
THESIS

APPLICATION OF SOCIAL NETWORKING ALGORITHMS IN PROGRAM

ANALYSIS: UNDERSTANDING EXECUTION FREQUENCIES

Submitted by

Minhazur Rahman

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2011

Master’s Committee:

Advisor: James Bieman

Robert France
Daniel Turk

ABSTRACT

APPLICATION OF SOCIAL NETWORKING ALGORITHMS IN PROGRAM

ANALYSIS: UNDERSTANDING EXECUTION FREQUENCIES

There may be some parts of a program that are more commonly used at runtime,

whereas there may be other parts that are less commonly used or not used at all. In

this exploratory study, we propose an approach to predict how frequently or rarely

different parts of a program will get used at runtime without actually running the

program. Knowledge of the most frequently executed parts can help identify the most

critical and the most testable parts of a program. The portions predicted to be the

less commonly executed tend to be hard to test parts of a program. Knowing the

hard to test parts of a program can aid the early development of test cases.

In our approach we statically analyse code or static models of code (like UML

class diagrams), using quantified social networking measures and web structure min-

ing measures. These measures assign ranks to different portions of code for use in

predictions of the relative frequency that a section of code will be used.

We validated these rank ordering of predictions by running the program with a

common set of use cases and identifying the actual rank ordering. We compared the

predictions with other measures that use direct coupling or lines of code. We found

that our predictions fared better as they were statistically more correlated to the

actual rank ordering than the other measures.

We present a prototype tool written as an eclipse plugin, that implements and

validates our approach. Given the source code of a Java program, our tool computes

ii

the values of the metrics required by our approach to present ranks of all classes in

order of how frequently they are expected to get used. Our tool can also instrument

the source code to log all the necessary information at runtime that is required to

validate our predictions.

iii

ACKNOWLEDGEMENTS

I would cordially like to thank Dr. James Bieman for his immense help and

support as my research advisor and mentor. I highly appreciate his help in influencing,

cultivating and fine tuning my research ideas, and his detailed and prompt feedback

on my reports and findings.

I also thank my committee members, Dr. Robert France and Dr. Daniel E. Turk,

for their careful study of this thesis and constructive feedback.

I am greatful to my professors Dr. Shrideep Pallickara, Dr. Sudipto Ghosh, Dr.

Charles Anderson, and Dr. Dan Cooley for teaching me courses that greatly helped

me in my research.

Finally, I thank Sharon and all the other staff members of our department for

helping me in the official matters.

iv

This thesis is dedicated to my mother Mrs Rabeya Rahman, my father Mr Abdur

Rahman, my sister Dr. Rumana Rahman, and my nephew Raihan.

v

TABLE OF CONTENTS

1 Introduction 1

1.1 Problem . 2

1.2 Approach . 2

1.3 Contributions . 3

1.4 Organization of Thesis . 3

2 Related Work 5

2.1 Prior work on Execution Frequencies . 5

2.2 Social Networking Measures . 6

2.2.1 Degree Centrality . 6

2.2.2 Betweenness Centrality . 8

2.2.3 HITS . 9

2.2.4 Page Rank . 10

2.3 Social Networking Measures in Software Engineering 11

2.4 Our approach compared to existing work 12

3 Our Approach 13

3.1 Rationale . 14

3.2 Generating CU graphs . 15

3.3 Validation Strategy . 16

3.4 Architecture of Insat . 16

3.5 Systems used in the experiment . 18

3.6 Experimental Procedure . 18

vi

4 Demonstration of Prestige Ranking 20

4.1 Observations . 21

4.2 Interpretations . 23

5 Evaluation of Hypotheses 26

5.1 Test H0 . 28

5.2 Test H1 . 29

5.3 Test H2 . 30

5.4 Test H3 . 31

5.5 Test H4 . 35

6 Threats to Validity 37

6.1 Construct Validity . 37

6.2 Internal Validity . 38

6.3 External Validity . 38

6.4 Conclusion Validity . 39

7 Conclusions and Future Work 40

7.1 Future Work . 41

References 42

vii

LIST OF TABLES

2.1 Values of different measures of prestige for Star Graph 9

2.2 Values of different measures of prestige for Line Graph 10

3.1 Properties of systems used in this experiment 18

5.1 Spearman correlations and their significances of all measures with execution

frequency for JFreeChart . 28

5.2 Spearman correlations and their significances of all measures with execution

frequency for JHotDraw . 28

5.3 p-values of Wilcoxon test for max rank percentiles against CBO or LOC for

JFreeChart and JHotDraw . 30

5.4 probability for MIN rank percentiles to be greater than CBO or LOC for

JFreeChart and JHotDraw . 31

5.5 probability for max rank percentiles to be greater than CBO or LOC for

JFreeChart . 34

5.6 probability for max rank percentiles to be greater than CBO or LOC for

JFreeChart . 36

viii

LIST OF FIGURES

2.1 Graphs used to study the measures. Star Graph(left) and Line Graph(right) 7

3.1 High level plugin architecture of Insat 17

4.1 Page Rank(PR) Distribution(left) and HITS Rank Distribution(right) for JFreeChart 20

4.2 Degree Centrality(CBO) distribution(left) and Betweenness Centrality(BC) dis-

tribution(right) for JFreeChart . 21

4.3 PageRank(PR) distribution(left) and HITS distribution(right) for JHotDraw . 22

4.4 Betweenness Centrality(BC) distribution(left) and CBO(Degree Centrality) dis-

tribution(right) for JHotDraw . 22

4.5 Page Rank Distribution(left) and HITS Rank Distribution(right) for Java Swing 23

4.6 Degree Centrality distribution(left) and Betweenness Centrality distribution(right)

for Java Swing . 24

4.7 Page Rank Distribution(left) and HITS Rank Distribution(right) for JTopas . 24

4.8 Degree Centrality distribution(left) and Betweenness Centrality distribution(right)

for JTopas . 25

5.1 Distributions of execution frequency for classes in JFreeChart(left) and JHot-

Draw(right) . 27

5.2 Distribution of Rank percentiles obtained by static analysis of the top 10% for

JFreeChart(left) and JHotDraw(right) 29

5.3 Distribution of static rank percentiles for unused classes (zero execution fre-

quency) for JFreeChart(left), and JHotDraw(right) 31

ix

5.4 Distribution of Dynamic rank percentiles for statically top ranked classes for

JFreeChart(left), and JHotDraw(right) 34

5.5 Distribution of Dynamic rank percentiles for statically top ranked classes for

JFreeChart(left), and JHotDraw(right) 35

x

Chapter 1

Introduction

Good Software quality in terms of number of faults has always been strongly desired by

software users and customers. This has necessitated the research on measurement and

prediction of software quality. Computer Scientists in the field of software engineering

have emphasized the need to be able to measure, estimate or assess various aspects of

software quality and today a huge section of research in software engineering focuses

in this area [23], [13], [8], [10]. One such aspect of software quality is frequency of

code usage that pertains to the relative frequency that different sections of the code

will be used at run time. We refer to the number of times a certain section(statement,

method or class) of code gets executed in a given run of the program as execution

frequency. Execution frequency can affect software quality in terms of testability and

presence of defects. Sections of code that have high execution frequency tend to be

more testable [9] and are probably the most critical parts of the program. A fault in

these sections can potentially have far reaching consequences, as these sections may

be used directly or indirectly by several other parts of the software. A modification

in frequently executed code may cause cascading changes in behavior all throughout

the software. On the other hand, sections of code that are rarely executed tend to

be hard to reach, or less testable [9], and as a consequence faults in this code can

be hard to find. Knowledge of execution frequencies even before the software is fully

implemented can be used to make decisions about its testing strategy and maintenance

1

cycle. Knowledge of hard to test parts can aid building test suites. Knowledge of the

most critical parts can benefit decisions on maintenance by prioritizing which parts

should undergo changes.

1.1 Problem

Before we can predict execution frequencies, we need to have a way to directly mea-

sure execution frequencies for different portions of the software to address the above

concerns. A distribution of the execution frequencies can be obtained by running the

“most common” use cases that the software was developed to support. For instance,

profiling tools that report execution frequencies, are often used in fault localization

techniques [22]. Such processes employ dynamic analysis which can be a relatively

slower process, and pertains to particular inputs or execution traces [5]. Arisholm

et al [10] showed how precise measurements can be obtained from dynamic analysis.

However their analysis can commence only after the source code and test cases are

all available.

1.2 Approach

A social network is a structure that comprises a set of actors, who are related to one

another by different kinds of relationships or inter-dependencies such as friendship

or common interest. Scientists in the field of social sciences like Freeman [15] or

Faust [1] used or came up with Social Networking algorithms to analyze such social

networks. Their algorithms can assign numerical values to an actor within the network

that convey some notion of ‘importance’ of that actor based on the summary of

relations this actor may have to other actors. Our approach relies on computing

the values of some of these social networking metrics on graphs representing code or

static code structures and use them to predict run time execution frequencies. We

analyze the Compilation Unit Graphs [17] that can be derived from software design

2

artifacts or reverse engineered from source code. The analysis involves computation

of measures of importance of a vertex based on summarizing its relations with other

vertices within the Compilation Unit graph [1]. We feel execution frequencies could

be correlated to these measures of importance, as both attributes are affected by

structural relationship among vertices within the graph. We restricted our research

to object oriented software and selected three systems of varying sizes, to compute and

study the distribution of the values of these measures. We performed experiments to

study the correlation between these values measured by an entirely static procedure

with the actual value of execution frequencies obtained by running use cases. Our

experiments also included relevant statistical methods to determine to what extent

these measures can predict execution frequencies. We developed an eclipse plugin

Insat to automate the entire process of computing the values of the social networking

metrics and instrumenting the dynamic analysis meant to compare our predictions

with the actual results.

1.3 Contributions

The research contributions of this thesis are as follows:

1. By applying social networking algorithms on static representations of source

code, we could predict the most or least used parts of a program

2. We identified tendencies towards the power law in the distribution of the values

of social networking metrics in models of source code.

3. We developed a tool called Insat that automates the previous two processes.

1.4 Organization of Thesis

The thesis is organized as follows. In chapter 2 we present the existing concepts that

we have applied in our research and other related works. In chapter 3 we describe our

3

approach and explain the design of our experiment. The experiment design includes

the hypotheses, independent and dependent variables in our experiment, systems

used, and strategy to validate our findings. In chapter 4, we show preliminary results

and their visualizations to identify trends in them. We employ statistical methods

to test our hypotheses from the results that we obtained in chapter 5. Chapter 6

talks about different types of threats to validity of our experiment and inferences.

We present our conclusions and talk about possible future extensions to our research

in chapter 7.

4

Chapter 2

Related Work

A considerable body of research has focused on the prediction of dynamic quality

attributes from static quality attributes [13], [5], [11]. However, studies involving ap-

plication of social networking metrics to analyze software are a relatively new concept.

In this chapter we review the existing body of research related to our study, and the

concepts that we borrowed.

2.1 Prior work on Execution Frequencies

Execution Frequency of a section of code is an internal software attribute whose actual

value can be measured at run time. Profiling tools [35] report execution frequencies

of program units at different levels of granularity like statement, branch or method.

Information provided by such run time profiling tools are widely used for measuring

quality of test cases, performance optimizations of programs, or detecting memory

leaks. Harrold et al [21] studied various forms of program spectra and related Branch

Count Spectra, which is the execution frequency of a conditional branch of a program,

as a heuristic to analyze and compare program behavior. Renieris et al [22] used

execution frequencies of different lines of code in a program as a form of program

spectra that helps localize faults.

5

2.2 Social Networking Measures

A social network is a structure that comprises a set of actors, who are related to

one another by different kinds of relationships such as friendship, common interest

etc. We have analyzed social networks by computing measures of ‘prestige’ for each

actor in the network. Prestige can be loosely defined as a measure of ‘importance’

of an actor in the network based on a summary of the structural relationships that

this actor might have with other actors inside the network. The formal definition of

prestige varies as different algorithms that focus on different aspects of relationships

between actors are used to compute prestige. Prestige computation of a vertex in

a graph takes into account different aspects pertaining to the location of the vertex

within the graph. Various attributes of a vertex, like the number of incoming or

outgoing edges may lower or raise the prestige of several vertices. Other aspects like

the likelihood of a vertex falling in the path between two other vertices can also vary

prestige.

In the next few sections we outline the different algorithms that will be used

for defining and computing the prestige. We apply these algorithms to the graphs

shown in Figure 2.1. Tables 2.1 and 2.2 consists of the values of measures of prestige

as computed by different algorithms. We henceforth refer the graph to the left of

Figure 2.1 as the star-graph and the graph to the right as the line-graph.

2.2.1 Degree Centrality

This is the simplest measure for prestige of a vertex among the algorithms used in this

study. Degree Centrality is often used as a simple measure to find the ‘importance’

of vertices in a network, under the assumption that important vertices have more ties

with other vertices within the network [1]. Perhaps the most relevant application of

the degree centrality measure is the Coupling Between Objects(CBO) metric used in

our research. The CBO metric was proposed by Chidamber et al [13] as a coupling

6

Figure 2.1: Graphs used to study the measures. Star Graph(left) and Line
Graph(right)

measure and been used to study object oriented design [13], and ripple effects in

changes [14]. Vertex A is said to have higher prestige than vertex B if vertex A has

a higher number of “connections” than vertex B. The connections of a vertex can be

measured by counting the number of the edges emanating from or directed at this

vertex. This measure does not distinguish between incoming and outgoing edges. In

the context of object oriented software, Degree Centrality can also be defined as the

sum of the number of the afferent and efferent coupling [24] of the class this vertex

represents. This is also the only measure among those used in the study that ignores

indirect coupling. We have referred to degree centrality metric as ‘CBO’ in later

chapters, as it is identical to the CBO metric.

In the star-graph Mary has four connections and hence has the highest prestige

as per degree centrality whereas, Harry and Jane have the lowest. In the line-graph

Charles and David have the same prestige which is lower than that of Paul. Given a

7

Graph G = (V,E) where v ε V , the degree centrality Cd(v) of v is given by [1]:

Cd(v) = d(v) where d is the degree of the vertex.

2.2.2 Betweenness Centrality

The Betweenness Centrality(BC) measure, introduced by Freeman [15], is based on

the tendency of a vertex falling on the shortest path between two other vertices. BC

has been used to study and infer information about outbreak of epidemic diseases [16].

Unlike CBO, the betweenness centrality measure does not ignore relationships be-

tween non-adjacent vertices. Two vertices are said to be non-adjacent if there is no

direct edge between the two of them. The BC of vertex u is the count of the number

of times u is visited by the shortest paths in between two other vertices say v, w such

that v 6= u, w 6= u and v 6= w. Mathematically, BC(v) of a vertex v can be expressed

as [2]:

BC(v) =
∑
u,wεV
u6=v 6=w

σuw(v)

σuw

where σuw is the number of shortest paths between vertices u and w, and σuw(v) is

the number of shortest paths between vertices u and w that visit v. Computation of

this measure for a vertex u may require the following steps:

• List all pairs of vertices (v, w) other than vertex u and v 6= w.

• List all shortest paths connecting v and w.

• Count all these paths that visit vertex u.

John has the highest BC in the star-graph in Figure 2.1 as several shortest paths

(for e.g. Jane → Harry → John or Tom → John → Mary) visit John. Mary

has zero BC as Mary is a dead end vertex in the graph and does not have a single

outgoing edge. In the line graph, the only path involving more than two vertices is

Paul → David→ Charles and hence, BC(David) = 1.

8

Table 2.1: Values of different measures of prestige for Star Graph
Vertices PR DC HITS BC

Mary 0.28985125 4.0 0.057700157 0
John 0.19052342 4.0 0.4799442 11.0
Jill 0.13759725 3.0 0.4799442 7
Jack 0.11510362 3.0 0.4799442 5
Tom 0.10554383 3 0.5166229 3
Harry 0.10475586 2 0.18124534 5
Jane 0.056624793 1 0.07669604 0

2.2.3 HITS

Hypertext Induced Topic Search abbreviated to HITS is a search algorithm that

was proposed by Kleinberg [3] to rate a web page based on the importance of its

content and links to other web pages that it points to. The importance of the content

pertains to relevance of the topic that is being searched for. The algorithm assigns

two different scores to each node, the hub score and the authority score. The hub

score is a measure of the values of its links to other nodes whereas, the authority

score is a measure of the value of its contents. Since we are interested in the different

relations between vertices within a graph we assign the hub score to the prestige of

a node. The motivation behind creation of HITS was to search through web pages,

but it owes its origin to social network analysis.

The hub and authority scores are defined recursively in terms of one another.

“Good authorities are pointed to by good hubs and good hubs point to good au-

thorities.” Given a graph G(V,E) where v ε V the hub and authority scores can be

expressed as [12]:

xv = authority score for v

yv = hub score for v

xv =
∑

pages that point to v

yv, yv =
∑

pages that v point to

xv

x(k) = LTy(k−1), y(k) = Lxk

9

Table 2.2: Values of different measures of prestige for Line Graph
Vertices PR DC HITS BC

Charles 0.47441217 1 0.20415911 0.0
Paul 0.34117106 2 0.6922135 1.0
David 0.18441679 1 0.6922135 0.0

where L(u, v) =

{
1 if there is a link from i to j
0 otherwise

2.2.4 Page Rank

The Page Rank(PR) algorithm was conceived by Brin and Page [6] and is used by

the Google search engine to weight hyperlinked documents. Just like HITS PR also

has its roots in social network analysis. The weight of a web page represent the

probability of a random surfer randomly clicking on links, to arrive at this web page.

The results of a search query are presented to the user in order of their weights

assigned by the Page Rank algorithm. In the context of a graph, the vertices are

represented as web pages and the edges are represented as hyperlinks in between web

pages. Given a graph G = (V,E) the page rank of a vertex v εV is recursively defined

as a normalized sum of the page ranks of the vertices that have an outgoing edge

directly on v. Mathematically page rank of vertex v can be expressed as [6]:

PR(v) =
∑
uεBv

PR(u)

L(u)

where L(u) is the number of outgoing edges of vertex u, and Bv is the set of all

vertices that have an outgoing edge pointing at v. There can be situations where a

graph might have a vertex that does not have outgoing edges. It is assumed that

when the surfer hits a dead end web page(pages with no outgoing hyper links), the

probabilities of all other pages to be the next visited page are equal. The page rank

algorithm also introduces a damping factor d which is the probability that the random

10

surfer would continue clicking and not just stop. The page rank of a vertex v with

the damping factor included can be expressed as:

PR(v) =
1− d

N
+ d

∑
uεBv

PR(u)

L(u)

Mary and John have the highest PR in the star-graph in figure 2.1. This means,

among all paths in the star graph, among all vertices Mary is the vertex that is

visited the most. Jane has the lowest page rank as Jane is visited by only those paths

that start at vertex Jane. In the line graph Charles has the highest page rank as

Charles is visited by two of the three possible paths in the entire graph.

2.3 Social Networking Measures in Software Engi-

neering

Zimmerman et al [4] computed social network measures (some of them used in this

research) for dependency graphs. They showed these measures can predict defect den-

sity on various program units. Their empirical results were based on the structure

and bug reports of just one proprietary software. Concas et al [17] studied the distri-

bution of the values of several social networking metrics for two large systems. Their

research mainly consisted of identifying trends in the metrics they used, observing

changes to those metrics in other versions of the same software. They also examined

the correlation between the metrics and fault proneness of different sections of the

program. They extended their own study in a follow-up paper [19] by including more

social networking metrics and examining their correlation or anti correlation with

fault proneness. Li et al [20] applied PR [6] metric used in our research, to compute

the “complexity of relations” between classes in object oriented software. However,

it was not clear what external software attribute was complexity representing or pre-

dicting.

11

2.4 Our approach compared to existing work

Our research uses established social networking metrics to compute the ‘prestige’ of

a vertex in the graph representing program structure. Concas et al [17] has already

studied the distribution of some of these metrics, and how they undergo variations

with evolution of software. However, their work correlated the metrics they studied

with Bugs metrics. We are yet to come across studies that have correlated prestige

values and execution frequencies. We believe prestige of a class can be an indication

of how often the code residing in a class gets executed at runtime. In chapter 5 we

discuss the relationship between prestige of a vertex and the frequency of execution

of code residing in that vertex at run time.

12

Chapter 3

Our Approach

In chapter 2 we discussed the ways of computing the ‘prestige’ of a vertex in a directed

graph. The graph that we build to compute the social networking measures is the

same as the compilation unit graph used by Concas et al [17] and we refer to it as

the CU graph. Our research explored the possibility of using prestige of the vertices

of a CU graph computed by four different social networking algorithms to predict

how frequently a class would get used at runtime. The classes forming the software

represent the vertices of the CU graph. The edges of the CU graph are the relations

at a design level in between these classes. Given an algorithm, we generated a set

of percentile rankings for each class based on its computed prestige. We conducted

empirical studies to answer the following questions:

• Does a correlation exists between run time execution frequency of a class with

the prestige of the class?

• Can the prestige of a class serve as a prediction of the execution frequency of

that class?

Within the scope of our study the runtime execution frequency of a class is defined

as the number of times any method or constructor in that class gets executed. Our

study is based on testing the following hypotheses.

Hypothesis H0:

13

There is no relationship between the social networking measures of a class and

how frequently the code residing in a particular class gets executed at runtime.

Hypothesis H1:

The methods that get executed most often at run time tend to be in classes that

are considered to have high prestige by at least one social networking measure.

Hypothesis H2:

The classes holding methods that do not get executed at all, tend to be in classes

that are considered to have low prestige by at least one social networking measure.

Hypothesis H3:

The classes that are considered to have high prestige by some of the social net-

working measures tend to have methods that are among the most frequently invoked

at run time.

Hypothesis H4:

The classes that are considered to have low prestige by some of the social network-

ing measures tend to have methods that are rarely invoked at run time.

H0 is the only null hypothesis. Failure to reject H0, would render testing the

other hypotheses useless. The basis for using separate hypotheses for high and low

prestige classes or high and low execution frequency classes was that due to the

skewed distribution of prestige values(see Chapter 4) and execution frequencies(see

figure 5.1). Hypotheses H3 and H4 may be considered particularly important from

the context of the significance of our study. Conclusions drawn from testing H3 and

H4 could be used for predicting a run time attribute like execution frequency by static

analysis.

3.1 Rationale

The ‘Prestige’ of a vertex in a graph computed by a social networking algorithm

quantifies the notion of prominence of that vertex based on strategic locations within

14

the graph and direct and indirect ties. Both prestige and the likelihood of code

residing in a class(say A) getting used may be affected by:

• Number of direct connections of class A.

• Transitive closure of all classes pointing at A.

• Transitive closure of all classes pointing to A.

• Likelihood of A falling on the path between two other classes.

This intuitively leads us to think that a research into the existence of a relationship

between social networking measures and prestige is warranted.

3.2 Generating CU graphs

In our experiment we created the required graph by reverse engineering the CU graph

from the source code. A CU graph is similar to a ‘detailed’ UML class diagram which

includes all forms of dependencies among classes normally excluded to avoid clutter.

However, unlike UML class diagrams, we do not treat inheritance, association or

dependency relations as different. Our experiment has no notion of the strength of

coupling based on the type of relation whether inheritance, association or dependency.

We first identified the classes that form the vertices of the graph. This involved

separating the program’s classes from the classes belonging to the framework or library

that the program uses. In order to find the edges of the graph we examined the

relationships in between classes. We add an edge between vertex A and vertex B

if classes represented by these vertices have either an inheritance, association or use

dependency relation between them. There can only be zero or one edge in between

two vertices in a given direction.

15

3.3 Validation Strategy

We perform dynamic analysis to verify that the values of the prestige measures are

legitimate predictors of execution frequencies. The validation strategy involves run-

ning use cases of the program to capture necessary information to identify the most

and least commonly used classes that are in the program. This run time information

can be compared to the prestige values produced by the social networking algorithms

to evaluate the hypotheses.

For the dynamic analysis, we instrumented the source code of the program to add

statements that log the qualified name of the class whose method is currently under

execution. We ran common use cases that the program supports on the instrumented

code so that the inserted statements keep track of the methods and the class in

which any executed method reside. We analyzed the log generated by running the

instrumented source code to obtain the execution frequency of a class. We then

generated percentile ranks for each class, based on the execution frequency of the

class. We awarded a zero percentile to classes that never get executed while running

the chosen set of use cases. These percentile ranks are compared with the percentile

ranks predicted by the social networking algorithms using relevant visualizations and

statistical methods explained in chapter 5

3.4 Architecture of Insat

Insat stands for Insat is Not a Static Analysis Tool. Insat is a scalable prototype

tool that we developed to conduct experiments that test our hypotheses. Insat is an

Eclipse plugin, and is capable of reverse engineering and visualizing the CU graphs

of Java projects in Eclipse [25]. A high level plugin architecture for Insat is shown

in figure 3.1. Insat uses the Java Development Tools plugin [26] to find out which

classes are a part of the software rather than related libraries. Insat uses the Byte

16

Code Engineering Library [27] to parse the byte code to determine the relationships

among these classes. Treating the classes as vertices and relationships among the

classes as edges, Insat uses the JUNG [28] library to generate an instance of a

graph, and compute the social networking measures for each vertex in the generated

graph. Insat uses R graphics [29] by making Java to R calls to generate plots that

visualize distribution of values of the social networking measures across the classes

forming the software.

Figure 3.1: High level plugin architecture of Insat

Insat also has code instrumentation features that can track the extent to which

code residing in a class is used while running use cases. The log files generated

by Insat during dynamic analysis contain information on frequency of method use

required to validate the results obtained from static analysis. Insat makes a separate

instrumented copy of the source code of the software, by using the JDT plugin [26]

to insert log statements at appropriate places, and then generates an ant script [30]

to compile and run the instrumented code.

17

Table 3.1: Properties of systems used in this experiment
System Size(KLOC) Classes

JFreeChart 1.0.13 91.4 607
JHotDraw 7.5 79.9 222
Java Swing 1.4 181.7 1901
JTopas 0.8 4.38 60

3.5 Systems used in the experiment

Table 3.1 enlists the systems and their sizes that were used in this experiment.

JFreeChart [33] is a Java library based on swing for creating charts. JHotDraw [31]

is a library that can serve as a framework for building graphics based applications in

Java. Java Swing [32] is a library shipped within Java for creating GUI based appli-

cations and is the largest system used in this experiment. JTopas [34], the smallest

system used in the experiment, is a Java library for parsing text data. Our selection

enables us observe the distribution of prestige values in systems of varying sizes. All

four systems are frameworks that service clients, and are not standalone applications.

Hence, the dynamic analysis (as explained in section 3.3) does not start at any entry

point within the system, but at clients outside the system. This may reduce the bias

on what all classes within the system should get executed, as the system gets used

by the interfaces it exposes to clients. All these systems are well known and clients

for these systems are readily available.

3.6 Experimental Procedure

The primary objective of the experiment was to study the correlation between prestige

measures and execution frequencies for some of the systems listed in Table 3.1. Our

experimental procedure can be summarized as follows:

1. The source code of the systems in Table 3.1 were fed into our tool Insat. Insat

reverse engineered the CU graphs, and computed the prestige values of the four

18

metrics PR, HITS, BC, CBO. Insat also visualized the distribution of these

values.

2. We studied the distribution of the prestige values for each of the systems and

identified trends in them based on their visualizations.

3. We performed dynamic analyses on JHotDraw and JFreeChart using a set of

common use cases. This was done on instrumented versions of the two systems,

so that we could obtain the values of execution frequencies for each class in the

systems.

4. We used relevant statistical methods to study the correlation between the pres-

tige values and the execution frequencies.

19

Chapter 4

Demonstration of Prestige Ranking

In this chapter we study the distribution of the prestige measures of JFreeChart,

JHotDraw, Java Swing, and JTopas. For each of the systems we used our tool Insat

to build the CU graph and computed the values of all the social networking metrics

discussed in Chapter 2. In addition to these metrics we also measure the LOC(lines

of code) metric for each class that is a vertex in the CU graph. The social networking

measures would be compared to the LOC metric in our empirical validation procedure.

0 100 200 300 400 500 600

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

Page Rank Distribution for JFreeChart

Classes

P
ag

e
R

an
k

0 100 200 300 400 500 600

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

HITS distribution for JFreeChart

Classes

H
IT

S

Figure 4.1: Page Rank(PR) Distribution(left) and HITS Rank Distribution(right) for

JFreeChart

We graphically display visualized distribution of the values of the prestige mea-

sures in several plots included in this chapter. Figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, show

20

the trends that these measures follow in the Systems studied in our experiment. The

classes on the y-axis of these plots are hence, in descending order of their values for

the prestige measures. We thought visualizing the sorted values would help identify

the trends these measures may follow.

0 100 200 300 400 500 600

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

Betweenness Centrality distribution for JFreeChart

Classes

B
et

w
ee

nn
es

s
C

en
tr

al
ity

0 100 200 300 400 500 600

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Degree Centrality distribution for JFreeChart

Classes

D
eg

re
e

C
en

tr
al

ity

Figure 4.2: Degree Centrality(CBO) distribution(left) and Betweenness Centrality(BC)

distribution(right) for JFreeChart

4.1 Observations

The distribution of values for all prestige measures in all the systems studied show

a power law behavior. The power law behavior underlies the Pareto principle where

a large number of the classes have very low values and few of the classes have very

high values. The difference in the values of the classes that are more towards the tail

are low. Consequently, the number of tied values for the metrics significantly increase

towards the tail of the curves.

The power law behavior appears to become more conspicuous with increases in

the size of the system in terms of the number of classes. The strongest power law

behavior for metrics PR, BC, CBO is observed in the Java Swing Library, whereas it

is perhaps the least strong for the same measures in JHotDraw which is the smallest

21

0 50 100 150 200

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

PR distribution for JHotDraw

Classes

P
R

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

HITS distribution for JHotDraw

Classes

H
IT

S

Figure 4.3: PageRank(PR) distribution(left) and HITS distribution(right) for JHotDraw

system studied. The tendency towards a power law became even weaker for a smaller

system like JTopas [34](Figures 4.7, 4.8) which consists of just 60 classes.

0 50 100 150 200

0
10

00
20

00
30

00
40

00
50

00
60

00

BC distribution for JHotDraw

Classes

B
C

0 50 100 150 200

0
50

10
0

15
0

20
0

CBO distribution for JHotDraw

Classes

C
B

O

Figure 4.4: Betweenness Centrality(BC) distribution(left) and CBO(Degree Centrality)

distribution(right) for JHotDraw

The distribution for the HITS metric as evident from the right-side plots of fig-

ures 4.1, and 4.5 appears to be the most skewed particularly in JFreeChart, and

Swing. The HITS metric in Swing shows are very long tail with perhaps a high

22

number of tied scores. The BC metric appears to have the highest number of tied

values in towards the tail for both JHotDraw and JFreeChart. An observation of the

CU graph reveals that a fair number of classes do not fall in the path between any

two other classes, thus making the value of the BC metric zero.

0 500 1000 1500

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Page Rank distribution for Swing

Classes

P
ag

e
R

an
k

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

HITS distribution for Swing

Classes

H
IT

S

Figure 4.5: Page Rank Distribution(left) and HITS Rank Distribution(right) for Java

Swing

The highest number of tied values overall(both towards the tail and the peak), is

found in the CBO metric. The CBO metric is always an integer and its values can

only be within a certain range in between zero and the total number of compilation

units. As a consequence of the number of ties, the values of the CBO metric would

have the least number of distinct ranks that can be assigned to the distribution. The

JHotDraw system could be assigned only 51 distinct ranks to its CBO values.

4.2 Interpretations

Concas et al [17], observed similar power law behavior in his study of distribution of

social networking measures. A study on power distributions in software systems [18]

reported that several internal system attributes show a power law trend. The study

reported power law distributions in class size(in LOC or number of methods), method

23

0 500 1000 1500

0
20

0
40

0
60

0
80

0
10

00

Degree Centrality distribution for Swing

Classes

D
eg

re
e

C
en

tr
al

ity

0 500 1000 1500

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

30
00

00
35

00
00

Betweenness Centrality distribution for Swing

Classes

B
et

w
ee

nn
es

s
C

en
tr

al
ity

Figure 4.6: Degree Centrality distribution(left) and Betweenness Centrality distribu-

tion(right) for Java Swing

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

PR distribution for JTopas

Classes

P
R

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

HITS distribution for JTopas

Classes

H
IT

S

Figure 4.7: Page Rank Distribution(left) and HITS Rank Distribution(right) for JTopas

size, length of inheritance hierarchies, frequency of method or variable names, number

of calls to specific method names, number of instance variables per class etc. The

values of the social networking measures used in our research depend on some of these

system attributes. Intuitively social networking metrics may follow a power law based

distribution too. Moreover, we found similar power law based distributions in actual

values of the run time execution frequency shown in figure 5.1.

24

0 10 20 30 40 50

0
20

40
60

80
10

0

CBO distribution for JTopas

Classes

C
B

O

0 10 20 30 40 50

0
10

0
20

0
30

0
40

0

HITS distribution for JTopas

Classes

B
C

Figure 4.8: Degree Centrality distribution(left) and Betweenness Centrality distribu-

tion(right) for JTopas

25

Chapter 5

Evaluation of Hypotheses

Our objective is to evaluate the hypothesis concerning the relationship between the

values of the social networking measures and the execution frequencies of classes. We

needed the values of execution frequency of the classes in the systems from Table 3.1

to test the hypotheses. The distribution of the run time execution frequencies of the

classes when the system is in operation is expected to vary based on the use cases

that are executed. We obtained a ‘probable’ distribution of execution frequencies

by building an operational profile that consists of the most common use cases the

system is expected to support. For example, we built the operational profile for the

JFreeChart framework by executing clients that create the different forms of plots

that JFreeChart supports. Figure 5.1 shows the distribution of run time execution

frequencies for JFreeChart and JHotDraw. The execution frequency distribution

shows a power law behavior similar to trends observed for the social networking

measures.

In our validation strategy, we tested the hypotheses outlined in chapter 3 by

comparing the values of the social networking measures to existing static code metrics

that may be related to frequency of code usage. These static measures included direct

coupling (measured by the CBO metric) and the LOC metric. The CBO metric is

itself analogous to the social networking metric Degree Centrality. We show that the

CBO metric in conjunction with the other metrics are better predictors than just

26

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

Distribution of execution frequencies for JFreeChart

Classes

E
xe

cu
tio

n
F

re
qu

en
cy

0 50 100 150 200

0
20

0
40

0
60

0
80

0
10

00

Distribution of execution frequencies for JHotDraw

Classes

E
xe

cu
tio

n
F

re
qu

en
cy

Figure 5.1: Distributions of execution frequency for classes in JFreeChart(left) and JHot-

Draw(right)

the CBO metric or the LOC metric. We define the LOC metric of a class as the

number of lines of code in a class minus the comments and blank lines. If we consider

a scenario where all methods in the system are equally likely to get executed, then

a class with higher LOC will have a greater probability of having a higher execution

frequency than a class with lower LOC. This may justify the LOC metric being used

as a standard to compare our results.

In order to test hypotheses H1, H2, H3, and H4 we converted the values of the

measures to their corresponding rank percentiles. This was done because we are more

interested in relative values of prestige rather than the absolute value. Transforming

the values to rank percentiles allowed us to use the Wilcoxon test to evaluate statistical

significance. The hypotheses tests required us to quantify the notion of ‘high’ or ‘low’

for values of execution frequencies and the social networking measures. We chose the

top 10% or the bottom 10% (except for testing H2) to denote a high or low for values

of both execution frequencies and social networking measures respectively. The basis

behind selecting 10% was to essentially make a trade off between covering as many

classes in the system, and maintaining the significance of the statistical tests. The

27

Table 5.1: Spearman correlations and their significances of all measures with execution

frequency for JFreeChart
Measure Spearman Corr p-value

PR 0.455 2.19× 10−10 < .05
HITS 0.302 4.45× 10−5 < .05
BC 0.462 1.06× 10−10 < .05
CBO 0.385 1.31× 10−7 < .05
LOC 0.358 1.00× 10−06 < .05

Table 5.2: Spearman correlations and their significances of all measures with execution

frequency for JHotDraw
Measure Spearman Corr p-value

PR 0.463 2.90× 10−8 < .05
HITS 0.325 1.54× 10−5 < .05
BC 0.522 1.76× 10−10 < .05
CBO 0.305 4.01× 10−5 < .05
LOC 0.451 6.99× 10−8 < .05

top 10% was also a safe choice given the skewed distributions of the social networking

measures as shown in Chapter 4, as the prestige values start to fall abruptly after

that. Detailed results of our tests are given in the following sections. We have used

a confidence level of α = 0.05 in all of our hypothesis tests.

5.1 Test H0

We tested hypothesis H0 to analyze if there was any relationship between the social

networking measures and run time execution frequencies. We computed Spearman’s

correlation coefficient between all four of our social networking measures and LOC,

and we further tested if the correlation was significant. The Spearman’s correlation

coefficient was an obvious choice as all measures apart from LOC, showed a skewed

distribution. Spearman’s ρ statistic was used to test the significance of the correla-

tions.

Tables 5.1, and 5.2 shows the values of Spearman’s correlations and how significant

28

they are. The BC measure seems to have a strongest correlation, whereas the HR

measure had the weakest. Our results showed significant correlation of all measures

with run time execution frequency of a class. Hence, we can reject null hypothesis

H0 at the 0.05 level.

5.2 Test H1

We tested hypothesis H1 that states that classes with high execution frequencies

tend to be considered prestigious by at least one social networking measure. For the

purpose of testing our hypothesis we define a class has a ‘high execution frequency’

if it features in the top 10% of the classes ranked by execution frequency. Figure 5.2

shows a box plot that visualizes the distribution of the rank percentiles of the measures

CBO, LOC, and MAX of the classes with high execution frequency. We define the

MAX metric as the numerically highest value of the rank percentiles allotted by the

four social networking measures PR, HITS, BC, and CBO for a class with execution

frequency. The MAX metric takes care of the condition that the class needs to be

considered prestigious by at least one of the measures.

CBO LOC MAX

0
20

40
60

80
10

0

Static Ranks of classes with Highest
Execution Frequency for JFreeChart

Metric

R
an

k
P

er
ce

nt
ile

CBO LOC MAX

0
20

40
60

80
10

0

Static Ranks of classes with Highest
Execution Frequency for JHotDraw

Metric

R
an

k
P

er
ce

nt
ile

Figure 5.2: Distribution of Rank percentiles obtained by static analysis of the top 10% for

JFreeChart(left) and JHotDraw(right)

29

Table 5.3: p-values of Wilcoxon test for max rank percentiles against CBO or LOC for

JFreeChart and JHotDraw
CBO LOC

MAXJFreeChart 4.17× 10−12 1.22× 10−5

MAXJHotDraw 1.261× 10−5 0.02649

From the box plot in Figure 5.2, it appears that for both the systems the rank

percentiles for MAX has a narrower concentration, and numerically higher values

than the CBO or the LOC metric. Table 5.3 shows the p-values of a Wilcoxon test

performed on the MAX metric against LOC and CBO. The p-values are essentially

probabilities that LOC or CBO would allot a higher rank percentile than MAX,

given a class with a high execution frequency. The p-values are significant at the 0.05

level for both the systems

5.3 Test H2

Hypothesis H2 concerns a possible correlation between low prestige and low execution

frequency. In our experiment, we regard a zero execution frequency as low. Classes

that do not get executed at all at run time are the ones with zero execution frequency.

We conjecture that classes with low execution frequency will be mostly classes with

low prestige. The box plot in Figure 5.3 shows the distribution of the rank percentiles

of the measures CBO, LOC, and MIN of the classes with zero execution frequency.

The MIN metric is defined as the numerically lowest value of the rank percentiles

allotted by the four social networking measures PR, HITS, BC, and CBO to a class

with low execution frequency. The MIN metric takes into account our hypothesis

that the class should be considered low in prestige by at least one of the measures.

With our data, the CBO metric does a better job in predicting low prestige for

unused classes than all other measures apart from MIN . The probability of CBO

or LOC giving a rank lower than MIN is expressed as p-values of the Wilcoxon test

in Table 5.4. The p-values makes us confident about our conclusion that classes with

30

CBO LOC MIN

0
20

40
60

80
10

0

Distribution of static ranks of
the Unused Classes for JFreeChart

Metrics

R
an

k
P

er
ce

nt
ile

CBO LOC MIN

0
20

40
60

80
10

0

Distribution of static ranks of
the Unused Classes for JHotDraw

Metrics

R
an

k
Pe

rc
en

til
e

Figure 5.3: Distribution of static rank percentiles for unused classes (zero execution fre-

quency) for JFreeChart(left), and JHotDraw(right)

Table 5.4: probability for MIN rank percentiles to be greater than CBO or LOC for

JFreeChart and JHotDraw
CBO LOC

MINJFreeChart 0.0422 7.23× 10−40

MINJHotDraw 0.1037 1.99× 10−187

low execution frequency tend to have a lower value of prestige awarded by the MIN

measure than the LOC measure. However, the p-value for JHotDraw does not give

us the confidence at the 0.05 level that execution frequency relates better to MIN

than CBO.

5.4 Test H3

Hypothesis H3 is directly related to the usefulness of social networking metrics as

predictors of execution frequency. If we can show that prestigious classes tend to get

executed frequently, then this can help estimate the run time usage of a class without

actually performing any dynamic analysis. First we identified the elements of a set we

consider to have “high prestige by the greatest number of measures”. In the following

listing we describe the steps to construct the MAX set. C and MAX were initially

31

empty sets and n is integer equal to 10% of the total number of classes in the system

under test.

1. We formed a collection C that consisted of classes that feature in the top 10%

of the rank list of the four social networking measures. It is possible that a class

can feature in the top 10% for multiple rank lists, so C has several duplicates.

2. We go on removing classes that have the greatest number of duplicates from C

and put them in set MAX. We started with classes that have four instances

in C, and went on adding for three and two instances. This process continued

when either of the following conditions are satisfied:

• The cardinality of MAX was n which means we have a set MAX with

the required number of elements.

• There are no classes with multiple instances left in collection C.

3. If n(MAX) < n the next step is to prune the set C(C is a set now has it does

not have any duplicates) so that sum of the cardinalities of C and MAX is n.

This was achieved in the following steps:

(a) Go on removing classes in C randomly with a bias towards higher percentile

rank of prestige till the condition n(MAX) + n(C) = n is satisfied.

(b) MAX = MAX ∪ C. MAX is now a set of classes considered prestigious

of greatest number of SN measures and has the required cardinality.

A pseudo code for the algorithm to build the set MAX is given below:

map = empty hash map

n = 10% of total number of classes

for rank list R in all SN metrics do

for c in top 10% of R do

32

if map has c then

frequency = value of c in map

frequency ← frequency + 1

put (c, frequency) in map

else

put (c, 1) in map

end if

end for

end for

MAX = φ

B = φ

for all keys k in map do

frequency = value of k in map

if frequency ≥ 2 then

add k to set MAX

else

add k to set B

end if

end for

if n(A) < n then

x← n− n(MAX)

while n(B) > x do

y ← random element ε B with bias towards lower percentile

remove y from set B

MAX = MAX ∪ {y}

end while

end if

33

CBO LOC MAX

0
20

40
60

80
10

0

Distribution of Dynamic ranks for top
statically ranked classes for JFreeChart

Metrics

D
yn

am
ic

 R
an

k
Pe

rc
en

til
e

CBO LOC MAX

0
20

40
60

80
10

0

Distribution of Dynamic ranks for top
statically ranked classes for JHotDraw

Metrics

D
yn

am
ic

 R
an

k
Pe

rc
en

til
e

Figure 5.4: Distribution of Dynamic rank percentiles for statically top ranked classes for

JFreeChart(left), and JHotDraw(right)

Table 5.5: probability for max rank percentiles to be greater than CBO or LOC for

JFreeChart
CBO LOC

MAXJFreeChart 4.83× 10−7 7.68× 10−9

MAXJHotDraw 5.05× 10−6 1.57× 10−5

The box plots in figure 5.4 visualizes the distribution of execution frequencies

(scaled to percentile ranks) of the MAX set compared to execution frequencies of

classes that feature in the top 10% of the CBO and LOC metric. The box for

MAX shows a much narrower and numerically higher concentration of values for

MAX. The p-values from table 5.5 can be interpreted as the probability of getting a

class considered among most prestigious by either LOC or CBO, having a execution

frequency greater than a class considered among the most prestigious by the MAX

metric. All p-values are significant at the 0.05 level which indicates that MAX is a

better predictor of execution frequency than CBO or LOC.

34

5.5 Test H4

H4 posits a correlation between low prestige and low execution frequency. We ex-

amined the distribution of execution frequency (scaled to rank percentiles) of a set

of classes with low relative prestige. We constructed the set of low prestige classes

using a similar procedure outlined in section 5.4 for constructing a high prestige set.

Instead of starting with the top 10% we selected the bottom 10% for each measure.

We changed step 3(a) by randomly removing elements with a bias towards relatively

higher percentile ranks. The results of the Wilcoxon test is given in table 5.6

CBO LOC MIN

0
10

20
30

40

Distribution of Dynamic Rank for statically
bottom ranked classes for JFreeChart

Metrics

R
an

k
Pe

rc
en

til
e

CBO LOC MIN

0
20

40
60

80
10

0

Distribution of Dynamic Rank for statically
bottom ranked classes for JHotDraw

Metrics

R
an

k
Pe

rc
en

til
e

Figure 5.5: Distribution of Dynamic rank percentiles for statically top ranked classes for

JFreeChart(left), and JHotDraw(right)

The MIN metric in the box plot in Figure 5.5, shows the distribution of execution

frequency rank percentiles of classes that we consider low prestige. Nearly all classes

in MIN for both the systems were ranked with zero percentile(that is the classes

never got used). However, the difference in the predictions of CBO and LOC from

MIN does not look significant, especially in case of JHotDraw. The p-values in

table 5.6 can be interpreted as the probability of a class in the CBO or LOC metric

set having a execution frequency lower than that of a class belonging to the MIN

35

Table 5.6: probability for max rank percentiles to be greater than CBO or LOC for

JFreeChart
CBO LOC

MINJFreeChart 0.023 0.16
MINJHotDraw 0.0082 0.033

set. The p-value for JFreeChart that compares MIN and LOC is not significant at

the 0.05 level. However, all other p-values are significant which indicates MIN is a

better predictor of low prestige than CBO for both systems, and the LOC metric for

JHotDraw.

36

Chapter 6

Threats to Validity

Threats to validity exist for all empirical studies. We did make assumptions and

could not control all factors that can affect our results and inferences. In this chapter

we describe the threats to validity and how we address them.

6.1 Construct Validity

Within the context of our study, threats to construct validity would question whether

measures of prestige conceptually relates to the relative frequency of code usage at

run time. In a more general sense, the threat to construct validity will doubt the

possibility of dynamic behavior being predicted entirely by static analysis. Briand et

al [7] have reported the decay of quality models that are based on static analysis, with

dynamic binding, and inheritance. The presence of ‘dead code’ often decays program

structure and renders coupling measurements made by static analysis imprecise [10].

To alleviate this threat, we performed relevant statistical analyses to test for signifi-

cance of correlations between the prestige values and execution frequencies. Another

threat to construct validity is the fact that we did not distinguish between different

kinds of relationships like inheritance, association, or dependencies even though these

relations at a static level are associated with different notions of strength.

37

6.2 Internal Validity

In the scope of our study, threats to internal validity may include factors we missed

or could not control, that can affect a casual relationship between prestige and exe-

cution frequency. Closeness centrality is a social networking measure that we did not

include in our study. Inclusion of other social networking measures to build a predic-

tion model for execution frequencies is left as a possible extension to our study(refer

section 7.1). The CU graph for each system included only the relations that were

visible at the design level of the system. There is a possibility that other underlying

relations may exist, like two classes coupled via a third class which exists in some

other library outside the system. These type of relations can change the CU graph,

and eventually affect the computations of prestige. We have ignored these relations

in our experiment.

6.3 External Validity

Threats to external validity questions whether the findings of our study can be gen-

eralized for other software. We observed a power law behavior in the distribution of

the prestige measures on all five libraries that we have tested so far. The trends that

we observed in these distributions are similar to those observed by Concas et al [17].

Running our tool on the libraries with their clients included, gave us the same type of

distributions. We feel that the trend these distributions follow can be generalized for

other systems. However, we have studied and successfully validated the correlation

between prestige and execution frequency for just two libraries JFreeChart and JHot-

Draw. It is not guaranteed whether this correlation can be generalized for all types

of software. The same experiment could be done with softwares of different sizes to

determine if this correlation exists.

38

6.4 Conclusion Validity

Conclusion validity refers to the legitimacy of the data and the statistical methods

used in our experiment to arrive at conclusions. Perhaps the biggest threat to validity

of our research is related to the selection of use cases in our empirical validation

procedure. We created a run time profile for the systems by executing a set of

‘obvious’ use cases that these systems were built to support. This threat questions

to what extent the created run time profile represents the intended usage of the

system. We selected a set of use cases that the programs were originally designed

to support. The clients that implemented these use cases were partly downloaded

from the product’s website and partly written by us. As the distributions of prestige

followed the power law, they were not normally distributed. In order to alleviate

threats to conclusion validity concerning inappropriate statistical methods, we used

statistical methods and tests like Spearman correlations, and Wilcoxon’s signed rank

test that are relevant to non-parametric data.

39

Chapter 7

Conclusions and Future Work

In our research, we applied social networking algorithms to static program structures.

We created CU graphs, where vertices were formed by the classes in the software,

and edges were formed by design level relations in between the classes. We analyzed

these graphs by computing the prestige for each vertex using four social networking

measures PR, HITS, BC, and CBO. For each prestige measure, we visualized and

studied the trends that the distribution of these measures follow. We found that

values for all of these measures followed a skewed distribution and showed tendency

towards the power law. From the visualizations, power law characteristics like for a

given measure few of the classes having very high values and all other classes having

low values were observed. We found a greater number of tied values towards the tail

of the distributions.

We demonstrated the importance of prestige computed by the social networking

measures by studying the relationship between the prestige of a class with the run time

execution frequency of that class. The study was performed on two systems where we

performed dynamic analysis on each system by running common use cases that the

systems were built to support. The results of the statistical analysis suggested that

prestige and execution frequency of some classes were correlated. Most of the classes

with high execution frequency were given a high prestige by at least one measure.

Most of the classes that had high prestige awarded by some measures ended up with

40

a high execution frequency. Classes with low execution frequency were given low

prestige by at least one measure. We also showed that prestige of a class can serve

as a better predictor of execution frequency of that class than CBO [13] or lines of

code, for classes that tend to have very high or very low execution frequencies.

We developed an eclipse plugin that we call Insat to automate our experiment.

The source code of systems can be given as input to Insat which is then reverse

engineered to a CU graph, and computations for prestige values are made. Insat

is also equipped to instrument code to gather run time information like execution

frequency of a class.

7.1 Future Work

Future work may include replicating the study in other systems of different sizes

to determine if prestige and execution frequency still correlate. We observed power

law behavior in the distribution of prestige that is seems more conspicuous with

increase in size of the software. This observation may be further explored in future

research. There exists other social networking measures like closeness centrality whose

distribution of prestige and relation to execution frequency may be studied. We used

MAX and MIN metrics in our empirical validation in Chapter 5 which can perhaps

be improved by learning a model that predicts execution frequency from the prestige

computed by the social networking measures. We could then use the same model for

classes with prestige that are in the peak or the tail of the curve, instead of using

MAX and MIN . Further investigation can be done to determine whether other

measures of testability or coupling can better predict execution frequency or if they

are strongly correlated to the social networking measures that we used. Since we now

know that the prestige values can help estimate execution frequencies, these prestige

values could aid the research in automated generation of test inputs.

41

REFERENCES

[1] S Wasserman, K Faust. “Social Network Analysis”. Cambridge University Press,
1994.

[2] S Narayanan. “The Betweenness Centrality of Biological Networks”, MS Thesis.
Virginia Polytechnic Institute and State University, 2005.

[3] J M Kleinberg. “Authoritative Sources in a Hyperlinked Environment” in the
ACM-SIAM Symposium on Discrete Algorithms, 1998.

[4] T Zimmerman, N Nagappan. “Predicting Defects using Network Analysis on
Dependency Graphs”. International Conference on Software Engineering, May
2008.

[5] Y Lin, A Milanova. “Static Analysis for Dynamic Coupling Measures”. The Cen-
ter for Advanced Studies Conference, 2006.

[6] L Page, S Brin, R Motwani, T Winograd. “The PageRank Citation Ranking:
Bringing Order to the Web”. Stanford InfoLab, Nov 1999.

[7] L. C Briand, J Wuest “Empirical Studies of Quality Models in Object-Oriented
Systems”. Advances in Computers, Vol 59, 2002.

[8] E Arisholm, L. C Briand, A Føyen. “A Unified Framework for Coupling Measure-
ment in Object-Oriented Systems”. IEEE Transactions on Software Engineering,
Vol 30, No 8, Aug 2004.

[9] P Ammann, J Offut. “Introduction to Software Testing”, Cambridge University
Press, 2008.

[10] L. C Briand, J. W Daley, J Wüst. “Dynamic Coupling Measurement for Object-
Oriented Software”. IEEE Transactions on Software Engineering, Vol 30, No 8,
Aug 2004.

[11] L.C. Briand, J. Wüst, H. Lounis, “Using Coupling Measurement for Impact Anal-
ysis in Object-Oriented Systems,” International Conference of Software Mainte-
nance, 1999.

42

[12] A Govan, C Meyer. Ranking Methods http://meyer.math.ncsu.edu/Meyer/

Talks/RankingMethods.pdf, May, 2011.

[13] S.R. Chidamber, C.F. Kemerer, “A Metrics Suite for Object Oriented design”,
in IEEE Transactions on Software Engineering, Vol 20, June 1994.

[14] F.G. Wilkie, B.A. Kitchenham. “Coupling measures and change ripples in C++
application software”, in The Journal of Systems and Software, 2000.

[15] L.C. Freeman. “A Set of Centrality Based on Betweenness”, Sociometry, 1977.

[16] A.S. Klovdahl, E.A. Gravissb, A. Yaganehdoostc, M.W. Rossc, A. Wangerd, G.J.
Adamse, J M. Musser. “Networks and tuberculosis: an undetected community
outbreak involving public places”, in Social Science and Medicine, 2001.

[17] G Concas, M Marchesi, A Murgia, R Tonelli. “An Empirical Study of Social Net-
work Metrics in Object-Oriented Software”, Advances in Software Engineering,
Volume 2010.

[18] G Concas, M Marchesi, S Pinna, N Serra. “Power-laws in a large object-oriented
software system”, IEEE Transactions on Software Engineering, Vol 33, 2007.

[19] R Tonelli, G Concas, M Marchesi, A Murgia. “An Analysis of SNA Metrics on
the Java Qualitas Corpus”, India Software Engineering Conference, Feb 2011.

[20] F Li, T Yi. “Apply PageRank Algorithm to Measuring Relationship’s Complex-
ity” in IEEE Pacific-Asia Workshop on Computational Intelligence and Indus-
trial Application, 2008

[21] M. J Harrold, G Rothermel, R Wu, L Yi. “An Empirical Investigation of Program
Spectra”, Workshop on Program Analysis for Software Tools and Engineering,
1998.

[22] M Renieris, S. P Reiss. “Fault Localization With Nearest Neighbor Queries”, in
IEEE International Conference on Automated Software Engineering, 2003.

[23] N Fenton. “Software Measurement: A Necessary Scientific Basis”, IEEE Trans-
actions on Software Engineering, Vol 20, 1994.

[24] R. Martin, “OO Design Quality MetricsAn Analysis of Dependencies,” Work-
shop Pragmatic and Theoretical Directions in Object-Oriented Software Metrics,
OOPSLA. 1994.

[25] The Eclipse Project. http://www.eclipse.org, May, 2011.

[26] Eclipse Java Development Tools. http://www.eclipse.org/jdt/, May, 2011.

[27] BCEL Library. http://jakarta.apache.org/bcel/, May, 2011.

43

[28] Java Universal Network/Graph Framework. http://jung.sourceforge.net/,
May, 2011.

[29] The R Project For Statistical Computing. http://www.r-project.org/, May,
2011.

[30] Apache Ant. http://ant.apache.org/, May, 2011.

[31] JHotDraw - Java GUI framework for technical and structured Graphics. http:
//www.jhotdraw.org/, May, 2011.

[32] Java Foundation Classes(JFC). http://java.sun.com/products/jfc/

download.html, May, 2011.

[33] JFreeChart - Java Chart Library. http://www.jfree.org/jfreechart/, May,
2011.

[34] JTopas - Java Tokenizer and Parser tools. http://jtopas.sourceforge.net/
jtopas/index.html, May, 2011.

[35] Code Cover - An open-source glass-box testing tool. http://www.codecover.
org, May 2011.

44

