5.2 Instability 

As discussed in section 4.4.2.2, instability aims to predict how hard it will be to 

change a software artifact. It has a value between zero and one, and is based on afferent 

and efferent coupling measurements. We apply this measure to realizations of design 

patterns by aggregating coupling counts of all participant classes in the design pattern. 

The value is a ratio of its total fan out to the total number of relationships. 

Instability = Ce / (Ca + Ce) 

The intuition behind the instability measure is that it helps us determine weather a 

given pattern realization is hard to modify and adapt. A high afferent coupling compared 

to efferent coupling describes a pattern whose adaptability is limited. This is referred to 

as a stable pattern because once established; the pattern tends to remain in place and 

experiences little change. High efferent coupling compared to afferent coupling point to 

young designs. In the case of pattern realizations it describes young patterns that are not 

getting too much use, yet their dependencies on external classes is high. As a result we 

have brittle pattern instances that have high testability requirements. 
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The Adapter pattern consistently exhibits high instability values throughout its 

lifecycle and across all systems. In ArgoUML, we observe the instability values drop 

between December 2003 and July 2004; coincident with refactoring efforts before once 

again settling above eight tenths. We also observe a value of zero in the realization of 

this pattern in the August 2003 release of eXist before climbing to nine tenths. The latter 

is also due to refactoring efforts. The Factory pattern is also found in all systems studied 

and its instability values, although not as high as the Adapter pattern, are also consistently 

high. 

In JRefactory we observe low instability values for the realizations of the 

Singleton pattern. Once in place, its efferent coupling does not change, yet its afferent 

coupling is much more likely to grow. This observation however does not appear true for 

the same pattern in ArgoUML. An instability value of one indicates that the pattern is 

not being used, thus it is easy to remove from the overall design. After the April 2005 

release, this pattern begins to see usage; thus lowering its instability value. 

The State pattern in JRefactory has an unchanging, yet high instability value. 

Recall that the State pattern in this system never evolves, thus never changing its afferent 

or efferent value. ArgoUML's realizations maintain a high instability value. 

Finally, JRefactory's Visitor and eXist's Iterator patterns also expose high 

instability values compared to the realizations of eXist's Proxy pattern which exhibits a 

moderate and balanced ratio. 

Figures 6.20, 6.21, and 6.22 show the respective results for the instability 

measures of JRefactory, ArgoUML and eXist systems. 
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Figure 6.20 Calculated value of Instability of all possible realizations of various design 
patterns in JRefactory 
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Figure 6.21 Calculated value of Instability of all possible realizations of various design 
patterns in ArgoUML 
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Figure 6.22 Calculated value of Instability of all possible realizations of various design 
patterns in eXist 

Average instability values for design patterns tend to be greater than six tenths (on 

average) in a range of [0..1]. This leads us to believe that all systems studied are young. 

In other words, efferent coupling levels are higher than afferent coupling levels, and this 

suggests that the realizations of design patterns have not had a chance to be used by many 

clients. An instability value of zero indicates a mature pattern and is very hard to remove 

from its setting because the afferent counts are very high. High instability ratios may be 

a consequence of the short history of all the systems under study. We find no evidence of 

stable design patterns as indicated by the measured ratio with the exception of 

JRefactory's Singleton pattern. More mature systems may exhibit a different and more 

balanced trend. 

6.5.2 Abstractness 

After studying the abstractness (A) metric, we conclude that this is not an 

effective technique for measuring the consequences of grime on the adaptability of design 

126 



patterns. The problem with the abstractness measure is that grime can buildup in the 

form of new relationships to other classes that are either abstract or concrete, thus making 

this measure meaningless. For example, most design patterns promote extensibility by 

sub-classing from abstract classes. As a realization of a design pattern evolves, we 

expect A to approach zero. This is because the total number of concrete classes is 

expected to grow more quickly than the number of abstract classes. If modular grime 

buildup occurs in a realization of a design pattern, then new relationships are formed to 

external classes that are not part of the RBML specification of the pattern. These 

relationships can be to other abstract or concrete classes, and more likely to other 

concrete classes. The effect is that A will also approach zero. 

A design pattern may evolve via changes made to existing classes rather than by 

the use of the intended method of extension —adding concrete classes as shown by 

Bieman et al. [11]. In this situation patterns evolve, but the patterns maintain a constant 

abstractness level. This growth suggests grime buildup that is not identified by the 

abstractness measure. 

6.6 Evaluation of Hypotheses 

In this section we evaluate all hypotheses posed in section 4.5. 

Decay, Rot, and Grime Buildup 

HIQ: There is inconsequential pattern rot in design pattern realizations. The number of 

core deviations is minor as a system evolves. 

We cannot reject Hi0 . Every realization of the design patterns studied showed no 

evidence of pattern rot. Every realization was manually checked for compliance against 
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its RBML and we found that while grime accumulated, the core structure of the design 

pattern remained throughout all releases. We manually checked realizations for five 

design patterns in JRefactory, four design patterns in ArgoUML, and four design patterns 

in eXist. In all cases we did not find any instances of pattern rot. 

112,0: There is inconsequential grime buildup in design pattern realizations. The amount 

of grime buildup is minor as a system evolves. 

We have evidence to support rejecting I^o- We observe modular grime buildup 

and the deterioration of the environment surrounding pattern realizations in JRefactory 

and eXist. To a lesser extent we observe this in ArgoUML. In JRefactory and eXist we 

observe that realizations continue to gather modular grime buildup at a steady rate, 

however ArgoUML appears to go through periods of refactoring that bring modular 

grime down before seeing slight increases again. In general, the level at which grime 

counts increase are less than what we expected to see. We have not tried to fit a curve to 

any data because from a statistical perspective, the number of data points is not 

significant. 

H30: The number of pattern realizations do not increase as the system evolves over time. 

We have evidence to support rejecting H30. Tables 6.5 through 6.7 display the 

total number of pattern realizations we have found as each of the systems studied 

evolves. 
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Table 6.5 Number of realizations found for JRefactory 

Number of 
Realizations 
Singleton 
State 
Factory 
Adapter 
Visitor 

Jan-01 

1 
1 
2 
12 
2 

Feb-02 

1 
1 
2 
13 
2 

Jul-03 

1 
1 
2 
13 
2 

Aug-03 

1 
1 
3 
13 
2 

Oct-03 

1 
1 
3 
15 
2 

May-04 

2 
1 
3 
16 
2 

Table 6.6 Number of realizations found for ArgoUML 

Number of 
Realizations 
Singleton 
State 
Adapter 
Factory 

Oct-02 

1 
10 
2 
2 

Aug-03 

1 
11 
2 
6 

Dec-03 

1 
12 
2 
6 

Jul-04 

1 
12 
1 
6 

Apr-05 

1 
14 
2 
6 

Feb-06 

1 
14 
4 
7 

Aug-06 

1 
14 
4 
0 

Feb-07 

1 
14 
3 
0 

Table 6.7 Number of realizations found for eXist 

Number of 
Realizations 
Adapter 
Iterator 
Proxy 
Factory 

Jan-02 

4 
7 
1 
1 

Aug-02 

4 
7 
1 
1 

Aug-02 

4 
7 
1 
1 

Jan-03 

4 
8 
1 
2 

Aug-03 

0 
9 
2 
2 

Oct-06 

9 
23 
2 
6 

CYass Grime Buildup 

114̂ : The increases in the number of public methods in a class that belongs to a pattern, is 

inconsequential. 

Evidence does not support rejecting H40. In JRefactory only the Adapter pattern 

shows signs of growth in the number of methods. The eXist system also exhibits growth 

in the number of methods in Adapter patterns as well as the Iterator and Proxy patterns; 
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however the growth in terms of methods only occurs in the last revision of software, and 

thus there is little history to support sustained growth. Prior to the last released version 

we see no evidence of such growth. ArgoUML exhibits measurable growth in the 

Factory pattern realizations. The observed growth in the total number of methods is 

matched by growth in the LOC for the respective patterns. 

Hs^: The increases in public attributes (fields) in a class that belongs to a pattern, is 

inconsequential. 

Evidence does not support rejecting H50. In JRefactory all patterns appear to 

maintain a constant number of attributes with the exception of the Adapter and Visitor 

patterns. The eXist system also exhibits restrained growth in the number of attributes. 

Most of the growth is also attributed to the last version of software studied. Finally, in 

ArgoUML we only observe a steady growth in the State pattern realizations, however 

these realizations also see an increase in the number of classes that participate in the 

pattern realizations, thus bringing the average number of attributes per class down. 

H6to: The increases in the sizes of classes that belong to pattern realizations is 

inconsequential. 

The average LOC per class in all three systems studied tend to increase. One 

expects that such increases in average LOC per class would indicate bloating of the class, 

however in almost all realizations, the average LOC grew together with the average 
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number of methods in the realizations. The only exceptions are the Adapter pattern in 

ArgoUML and the Factory pattern in JRefactory. In one instance we also observe a 

decrease in average LOC as compared to the average number of methods. This is the 

Factory pattern in ArgoUML, which would indicate refactoring. Therefore there is 

evidence to suggest accepting H^o-

Modular Grime Buildup 

H7_o: The afferent coupling Ca (fan-in) level increases of pattern realizations over time are 

inconsequential. 

We have evidence to support rejecting H^o- While the observed growth in 

afferent coupling levels was less significant than expected, we nevertheless find that 

every design pattern studied in every system exhibits either a tendency to remain flat or 

shows positive growth. In ArgoUML we observe more restrained afferent coupling 

levels than the other systems, which may be an indication of better engineering 

techniques. Evidence suggests that afferent levels are not inconsequential, and we would 

expect to find higher levels in less successful systems. 

Hg,o: The efferent coupling Ce (fan-out) level increases of pattern realizations over time 

are inconsequential. 

We have strong evidence to support rejecting Hg;o- While the Singleton pattern 

shows no changes in efferent coupling levels (expected), all other realizations show 
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positive growth. Growth levels tend to show much sharper increases that their afferent 

level counterparts. 

Organizational Grime Buildup 

H^o: The total number of packages that participate in the implementation of a design 

pattern remains constant over time. 

There is no evidence to reject H9>o. For ArgoUML, the total number of packages 

that participate in the implementation of various design pattern realizations remains 

steady and show no evidence of significant growth. In the case of eXist, the number of 

Java packages shows a tendency to grow over time, but the observed growth is slight, and 

in the case of JRefactory we observe steady numbers with the exception of the July 2003 

release. We certainly do not see any negative trends in terms of the number of packages; 

however additional data is necessary to understand if the observed growth is significant. 

Hio,o: The total number of physical files that make up the implementation of design 

patterns remains constant throughout the evolution of the system. 

There is no evidence to reject Hio.o- In the cases of JRefactory and ArgoUML we 

clearly see a constant trend in terms of the number of files. The State pattern in the latter 

does show steady growth, however this appears to be an exception. In the case of eXist, 

we observe a steady growth after August 2003. 
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Hnso: The package level afferent coupling Ca (fan-in) of packages containing pattern 

realizations is inconsequential. 

There is no evidence to reject Hn,o- In JRefactory we only observe growth during 

the July 2003 release. Similarly, eXists exhibits growth after August 2003. ArgoUML 

exhibits different trends for different patterns observed. In some cases we see steady 

growth, while in others we see steady declines. In general, we need additional 

information to be able to refute this hypothesis. 

Consequences of Grime Buildup 

Hi2,o: There is no correlation between changes in LOC and design pattern grime buildup. 

Results are mixed. For both, JRefactory and eXist, we have evidence that 

changes in LOC lead to an increase modular grime levels. Most patterns studied in these 

systems show significant p-values and correlation coefficients that help support rejecting 

the null hypothesis. ArgoUML however did not have significant results to help reject the 

null hypothesis. 

Hi30: The adaptability of design patterns, measured by the Instability ratio of 

Ce / (Ca + Ce) tends to remain the same as patterns evolve. 

Evidence does not support rejecting Hiy . We expected that as patterns evolved 

and modular grime built up, that the afferent coupling of a design pattern would increase 

at a higher rate than its efferent coupling thus reducing the pattern's adaptability. High 
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levels in efferent coupling compared to afferent coupling cause the ratio values to trend 

higher. On average, instability values are greater than six tenths. The Singleton pattern 

in JRefactory was the only exception with instability values averaging just above two 

tenths. 

Hi4;o: The adaptability of design patterns, measured through its Abstractness value is 

inconsequential. 

There is no data to evaluate this hypothesis. Abstractness, as discussed in section 

6.5.2, is not a good measure to predict consequences on adaptability of design patterns. 

Hi5;o: Grime buildup has a higher impact on the testability than the adaptability of design 

patterns. 

Evidence does not support rejecting H^o- The instability of design patterns tends 

to be higher than six tenths. This is supported by H130. This result indicates higher 

efferent levels than afferent levels, and efferent values affect testability of systems. 

Intuitively, a higher fan-out value indicates dependencies on other parts of the system 

which implies additional test cases are necessary to adequately verify the functionality of 

a pattern. The adaptability of patterns is less affected because its afferent levels grow at a 

slower pace that its efferent level counterparts. 
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Hi6,o: The minimal number of test requirements necessary to maintain test effectiveness 

remains constant as grime buildup increases. 

We have strong evidence to support rejecting Hi6,o- We found clear evidence that 

test requirements increase as a result of higher efferent levels. High efferent levels were 

found on almost all pattern realizations of every system under study. Test requirements 

grow at different pace depending on whether efferent coupling is associated with 

composition, dependency, generalization, or association relationships. 

6.7 Threats to Validity 

Clear threats to the validity of this study exist. Construct validity refers to the 

meaningfulness of measurements, and to validate this you must show that the 

measurements are consistent with an empirical relation system. An empirical relation 

system is an intuitive ordering of the data in terms of the attributes of interest. Clearly 

the dependent variable in this research is the grime buildup as measured in terms of the 

various metrics used in this work. We can say that some patterns appear to suffer from 

more grime than other patterns, and thus testability and adaptability consequences are 

higher. Considerable more realizations of patterns need to be studied to further analyze 

the validity of results. 

Content validity refers to the adequate representation of the content. In order for 

this study to capture the notion of grime buildup, we need to investigate additional 

independent variables beyond the metrics we have chosen here. Additional independent 

variables studied can have significant effects in testability and adaptability of design 

patterns. 
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Internal validity focuses on the cause and effect relationships. In this study one 

can try to determine whether an increased count of some measure is directly related to the 

grime buildup of a software pattern. The data does provide us with initial evidence that 

this is the case. Temporal precedence must also be determined when examining the 

internal validity of a system, and in the case of testability we have clear evidence that as 

grime buildup occurs, test suite numbers must increase as a result of new relationships 

and the formation of testing anti-patterns. Additionally, adaptability of patterns suffers 

because they become obscured by relationships that are not inherent in the definition of 

the design pattern. Multiple linear regression was used to demonstrate that a structural 

relationship exists between ALOC and modular grime. Statistical models assume that all 

variables used in such models are independent. One possible threat to validity is that for 

every attribute there could be a Set/Get method. This would imply a dependency 

between such variables. 

Finally, external validity refers to the ability to generalize results, and it is quite 

evident that we do not have a large sample to make general conclusions. Further studies 

of additional systems, additional design patterns, and additional grime buildup measures 

are required. 
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7. CONCLUSIONS 

It is not possible to stop the aging and deterioration of designs. Evidence suggests 

that as design patterns age, the realizations of patterns remain and modular grime builds 

up. Decay is due mainly to grime rather than rot. This research has accomplished our 

three original goals. We have clearly defined new terms for understanding and 

quantifying decay, rot and grime buildup in software design patterns, we have shown, 

through an observational case study, empirical evidence that modular grime buildup does 

occur as design patterns evolve, and we have shown that grime buildup can have negative 

and adverse consequences on the testability and to a lesser extent, the adaptability of 

design patterns. 

We have carefully selected measures that give us an intuitive idea about what is 

happening to design patterns as they evolve, and we have chosen these measures to help 

us quantify our definitions of class, modular, and organizational grime. We followed a 

strict methodology to gather statistics on all pattern realizations under study in order to 

help evaluate the consequences of decay and grime on testability and adaptability of 

patterns. We found no significant evidence of class or organizational grime; however we 

did find evidence that grime buildup is mostly due to the increase coupling observed in 

the classes that participate in the realizations of design patterns, i.e. modular grime. 
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We evaluated sixteen hypotheses and in general found no evidence of rot, and 

significant evidence of modular grime buildup. We observed realizations of five design 

patterns in JRefactory, four design patterns in ArgoUML, and four design patterns in 

eXist. The grime buildup was mostly modular. We observed modular grime buildup in 

JRefactory and eXist. To a lesser extent we observed this in ArgoUML. In JRefactory 

and eXist we observed that realizations continued to gather modular grime buildup at a 

steady rate, however ArgoUML appears to go through periods of refactoring that bring 

modular grime down before seeing slight increases again. Class grime levels were not 

significant. All systems studied with the exception of the Adapter pattern in JRefactory 

display growth that is matched by an increase in the LOC for the respective patterns. In 

the case of eXist, we do observe a marked increase in class grime (i.e. number of 

methods) for the Adapter, Iterator, and Proxy patterns in the last release of the software, 

however this may be a single instance of this scenario, and there is no history to support a 

noticeable trend. At the organizational level, we found no evidence to support grime 

buildup. We observed how packages, number of files, and afferent coupling at a package 

level evolved, and with the exception of single data points, found no support to 

substantiate grime buildup. 

Testability and adaptability of design patterns are important quality attributes. We 

found that modular grime buildup affects testability to a higher degree than adaptability. 

A high pattern fan-out (efferent) count indicates dependencies on other modules, and a 

high fan-in (afferent) count is indicative of a pattern with more responsibility. Growth in 

the instability measure, which tracks the ratio of efferent to afferent coupling, indicates 

that efferent coupling is increasing faster than afferent coupling. The effect is a decrease 
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in testability, since covering all the new relationships in the evolving patterns requires 

additional test cases. 

We developed and applied a method to compute the minimum test requirements 

necessary to test various relationships between classes. We also found evidence of 

concurrent-use-relationships, self-use-relationships, Swiss army knife, and lava flow 

testing anti-patterns. Further, a refinement of the existing equations is necessary to 

account for additional independent variables and the development of anti-patterns. 

Adaptability was evaluated by studying the relationship that exists between changes to 

lines of code and the buildup of coupling. Spearman correlation and multivariate 

regression showed a relationship exists for most realizations in JRefactory and Exist. 

ArgoUML did not reveal a relationship. While the existence of a relationship between 

changes to LOC and coupling metrics does not indicate causality, this was surprising 

considering the small sample sizes. 

We studied three real world open source systems: JRefactory, ArgoUML, and eXist. 

Clearly additional systems and design patterns must be studied. We would expect that 

grime buildup would be more significant in systems that have not been as successful. 

Additionally, we must increase the number of pattern realizations studied and the total 

number of releases. 

The long term goals of this research are to obtain a deeper understanding of how 

software systems decay, and the consequences of decay on quality attributes of systems. 

Helping the engineering community avoid or retard decay and grime buildup can benefit 

software development. Our characterization of decay and grime shows how grime builds 
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up around design patterns. We identify various forms of grime. The removal of grime, 

as it appears, can potentially control some aspects of software maintenance costs, and 

improve adaptability and test effectiveness of systems. Developing refactoring 

techniques to contain grime is a natural progression of this research. 
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Appendix A RBML Descriptions 

The following are the abbreviated RBML static meta role models of the design 
patterns studied. 

1. Singleton Pattern 

RealizationRole GeneralizationRole 

{XOR} 

ClassifierRole | Singleton 

b1 | static Instance ( ) 1..1 
b2 | static Register ( ) 1.1 

lAssociation Role | Singleton 1..1 
Association Role | client 

ClassRole | 
ConcreteElement 1. 

ClassifierRole | 
AbstractElement 

ClassRole | 
ConcreteElement 1. 

2. Visitor Pattern 

Hierarchy Hierarchy 

RealizationRole 

{xc 

ClassiflerRoli 

3R> 

|V 

GeneralizationRole 

sitor 1..* 

VisitElement () 

i 

ClassifierRole | 
AbstractVisitor 

i 

ClassRole i 
Concrete Visitor 1..* 

1..* 

ClassRole | 
ObjectStructure 

AssociationRole 

RealizationRole GeneralizationRole 

{XOR} ! 

ole 1..* 

ClassifierRole | Element 1..* 

Accept () 

ClassifierRole | 
AbstractElement 

i 

ClassRole | 
ConcreteElement 1 ..* 

Operation ( ) 

Usage Role 
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3. Factory Pattern 

Hierarchy Hierarchy 

RealizationRole GeneralizationRole 

{XOR} 

ClassifierRole j Factory 1 . 

CreateProduct ( ) 

ClassifierRole | 
AbstractFactory 

ClassRoie | 
Client 1 

0..1 

P-.1. 
Association Role | 

Client Factory Assoc 

UsageRole UsageRole 

ClassRote | 
ConcreteFactory 

RealizationRole GeneralizationRole 

{XOR} 

AssociationRole | 0 1 
Client Prod Assoc 

ClassifierRole | Product 1..* 

ClassifierRole | 
AbstractProduct 

ClassRoie | 
ConcreteProduct 

Operation ( ) 

UsageRole 

4. Adapter Pattern 

The search for adapter patterns was restricted to the object composition adapter 
type. Class adapter realizations are not feasible in Java code as multiple inheritance is 
not available. 

Hierarchy 

RealizationRole 

__.. {XOR} 

GeneralizationRole 

ClassifierRole | Target 1..* 

Request ( ) 

ClassifierRole | 
AbstractAdapter 

0..1 

ClassRoie | 
ConcreteAdapter 

ClassRoie | 
Client 1 

* 

UsageRole 

0..1 

AssociationRole 

ClassRoie | 
ConcreteAdaptee 

SpecificRequest ( ) 

0.1 
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5. State Pattern 

Hierarchy 

RealizationRole GeneralizationRole 

{XOR} 

CiassifierRole | State 1 

Handle ( ) 

CiassifierRole | 
AbstractState 

6. Iterator Pattern 

0..1 

ClassRole | 
ConcreteState 

0 .1 

AssociationRole 

ClassRole | 

Client 1 

UsageRole 

0..1 

ClassRole | Context 

Request ( ) 

0.1 

RealizationRole GeneralizationRole 

{XQB}.... 

CiassifierRole | Aggregate 1 

Createlterator() 

ClassRole | 
Client 1 

RealizationRole GeneralizationRole 

-{X.QR}__ 

CiassifierRole | Iterator 1 \--

Createlterator() 

CiassifierRole | 
AbstractAggregate 

ClassRole | 
ConcreteAggregate 

CiassifierRole | 
Abstractlterator 

AssociationRole 

ClassRole | 
Concretelterator 
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7. Proxy Pattern 

RealizationRole 

{XQR} 

Gent >ra 

ClassifierRole | Subject 1 

Request ( ) 

ClassifierRole | 
AbstractSubject 

iza 

— 

tionRo 

0..1 

ClassRole | 
RealSubject 

le 

Associatio 
* 

nRole 

1 1 

ClassRole | 
Client 1 

ClassRole | 
Proxy 
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Appendix B Custom Scripts 
The following script was used to gather class counts, abstract class counts, 

efferent and afferent coupling at the Java Package level. The script uses the pattern 
finder tool as well as JDepend. 

# 
# Metrics gatherer. 
# 
# Clem Izurieta 
# CS 799 Dissertation Research 
# 

function processFile() 
{ 

echo "Processing $1..." 
# Process the txt design pattern file. We only care about the 
# Java files. 
sed -n -e '/java/p' $1 > tmp.txt 
mv tmp.txt $1 

# Clean up the bag and other possible residuals 
rm -f bag/* 
rm -f raw.out 

# Copy the actual files to the bag. This is a list of files that 
# was output by Design Pattern Finder, 
cat $1 | while read -r line 
do 

echo \"$line\" 
cp "$line" bag 

done 

# 
# Run tools to gather metrics 
# 
# JDepends gathers many coupling and class metrics for any Java 
# files that are in the bag. 
Java jdepend.textui.JDepend -file ${l}.jdepend bag 

echo "Adding up metrics..." 
# Add up the relevant metrics for all packages involved in this 
# pattern. 
sed -e '1,/- Summary/d' ${l}.jdepend > tmpl.txt 
sed -e '1,/Name/d' tmpl.txt > tmp2.txt 
sed -e '/A$/d' tmp2.txt > raw.out 
rm -f tmp*.txt 

name='basename ${1} txt' 
rm -f ${name}total 
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echo > ${name}total 
echo >> ${name}total 
echo "******** $name" >> ${name}total 
echo " " » ${name}total 
echo "Total number of packages involved in this pattern = "wc 

raw.out"" >> ${name}total 

total=0 
for value in "cut -d, -f2 raw.out" 
do 

total=~expr $total + $value" 
done 
echo "Class Count = $total" >> ${name}total 

total=0 
for value in "cut -d, -f3 raw.out* 
do 

total="expr $total + $value' 
done 
echo "Abstract Class Count = $total" >> ${name}total 

total=0 
for value in 'cut -d, -f4 raw.out' 
do 

total=~expr $total + $value~ 
done 
echo "Ca Total = $total" » ${name}total 

total=0 
for value in "cut -d, -f5 raw.out" 
do 

total=~expr $total + $value' 
done 
echo "Ce Total = $total" » ${name}total 

# 
# Main 
# 
rm -f *. total 
for i in "Is *.txt" 
do 

echo "Pattern: =========> $i* 
processFile $i 

done 
rm -f bag/* 
rm -f raw.out 
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Appendix C Maintenance Effort Statistics 

JRefactory numbers: 

Name 
Singleton 

Change 
in 
Classes 

0 
0 
0 
0 
0 
1 

Change in 
LOC 

0 
-1 
0 
0 
0 

12 

Ca 
9 
9 

11 
11 
15 
22 

Ce 
3 
3 
3 
3 
3 
6 

Number of 
Attributes 

2 
2 
2 
2 
2 
3 

Number 
of 
Methods 

2 
2 
2 
2 
2 
4 

Name 
State 

Change 
in 
Classes 

0 
0 
0 
0 
0 
0 

Change in 
LOC 

0 
0 
0 
0 
0 
0 

Ca 
30 
30 
30 
30 
30 
30 

Ce 
54 
54 
54 
54 
54 
54 

Number of 
Attributes 

25 
25 
25 
25 
25 
25 

Number 
of 
Methods 

37 
37 
37 
37 
37 
37 

Name 
Factory 

Change 
in 
Classes 

0 
0 
0 
2 

-1 
0 

Change in 
LOC 

0 
31 

0 
272 

39 
17 

Ca 
41 
43 
46 
59 
61 
85 

Ce 
57 
65 
65 

142 
148 
151 

Number of 
Attributes 

10 
10 
10 
17 
13 
13 

Number 
of 
Methods 

39 
43 
43 
53 
53 
53 

Name 
Adapter 

Change 
in 
Classes 

0 
0 
0 
3 

-1 
1 

Change in 
LOC 

0 
11 
12 
21 

506 
106 

Ca 
13 
13 
19 
19 
48 
47 

Ce 
104 
109 
109 
109 
225 
246 

Number of 
Attributes 

19 
19 
19 
26 
23 
26 

Number 
of 
Methods 

27 
30 
35 
40 

183 
192 
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Name 
Visitor 

Change 
in 
Classes 

0 
0 
0 
0 
2 
0 

Change in 
LOC 

0 
171 
933 
22 

-223 
785 

Ca 
169 
170 
190 
215 
255 
268 

Ce 
927 
934 

1038 
1037 
1026 
1124 

Number of 
Attributes 

24 
25 
34 
34 
35 
35 

Number 
of 
Methods 

759 
766 
872 
872 
858 
924 

eXist numbers: 

Name 
Adapter 

Change in 
Classes 

0 
0 
0 
0 

-4 
9 

Change in LOC 
0 
0 
0 

15 
-151 
507 

Ca 
10 
10 
10 
11 
0 
5 

Ce 
44 
44 
40 
47 

0 
45 

Number of 
Attributes 

4 
4 
4 
4 
0 
0 

Number 
of 
Methods 

9 
9 
9 
9 
0 

194 

Name 
Iterator 

Change in 
Classes 

0 
0 
0 
2 
0 

14 

Change in LOC 
0 
0 
0 

30 
73 

322 

Ca 
13 
13 
13 
16 
15 
56 

Ce 
42 
42 
42 
67 
49 

117 

Number of 
Attributes 

16 
16 
16 
23 
15 
46 

Number 
of 
Methods 

30 
30 
30 
39 
36 
74 

Name 
Factory 

Change in 
Classes 

0 
0 
0 
1 
0 
4 

Change in LOC 
0 
0 
0 

29 
0 

143 

Ca 
1 
1 
1 
2 
1 
0 

Ce 
8 
8 
8 

14 
6 

27 

Number of 
Attributes 

0 
0 
0 
1 
1 
0 

Number 
of 
Methods 

2 
2 
2 
8 
6 

12 
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Name 
Proxy 

Change in 
Classes 

0 
0 
0 
0 
1 
0 

Change in LOC 
0 

19 
0 

21 
59 

270 

Ca 
11 
11 
11 
12 
16 
25 

Ce 
10 
10 
10 
12 
17 
22 

Number of 
Attributes 

4 
4 
4 
4 
6 
8 

Number 
of 
Methods 

20 
20 
20 
28 
34 
53 

ArgoUML numbers: 

Name 
Singleton 

Change in 
Classes 

0 
0 
0 
0 
0 
0 
0 
0 

Change in LOC 
0 
1 

12 
0 
8 
4 
0 
0 

Ca 
0 
0 
1 
1 
0 
1 
1 
1 

Ce 
1 
1 
9 
9 
1 
2 
2 
2 

Number of 
Attributes 

0 
0 
0 
0 
0 
1 
1 
1 

Number 
of 
Methods 

1 
1 
2 
2 
1 
1 
1 
1 

Name 
State 

Change in 
Classes 

0 
0 

10 
0 
7 
0 

11 
-1 

Change in LOC 
0 

-72 
-46 
180 

1134 
134 
418 
-53 

Ca 
27 
26 
49 
56 
67 
67 
80 
79 

Ce 
165 
158 
262 
281 
221 
226 
262 
263 

Number of 
Attributes 

86 
86 
92 
94 

110 
110 
134 
134 

Number 
of 
Methods 

247 
203 
215 
233 
289 
282 
283 
287 

Name 
Adapter 

Change in 
Classes 

0 
0 
0 

-1 
1 
2 
2 

-1 

Change in LOC 
0 
0 

145 
10 
8 

295 
7 

-73 

Ca 
4 
4 

38 
35 

3 
5 
5 
3 

Ce 
12 
12 
15 
13 
12 
26 
26 
26 

Number of 
Attributes 

1 
1 

15 
15 
18 
15 
15 
15 

Number 
of 
Methods 

7 
7 

16 
14 
15 
13 
13 
13 

156 



Name 
Factory 

Change in 
Classes 

0 
12 
0 
0 

10 
1 

Change in LOC 
0 

1297 
1512 
375 
661 

84 

Ca 
2 

14 
69 

136 
53 
55 

Ce 
12 
39 
82 

110 
128 
142 

Number of 
Attributes 

4 
15 
19 
21 
17 
20 

Number 
of 
Methods 

6 
17 
60 
82 

414 
440 

157 


