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ABSTRACT

CONTINUUM LIMITS OF MARKOV CHAINS WITH APPLICATION TO

WIRELESS NETWORK MODELING AND CONTROL

We investigate the continuum limits of a class of Markov chains. The investigation of

such limits is motivated by the desire to model networks with a very large number of nodes.

We show that a sequence of such Markov chains indexed by N , the number of components

in the system that they model, converges in a certain sense to its continuum limit, which

is the solution of a partial differential equation (PDE), as N goes to infinity. We provide

sufficient conditions for the convergence and characterize the rate of convergence. As an

application we approximate Markov chains modeling large wireless networks by PDEs. We

first describe PDE models for networks with uniformly located nodes, and then generalize to

networks with nonuniformly located, and possibly mobile, nodes. While traditional Monte

Carlo simulation for very large networks is practically infeasible, PDEs can be solved with

reasonable computation overhead using well-established mathematical tools. Based on the

PDE models, we develop a method to control the transmissions in nonuniform networks so

that the continuum limit is invariant under perturbations in node locations. This enables the

networks to maintain stable global characteristics in the presence of varying node locations.
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CHAPTER 1

INTRODUCTION

1.1 Background and Summary

In this work, we first investigate the convergence of a class of Markov chains to their

continuum limits, which are the solutions of certain partial differential equations (PDEs).

Second, as an application of the results of such analysis to network modeling, we use solutions

of certain PDEs to approximate certain characteristics of large wireless networks modeled by

such Markov chains. Finally, based on the PDE models, we develop a method to control the

transmissions in the networks so that the continuum limit is invariant under perturbations

in network node locations.

The conventional way to study large networks is by computer modeling and simulation [1].

The approach involves representing the network in computer software and then applying a

numerical simulation method to study how the network behaves. Typically, each individual

component is explicitly represented as a separate entity. As we are confronted with larger

and larger networks, the number of its components that have to be represented increases,

and this significantly lengthens the time it takes to write, manage, and run computer simula-

tion programs. Simulating large networks typically requires expensive, highly sophisticated

supercomputers involving large parallel computing hardware with specialized software. It is

not uncommon for a simulation run to take days or weeks, even on a large supercomputer.

The larger the network, the longer it takes. The computational overhead associated with

direct simulation thus severely limits the size and complexity of networks that can be studied

in this fashion.

Our recent papers [2, 3, 4] address this problem by using continuum modeling to capture

the global characteristics of large networks. In large networks, we are often more interested
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in the global characteristics of an entire network than in a particular individual component.

Continuum models do away with the need to represent each individual component of a large

network as a separate entity, and consider the behavior of the components on the scale

of the aggregate rather than of the individual. Similar to treating water as a continuous

fluid instead of a large number of individual molecules, continuum modeling treats the large

number of communicating components (or nodes) in a network collectively as a continuum.

The continuum modeling strategies in [2, 3, 4] use solutions of partial differential equations

(PDEs) to approximate large sensor or cellular networks modeled by a certain class of Markov

chains. The PDE model represents the global characteristics of the network, while the

individual characteristics of the components enter the model through the form and the

parameters of the PDE.

PDEs are well-suited to the modeling of continuum behavior. Although uncommon in

modeling networks, they are common in modeling many physical phenomena, including heat,

sound, electromagnetism, and fluid flow. There are well-established mathematical tools to

solve PDEs, such as the finite element method [5] and the finite difference method [6],

incorporated into computer software packages such as Matlab and Comsol. (Part of the

Matlab code for simulations in this dissertation uses existing code written by Nate Burch in

a related research [4].) We can use these tools to greatly reduce computation time, because

instead of running many simulations for stochastic networks, we can solve for only one

deterministic PDE solution. As a result, the effort to run the PDE models in a computer no

longer suffers from the curse of sheer size. (In fact, as we will show, the larger the number

of network nodes in the given spatial area, the closer the PDE approximates it.) Continuum

modeling thus provides a powerful way to deal with the number of components in large

networks. This, in turn, would make it possible to carry out—with reasonable computational

burden even for extremely large systems—network performance evaluation and prototyping,

network design, systematic parameter studies, and optimization of network characteristics.

The work in this dissertation is motivated by the continuum modeling strategies in the
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papers [2, 3, 4] mentioned above, and by the need for a rigorous description of the heuristic

limiting process underlying the construction of their PDE models. We analyze the conver-

gence of a class of Markov chains to their continuum limits, which are the solutions of certain

PDEs. We consider a general Markov chain model in an abstract setting instead of that of

any particular network model. We do this for two reasons: first, our network modeling re-

sults involve a class of Markov chains modeling a variety of communication networks; second,

similar Markov chain models akin to ours arise in several other contexts. For example, a

very recent paper [7] on human crowd modeling derives a limiting PDE in a fashion similar

to our approach.

In the convergence analysis, we show that a sequence of Markov chains indexed by N ,

the number of components in the system that they model, converges in a certain sense to

its continuum limit, which is the solution of a time-dependent PDE, as N goes to ∞. The

PDE solution describes the global spatio-temporal behavior of the model in the limit of

large system size. We apply this abstract result to the modeling of a large wireless sensor

network by approximating a particular global aspect of the network states (queue length)

by a nonlinear convection-diffusion-reaction PDE. This network model includes the network

example discussed in [2] as a special case.

1.2 Overview of the Result on Continuum Limits of

Markov Chains

In this section we provide a brief description of the abstract result on continuum limits

of Markov chains. The application to modeling and control of large networks builds on this

result.

1.2.1 Markov Chain Model

Consider N points VN = {vN(1), . . . , vN(N)} in a compact, convex Euclidean domain D

representing a spatial region. We assume that these points form a uniform grid. (We later

generalizes to nonuniform spacing of points in Chapter ch5.) We refer to these N points in
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D as grid points.

We consider a discrete-time Markov chain

XN,M(k) = [XN,M(k, 1), . . . , XN,M(k,N)]⊤ ∈ R
N

(the superscript ⊤ represents transpose) whose evolution is described by the stochastic dif-

ference equation

XN,M(k + 1) = XN,M(k) + FN(XN,M(k)/M,UN(k)). (1.1)

Here, XN,M(k, n) is the real-valued state associated with the grid point vN (n) at time k, where

n = 1, . . . , N is a spatial index and k = 0, 1, . . . is a temporal index; UN (k) are i.i.d. random

vectors that do not depend on the state XN,M(k); M is an “averaging” parameter (explained

later); and FN is a given function.

Treating N and M as indices that grow, the equation (1.1) defines a doubly indexed

family XN,M(k) of Markov chains indexed by both N and M . (We will later take M to be

a function of N , and treat this family as a sequence XN (k) of the single index N .)

We will give a concrete example of a system described by (1.1) in Chapter 4.

1.2.2 Overview of the Convergence Result

The Markov chain model (1.1) is related to a deterministic difference equation. We set

fN (x) = EFN (x, UN(k)), x ∈ R
N , (1.2)

and define xN,M (k) = [xN,M(k, 1), . . . , xN,M(k,N)]⊤ ∈ R
N by

xN,M (k + 1) = xN,M(k) +
1

M
fN(xN,M(k)), xN,M(0) =

XN,M(0)

M
a.s. (1.3)

(“a.s.” is short for “almost surely”).

We analyze the convergence of the Markov chain to the solution of a PDE using a two-step

procedure. The first step depends heavily on the relation between XN,M(k) and xN,M (k). We

show that for each N , as M → ∞, the difference between XN,M(k)/M and xN,M(k) vanishes,
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by proving that they both converge in a certain sense to the solution of the same ordinary

differential equation (ODE). The basic idea of this convergence is that as the “fluctuation

size” of the system decreases and the “fluctuation rate” of the system increases, the stochastic

system converges to a deterministic “small-fast-fluctuation” limit, which can be characterized

as the solution of a particular ODE. In our case, the smallness of the fluctuation size and

largeness of the fluctuation rate is quantified by the “averaging” parameter M . We use a

weak convergence theorem of Kushner [8] to prove this convergence.

In the second step, we treat M as a function of N , written MN (therefore treating

XN,MN
(k) and xN,MN

(k) as sequences of the single index N , written XN(k) and xN (k),

respectively), and show that for any sequence {MN} of N , as N → ∞, xN (k) converges to

the solution of a certain PDE (and we show how to construct the PDE). This is essentially a

convergence analysis on the approximating error between xN (k) and the PDE solution. We

stress that this is different from the numerical analysis on classical finite difference schemes

(see, e.g., [6, 9, 10]), because our difference equation (1.3), which originates from particular

system models, differs from those designed specifically for the purpose of numerically solving

differential equations. The difficulty in our convergence analysis arises from both the different

form of (1.3) and the fact that it is in general nonlinear. We provide not only sufficient

conditions for the convergence, but also a practical criterion for verifying such conditions

otherwise difficult to check.

Finally, based on these two steps, we show that as N and MN go to ∞ in a dependent

way, the continuous-time-space extension (explained later) of the normalized Markov chain

XN(k)/MN converges to the PDE solution. We also characterize the rate of convergence.

We note that special caution is needed for specifying the details of this dependence between

the two indices N and M of the doubly indexed family XN,M(k) of Markov chains in the

limiting process.
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1.3 Related Literature

The modeling and analysis of stochastic systems such as networks is a large field of

research, and much of the previous contributions share goals with this work.

In the field of direct numerical simulation approaches, many efforts have been made to

accelerate the simulation. For example, parallel simulation techniques have been developed to

exploit the computation power of multiprocessor and/or cluster platforms [11, 12, 13, 14]; new

mechanisms for executing the simulation have been designed to improve the efficiency of event

scheduling in event-driven simulations (see, e.g., [15, 16]); and fluid simulations, in contrast

to traditional packet-level ones, have been used to simplify the network model by treating

network traffic (not nodes) as continuous flows rather than discrete packets [17, 18, 19, 20].

However, as the number of nodes in the network grows extremely large, computer-based

simulations involving individual nodes eventually become practically infeasible. For the

remainder of this section, we review some existing results on analysis of stochastic networks

that do not depend on direct numerical simulation.

Kushner’s ODE method, which forms the basis for the first step of our analysis, is closely

related to the line of research called stochastic approximation. This line of research, started

by Robbins and Monro [21] and Kiefer and Wolfowitz [22] in the early 1950s, studies stochas-

tic processes similar to those addressed by Kushner’s ODE method, and has been widely

used in many areas (see, e.g., [23, 24], for surveys). These convergence results differ from our

results in the sense that they essentially study only the single-step “small-fast-fluctuation”

limit as the “averaging” parameter (in our case, M) goes to ∞, but do not have the second-

step convergence to the “large-system” PDE limit (as N → ∞). In other words, while

Kushner’s method and related work deal with a fixed state space with fixed N , we treat a

sequence of state spaces {RN} indexed by increasing N . There are systems in which the

“averaging” parameter represents some “size” of the system (e.g., population in epidemic

models [25, 26]). However, it is still the case that the convergence requires a fixed dimension

of the state space of the Markov chain, like the case of Kushner’s ODE convergence, and
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does not apply to the “large-system” limit in our second step.

Markov chains modeling various systems have been shown to converge to differential

equations [27, 28], abstract Cauchy problems [26], or other stochastic processes [8, 29].

These results use methods different from Kushner’s, but share with it the principle idea of

“averaging out” of the randomness of the Markov chain. Their deeper connection lies in

weak convergence theory [8, 29, 30] and methods to prove such convergence that they have

in common: the operator semigroup convergence theorem, the martingale characterization

method, and identification of the limit as the solution to a stochastic differential equation.

The reader is referred to [8, 29] and references therein for additional information on these

methods.

There are a variety of other analysis methods for large network systems taking completely

different approaches. For example, the well-cited work of Gupta and Kumar [31], followed

by many others (e.g., [32, 33]), derives scaling laws of network performance parameters (e.g.,

throughput); and many efforts based on mean field theory [34, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46] or on the theory of large deviations [47, 48, 49] study the limit of the so-called

empirical (or occupancy) measure or distribution, which essentially represents the proportion

of components in certain states. These approaches differ from our work because they do not

study the spatio-temporal characteristics of the system. Note that we can directly compute

many such limiting deterministic characteristics of the network once we have computed the

solution of the limiting PDE.

Of course, there do exist numerous continuum models in a wide spectrum of areas that

formulate spatio-temporal phenomena (e.g., [50, 51, 52, 7]), many of which use PDEs. All

these works differ from the work presented here both by the properties of the system being

studied and the analytic approaches. In addition, most of them study distributions of limiting

processes that are random, while our limiting functions themselves are deterministic. We

especially emphasize the difference between our results and those of the mathematical physics

of hydrodynamics [53, 54, 55], because the latter have a similar style by deducing macroscopic
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behavior from microscopic interactions of individual particles, and in some special cases result

in similar PDEs. However, they use an entirely different approach, which usually requires

different assumptions on the systems such as translation invariant transition probabilities,

conservation of the number of particles, and particular distributions of the initial state; and

their limiting PDE is not the direct approximation of system state, but the density of some

associated probability measure.

There is a vast literature on the convergence of a large variety of network models different

from ours, to essentially two kinds of limits: the fluid limit [56, 57, 58, 59, 60, 61, 62] and

the diffusion limit [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], with the latter limit mostly

studied in networks in heavy traffic. (Some papers study both limits [75, 76, 77].) Unlike

our work, this field of research focuses primarily on networks with a fixed number of nodes.

Our work is to be distinguished from approaches where the model is constructed to be

a continuum representation from the start. For example, many papers treat nodes as a

continuum by considering only the average density of nodes [78, 79, 80, 81, 82, 83, 84, 85,

86, 87, 88, 89, 90, 91]; and others model network traffic as a continuum by capturing certain

average characteristics of the data packet traffic [92, 93, 94].

1.4 Organization of This Dissertation

The organization of this dissertation is as follows: In Chapter 2, as a motivational ex-

ample, we approximate the Markov chains modeling multiple i.i.d. random walks by the

solutions to certain PDEs. This helps illustrate the specific goal of our modeling method

and some basic ideas used in our approach to showing the convergence (e.g., the two-step

procedure). In Chapter 3, we investigate the convergence of the Markov chains described

by (1.1) to their the continuum limits, which are the solutions to the limiting PDEs. In

Chapter 4, we introduce a stochastic networks model, and apply the abstract result from

Chapter 3 to derive its continuum limit. In Chapter 5, we generalize to nonuniform net-

works with more general transmissions, and study their continuum limits. In Chapter 6, we

8



consider the control of transmission in nonuniform networks so that the continuum limit is

invariant under perturbations in node locations.. In Chapter 8, we summarize the major

contributions of this dissertation and discuses future work.
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CHAPTER 2

CONTINUUM MODELS OF MULTIPLE RANDOM

WALKS

In this chapter we present the example of approximating multiple i.i.d. random walks by

a PDE. Random walks have been studied with various approaches in numerous contexts (see,

e.g., [95, 96, 97, 98, 99]), and their approximation by limits of many sorts are not new results.

To illustrate the specific goal of our method and some basic ideas used in our approach to

showing the convergence (e.g., the two-step procedure), here we present the example in a

setting similar (but not identical) to (1.1), show the convergence in a way similar to that of

later chapters, and, in contrast to many previous studies, directly approximate the state of

the underlying Markov chain by a PDE (though we do not mean for this chapter to present

much novel material). This is only a motivational example, not a special case of the systems

defined by (1.1). The procedure to show the convergence here will no longer be valid for

systems treated in later chapters.

2.1 Model Setup

First consider the random walk of a single particle on a one-dimensional network consist-

ing of N points uniformly placed over a spatial domain D, as shown in Fig. 2.1. At each time

instant, the particle randomly chooses to move to its left or right immediately neighboring

point with probability Pl(n) and Pr(n), respectively, if it is at point n, where n = 1, . . . , N .

We assume a “sink” boundary condition, i.e., the particle vanishes when it reaches the ends

of D (though “walls” at the boundary are equally treatable).

Now consider the random walks of M particles on the same network, where each par-

ticle behaves independently identically as the one in the single random walk described

10
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Figure 2.1: An illustration of a one-dimensional single random walk.

above. Let XN(k, n) be the number of particles at point n at time k. Define XN(k) =

[XN(k, 1), . . . , XN(k,N)]T , which forms a discrete-time Markov chain with state space R
N .

Suppose that the evolution of XN(k) is described by

XN(k + 1) = XN(k) + FN (XN(k), U(k)), (2.1)

where U(k) are i.i.d. random variables and do not depend on the state XN(k), and FN is a

given function. Notice the difference between this and (1.1).

Define

fN(x) = EFN(x, U(k)), x ∈ R
N , (2.2)

where E represents the expectation operator.

To each pair of pr and pl in [0, 1] satisfying pr + pl ≤ 1, there corresponds a trial with

three possible outcomes with probabilities pr, pl, and 1−(pr+pl), respectively. For each pair

of such pr and pl and each x = 0, 1, . . . , let Qr(x, pr, pl, U) and Ql(x, pr, pl, U) be the random

variables indicating the numbers of the outcomes with probabilities pr and pl, respectively, in

x independent trials described above, where U is a random variable of a certain distribution

(e.g., uniform[0, 1]) and does not depend on x. Hence the vector

[Qr(x, pr, pl, U), Ql(x, pr, pl, U), x−Qr(x, pr, pl, U)−Ql(x, pr, pl, U)]T

of random variables follows a trinomial distribution with parameters x (number of trials)

and p = [pr, pl, 1− (pr + pl)]
T (event probabilities).

11



According to the behavior of the particles in the random walks, there exist random

variables U(k, n), where k = 0, 1, . . . and n = 1, . . . , N , identically distributed as U above,

mutually independent for each k and also independent over k, such that for k = 0, 1, . . . and

n = 1, . . . , N ,

XN(k + 1, n)−XN(k, n)

= −Qr(XN(k, n), Pr(n), Pl(n), U(k, n))−Ql(XN (k, n), Pr(n), Pl(n), U(k, n))

+Qr(XN(k, n− 1), Pr(n− 1), Pl(n− 1), U(k, n− 1))

+Ql(XN(k, n+ 1), Pr(n + 1), Pl(n+ 1), U(k, n + 1)), (2.3)

where XN(k, n) with n ≤ 0 or n ≥ N + 1 are defined to be zero. Here, the four terms

on the right-hand side represent the number of particles moving to the right from, moving

to the left from, coming from the left to, and coming from the right to point n at time k,

respectively. Then we can write (2.1) with U(k) = [U(k, 1), . . . , U(k,N)]T . Hence by (2.3),

for x = [x1, . . . , xN ]
T , the nth component of FN (x, U(k)), where n = 1, . . . , N , is

−Qr(xn, Pr(n), Pl(n), U(k, n))−Ql(xn, Pr(n), Pl(n), U(k, n))

+Qr(xn−1, Pr(n− 1), Pl(n− 1), U(k, n− 1))

+Ql(xn+1, Pr(n− 1), Pl(n+ 1), U(k, n+ 1)), (2.4)

where xn with n ≤ 0 or n ≥ N + 1 are defined to be zero.

By a property of the trinomial distribution,

EQr(x, pr, pl, U) = xpr, and EQr(x, pr, pl, U) = xpl.

Therefore, by (2.4) we have that, for x = [x1, . . . , xN ]
T , the nth component of fN(x), where

n = 1, . . . , N , is

−(Pr(n) + Pl(n))xn + Pr(n− 1)xn−1 + Pl(n+ 1)xn+1, (2.5)

where xn with n ≤ 0 or n ≥ N + 1 are defined to be zero. Hence fN is linear.

12



Define a sequence xN (k) ∈ R
N by the deterministic difference equation

xN(k + 1) = xN(k) + fN (xN(k)), (2.6)

where a.s.,

xN(0) =
XN(0)

M
. (2.7)

2.2 Sketch of the Limiting PDE

Fix T > 0. We seek to approximate the Markov chain XN(k) by a limiting PDE on

[0, T ]×D, where the time and space indices k and n are made continuous as M → ∞ and

N → ∞. We first show that XN (k)/M and xN (k) are close for large M , and then show that

xN (k) is close to the PDE for large N . Hence XN(k)/M is close to the PDE for large M

and N .

2.2.1 Convergence of XN(k) to xN (k)

Now we show that for fixed N , as M → ∞, XN(k) and xN(k) are asymptotically close.

Let Bi(k) = [Bi(k, 1), . . . , Bi(k,N)]T ∈ R
N represent the ith random walk of a single particle

among the M random walks, where i = 1, . . . ,M and Bi(k, n) is the Bernoulli random

variable representing the presence of the particle at point n at time k in the ith random

walk. Since the random walks are i.i.d., we can write EBi(k) = EB(k) for each i and k. We

have by definition that for each k,

XN (k) =

M
∑

i=1

Bi(k). (2.8)

Then it follows that for each k,

EXN(k) =
M
∑

i=1

EBi(k) = MEB(k). (2.9)

By (2.8) and the strong law of large numbers (SLLN), we have that for each k, a.s.,

lim
M→∞

XN (k)

M
= EB(k). (2.10)
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Hence by (2.9) and (2.10) we have that for each k, a.s.,

lim
M→∞

‖XN(k)− EXN(k)‖
(N)
∞ = 0, (2.11)

where ‖ · ‖
(N)
∞ is the ∞-norm on R

N .

It follows from (2.1) that for each k,

EXN(k + 1) = EXN(k) + EFN (XN(k), U(k)). (2.12)

For each k, since U(k) is independent of XN(k), by the law of total expectation and (2.2),

we have that

EFN(XN(k), U(k)) = E(E(FN (XN(k), U(k))|XN(k))) = EfN(XN (k))

= fN (EXN(k)), (2.13)

where the last equality follows from the linearity of fN . Then it follows from (2.12) that for

each k,

EXN (k + 1) = EXN(k) + fN(EXN (k)). (2.14)

By (2.6) and (2.14), xN (k) and EXN(k) are governed by the same difference equation;

and by (2.7) and (2.11), we have that a.s.,

lim
M→∞

∥

∥

∥

∥

EXN(0)

M
− xN (0)

∥

∥

∥

∥

(N)

∞

= 0.

Therefore for each k, a.s.,

lim
M→∞

∥

∥

∥

∥

EXN (k)

M
− xN (k)

∥

∥

∥

∥

(N)

∞

= 0. (2.15)

Then by (2.11), (2.15), and the triangle inequality, we have that for each k, a.s.,

lim
M→∞

∥

∥

∥

∥

XN (k)

M
− xN (k)

∥

∥

∥

∥

(N)

∞

= 0. (2.16)

This implies that, for each k and n, a.s.,

lim
M→∞

∣

∣

∣

∣

XN(k, n)

M
− xN (k, n)

∣

∣

∣

∣

= 0. (2.17)
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2.2.2 Convergence of XN(k) to the PDE

For fixed N , define

XoN(t) = XN(⌊Mt⌋)/M, t ∈ [0, T ],

the continuous-time extension of XN(k) by piecewise-constant time extensions with interval

length 1/M and normalized by M .

Define XpN(t, s) to be the continuous-space extension of XoN(t) by piecewise-constant

space extensions on D with interval length dsN . Thus XpN is the continuous-time-space

extension of XN (k).

Similarly, define xoN (t) = xN (⌊Mt⌋), the piecewise-constant continuous-time extension of

xN (k), and xpN(t, s), the piecewise-constant continuous-space extension of xoN (t). Thus xpN

is the continuous-time-space extension of xN(k). Hence we have defined rigorously here the

function xpN in Section 2.2. By definition it satisfies (2.21). More details on the construction

of these extensions can be found in Section 3.2.

By definition, it follows from (2.17) that XoN and xoN are close for large M in the sense

that for each t, a.s.,

lim
M→∞

‖XoN(t)− xoN (t)‖
(N)
∞ = 0. (2.18)

Note that by definition, for each t,

‖XpN(t, ·)− xpN(t, ·)‖
(D)
∞ = ‖XoN(t)− xoN(t)‖

(N)
∞ ,

where ‖ ·‖
(D)
∞ is the ∞-norm on R

D, the space of functions from D to R. Therefore by (2.18),

XpN and xpN are close for large M in the sense that for each t, a.s.,

lim
M→∞

‖XpN(t, ·)− xpN(t, ·)‖
(D)
∞ = 0. (2.19)

For xN (k) = [xN (k, 1), . . . , xN(k,N)]T , by (2.5) we have that for n = 1, . . . , N ,

xN(k + 1, n)− xN (k, n) =

− (Pr(n) + Pl(n))xN (k, n) + Pr(n− 1)xN (k, n− 1) + Pl(n + 1)xN(k, n+ 1), (2.20)
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where xN(k, n) with n ≤ 0 or n ≥ N + 1 are defined to be zero.

Denote the distance between two neighboring points by dsN ∝ 1/N . Assume that Pl(n) =

pl(n dsN) and Pr(n) = pr(n dsN), where pl(s) and pr(s) are real-valued functions defined on

D. To ensure a finite non-degenerate limit, we assume that for s ∈ D,

pl(s) = b(s) + cl(s)dsN and pr(s) = b(s) + cr(s)dsN .

Define c = cl − cr. We call b the diffusion and c the convection, because a greater b means

more rapid diffusion and a greater c means a larger directional bias.

Denote by dt the length of time between two consecutive time instants, and set dt = 1/M .

Without loss of generality, set D = [0, 1]. For each N , let the function xpN(t, s) on [0, T ]×D

be such that for each k and n,

xpN(k dt, n dsN) = xN (k, n). (2.21)

Then by the definition of xpN and by (2.20), we have that for (t, s) = (k dt, n dsN) for each

k and n,

xpN(t + dt, s)− xpN(t, s) = −(pr(s) + pl(s))xpN(t, s)

+ pr(s− dsN)xpN(t, s− dsN) + pl(s+ dsN)xpN(t, s+ dsN). (2.22)

Assume that b ∈ C2, c ∈ C1, and xpN is twice continuously differentiable in s.

Put into the right-hand side of (2.22) the Taylor expansions

xpN(t, s± dsN) = xpN(t, s)±
∂xpN

∂s
(t, s)dsN +

∂2xpN

∂s2
(t, s)

ds2N
2

+ o(ds2N), (2.23)

b(s± ds) = b(s)± bs(s)dsN + bss(s)
ds2N
2

+ o(ds2N), (2.24)

and

c(s± dsN) = c(s)± cs(s)dsN + o(dsN). (2.25)
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Then we have that

xpN(t + dt, s)− xpN(t, s) = b(s)
∂2xpN

∂s2
(t, s)ds2N + (2bs(s) + c(s))

∂xpN

∂s
(t, s)ds2N

+ (bss(s) + cs(s))xpN(t, s)ds
2
N + o(ds2N), (2.26)

where a single subscript s represents first derivative and a double subscript ss represents

second derivative.

Now we set the time step dt := 1/M to be ds2N , which is a standard time-space scaling

approach to ensuring the convergence of the difference equation to a PDE. Since dsN depends

on N , so do dt and M . We hence rewrite them as dtN and MN , respectively.

Divide both sides of (2.26) by dtN = ds2N and get

xpN (t+ dtN , s)− xpN (t, s)

dtN
= b(s)

∂2xpN

∂s2
(t, s) + (2bs(s) + c(s))

∂xpN

∂s
(t, s)

+ (bss(s) + cs(s))xpN(t, s) +
o(ds2N)

ds2N
.

As N → ∞, dsN → 0, and hence dtN = ds2N → 0. Assume that xpN is continuously

differentiable in t. Then by taking the limit as N → ∞ and rearranging, we get a limiting

PDE that xpN satisfies:

ẋpN(t, s) =
∂

∂s

(

b(s)
∂xpN

∂s
(t, s) + (bs(s) + c(s))xpN(t, s)

)

, (2.27)

for (t, s) ∈ [0, T ]×D, with boundary condition xpN(t, s) = 0.

Since dsN ∝ 1/N , we have that MN := 1/dtN = 1/ds2N ∝ N2. As N → ∞, MN → ∞

with the rate O(N2). Thus N and MN go to ∞ in a dependent way. Hence for large N , MN

is also large, and by (2.19), for each t, XpN , the continuous-time-space extension of XN(k),

is close to xpN , the continuous-time-space extension of xN (k). Thus we can approximate

XN(k) by the solution of the PDE (2.27). This PDE is called the one-dimensional diffusion-

convection equation, which can be easily solved [97].
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◦ Monte Carlo simulation —— PDE solution

Figure 2.2: The Monte Carlo simulations and the PDE solution of M = 1000 one-
dimensional random walks on N = 50 points, with b = 1/2 and c = 0, at t = 1s.

2.3 Comparisons between the PDE Solution and

Monte Carlo Simulations of the Random Walks

We compare the limiting PDE solution with Monte Carlo simulations for M = 1000 i.i.d.

random walks on N = 50 points in the domain D = [−1, 1]. We show the PDE solution and

the Monte Carlo simulation results at t = 1s. The random walks have diffusion b = 1/2 and

convection c = 0 in Fig. 2.2 and c = 1/2 in Fig. 2.3, respectively, where the x-axis denotes

the point locations and y-axis denotes the normalized number of particles. There is strong

resemblance between the Monte Carlo simulations and the PDE solution. Here the PDEs

only took fractions of a second to solve on a computer, while the Monte Carlo simulations

took on the order of tens of minutes.

18



−1  −0.5 0   0.5 1   
0

0.5

1

1.5

2

2.5

◦ Monte Carlo simulation —— PDE solution

Figure 2.3: The Monte Carlo simulations and the PDE solution of M = 1000 one-
dimensional random walks on N = 50 points, with b = 1/2 and c = 1/2, at t = 1s.

2.4 Discussion

We note again that the result in this chapter is not new, and similar ones may be obtained

with different approaches. For example, the well-studied Fokker-Planck equation (also known

as the Kolmogorov forward equation) [100] characterizes by a PDE solution the distribution

of the limiting random process of a random walk model. On the other hand, we characterize

the deterministic limit directly approximating the state of the Markov chain, in a way more

consistent with that of our approach in the following chapters.

For the class of Markov chains defined by (1.1), which we study in the following chapter

as the main object, this motivational example helps to illustrate the goal and some basic

ideas of the approach, but not the detailed means. Specifically, the analysis above does

not apply to Markov chains underlying the network introduced later in Chapter 4 of this
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dissertation. These Markov chains model systems with more complex behaviors such as in-

teractions between the components, e.g., the interference between the nodes in the network.

Consequently the Markov chains are in general no longer the simple superposition of i.i.d.

random processes that allows us to use the SLLN; and these systems lack in general the lin-

earity of fN . Hence the procedure used here to show the convergence of the Markov chain to

a deterministic function (as in (2.17)) no longer works for the class of Markov chains in (1.1).

Instead, in Section 3.5.1 we use Kushner’s ODE convergence theorem in [8] to analyze the

convergence similar to (2.17), and provide sufficient conditions for the convergence.

The derivation to show the convergence of xpN to the PDE solution is somewhat heuristic.

A rigorous numerical analysis for this involves showing that the truncation error between

xN (k) in the difference equation (2.6) and the PDE solution goes to 0 as N → ∞. For at least

some special cases of the random walks example, a rigorous numerical analysis can be found

in many textbooks (see e.g., [6, 9]), as the difference equation in those cases coincides with a

classical finite difference scheme for solving the PDE. On the other hand, for the difference

equation (1.3) of xN (k) arising from the systems that we treat later, such analysis is no

longer readily available, and difficulty rises from both the different form and the nonlinearity

of (1.3). We analyze such convergence and provide sufficient conditions for it in Section 3.5.2.

Moreover, the convergence shown in this chapter is uniform with respect to s and point-

wise with respect to t. In contrast, in the following chapter we show the convergence of the

Markov chain to the PDE solution in a different sense. In addition, based on our analysis,

we characterize the rate of convergence.

We stress again that the Markov chain presented in this chapter is not a special case of

the one studied in the following chapters, and can not be treated with the same procedure.

(For example, FN in (2.1) above does not satisfy the first assumption of Theorem 1, which

we will later assume that FN in (1.1) satisfies.)
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CHAPTER 3

CONTINUUM LIMITS OF MARKOV CHAINS

3.1 Construction of the Limiting PDE

We begin with the construction of the PDE whose solution describes the limiting behavior

of the abstract Markov chain model.

For each N and the grid points VN = {vN (1), . . . , vN(N)} ⊂ D as introduced in Sec-

tion 1.2.1, we denote the distance between any two neighboring grid points by dsN . For any

continuous function w : D → R, let yN be the vector in R
N composed of the values of w

at the grid points vN (n); i.e., yN = [w(vN(1)), . . . , w(vN(N))]⊤. Given a point s ∈ D, we

let {sN} ⊂ D be any sequence of grid points sN ∈ VN such that as N → ∞, sN → s. Let

fN(yN , sN) be the component of the vector fN (yN) corresponding to the location sN ; i.e., if

sN = vN (n) ∈ VN , then fN(yN , sN) is the nth component of fN(yN).

In order to obtain a limiting PDE, we have to make certain technical assumptions on

the asymptotic behavior of the sequence of functions {fN} that insure that fN (yN , sN) is

asymptotically close to an expression that looks like the right-hand side of a time-dependent

PDE. Such conditions are familiar in the context of PDE limits of Brownian motion. Check-

ing these conditions often amounts to a simple algebraic exercise. We provide a concrete

example (the network model) in Chapter 4 where fN satisfies these assumptions.

We assume that there exist sequences {δN}, {βN}, {γN}, and {ρN}, functions f and h,

and a constant c < ∞, such that as N → ∞, δN → 0, δN/βN → 0, γN → 0, ρN → 0, and:

• Given s in the interior of D, there exists a sequence of functions {φN} : D → R such

that

fN (yN , sN)/δN = f(sN , w(sN),∇w(sN),∇
2w(sN)) + φN(sN ), (3.1)
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for any sequence of grid points sN → s, and for N sufficiently large, |φN(sN)| ≤ cγN ;

and

• Given s on the boundary of D, there exists a sequence of functions {ϕN} : D → R

such that

fN(yN , sN)/βN = h(sN , w(sN),∇w(sN),∇
2w(sN)) + ϕN(sN), (3.2)

for any sequence of grid points sN → s, and for N sufficiently large, |ϕN(sN )| ≤ cρN .

Here, ∇iw represents all the ith order derivatives of w, where i = 1, 2.

Fix T > 0 for the rest of this chapter. Assume that there exists a unique function

z : [0, T ]×D → R that solves the limiting PDE

ż(t, s) = f(s, z(t, s),∇z(t, s),∇2z(t, s)), (3.3)

with boundary condition

h(s, z(t, s),∇z(t, s),∇2z(t, s)) = 0 (3.4)

and initial condition z(0, s) = z0(s).

Recall that xN,M(k) is defined by (1.3). Suppose that we associate the discrete time

k with points on the real line spaced apart by a distance proportional to δN . Then, the

technical assumptions (3.1) and (3.2) imply that xN,M (k) is, in a certain sense, close to the

solution of the limiting PDE (3.3) with boundary condition (3.4). Below we develop this

argument rigorously.

Establishing existence and uniqueness for the resulting nonlinear models is a difficult

problem in theoretical analysis of PDEs in general. The techniques are heavily dependent

on the particular form of f . Therefore, as is common with numerical analysis, we assume that

this has been established. Later, we apply the general theory to the modeling of networks

of particular characteristics. The resulting limiting PDE is a nonlinear reaction-convection-

diffusion problem. Existence and uniqueness for such problems for “small” data and short
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times can be established under general conditions. Key ingredients are coercivity, which will

hold as long as z is bounded away from 1, and diffusion dominance, which will also hold as

long as z is bounded above.

3.2 Continuous Time-space Extension of the Markov

Chain

Next we define the continuous time-space extension of the Markov chain XN,M(k).

For each N and M , define

dtN,M =
δN
M

, tN,M(k) = k dtN,M , KN,M =

⌊

T

dtN,M

⌋

, and T̃N =
T

δN
. (3.5)

First, we construct the continuous-time extension X
(o)
N,M(t̃) of XN,M(k), as the piecewise-

constant time interpolant with interval length 1/M and normalized by M :

X
(o)
N,M(t̃) = XN,M(⌊Mt̃⌋)/M, t̃ ∈ [0, T̃N ]. (3.6)

Similarly, define the continuous-time extension x
(o)
N,M(t̃) of xN,M(k) by

x
(o)
N,M(t̃) = xN,M(⌊Mt̃⌋), t̃ ∈ [0, T̃N ]. (3.7)

Let X
(p)
N,M(t, s), where (t, s) ∈ [0, T ] × D, be the continuous-space extension of X

(o)
N,M(t̃)

(with t̃ ∈ [0, T̃N ]) by piecewise-constant space extensions on D and with time scaled by δN

so that the time-interval length is δN/M := dtN,M . By piecewise-constant space extension of

X
(o)
N,M , we mean the piecewise-constant function on D such that the value of this function

at each point in D is the value of the component of the vector X
(o)
N,M corresponding to the

grid point that is “closest to the left” (taken one component at a time). Then X
(p)
N,M(t, s) is

the continuous time-space extension of XN,M(k), and for each t, X
(p)
N,M(t, ·) is a real-valued

function defined on D. We illustrate in Fig. 3.1.

The function X
(p)
N,M(t, s) with (t, s) ∈ [0, T ]×D is in the space DD[0, T ] of functions from

[0, T ] × D to R that are Càdlàg with respect to the time component, i.e., right-continuous
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n & s k & t

Figure 3.1: An illustration of XN,M(k) and X
(p)
N,M(t, s) in one dimension, represented by

solid dots and dashed-line rectangles, respectively.

at each t ∈ [0, T ), and have left-hand limits at each t ∈ (0, T ]. Denote the norm ‖ · ‖(p) on

DD[0, T ] such that for x ∈ DD[0, T ],

‖x‖(p) = sup
t∈[0,T ]

∫

D

|x(t, s)| ds. (3.8)

3.3 Main Results for Continuum Limit of the Abstract

Markov Chain Model

In this section, we present the main theorem, Theorem 1, which states that under some

conditions, the continuous-time-space extension X
(p)
N,M of the Markov chain XN,M(k) con-

verges to the solution z of the limiting PDE (3.3) in the norm defined by (3.8), as N and M

go to ∞ in a dependent way. By this we mean that we set M to be a function of N , written

MN , such that MN → ∞ as N → ∞. Then we can treat XN,MN
(k), xN,MN

(k), X
(p)
N,MN

,

dtN,MN
, tN,MN

, and KN,MN
all as sequences of the single index N , written XN(k), xN (k),

X
(p)
N , dtN , tN , and KN respectively. We apply such changes of notation throughout the rest
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of the paper whenever M is treated as a function of N .

Define zN(k, n) = z(tN (k), vN(n)) and zN (k) = [zN (k, 1), . . . , zN(k,N)]⊤ ∈ R
N . Define

the truncation error

uN(k, n) =
fN(zN (k), n)

δN
−

zN (k + 1, n)− zN (k, n)

dtN
, (3.9)

and uN(k) = [uN(k, 1), . . . , uN(k,N)]⊤ ∈ R
N . Define

εN(k, n) = xN (k, n)− zN (k, n), (3.10)

and εN(k) = [εN(k, 1), . . . , εN(k,N)]⊤ ∈ R
N . By (1.3), (3.5), (3.9), and (3.10), we have that

εN(k + 1) = εN(k) +
1

MN

(fN(xN(k))− fN(zN (k))) + dtNuN(k)

= εN(k) +
1

MN

(fN(zN(k) + εN(k))− fN(zN (k))) + dtNuN(k). (3.11)

Let εN = [εN(1)
⊤, . . . , εN(KN)

⊤]⊤ and uN = [uN(0)
⊤, . . . , uN(KN −1)⊤]⊤ denote vectors

in the (KNN)-dimensional vector space R
KNN . Assume that

εN(0) = 0. (3.12)

Then by (3.11), for fixed z, there exists a function HN : RKNN → R
KNN such that

εN = HN(uN). (3.13)

Define the vector norm ‖·‖(N) on R
KNN such that for x = [x(1)⊤, . . . , x(KN )

⊤]⊤ ∈ R
KNN ,

where x(k) = [x(k, 1), . . . , x(k,N)]⊤ ∈ R
N ,

‖x‖(N) = dsN max
k=1,...,KN

N
∑

n=1

|x(k, n)|. (3.14)

Define

µN = lim
α→0

sup
‖u‖(N)≤α

‖HN(u)‖
(N)

‖u‖(N)
. (3.15)

We now present the main theorem.
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Theorem 1: Assume that:

T1.1. there exist a sequence {ξN} and c1 < ∞ such that as N → ∞, ξN → 0, and for N

sufficiently large, ‖uN‖
(N) < c1ξN ;

T1.2. for each N , there exists an identically distributed sequence {λN(k)} of integrable ran-

dom variables such that for each k and x, |FN(x, UN (k))| ≤ λN(k) a.s.;

T1.3. for each N , the function FN(x, UN (k)) is continuous in x a.s.;

T1.4. for each N , the ODE ẏ = fN (y) has a unique solution on [0, T̃N ] for any initial condition

y(0), where T̃N is as defined by (3.5);

T1.5. z is Lipschitz continuous on [0, T ]×D;

T1.6. for each N , (3.12) holds; and

T1.7. the sequence {µN} is bounded.

Then a.s., there exist c0 < ∞, N0, and M̂1 < M̂2 < M̂3, . . . such that for each N ≥ N0 and

each MN ≥ M̂N ,

‖X
(p)
N − z‖(p) < c0max{ξN , dsN}.

This theorem states that as N and MN go to ∞ in a dependent way, X
(p)
N converges to z in

‖ · ‖(p) a.s. We prove this in Section 3.5.3.

3.4 Sufficient Conditions on fN for the Boundedness of

{µN}

The key assumption of Theorems 1 is that the sequence {µN} is bounded (Assump-

tion T1.7). We present in the following theorem a result that gives specific sufficient con-

ditions on fN that guarantee that {µN} is bounded. This provide a practical criterion to

verify this key assumption otherwise difficult to check.
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Consider fixed z. We assume that fN ∈ C1 and denote the jacobian matrix of fN at x by

DfN(x). Define for each N and for k = 0, . . . , KN − 1,

AN(k) = IN +
1

MN

DfN (zN(k)), (3.16)

where IN is the identity matrix in R
N×N .

We denote the 1-norm on R
N and its induced norm on R

N×N both by ‖ · ‖
(N)
1 ; i.e., for a

vector x = [x1, . . . , xN ]
⊤ ∈ R

N ,

‖x‖
(N)
1 =

N
∑

n=1

|xn|, (3.17)

and for a matrix A ∈ R
N×N with aij being its (i, j)th component,

‖A‖
(N)
1 = max

j=1,...,N

N
∑

i=1

|aij |. (3.18)

We then have

Theorem 2: Assume that:

T2.1. for each N , (3.12) holds;

T2.2. for each N , fN ∈ C1; and

T2.3. there exists c < ∞ such that for N sufficiently large and for k = 1, . . . , KN − 1,

‖AN(k)‖
(N)
1 ≤ 1 + c dtN , where ‖ · ‖

(N)
1 is defined by (3.18).

Then {µN} is bounded.

We prove this in Section 3.5.4.

In Section 4.1, we will introduce a network model and later show in Section 4.2 that these

sufficient conditions hold for that model and use this theorem to prove the convergence of

its underlying Markov chain to a PDE.

3.5 Proofs of the Convergence Results

This section is devoted solely to the proofs of the results above. As such, the material

here is highly technical and might be tedious to follow in detail, though we have tried our
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best to make it as readable as possible. The reader can safely skip this section without doing

violence to the main ideas of the paper, though much of our hard work is reflected here.

We first prove Theorems 1 by analyzing the convergence of the Markov chains XN,M(k)

to the solution of the limiting PDE in a two-step procedure. In the first step, for each N ,

we show in Section 3.5.1 that as M → ∞, XN,M(k)/M converges to xN,M(k). In the second

step, we treat M as a function of N , written MN , and for any sequence {MN}, we show in

Section 3.5.2 that as N → ∞, xN (k) converges to the PDE solution. Based on the two steps,

we show in Section 3.5.3 that as N and MN go to ∞ in a dependent way, X
(p)
N converges to

the PDE solution, proving Theorem 1. Finally, we prove Theorem 2 in Section 3.5.4.

3.5.1 Convergence of XN,M(k) and xN,M (k) to the Solution of the Same ODE

In this subsection, we show that for each N , XN,M(k)/M and xN,M(k) are close in a

certain sense for large M under certain conditions, by proving that both their continuous-

time extensions converge to the solution of the same ODE.

For fixed T and N , by (3.5), T̃N is fixed. As defined by (3.6) and (3.7) respectively,

both X
(o)
N,M(t̃) and x

(o)
N,M (t̃) with t̃ ∈ [0, T̃N ] are in the space DN [0, T̃N ] of R

N -valued Càdlàg

functions on [0, T̃N ]. Since they both depend on M , each one of them forms a sequence of

functions in DN [0, T̃N ] indexed by M = 1, 2, . . .. Define the ∞-norm ‖ · ‖
(o)
∞ on DN [0, T̃N ];

i.e., for x ∈ DN [0, T̃N ],

‖x‖(o)∞ = max
n=1,...,N

sup
t∈[0,T̃N ]

|xn(t)|,

where xn is the nth components of x.

Now we present a lemma stating that under some conditions, for each N , as M → ∞,

X
(o)
N,M converges uniformly to the solution of the ODE ẏ = fN(y), and x

(o)
N,M converges

uniformly to the same solution, both on [0, T̃N ].

Lemma 1: Assume, for each N , that:

L1.1. there exists an identically distributed sequence {λN(k)} of integrable random variables

such that for each k and x, |FN(x, UN (k))| ≤ λN(k) a.s.;
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L1.2. the function FN(x, UN (k)) is continuous in x a.s.; and

L1.3. the ODE ẏ = fN (y) has a unique solution on [0, T̃N ] for any initial condition y(0).

Suppose that as M → ∞, X
(o)
N,M(0)

P
−→ y(0) and x

(o)
N,M(0) → y(0), where “

P
−→” represents

convergence in probability. Then, for each N , as M → ∞, ‖X
(o)
N,M − y‖

(o)
∞

P
−→ 0 and ‖x

(o)
N,M −

y‖
(o)
∞ → 0 on [0, T̃N ], where y is the unique solution of ẏ = fN (y) with initial condition y(0).

To prove Lemma 1, we first present a lemma due to Kushner [8].

Lemma 2: Assume, for each N , that:

L2.1. the set {|FN(x, UN (k))| : k ≥ 0} is uniformly integrable;

L2.2. for each k and each bounded random variable X ,

lim
δ→0

E sup
|Y |≤δ

|FN(X,UN (k))− FN (X + Y, UN(k))| = 0;

and

L2.3. there is a function f̂N(·) [continuous by 2̂] such that as n → ∞,

1

n

n
∑

k=0

FN(x, UN (k))
P
−→ f̂N(x).

Suppose that, for each N , ẏ = f̂N (y) has a unique solution on [0, T̃N ] for any initial condition,

and that X
(o)
N,M(0) ⇒ y(0), where “⇒” represents weak convergence. Then for each N , as

M → ∞, ‖X
(o)
N,M − y‖

(o)
∞ ⇒ 0 on [0, T̃N ].

We note that in Kushner’s original theorem, the convergence of X
(o)
N,M to y is stated in

terms of Skorokhod norm [8], but it is equivalent to the ∞-norm in our case where the time

interval [0, T̃N ] is finite and the limit y is continuous [101].

We now prove Lemma 1 by showing that the Assumptions L2.1, L2.2, and L2.3 of

Lemma 2 hold under the Assumptions L1.1, L1.2, and L1.3 of Lemma 1.

Proof of Lemma 1: Since λN(k) is integrable, as a → ∞, E|λN(k)|1{|λN (k)|>a} → 0, where

1A is the indicator function of set A. By Assumption L1.1, for each k, x, and a > 0,

E|FN(x, UN (k))|1{|FN(x,UN (k))|>a} ≤ E|λN(k)|1{|FN (x,UN (k))|>a} ≤ E|λN(k)|1{|λN (k)|>a}.
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Therefore as a → ∞,

sup
k≥0

E|FN(x, UN (k))|1{|FN(x,UN (k))|>a} → 0;

i.e., the family {|FN(x, UN (k))| : k ≥ 0} is uniformly integrable, and hence Assumption L2.1

holds.

By Assumption L1.2, for each k and each bounded X , a.s.,

lim
δ→0

sup
|Y |≤δ

|FN(X,UN(k))− FN (X + Y, UN (k))| = 0.

By Assumption L1.1, for each k and each bounded X and Y , a.s.,

|FN (X,UN(k))− FN(X + Y, UN(k))| ≤ |FN(X,UN(k))|+ |FN(X + Y, UN(k))|

≤ 2λN(k).

Therefore, for each k, each bounded X , and each δ, a.s.,
∣

∣

∣

∣

∣

sup
|Y |≤δ

|FN(X,UN (k))− FN (X + Y, UN (k))|

∣

∣

∣

∣

∣

≤ 2λN(k),

an integrable random variable. By the dominant convergence theorem,

lim
δ→0

E sup
|Y |≤δ

|FN(X,UN (k))− FN (X + Y, UN(k))|

= E lim
δ→0

sup
|Y |≤δ

|FN(X,UN(k))− FN(X + Y, UN (k))| = 0.

Hence Assumption L2.2 holds.

Since UN (k) are i.i.d., by the weak law of large numbers and the definition of fN in (1.2),

as n → ∞,

1

n

n
∑

k=0

FN(x, UN (k))
P
−→ fN(x).

Hence Assumption L2.3 holds.

Therefore, by Lemma 2, for each N , as M → ∞, ‖X
(o)
N,M − y‖

(o)
∞ ⇒ 0 on [0, T̃N ]. For any

sequence of random processes {Xn}, if A is a constant, Xn ⇒ A if and only if Xn
P
−→ A.

Therefore, as M → ∞, ‖X
(o)
N,M − y‖

(o)
∞

P
−→ 0 on [0, T̃N ]. The same argument implies the

deterministic convergence of x
(o)
N,M : as M → ∞, ‖x

(o)
N,M − y‖

(o)
∞ → 0 on [0, T̃N ]. �
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Based on Lemma 1, we get the following lemma, which states that, for each N , X
(o)
N,M

and x
(o)
N,M are close with high probability for large M .

Lemma 3: Let the assumptions of Lemma 1 hold. Then for any sequence {ζN}, for each

N and for M sufficiently large,

P{‖X
(o)
N,M − x

(o)
N,M‖(o)∞ > ζN} ≤ 1/N2 on [0, T̃N ].

Proof: By the triangle inequality,

‖X
(o)
N,M − x

(o)
N,M‖(o)∞ ≤ ‖X

(o)
N,M − y‖(o)∞ + ‖x

(o)
N,M − y‖(o)∞ .

By Lemma 1, for each N , as M → ∞, ‖X
(o)
N,M − x

(o)
N,M‖

(o)
∞

P
−→ 0 on [0, T̃N ]. This completes

the proof.

Since X
(o)
N,M and x

(o)
N,M are the continuous-time extensions of XN,M(k) and xN,M(k) by

piecewise-constant extensions, respectively, we have the following corollary stating that for

each N , as M → ∞, XN,M(k)/M converges uniformly to xN,M(k).

Corollary 1: Let the assumptions of Lemma 1 hold. Then for any sequence {ζN}, for

each N and for M sufficiently large, we have that

P

{

max
k=1,...,KN,M

n=1,...,N

∣

∣

∣

∣

XN,M(k, n)

M
− xN,M(k, n)

∣

∣

∣

∣

> ζN

}

≤
1

N2
.

3.5.2 Convergence of xN (k) to the Limiting PDE

For the remainder of this section, we treat M as a function of N , written MN . We now

state conditions under which εN converges to 0 for any sequence {MN} as N → ∞.

Lemma 4: Assume that:

L4.1 there exist a sequence {ξN} and c1 < ∞ such that as N → ∞, ξN → 0, and for N

sufficiently large, ‖uN‖
(N) < c1ξN ;

L4.2 for each N , (3.12) holds; and

L4.3 the sequence {µN} is bounded.
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Then there exists c0 < ∞ such that for any sequence {MN} and N sufficiently large,

‖εN‖
(N) < c0ξN .

Proof: By the definition of µN (3.15), for each N , there exists δ > 0 such that for α < δ,

sup
‖u‖(N)≤α

‖HN(u)‖
(N)

‖u‖(N)
≤ µN + 1.

By Assumption L4.1, ‖uN‖
(N) → 0 as N → ∞. Then there exists α1 such that for N

sufficiently large, ‖uN‖
(N) ≤ α1 < δ, and hence

‖HN(uN)‖
(N)

‖uN‖(N)
≤ sup

‖u‖(N)≤α1

‖HN(u)‖
(N)

‖u‖(N)
≤ µN + 1.

Therefore, for N sufficiently large,

‖εN‖
(N) = ‖HN(uN)‖

(N) ≤ (µN + 1)‖uN‖
(N).

By Assumption L4.3, and because the derivation above does not depend on the choice of the

sequence {MN}, the proof is completed.

3.5.3 Proof of Theorem 1

We now prove the main theorem.

Proof of Theorem 1: By Lemma 4, there exist a sequence {ξN} and c2 < ∞ such that as

N → ∞, ξN → 0, and for N sufficiently large, ‖εN‖
(N) ≤ c2ξN .

Let XN = [XN(1)
⊤, . . . , XN(KN)

⊤]⊤/MN , xN = [xN (1)
⊤, . . . , xN (KN)

⊤]⊤, and zN =

[zN (1)
⊤, . . . , zN(KN )

⊤]⊤ denote vectors in R
KNN . Hence εN = xN − zN .

For x ∈ R
KNN , where x = [x(1)⊤, . . . , x(KN)

⊤]⊤ and x(k) = [x(k, 1), . . . , x(k,N)]⊤ ∈ R
N ,

we have that

‖x‖(N) ≤ max
k=1,...,KN
n=1,...,N

|x(k, n)|.

Therefore, by Corollary 1, there exists a sequence {M̃N} such that if for each N , MN ≥ M̃N ,

then
∞
∑

N=1

P{‖XN − xN‖
(N) > ξN} ≤

∞
∑

N=1

1/N2 < ∞.
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It follows from the first Borel-Cantelli Lemma that a.s., there exists N1 such that for N ≥ N1

and MN ≥ M̃N , ‖XN − xN‖
(N) ≤ ξN .

By the triangle inequality,

‖XN − zN‖
(N) ≤ ‖XN − xN‖

(N) + ‖εN‖
(N).

Therefore, a.s., there exists N2 such that for N ≥ N2 and MN > M̃N ,

‖XN − zN‖
(N) < (c2 + 1)ξN . (3.19)

Let z
(p)
N (t, s), where (t, s) ∈ [0, T ]× D, be the continuous-time-space extension of zN (k)

defined in the same way as X
(p)
N (t, s) is defined from XN (k). Then by its definition, we have

that

‖X
(p)
N − z

(p)
N ‖(p) = ‖XN − zN‖

(N). (3.20)

Let ΩN(k, n) = Ω
(t)
N (k) × Ω

(s)
N (n) be the subset of [0, T ] × D containing (tN(k), vN(n))

over which z
(p)
N is piecewise constant; i.e., tN (k) ∈ Ω

(t)
N (k) and vN (n) ∈ Ω

(s)
N (n), and for all

(t, s) ∈ ΩN(k, n), z
(p)
N (t, s) = z

(p)
N (tN (k), vN(n)) = z(tN (k), vN(n)).

By (3.5), there exists a sequence {M̄N} such that if for each N , MN ≥ M̄N , then for N

sufficiently large, dtN ≤ dsN . By Assumption T1.5, there exists c3 < ∞ such that for N

sufficiently large, for MN ≥ M̄N , and for k = 1, . . . , KN and n = 1, . . . , N ,

|z(tN (k), vN(n))− z(t, s)| ≤ c3dsN , (t, s) ∈ ΩN(k, n).
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Then we have that

‖z
(p)
N − z‖(p) = sup

t∈[0,T ]

∫

D

|z
(p)
N (t, s)− z(t, s)| ds

= sup
t∈[0,T ]

∑

n

∫

Ω
(s)
N

(n)

|z
(p)
N (t, s)− z(t, s)| ds

= max
k

sup
t∈Ω

(t)
N

(k)

∑

n

∫

Ω
(s)
N

(n)

|z
(p)
N (t, s)− z(t, s)| ds

≤ max
k

∑

n

∫

Ω
(s)
N

(n)

sup
t∈Ω

(t)
N

(k)

|z
(p)
N (t, s)− z(t, s)| ds

= max
k

∑

n

∫

Ω
(s)
N

(n)

sup
t∈Ω

(t)
N

(k)

|z(tN (k), vN(n))− z(t, s)| ds

≤ max
k

∑

n

∫

Ω
(s)
N

(n)

c3dsN ds = c3dsN |D|, (3.21)

where |D| is the Lebesgue measure of D.

By the triangle inequality,

‖X
(p)
N − z‖(p) ≤ ‖X

(p)
N − z

(p)
N ‖(p) + ‖z

(p)
N − z‖(p).

Set M̂N = max{M̃N , M̄N}. By (3.19), (3.20), and (3.21), a.s., there exist c0 < ∞ and N0

such that for N ≥ N0 and MN ≥ M̂N ,

‖X
(p)
N − z‖(p) < c0max{ξN , dsN}.

�

3.5.4 Proof of Theorem 2

To prove Theorem 2, we first prove Lemma 5 and 6 below.

First we provide in Lemma 5 a sequence bounding {µN} from above. By (3.13), for each

N , for k = 1, . . . , KN and n = 1, . . . , N , we can write εN(k, n) = H
(k,n)
N (uN), where H

(k,n)
N is

from R
KNN to R. Suppose that HN is differentiable at 0. Define

DHN = max
k=1,...,KN

KN
∑

i=1

max
j=1,...,N

N
∑

n=1

∣

∣

∣

∣

∣

∂H
(k,n)
N

∂u(i, j)
(0)

∣

∣

∣

∣

∣

. (3.22)

We have that
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Lemma 5: Assume that:

L5.1 for each N , (3.12) holds; and

L5.2 for each N , HN ∈ C1 locally at 0.

Then we have that for each N , µN ≤ DHN .

Proof: Let JN be the jacobian matrix of HN at 0. Note that JN ∈ R
KNN×KNN . Let

JN(l, m) be its (l, m)th component, where l, m = 1, . . . , KNN . Then we have that for

k, i = 1, . . . , KN and n, j = 1, . . . , N ,

∂H
(k,n)
N

∂u(i, j)
(0) = JN((k − 1)N + n, (i− 1)N + j).

Let CN(k, i) be the matrix in R
N×N such that for n, j = 1, . . . , N , the (n, j)th component of

CN(k, i) is

∂H
(k,n)
N

∂u(i, j)
(0);

i.e., CN(k, i) is the (k, i)th block in the partition of JN into N×N blocks (there are KN×KN

such blocks), where k, i = 1, . . . , KN . Then by (3.22),

DHN = max
k=1,...,KN

KN
∑

i=1

‖CN(k, i)‖
(N)
1 . (3.23)

(‖ · ‖
(N)
1 is defined by (3.18).)

By (3.14) and (3.17), for u = [u(1)⊤, . . . , u(KN)
⊤]⊤ ∈ R

KNN , where u(k) =

[u(k, 1), . . . , u(k,N)]⊤ ∈ R
N ,

‖JNu‖
(N) = dsN max

k=1,...,KN

∥

∥

∥

∥

∥

KN
∑

i=1

CN(k, i)u(i)

∥

∥

∥

∥

∥

(N)

1

≤ dsN max
k=1,...,KN

KN
∑

i=1

‖CN(k, i)u(i)‖
(N)
1

≤ dsN max
k=1,...,KN

KN
∑

i=1

‖CN(k, i)‖
(N)
1 ‖u(i)‖

(N)
1

≤ max
k=1,...,KN

KN
∑

i=1

‖CN(k, i)‖
(N)
1 dsN max

l=1,...,KN

‖u(l)‖
(N)
1

= DHN‖u‖
(N),
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where the last equation follows from (3.23), (3.14), and (3.17). Therefore, for u 6= 0,

DHN ≥
‖JNu‖

(N)

‖u‖(N)
. (3.24)

Note that if uN = 0, then by (3.11) and (3.12), εN = 0. Therefore

HN(0) = 0. (3.25)

By Assumption L5.2 and Taylor’s theorem, there exists a function H̃N such that

HN(u) = JNu+ H̃N (u), (3.26)

and

lim
α→0

sup
‖u‖(N)≤α

‖H̃N(u)‖
(N)

‖u‖(N)
= 0. (3.27)

By (3.26) and the triangle inequality, we have that

‖HN(u)‖
(N) ≤ ‖JNu‖

(N) + ‖H̃N(u)‖
(N).

Therefore by (3.15),

µN ≤ lim
α→0

sup
‖u‖(N)≤α

(

‖JNu‖
(N)

‖u‖(N)
+

‖H̃N(u)‖
(N)

‖u‖(N)

)

.

Hence by (3.24) and (3.27), we complete the proof.

Next we present in Lemma 6 a relationship between fN and DHN . Define for each N

and for k, l = 1, . . . , KN ,

B
(k,l)
N =























AN(k − 1)AN(k − 2) . . .AN (l), 1 ≤ l < k;

IN , l = k;

0, l > k,

(3.28)

where AN(l) is as defined by (3.16). We have that

Lemma 6: Assume that:

L6.1 for each N , (3.12) holds; and
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L6.2 for each N , fN ∈ C1.

Then we have that for each N , for k, i = 1, . . . , KN and n, j = 1, . . . , N ,

∂H
(k,n)
N

∂u(i, j)
(0) = B

(k,i)
N (n, j)dtN .

Proof: By Assumption L6.2 and Taylor’s theorem, for fixed z, there exists a function

f̃N such that

fN(xN(k))− fN(zN (k)) = DfN(zN (k))εN(k) + f̃N (zN(k) + εN(k), zN(k)),

and for each z,

f̃N (z, z) = 0, (3.29)

and

lim
‖ε‖(N)→0

∥

∥

∥
f̃N(z + ε, z)

∥

∥

∥

(N)

‖ε‖(N)
= 0. (3.30)

Then we have from (3.11) that for k = 0, . . . , KN − 1,

εN(k + 1) = εN(k) +
1

MN

DfN(zN (k))εN(k) +
1

MN

f̃N (zN(k) + εN(k), zN(k))

+ dtNuN(k).

Therefore

εN(k + 1) = AN(k)εN(k) + dtNuN(k) +
f̃N(zN (k) + εN(k), zN(k))

MN

.

For k = 0, . . . , KN − 1, define

ηN(k) = dtNuN(k) +
f̃N (zN(k) + εN(k), zN(k))

MN

. (3.31)

Then εN(k + 1) = AN(k)εN(k) + ηN(k). Therefore for k = 1, . . . , KN ,

εN(k) = AN (k − 1) . . .AN(1)ηN(0) + AN(k − 1) . . . AN(2)ηN(1)

+ . . .+ AN (k − 1)ηN(k − 2) + ηN (k − 1).
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Then it follows from (3.28) that for k = 1, . . . , KN ,

εN(k) =
k
∑

l=1

B
(k,l)
N ηN (l − 1). (3.32)

Write εN(k) = H
(k)
N (uN). By (3.31),

ηN(k) = dtNuN(k) +
f̃N

(

zN(k) +H
(k)
N (uN), zN (k)

)

MN

.

Hence by (3.32), for k = 1, . . . , KN ,

εN(k) =

k
∑

l=1

B
(k,l)
N dtNuN(l − 1) +

k
∑

l=1

B
(k,l)
N

f̃N

(

zN(l − 1) +H
(l−1)
N (uN), zN (l − 1)

)

MN

.

Denote by g
(k,l,n)
N (·) : RKNN → R

N the nth component of

B
(k,l)
N f̃N

(

zN (l − 1) +H
(l−1)
N (·), zN(l − 1)

)

.

By (3.29) and (3.25), g
(k,l,n)
N (0) = 0.

Let {e(i, j) : i = 1, . . . , KN , j = 1, . . . , N} be the standard basis for RKNN ; i.e., e(i, j) is

the element of RKNN with the (i, j)th entry being 1 and all other entries being 0. Then

∂H
(k,n)
N

∂u(i, j)
(0) = B

(k,i)
N (n, j)dtN +

1

MN

k
∑

l=1

(

lim
h→0

g
(k,l,n)
N (h e(i, j))

h

)

.

It remains to show that

lim
h→0

g
(k,l,n)
N (h e(i, j))

h
= 0.

Denote by θ
(l,d)
N (·) : RKNN → R the dth component of f̃N(zN (l) +H

(l)
N (·), zN(l)). Then

g
(k,l,n)
N (u) =

N
∑

d=1

B
(k,l)
N (n, d)θ

(l−1,d)
N (u).

Denote by f̃
(l,d)
N (·) : RN → R the dth component of f̃N (zN(l) + (·), zN(l)). Then

θ
(l,d)
N (u) = f̃

(l,d)
N (H

(l)
N (u)). (3.33)

Then it remains to show that

lim
‖u‖(N)→0

θ
(l,d)
N (u)

‖u‖(N)
= 0. (3.34)
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By Assumption L6.2 and by induction, it follows from (3.11) that for fixed z, εN is a

C1 function of uN , because the composition of functions in C1 is still in C1. Hence As-

sumption L6.2 here implies Assumption L5.2 of Lemma 5. By Assumption L5.2 and (3.25),

there exists c such that |c| < ∞, and for each ε1 > 0, there exists δ1(ε1) such that for

‖u‖(N) < δ1(ε1),

∣

∣

∣

∣

∣

∥

∥

∥
H

(l)
N

(u)
∥

∥

∥

(N)

‖u‖(N) − c

∣

∣

∣

∣

∣

< ε1. Hence for ‖u‖(N) < δ1(ε1),

∥

∥

∥
H

(l)
N (u)

∥

∥

∥

(N)

< (|c|+ ε1)‖u‖
(N). (3.35)

By (3.30), lim‖x‖(N)→0
f̃
(l,d)
N

(x)

‖x‖(N) = 0. Hence for each ε2 > 0, there exists δ2(ε2) such that for

‖x‖(N) < δ2(ε2),

∣

∣

∣
f̃
(l,d)
N

(x)
∣

∣

∣

‖x‖(N) < ε2
|c|+1

. Hence for 0 < ‖x‖(N) < δ2(ε2),

∣

∣

∣
f̃
(l,d)
N (x)

∣

∣

∣
<

ε2
|c|+ 1

‖x‖(N). (3.36)

For each ε, let ε̂(ε) be sufficiently small such that

(|c|+ ε̂(ε))δ1(ε̂(ε)) < δ2(ε), (3.37)

and

ε̂(ε) < 1. (3.38)

Then by (3.35) and (3.37), for ‖u‖(N) < δ1(ε̂(ε)),
∥

∥

∥
H

(l)
N (u)

∥

∥

∥

(N)

< δ2(ε). Therefore, in the

case that
∥

∥

∥
H

(l)
N (u)

∥

∥

∥

(N)

> 0, by (3.33) and (3.36),

∣

∣

∣
θ
(l,d)
N (u)

∣

∣

∣
=
∣

∣

∣
f̃
(l,d)
N

(

H
(l)
N (u)

)∣

∣

∣
<

ε

|c|+ 1

∥

∥

∥
H

(l)
N (u)

∥

∥

∥

(N)

.

By (3.35) and (3.38),

∥

∥

∥
H

(l)
N (u)

∥

∥

∥

(N)

< (|c|+ ε̂(ε))‖u‖(N) < (|c|+ 1)‖u‖(N).

By the above two inequalities,
∣

∣

∣
θ
(l,d)
N (u)

∣

∣

∣

‖u‖(N)
< ε. (3.39)

By (3.29), f̃
(l,d)
N (0) = 0. Therefore, in the case that

∥

∥

∥
H

(l)
N (u)

∥

∥

∥

(N)

= 0, θ
(l,d)
N (u) = 0, and

thus (3.39) still holds. Therefore, (3.34) holds.
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Now we prove Theorem 2 using the preceding lemmas.

Proof of Theorem 2: By (3.22), Lemma 5, and Lemma 6, we have that

µN ≤ max
k=1,...,KN

KN
∑

i=1

max
j=1,...,N

N
∑

n=1

∣

∣

∣B
(k,i)
N (n, j)

∣

∣

∣ dtN

= max
k=1,...,KN

KN
∑

i=1

∥

∥

∥
B

(k,i)
N

∥

∥

∥

(N)

1
dtN

≤ max
k=1,...,KN

KN max
i=1,...,KN

∥

∥

∥
B

(k,i)
N

∥

∥

∥

(N)

1
dtN

≤ T max
k=1,...,KN
i=1,...,KN

∥

∥

∥
B

(k,i)
N

∥

∥

∥

(N)

1
.

(‖ · ‖
(N)
1 is defined by (3.18).) Therefore, by (3.28) and by the sub-multiplicative property of

induced norm, we have that

µN ≤ T max
k=1,...,KN
i=1,...,k−1

‖AN(k − 1)AN(k − 2) . . .AN (i)‖
(N)
1

≤ T max
k=1,...,KN
i=1,...,k−1

‖AN(k − 1)‖(N)
1 . . . ‖AN (i)‖

(N)
1 .

Then by Assumption T2.3, there exists c < ∞ such that for N sufficiently large,

µN ≤ T (1 + c dtN)
KN .

As N → ∞, KN → ∞, and

(1 + c dtN)
KN =

(

1 +
c T

KN

)KN

→ ec T .

Therefore {µN} is bounded. �
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CHAPTER 4

CONTINUUM MODELS OF STOCHASTIC

NETWORKS

4.1 A Stochastic Network Model

In this section we demonstrate the various objects in the abstract Markov chain model

analyzed in this dissertation on a prototypical example. We begin by describing a stochastic

model of a wireless sensor network.

Consider a network of N wireless sensor nodes uniformly placed over the domain D.

That is, the N nodes are located on the grid points VN = {vN(1), . . . , vN(N)} described

above. We label the node at vN (n) by n, where n = 1, . . . , N . The sensor nodes generate,

according to a probability distribution, data messages that need to be communicated to the

destination nodes located on the boundary of the domain, which represent specialized devices

that collect the sensor data. The sensor nodes also serve as relays for routing messages to

the destination nodes. Each sensor node has the capacity to store messages in a queue, and

is capable of either transmitting or receiving messages to or from its immediate neighbors.

(Generalization to further ranges of transmission can be found in our paper [102].) At each

time instant k = 0, 1, . . . , each sensor node probabilistically decides to be a transmitter or

receiver, but not both. This simplified rule of transmission allows for a relatively simple

representation. We illustrate such a network over a two-dimensional domain in Fig. 4.1(a).

In this network, communication between nodes is interference-limited because all nodes

share the same wireless channel. We assume a simple collision protocol: a transmission from

a transmitter to a neighboring receiver is successful if and only if none of the other neighbors

of the receiver is a transmitter, as illustrated in Fig. 4.1(b). We assume that in a successful
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(a)(a) (b) (c)

Figure 4.1: (a) An illustration of a wireless sensor network over a two-dimensional domain.
Destination nodes are located at the far edge. We show the possible path of a message
originating from a node located in the left-front region. (b) An illustration of the collision
protocol: reception at a node fails when one of its other neighbors transmits (regardless
of the intended receiver). (c) An illustration of the time evolution of the queues in the
one-dimensional network model.

transmission, one message is transmitted from the transmitter to the receiver.

We assume that the probability that a node decides to be a transmitter is a function of its

normalized queue length (normalized by an “averaging” parameter M). That is, at time k,

node n decides to be a transmitter with probability W (n,XN,M(k, n)/M), where XN,M(k, n)

is the queue length of node n at time k, and W is a given function.

In this section, for the sake of explanation, we simplify the problem even further and con-

sider a one-dimensional domain (a two-dimensional example will be given in Section 4.2.3).

Here, N sensor nodes are equidistributed in an interval D ⊂ R and labeled by n = 1, . . . , N .

The destination nodes are located on the boundary of D, labeled by n = 0 and n = N + 1.

We assume that if node n is a transmitter at a certain time instant, it randomly chooses

to transmit one message to the right or the left immediate neighbor with probability Pr(n)

and Pl(n), respectively, where Pr(n)+Pl(n) ≤ 1. In contrast to strict equality, the inequality

here allows for a more general stochastic model of transmission: after a sensor node randomly

decides to transmit over the wireless channel, there is still a positive probability that the

message is not transferred to its intended receiver (what might be called an “outage”).

The special destination nodes at the boundaries of the domain do not have queues; they

simply receive any message transmitted to them and never themselves transmit anything.
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We illustrate the time evolution of the queues in the network in Fig. 4.1(c).

The queue lengths

XN,M(k) = [XN,M(k, 1), . . . , XN,M(k,N)]⊤ ∈ R
N

form a Markov chain network model given by (1.1), where

UN(k) = [Q(k, 1), . . . , Q(k,N), T (k, 1), . . . , T (k,N), G(k, 1), . . . , G(k,N)]⊤

is a random vector comprising independent random variables: Q(k, n) are uniform random

variables on [0, 1] used to determine if the node is a transmitter or not; T (k, n) are ternary

random variables used to determine the direction a message is passed, which take values R,

L, and S (representing transmitting to the right, the left, and neither, respectively) with

probabilities Pr(n), Pl(n), and 1− (Pr(n)+Pl(n)), respectively; and G(k, n) are the number

of messages generated at node n at time k. We model G(k, n) by independent Poisson

random variables with mean g(n).

For a generic x = [x1, . . . , xN ]
⊤ ∈ R

N , the nth component of FN(x, UN (k)), where n =

1, . . . , N , is


































































































































1 +G(k, n) if Q(k, xn−1) < W (n− 1, xn−1), T (k, n− 1) = R,

Q(k, xn) > W (n, xn), Q(k, xn+1) > W (n+ 1, xn+1);

or Q(k, xn+1) < W (n+ 1, xn+1), T (k, n+ 1) = L,

Q(k, xn) > W (n, xn), Q(k, xn−1) > W (n− 1, xn−1)

−1 +G(k, n) if Q(k, xn) < W (n, xn), T (k, n) = L,

Q(k, xn−1) > W (n− 1, xn−1),

Q(k, xn−2) > W (n− 2, xn−2);

or Q(k, xn) < W (n, xn), T (k, n) = R,

Q(k, xn+1) > W (n+ 1, xn+1),

Q(k, xn+2) > W (n+ 2, xn+2)

G(k, n) otherwise,

(4.1)
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where xn with n ≤ 0 or n ≥ N+1 are defined to be zero; and W is the function that specifies

the probability that a node decides to be a transmitter, as defined earlier. Here, the three

possible values of FN correspond to the three events that at time k, node n successfully

receives one message, successfully transmits one message, and does neither of the above,

respectively. The inequalities and equations on the right describe conditions under which

these three events occur: for example, Q(k, xn−1) < W (n−1, xn−1) corresponds to the choice

of node n − 1 to be a transmitter at time k, T (k, n − 1) = R corresponds to its choice to

transmit to the right, Q(k, xn) > W (n, xn) corresponds to the choice of node n to be a

receiver at time k, and so on.

We simplify the situation further by assuming that W (n, y) = min(1, y). (We use this

assumption throughout the dissertation.) With the collision protocol described earlier, this

provides the analog of a network with backpressure routing [103].

For the one-dimensional Markov chain network model introduced in Section 3.1, it follows

from (4.1) (with the particular choice of W (n, y) = min(1, y)) that for x = [x1, . . . , xN ]
⊤ ∈

[0, 1]N , the nth component of fN(x) in its corresponding deterministic difference equa-

tion (1.3), where n = 1, . . . , N , is (after some tedious algebra, as described in [2])

(1− xn)[Pr(n− 1)xn−1(1− xn+1) + Pl(n+ 1)xn+1(1− xn−1)]

− xn[Pr(n)(1− xn+1)(1− xn+2) + Pl(n)(1− xn−1)(1− xn−2)] + g(n), (4.2)

where xn with n ≤ 0 or n ≥ N + 1 are defined to be zero.

4.2 Continuum models of Large Networks

In this section, we apply the main results to show how the Markov chain modeling the

network introduced in Section 4.1 can be approximated by the solution of a PDE. This

approximation was heuristically developed in [2].

We first deal with the one-dimensional network model. Its corresponding stochastic

and deterministic difference equations (1.1) and (1.3) were specified by (4.1) and (4.2),

respectively.
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For this model we set δN (introduced in Section 3.1) to be ds2N . Then

dtN,M := δN/M = ds2N/M.

Assume that

Pl(n) = pl(vN(n)) and Pr(n) = pr(vN(n)), (4.3)

where pl(s) and pr(s) are real-valued functions defined on D such that

pl(s) = b(s) + cl(s)dsN and pr(s) = b(s) + cr(s)dsN .

Let c = cl − cr. The values b(s) and c(s) correspond to diffusion and convection quantities

in the limiting PDE. Because pl(s) + pr(s) ≤ 1, it is necessary that b(s) ≤ 1/2. In order

to guarantee that the number of messages entering the system from outside over finite time

intervals remains finite throughout the limiting process, we set g(n) = Mgp(vN (n))dtN ,

where gp : D → R is called the message generation rate. Assume that b, cl, cr, and gp are in

C1. Further assume that xN,M(k) ∈ [0, 1]N for each k. Then fN is in C1.

We have assumed above that the probabilities Pl and Pr of the direction of transmission

are the values of the continuous functions pl and pr at the grid points, respectively. This

may correspond to stochastic routing schemes where nodes in close vicinity behave similarly

based on some local information that they share; or to those with an underlying network-

wide directional configuration that are continuous in space, designed to relay messages to

destination nodes at known locations. On the other hand, the results can be extended to

situations with certain levels of discontinuity, as discussed in Chapter 8.

By these assumptions and definitions, it follow from (4.2) that the function f in (3.3) for

this network model is:

f(s, z(t, s),∇z(t, s),∇2z(t, s)) = b(s)
∂

∂s
((1− z(t, s))(1 + 3z(t, s))zs(t, s))

+ 2(1− z(t, s))zs(t, s)bs(s)

+ z(t, s)(1 − z(t, s))2bss(s)

+
∂

∂s
(c(s)z(t, s)(1− z(t, s))2) + gp(s). (4.4)
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Here, a single subscript s represents first derivative and a double subscript ss represents

second derivative.

Note that the computations needed to obtain (4.4) (and later, (4.5), (4.6), and (4.7))

require tedious but elementary algebraic manipulations. For this purpose, we found it helpful

to use the symbolic tools in Matlab.

Based on the behavior of nodes n = 1 and n = N next to the destination nodes, we derive

the boundary condition (3.4) of the PDE of this network. For example, the node n = 1

receives messages only from the right and encounters no interference when transmitting to

the left. Replacing xn with n ≤ 0 or n ≥ N + 1 by 0, it follows that the 1st component of

fN(x) is

(1− xn)Pl(n+ 1)xn+1 − xn[Pl(n) + Pr(n)(1− xn+1)(1− xn+2)] + g(n).

Similarly, the Nth component of fN (x) is

(1− xn)Pr(n− 1)xn−1 − xn[Pr(n) + Pl(n)(1− xn−1)(1− xn−2)] + g(n).

Set βN , defined in Section 3.1, to be 1. Then from each of the above two functions we get

the function h in (3.4) for the one-dimensional network:

h(s, z(t, s),∇z(t, s),∇2z(t, s)) = −b(s)z(s)3 + b(s)z(s)2 − b(s)z(s). (4.5)

Note that the function h is the limit of fN(yN , sN)/βN , not fN(yN , sN)/δN (whose limit is

f). Solving h = 0 for real z, we have the boundary condition z(t, s) = 0.

Let z be the solution of the PDE (3.3) with f specified by (4.4) and with boundary

condition z(t, s) = 0 and initial condition z(0, s) = z0(s). Assume that (3.12) holds. As in

Section 3.3, we treat M as a sequence of N , written MN . In the following theorem we show

the convergence of the Markov chain modeling the one-dimensional network to the PDE

solution.

Theorem 3: For the one-dimensional network model, a.s., there exist c0 < ∞, N0, and

M̂1 < M̂2 < M̂3, . . . such that for each N ≥ N0 and each MN ≥ M̂N , ‖X
(p)
N − z‖(p) < c0dsN .
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Proof: We prove this theorem using Theorem 1 and 2. It follows from (4.2) that there

exists c1, c2 < ∞ such that for N sufficient large and k = 0, . . . , KN − 1,











|uN(k, n)| < c1, n = 1, N ;

|uN(k, n)| < c2dsN , n = 2, . . . , N − 1.
(4.6)

Therefore, there exists c3 < ∞ such that for N sufficient large,

max
k=0,...,KN−1

N
∑

n=1

|uN(k, n)| < c3,

and hence by (3.14), we have that for N sufficient large,

‖uN‖
(N) < c3dsN .

Hence the Assumption T1.1 of Theorem 1 holds.

By (4.2), for each N , for x = [x1, . . . , xN ]
⊤ ∈ [0, 1]N , the (n,m)th component of DfN(x),

where n,m = 1, . . . , N , is











































































Pl(n)xn(1− xn−1), m = n− 2;

(1− xn)[Pr(n− 1)(1− xn+1)− Pl(n+ 1)xn+1] + Pl(n)xn(1− xn−2), m = n− 1;

−Pr(n− 1)xn−1(1− xn+1)− Pl(n+ 1)xn+1(1− xn−1)

−Pr(n)(1− xn+1)(1− xn+2)− Pl(n)(1− xn−1)(1− xn−2), m = n;

(1− xn)[Pl(n + 1)(1− xn−1)− Pr(n− 1)xn−1] + Pr(n)xn(1− xn+2), m = n + 1;

Pr(n)xn(1− xn+1), m = n + 2;

0 other wise,

where xn with n ≤ 0 or n ≥ N + 1 are defined to be zero. It then follows that for each k,

‖AN (k)‖
(N)
1 = 1. (4.7)

Hence Assumption T2.3 of Theorem 2 holds. We note that obtaining (4.7) and (4.6) re-

quires tedious, but elementary, algebraic manipulation. One can also verify that the other

assumptions of Theorem 1 and 2 hold. By Theorem 1, this completes the proof.
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4.2.1 Interpretation of Limiting PDE

Now we make some remarks on how to interpret a given limiting PDE. First, for fixed N

and M , the normalized queue length of node n at time k, is approximated by the value of the

PDE solution z at the corresponding point in [0, T ]×D; i.e.,
XN,M (k,n)

M
≈ z(tN,M (k), vN(n)).

Second, we discuss how to interpret C(to) :=
∫

D
z(to, s)ds, the area below the curve

z(to, s) for fixed to ∈ [0, T ]. Let ko = ⌊to/dtN,M⌋. Then we have that z(to, vN(n))dsN ≈

XN,M (ko,n)

M
dsN , the area of the nth rectangle in Fig. 4.2. Therefore

C(to) ≈
N
∑

n=1

z(to, vN(n))dsN ≈
N
∑

n=1

XN,M(ko, n)

M
dsN ,

the sum of all rectangles. If we assume that all messages in the queue have roughly the same

bits, and think of dsN as the “coverage” of each node, then the area under any segment of the

curve measures a kind of “data-coverage product” of the nodes covered by the segment, in

the unit of “bit·meter.” As N → ∞, the total normalized queue length
∑N

n=1XN,M(ko, n)/M

of the network does go to ∞; however, the coverage dsN of each node goes to 0. Hence the

sum of the “data-coverage product” can be approximated by the finite area C(to).

4.2.2 Comparisons of the PDE Solutions and Monte Carlo Simulations of the

Networks

In the remainder of this section, we compare the limiting PDE solutions with Monte

Carlo simulations of the networks.

We first consider a one-dimensional network over the domain D = [−1, 1]. We use the

initial condition z0(s) = l1e
−s2, where l1 > 0 is a constant, so that initially the nodes in the

middle have messages to transmit, while those near the boundaries have very few. We set

the message generation rate gp(s) = l2e
−s2, where l2 > 0 is a parameter determining the

total load of the system.

We use three sets of values of N = 20, 50, 80 and M = N3, and show the PDE solution

and the Monte Carlo simulation results with different N and M at t = 1s. The networks
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s
dsN dsN dsN dsN dsN dsN dsN

Figure 4.2: The PDE solution at a fixed time that approximates the normalized queue
lengths of the network.

have diffusion b = 1/2 and convection c = 0 in Fig. 4.3 and c = 1 in Fig. 4.4, respectively,

where the x-axis denotes the node location and y-axis denotes the normalized queue length.

For the three sets of the values of N = 20, 50, 80 and M = N3, with c = 0, the maximum

absolute errors of the PDE approximation are 5.6× 10−3, 1.3× 10−3, and 1.1× 10−3, respec-

tively; and with c = 1, the errors are 4.4 × 10−3, 1.5 × 10−3, and 1.1 × 10−3, respectively.

As we can see, as N and M increase, the resemblance between the Monte Carlo simulations

and the PDE solution becomes stronger. In the case of very large N and M , it is difficult

to distinguish the results.

We stress that the PDEs only took fractions of a second to solve on a computer, while

the Monte Carlo simulations took on the order of tens of hours.

4.2.3 A Two-dimensional Network

The generalization of the continuum model to higher dimensions is straightforward, ex-

cept for more arduous algebraic manipulation. Likewise, the convergence analysis is similar
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◦ Monte Carlo simulation —— PDE solution

Figure 4.3: The Monte Carlo simulations (with different N and M) and the PDE solution
of a one-dimensional network, with b = 1/2 and c = 0, at t = 1s.
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Figure 4.4: The Monte Carlo simulations (with different N and M) and the PDE solution
of a one-dimensional network, with b = 1/2 and c = 1, at t = 1s.
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to the one dimensional case.

We consider a two-dimensional network of N = N1 × N2 sensor nodes uniformly placed

over a domain D ⊂ R
2. Here we switch to a two-dimensional labeling scheme. We label the

nodes by (n1, n2), where n1 = 1, . . . , N1 and n2 = 1, . . . , N2, and denote the grid point in D

corresponding to node (n1, n2) by vN (n1, n2). This labeling scheme is more intuitive for this

two-dimensional scenario, but is essentially equivalent to the single-label one. (e.g., if we set

n := (n1 − 1)N2 + n2 and v̂N (n) := vN(n1, n2), then v̂N (n) form the same grid.)

Again let the distance between any two neighboring nodes be dsN . Assume that

node (n1, n2) randomly chooses to transmit to the east, west, north, or south immediate

neighbor with probabilities Pe(n1, n2) = b1(vN(n1, n2)) + ce(vN (n1, n2))dsN , Pw(n1, n2) =

b1(vN(n1, n2)) + cw(n1, n2))dsN , Pn(n1, n2) = b2(vN(n1, n2)) + cn(vN (n1, n2))dsN , and

Ps(n1, n2) = b2(vN(n1, n2))+ cs(vN(n1, n2))dsN , respectively, where Pe(n1, n2)+Pw(n1, n2)+

Pn(n1, n2) + Ps(n1, n2) ≤ 1. Therefore it is necessary that b1(s) + b2(s) ≤ 1/2. Define

c1 = cw − ce and c2 = cs − cn.

The derivation of the limiting PDE is similar to those of the one-dimensional case, except

that we now have to consider transmission to and interference from four directions instead

of two. We present the limiting PDE here without the detailed derivation:

ż =
2
∑

j=1

bj
∂

∂sj

(

(1 + 5z)(1− z)3
∂z

∂sj

)

+ 2(1− z)3
∂z

∂sj

dbj
dsj

+ z(1− z)4
d2bj
ds2j

+
∂

∂sj

(

cjz(1 − z)4
)

+ gp,

with boundary condition z(t, s) = 0 and initial condition z(0, s) = z0(s), where t ∈ [0, T ]

and s = (s1, s2) ∈ D.

We now compare the PDE approximation and the Monte Carlo simulations of a network

over the domain D = [−1, 1]× [−1, 1]. We use the initial condition z0(s) = l1e
−(s21+s22), where

l1 > 0 is a constant. We set the message generation rate gp(s) = l2e
−(s21+s22), where l2 > 0 is

a constant.

We use three different sets of the values of N1 ×N2 and M , where N1 = N2 = 20, 50, 80
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and M = N3
1 . We show the contours of the normalized queue length from the PDE solution

and the Monte Carlo simulation results with different sets of values of N1, N2, and M , at

t = 0.1s. The networks have diffusion b1 = b2 = 1/4 and convection c1 = c2 = 0 in Fig. 4.5

and c1 = −2, c2 = −4 in Fig. 5.3, respectively.

For the three sets of values of N1 = N2 = 20, 50, 80 and M = N3
1 , with c1 = c2 = 0, the

maximum absolute errors are 3.2× 10−3, 1.1× 10−3, and 6.8× 10−4, respectively; and with

c1 = −2, c2 = −4, the errors are 4.1× 10−3, 1.0× 10−3, and 6.6× 10−4, respectively. Again

the accuracy of the continuum model increases with N1, N2, and M .

It took 3 days to do the Monte Carlo simulation of the network at t = 0.1s with 80× 80

nodes and the maximum queue length M = 803, while the PDE solved on the same machine

took less than a second. We could not do Monte Carlo simulations of any larger networks

or greater values of t because of prohibitively long computation time.
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Figure 4.5: The Monte Carlo simulations (from top to bottom, with N1 = N2 = 20, 50, 80,
respectively, and M = N3

1 ) and the PDE solution of a two-dimensional network, with b1 =
b2 = 1/4 and c1 = c2 = 0, at t = 0.1s.
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Figure 4.6: The Monte Carlo simulations (from top to bottom, with N1 = N2 = 20, 50, 80,
respectively, and M = N3

1 ) and the PDE solution of a two-dimensional network, with b1 =
b2 = 1/4 and c1 = −2, c2 = −4, at t = 0.1s.
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CHAPTER 5

CONTINUUM MODELS OF NONUNIFORM

NETWORKS

The results in previous chapters assumed uniform networks, i.e., networks with immobile

and uniformly located nodes. Moreover, the model assumes that, the nodes have a fixed

transmission range in the sense that they communicate (exchange data and interfere) only

with their immediate neighbors.

In this chapter, we consider nonuniform networks, i.e., networks with nonuniformly lo-

cated and possibly mobile nodes. We also consider nodes with more general transmission

ranges; i.e., they may communicate with neighbors further away than immediate ones. We

first present a more general network model than that in the previous chapters, and derive

its limiting PDEs in the setting of uniform node locations. This generalization is necessary

for the discussion of the control of nonuniform networks later. Then through transformation

between uniform and nonuniform node locations, we derive limiting PDEs for nonuniform

networks.

5.1 A More General Network Model

We introduced the wireless sensor network model in a simple setting in Chapter 4. In this

subsection, we consider uniform networks in a more general setting where the network nodes

have more general transmission ranges, and derive their limiting PDEs. Such generalization

is necessary for the control scheme of nonuniform networks in Chapter 6 to be possible. We

consider nonuniform networks in Section 5.2.

Recall that in Chapter 4, we introduced 1-step networks where the sensor nodes com-

municate (exchange data and interfere) with their immediate neighbors. We now consider

56



L-step networks where the nodes communicate with their communicating neighbors, which

can be further away than the immediate ones. To be specific, at each time instant, a trans-

mitter tries to transmit a message to one of its communicating neighbors; and a receiver

may receive a message from one of its communicating neighbors. Interference also occurs

among communicating neighbors: a transmission from a transmitter to a receiver (one of the

communicating neighbors of the transmitter) is successful if and only if none of the other

communicating neighbors of the receiver is a transmitter.

For an L-step network, we call the positive integer L its communication range, and assume

that it determines the communicating neighbors as follows.

In a 1-D L-step network of N nodes, communicating neighbors of the node at s ∈ VN ⊂ R

are the nodes at s± ldsN , where 1 ≤ l ≤ L.

In 2-D networks, we consider two types of communicating neighbors. In a 2-D L-step

network of N nodes, for a node at s = (s1, s2) ∈ VN ⊂ R
2, its communicating neighbors are

the nodes at

(s1 ± l1dsN , s2 ± l2dsN), where

• for Type-I networks, 0 ≤ l1, l2 ≤ L, l1 + l2 > 0, and l1l2 = 0; and

• for Type-II networks, 0 ≤ l1, l2 ≤ L and l1 + l2 > 0.

We illustrate the two types of definition of communicating neighbors for 2-D 1-step networks

in Fig. 5.1.

We assume the use of directional antennas and power control to accommodate such

routing schemes. Here we consider two types of communicating neighbors because they may

correspond to two types of routing schemes, and one may be a better model than the other

for networks with different design choices. For example, a Type-II network may offer higher

rate in propagating information to the destination nodes at the boundaries, but at the same

time may require more complex directional antennas and power control to implement.
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Figure 5.1: The two types of communicating neighbors of 2-D 1-step networks. The nodes
pointed by the arrows are the communicating neighbors of the node in the center. The labels
on the arrows are probabilities of transmitting to the pointed communicating neighbors.

Next we derive the limiting PDEs for this more general network model. The network

model above can again be written as (1.1), for which Theorem 3 still holds.

We assume that if at time k, node n is a transmitter, it randomly chooses to transmit

a message to its ith communicating neighbor with probability Pi(k, n), where the possible

values of i depend on the number of its communicating neighbors. Note that here Pi depends

on k, i.e., is time-variant, which generalizes the case in Chapter 4. Correspondingly, we now

assume that

Pi(k, n) = pi(kdtN , vN(n)); (5.1)

and that

pi(t, s) = bi(t, s) + ci(t, s)dsN , (5.2)

where bi and ci are C1 functions from [0, T ] × D to R. We call pi the direction function.

We have assumed above that the probabilities Pi of the direction of transmission are the

values of the continuous functions pi at the grid points, respectively. This may correspond

to stochastic routing schemes where nodes in close vicinity behave similarly based on some

local information that they share; or to those with an underlying network-wide directional

configuration that are continuous in space, designed to relay messages to destination nodes

at known locations.
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For a J-D L-step network, let λ(J,L) be the number of the communicating neighbors of

its nodes that are away from the boundaries. We have that

λ(J,L) :=











2LJ, for Type-I networks;

(1 + 2L)J − 1, for Type-II networks.
(5.3)

We assume that the communicating neighbors of each node are indexed according only to

their relative locations with respect to the node. For example, if we call the left immediate

neighbor of any node its 1st neighbor, then the left immediate neighbor of all nodes must

be their 1st neighbor respectively. That is, for a node at vN(n), if we denote by vN(n, i) the

location of its ith communicating neighbor, then vN(n)− vN (n, i) depends on i, but not on

n.

We present below the limiting PDE in the sense of Theorem 3 for an arbitrary J-D L-step

network with both Type-I and II communicating neighbors. The PDE is derived in a way

similar to that of the 1-D 1-step network in Section 4.2, which involves writing down the

expression of the corresponding Markov chain (1.1) and then the difference equation (1.3),

except that we now have to consider transmission to and interference from more neighbors in-

stead of only the two immediate ones, requiring more arduous, but still elementary, algebraic

manipulation. We omit the algebraic details here.

Let {e1, . . . , eJ} be the standard basis of RJ ; i.e., ej is the element of RJ with the jth

entry being 1 and other entries 0. Define

b(j) =

λ(J,L)
∑

i

((vN(n, i)− vN(n))
⊤ej)

2bi
2

, c(j) =

λ(J,L)
∑

i

(vN (n, i)− vN(n))
⊤ejci. (5.4)

Then the limiting PDE for a J-D L-step network is

ż =

J
∑

j=1

(

b(j)
∂

∂sj

(

(

1 + (λ(J,L) + 1)z
)

(1− z)(λ(J,L)−1) ∂z

∂sj

)

+2(1− z)(λ(J,L)−1) ∂z

∂sj

∂b(j)

∂sj
+ z(1 − z)λ(J,L)

∂2b(j)

∂s2j
+

∂

∂sj

(

c(j)z(1− z)λ(J,L)
)

)

+ gp, (5.5)

with boundary condition z(t, s) = 0. This general PDE works for both Type-I and II
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communicating neighbors, provided that λ(J,L) is calculated with (5.3) accordingly. We will

present some examples of the PDEs and the corresponding network models in Section 5.3.1.

5.2 Continuum Models of Nonuniform Networks

In this section we extend the continuum models to nonuniform and mobile networks.

First we introduce the transformation function, which is the mapping between the node

locations of uniform and nonuniform networks. Then, through the transformation function,

we derive the continuum limits of nonuniform and mobile networks with given trajectories

and transmissions. We consider the domain D ⊂ R
J and a fixed time interval [0, T ].

5.2.1 Location Transformation Function

For networks with the design of uniform node placement, there may be small perturba-

tions to the uniform grid because of imperfect implementation or landscape limitation; and

some sensor networks may have nodes with moderate mobility. The study of nonuniform

networks here is motivated by the need for modeling these networks. Again we assume the

use of directional antennas and power control to preserve the neighborhood structure in the

nonuniform or mobile networks.

Consider a nonuniform and possibly mobile network with N nodes indexed by n =

1, . . . , N over D. The nodes no longer are located at the grid points VN and possibly change

their locations at each time step k.

We denote by ṽN (k, n) the location of node n of the nonuniform network at time k. Let

ṽN(k) = [ṽN(k, 1), . . . , ṽN(k,N)] and ṼN = [ṽN(0), . . . , ṽN (KN)]. Assume that there exists a

smooth transformation function φ(t, s) : [0, T ]×D → D such that for each k and n,

ṽN (k, n) = φ(kdtN , vN(n)), (5.6)

and for each to, φ(to, ·) is bijective. Hence φ is the mapping between the nonuniform node

locations and uniform grid points.
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Note that, for mobile networks, by assuming that φ(to, ·) is bijective for each to, we focus

on a subset of all possible node movements, which simplifies the problem. This restricts the

mobility of nodes but is still a reasonable model in many practical scenarios, e.g., in sensor

networks where each node collects environmental data from its designated area and moves

in a small neighborhood of, instead of arbitrarily far away from, their original locations.

Since φ(to, ·) is bijective, its inverse with respect to s exists and we denote it by η :

[0, T ]×D → D; i.e., for each t and s,

η(t, φ(t, s)) = s. (5.7)

Throughout the chapter we assume fixed nodes on the boundary; i.e., φ(t, s) = s for s on

the boundary of D.

For given N and ṼN , a transformation function φ can be constructed using some interpo-

lation scheme. Note that φ is not unique because of the freedom we have in choosing different

schemes. Let φj and ηj be the jth components of φ and η, respectively, where j = 1, . . . , J .

For the rest of the chapter, we assume that for i 6= j,

∂φj

∂si
= 0. (5.8)

Then equivalently for i 6= j,
∂ηj
∂si

= 0. This assumption can be achieved by choosing a proper

interpolation scheme, and it simplifies the analysis below.

On the other hand, a given φ, by (5.6), specifies a sequence {ṼN} of nonuniform node

locations indexed by N . We study the continuum limit of a sequence of nonuniform networks

associated with such {ṼN}; i.e., for each N , the N -node nonuniform network has node

locations ṼN .

5.2.2 Continuum Limits of Mirroring Networks

For an N -node network (uniform or nonuniform), we define its transmission-interference

rule to be

• the probability that node m sends a message to node n at time k; and
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• the fact of whether node m and n interfere at time k,

for m,n = 1, . . . , N and k = 0, 1, . . . , KN . The transmission-interference rule specifies how

the nodes in a network interact with each other at each time step. At each time step,

each node chooses to be a transmitter with a certain probability; and if it chooses to be a

transmitter, it then chooses one of its communicating neighbors to send a message to. The

first component of this definition is determined by the probabilities of the above choices of

all the nodes at all the time steps. The second component of this definition is determined

by the neighborhood structure of the network at each time step; i.e., which nodes are the

communicating neighbors of each node (so that they interfere with it) at each time step.

For each N , write XN = [XN(0), . . . , XN(KN)]. Then we can describe a network during

[0, T ] entirely by its states XN . Define the network behavior of a network XN to be the

combination of its initial state XN(0), transmission-interference rule, and incoming traffic

g(n). Two sequences {XN} and {X̃N} of networks indexed by the number N of nodes, with

different node locations in general, are said to mirror each other if, for each N , XN and

X̃N have the same network behavior. We state in the following theorem on the relationship

between the continuum limits of mirroring networks.

Theorem 4: Suppose that a sequence {X̃N} of networks has node locations specified by a

given transformation function φ with inverse η. If {X̃N} mirrors a sequence {XN} of uniform

networks, then {XN} converges to a function q(t, s) on [0, T ]×D in the sense of Theorem 3

if and only if {X̃N} converges to

u(t, s) := q(t, η(t, s)), (5.9)

in the sense that a.s., there exist c0 < ∞, N0, and M̂1 < M̂2 < M̂3, . . . such that for each

N ≥ N0 and each MN ≥ M̂N ,

‖X̃
(p)
N − u(t, φ(t, s))‖(p) < c0dsN , (5.10)

where X̃
(p)
N is the continuous time-space extension of X̃N .
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Proof: “⇒”: Since {XN} and {X̃N} mirror each other, they would converge to the

same continuum limit on a uniform grid. Therefore, by Theorem 3, a.s., there exist c0 < ∞,

N0, and M̂1 < M̂2 < M̂3, . . . such that for each N ≥ N0 and each MN ≥ M̂N ,

‖X̃
(p)
N − q(t, s)‖(p) < c0dsN , (5.11)

It follows from (5.7) and (5.9) that

q(t, s) = u(t, φ(t, s)).

Then (5.11) is equivalent to (5.10).

“⇐”: Done analogously in the opposite direction.

5.2.3 Sensitivity of Uniform Continuum Models to Location Perturbation

In networks with nodes not necessarily at, but close to, the uniform grid points, we

can use uniform continuum models to approximate nonuniform networks, i.e., treat them

as uniform while deriving limiting PDEs. Then a certain approximation error arises from

ignoring nonuniformity. If we treat such nonuniformities as perturbations to the uniform

models, the above theorem enables us to analyze the error sensitivity of these models with

respect to such perturbation.

Consider a sequence {X̃N} of nonuniform networks with node locations specified by the

transformation function φ with inverse η. Suppose that we ignore the nonuniformity and

approximate {X̃N} by the continuum limit q of the sequence {XN} of uniform networks that

mirrors {X̃N}. We now characterize the maximum approximation error

εN := ‖X̃
(p)
N − q(t, φ(t, s))‖(p) max

k=0,...,KN
n=1,...,N

∣

∣

∣

∣

∣

X̃N(k, n)

MN

− q(kdtN , ṽN(k, n))

∣

∣

∣

∣

∣

by φ in the following proposition.

Proposition 1: Almost surely, there exist c0, c1 < ∞, N0, and M̂1 < M̂2 < M̂3, . . . such

that for each N ≥ N0 and each MN ≥ M̂N ,

εN ≤ c0dsN + ‖qs(t, s)(s− φ(t, s))‖(p) + c1‖(s− φ(t, s))2‖(p). (5.12)
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Proof: We have, from the triangle inequality, that

εN ≤ ‖X̃
(p)
N − q(t, s)‖(p) + ‖q(t, s)− q(t, φ(t, s))‖(p). (5.13)

By Theorem 4, a.s., there exist c0 < ∞, N0, and M̂1 < M̂2 < M̂3, . . . such that for each

N ≥ N0 and each MN ≥ M̂N , the first term above is smaller than c0dsN .

The second term represents the error caused by location perturbation. By Taylor’s the-

orem, there exists c1 < ∞ such that

q(t, s)− q(t, φ(t, s)) ≤ qs(t, s)(s− φ(t, s)) + c1(s− φ(t, s))2.

Therefore we have that

‖q(t, s)− q(t, φ(t, s))‖(p) ≤ ‖qs(t, s)‖
(p)‖(s− φ(t, s))‖(p) + c1‖(s− φ(t, s))2‖(p).

By (5.13) this completes the proof.

This proposition states that, for fixed q and for N and MN sufficiently large, εN is

dominated by ‖(s − φ(t, s))‖(p), when it is close to 0. We note that by definition ‖(s −

η(t, s))‖(p) = ‖(s− φ(t, s))‖(p). In the case where X̃N are uniform, i.e., η(t, s) = φ(t, s) = s,

the last two terms on the right hand side of (5.12) vanish.

5.2.4 Limiting PDEs for Nonuniform Networks

Consider a sequence {X̃N} of networks with given network behavior and with node

locations specified by a given transformation function φ with inverse η. If a sequence {XN} of

uniform networks mirrors {X̃N}, from this given network behavior, we can find the continuum

limit q of {XN} by constructing its limiting PDE as in Chapter 4. Suppose that this PDE

has the form

q̇(t, s) = Q

(

s, q(t, s),
∂q

∂sj
(t, s),

∂2q

∂s2j
(t, s)

)

, (5.14)

with initial condition q(0, s) = q0(s), where j = 1, . . . , J , t ∈ [0, T ], and s = (s1, . . . , sJ) ∈ D.

By Theorem 4, we have that the continuum limit u(t, s) of {X̃N} satisfies (5.9).
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However, in general, we can only solve (5.14) numerically instead of analytically. In fact,

all the limiting PDEs in this chapter are solved by software using numerical methods. In this

case we cannot find the closed-form expression of u from q using (5.9). Instead, we derive a

PDE that u satisfies so that we can solve it numerically.

Suppose that u(t, s) solves the PDE

u̇(t, s) = Γ

(

s, u(t, s),
∂u

∂sj
(t, s),

∂2u

∂s2j
(t, s)

)

, (5.15)

with initial condition u(0, s) = u0(s), where j = 1, . . . , J and (t, s) ∈ [0, T ] × D. We now

find Γ from the known PDE (5.14).

By (5.8), (5.9), and the chain rule,

∂u

∂sj
(t, s) =

∂ηj
∂sj

(t, s)
∂q

∂sj
(t, η(t, s)).

By (5.8), the product rule, and the chain rule,

∂2u

∂s2j
(t, s) =

∂2ηj
∂s2j

(t, s)
∂q

∂sj
(t, η(t, s)) +

(

∂ηj
∂sj

(t, s)

)2
∂2q

∂s2j
(t, η(t, s)).

Note that, without the assumption (5.8), the expression of the derivatives above would be

much more complex. Then by (5.9), (5.14) and (5.15) we have

Γ

(

s, u(t, s),
∂u

∂sj
(t, s),

∂2u

∂s2j
(t, s)

)

= Q






η(t, s), u(t, s),

∂u
∂sj

(t, s)

∂ηj
∂sj

(t, s)
,

∂2u
∂s2j

(t, s)
(

∂ηj
∂sj

(t, s)
)2 −

∂2ηj
∂s2j

(t, s) ∂u
∂sj

(t, s)
(

∂ηj
∂sj

(t, s)
)3






,

where u0(s) = q0(η(0, s)). Hence we find the limiting PDE (5.15) of {X̃N}.

We present a concrete numerical example of the nonuniform network and its continuum

limit later in Section 5.3.2.

5.3 Numerical Examples

5.3.1 2-D Networks of the Two Types of Communicating Neighbors

We consider 2-D 1-step networks with the two types of communicating neighbors sepa-

rately (as illustrated in Fig. 5.1).
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Type-I communicating neighbors

For 2-D 1-step networks of Type-I communicating neighbors, we define the probabilities Pi

of transmitting to the 4 communicating neighbors as in Fig. 5.1. This is the same as the 2-D

network studied in [104].

The limiting PDE for this network is:

ż =
2
∑

j=1

(

b(j)
∂

∂sj

(

(1 + 5z)(1− z)3
∂z

∂sj

)

+ 2(1− z)3
∂z

∂sj

∂b(j)

∂sj
+ z(1 − z)4

∂2b(j)

∂s2j

+
∂

∂sj

(

c(j)z(1 − z)4
)

)

+ gp, (5.16)

where b(1) = (b1 + b2)/2, b
(2) = (b3 + b4)/2, c

(1) = c1 − c2, c
(2) = c3 − c4, and (s1, s2) ∈ D.

(We omit the detailed algebraic derivation.)

We consider such a network over the spatial domain D = [−1, 1] × [−1, 1]. We set the

number of nodes N = 80 × 80 and the normalizing parameter M = 803. We set the initial

condition

z0(s) = r1e
−4((s1+0.65)2+(s2+0.75)2) + r2e

−3((s1−0.75)2+(s2−0.85)2)

+ r3e
−2((s1−0.75)2+(s2+0.75)2) + r4e

−3((s1+0.85)2+(s2−0.75)2),

where the constants r1, . . . , r4 > 0, so that initially the nodes near (−0.65,−0.75),

(0.75, 0.85), (0.75,−0.75), and (−0.85, 0.75) have more messages to transmit than those

far away from these points. We set the incoming incoming traffic function

z0(s) = r5e
−4((s1+0.65)2+(s2+0.75)2) + r6e

−3((s1−0.75)2+(s2−0.85)2)

+ r7e
−2((s1−0.75)2+(s2+0.75)2) + r8e

−3((s1+0.85)2+(s2−0.75)2),

where the constants r5, . . . , r8 > 0, so that the nodes near (−0.65,−0.75), (0.75, 0.85),

(0.75,−0.75), and (−0.85, 0.75) generate more messages to transmit than those far away

from these points. This may correspond to four information sources at these four points

that generate different rate of data traffic. Set the diffusion functions bi = 1/4, where
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Figure 5.2: The Monte Carlo simulation and the PDE solution of a 2-D 1-step network of
Type-I communicating neighbors.

i = 1, . . . , 4, and the convection functions c1 = 0, c2 = 1, c3 = 0.1, and c4 = −0.1. Hence

b(1) = b(2) = 1/4, c(1) = −1, and c(2) = 0.2, so that more data traffic in the network is routed

to the south and the east. In Fig. 5.2, we show the contour of the PDE solution and the

simulation result at t = 0.1s. We can again see the resemblance.

Type-II communicating neighbors

For 2-D 1-step networks of Type-II communicating neighbors, we define the probabilities Pi

of transmitting to the 8 communicating neighbors as in Fig. 5.1. The limiting PDE is:

ż =

2
∑

j=1

(

b(j)
∂

∂sj

(

(1 + 9z)(1− z)7
∂z

∂sj

)

+ 2(1− z)7
∂z

∂sj

∂b(j)

∂sj
+ z(1 − z)8

∂2b(j)

∂s2j

+
∂

∂sj

(

c(j)z(1 − z)8
)

)

+ gp, (5.17)

where b(1) =
∑

l=1,2,5,...,8
bl
2
, b(2) =

∑

l=3,4,5,...,8
bl
2
, c(1) = c1 − c2 + c5 − c7 + c6 − c8, c

(2) =

c3 − c4 + c5 − c6 + c7 − c8.

Again the spatial domain D = [−1, 1]× [−1, 1]. We set the number of nodes N = 80×80

and the normalizing parameter M = 803. We set the initial condition

z0(s) = r1e
−4((s1+0.55)2+(s2+0.55)2) + r2e

(s1−0.55)2+(s2−0.55)2 ,
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Figure 5.3: The Monte Carlo simulation and the PDE solution of a 2-D 1-step network of
Type-II communicating neighbors.

where the constants r1, r2 > 0, so that initially the nodes near (−0.55,−0.55) and (0.55, 0.55)

have more messages to transmit than those far away from these two points. We set the

incoming incoming traffic function

gp(s) = r3e
−4((s1+0.55)2+(s2+0.55)2) + r4e

(s1−0.55)2+(s2−0.55)2 ,

where the constants r3, r4 > 0, so that the nodes near (−0.55,−0.55) and (0.55, 0.55) generate

more messages to transmit than those far away from these two points. This may correspond

to two information sources at these two points that generate different rates of data traffic.

In Fig. 5.3, we show the contours of the PDE solution and the simulation results with the

diffusion functions bi = 1/8 for i = 1, . . . , 8, and convection functions c1 = 1, c2 = 2, c3 = 3,

c4 = 4, c5 = −1, c6 = −2, c7 = −3, and c8 = −4. Hence b(1) = b(1) = 3/8, c(1) = 3, and

c(2) = 1, so that more data traffic in the network is routed to the west and the south.

The reader can verify that the two PDEs (5.16) and (5.17) above are special cases of (5.5).

5.3.2 Example of Nonuniform Network

We illustrate a 2-D nonuniform network X̃N , its continuum limit u(t, s), and the con-

tinuum limit q(t, s) of its mirroring uniform network in Fig. 5.4. The spatial domain
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Figure 5.4: A nonuniform network, its limiting PDE solution, and the limiting PDE solution
of its mirroring uniform network.

D = [−1, 1]× [−1, 1]. We assume that the mirroring uniform network is a 2-D 1-step network

of Type-I communicating neighbors. Therefore q satisfies the limiting PDE (5.16). For the

mirroring uniform network, we set the initial condition q0(s) = l1e
−(s21+s22), and incoming

traffic gp(s) = l2e
−(s21+s22), where the constants l1, l2 > 0; and we set the diffusion functions

bi = 1/4 and the convection functions ci = 0, for i = 1, . . . , 4. The inverse transformation

function here is set to be ηj(s) = (sj+1)2/2−1 for j = 1, 2. (Notice that this satisfies (5.8).)

Therefore the continuum limit u of the nonuniform network X̃N is u(t, s) = q(t, η(s)).

69



CHAPTER 6

CONTROL OF NONUNIFORM NETWORKS

This chapter concerns the control of nonuniform networks. For example, suppose that a

uniform network with certain transmissions achieves a steady state that is desirable in terms

of global traffic distribution (for example, load is well-balanced over the network). Further

suppose that we want the network to maintain such global characteristics if the nodes are no

longer at their original uniform locations. Then the problem is to control the transmissions

in the network such that its continuum limit remains invariant.

By comparing the limiting PDEs of corresponding uniform and nonuniform networks. we

develop a method to control the transmissions of nonuniform networks so that the continuum

limit is invariant under node locations. In other words, we can maintain a stable global

characteristic for nonuniform networks.

6.1 Control of Nonuniform Networks

The global characteristic of the network is determined by the transmission-interference

rule defined in Section 5.2.2 and is described by its limiting PDE. The transmission-

interference rule depends entirely on the transmission range L and the probabilities Pi,

which in turn by (5.1) depends on the direction function pi. On the other hand, L and

pi also determine the limiting PDE of a sequence of networks. Therefore we can control

the transmission-interference rule to obtain the desired limiting PDE, and hence the desired

global characteristic of the network, by changing L and pi.

For uniform networks, this procedure is straightforward because L and pi relate directly

to the form and coefficients of the limiting PDE. For example, for the 1-D 1-step network in

Chapter 4, increasing the convection c results in a greater bias of the PDE solution to the
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left side of the domain. (A numerical example of this network is provide in Section 4.2.2.)

We now study this kind of control for nonuniform and possibly mobile networks. For such

networks, we have to take into account the varying node locations in order to still achieve

certain global characteristics. The goal is to develop a control method so that the continuum

limit is invariant under node locations and mobility, i.e., remains the same as a reference,

which is the continuum limit of the sequence of corresponding uniform networks with a

certain transmission-interference rule. We then say the sequence has a location-invariant

continuum limit.

We illustrate this idea in Fig. 6.1. The plus signs in both figures represent the queues

of a certain uniform network at a certain time. The solid lines in both figures represent

the continuum limit (the limiting PDE solution) of the same uniform network at the same

time. Thus they resemble each other. On the left, the diamonds represent the queues of a

nonuniform network with the same transmission-interference rule as the uniform network,

but no longer resembling the continuum limit because of the changes in node locations. On

the right, the circles represent the queues of a second nonuniform network with the same

node locations as the first nonuniform network, but under some control over its transmission-

interference rule, therefore resembling the continuum limit of the uniform network. In other

words, location-invariance in the second nonuniform network has been achieved by network

control. Apparently, for this particular network, such a control scheme has to be able to

direct more (and the right amount of) data traffic to the right hand side. In what follows,

we describe how this can be done by properly increasing the probabilities of the nodes

transmitting to the right through the use of the limiting PDEs.

Throughout the chapter we assume no control over node location or motion.

6.1.1 Transmission-interference Rule for Location-invariance

Consider a sequence {X̃N} of nonuniform networks whose node locations are specified by

a given transformation function φ with inverse η, and a sequence {X̂N} of uniform networks
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⋄ Uncontrolled network ◦ Controlled network
+ Uniform network —— Limit of uniform network

Figure 6.1: An illustration of control of nonuniform networks. On the x-axis, the ×-marks
are the uniform grid, and the △-marks are the nonuniform node locations.

with given transmission-interference rule and continuum limit u. We want to control the

transmission-interference rule of {X̃N} so that it also converges to u, i.e., obtains the location-

invariant continuum limit.

Again we do not assume a known closed-form expression of u. Instead, assume that

u(t, s) solves (5.15), except that Γ is now given.

Define

q(t, s) = u(t, φ(t, s)). (6.1)

Suppose that a sequence {XN} of uniform networks has continuum limit q(t, s). By The-

orem 4, for {X̃N} to converge to this desired u(t, s), it suffices that {X̃N} mirrors {XN}.

Therefore all we have to do is to specify the transmission-interference rule of {XN} to {X̃N}.

Next we find this transmission-interference rule.

Suppose that q(t, s) solves (5.14), except thatQ is now unknown. Again using the product

rule and the chain rule as we did in Section 5.2.4, by (5.14), (5.15), and (6.1), we have that

Q

(

s, q(t, s),
∂q

∂sj
(t, s),

∂2q

∂s2j
(t, s)

)

= Γ






φ(t, s), q(t, s),

∂q

∂sj
(t, s)

∂φj

∂sj
(t, s)

,

∂2q

∂s2j
(t, s)

(

∂φj

∂sj
(t, s)

)2 −

∂2φj

∂s2j
(t, s) ∂q

∂sj
(t, s)

(

∂φj

∂sj
(t, s)

)3






, (6.2)
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and q0(s) = u0(φ(0, s)), where j = 1, . . . , J .

Since q(t, s) is the continuum limit of a sequence of uniform networks, (5.14) must be a

case of (5.5), the general limiting PDE. Therefore we can replace the left-hand side of (6.2)

by the right-hand side of (5.5) and get

J
∑

j=1

(

b(j)(t, s)
∂

∂sj

(

(

1 + (λ(J,L) + 1)z(t, s)
)

(1− z(t, s))(λ(J,L)−1) ∂z

∂sj
(t, s)

)

+ 2(1− z(t, s))(λ(J,L)−1) ∂z

∂sj
(t, s)

∂b(j)

∂sj
(t, s) + z(t, s)(1 − z(t, s))λ(J,L)

∂2b(j)

∂s2j
(t, s)

+
∂

∂sj

(

c(j)(t, s)z(t, s)(1− z(t, s))λ(J,L)
)

)

+ gp(t, s)

= Γ






φ(t, s), q(t, s),

∂q

∂sj
(t, s)

∂φj

∂sj
(t, s)

,

∂2q

∂s2j
(t, s)

(

∂φj

∂sj
(t, s)

)2 −

∂2φj

∂s2j
(t, s) ∂q

∂sj
(t, s)

(

∂φj

∂sj
(t, s)

)3






. (6.3)

We call this the comparison equation. If we can solve it for L, pl, and gp, our goal is

accomplished because they determine the network behavior, which includes the transmission-

interference rule, for each N -node uniform network in the mirroring sequence {XN}. If

we assign these transmission-interference rule to {X̃N}, then it has the location-invariant

continuum limit u(t, s).

We note a constraint for (6.3): by (5.1), for each i, pi has to be sufficiently small such

that for each k and n,

Pi(k, n) ∈ [0, 1], and
∑

i

Pi(k, n) ∈ [0, 1]. (6.4)

In turn by (5.2), bi and ci have to be sufficiently small for (6.4) to hold. By further observ-

ing (5.3) and (5.4), it follows that the transmission range L has to be sufficiently large. For

this reason, it is necessary to generalize from 1-step to L-step transmission range, as we did

in Section 5.1. Note that with this constraint, (6.3) is still underdetermined. Such freedom

gives us a class of transmission-interference rules to assign to {X̃N} instead of just one.

One way to solve (6.3) is this. Suppose that we have chosen L sufficiently large.

Since (5.15) is now given, we know the numerical form of u and in turn that of q by (6.1). For
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fixed to, we put q(to, s) in (6.3). For each j, if we fix b(j)(to, s), then we can solve (6.3), which

is now an ordinary differential equation (ODE), for c(j)(to, s). Similarly, fixing c(j)(to, s)

makes (6.3) an ODE that we can solve for b(j)(to, s). Then by (5.4) we can further choose bi

and ci, and further determine pi by (5.2). Thus we have found Pi by (5.1), which together

with L determines the transmission-interference rule.

6.1.2 Distributed Control Using Local Information

The control method presented above is centralized in the sense that it requires knowledge

of the transformation function φ over D. This assumes that each node knows the location of

all other nodes. However, this is generally not the case in practice, especially for networks

without a central control unit. In this subsection we present a distributed version of our

control method, where only the locations of nearby nodes are needed for each node to deter-

mine its transmission-interference rule. We can do this because all the information needed

to solve the comparison equation (6.3) can be approximated locally at each node.

The derivatives of φ in (6.3) can be approximated from the locations of neighboring

nodes using a certain finite difference method. For example, in the 1-D case, we can use the

approximation:

∂φ

∂s
(t, s) ≈

φ(kdtN , vN(n + 1))− φ(kdtN , vN(n− 1))

2dsN
=

ṽN(k, n+ 1)− ṽN(k, n− 1)

2dsN
,

where t = kdtN and s ∈ [vN(n − 1), vN(n + 1)). Note that we can also use the location

information of further neighbors to get a more accurate approximation of ∂φ/∂s. The trade-

off between locality and accuracy can be flexibly adjusted.

The ODE for b(j) or c(j) can also be solved based on local information using numerical

procedures such as Euler’s method [105].

We present two concrete examples of network control in 1-D and 2-D case in Section 6.2.1

and Section 6.2.2, respectively.
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6.2 Examples of Control of Nonuniform Networks

6.2.1 1-D Example

Let the domain D = [−1, 1]. Let u(t, s) be the continuum limit of a sequence {X̂N} of

1-D 1-step uniform networks with transmission range L̂ = 1, the diffusion function b̂ = 1/2,

the convection function ĉ = 0, and a given incoming traffic function ĝp for all (t, s) ∈

[0, T ] × D. A given transformation function φ specifies the node locations of a sequence

{X̃N} of nonuniform networks. We show how to find the transmission-interference rule for

{X̃N} to converge to u(t, s). As the continuum limit of this particular 1-D 1-step network,

u(t, s) solves the PDE

u̇ =
∂

∂s

(

1

2
(1− u)(1 + 3u)

∂u

∂s

)

+ gp, (6.5)

with boundary condition u(t, s) = 0 and initial condition u(0, s) = u0(s).

In this case λ(J,L) = 2L. Let θ = 1/
(

2
(

∂φ

∂s

)2
)

. Then the comparison equation (6.3)

becomes

b(1)
∂

∂s

(

(1 + (2L+ 1)q)(1− q)(2L−1)∂q

∂s

)

+ 2(1− q)(2L−1)∂q

∂s

∂b(1)

∂s

+ q(1− q)2L
∂2

∂s2
b(1) +

∂

∂s

(

c(1)q(1− q)2L
)

+ ĝp

= θ(1− q)(1 + 3q)
∂2q

∂s2
+ 2(1− 3q)θ

(

∂q

∂s

)2

+
1

2
(1− q)(1 + 3q)

∂θ

∂s

∂q

∂s
+ gp(φ), (6.6)

where q is the continuum limit of the mirroring sequence {XN} of {X̃N}.

We assume that ĝp(s) = gp(φ(t, s)), which corresponds to the assumption that the con-

tinuum limit of the incoming traffic is invariant under node locations and mobility. This

assumption is feasible in a large class of networks where traffic load depends directly on ac-

tual physical location. For example, in a wireless sensor network that detects environmental

events such as a forrest fire, the event-triggered data traffic depends on the distribution of

heat rather than the node locations.

Suppose that we set

b(1) = θ. (6.7)
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Figure 6.2: The comparison of the 1-D controlled network and the location-invariant con-
tinuum limit at t = 1s. On the x-axis, the × marks are the uniform grid, and the △ marks
are the nonuniform node locations.

Since q is known to be the solution of (6.5), (6.6) has now become a first-order linear ODE

for c(1).

We can use Euler’s method to solve this ODE based on local information. For fixed to,

suppose the ODE is written in the form Φ(to, s, c
(1)) = dc(1)

ds
. We first choose c(1)(to, s(1))

such that Pi(ko, 1) satisfies (6.4), where to = kodtN . Then we can approximate c(j)(to, s(n))

by ĉ(to, n), where ĉ(to, 1) = c(j)(to, s(1)), and ĉ(to, n+ 1) = ĉ(to, n) + Φ(to, s(n), ĉ(to, n))dsN ,

for n = 1, . . . , N.

With this given φ, the transmission range L of the mobile network has to be greater

or equal to 2 for (6.4) to hold. We choose L = 2. Then any bi, ci, where i = 1, 2, that

satisfy (6.6) and (6.7) will give us the desired transmission-interference rule of networks in

{XN}, and hence that of {X̃N}.

We simulate a 51-node controlled mobile network X̃N in the sequence {X̃N} that mirrors

{XN}, whose node locations are specified by this given φ. In Fig. 6.2, we compare the

simulation result with the continuum limit of {X̂N}, at t = 1s. We set the initial condition

z0(s) = r1e
−s2 and the incoming traffic function gp(s) = r2e

−s2 , where the constants r1, r2 >

0. As we can see, the global characteristic of X̃N resembles u(t, s), the continuum limit of

{X̂N}.
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6.2.2 2-D Example

Let the domain D = [−1, 1] × [−1, 1]. Let u(t, s) be the continuum limit of a sequence

{X̂N} of 2-D 1-step uniform networks of Type-II communicating neighbors with transmission

range L̂ = 1, the diffusion functions b̂i(t, s) = 1/8, for i = 1, . . . , 8, the convection functions

ĉ(j) = 0, for j = 1, 2, and given incoming traffic function ĝp for all (t, s) ∈ [0, T ]×D. Again

denote the given transformation function that specifies the node locations of {X̃N} by φ(t, s).

As the continuum limit of this particular 1-D 1-step network, u(t, s) solves the PDE

u̇ =
3

8

2
∑

j=1

∂

∂sj

(

(1 + 9u)(1− u)7
∂u

∂sj

)

+ ĝp, (6.8)

with boundary condition u(t, s) = 0 and initial condition u(0, s) = u0(s).

Let θj = 1/

(

2
(

∂φj

∂sj

)2
)

. Then the comparison equation (6.3) becomes

2
∑

j=1

(

b(j)
∂

∂s

(

(1 + (λ(2,L) + 1)q)(1− q)(λ(2,L)−1)∂q

∂s

)

+ 2(1− q)(λ(2,L)−1)∂q

∂s

∂b̂j
∂sj

+q(1− q)λ(2,L)
∂2b(j)

∂s2
+

∂

∂s

(

c(j)q(1− q)λ(2,L)
)

)

+ ĝp

=
2
∑

j=1

(

3

4
(1− q)7(1 + 9q)θj

∂2q

∂x2
j

+
3

8
(1− q)7(1 + 9q)

∂θj
∂xj

∂q

∂xj

+
3

2
(1− 36q)(1− q)6θj

(

∂q

∂xj

)2
)

+ gp(φ), (6.9)

where q is the continuum limit of the mirroring sequence {XN} of {X̃N}. Assume that

ĝp(t, s) = gp(φ(t, s)) and

b(j) = θj. (6.10)

Since q is known to be the solution of (6.8), we have two first-order linear ODEs of c(j),

where j = 1, 2.

For this given φ, L = 2 is sufficient for (6.4) to hold. Then any bi, ci, l = 1, 2 that

satisfy (6.9) and (6.10) will give us the desired transmission-interference rule for {XN}, and

hence {X̃N}.
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Figure 6.3: The comparison of the 2-D controlled network and the location-invariant con-
tinuum limit at t = 1s.

We simulate a (100 × 100)-node controlled mobile network X̃N in the sequence {X̃N}

that mirrors {XN}, whose node locations are specified by φ. In Fig. 6.3, we compare the

simulation result with the continuum limit of {X̂N}, at t = 1s. We set the initial condition

z0(s) = r1e
−4((s1+0.6)2+(s2+0.6)2) + r2e

−3((s1−0.6)2+(s2−0.6)2),

and the incoming traffic function

gp(s) = r3e
−4((s1+0.6)2+(s2+0.6)2) + r4e

−3((s1−0.6)2+(s2−0.6)2),

where the constants r1, . . . , r4 > 0. Again, the global characteristic of X̃N resembles u(t, s),

the continuum limit of {X̂N}.
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CHAPTER 7

STABILITY

In this chapter we discuss the stability of the systems studied in this dissertation.

We first present a lemma on the stability of the system described by the deterministic

difference equation (1.3).

Lemma 7: Assume that for each N , there exists xeN ∈ R
N of (1.3) such that

fN (xeN) = 0, , (7.1)

Further assume that the jacobian matrixDfN(0) of fN at 0 has only eigenvalues with negative

real part. Then for each N , for M sufficiently large, xeN is asymptotically stable.

Proof: Define

δN(k) = xN (k)− xeN . (7.2)

Then we have from (1.3) that

δN(k + 1) = δN(k) +
1

M
fN(δN(k) + xeN). (7.3)

By (7.1) and (7.2) we have that (7.3) has 0 ∈ R
N as its equilibrium.

By the second assumption, for each N , for M sufficiently large, all eigenvalues of IN +

1
M
DfN(0) lie in the open unit disc. Therefore 0 is asymptotically stable [106, 107, 108].

Then by (7.2), xeN is equivalently asymptotically stable.

For the one-dimensional network model, we now provide a sufficient condition for the

assumption on DfN in the above Lemma.

Lemma 8: In the one-dimensional network case, if Pl(n) + Pr(n) > 0 for all n, then

DfN(0) has only negative eigenvalues.
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Proof: We have that

DfN(0) =
































−2(Pr(1) + Pl(1)) Pl(2)

Pr(1) −2(Pr(2) + Pl(2)) Pl(3)

. . .

Pr(n− 1) −2(Pr(n) + Pl(n)) Pl(n+ 1)

. . .

Pr(N − 1) −2(Pr(N) + Pl(N))

































Let A be a complex N×N matrix, with entries aij . For i ∈ {1, . . . , N}. let Rj =
∑

i 6=j |aij|

be the sum of the absolute values of the non-diagonal entries in the jth column. A corollary

of the Gershgorin circle Theorem [109] states that every eigenvalue of A lies within at least

one of the Gershgorin discs D(ajj, Rj), the closed disc centered at ajj with radius Rj .

For DfN(0), we have that its Gershgorin disc D(ajj, Rj) is the closed disc centered at

ajj = −(Pl(j) +Pr(j)) with radius Rj = Pl(j) +Pr(j) for j = 2, . . . , N − 1, R1 = Pr(1), and

RN = Pl(N).

Since DfN(0) is a real tridiagonal matrix, and the signs of its entries are symmetric, its

eigenvalues are real [110]. It can be shown that the determinant of DfN(0) is the continu-

ant [111]

(−1)N (N + 1)

N
∏

n=1

(Pl(n) + Pr(n)).

Therefore, since Pl(n) + Pr(n) > 0 for all n, DfN(0) is invertible, and consequently, 0 is not

one of its eigenvalues. Therefore, by the corollary of Gershgorin circle Theorem, DfN(0) has

all negative eigenvalues.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Summary of Contributions

In this dissertation we analyze the convergence of a sequence of Markov chains to its

continuum limit, the solution of a PDE, in a two-step procedure. To the best of our knowl-

edge, for the class of Markov chains studied in this dissertation, our work is the first to

directly approximate their time-space characteristics by continuum limits. Specifically, our

approach directly approximates the state of the Markov chain, not its distribution; and it

approximates the state at specific temporal and spatial points, not the number or proportion

of components in a certain state. We provide precise sufficient conditions for the convergence

and the explicit rate of convergence. Based on such convergence we approximate the Markov

chain modeling a large wireless sensor network by a nonlinear diffusion-convection PDE.

With the well-developed mathematical tools available for PDEs, this approach provides a

framework to model and simulate networks with a very large number of components, which

is practically infeasible for Monte Carlo simulation. Such a tool enables us to tackle prob-

lems such as performance analysis and prototyping, resource provisioning, network design,

network parametric optimization, network control, network tomography, and inverse prob-

lems, for very large networks. For example, we can now use the PDE model to optimize

certain performance metrics (e.g., throughput) of a large network by adjusting the place-

ment of destination nodes or the routing parameters (e.g., coefficients in convection terms),

with relatively negligible computation overhead compared with that of the same task done

by Monte Carlo simulations.

We then study the modeling of nonuniform and possibly mobile networks via nonlinear

PDEs, and develop a distributed method to control their transmission-interference rules to
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maintain certain global characteristics.

8.2 Discussion and Future Work

The assumption made in (4.3) that the probabilities of transmission behave continuously

insures that there is a limiting behavior in the limit of large numbers of nodes and relates

the behavior of networks with different numbers of nodes. The convergence results can

be extended to the situation in which the probabilities change discontinuously at a finite

number of lower dimensional linear manifolds (e.g., points in one dimension, lines in two

dimensions, planes in three dimensions) in space provided that all of the discrete networks

under consideration have nodes on the manifolds of discontinuity.

There are other considerations regarding the network that can significantly affect the

derivation of the continuum model. For example, transmissions could happen beyond imme-

diate nodes, and the interference between nodes could behave differently in the presence of

power control; we can consider more boundary conditions other than sinks, including walls,

semi-permeating walls, and their composition; and we can seek to establish continuum mod-

els for other domains such as the Internet, cellular networks, traffic networks, and human

crowds. Our network modeling and control method can be extended to other network mod-

els. The freedom in the control method mentioned in Chapter 6 can also be further exploited

to improve the network performance.
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