
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 19, 271-278 (1993)

WAYNE G. NATION

IBM Corporation, Highway 52 and 37th Street NW, Rochester, Minnesota 55901

AND

ANTHONY A. MACIEJEWSKI AND HOWARD JAY SIEGEL

Parallel Processing Laboratory, School ofElectrical Engineering, Purdue University, West Lafayette, Indiana 47907-1285

One benefit of partitionable parallel processing systems is their
ability to execute multiple, independent tasks simultaneously.
Previous work has identified conditions such that, when there are
k tasks to be processed, partitioning the system so that all k tasks
are processed simultaneously results in a minimum overall execu
tion time. An alternate condition is developed that provides addi
tional insight into the effects of parallelism on execution time.
This result, and previous results, however, assume that execution
times are data independent. It is shown that data-dependent tasks
do not necessarily execute faster when processed simultaneously
even if the condition is met. A model is developed that provides
for the possible variability of a task's execution time and is used in
a new framework to study the problem of finding an optimal
mapping for identical, independent data-dependent execution
time tasks onto partitionable systems. Executing one, some, or all
of the k tasks simultaneously is considered. Because this new
framework is general, it can also serve as a new method for the
study of data-independent tasks. Extension of this framework to
situations where the k tasks are nonidentical is discussed. © 1993

Academic Press, Inc.

1. INTRODUCTION

Large-scale parallelism involves the use of thousands
of processors cooperating to process a task, where a task
is an instance of a problem that can be solved on one or
more processors, independent of other tasks. In many
cases, one way to efficiently utilize a large-scale parallel
processing system is to partition the system, allowing a
collection of tasks to execute concurrently, each on a
portion of the entire machine. This work examines when
partitioning is beneficial for minimizing the execution
time of a set of multiple concurrent tasks by exploiting
partitioning.

* This work was supported by the Naval Ocean Systems Center un
der the High Performance Computing Block, ONT, and by the Office of
Naval Research under Grant NOOOI4-90-J-1937.

Partitionable systems can be subdivided into smaller
independent submachines of various sizes. Advantages
of partitionable systems include fault tolerance, fault de
tection, program development on smaller submachines,
subtask parallelism, and multiple simultaneous tasks
[21]. The last advantage is addressed here. Specifically,
given a set of identical, independent tasks, the problem of
determining the "best" number of processors to allocate
to each task and the way the tasks may be "placed" on
the system in relation to one another to achieve a mini
mum overall execution time is explored. Such situations
where multiple identical, independent tasks are to be per
formed occur frequently. The wealth of applications that
can exploit concurrency of independent tasks ranges
from system simulation, where many copies of the simu
lator are executed, each with a different set of input pa
rameters, to applications involving the processing of a set
of images where the same operation is performed inde
pendently on each image.

A simulation study [11] pointed out that a set of four
identical global histogram tasks execute in the shortest
time if all four are processed simultaneously, each on a
submachine consisting of one-fourth of the partitionable
system. An analytical study [9] showed that this result is
true for all algorithms whose execution times on various
submachine sizes match a certain condition. That is,
given an N-processor partitionable system and k identi
cal, data-independent tasks matching the condition, it is
always best to partition the system into k submachines,
each of size N /k, and process all tasks simultaneously.
An alternate condition is developed here that provides
additional insight into the effects of the use of parallelism
on the execution time. This result, and most previous
work, implicitly assumes that execution time is data-in
dependent, i.e., all k tasks have exactly the same execu
tion time on any data set, given the same number of
processors. Likewise, for tasks with data-dependent exe
cution time, two or more identical tasks may have differ-

271
0743-7315/93$5.00

Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

272 NATION, MACIEJEWSKI, AND SIEGEL

ent execution times, even though they are given the same
number of processors. The work here extends previous
results by coupling an expression representing the execu
tion time of a single task with a new expression for the
total execution time of a collection of tasks where one,
some, or all of the k tasks are executed simultaneously.
On this new platform the issue of algorithms with data
dependent execution time is addressed, where it is seen
that it may not be best to process all tasks simulta
neously, even if the data-independent condition derived
in [9] is met. Because this new framework is general, it
can also serve as a new method for the study of data
independent tasks. In [12], the task allocation problem
for data-dependent tasks was introduced. Execution time
was modeled as a random variable and several specific
parallel algorithms were studied in detail.

While this work has a heavy emphasis on the mapping
of tasks onto a set of processors, it does not consider the
problem of decomposing a single task (or sets of commu
nicating tasks) and finding an optimal mapping of that
decomposition onto a parallel system. That is a related
problem and has received much attention in the litera
ture, e.g., [3, 4, 6, 8, 16, 23]. Stated concisely, results
from these related works indicate that the work of a task
should be distributed as evenly as possible while mini
mizing interprocessor communication. However, these
related works cannot be applied directly to the problem
of allocating identical, data-dependent tasks onto parti
tionable systems. This is because the models used do not
take into account the variability of execution time, based
on the nature of the algorithm and data, and the interac
tions of this variability on the spatial and temporal juxta
position of other tasks.

The architectural model assumed is a partitionable sys
tem with N processors, N memory modules, and an inter
connection network. The interconnection network pro
vides for communications among processors and
memory modules of the system and must also support
partitioning. When the system is divided into subma
chines the network topology must ensure that the compu
tations and communications in one submachine do not
interfere with other submachines [17]. Examples of inter
connection networks suitable for large-scale parallel pro
cessing systems that support partitionability are the sin
gle-stage cube (hypercube) [17], multistage cube [18, 20],
and ADM/IADM [18]. The processors may be paired
with local memory modules to form processing elements
(PEs) communicating via message passing. This is the
PE-to-PE configuration. With the processor-to-memory
configuration, processors are placed on one side of the
interconnection network, memory modules on the other
side, and communication among processors is through
shared memory. The results here apply to both configura
tions. Some partitionable systems that have been con
structed include MIMD systems (nCube [7]), SIMD sys-

tems with multiple control units (CM-2 [22]), and
reconfigurable SIMD/MIMD systems (PASM [19,21] and
TRAC [13]). It is seen that the results are also applicable
to nonpartitionable SIMD systems.

Section 2 presents a general expression for the execu
tion time of a single task that is used to represent the
execution time of k tasks on N processors where either N
or N Ik processors are used to process each data-indepen
dent task. Basic properties of this expression, and thus of
the algorithm it represents, are derived. Assigning arbi
trary numbers of processors to data-independent tasks is
considered in Section 3. In Section 4, calculating parti
tion sizes to minimize the execution time of sets of identi
cal, data-dependent tasks is examined.

2. GENERAL MODEL OF EXECUTION TIME

This section introduces a general expression for the
time required to execute a single task in parallel and ex
plores properties of the expression. A task will require t«
seconds to execute on a serial machine. This represents
the minimum amount of work needed to process the task
and assumes an optimal coding of the "best" serial algo
rithm. Because this discussion is based on execution time
and not work, it is necessary to assume that the serial
machine is based on a single processor of the same com
putational power that is used in each of the N processors
of the parallel machine. It is assumed that any parallel
program for the task would distribute this minimum
amount of work among N processors such that at least
tslN seconds are required to execute the task. While this
may not always be true (due to, for example, elimination
of a loop index when N processors are used), it is a
reasonable approximation.

Often, a different algorithm is chosen for the parallel
program because the "best" serial algorithm. The added
instructions in the parallel program related to the change
in basic computation method is algorithmic overhead
[14]. Also, the parallel program may incorporate some
additional instructions to handle communication and/or
synchronization. The time spent by a parallel machine on
communication, synchronization, and algorithmic over
head is the overheadfor parallelism (V(N)). Included in
the overhead for parallelism is the time spent on intratask
idle time, due to memory communication latency.

Thus, the time to execute a task on N processors,
tp(N), is tp(N) == tslN + V(N), which is a general expres
sion that parallel execution time is the sum of the time
spent on the minimum amount of work that is necessary
and on overhead for parallelism. The expression tp(N)
specifies total execution time for N processors, and does
not indicate anything about the time spent by an individ
ual processor on either the required minimum amount of
work (its part of t s) or overhead for parallelism. Previous
studies of the decomposition of a problem onto N proces
sors use similar general expressions, e.g., [4, 14,23].

EXPLOITING CONCURRENCY IN PARTITIONABLE PARALLEL SYSTEMS 273

The problem of deciding whether to partition a parallel
machine and execute all k tasks simultaneously, each on
an N/k-processor submachine, or to process the k tasks
sequentially, each on an N-processor machine (in effect,
by not partitioning), reduces to determining the validity
of the expression tp(N/k) :=; k· tp(N). Theorem 1 shows
when this expression is true for data-independent tasks.

THEOREM 1. The overhead function for each of the k
identical data-independent tasks satisfies the condition
d V (N)/d N == V'(N) 2:: - V(N)/N, ifand only iftp(N/k)
:=; k . tp(N).

Proof. The proof is straightforward once N . YeN) is
shown to be monotonically increasing (i.e., d V(N)/d N
== N· V'(N) + YeN) 2:: 0) [15]. The monotonicity implies
(N/k) . V(N/k) :=;N· YeN) from which the result follows
by algebra. A discrete version of Theorem 1 can be de
rived but is also omitted here for the sake of brevity.

Solving V'(N) == - V(N)/N gives the overhead func
tion with the minimum allowed rate of change such that
tp(N/k) :=; k . tp(N) is true. This "minimal" overhead
function has the form YeN) == A/N, where A is a positive
constant (i.e., for YeN) == A/N, V'(N) == d (A/N)/d N ==
-A/N2 == - V(N)/N). Intuitively, an algorithm with this
"minimal" overhead function consists of a constant
amount of overhead for parallelism that is evenly distrib
uted over all processors. Thus, the condition V'(N) 2::

- V(N)/N implies that all algorithms have overhead func
tions satisfying YeN) 2:: A/N. Not only can YeN) be any
increasing function of N, but it can be a decreasing func
tion as well.

The condition of Theorem 1 implies that N . YeN) is
monotonically increasing which means that when in
creasing the submachine size, the overhead for parallel
ism (V(N)) may decrease but only by a factor less than
the increase in submachine size. This property is analo
gous to the condition given in [9]. Here, the condition
V'(N) 2:: - V(N)/N is used to provide additional insight.

In the next section, Theorem 1 is built upon to consider
arbitrary submachine sizes, in addition to those of size N
or N/k. Both data-independent and data-dependent tasks
are considered.

3. ALLOCATING TASKS HAVING DATA-INDEPENDENT
EXECUTION TIMES

This section studies the benefits of partitioning a paral
lel system to minimize the total execution time of collec
tions of tasks having data-independent execution time.
First, a general expression to represent the execution
time of k tasks is derived that incorporates other strate
gies (e.g., allocating more than N/k processors to tasks
such that submachines process some number of tasks
sequentially). This expression forms the basis of the

framework for studying data-dependent tasks in a later
section, and, thus, its derivation is of importance even
though in this section it is used to reinforce known results
[9].

The total execution time of k tasks, Tk , is the time
elapsed from the time the first task begins execution to
the time the last task has concluded. The total time that
processor cr, 0 :=; cr < N, is busy working on anyone or
more of the k tasks in B¢ (which includes intra-task idle
time). For the model used here, intertask idle time is
denoted I¢, which is defined to be the total time that
processor cr, 0 :=; ~cr < N, is not working on any of the k
tasks. I¢ also includes time spent by processors waiting
for the last task to complete. Therefore, the value of B, +
"Ij == B, + I, == Ti , O:=; i.] < N, and T; can be expressed as

for any cr.

Let nj be the number of processors assigned to task}, 0 :=;

} < k, and tpj(nj) be the time to process task} on nj
processors and let tsj and Vj(nj) be the serial execution
time of task} and the overhead for parallelism when task}
is executed on nj processors, respectively. Then the pre
ceding expression reduces to [15]

The tsj component of T; is independent of the task alloca
tion strategy and, thus, can be ignored when comparing
the relative merits of any two strategies. Overhead of
parallelism is represented by the second term and is an
explicit function of the number of processors assigned to
each task and the overhead function for that task (i.e.,
the penalty for using parallelism for the single task, which
includes the intratask idle time). The idle time given by
the third term of T; depends on the relative placement of
the tasks in time and space on the partitionable system
and is a measure of the penalty paid for intertask idle
time. With this framework, the general result can be
proven.

THEOREM 2. The total execution time, Ti , for k iden
tical tasks with data-independent execution times satisfy
ing the condition V'(N) 2:: - V(N)/N on an N-processor
partitionable system is minimized when each task is allo
cated N/k processors and all tasks are processed simul
taneously.

Proof. When all tasks are identical and are processed
simultaneously, each on N/k processors, no processor
experiences intertask idle time (i.e., I4J == 0, 0 :=; cr < N).
It is claimed that this results in the minimum execution

274 NATION, MACIEJEWSKI, AND SIEGEL

time ((Tk)min) and that all other task-to-submachine as
signments will not result in a T; less than (Tk)min, where

1 k-l 1 k-l

(Tk)min = N ~ tsj + N ~ (N/k) · Vj(N/k)

== tsj/(N/k) + Vj(N/k) == tpj(N/k).

All other possible assignments of tasks to submachines
fall into two cases: (A) one or more tasks are assigned to
less than N/k processors, and (B) one or more tasks are
assigned to more than N /k processors while the rest (if
any) are assigned to N/k processors. The remainder of
the proof shows that no assignment in either Case A or
Case B results in an execution time of less than (Tk)min'

Case A. Choose one of the tasks assigned to less
than N /k processors, j'. The execution time of task j' is
tpj,(nj') and is no less than tpj(N/k) == (Tk)min' If such a
case arises, where a smaller submachine size yields a
smaller execution time, then it can be shown that the
algorithm for the larger submachine is suboptimal. The
larger submachine algorithm can be improved to match
the performance of the smaller submachine algorithm by
using the smaller submachine algorithm on the larger sub
machine and forcing some of the processors to be idle.
Thus, there is at least one task with execution time no
less than tpj(N/k) seconds and no assignment in Case A
results in an execution time less than (Tk)min.

Case B. Because nj Vj(nj) is a monotonically in
creasing function of nj (from the Theorem 1 proof):

k-l k-l

~ (N/k) . Vj(N/k) :::; ~ nj . Vj(nj),
j=O j=O

because 3 j such that nj > N /k. It follows that

where 3 j such that nj > N /k. The proof is complete.

The exploration of several algorithm examples to de
termine their overhead functions and a demonstration
that they meet the V'(N) 2:: - V(N)/N condition is avail
able [15].

4. ALLOCATING TASKS HAVING DATA-DEPENDENT
EXECUTION TIMES

The basic result of Section 3 is that tasks meeting the
condition V'(N) 2:: - V(N)/N with data-independent ex
ecution time always achieve minimal execution time

when all of the tasks are processed simultaneously. If the
same strategy (of allocating N/k processors per task and
executing tasks simultaneously) is taken when execution
times are data-dependent; (1) the tasks will not all con
clude at the same time, (2) the total execution time will be
determined by the processing time of the longest task,
and (3) the processor not allocated to the longest task will
experience some idle time.

Consider the simplistic case of a data-dependent algo
rithm with V(N) == o for all data sets, i.e., there is no
penalty for allocating more processors per task. For this
case, total execution time is minimized when no subma
chine is idle at any time during the tasks' execution, i.e.,
intertask idle time 14J == O. The only way to guarantee this
is to process the tasks sequentially, each on N proces
sors. This contradicts previous results due to the follow
ing. With data-dependent tasks and any other allocation,
one submachine may finish before another, implying that
there 3cP such that Iep > O. However, by Theorem 2, with
data-independent tasks, an allocation of N/k processors
per task yields Iep == 0 "cP' Thus, where the results of
Section 3 indicated that maximal partitioning minimizes
execution time, there are some trade-offs with regard to
partitioning when considering tasks with data-dependent
execution times.

Because the model of [9] has no provision for idled
submachines and forces simultaneous execution of tasks,
it is not directly applicable to this problem. Another
scheduling algorithm [2] allows sequential execution of
some or all tasks, but it assumes that the execution time
of a given task with a given number of processors is fixed.

The following analyses model the execution time of
tasks as functions of random variables. The notation X
indicates that X is a random variable. When execution
time is modeled as a function of random variables the
expression for Ti . the total execution time for k tasks, is a
function of random variables. Because the total execu
tion time r. is a random variable, it would be insightful to
know E[Tk] , the expected value of t.. The E[Tk] is the
quantity which is minimized and can be expressed as

1 k-l 1 N-l

E[Tk] = N ~ ~ E[tpj(nj)] + N ~ E[1</>].
j=O 'V¢ where ¢=O

processor ¢
is allocated

to taskj

Task j has an expected (or average) execution time of
!-Lj(nj) when assigned to nj processors (i.e., E[tpj(nj)] ==

!-Lj(nj)) and a standard deviation of O"j(nj)' The E[iqJ term
is dependent on the task allocation strategy and the val
ues of !-Lj(nj) and O"j(nj)'

One way to determine values for !-Lj(nj) and O"j(nj) in a
production environment is to require users to provide

EXPLOITING CONCURRENCY IN PARTITIONABLE PARALLEL SYSTEMS

Because E[s/(INlk)] = I . jLj(INlk), intuitively and alge-

A (kll - 1)
E[Tk] :5 I · /Lj(lNlk) + I · aj(lNlk) x (2k/l _ 1)112'

275

(kll) - 1

i
1\r,

!time

J

sub-machines
--~;p 0 2

FIG. 1. Time/space map of k = 16 data-dependent tasks executing
in l = 2 synchronized batches tasks on k/ l = 8 submachines (Strategy
A). Each submachine consists of IN/k = N/8 processors. The shaded
areas indicate time where submachines are idle.

If it is known that the distribution of tpj(INlk) is symmet
ric, then a better upper bound exists [5]. Also, an exact
solution for the optimal value of I can be found by collect
ing execution time statistics or modeling execution time
stochastically.

Strategy B. All tasks are assigned to submachines of
INlk processors and each submachine processes I tasks
sequentially.

Figure 2 illustrates this strategy by showing a timel
space map for the case where k = 16 data-dependent
tasks are processed on kll submachines. Each subma
chine executes I = 2 tasks in sequence.

The random variable s/(INlk) denotes the execution
time of a sequence of I tasks on INlk processors. Thus,

the longest execution time in each batch. Thus, the ex
pected value of i, is I times the expected value of the
time to execute one batch of kl I tasks.

Intuitively and algebraically, this reduces to E[Tk] = I x
E[time of longest task in batch], and, using well known
properties of order statistics, an upper bound is known
[5]:

1 N-l

E[Tk] = I · /LAINlk) + N ~o

(E[time of longest sequence] - E[s/(INlk)]).

[
1 N-l

E[Tk] = I x /Lj(lNlk) + N ~o

(E[time of longest task in batch] - /Lj(lNlk»].

collections of typical data sets along with their programs.
An automated system could then execute the task on
different submachine sizes with the various data sets and
collect statistics about the execution time to select appro
priate scheduling strategies. More sophisticated users
could observe execution times during the coding and de
bugging phase of development and estimate the execu
tion time statistics that are needed. Algorithmic complex
ity analyses are yet another method to determine
execution time statistics.

For this work what matters is the execution time as a
function of the input data and the numbers of PEs allo
cated. It a collection of nonidentical tasks exhibit similar
execution-time statistical characteristics, then the task
scheduler can treat these tasks as identical; i.e., it is only
execution time statistics that matter to the scheduler.
Thus, for situations such as these, the framework devel
oped here for identical tasks can be directly extended to
nonidentical tasks. For example, this work would be use
ful in exploiting concurrency among nonidentical tasks in
"computing centers," where tasks are diverse but may
be well understood. For the most general case, where
nonidentical tasks do not exhibit similar execution time
statistics, the problem of scheduling such tasks is known
to be NP-complete (i.e., the bin-packing problem).

4.1. Strategies To Reduce Execution Time

Consider the following three straightforward task allo
cation strategies for the situation where all k tasks are
identical. Although the implications of the following
strategies may be intuitive, it can be seen that each can be
analyzed under a common framework. Users can utilize
the actual statistics gathered from their applications in
this framework to determine the "best" task allocation.
Furthermore, this framework can be applied to other
strategies, such as combinations of Strategy A.

Strategy A. Tasks are assigned to submachines of
INIk processors and batches of klI tasks are processed
simultaneously. All klI tasks in a batch must conclude
before the next batch can begin processing.

Figure 1 illustrates this strategy by showing a timel
space map for the case where k = 16 data-dependent
tasks are processed in I = 2 synchronized batches of
kl I = 8 tasks. Although tasks are independent of each
other and there is little intuitive reason to force subma
chines to synchronize, this may be the only option for
some systems. For example, a SIMD system with a parti
tionable interconnection network but only one control
unit could use this strategy on iterative algorithms, for
example; disabling submachines one by one until the last
submachine concludes execution.

The total execution time is determined by the sum of

276 NATION, MACIEJEWSKI, AND SIEGEL

braically, this reduces to

E[Tk] == E[time of longest sequence].

available (each submachine processes an average of I
tasks sequentially).

The dynamic assignment of tasks can lead potentially
to lower total execution times because there is the assur
ance that a given task will not be forced to wait for an
other task to finish if there is an idle submachine in the
system. However, the particular submachine that a given
task executes on is not known a priori and cannot be
preloaded. This introduces some additional overhead be
cause processors may be idled while the next task is be
ing loaded [10]. This is true for both the PE-to-PE and
processor-to-memory configurations (this occurs in the
processor-to-memory case due to network conflicts that
will occur, in general, if data is preloaded arbitrarily).
With Strategy A, systems that allow the overlap of 1/0
and computation, e.g., MPP [1] and PASM [19, 21], can
preload tasks so submachines are not idled waiting for
the next task to be loaded into memory. Using Strategy
B, these systems cannot fully utilize overlapped 1/0 ca
pabilities because, in general, the target submachines for
the next task to be assigned is not known until a subma
chine becomes available.

With Strategy B, each submachine executes a se
quence of I tasks. An ideal schedule may require some
submachines to process more than I tasks while others
process less, depending on the relative execution time of
their tasks. Unfortunately, exact execution times are not
known in advance.

There are some cases where, for O"j(INlk) ~ 0, a static
schedule of I tasks per submachine (Strategy B) outper
forms the dynamic schedule (Strategy C) due to the re
duction in overhead. Such a case is illustrated in the fol
lowing. Recall that for Strategy B an upper bound for the
E[time of longest sequence] was given. Likewise, a lower
bound [5] for the E[time of shortest sequence] is

t
(kll) - 12

j
time

sub-machines
-----3IIDo3P 0

A (kll - 1)
E[Tk] :::; I · f.Lj(lN/k) + \ITCTj(lN/k) x (2k/l _ 1)1/2'

FIG. 2. Time/space map of k = 16 data-dependent tasks executing
on k/l = 8 submachines, for l = 2 (Strategy B). Each submachine
consists of IN/k = N/8 processors and executes l = 2 tasks in sequence.
The shaded areas indicate time where submachines are idle.

Also, if it is known that the distribution of sz(INlk) is
symmetric, then a better upper bound exists [5].

There are several ways an exact solution may be
found. One method involves the observation of the exe
cution times for sequences of I tasks to form an exact
probability distribution for Sz (INIk). Once this probability
distribution function is known, the expected value of the
longest time of klI sequences can be calculated numeri
cally by the same technique shown for Strategy A. Be
cause

The standard deviation of sz(INlk) is \IT . O"j(INlk), and,
as with Strategy A, an upper bound is known:

[-1

sz(INlk) == L tpj(INlk),
i=O

the probability distribution of Sz (INIk) is the result of I
time convolutions of tpj(INlk). Thus, the statistics of a
task sequence can be found by observing the execution
times of individual tasks, obviating the need to observe
execution times of task sequences.

The question is, what value of I will minimize E[Tk]? If
Mj(INlk) and O"j(INlk) are known, then the equation(s)
above for the upper bound can be tabulated easily and the
value of I that yields the smallest value for E[Tk] indi
cates that INIk processors should be allocated to each
task for this strategy. This assumes that the fpj(INlk) has
the external distribution that equals the upper bound.

Strategy C. Tasks are dynamically assigned to sub
machines of INIk processors as the submachines become

E[time of shortest sequence] ~ I · Mj(INlk) -

(kll - 1)
\IT. CTj(lN/k) x (2k/l _ 1)112'

If the expected difference in time between the shortest
sequence and the longest sequence is less than the aver
age execution time of a single task, then it is likely that
Strategy B offers the ideal schedule. That is, because
moving the last task from the longest sequence to the
shortest sequence will not reduce total execution time,
on average. An exact solution for the average time differ
ence between the shortest and longest sequence is possi
ble if the probability distribution function of sz(INlk) is
known, wherefi(x) and Fz(x) are the probability distribu
tion and cumulative distribution functions of sz(INlk),
respectively. The probability distribution function fi (x) is

EXPLOITING CONCURRENCY IN PARTITIONABLE PARALLEL SYSTEMS 277

the I-fold convolution of the probability distribution func
tion of Ipj(INlk) with itself. Thus [5],

E[time of shortest sequence] =

2: x . (kll) . fz(x) . (1 - Fz(x))kll-l
x=o

and

E[time of longest sequence] =

2: x . (kll) . fz(x) . Fz(X)kll-l.
x=o

If the following condition is true, then it is better, on
average, to use Strategy B rather than Strategy C:

00

/Lj(INlk) ~ 2: x . (kll) . fz(x) . FZ(X)kll-l
x=o

. (1 - Fz(x))kll-l.

The assumption that the execution times are indepen
dently and identically distributed holds for a broad class
of problem domains. For example, in image understand
ing programs, the size, shape, type, and number of ele
ments to be discerned may vary widely from image to
image. Speech understanding exhibits similar character
istics. A study that addresses the use of Strategy A in a
more concrete example is available [15].

5. CONCLUSION

Previous work indicates that, when there are k tasks to
be processed and the execution times of the tasks on
various submachines meet a certain condition, partition
ing the system such that all k tasks are processed simulta
neously results in a minimum overall execution time. A
general expression was formulated to study the execution
time of single tasks. From this general expression, an
analogous condition was developed that provides addi
tional insight into previous results. This and previous
results, however, assume that execution times are data
independent. A new framework that represents the total
execution time of a collection of k tasks was developed.
This framework provides for the possible variability of a
tasks' execution time and was used to study the problem
of finding an optimal mapping for identical independent
data-dependent execution time tasks onto partitionable
systems. It was seen that tasks whose execution times
are data-dependent do not necessarily execute faster
when processed simultaneously. By applying the meth
ods described here, users of large-scale partitionable par-

allel systems can begin to predict which machine parti
tionings minimize the total execution time of sets of
identical, data-dependent tasks.

ACKNOWLEDGMENTS

The authors gratefully acknowledge useful discussions with James
Armstrong, Nicholas Giolmas, Murray Supple, and Daniel Watson. A
preliminary version of this work was presented at the "Sixth Interna
tional Parallel Processing Symposium, 1992."

REFERENCES

1. Batcher, K. E. Bit serial parallel processing systems. IEEE Trans.
Comput. C..31, 5 (May 1982), 377-384.

2. Belkhale, K. P., and Banerjee, P. Approximate algorithms for the
partitionable independent task scheduling problem. 1990 Interna
tional Conference on Parallel Processing. IEEE Computer Soci
ety, Silver Spring, MD, 1990, Vol. I, pp. 72-75.

3. Bokhari, S. H. A shortest tree algorithm for optimal assignments
across space and time in a distributed processor system. IEEE
Trans. Software Engrg. SE..7, 6 (Nov. 1981),583-589.

4. Cvetanovic, Z. The effects of problem partitioning, allocation, and
granularity on the performance of multiple-processor systems.
IEEE Trans. Comput. C..36, 4 (Apr. 1987),421-432.

5. David, H. A. Order Statistics. Wiley, New York, 1970.

6. Freund, R. F. Optimal selection theory for superconcurrency. Su
percomputing '89. 1989, pp. 699-703.

7. Hayes, J. P., and Mudge, T. N. Hypercube supercomputers. Proc.
IEEE 77, 12 (Dec. 1989), 1829-1841.

8. Jamieson, L. H. Characterizing parallel algorithms. In Jamieson,
L. H., Gannon, D. B., and Douglass, R. J. (Eds.). The Characteris
tics ofParallel Algorithms. MIT Press, Cambridge, MA, 1987, pp.
65-100.

9. Krishnamurti, R., and Ma, E. The processor partitioning problem
in special-purpose partitionable systems. 1988 International Con
ference on Parallel Processing. IEEE Computer Society, Silver
Spring, MD, 1988, Vol. I, pp. 434-443.

10. Kruskal, C. P., and Weiss, A. Allocating independent subtasks on
parallel processors. 1984 International Conference on Parallel Pro
cessing. IEEE Computer Society, Silver Spring, MD, 1984, pp.
236-443.

11. Kuehn, J. T., and Siegel, H. J. Simulation studies of a parallel
histogramming algorithm for PASM. Seventh International Confer
ence on Pattern Recognition 1984, 646-649.

12. Kung, H. T. Synchronized and asynchronous parallel algorithms
, for multiprocessors. In J. F. Traub (Ed.). Algorithms and Complex

ity: New Directions and Recent Results. Academic Press, New
York, 1976, pp. 153-200.

13. Lipovski, G. J., and Malek, M. Parallel Computing: Theory and
Comparisons. Wiley, New York, 1987.

14. Marinescu, D. C., Rice, J. R., and Vavalis, E. A. Communication
and control in SPMD parallel numerical computations. Tech. Rep.
CSD-TR-981, CAPO Report CER-90-23, Computer Sciences De
partment, Purdue University, 1990.

15. Nation, W. G., Maciejewski, A. A., and Siegel, H. J. Exploiting
concurrency among tasks in partitionable parallel processing sys
tems. Sixth International Parallel Processing Symposium. IEEE
Computer Society, Silver Spring, MD, 1992, pp. 30-38.

278 NATION, MACIEJEWSKI, AND SIEGEL

16. Nicol, D. M. Optimal partitioning of random programs across two
processors. IEEE Trans. Software Engrg. SE-15, 2 (Feb. 1989),
134-141.

17. Siegel, H. J. The theory underlying the partitioning of permutation
networks. IEEE Trans. Comput. C-29, 9 (Sept. 1980),791-801.

18. Siegel, H. J. Interconnection Networks for Large-Scale Parallel
Processing: Theory and Case Studies, 2nd ed. McGraw-Hill, New
York, NY, 1990.

19. Siegel, H. J., Armstrong, J. B., and Watson, D. W. Mapping com
puter vision related tasks onto reconfigurable parallel processing
systems. Computer 25, 2 (Feb. 1992), 54-63.

20. Siegel, H. J., Nation, W. G., Kruskal, C. P., and Napolitano,
L. M., Jr., Using the multistage cube network topology in parallel
supercomputers. Proc. IEEE 77, 12 (Dec. 1989), 1932-1953.

21. Siegel, H. J., Siegel, L. H., Kemmerer, F. C., Mueller, P. T., Jr.,
Smalley, H. E., Jr., and Smith S. D. PASM: A partitionable SIMD/
MIMD system for image processing and pattern recognition. IEEE
Trans. Comput, C-30, 12 (Dec. 1981),934-947.

22. Tucker, L. W., and Robertson, G. G., Architecture and applica
tions of the connection machine. Computer 21, 8 (Aug. 1988), 26-
38.

23. Vrsalovic, D., Gehringer, E. F., Segall, Z. Z., and Siewiorek, D. P.
The influence of parallel decomposition strategies on the perfor
mance of multiprocessor systems. 12th Annual Symposium on
Computer Architecture. IEEE Computer Society, Silver Spring,
MD, 1985, pp. 396-405.

Received December 1992; revised February 16, 1992; accepted May 4,
1993

WAYNE G. NATION received the M.S.E.E. and Ph.D. degrees
from Purdue University, West Lafayette, IN, in 1986 and 1991. Since
1991, he has been with the IBM Corporation and is currently with the
Application Business Systems division in Rochester, MN. In spring
1992, he was on the adjunct faculty at the State University of New
York-Binghamton. He has coauthored over 15 technical papers re
lated to his research interests in interconnection networks, partitionable
parallel processing systems, parallel algorithms, and the design of the
PASM prototype.

ANTHONY A. MACIEJEWSKI received the B.S., M.S., and Ph.D.
degrees in electrical engineering from The Ohio State University, Co
lumbus, in 1982, 1984, and 1987, respectively. Since 1988 he has been
an assistant professor with the School of Electrical Engineering at Pur
due University, West Lafayette. His primary research interests center
on solving the equations of motion for robotic systems.

H. J. SIEGEL is a Professor and Coordinator of the Parallel Process
ing Laboratory in the School of Electrical Engineering at Purdue. He
received two B.S. degrees from MIT, and the M.A., M.S.E., and Ph.D.
degrees from Princeton. He has coauthored over 150 technical papers,
has edited/coedited five volumes, and has authored one book. His cur
rent research focuses on interconnection networks, heterogeneous
computing, and the use and design of the PASM reconfigurable mixed
mode parallel system. He is a Fellow of the IEEE and was Coeditor-in
Chief of the Journal of Parallel and Distributed Computing (1989
1991). He is currently on the Editorial Board of the IEEE Transactions
on Parallel and Distributed Systems and is Program Chair of the' '8th
International Parallel Processing Symposium" (1994).

