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Abstract

Canonical correlation analysis is employed as a multi-aspect feature extraction method for underwa-
ter target classification. The method exploits linear dependence or coherence between two consecutive
sonar returns, at different aspect angles. This is accomplished by extracting the dominant canonical
correlations between the two sonar returns and using them as features for classifying mine-like objects
from non-mine-like objects. The experimental results on a wideband acoustic backscattered data set,
which contains sonar returns from several mine-like and non-mine-like objects in two different environ-
mental conditions, show the promise of canonical correlation features for mine-like versus non-mine-like
discrimination. The results also reveal that in a fixed bottom condition, canonical correlation features

are relatively invariant to changes in aspect angle.
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I. INTRODUCTION

The problem of classifying underwater targets using active sonar has attracted a lot of attention
in recent years, e.g. see [1]— [12]. This problem involves discrimination between targets and non-
targets. Some of the factors that complicate this process include: non-repeatability and variation of
target signatures with aspect angle, range, and grazing angle; diverse sizes, shapes, and scattering
properties of the targets; presence of natural and man-made clutter; and a highly variable and
reverberant operating environment. The problem is even more complicated when bottom targets
are encountered, especially if they are buried or obscured by bottom features.

Due to the above factors, it is often difficult to detect and classify objects of interest based on
the measurement from a single object-sensor orientation. There are often orientations at which
different objects may look nearly identical. Consequently, in real-life situations, the decision
about the presence and type of an object is generally made based upon observations of the
received signals at several aspect angles.

In recent years, several multi-aspect-based methods for detection and classification of under-
water targets from acoustic backscattered signals have been developed, e.g. see [1]- [12]. A
detailed review of these methods is provided in [1]. However, in all these methods, multi-aspect
classification is performed using various classification fusion methods, namely decision-level
fusion [5], [8]- [12], feature-level fusion [1], [2], [4], [6], [7], or a combination of decision-
level and feature-level fusion [3]. In decision-level fusion, an intermediate decision about the
presence and type of the object (target or non-target) is made for every sonar return. The
final decision is then made at the fusion center by optimally combining several single-aspect
intermediate decisions. In feature-level fusion, feature vectors extracted from multiple sonar
returns are simultaneously given to a decision making system to generate the final classification
decision.

In [13]- [16] a different approach for multi-aspect detection and classification of underwater
objects is reported. In this approach multi-aspect detection and classification is performed by
exploring the correlation between two backscattered signals at different aspects, and analyzing
the variations in the so-called angular correlation function. The angular correlation methods
reported in [13]- [16] have been shown to provide better clutter suppression and finer resolution

than conventional field imaging methods. The reader is referred to [13]- [16] and the references
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therein for more details.

The approach taken in this paper is similar to that in [13]- [16] in the sense that we also
explore the correlation or similarities between two-backscattered signals. However, we use a
different method for the analysis of correlation. We exploit the linear dependence (or coherence)
between two sonar returns, with certain aspect separation, to extract features that capture common
target/non-target attributes in these two returns. The idea is that linear dependence between the
sonar returns is an indication of the presence of a common signature, whereas linear independence
indicates the absence of a common signature. This is the basic idea behind multi-channel tests
for linear dependence [17] and the multiple coherence test of [18], [19].

The linear dependence between two data channels is measured by the canonical correlations
[17], [20]- [22] of the channels. This implies that canonical correlations can be viewed as features
that capture linear dependence or coherence between the two data channels, and hence may
be used for detection and classification purposes. We intend to exploit this idea for classifying
underwater mine-like objects (targets) from non-mine-like objects (non-targets). In this approach,
the channels correspond to acoustic backscattered signals at two aspect angles with aspect/ping
separation to be specified shortly.

Using canonical correlations, we exploit the linear dependence (coherence) between two
backscattered signals or sonar returns to determine the presence of common signatures associated
with targets or non-targets. Owing to the differences in shape, size and composition of the mine-
like and non-mine-like objects, we hypothesize that the level of coherence between the sonar
returns at different pings/aspects, for a mine-like object is different than that of a non-mine-
like object. Therefore, the dominant canonical correlations, which capture most of the coherence
between the two sonar returns, may be used as features to classify the objects at the corresponding
aspect angles. We test this hypothesis on a subset of a wideband data set that was collected at
the Applied Research Lab (ARL), University of Texas (UT)-Austin, and benchmark our results

against those in [1] on the same data set.

II. A REVIEW OF CANONICAL CORRELATION ANALYSIS

In this section, we review canonical coordinates and canonical correlations, and show that how
linear dependence and coherence between two data channels may be determined using canonical

correlation analysis. The material presented here, and much of the language and terminology,

August 18, 2007 DRAFT



PEZESHKI et al.: UNDERSEA TARGET CLASSIFICATION USING CANONICAL CORRELATION ANALYSIS 4

are drawn from [20].
Consider the composite data vector z consisting of two random vectors x € R” and y € R",

m < n, l1.e.

z = € R™), ey

We assume that x and y have zero means and share the composite covariance matrix

T X sz ny
R..— Ejz7'] = E (xm y7) | = . 2)
y Ry Ry

This composite covariance matrix may be taken to block tridiagonal form as follows [20]:

FT 0 R..> 0 R0 F 0 I =
_1jp | R A = NE)
0 GT 0 Ryy 0 Ryy 0 G DL |
The trick is to choose F, 3, and G to be the singular value decomposition (SVD) of the
coherence matrix C = E[(R;;clmx)(R;yl/zy)T} = R;§/2nyR;yT/2. That is,

C =R,’R,R,* =FG" (4)

where F € R™™ and G € R™" are orthogonal matrices, i.e. FIF = FFT = I(m), G'G =
GG" =1(n),and ¥ = [ ¥(m) 0 ] € R™*" is a diagonal singular value matrix, with 3(m) =
diag[oy,09,...,0n] and 1 > 0y > 09 > ... > 0, > 0.

Then the transformation

u F’ 0 R..> 0 x )
- —1/2
v 0 GT 0 R,/ y
resolves zI' = [x”,y”] into their canonical coordinates w? = [u”,v’], with the composite
covariance matrix
R,.=1 R, =%
Ry, = Elww!] = ( ) | ) (6)
(Rvu = ET) (R'Uv = I)
We refer to the elements of u = [, € R™ and v = [v]l, € R" as the canonical
coordinates of x and y, respectively. The diagonal cross-correlation matrix 3.,
¥ = Euv’] = E[(FTR,}’x)(G"R,*y)"] = FTCG (7)
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is called the canonical correlation matrix of canonical correlations o;, with 1 > o; > 09 >
-+ > 0, > 0. An important property of canonical correlations is that they are invariant under
uncoupled nonsingular transformations of x and y [20].

The linear dependence L between x and y may be measured as [20],

m
L=det(I-2x")=JJ(1-0?); 0<L<1, (8)
i=1
The measure L takes the value O iff there is linear dependence between elements of x and y;
it takes the value 1 iff the elements of x and y are mutually uncorrelated. Equation (8) shows
that the linear dependence or coherence between the two channels (e.g. sonar returns at two
consecutive aspect angles) depends only on the canonical correlations of the channels and may
easily be computed after the decomposition. They also show that each canonical coordinate pair,
e.g. (u;,v;), contributes to the linear dependence according to its canonical correlation o;. This
shows that the linear dependence between x and y is decomposed into the linear dependence
between their canonical coordinates, each of which is determined by a canonical correlation.
Thus, only canonical coordinates with large canonical correlations have significant contribution
to the linear dependence and coherence. Therefore, they are the only ones that need to be retained
for detection and classification.

Remark 1. A conventional method of canonical coordinate decomposition as in (5) does not
offer a simple way to compute a small subset of canonical coordinates and correlations. A full
SVD for the coherence matrix, along with square-root inverses of data covariances, has to be
computed, regardless of the rank-reduction. This makes the conventional method computationally
intractable, especially when the data channels have large dimensions. In [23], simple algorithms
called alternating power methods with deflation have been reported to recursively compute the
canonical coordinates and correlations one-by-one or in groups. Provided that the singular values
of the coherence matrix are not close together, alternating power methods can be more efficient
in computation than the conventional method. The reader is referred to [23] for details.

Remark 2. It is worth mentioning that canonical coordinates have been used in many other
two-channel signal processing problems, including reduced-rank estimation [20], [24], low-
rank Gauss-Gauss detection [25], and reduced-rank quantization of noisy sources [26]. In this
paper, we explore the use of canonical correlation analysis for feature extraction specifically for

underwater target classification.
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ITI. WIDEBAND SONAR DATA SET

The sonar data set used in this paper is a subset of a wideband acoustic backscattered data
set collected at the ARL-UT, Lake Travis test station (LTTS) [27]. This subset contains acoustic
backscattered signals from three mine-like and three non-mine-like objects in two different
bottom conditions, namely smooth and rough. For the rough bottom condition the sand is raked,
giving it rippled effects. The mine-like objects are two cylindrical steel objects (Targets 6 and
7) of different sizes, and a truncated cone shape plastic object (Target 2). The non-mine-like
objects are a water-filled steel drum, a concrete pipe, and a telephone pole.

During the data collection the objects were placed on a rotating seabed, 25-30 ft below the
lake surface, with minimal embedding/scouring. The diameter of the seabed was 25 ft. The
center of the object was positioned as near to the center of the circular platter (seabed) as
possible. The objects were rotated in a horizontal plane while the acoustic panel was set at a
depression/elevation (D/E) angle of 13.5 degrees, and range of 105 ft from the center of the
seabed. A single rotation was executed while acoustic backscattered signals at nearly uniform 1
degree increments were collected.

The receiver array consisted of 16 channels with 1 inch separation. The transmit signal was
a linear frequency modulated (LFM) waveform with a bandwidth of 85 kHz in the range of
15-100 kHz, and was approximately 7 msec long. The backscattered signals were recorded for
approximately 16 msec at 500 kHz sampling rate, resulting in 8192 samples. In our experiments,
we use the averaged data of four channels to yield a beamwidth that is just wide enough to
insonify the object and not much of the surroundings. The beamwidth (in degrees) is computed
approximately using 180/7¢, where ¢ is the aperture length in wavelengths. At 100 kHz (i.e.
wavelength=0.6inch) the length of the four-channel aperture is 6.6 wavelengths, hence giving a
beamwidth of approximately 8.6 degrees. At a distance of 105 ft, this results in a coverage width
of 14 ft, which is wide enough to cover the entire length of the objects and narrow enough to
avoid the side edges of the seabed.

An inverse matched filtering algorithm (see [5] for details) is used to remove the artifacts and
secondary reflections caused by the straps and supporting barge of the experimented setup. The
idea is to apply a window in matched filter domain to extract a clean signal and then perform
the inverse matched filtering to obtain a “clean backscattered” signal. The clean backscattered

signals (or from hereon backscattered signals) are then used in the feature extraction process
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described next.

IV. FEATURE EXTRACTION PROCESS

In this section, we describe how canonical correlation analysis may be used to extract a set of
features that capture common target/non-target attributes among two consecutive sonar returns,
with certain aspect separation. Later in Section V, we will apply the feature extraction method
presented here to the wideband ARL-UT data set, and use the extracted features for classifying
mine-like objects from non-mine-like objects.

To build the ensembles of the two channels (x and y) for canonical correlation analysis, we
partition two backscattered signals from an object, with certain aspect separation, into overlapping
blocks, as illustrated in Figure 1. In this figure, sonar return 1 is the backscattered signal from an
object at aspect angle, say (31, and sonar return 2 is the backscattered signal from the same object
at aspect angle B, = (1 + AfS, where A is the aspect separation between these two returns.
The blocks of sonar return 1 are taken as the samples of the first channel (the x-channel) and
the blocks of sonar return 2 are taken as the samples of the second channel (the y-channel).
Referring to Figure 1, the data sample x; is the vector of the time series associated with the
1th block of range cells in sonar return 1, and y; is the vector of the time series associated
with the ith block of range cells in sonar return 2. The collections of these data vector samples
form the sample data matrices X = [xy,...,x5] and Y = [y, ..., yn]. Thus, in the canonical
correlation analysis formulation of Section II, the covariance matrix R,,, Ry, and R,, are
replaced by their corresponding sample estimates S,, = (1/M)XX*, S, = (1/M)YY7”, and
S.y = (1/M)XY?”. The dominant canonical correlations between these sample data matrices
X and Y, which capture most of the coherence, will be used as features to represent the sonar
signal at aspect angle (3.

Remark 3. Taking blocks of the backscattered signals as snapshot vectors to build sample
covariance matrices requires that the second-order statistics of the random vector process, which
generates the snapshots, is time invariant. As we argue in the Appendix, this occurs either when
a short pulse is used to scan a uniform target or when a long pulse is used to scan the entire
target.

The aspect separation AS should be large enough so that the bottom reverberation effects

are almost uncorrelated, but small enough so that the returns from the objects remain coherent.
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Sonarretrun 1 | } } t } } {

X‘) Range
Y1 - YM
Sonarreturn 2 | } } } } t i
Y2
Fig. 1. Building the ensembles of the two channels (x and y) for canonical correlation analysis from two sonar returns.

Clearly, this choice depends on many factors including specific properties of the sonar such as
speed of movement, range and elevation of the vehicle, and size and orientation of the object. For
the ARL-UT data set, we have experimentally determined that an aspect separation of A3 = 16
degrees is a reasonable choice. Therefore, in the simulations preformed in Section V, the sonar re-
turns are paired according to aspect angles as follows: {1,17}, {2,18} - - , {344,360}, {345,1}, - - -
{360, 16}. The dominant canonical correlations extracted from each pair of aspects {3, 5+ 16}

will be used as features to represent the return at aspect angle .

V. CANONICAL CORRELATION FEATURES AND CLASSIFICATION RESULTS

In this section, the feature extraction process described in Section 1V is applied to the sonar
returns in the ARL-UT data set, and the extracted features are used to classify mine-like objects
from non-mine-like objects. In the experiments performed here, the backscattered signals are
partitioned into blocks of size 50 samples, with 50% (25 samples) overlap, leading to 50-
dimensional x and y channels. Although, the block size is determined experimentally here,
there are several factors that must be considered. These include duration of the transmit signal,
sampling rate, and the shape and size of the objects. Since the length of the backscattered
signals is 8192 samples, dividing each backscattered signal into blocks of size 50 samples with
25 samples overlap results in M = 327 vector samples for x— and y— channels. As a result
the sample data matrices X and Y will each have size 50 x 327. The 50 x 327 data matrices X
and Y share 50 canonical correlations. We use the first (largest) 15 out 50 canonical correlations
between data matrices X and Y, which are associated with a pair of angles (3, + 16), as
features to represent the aspect angle (3. The first 15 canonical correlations capture a major

portion of the coherence between the sonar returns.
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Experiment 1: The objective here is to demonstrate the usefulness of canonical correlation
features for classifying mine-like from non-mine-like objects in both smooth and rough bottom
conditions. The training data set for classification is formed from the feature vectors extracted
at 90 aspect angles of the smooth bottom data, at aspect increments of 4°. The feature vectors
extracted from the rest of the aspect angles of the smooth bottom data (270 aspect angles) are
kept to validate the trained classifier. This validation data set is primarily used to select the best
trained classifier. To see how well the trained classifier generalizes, the feature vectors extracted
from the backscattered signals in the rough bottom condition are used as a testing data set.

Figures 2(a)-(c) show the scatter plots of the first two canonical correlation features for the
training, validation, and testing data sets, respectively. As can be seen, for the training data set
(Fig. 2(a) and the validation data set (Fig. 2(b)), the features of mine-like objects (Targets 2,
6, and 7) are packed together and almost completely separated from those of the non-mine-
like objects (steel drum, concrete pipe, and telephone pole). Additionally, the extracted features
for the training and validation data sets, for the objects in the smooth bottom condition, are
consistent (occupy the same regions in the scatter plots).

In the rough bottom test condition (Fig. 2(c)), features of Target 2, Target 6, and the telephone
pole stay in the same regions as in the smooth bottom condition, while those of the drum
and concrete pipe become more compact and move slightly towards the right side of the plot.
Nonetheless, they still occupy almost the same regions as in training and validation data sets.
Features of Target 7, however, move from the upper right corner and spread out to the left side
and mix with those of the steel drum and concrete pipe. The reason for changes in features of
Target 7 may be attributed to the secondary reflections and the rather large size of this cylindrical
target, which is comparable to that of the drum. Clearly, the movement of Target 7 features leads
to some degradation in classification performance in the rough bottom condition. These scatter
plots show that for five out of six objects, canonical correlations are fairly robust (only slightly
change) to the changes in the bottom condition. The same observation is also valid for the third
and fourth canonical correlation features.

Subsequently, the extracted canonical correlation features are used to train a back-propagation
neural network (BPNN) [28] to classify the mine-like objects from non-mine-like objects. The
goal is to determine whether an object is mine-like or non-mine-like, rather than classifying

all the objects. In other words, the problem is a two-class classification problem. To find a
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Fig. 2. Scatter plots of the first two canonical correlation features for (a) training, (b) validation, and (c) testing data sets. The
scatter plots show that, for five out of six objects canonical correlations are fairly robust (only slightly change) to the changes

in the bottom condition.

good network structure, eight different two-layer BPNN structures were tried. The number of
hidden layer neurons was varied from 26 to 46. Each network was trained for ten different
weight initializations. The training was performed for 10000 epochs, where an epoch was a
complete sweep over the entire training data set. The best BPNN classifier, which was selected
based on the average classification rates on training and validation data sets, gave an overall

correct classification rate of 99.1% on the training data set, 98.6% on the validation data set,
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TABLE I

CONFUSION MATRICES OF THE BPNN CLASSIFIER TRAINED WITH CANONICAL CORRELATION FEATURES.

Validation Data Set Testing Data Set
(Smooth Bottom Data) | (Rough Bottom Data)
Object Target Non-Target Target | Non-Target
Target 6 270 0 360 0
Target 7 270 0 2 358
Target 2 270 0 360 0
Drum 0 270 0 360
Concrete Pipe 0 270 0 360
Telephone Pole 22 248 52 308

and 81.0% on the testing data set. These percentages are obtained based on a hard-limiting
decision threshold. We compare these results with those in [1] obtained by using linear predictive
coding (LPC) subband features and decision-level fusion method. As reported in [1], the correct
classification rates on the training, validation, and testing data sets are 99.6%, 82.5% and
75.2%, respectively. Comparing these results indicate almost 16% and 6% improvements on
the validation and testing data sets when canonical correlation features are used. We note that
these improvements are achieved without requiring any multi-aspect classification fusion, like
the one used in [1]. The confusion matrices obtained for the classifiers, trained using these two
feature types, are shown in Table I (for the canonical correlation features) and Table II (for
the LPC subband features). These results demonstrate the promise of the canonical correlation
features for classifying targets from non-targets in different bottom conditions.

It is interesting to note that the classifier trained using canonical correlation features has
correctly classified Targets 2 and 6 at all aspect angles in both smooth and rough bottom
conditions, while the classifier trained using the LPC subband features has poor performance
on these targets. Additionally the canonical correlation features provide substantially lower
false alarm rates (2.7% for validation and 4.8% for testing) compared to the LPC subband
features (16.1% for validation and 22.4% for testing). However, the classifier trained with the
LPC subband features provides better performance for Target 7 in the rough bottom condition

compared to the canonical correlation-based classifier.
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TABLE I
CONFUSION MATRICES OF THE BPNN CLASSIFIER TRAINED WITH LPC SUBBAND FEATURES. THE CLASSIFICATION

PROBLEM IS A TWO-CLASS (MINE-LIKE OBJECT VERSUS NON-MINE-LIKE OBJECT) PROBLEM.

Validation Data Set Testing Data Set

(Smooth Bottom Data) | (Rough Bottom Data)

Object Target Non-Target Target | Non-Target
Target 6 215 55 224 136
Target 7 177 93 214 146
Target 2 265 5 349 11
Drum 57 213 128 232
Concrete Pipe 56 214 92 268
Telephone Pole 17 253 22 338

Experiment 2: Our goal in this experiment is to investigate the robustness of the canonical
correlation features with respect to aspect angle variation in a fixed bottom condition, namely
the smooth bottom. The training data set for each object is formed from the feature vectors
extracted for 1/4 of the aspect angles that correspond to one side of the objects (aspect angles
0 to 179 degrees) only. The feature vectors extracted from the rest of the aspect angles between
0 to 179 degrees in the smooth bottom condition are kept to validate the trained classifier. The
generalization and robustness of the trained classifier is tested, in the same bottom condition,
using the features extracted from sonar returns from the other side of the objects, i.e. aspect angles
180 to 359 degrees. Clearly, in this experiment the classifier is not exposed to the information
on the other side of the objects during the training and validation processes.

Figures 3(a)-(c) show the scatter plots of the first two canonical correlation features for the
training, validation, and testing data sets. As can be seen, the canonical correlation features for
targets are similar and almost completely separated from those of the non-targets. Additionally,
the extracted features for the training, validation, and testing data sets for the objects are fairly
consistent, implying that the canonical correlation features are relatively invariant to aspect angle
variation.

For this experiment, the best two-layer BPNN classifier, trained with the extracted canonical

correlation features, gave an overall correct classification rate of 99.6% on the training data set,
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Fig. 3. Scatter plots of the first two canonical correlations for (a) training, (b) validation, and (c) testing data sets. The plots

show that canonical correlation features are relatively invariant to aspect angle variation.

98.1% on the validation data set, and 99.8% on the testing data set. The confusion matrices of

this classifier for validation and testing data sets are shown in Table III. It is seen that only

at a few aspect angles in the validation data set the telephone pole is misclassified as a mine-

like-object. Similarly, in the testing data set, there are only four misclassifications. These results

demonstrate that canonical correlation features of an object are relatively invariant to changes

in aspect angle, provided that the environmental condition remains unchanged.
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TABLE III
CONFUSION MATRICES OF THE BPNN CLASSIFIER TRAINED WITH THE CANONICAL CORRELATION FEATURES THAT ARE
EXTRACTED FROM ONE SIDE OF THE OBJECTS. THE CLASSIFICATION PROBLEM IS A TWO-CLASS (MINE-LIKE OBJECT

VERSUS NON-MINE-LIKE OBJECT) PROBLEM.

Validation Data Set Testing Data Set
(Smooth Bottom Data) | (Smooth Bottom Data)
Object Target Non-Target Target Non-Target

Target 6 135 0 180 0
Target 7 135 0 179 1
Target 2 135 0 178 2

Drum 0 135 0 180

Concrete Pipe 0 135 0 180

Telephone Pole 15 120 1 179

VI. CONCLUSIONS

In this paper, canonical correlation analysis was exploited to develop a multi-aspect feature
extraction method for underwater target classification from a wideband sonar data set. The basic
idea is that when an object (target or non-target) is present in the environment, consecutive sonar
returns exhibit a change in the coherence compared to the case when there is no object. Further,
we hypothesized that the amount of coherence captured by the dominant canonical correlations
of the two sonar returns from a mine-like object is different than that of a non-mine-like object.
Our experiments on the wideband ARL-UT data set demonstrated that canonical correlation
features offer good separation between mine-like and non-mine-like objects. The results show
that except for one of the objects, namely Target 7 which is of comparable size to the drum,
the canonical correlation features are robust to changes in the bottom condition. Moreover, we
showed that in a fixed bottom condition, canonical correlation features are relatively invariant
to changes in aspect angle. Recent results [29] on Buried Object Scanning Sonar (BOSS) data
collected in St. Andrews Bay, Panama City, FL, further validate the potential of the proposed
canonical correlation-based feature extraction method for detection and classification of buried

underwater objects.
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APPENDIX

The backscattered signal at aspect angle 6, denoted by r(¢;#), may be written as a linear

convolution of the form -

r(t:0) = / h(r:0)s(t — 7)dr, (A1)
where s(t) is the transmit pulse and h(¢; 0) is the target random impulse response at time ¢ and
aspect angle 6.

The instantaneous cross-correlation function between complex amplitudes 7(t1; 61) and 7(to; 02),

corresponding to two sonar returns at angles 6; and 6, is given by
r(ty; 01)r" (t2;62) = //S(h — 7)h(T;00)h* (75 05)s* (o — T')drdT, (A.2)

where * denote complex conjugate.
Assume that the random impulse response h(t; ) is wide sense stationary and uncorrelated

over time. Then, the cross-correlation R,..(t1,ts;61,602) between r(t1;6;) and r(ts; 6s) is
Ryt t; 01, 05) = E [r(ty; 01)r* (t2; 02)]
= //th(T; 01,602)0(T — 7")s(ty — 7)8"(t — 7')drdr’
= /th(T; 01,05)s(ty — 7)s™(ty — 7)dr, (A.3)

where Ry, (7; 01, 05) is the target scattering function. In the feature extraction procedure in Section
IV, t; and ¢, correspond to two different time samples (range cells) within a block, and #; and
0y correspond to aspect angles 3 and 3 + AQ.

The transmit pulse s(t) in this paper is an LFM signal. The baseband representation of an

LFM signal with time duration 7" and bandwidth B is

s(t) = AL (A4)
0, it > T
Inserting (A.4) in (A.3) yields
min(ty,to]+71/2
Ryr(ty,to; 61, 605) = % Ry (73601, 05)e? T (1 -53-2r(01=02)) g (A.5)

max|ty,t2]—T/2
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Let t; =t + At and t, = t. Then, we can write (A.5) as
min(ty,to]+T/2
% Ry (73 61, Qz)ej%(ZtAtJrAt?—zmt)dT

max[t1,t2]—T/2

Rrr(t + Ata t; 017 82) =

min(t1,t2]+7)/2
= %ej?‘g@mt*m% / Ry (7501, 92)673'%27&6%. (A.6)
max[t1,ta] —T/2
Note that the integral in (A.6) is equal to zero for At > T

If the pulse length 7" is short compared to the variation length of Ry, is then we can write

Rrr<t + Ata ta 617 92) ~ Rrr(Atv 917 92)

min[tl,t2]+T/2
1 .z8

_ Tej%(QtAtJrAtQ)th(T; 01, 6,) oI 2TAL g
max(t1,t2]—T/2

T—-A B
= < t> sinc {W—At(T — At)} Ryn(t;61,0). (A7)

T T

If Ry, is time-invariant then
T — At B

Ryy(At, 91, 62) = T sin [%At(T — At>‘| th(el, 92), (A8)

and the correlation function R,.(At;0;,05) becomes time-invariant. Alternatively, if the pulse is
much longer compared to the target length so that the pulse scans the entire target, then Ry

can be assumed to be time-invariant during the illumination period.
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