
Thesis

Multi-Attribute Query Resolution in Structured Peer-to-Peer Networks

Submitted by

Shibayan Chatterjee

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2016

Master’s Committee:

Advisor: Anura Jayasumana

Ali Pezeshki
Sangmi Lee Pallickara

Copyright by Shibayan Chatterjee 2016

All Rights Reserved

Abstract

Multi-Attribute Query Resolution in Structured Peer-to-Peer Networks

Collaborative grid and cloud computing applications may be implemented by forming

virtual clusters on demand. Formation of such clusters will require diverse resources with

specific attributes to execute and support the specific application and its performance re-

quirements. This thesis focuses on formation of such systems by looking up resources over

a distributed P2P system. Discovery of appropriate resources from an enormous distributed

pool of resources becomes tedious, but it should be resolved with minimum cost and latency.

There can be a number of attributes characterizing each resource, and these attributes may

have ranges of values depending upon the characteristics of the resources. Thus, when per-

forming a look-up for appropriate resources with a P2P approach, the objective moves from

a single-dimensional look-up problem to a multi-dimensional look-up problem. The look-up

operation has to be optimized in terms of delay in resolution, hop-count, communication

cost, and overhead cost. This thesis develops and evaluates an architecture aimed at re-

solving this n-dimensional P2P look-up problem. The optimality of the proposed solution

is evaluated in terms of communication overhead, delay, and hop count for look up. The

complexity of n-dimensional look-up problem is further reduced in terms of dimensionality

by utilizing the correlation between different attribute characteristics.

The proposed architecture uses a structured peer-to-peer network in the form of multiple

rings, grouped together on the basis of individual attributes thus forming a Ring of Rings

(ROR). Chord protocol is used to maintain the scalability and for having communication

cost for lookup within logarithmic time complexity. Communication within the network is

ii

done using Bloom filters as a data structure, which represents the resources satisfying differ-

ent attribute values. The novelty of the architecture and the communication methodology

lies in the fact that architecture facilitates any number of attributes having any range of

values. Furthermore, use of Bloom filters for communication reduces the overhead normally

required to carry around long lists of resources to perform the final intersection that re-

solves the query. Using Bloom filters greatly reduces the communication overhead and the

cost of communication. The ROR architecture coupled with Bloom-filter messages reduces

the message sizes considerably, but it introduces a certain amount of false positives. The

findings indicate that with the optimum number of hash-functions and the optimum sized

Bloom-filter, a ROR peer-to-peer architecture to search for multi-attribute queries can be

much more efficient than the conventional systems used for the resolution of same type of

queries.

Queries associated with many systems request attributes which are correlated to each other.

The research also addresses the identification of such resources more efficiently based on cor-

relation of the attributes. The ROR architecture can be tuned for resolving these kinds of

queries. The new architectures proposed are localized caching and overlapped ring architec-

ture. The network configuration responsible for resolving the query is the same structured

P2P network, where caching and overlapped ring strategies fit in to resolve multiple corre-

lated attributes. These architectures also use Bloom-filter as a data structure to resolve the

queries with minimum communication cost and overhead.

Performance of proposed architectures is evaluated using simulations, with the resource

traces for simulation generated using the ResQue resource generation tool. The results ob-

tained for a simulation environment consisting of 700 resources, each with 12 different types

iii

of attributes, and the number of nodes from 24 to 84 indicates a 30% reduction in commu-

nication overhead, 7% reduction in delay in response, and 10% reduction in average load

per node. The optimum number of hash functions for the Bloom-filter is 6, and the m/n

ratio is kept 10 where m is the size of Bloom-filter and n is the number of resource count.

The optimum number of nodes responsible for each attribute is found to be 5. In case of

correlated attributes, for the same set of resource count and number of nodes the caching

and overlapped ring architecture (using Bloom-filters), provides 58.5% and 57.3% reductions

in hop-count, 56.63% and 52.06% reductions in delay in response, message sizes gets reduced

by 10% and the average load per node gets reduced by 29% and 34% respectively. The com-

parison is done over the ROR architecture using Bloom-filters. The number of hash functions

for Bloom-filters is considered 4, m/n ratio to be 10 and with 4 nodes per attribute in case

of co-related attribute resolution.

iv

Acknowledgements

I would like to thank my advisor, Dr. Anura P. Jayasumana for his valuable guidance and

support throughout the course of my thesis. He guided me to understand both the bigger

picture as well as the bits and bytes of the problem. I would also like to thank Dr. Chuck

Anderson for his valuable remarks, and Dr. Ali Pezeshki and Dr. Sangmi Lee Pallickara for

being part of my advisory committee.

I would also like to thank my sister and my mom, and also to that guy who remarked

that my work can be used for performing large scale DDoS attack.

v

Table of Contents

Abstract . ii

Acknowledgements . v

List of Tables . viii

List of Figures . x

Chapter 1. Introduction . 1

1.1. Problem Statement . 5

1.2. Contribution . 7

1.3. Outline . 7

Chapter 2. Literature Review . 9

2.1. MAAN: A Multi-Attribute Addressable Network for Grid Information Services 9

2.2. SkipMard . 13

2.3. ResQue . 17

2.4. Network Application of Bloom Filters . 23

Chapter 3. Multi-Attribute query resolution . 29

3.1. System Architecture . 29

3.2. Query Propagation. 32

3.3. Bloom-Filter Creation. 33

3.4. Bitwise-AND and Resultant Bloom-Filter creation . 35

3.5. IP list generation and query resolution . 38

Chapter 4. Caching Methodology . 39

4.1. System Architecture . 42

vi

4.2. Caching Architecture Formation . 44

4.3. Query Resolution . 45

Chapter 5. Overlapped Architecture . 49

5.1. System Architecture . 51

5.2. Overlapped Architecture Formation . 53

5.3. Query Resolution . 53

Chapter 6. Simulation and Results . 57

6.1. Multi-Ring Architecture for Query resolution . 60

6.2. Caching and Overlapped Architecture Simulation . 70

6.3. Comparison of Caching and Overlapped Architectures with Multi-Ring

Architecture . 79

Chapter 7. Conclusion and Future Work . 85

7.1. Summary and Conclusion . 85

7.2. Future Work . 88

Bibliography . 89

Appendix A. Multi-Attribute Formation Source Code . 92

Appendix B. Caching Architecture Formation Source Code . 148

Appendix C. Overlapped Ring Architecture Source Code. 183

Appendix D. Test Cases for Multi-Attribute, Caching and Overlapped Ring 219

Appendix E. Bootstrap Server, Hash-Value Generation Source Code 246

vii

List of Tables

3.1 Notations . 35

4.1 PlanetLab Co-related Attribute Details . 41

4.2 Resource Details . 43

4.3 Caching Architecture Hash-Table formation for Resources . 44

5.1 Overlapped Ring Architecture Hash-Table formation for Resources 52

6.1 PlanetLab Attribute Details . 58

6.2 Multi-Attribute Queries for Testing ROR architecture . 61

6.3 Test Environment Specifications for ROR architecture . 62

6.4 Variation of avg. Hop-count for ROR architecture . 64

6.5 Ranges of avg. Hop-count for ROR architecture . 65

6.6 Variation of avg. Delay (msec) in response for ROR architectures 65

6.7 Variation of avg. Load per node for ROR architectures . 66

6.8 Variation of avg. Msg Size exchanged (bytes) for ROR architectures. 67

6.9 Variation of difference in resource count with Num. of Resources for ROR

architectures . 69

6.10 Multi-Attribute Queries for Testing Caching and Overlapped Ring architectures . . 70

6.11 Test Environment Specifications for Caching and Overlapped Ring architecture . . 71

6.12 Variation of avg. Hop Count for Caching and Overlapped Ring Architectures 72

6.13 Variation of range in avg. Hop Count for Caching and Overlapped Ring

Architectures . 73

viii

6.14 Variation of avg. Delay (msec) for Caching and Overlapped Ring Architectures . . 73

6.15 Variation of avg. Message Size (bytes) for Caching and Overlapped Ring

Architectures . 74

6.16 Variation of avg. Load per Node with Num. of Nodes for Caching and Overlapped

Ring Architectures . 75

6.17 Variation of difference in resource count with Num. of Resources for Caching

Architectures . 76

6.18 Variation of difference in resource count with Num. of Resources for Overlapped

Ring Architectures . 78

6.19 Variation of avg. Hop Count for all architectures for correlated attributes 79

6.20 Variation of avg. Delay (msec) for all architectures for correlated attributes 80

6.21 Variation of avg. Message size (bytes) for all architectures for correlated attributes 81

6.22 Variation of avg. Load per node for all architectures for correlated attributes 82

6.23 Variation of difference in resource count with Num. of Resources for ROR

Architecture (Correlated Attributes) . 83

ix

List of Figures

1.1 Unstructured and Super Peer Unstructured P2P Architecture 2

1.2 Structured and Hybrid P2P Architecture . 2

2.1 Density distribution for CSp, CPUFree, MFree, and TX . 21

2.2 Marginal distribution values with time for CSp, MFree and TX 21

2.3 Flow-chart of random node generation tool. 22

2.4 Change of attribute values with time. 22

2.5 Comparison of actual nodes parameters with nodes parameters generated by tool. 23

3.1 ROR Architecture . 30

3.2 Query Propagation in ROR Architecture . 33

3.3 Bloom-Filter Creation at each node . 34

3.4 Insert operation in Bloom Filter . 35

3.5 Bit-wise AND operation and sending back resultant Bloom Filter to nodes 36

4.1 Probability Distribution of DSize and DFree . 40

4.2 Probability Distribution of TX and RX . 40

4.3 Variation of magnitude of DFree w.r.t DSize . 41

4.4 Variation of magnitude of RX w.r.t TX . 41

4.5 Variation of magnitude of 5mLd w.r.t 1mLd . 42

4.6 Variation of magnitude of 15mLd w.r.t 1mLd . 42

4.7 Caching Architecture for Co-related attributes . 43

5.1 Variation of DFree (logarithmic) w.r.t DSize with their Characteristic Equation . . 50

x

5.2 Variation of RX (logarithmic) w.r.t TX with their Characteristic Equation of RX

w.r.t TX . 50

5.3 Variation of 5mLd (logarithmic) w.r.t 1mLd with their Characteristic Equation of

5mLd w.r.t 1mLd . 50

5.4 Variation of 15mLd (logarithmic) w.r.t 1mLd with their Characteristic Equation

of 15mLd w.r.t 1mLd . 50

5.5 Overlapped Ring formation for DSize and DFree . 52

5.6 Overlapped Ring Architecture for Co-related attributes . 53

6.1 CDF plot for MSize, MFree%, CSp, NCore, and CFree for each resource 58

6.2 CDF plot for DSize and DFree for each resource . 58

6.3 CDF plot for TX , and RX for each resource . 59

6.4 CDF plot for 1mLd, 5mLd, and 15mLd for each resource . 59

6.5 p.d.f for CFree . 59

6.6 p.d.f for CSp. 59

6.7 p.d.f for MSize . 59

6.8 p.d.f for MFree . 59

6.9 p.d.f for NCore . 60

6.10 p.d.f for DSize and DFree . 60

6.11 p.d.f for 1mLd, 5mLd, and 15mLd . 60

6.12 p.d.f for TX and RX . 60

6.13 Variation of false positive for query Q1 in ROR architecture . 62

6.14 Variation of false positive for query Q2 in ROR architecture . 62

xi

6.15 Variation of avg. Hop-count with Num. of Nodes in ROR architecture 64

6.16 Variation of avg. Delay in response with Num. of Nodes in ROR architecture 66

6.17 Variation of avg. Load per Node with Num. of Nodes in ROR architecture 67

6.18 Variation of avg. Msg Size exchanged with Num. of Nodes in ROR architecture . . 68

6.19 Variation of False Positive Probability (fp) with Resource Count 69

6.20 Variation of false positive for query Q1 for Caching and Overlapped Architectures 71

6.21 Variation of false positive for query Q2 for Caching and Overlapped Architectures 71

6.22 Variation of avg. Hop Count with Num. of Nodes for Caching and Overlapped

Architecture . 72

6.23 Variation of avg. Delay in response with Num. of Nodes for Caching and

Overlapped Ring Architectures . 73

6.24 Variation of avg. Message Size exchanged (bytes) with Num. of Nodes for Caching

and Overlapped Ring Architectures . 75

6.25 Variation of avg. Load per Node with Num. of Nodes for Caching and Overlapped

Ring Architectures . 76

6.26 Variation of False Positive Probability (fp) with Resource Count (Caching

Architecture) . 77

6.27 Variation of False Positive Probability (fp) with Resource Count (Overlapped Ring

Architecture) . 78

6.28 Variation in avg. Hop Count with Num. of Nodes for all architectures for

correlated attributes . 80

xii

6.29 Variation in avg. Delay with Num. of Nodes for all architectures for correlated

attributes . 81

6.30 Variation in avg. Msg. Size exchanged with Num. of Nodes for all architectures

for correlated attributes. 82

6.31 Variation in avg. Load per node with Num. of Nodes for all architectures for

correlated attributes . 83

6.32 Variation of False Positive Probability (fp) with Resource Count (ROR Architecture

for Correlated attributes) . 84

xiii

CHAPTER 1

Introduction

There has been a large number of Peer-to-Peer(P2P) applications over last few years,

ranging from video streaming, on-line chatting, video on demand, to file sharing, and data

analysis. The P2P traffic has increased considerably as a result of these large scale usage

of these applications[1]. A P2P network is a logical overlay network, on top of an already

existing physical network. These P2P networks have also given rise to Collaborative P2P

Systems, Grid Networks and Cloud Environments, which are meant to provide facility to run

numerous platforms, for various applications to provide services to the end user. Each peer in

a P2P network corresponds to a node in a P2P network and each of these peers has a similar

role and a contribution to the entire P2P network. Each node in a P2P system resides in a

host present in the actual physical network, connected through logical links corresponding

to a physical path in the network. The physical path is determined by several routing

algorithms, and depending upon the optimized path there might be one or more links in a

P2P system, only criteria being the physical link exists. The flexibility of having an overlay

topology and decentralized control gives the P2P system its distributed characteristics. As a

result it can be used in several applications, also since it is distributed it has the capacity to

scale up to form a fault tolerant, distributed system. The hosts running these systems can

be idle resources for a huge computing task, so load distribution and optimum utilization of

resources are achieved.

P2P systems can be majorly classified into two types: structured P2P and unstructured P2P

[2]. In an unstructured P2P the network topology is completely random and arbitrary, no

specific pattern is maintained within the system as shown in Figure 1.1.a.

1

Figure 1.1. Unstructured and Super Peer Unstructured P2P Architecture

Figure 1.2. Structured and Hybrid P2P Architecture

On the other hand, in structured P2P each of the peers are connected through a regular,

conventional topology where the hosts are present in a specific pattern and sequence, as

shown in Figure 1.2.a.

To achieve enhanced performance and optimum results within an unstructured network,

sometimes there comes the need of a centralized single host within the distributed system

2

leading rise to super peer unstructured P2P, shown in Figure 1.1.b. In this type of architec-

ture, the super peer plays only certain roles and has specific controls within the distributed

architecture. Multiple structured P2P can also be modified leading to a cluster of structured

P2P networks named as Hybrid Peer to Peer Architecture where the data distribution and

responsibility of each peer gets enhanced to support multiple features at the same time, as

shown in Figure 1.2.b.

The applications a which P2P system runs are meant to have zero downtime due to signif-

icant redundancy and distributed nature. Also the platforms which support them should

also have the capability to be fault tolerant, provide QoS and enhanced performance to the

end user. It is for this reason a P2P architecture, best fit in. Aggregation of these platforms

and application hosting servers has become necessary in conventional grids, desktop grids,

cloud systems, search engines and grid networks to cater to the user demands from time to

time. A structured P2P uses Distributed Hash Table (DHT) within its own topology and

provides efficient data modification (insertion and deletion) and lookup. These data in the

hash table may correspond to items such as books, music files, videos or other resources and

each of these resource item in a structured P2P has a unique key which provides access to the

resource. A resource can be looked up or be retrieved by looking up the corresponding hash

key, hence providing accuracy in resource modification and lookup. The organization of the

peers in a structured P2P during topology modification requires lot of efforts to maintain the

DHT making it vulnerable showcasing a property called churn. In other words churn can be

defined as the maintenance of property and purpose of a system as a whole irrespective of

configuration changes within it. On an unstructured P2P having random topology, resource

lookup is possible only through random walks or flooding. In case of robust and scalable

P2P systems, it therefore becomes necessary to have resources with better configurations

3

in terms of CPU, Disk Space, and Memory, high transmission and receiving rate, high load

sustenance capacity, and low failure rate. While many traditional applications such as music

sharing used resources which has necessary configuration for only a single specific type of

attribute, many emerging applications require dealing with resources having configurations

for multiple attributes. DHT for a particular resource no longer suffices to provide efficient

lookup for these resources since it becomes necessary to look up the resource based on one

or more of its attributes for different characteristics of the resource. For example to acquire

data for atmospheric studies and weather data [3], it is necessary to have computational

systems. Weather data has a large size, containing lot of information thus it is necessary to

have resource for the former with large memory (MSize) and disk space (DSize). Also since

the information is dynamic the resources should have high load balancing capacity and the

information acquired must be processed rapidly. It therefore needs computational systems

having large number of cores (NCore) and high CPU speed (CPUspeed) and it is necessary

to characterize these resources on one minute (1mLd) loading, five minutes (5mLd) loading,

and fifteen minutes (15mLd) loading, etc. The information acquired about these systems

needs to be broadcasted quickly to have current and consistent resource information and

to avoid calamities. For example, resource look-up query in the P2P system may ask for

addresses of the systems with certain minimum transmission (Tx) and receiving rate (Rx). In

totality, it can be said that resources specification and look-up are needed which go beyond

a single attribute to multiple attributes.

4

1.1. Problem Statement

In order to cater to queries related to multi-attribute, it therefore becomes necessary

to move from a single dimensional P2P attributes to a n-dimensional or multi-dimensional

analysis of these attributes. It becomes essential to have lookup for multi-attributes which

needs to be implemented with the same efficiency as that of a single attribute. It is necessary

to develop and characterize efficient look up systems which can resolve queries for these

multiple attribute resources with minimum latency, low overhead, low communication cost

and bare minimum errors in the resolution. The prior solutions address questions such as how

to resolve muti-attribute queries, see MAAN [5], SkipMard [6], LORM [16], SCRAP, MURK

[17] and d − Torus [18]. There are database methodologies e.g. MongoDB [8], Cassandra

[9], HBase [10] which can both store and retrieve data with multi-attributes. MongoDB [8]

is an open-source document database that provides high performance, high availability and

automatic scaling. MongoDB stores every record as a document which has data structure

comprising of field and value pairs. The documents are stored in JSON format. The values

for each field may include other documents, arrays and array of documents. Cassandra [9]

provides a highly scalable and highly available decentralized database system which supports

multiple attributes for data. This database model is fault tolerant (has high replication

parameter), and highly elastic (read and write throughput increases linearly as new machines

are added) with no interruptions or downtime to the application. Apache HBase [10] is

based upon Google’s Big Table [11]. It provides linear and modular scalability with random,

real time consistent read and write access to Big Data. It also provides automatic and

configurable sharding of tables with automatic failover support between region servers.

The methodology used in this thesis targets providing a solution with a system which provides

efficient look up within logarithmic time complexity, i.e. the communication cost within the

5

network is logarithmic in time complexity, for any number of attributes for each resource and

for any range of each of the attributes. The architecture comprises of several structured peer-

to-peer (P2P) architectures in the form of rings which are brought together, forming ring of

rings (ROR). The architecture uses Chord [4] to maintain the scalability of the system, for

catering to multiple types of attributes, and range of values for each attribute. The proposed

approach reduces the communication cost and message overhead by using Bloom filters as

data structures but at the same time is able to achieve errors in resolution of queries nearly

equal to zero. Also since this system resolves queries for each attribute in parallel and are

not interdependent on each other, it provides the facility to list down all the resources that

the system is aware of by not restricting it only to a limited number of resources.

Next in analyzing the attributes it has been noted that some of the attributes maintains

a particular correlation amongst each other. These types of attributes are considered as

correlated attributes since the values of one of the attributes is correlated to one or more

other attributes. The queries generated for each attributes are also found to be correlated

and hence it becomes necessary to analyze these attributes together. In this way there will

be considerable decrease in the hop count, and the latency of response is also reduced. Two

methodologies have been discussed in here which looks into the analysis of each of these

type of attributes, the first is the caching architecture and the second is the overlapped

ring architecture. Each of these architectures are then put in place with the existing ROR

architecture and analyzed. The data-structure used in this case also uses Bloom-filter, to

act as a data structure for each of the resources and this reduces communication cost and

overhead cost for each of the queries.

6

1.2. Contribution

The methodologies proposed here contributes to providing a multi-attribute P2P system

which is scalable, both in terms of the number of attributes, which it is capable of resolving,

and the range values of each attribute. The architecture, since it uses P2P , is decentralized,

so there is no bottle neck in terms of resolving each individual query. Also it uses DHT

with Chord protocol, providing load balancing, scalability, availability, and flexible naming

as its inbuilt features. The lookup, for each of the queries are resolved in logarithmic time

complexity in terms of hop count. Large systems resolving these multi-attribute queries will

incur high communication cost and high memory overhead. To address this problem Bloom-

filters are being used which provides constant message sizes to be carried around, reducing the

communication cost and memory overhead considerably. The messages carried around are

also provided with a checksum, so the data corruption is also avoided. In order to reduce the

latency of response and hop count, the Caching and Overlapped ring architecture provide

an ideal methodology to address the same. Both these later architectures also contribute

the same features as those of the main methodology, unlike the arrangements of the rings.

1.3. Outline

This dissertation is arranged as follows. Chapter 2 explains multi-attribute features of

resources, the need for multi-attributes. The existing architectures for multi-attribute query

are discussed. The proposed multi-attribute P2P methodology along with its architecture

and the resolution schemes are discussed in Chapter 3. Next the correlated attributes are

introduced along with their characteristics. Two resolution methodologies Caching and

Overlapped are presented in Chapter 4 and Chapter 5 respectively. The query generation

and its resolution are discussed in Chapter 6. The novelty of the proposed architectures are

7

also discussed in the same. The conclusion in Chapter 7 provides insight to the necessary

improvements and the future work.

8

CHAPTER 2

Literature Review

This chapter reviews prior research related to our work on Multi-Attribute P2P systems.

It starts with a well known P2P lookup architecture, “Chord” and then moves to the other

multi-attribute architectures developed and researched over time. Next we review “ResQue”,

a method to generate multi-attribute resource characteristics for large-scale simulations and

finally we review the results that provide insight to the network operation of the Bloom-

filters.

2.1. MAAN: A Multi-Attribute Addressable Network for Grid Information

Services

Chord[4], a distributed look-up protocol provides efficient solution to locate node that

contains a particular key corresponding to a data item. Given a key, it efficiently traces the

node responsible for that key. As a result data location can be easily implemented using

Chord, by associating each data to a key value, and then storing the data at the node, where

the key maps. Also the solution which Chord provides, is robust in terms of changing net-

work configurations i.e. it works efficiently even if nodes join and leave the network. Chord

is scalable, with minimum communication cost and the state maintained by each node scales

logarithmically with change in the number of nodes present in Chord network.

Although, Chord offers efficient and scalable single-key based registration and lookup ser-

vice for decentralized resources, it can not support range queries and multi-attribute based

lookup. The MAAN[5] approach addresses this problem by extending Chord with locality

preserving hashing and a recursive multi-dimensional query resolution mechanism. MAAN

uses SHA1 hashing to assign a m bits identifier to each node and the attribute value with

9

string type. However, for attributes with numerical values MAAN uses locality preserving

hashing functions to assign each attribute value an identifier in the m-bit space. Instead of

only supporting one attribute based lookup, the MAAN scheme also extends the above rout-

ing algorithm for range queries to support multi-attribute lookup. In this multi-attribute

setting, we assume each resource has M attributes (a1, a2, ..., aM) and corresponding at-

tribute value pairs < ai, vi >, where 1 ≤ i ≤M . For each attribute ai, its attribute value vi

is in the range of [vi,min, vi,max] and conforms to a certain distribution with distribution func-

tion Di(v). Thus, a uniform locality preserving hashing function Hi(v) = Di(v) ∗ (2m − 1)

for each attribute ai is generated. With these hashing functions all attribute values can be

mapped to the same m-bit space in Chord. Chord assumes the distribution function Di(v) to

be uniform, so that it can be mapped to the Chord ring. Correspondingly the Hi(v) function

generated as a result also gets uniformly distributed in the ring. Each resource will register

its information (attribute value pairs) at node ni = successor(H(vi)) for each attribute value

vi, where 1 ≤ i ≤ M . Resource registration request for attribute value vi is routed to its

successor node using Chord routing algorithm with key identifier H(vi). Each node catego-

rizes the indices of < attributevalue, resource− info > pairs by different attributes. When

a node receives a resource registration request from resource x with attribute value ai = vix

and resource information rx, it adds the < vix, rx > pair to corresponding list for attribute

ai. When a node searches for interested resources, it composes a multi-attribute range query

which is the combination of sub-queries on each attribute dimension, i.e. vil ≤ ai ≤ viu where

1 ≤ i ≤M , vil and viu are the lower bound and upper bound of the query range respectively.

There are two approaches to search candidate resources for multi-attribute range queries:

iterative and single attribute dominated query resolution.

Iterative Query Resolution:

10

The iterative query resolution scheme is very straightforward. If node n wants to search

resources by a query of M sub-queries on different attributes, it iteratively searches all can-

didate resources for each sub-query on one attribute dimension, and intersects these search

results at query originator. The search algorithm proposed is reused for single attribute

based lookup in Section 3.1. The only modification is to carry a < attribute > field in

each search request to indicate which attribute we are interested in. The search request is

as follows: SEARCHREQUEST (k, a, R,X), where a is the name of the attribute we are

interested in, and k, R and X are the same as in a single attribute based query. When a

node receives a query request and it intersects with the query range, it only searches the

index which matches the attribute name in the search request. Though this approach is

simple and easy to implement, it is not very efficient. For M − attribute queries, it takes

O(
∑M

i=1((logN)+Ki)) routing hops to resolve the queries, where Ki is the number of nodes

intersects the query range on attribute ai. We define selectivity si as the ratio of query

range width in identifier space to the size of the whole identifier space, i.e. si =
H(viu)H(vil)

2m
.

Suppose attribute values are uniformly distributed on all N nodes, then we have Ki = si ∗N

and routing hops would be O(
∑M

i=1((logN) + Ki)). Thus, the routing hops for searching

increase linearly with the number of attributes in the query.

Single Attribute Query Resolution:

The Iterative Query Resolution search result of a multi-attribute query must satisfy all

the sub-queries on each attribute dimension and it is the intersection set of all resources

which satisfies each individual sub-query. Suppose X is the set of resources satisfying all

sub-queries, and Xi is the set of resources satisfying the sub-query on attribute ai, where

1 ≤ i ≤ M . So we have X = ∩Xi and each Xi is a superset of X. The iterative query

resolution approach computes all Xi using M iterations and calculates their intersection set.

11

However, since we register the resource information for each attribute dimension, resources in

the set of Xi also contain the information of other attribute value pairs. The single attribute

dominated query resolution approach can utilize this extra information and only need to com-

pute a set of candidate resources Xk which satisfies the subquery on the attribute ak. Then

it apply the sub-queries for other attributes on these candidate resources and computes the

set X which satisfies all sub-queries. Here, we call attribute ak dominated attribute. There

are two possible approaches to apply these sub-queries. One approach is to apply them

at the query originator after it receives all candidate resources in Xk. Since the set Xk is

typically much larger than X, search requests and responses might contain many candidate

resources which do not satisfy other sub-queries. Thus this approach will introduce unnec-

essarily large search messages and increase communication overhead. Another approach is

to carry these sub-queries in the search request, and apply them locally at the nodes which

contains candidate resources in Xk. This approach is more efficient because search requests

and responses only carry the resources satisfying all sub-queries. The search request in single

attribute dominated approach is as following: SEARCHREQUEST (k, a, R,O,X). k, a, R

are the same as those in iterative query resolve approach. O is a list of sub-queries for all

other attributes except a, and X is a list of discovered resources satisfying all sub-queries.

When node n wants to issue a search request with R = [l, u], it first routes the request to

node nl = successor(H(l)). The node nl, searches its local index corresponding to attribute

a for the resources with attribute value in the range of [l, u] and with all other attributes

satisfying sub-queries in O, and appends them to X. Then it checks whether it is also the

successor of H(u). If true, it sends back a search response to node n with the resources

in X. Otherwise, it forwards the search request to its immediate successor ns. ns repeats

this process until the search request reaches node nu = successor(H(u)).Since this approach

12

only need to do one iteration for the dominated attribute ak, it takes O((logN) + N ∗ Sk)

routing hops to resolve the query. We can further minimize the routing hops by choosing

the attribute with minimum selectivity as the dominated attribute. Thus, the routing hops

will be O((logN) + N ∗ Smin), where Smin is the minimum selectivity for all attributes. In

the single attribute dominated approach, the number of routing hops is independent of the

number of attributes, and thus scales perfectly in the number of attributes of a query. On

the other hand, it incurs the memory cost of registering all attributes for a resource if any of

its attributes is registered; and it incurs more updating overhead of attribute values change.

However, the good query performance of the single attribute dominated approach will typ-

ically outweigh the greater updating cost in the Grid environment since node registration

operations (of OS−Type, CPU −Speed,Memory−Size, CPU −Count, etc.) are typically

far less frequent than query operations (to find suitable machines).

2.2. SkipMard

SkipMard [6] is based on Skip List-based tools to design a structured P2P network with-

out DHT. For this reason, our primary consideration is locality property. The advantage of

DHTs approaches is that it can easily guarantee the load balance, efficiency and scalability

on P2P systems. But one of the primary drawbacks is that the use of random-looking hash

values of the key generated by hashing functions destroys the P2P natural locality property.

The locality property ensures that the query messages are only routed within two location-

near nodes. Another important drawback is that regular DHT technique only supports the

exact matching. Therefore, multiple exact matching operations have to be repeatedly ex-

ecuted to satisfy a complex range query, and a number of nodes are visited repeatedly in

the regular DHT-based P2P overlay network. SkipMard (Multi-attribute resource discovery

13

using Skip List-based tools) is our design of a preliminary P2P data structure, which natu-

rally supports the multi-attribute resource discovery. In this part, we will introduce the data

structure of SkipMard, the routing algorithms and the join/leave algorithms. And then we

will analyze the runtime of SkipMard.

Architecture:

The design of SkipMard is primarily based on the existing Skip List-based algorithm – Skip

Graph. It has been further developed to extend Skip Graph to naturally support multi-

attribute queries from one-attribute queries. In SkipMard, we employ a location address

space and multiple pre-defined resource-attribute tables. A node in this proposal usually

refers to a computer that holds an independent IP address or URL, and hosts multiple re-

sources and attributes. Each node corresponds to an ID in the location address space by

the key number. Each attribute belongs to one pre-defined resource-attribute table. All

attributes in this node can be classified into different resource categories according to these

pre-defined tables, and values of attributes are enumerated to represent a group. For exam-

ple, a node has 3 resources: CPU, memory and disk. Each resource defines one attribute,

speed, size and capacity respectively. The values of each attribute can be defined in Table

1. SkipMard is a Skip Graph-like multi-level data structure defined as a generalization of a

Skip List. As in Skip Graph, each node is a member of multiple doubly linked lists. The level

0 contains all nodes in order. However, compared with the data structure of Skip Graph,

SkipMard has 3 obvious different properties.

• Instead of the membership vector m(x) in Skip Graph, SkipMard uses a resource

vector rv(x). An element in the membership vector is generated a value 0 or 1 by

a binary random function and this value itself is meaningless, while each element

in a resource vector concretely stands for one resource and the value of an element

14

represents an attribute value. The length of a resource vector is equal to the number

of maxlevel, or the high of a SkipMard.

• Skip Graph uses a binary element in its membership vector, this approach has only

2i linked lists at i level, where i is [0, . . . ,maxlevel]. But in SkipMard, we have pi

linked lists at one level, where p ≥ 2 (such as p = 3, 4, . . .), one of which is called

layer. If p is equal to 2, then this SkipMard is an instance of Skip Graph.

• Each node in Skip Graph only has left and right neighbor on one level. But in

SkipMard, each node on one level has not only the left and right neighbor in the

same layer, but also contains the pointers to store the closest neighbor with different

layers. We call those neighbors Crossing Nearest Layer Neighbor. Because each node

in SkipMard contains more neighbor information than in Skip Graph, the expected

space of routing table of SkipMard is O(m ∗ log n), where n is total size of nodes

and m is total number of layers.

A resource vector of each node can contain multiple attributes of computational resources

that we are interested in. Given an application of SkipMard on the internet, we can assume

the deployment of computing resources is in a randomized distribution. Thus SkipMard has

O(log n) expected routing time.

SkipMard provides two routing algorithms and both have O(log n) expected time. One is to

implement one-attribute query by routing a key. The other is for multi-attribute queries by

routing a vector. A prefix matching technique and an approximate closest-point method are

used in the routing algorithms. In the algorithm of routing by a resource vector, we briefly

introduce a structure parallel flooding strategy for dynamic multi-attribute query.The rout-

ing algorithms used in Skip Mard are:

15

• Approximate Closest-Point Method: In routing algorithms for one-attribute,

SkipMard employs an approximate closest-point method for a specified searching

key that enables each node to always try to route this key to the node with the

closest key value. Unlike Skip Graph, which just uses the comparison operations

to determine the next node where the requested message is sent, SkipMard uses a

minimal distance function to determine the next node which is closer to requested

node than the previous one. Skip Graph adopts one side forwarding approach, while

SkipMard always goes around the requested node and tries to converge.

• Routing by Key: Routing algorithm by a key in SkipMard belongs to one-

attribute query. It applies an approximate closest-point method to calculate a min-

imal distance from all neighbor of the current node to this requested node. This

minimal distance determines the next accessing node where a searching message is

sent. Like Skip List and Skip Graph, the search starts at the top-most level of any

node and then goes down from top-level to the bottom level. The expected time of

routing by a key is O(log n).

• Routing by resource Vector: Multi-attribute resources usually include static

attributes and dynamic attributes. To discover dynamic attributes is more difficult

than static attributes because of their intermittence and randomization. Most cur-

rent resource discovery projects use the flooding technique to solve dynamic resource

discovery. In SkipMard, we also propose a parallel structured flooding technique

in routing algorithm of searching for a vector to discover dynamic attributes. A

Time-To-Live (TTL) mechanism is used in flooding to guarantee the efficiency and

termination of queries. In this routing algorithm, a user-defined dynamic resource

requirement is saved to a data pointer, and a TTLnum is specified as a maximum

16

number of resources that satisfy the requirements or the step length. An internal

function Dynamic provides the comparison between user-defined dynamic require-

ments and a local dynamic table, which is maintained by a node itself. If a node

can satisfy the dynamic requirement, then TTLnum will decrease by one, which rep-

resents a successful finding. If TTLnum is still greater than zero, then a parallel

structured flooding approach will be applied. The query message will be sent to the

neighbors of the two side of the current node in parallel until TTLnum decreases to

0. A dynamic multi-attributes query will return multiple satisfied results and the

maximum number will be less than the 2∗TTLnum. The expected time of searching

for a vector is O(log n) and the message is O(log n)+O(k), where k is a step length

of TTLnum in the parallel structured flooding.

2.3. ResQue

In ResQue [7], a novel mechanism is being adopted to generate random nodes having both

static and dynamic attributes that are useful in evaluating the performance of large-scale

P2P resource discovery schemes and job schedules. The presented methodology is applicable

to any multivariate resource dataset, and PlanetLab node traces are utilized as an example.

• Amulti-attribute resource model is defined using a selected set of static and dynamic

attributes that are essential to characterize a node.

• The characteristics of nodes are presented. The findings show that attribute values

are skewed, follow a mixture of probability distributions, complex correlation pat-

terns among attributes, and time series of dynamic attributes are non-stationary.

These characteristics make it nontrivial to generate random nodes with multiple

attributes.

17

• The vectors of static attributes are generated using empirical copulas that capture

the entire dependence structure of multivariate distribution of attributes.

• The time series of dynamic attributes are randomly drawn from a library of multivariate-

time-series segments extracted from PlanetLab traces. These segments are deter-

mined by identifying the changes in the regression coefficients of time series corre-

sponding to a selected attribute. Time series corresponding to rest of the attributes

are split at the same breakpoints and randomly drawn together to preserve their

contemporaneous correlation.

• A tool is developed to automate the synthetic data generation process and its output

is validated using statistical tests. The tool generates n random nodes with as static

and ad dynamic attributes. Dynamic attribute values can be generated up to a given

time t (ranging from several hours to weeks) with sampling interval s.

Node-Model and Characteristics

Following nine attributes are selected to describe a node:

(1) CPUSpeed (CSp): Processor clock speed in GHz. Provides insight on relative

computing power of a node.

(2) NumCores (NCore): Number of processor cores. Indicates how much parallelism

in processing is possible.

(3) CPUFree (CFree): (100 CPU utilization) Indicates to what extent the CPU(s) is

available for processing. If multiple cores are available, the average value is given.

(4) 1MinLoad (1mLd): One minute exponentially weighted moving average of number

of active processes competing or waiting for CPU. Indicates how long a user process

has to wait. Both CPUFree and 1MinLoad are complementary to each other as

18

a large CPU load does not necessarily mean high CPU utilization (e.g., processes

could be blocked for I/O). Similarly, 5MinLoad (5mLd), and 15MinLoad (15mLd)

(5) MemSize (MSize): Size of volatile memory in GB.

(6) MemFree (MFree): Free user-level memory as a percentage. Indicates how much

memory is available for user processes.

(7) DiskFree (DFree): Free disk space in GB.

(8) TxRate (TX): Average transmission rate in bps. In conjunction with bandwidth

limit specified by most nodes, it provides insight on amount of available bandwidth.

(9) RxRate (RX): Average receive rate in bps.

CPUSpeed, NumCores, and MemSize are static attributes (number of static attributes

as = 3) while the rest are dynamic (number of dynamic attributes ad = 6). The analysis

of these attributes are based on the methodology which is applicable to other systems, e.g.,

SETI@home [24] as well. Resource discovery solutions and scheduling algorithms for latency

sensitive applications are typically interested only in short-term trends. Therefore, we cap-

ture statistical characteristics that are valid for several minutes to few weeks.

Random Vector of Static Attributes:

Some of the attributes hold strong correlation among some of the other attributes as well

as with their specific structures in time series, attribute values of random nodes cannot be

drawn from independent distributions. Therefore, we have to rely on the joint distribution

of attributes. Static and dynamic attributes are handled separately as the time series of

dynamic attributes are nonstationary and also have specific temporal structures. As the

correlation among attributes is nonlinear and complex, it is insufficient to use the matrix of

Pearsons correlation coefficients to establish the dependence among random variables. Alter-

natively, copulas [26] can be used to capture the entire dependence structure of multivariate

19

distributions. Copulas are functions that couple multivariate distribution functions to their

marginal distributions. A copula C(u) is a multivariate joint distribution defined on the

d−dimensional unit cube [0, 1]d, (u1, . . . , ud) ∈ [0, 1]d, such that every marginal distribution

ui is uniform on the interval [0, 1]. Let F denote the d−dimensional distribution function

(CDF) with marginals F1, . . . , Fd then a copula C exists such that for all real u = (u1, . . . , ud):

F (u) = C(F1(u1), . . . , Fd(ud)) (2.1)

Several well-known copula families are available, e.g., Gaussian and Archimedean copulas.

However, these copulas tend to be symmetric along the axis of correlation. Alternatively,

empirical copulas are useful while analyzing data with complex and/or unknown underlying

distributions. Empirical copula also supports any number of dimensions, and its bivariate

function is given by[7]:

Cn(
i

n
,
j

n
) =

No.ofpairs(x, y)s.t.x ≤ x(i)andy ≤ y(i)
n

(2.2)

where 1 ≤ i, j ≤ n, x(i) is the ordered statistics of x, and n is the number of data points. It

is proven that empirical copula converges uniformly to the underlying copula. After deriving

the copula, dependent random numbers can be generated. The density distribution of the

attributes CSp, MFree and TX is as shown in Figure 2.1 [7]. Those numbers can then be

transformed into original marginal distributions using inverse transforms. The distribution

of some of the attributes CSp, MFree and TX is as shown in Figure 2.2 [7].

Tool for Random Node Generation:

A tool has been built to automate the synthetic data generation process, by combining

20

Figure 2.1. Density distribution for CSp, CPUFree, MFree, and TX

Figure 2.2. Marginal distribution values with time for CSp, MFree and TX

the empirical-copula-based static attribute generation and time-series-library-based dynamic

attribute generation. Figure 2.3 [7] is a flowchart illustrating the technique.

It can generate synthetic traces corresponding to a set of nodes, e.g., n random nodes

with as static and dynamic attributes. As the distribution of dynamic attributes is stable

over few weeks, the technique can be used to generate data from several minutes to few

weeks. The change of values of attributes within a span of day is as shown in Figure 2.4 [7].

Instantaneous values of dynamic attributes are also fed to the copula generator [26]

to generate random vectors with instantaneous dynamic attributes that may be useful in

evaluating scheduling algorithms. NCores from copula is fed to draw random samples

module to establish the dependence between static and dynamic attributes. If desired, a

user may use only a subset of the attributes supported by the tool. Several additional

attributes (e.g., 5mLd, DSize, and Location) are included in the MATLAB-based tool that

21

Figure 2.3. Flow-chart of random node generation tool

Figure 2.4. Change of attribute values with time

22

Figure 2.5. Comparison of actual nodes parameters with nodes parameters
generated by tool

is downloadable from [25]. A comparison is made with synthetic data with actual data as

there are no other comparable models that capture the correlation among dynamic attributes.

Figure 2.5 plots the distribution of both the actual and generated attributes for CSp,

CFree and TX . It can be seen that the generated attributes closely match the distributions

observed in systems operating under real time environments.

2.4. Network Application of Bloom Filters

A Bloom filter is a simple space-efficient randomized data structure for representing a

set in order to support membership queries. Bloom filters allow false positives but the space

savings often outweigh this drawback when the probability of an error is made sufficiently

low. Burton Bloom introduced Bloom filters in the 1970s [13], and ever since they have been

very popular in database applications. Recently they started receiving more widespread

attention in the networking literature.

In this paper [14], a survey was made on the several ways in which Bloom filters have

been used and modified for a variety of network problems, with the aim of providing a

unified mathematical and practical framework for them and stimulating their use in future

applications. First the mathematics behind Bloom filters is described, their history, and some

23

important variations. Then the consideration of four types of network-related applications

of Bloom filters are discussed:

• Collaborating in overlay and peer-to-peer networks: Bloom filters can be used for

summarizing content to aid collaborations in overlay and peer-to-peer networks.

• Resource routing: Bloom filters allow probabilistic algorithms for locating resources.

• Packet routing: Bloom filters provide a means to speed up or simplify packet routing

protocols.

• Measurement: Bloom filters provide a useful tool for measurement infrastructures

used to create data summaries in routers or other network devices.

Emphasize on this simple categorization is very loose; some applications fit into more than

one of these categories, and these categories are not meant to be exhaustive. Indeed, suspec-

tion was done that new applications of Bloom filters and their variants will continue to bloom

in the network literature. Also, emphasize are being provided that only brief summaries of

the work of many others. The theme unifying these diverse applications is that a Bloom

filter offers a succinct way to represent a set or a list of items. There are many places in a

network where one might like to keep or send a list, but a complete list requires too much

space. A Bloom filter offers a representation that can dramatically reduce space, at the cost

of introducing false positives. If false positives do not cause significant problems, the Bloom

filter may provide improved performance. This property of Bloom filter principle, is given

emphasis

The Bloom filter principle: Wherever a list or set is used, and space is at a premium,

consider using a Bloom filter if the effect of false positives can be mitigated.

Mathematical Principles: We begin by presenting the mathematics behind Bloom filters.

A Bloom filter for representing a set S = x1, x2, ..., xn of n elements is described by an array

24

of m bits, initially all set to 0. A Bloom filter uses k independent hash functions h1, . . . , hk

with range 1, . . . ,m. For mathematical convenience, we make the natural assumption that

these hash functions map each item in the universe to a random number uniform over the

range 1, . . . ,m. For each element x ∈ S, the bits hi(x) are set to 1 for 1 ≤ i ≤ k. A location

can be set to 1 multiple times, but only the first change has an effect. To check if an item y

is in S, we check whether all hi(y) are set to 1. If not, then clearly y is not a member of S. If

all hi(y) are set to 1, we assume that y is in S, although we are wrong with some probability.

Hence, a Bloom filter may yield a false positive, where it suggests that an element x is in S

even though it is not. Figure 1 provides an example. For many applications, false positives

may be acceptable as long as their probability is sufficiently small. To avoid trivialities we

will silently assume from now on that kn < m.

The probability of a false positive for an element not in the set, or the false positive rate, can

be estimated in a straightforward fashion, given our assumption that hash functions are per-

fectly random. After all the elements of S are hashed into the Bloom filter, the probability

that a specific bit is still 0 is[13]

p = (1−
1

m
)kn = e(−

kn
m

) (2.3)

We let p = e(−
kn
m

), and note that p is a convenient and very close (within O(1/m)) approxi-

mation for p. Now, let ρ be the proportion of 0 bits after all the n elements are inserted in

the table. The expected value for ρ is of course E(ρ) = p. Conditioned on ρ, the probability

of a false positive is[13]

(1− ρ) ∗ k = (1− p) ∗ k (2.4)

25

and this is the second approximation. The first one is justified by the fact that with high

probability ρ is very close to its mean. In general, it is often easier to use the asymptotic

approximations p and f in analysis, rather than p and f . It is worth noting that sometimes

Bloom filters are described slightly differently as, instead of having one array of size m shared

among all the hash functions, each hash function has a range of m
k
consecutive bit locations

disjoint from all the others. The total number of bits is still m, but the bits are divided

equally among the k hash functions. Repeating the analysis above, it is found that in this

case the probability that a specific bit is 0 is[13]

(1−
k

m
)n = e−

kn
m (2.5)

Asymptotically, then, the performance is the same as the original scheme. However, since

for k ≥ 1[13]

(1−
k

m
)n ≤ (1−

1

m
)kn (2.6)

(with equality only when k = 1), the probability of a false positive is actually always at least

as large with this division. Since the difference is small, this approach may still be useful for

implementation reasons; for example, dividing the bits among the hash functions may make

parallelization of array accesses easier.

Applications: P2P/Overlay Networks

An early peer-to-peer application of Bloom filters is due to Marais and Bharat [19] in the

context of a desktop web browsing assistant called Vistabar. Cooperative users of Vistabar

store annotations and comments about the web pages that they visited in a central repository.

Conversely, they see these comments whenever they load an annotated page. Rather than

26

make a request for each URL encountered, Vistabar downloads periodically a Bloom filter

corresponding to all annotated URLs.

• Approximate Set Reconciliation for Content Delivery

Byers, Considine, Mitzenmacher, and Rost [20] demonstrate another area where

Bloom filters can be useful in peer-to-peer applications. They suggest that peers

may want to solve the following type of approximate set reconciliation problems.

Suppose peer A has a set of items SA, and peer B has a set of items SB. Peer B

would like to send peer A a succinct data structure so that A can start sending

B items that B does not have, that is, items in SA − SB. One approach is to

have B send A a Bloom filter; A then runs through its elements, checking each one

against the Bloom filter, and sending any element that does not lie in SB according

to the filter. Because of false positives, not all elements in SA − SB will be sent,

but most will. The authors also consider an alternative data structure that uses

Bloom filters, but allows for faster determination of elements in SA − SB when

the difference is small [21]. This work demonstrates that Bloom filters can also be

useful as subroutines inside of more complex data structures. The application [20]

addresses the distribution of large files to many peers in overlay networks. The

authors argue for encoded content. In this setting, peers may wish to collaborate

during downloads, by receiving encoded packets from other peers as well as from the

source, thus effectively increasing the download rate. If the encoded content is over

a large alphabet, the problem of determining which encoded packets peer B needs

that peer A has is simply the problem of determining SA−SB. Since the content is

redundantly encoded, obtaining a large fraction of SA − SB rather than the entire

set is sufficient in this situation.

27

• Set Intersection for Keyword Searches

Reynolds and Vahdat use Bloom filters in a similar fashion as [20], except that

their goal is to find the set intersection instead of the set difference [22]. Their

approach is essentially the same as for database joins. Peer B can send a Bloom

filter representing SB to A; peer A then sends the elements of SA that appear

to be in SB according to the filter. False positives yield elements of SA that are

in fact not in SB, but, if desired, B can then determine these elements to find

SA ∩ SB exactly. The Bloom filter approach allows SA ∩ SB to be determined with

fewer bits transmitted than A sending the entire set SA. Reynolds and Vahdat

describe how using this approach for set intersection allows for efficient distributed

inverted keyword indices for keyword search in an overlay network over a peer-to-

peer architecture. When a document is published, the author also selects a set of

keywords for the document. Each node in the network is responsible for a set of

keywords in the inverted index; hashes of the keyword determine the responsible

nodes. To handle conjunctive queries involving multiple nodes, the set intersection

methods above are used to reduce the amount of information that needs to be sent

to determine the appropriate documents.

28

CHAPTER 3

Multi-Attribute query resolution

To look for resources having multiple attributes, with each attribute having a range of

values, it is necessary to have a system which can fit in multiple types of attributes and also

fit in a range of values corresponding to each attribute. Also the system needs to scale up

both in terms of the number of attributes and in range of values for each attribute. The

architecture proposed here is composed of a structured P2P architecture arranged in the

form of rings corresponding to different attributes. As a whole, it comprises of multiple

rings grouped together to form a ring of rings (ROR). This ROR architecture addresses both

the requirement of any number of attributes as well as any range values for each individual

attribute.

3.1. System Architecture

An architecture is proposed here comprises of a set of nodes present in a Main Ring

(MR), and sets of nodes present in several Sub-Rings (SR) as shown in Figure 3.1. Each

node present in the MR is responsible for a different type of attribute from those covered by

the other nodes in MR and a node in SR is responsible for a range value for the attribute that

the SR is responsible for. TheMR nodes are aware of all the other nodes present inMR, and

the attributes they are responsible for. Each MR node also contribute in the range value of

attributes by being a part of one SR as well. The messages exchanged, to and fro within the

network are Bloom-filter messages. Here we discuss how the ROR architecture comprising of

MR and SR, together with Bloom-filter based methodology resolve multi-attribute queries.

The architecture uses “Chord” protocol [4] for look up and routing within each SR.

Chord, provides efficient lookup and routing, since it uses O(n log n) number of hops for

29

Figure 3.1. ROR Architecture

efficient routing. Also it acts as a distributed hash table spreading keys evenly over the

nodes present in each SR, providing in-built features of a load balancer. Also since Chord

is fully distributed, every nodes provides equal contribution towards query resolution and

hence provides robustness in the architecture. Also the cost of scaling up is logarithmic in

terms of the number of nodes so even large systems, necessary for large number of attributes

and large range of values for lookup are feasible without any parameter tuning or constraints

in lookup for the keys and hence providing flexible naming. Chord assigns keys by consistent

hashing and the routing cost is very less, since every node maintains information only about

O(n log n) of other nodes and requires O(n log n) messages for look up [4]. Also for the SRs

for the range of attributes, the amount of ring each node “owns” is determined by the distance

to its immediate predecessor. Since the range value of each attribute, is uniformly distributed

over the ring, the distribution is tightly approximated by an exponential distribution with

mean 2m/N , where m is the range and N is the number of nodes in the SR [4].

Each node in the MR maintains a hash table (HTMR) having a ¡key, value¿ pair. The

“key” in HTMR represents each attribute and the corresponding “value” represents the node

30

MR id. This kind of hash table has direct addressing feature. The nodes in MR comes

up and the notifies the preexisting nodes by exchanging their id and the attribute they are

responsible for. Each node getting such a notification updates its HTMR as well. The nodes

coming up first become a part of the MR until all the different attributes gets one node to

be responsible for it in the MR, and the later nodes coming up become part of SR for each

of the different attributes. The nodes in SR while joining a specific SR, knows the MR node

for that attribute, exchange keys and arrange themselves in a structured manner forming a

distributed architecture as in Chord network. The nodes in the MR maintain both HTMR

as well as Finger Table (FT) based on their SR ids, whereas the SR nodes maintain only a

FT . The number of the nodes in the MR depends upon the maximum number of attributes

possible, which the system will be responsible for, resolving queries related to any of those

attributes. The SRs should have atleast one node (apart from the node contributing in

MR) to divide the key space of the entire attribute range. Each of the SRs has a bitspace

allocated [0; ...; (2k− 1)] where kǫZ+. A node in SR calculates a multiplying factor (MF) as

mentioned in Equation 3.1 to map out the range of the attribute it will be responsible for in

the entire bitspace. This hash table, HTMR is used by the MR nodes to route queries from

one node to another. HTMR is mentioned as routing table (RT) for the MR nodes.

MF =
rn

2k − 1
, where rn = [un − ln] (3.1)

The nodes in SR share the < key, value > < k, v >, where k is the IP address of the

resource and v is the value of the attribute for that resource, from their respective MR

nodes. So for any node having id k2, responsible for range [k1; k2] will be responsible for

attributes having range of values [k1 ∗MF ; k2 ∗MF]. Here k1 and k2 represents the lower

31

limit and upper limit respectively of the bitspace that the node with id k2 is responsible for.

The nodes in MR and SR caches these contents locally w.r.t their SR id.

3.2. Query Propagation

A multi-attribute query which undergoes resolution is represented as follows:

Q ≡ (a1q = [l1q, u1q]; a2q = [l2q, u2q]; ...; arq = [lrq, urq])

where Q is the query; (a1q, a2q, ..., arq) ǫA, and [l1q, l2q, ..., lrq] are the lower limits and

[u1q, u2q, ..., urq] are the upper limits for different attributes. The user generated query Q

arrives at a random node present in the network. Let’s consider a query arriving a node

Qnode. The Qnode looks into the first attribute in Q, and if it finds that Q has an attribute

which it is responsible for, it parses out Q, retrieves the upper and lower limits of its attribute

and send out the rest of the query to the node responsible for the next immediate attribute

in Q. If it does not find its attribute in the query, it looks into the first attribute present

in Q, and looks for the node responsible for it from its RT. It then forwards Q, to the node

responsible for it in MR. The node which gets the Q checks whether it has got query for

the attribute it is responsible for, if it is so it parses out Q, retrieves the upper limit and

lower limit of its attribute and send out the rest of the query to the node responsible for

the next immediate attribute in Q, which it again comes to know from RT. The next node

then parses out its own attribute with the upper limit and the lower limit and sends out the

remaining query. This process continues until the query reaches the last node with its own

attribute only along with the range and has nothing to forward. The query propagation is

shown in Figure 3.2.

The node in MR checks the range of the query attribute [lq, uq], and converts it to a

range [lq
MF

, uq

MF
] to find out the node id in the SR which is responsible for this range. It

32

Figure 3.2. Query Propagation in ROR Architecture

refers its FT and finds out which is the node in the SR that is responsible for the key-value

pair. In the process if it finds that the node responsible for the range of the attribute is

itself, it resolves it locally.

3.3. Bloom-Filter Creation

The node after receiving the query finds out the list of nodes which falls within the range

of [lrq, urq] and makes a normal Bloom-filter (nBF) as shown in Figure 3.3.

The parameters necessary for the creation of nBF are size of nBF (m), number of Hash-

Functions (k), and the total number of resources (N) that needs to be represented by the

Bloom-filter. Since for different ranges of attributes there will be different sizes of N , m is

kept constant and the optimal number of k, is calculated from Equation 3.2.

k =
m

N
∗ ln 2 (3.2)

The hash functions required to be chosen for hashing up the IP address must be unique

enough, so that the hash values generated must have minimum overlap [12]. These hash

33

Figure 3.3. Bloom-Filter Creation at each node

values represent the indices of the Bloom-filter which are set to 1 if it is 0 initially or is left

unchanged. A nBF data structure doesn’t have any false-negative associated with it, but it

a has certain amount of false-positive probability (fp) associated with it [13]. For optimal

conditions, and accurate results the value of fp should be as much minimum as possible.

For minimum fp, the value of k and false positive probability p is as mentioned below in

Equation 3.3:

ln p = −
m

N
∗ (ln 2)2 (3.3)

The insert operation in nBF is as described in Algorithm 1 which is shown in Figure

3.4. The notations used for defining the algorithms follow in Table 3.1.

Each of the IP addresses is hashed k number of times, every time with a unique hash

function from the set H(). Then its modulus w.r.t m is calculated. The modulus represent

indices of Bloom-filter, which are then used to populate the nBF by setting the respective

indices to 1 if it is 0 initially, or else it is left unchanged.

34

Figure 3.4. Insert operation in Bloom Filter

Table 3.1. Notations

Notation Meaning
k Number of hash functions
m Size of Bloom-filter
N Num. of elements in the set
nBF Normal Bloom-Filter
rBF Resultant Bloom-Filter
H() Hash functions [H1(), H2(), ..., Hn()]
hvals Hash values obtained
vAttrb Attribute value ǫZ+

lrq Lower limit of resources
urq Upper limit of resources
ip IP address
Qattr Query attributes
Qip Query IPs
IPfinal Final list of IPs to be sent to user

3.4. Bitwise-AND and Resultant Bloom-Filter creation

The nodes in SR send the nBF s to the Qnode, with a check-sum to prevent data corrup-

tion. In most network applications, the Bloom-filters are carried around and since the size

of a Bloom-filter is always kept constant, it can be used to represent very large datasets into

a fixed sized data structure [14]. Using a Bloom-filter can therefore prevent carrying around

the long list of IP addresses. This methodology is extremely beneficial in case of system

which are highly scalable as it will incur less communication cost and memory overhead.

35

Algorithm 1 Insert in Bloom-Filter

1: m← CONST
2: IP = [] initialized as a blank list
3: for Each vAttrb in Attrr do
4: if (vAttrb > lrq) then
5: if (vAttrb < urq) then
6: IP.append(the selected ip)
7: end if
8: end if
9: end for
10: N ← len(IP)
11: k ← from equation equ(a)
12: for Each ip in IP do
13: hvals← k hash values for ip obtained from H()
14: for Each hash value (h) in hvals do
15: i← h mod m
16: nBF [i]← 1
17: end for
18: end for
19: Send nBF to Qnode

Figure 3.5. Bit-wise AND operation and sending back resultant Bloom Filter
to nodes

The Qnode does a bit-wise AND operation on all the nBF s received (one for each individual

attribute) and makes the resultant Bloom-filter rBF . It then sends back the rBF to the

respective nodes (in SR), as shown in Figure 3.5. The algorithm for calculating the rBF is

as described in Algorithm 2.

36

Algorithm 2 Calculate resultant Bloom-Filter

1: for Each attribute in Qattr do
2: if nBF received for the first time then
3: rBF ← nBF
4: else
5: rBF ← bitwise-AND of (rBF, nBF)
6: end if
7: end for
8: Send rBF back to the nodes for individual attribute

The bit-wise AND operation of the Bloom-filters creates the intersection operation of

the list of IP addresses and the resultant Bloom-filter represents the final list of IP addresses

which stands as query resolution. This operation prevents the checking of each individual IP

address from the long list of IP address for each individual attribute [15]. The algorithmic

time complexity for this methodology is O(Mip ∗Nattr), where Mip is the size of each IP list

and Nattr is the number of attributes queried for. In case of large scale systems, magnitudes

of both Mip and Nattr will be very high. Using the conventional system to resolve queries for

these sorts of systems will therefore incur much time delay in response. On the other hand,

in case of ROR using Bloom-filter messages, Mip will be constant (only corresponding to the

size of Bloom-filter). Also the magnitude of Bloom-filter size is much less than Mip, in case

of former. Since, out of the two parameters Mip and Nattr, Mip is the dominant parameter,

reducing its magnitude greatly reduces the time complexity and hence the time of operation

for multi-attribute query resolution. Similarly in terms of space complexity, the traditional

approach will require (Mip ∗Nattr) space whereas by using Bloom-filters the space required

will be only const∗Nattr (const is the size of Bloom-filter). The later approach hence reduces

the space complexity in turn reducing the communication cost and message overhead.

37

3.5. IP list generation and query resolution

An individual SR nodes after receiving the rBF checks for the list of IP addresses which

pass through the rBF , using the same hash functions from H() it utilized to create the nBF

and retrieves the final list of IP addresses for each separate attribute. After generating the

list of IP addresses these nodes send it back to the Qnode, as described in Algorithm 3.

Algorithm 3 Extracting IP Address

1: IPfinal = [] initialized as a blank list
2: for Each ip list in IP do
3: hvals← k hash values for ip obtained from H()
4: for Each hash value (h) in hvals do
5: i← h mod m
6: if All i satisfies rBF then
7: Qip.append(the selected ip)
8: end if
9: end for
10: end for
11: Send Qip back to the Qnode

The Qnode creates a final list obtained through the intersection of the list of IP addresses

received and cleans up the residue IPs, if any. This final list of IP address is then sent to

the user, refer Figure 3.3 with an amount of fp supposed to be generated during the process.

The algorithm for the final list of IP is as described in Algorithm 4

Algorithm 4 Generate final list of IP Address

1: IPfinal = [] initialized as a blank list
2: for Each Qip obtained for each query in Qattr do
3: if Qip obtained for the first time then
4: IPfinal ← Qip

5: else
6: IPfinal ← IPfinal ∧Qip

7: end if
8: end for
9: Send IPfinal to the user

The source code for the implementation of ROR architecture is presented in Appendix-A.

38

CHAPTER 4

Caching Methodology

In certain situations, it is found that one set of attribute values, are highly correlated to

a different set of attribute values. Each of these attributes has range of values associated

with them. In the description in previous chapters, Queries related to different attributes

are resolved by resolving them separately. Here we present a new methodology to more

efficiently resolve the attribute values. One of these methodology discussed here is the

Caching Mechanism. The main objective behind the methodology is the reduction in hop

count, processing time, and latency of response. Also as the queries generated for these kind

of attributes are correlated, e.g. if a query is looking for an attribute with some specific value

there might be range of values for the other set of attributes. In terms of statistical measure,

it is noticed that the query related to range values for each individual attribute fluctuates

together, it means the values for attribute variables increase or decrease in parallel. This

kind of correlation is also referred as positive correlation. This analysis of correlation of

attributes can also be understood from the probability distribution (p.d.f) for each pair of

correlated attribute. For example the p.d.f for DSize and DFree is as shown in Figure 4.1

and that for TX and RX is shown in Figure 4.2.

It can be noted from the distribution of these attributes that they have mean (µ) and

std-deviation (σ) close to each other and also the distribution for each of these attributes

also lies in the same range. As a result fluctuation for values of both these attributes lies

more or less in the same range.

Since in scalable systems like conventional grids, desktop grids, cloud systems, etc.. resolu-

tion of multi-attribute queries needs to be done at a higher rate with minimum latency in

39

Figure 4.1. Probability
Distribution of DSize and
DFree

Figure 4.2. Probability
Distribution of TX and RX

response, it therefore becomes necessary to have an architecture which resolves these queries

based on the correlation feature of the attribute values. This architecture targets and re-

mains successful in resolving the look-up in minimum time, reducing the latency in response.

The novelty of the proposed architecture discussed here lies in the arrangement of values for

each correlated architecture pair within the same sub-ring in such a way that the query for

both the attributes are resolved while traversing along the same sub-ring. This is done in a

way in which a value or range of values of one correlated attribute should always point to

the other attributes having a set of values in a range, so that the lookup process does not

traverse the entire range of the other attributes to resolve the query.

To design the architecture for the resolution of correlated attributes in a manner discussed

above, we started looking into the correlated attribute magnitudes for each and every re-

source of PlanetLab nodes [23]. These correlated attribute resource values used for simulation

are generated using the simulation tool ResQue [7]. The attributes considered for the simu-

lation environment are attributes of PlanetLab Nodes [23]. A typical set (S) of resources of

PlanetLab Nodes with different correlated attributes namely, one minute loading (1mLd),

five Minutes loading (5mLd), fifteen minutes loading (15mLd), disc size (DSize), disc free

40

Table 4.1. PlanetLab Co-related Attribute Details

Attrb max min range Co-related Attrb p.c.f
1mLd 100.6 7.3 93.3 [5mLd, 15mLd] [0.95, 0.91]
5mLd 39.74 0.03 39.71 [1mLd, 15mLd] [0.95, 0.99]
15mLd 37.43 0.0 37.43 [1mLd, 5mLd] [0.91, 0.99]
DSize 2742.78 47.55 2695.22 [DFree] [0.99]
DFree 2640.43 0.00 2640.43 [DSize] [0.99]
Tx 8465.0 0.0 8465 [Rx] [0.89]
Rx 9078.0 0.0 9078.0 [Tx] [0.89]

Figure 4.3. Variation of
magnitude of DFree w.r.t
DSize

Figure 4.4. Variation of
magnitude of RX w.r.t TX

(DFree), transmission rate (Tx), receiving rate (Rx) alongwith their min, max, range, and

Pearsons correlation coefficient (p.c.f) for each of the correlated attributes is provided in

Table 4.1.

The variation of magnitude for the correlated attributes DFree w.r.t DSize is shown in

Figure 4.3, RX w.r.t TX is shown in Figure 4.4, 5mLd w.r.t 1mLd is shown in Figure 4.5 and

15mLd w.r.t 1mLd is shown in Figure 4.6. The Figures 4.3-6 also shows the linear curve fit

for each of the correlated attributes, when they are plotted w.r.t each other.

41

Figure 4.5. Variation of
magnitude of 5mLd w.r.t
1mLd

Figure 4.6. Variation of
magnitude of 15mLd w.r.t
1mLd

4.1. System Architecture

From the Figures 4.1-4, it can be noticed that for a single value of one attribute say e.g.

attribute DSize there are range of values of the other attribute DFree to which the former

is co-related. Similarly for a value of attribute TX , there are range of values for RX , for

1mLd there are range of values for 5mLd, and 15mLd. These range of values for each pair

of correlated attributes are as described in Table 4.2, representing the minimum, maximum

and number of resources for each pair of correlated attributes [DSize,DFree], [Tx, Rx] and

[1mLd, 5mLd, 15mLd] which has a range of values on the basis of other attributes. Also it

is noticed that there are considerable number resources which falls in this range of values.

So instead of making separate sub rings (SR) in the ROR P2P architecture for each of the

different attributes, it is therefore possible to cache the data of other attributes in the same

SR with increasing value of one of the attribute. The network architecture for this kind of

arrangement is as shown in Figure 4.7. Each of the correlated attributes are placed in the

same SR, e.g. DSize and DFree are correlated and they both are placed in the same SR, ref

Figure 4.7. Each node in SR, responsible for values of DSize caches the corresponding range

42

Table 4.2. Resource Details

DSize DFree Num. of Resources
DSizemin 47 [0− 4] 1
DSizemax 2742 [2640− 2640] 270

Tx Rx Num. of Resources
Txmin 0 [0− 0] 1
Txmax 8465 [9078− 9078] 20

1mLd 5mLd Num.. of Resources
1mLdmin 7.3 [0− 2] 40
1mLdmax 51 [39− 39] 1

1mLd 15mLd Num. of Resources
1mLdmin 7.3 [0− 2] 1
1mLdmax 51 [36− 37] 129

Figure 4.7. Caching Architecture for Co-related attributes

of values for DFree at the same time. In case there are three correlated attribute, the nodes

in SR corresponding to values to one attribute caches the values for the other two attributes

at the same time. For example in Figure 4.7, the nodes in SR responsible for 1mLd, caches

the values for 5mLd and 15mLd as well.

43

Table 4.3. Caching Architecture Hash-Table formation for Resources

< key > < value > < IPAddress >
k1 [v11, ..., v1m] [ip11, ..., ip1m]
... [...] [...]
kn [vn1, ..., vnm] [ipn1, ..., ipnm]

4.2. Caching Architecture Formation

The nodes in SR as well as the main ring (MR), while coming up calculates the range

values for each of the attribute it will be responsible for on the basis of its SR id, ([lq
MF

, uq

MF
])

where MF is obtained from Equation 4.1.

MF =
rn

2k − 1
, wherern = [un − ln] (4.1)

The nodes in SR responsible for the co-related attribute pair, e.g [DSize,DFree] will

prepare a Hash Table, (format key ↔< values, ipaddresses >) where key represents each

individual value of one attribute (here DSize), and values in < values, ipaddresses > will

be range of values of the other attribute or attributes (here DFree), for that particular

key value. If there are more than two attributes co-related to each other then multiple

Hash Tables needs to be prepared for each tuple. The ipaddress are IP addresses of the

machines for each [DSize,DFree] tuples. Like wise the nodes in SR responsible for [Tx, Rx]

and [1mLd, 5mLd, 15mLd] will also maintain a hash table respectively. The structure of the

hash table for the attributes are as shown in Table 4.3

The algorithm for selecting the list of IP addresses for the range of the correlated at-

tributes is as mentioned in Algorithm 5.

44

Algorithm 5 Selection of IP Addresses in Caching

1: IP = [ip1, ip2, .., ipn] list of IP Addresses
2: Attrb = [attr1, attr2, attr3] list of correlated attributes
3: indattr2 = [] initialized a blank list
4: indattr3 = [] initialized a blank list
5: for Each vAttrb in attr1 do
6: for Each vAttrb in attr2 do
7: if (vAttrb >= lrq) and (vAttrb <= urq) then
8: indattr2 .append(indice of vAttrb)
9: end if

10: for Each indice in indattr2 do
11: vAttrb← attr3[indice]
12: if (vAttrb >= lrq) and (vAttrb <= urq) then
13: indattr3 .append(indice of vAttrb)
14: end if
15: end for
16: end for
17: end for
18: resultantIP = [] initialized a blank list
19: for Each indice in indattr3 do
20: resultantIP .append(IP [indice])
21: end for

4.3. Query Resolution

A sample query (Q) for multi-attributes looks like

Q ≡ (a1q = [l1q, u1q]; a2q = [l2q, u2q]; ...; arq = [lrq, urq])

where (a1q, a2q, ..., arq) ǫA and [l1q, l2q, ..., lrq] are the lower limits and [u1q, u2q, ..., urq] are

the upper limits for each of the attributes. The user generates query Q to the Qnode. The

selection of Qnode is from the MR node and is entirely random. The Qnode looks into the

first attribute in Q, and forwards it to the node responsible for it in MR. The node which

gets Q checks whether it has got query for the attribute it is responsible for, if so, it parses

out Q, retrieves the upper limit and lower limit of the attribute and send out the rest of the

query to the node responsible for the immediate attribute, which it comes to know from the

Routing Table (RT). The preparation of RT is exactly in the same way as it is for the ROR

45

architecture. The next node on receiving the query, parses out its own attribute, with the

upper limit and the lower limit and sends out the remaining query. This process continues

until the query reaches the last node with its own attribute only and has nothing to forward.

The node after receiving its own query retrieves the list of IP addresses using Algorithm 5.

After retrieving the IP address of the resources makes a normal Bloom-filter (nBF). The

parameters necessary for the creation of nBF are k representing number of Hash-Functions

(hf), N representing the number of resources (here count of IP addresses) andm representing

the size of nBF . The parameter k derived from m and N is as mentioned in Equation 4.2

k =
m

N
∗ ln 2 (4.2)

The BF data structure doesn’t have any false-negative associated with it, but it has

certain amount of false-positive (fp) associated with it[14]. By convention and improved

results the value of fp should be as much minimum as possible. For minimum value of fp,

the false positive probability p per fraction of bit is considered to be 1, as mentioned below

in Equation 4.3

ln p = −
m

N
∗ (ln 2)2 (4.3)

Each of the IP address is hashed k number of times with the hash functions in H() and

the mod is calculated using m. The mod value represents the indices of the Bloom-filter,

and is used to populate the nBF by setting the represented indices to 1 if it is 0 initially, or

else it is left unchanged.

46

These nBF s are then sent to the Qnode with a check-sum, to prevent data loss. The

Qnode does a bit-wise AND operation with all the nBF s received and makes the resultant

Bloom-filter (rBF) and sends it back to the respective clients with a check-sum, as shown

in Figure 3.3. The algorithm for calculating the rBF is as mentioned in Algorithm 6.

Algorithm 6 Calculate resultant Bloom-filter

1: for Each attribute in Qattr do
2: if nBF received for the first time then
3: rBF ← nBF
4: else
5: rBF ← bitwise-AND of (rBF, nBF)
6: end if
7: end for
8: Send rBF back to the nodes

Now, the clients after receiving the rBF checks the IP addresses which pass through the

rBF . For this it uses the same set of hash functions mentioned in H(), it utilized to create

the nBF . After generating the list of IPs these clients send it to the Qnode, as mentioned in

Algorithm 7.

Algorithm 7 Extracting IP Address

1: IPfinal = [] initialized as a blank list
2: for Each ip list in IP do
3: hvals← k hash values for ip obtained from H()
4: for Each hash value (h) in hvals do
5: i← h mod m
6: if All i satisfies rBF then
7: Qip.append(the selected ip)
8: end if
9: end for
10: end for
11: Send Qip back to the Qnode

The Qnode creates a final list of IP addresses obtained through intersection of the list of

IP addresses received and the residue IPs are removed. This final list of IP address is then

sent to the user, refer Figure 3.3. In the process of creating the final list of IP address, an

47

amount of fp is generated during the process. The algorithm for the final list of IP is as

described in Algorithm 8

Algorithm 8 Generation of final list of IP Address

1: IPfinal = [] initialized as a blank list
2: for Each Qip obtained for each query in Qattr do
3: if Qip obtained for the first time then
4: IPfinal ← Qip

5: else
6: IPfinal ← IPfinal ∧Qip

7: end if
8: end for
9: Send IPfinal to the user

The source code for the implementation of Caching methodology is presented in Appendix-

B.

48

CHAPTER 5

Overlapped Architecture

Overlapped ring architecture is another methodology, proposed here to resolve multi-

attribute queries where the attributes are co-related to each other. In overlapped ring archi-

tecture the SRs of individual attributes overlap on one another. The idea behind overlapped

architecture is since the attributes are correlated, it is possible to find out the range of values

of one attribute from the values of other attribute with which the former is correlated. To

make this possible, a characteristics equation needs to found out which satisfies the trend

of values for each pair of correlated attributes. The characteristic equation is obtained by

having a curve fitting on each pair of values of the correlated attributes.

The curve fitting is done by plotting the correlated attributes w.r.t each other, having any

one of the attribute on a log scale, and then figuring the best characteristic equation that fits

well on the values of the attributes. The plots for each of the correlated attributes, having the

values of one attribute in logarithmic scale with their corresponding characteristic equation

is as shown in Figure 5.1-4. The log scale plot for the correlated attributes [DSize,DFree]

is as shown in Figure 5.1 and their characteristic equation is mentioned in Equation 5.1,

for [TX , RX] the log scale plot is shown in Figure 5.2 and their characteristic equation is

mentioned in Equation 5.2, for [1mLd, 5mLd] the log scale plot is shown in Figure 5.3 and

their characteristic equation is mentioned in Equation 5.3 and for [1mLd, 15mLd] the log

scale plot is shown in Figure 5.4 and their characteristic equation is mentioned in Equation

in 5.4.

f(x) = ln x−10.206 + 1.0284 ∗ x (5.1)

49

Figure 5.1. Variation of
DFree (logarithmic) w.r.t
DSize with their Character-
istic Equation

Figure 5.2. Variation of
RX (logarithmic) w.r.t TX

with their Characteristic
Equation of RX w.r.t TX

Figure 5.3. Variation of
5mLd (logarithmic) w.r.t
1mLd with their Charac-
teristic Equation of 5mLd
w.r.t 1mLd

Figure 5.4. Variation of
15mLd (logarithmic) w.r.t
1mLd with their Charac-
teristic Equation of 15mLd
w.r.t 1mLd

f(x) = ln x+ x+ 1 (5.2)

f(x) = ln x0.1455 + 0.726 ∗ x+ 0.169 (5.3)

50

f(x) = ln x0.18088 + 0.63456 ∗ x+ 0.2729 (5.4)

5.1. System Architecture

The nodes in SR and also in the MR, while coming up gets their SR id, and hence calcu-

late the range values for the attributes (in the overlapped architecture) it will be responsible

for on the basis of its SR id. The ranges are mentioned as [lq
MF

, uq

MF
] where MF is obtained

from Equation 5.5. The individual rings which are responsible for each different types of at-

tribute and are correlated to each other are placed overlapped with each other. For example,

since DSize and DFree are correlated, both these attributes are placed overlapped on top

of one another as shown in Figure 5.5

MF =
rn

2k − 1
, wherern = [un − ln] (5.5)

After getting the range of one attribute, which each of these nodes are responsible for,

it maps the values of corresponding range of other correlated attribute from the charac-

teristics equations mentioned in Equation 5.1-4. In other words, a mapping operation

is done to calculate the values of one attribute from the known values of the other at-

tribute. For example, a mapping function f , for the attributes [DSize,DFree] will look like

f : (DSize1, ..., DSizen)⇔ (DFree1, ..., DFreen). This mapping function is the characteris-

tic equation obtained from curve fitting, discussed before. For example the mapping function

for the pair [DSize,DFree] will be Equation 5.1. These mapping function causes the values

of DFree to be retrieved from DSize and vice-versa for the entire range. As a result the

SRs for each of these attributes which corresponds to the range values for these attributes

can be made to overlap on top of each other. Similarly for [TX , RX], [1mLd, 5mLd], and

51

Figure 5.5. Overlapped Ring formation for DSize and DFree

Table 5.1. Overlapped Ring Architecture Hash-Table formation for Resources

< key1, key2, ..., keyn > < val1, val2, ..., valn > < IPAddresses >
< k11, ..., k1n > < v11, ..., v1n > < ip11, ..., ip1n >

< ... > < ... > < ... >
< km1, ..., kmn > < vm1, ..., vmn > < ipm1, ..., ipmn]

[1mLd, 15mLd], the mapping function for each pair is represented by the characteristic equa-

tions mentioned in Equation 5.1-4. Since these equations map the entire range of values for

each attribute pair, the SRs responsible for the range value of each attribute are made to be

overlapped on each other. Based on the range of values of the mapping function the nodes

in the overlapped ring will retrieve the IP address of the resources which falls in that range

hence resolving the query. Here also the nodes maintain a Hash Table as mentioned in Table

5.1 (format key ↔< values, ipaddresses >), where the < key > represent each individual

value one attribute and < values > are the respective values of the other attribute with

ipaddress mentioning the IP address of the resource.

52

Figure 5.6. Overlapped Ring Architecture for Co-related attributes

5.2. Overlapped Architecture Formation

The initial part of the ring formations follows the same pattern as the caching architecture

formation (ref. Chapter 4). The nodes while coming up knows the set of correlated attributes

it will be responsible for and calculates the range on the basis of the characteristic equation.

At the end each of these overlapped rings are placed on the ROR P2P architecture to resolve

queries for multi-attributes as shown in Figure 5.6. The algorithm for selecting the IP address

in an overlapped ring is as described in Algorithm 9

5.3. Query Resolution

A query (Q) for multi-attributes looks like

Q ≡ (a1q = [l1q, u1q]; a2q = [l2q, u2q]; ...; arq = [lrq, urq])

where, (a1q, a2q, ..., arq) ǫA and [l1q, l2q, ..., lrq] are the lower limits and [u1q, u2q, ..., urq] are

the upper limits for each of the attributes. User generates query Q to the Qnode. This query

node can be selected in random from the list of nodes present in MR. The Qnode looks into

53

Algorithm 9 Selection of IP Addresses in Overlapped Ring

1: IP = [ip1, ip2, .., ipn] list of IP Addresses
2: Attrb = [attr1, attr2] list of correlated attributes
3: indattr2 = [] initialized a blank list
4: f ← Characteristic function for attr1
5: for Each vAttrb in attr1 do
6: Calculate vAttrb for attr2 using f
7: vAttrbattr2 ← from f
8: if vAttrbattr2 in range(lrq), urq) then
9: indattr2 .append(indice of vAttrbattr2)
10: end if
11: end for
12: resultantIP = [] initialized a blank list
13: for Each indice in indattr2 do
14: resultantIP .append(IP [indice])
15: end for

the first attribute in Q, and forwards it to the node responsible for it in MR. The node

which gets Q checks whether it has got query for the attribute it is responsible for, if it is so

it parses out Q, retrieves the upper limit and lower limit of the attribute and send out the

rest of the query to the node responsible for the next immediate attribute, which it comes

to know from the RT (formed using the usual procedure mentioned in Chapter 3). The next

node then parses out its own attribute with the upper limit and the lower limit and sends

out the remaining query. This process continues until the query reaches the last node with

its own attribute only and has nothing to forward.

The node after retrieving the IP address for the resources makes a normal Bloom-filter

(nBF). The parameters necessary for the creation of nBF are k representing number of

Hash-Functions (hf), N representing the number of resources (here count of IP addresses)

and m representing the size of nBF . The parameter k derived from m and N is as mentioned

in Equation 5.6

k =
m

N
∗ ln 2 (5.6)

54

The BF data structure doesn’t have any false-negative associated with it, but it has

certain amount of false-positive (fp) associated with it[14]. By convention and improved

results the value of fp should be as much minimum as possible. For minimum value of fp,

the false positive probability p per fraction of bit in 1, is as mentioned below in Equation 5.7

ln p = −
m

N
∗ (ln 2)2 (5.7)

Each of the IP address is hashed k number of times with the set of hash functions from

H() and the modulus is calculated w.r.t m. The modulus represents indices of Bloom-filter,

and are then used to populate the nBF by setting its respective indices to 1 if it is 0 initially,

or else it is left unchanged.

These nBF s are then sent to the Qnode with a check-sum, to prevent data loss. The

Qnode does a bit-wise AND operation with all the nBF s received and makes the resultant

Bloom-filter (rBF) and sends it back to the respective clients with a check-sum, as shown

in Figure 3.3. The algorithm for calculating the rBF is as described in Algorithm 10.

Algorithm 10 Calculate resultant Bloom-filter

1: for Each attribute in Qattr do
2: if nBF received for the first time then
3: rBF ← nBF
4: else
5: rBF ← bitwise-AND of (rBF, nBF)
6: end if
7: end for
8: Send rBF back to the nodes

Now, the clients after receiving the rBF checks for IP addresses which pass through the

rBF , using the same set of hash function from H(), it utilized to create the nBF . After

55

generating the final list of IP address these clients send it to the Qnode, as described in

Algorithm 11.

Algorithm 11 Extracting IP Address

1: IPfinal = [] initialized as a blank list
2: for Each ip list in IP do
3: hvals← k hash values for ip obtained from H()
4: for Each hash value (h) in hvals do
5: i← h mod m
6: if All i satisfies rBF then
7: Qip.append(the selected ip)
8: end if
9: end for
10: end for
11: Send Qip back to the Qnode

The Qnode creates a final list obtained through intersection of the list of IPs received

each individual client. In the process, the residue IP addresses are removed. This final list

of IP address is then sent to the user, refer Figure 3.3 with the amount of fp supposed to

be generated during the process. The algorithm for the final list of IP is as described in

Algorithm 12.

Algorithm 12 Generation of final list of IP Address

1: IPfinal = [] initialized as a blank list
2: for Each Qip obtained for each query in Qattr do
3: if Qip obtained for the first time then
4: IPfinal ← Qip

5: else
6: IPfinal ← IPfinal ∧Qip

7: end if
8: end for
9: Send IPfinal to the user

The source code for the implementation of Overlapped Ring architecture is presented in

Appendix-C.

56

CHAPTER 6

Simulation and Results

This chapter presents the simulation and results of all the architectures described till now

(Multi-Ring: Chapter 3, Caching: Chapter 4, Overlapped Ring: Chapter 5) is discussed. To

start with, a set (S) of resources having resource count (R) is considered, where RǫZ+ can

be represented as:

R ≡ (a1 = [l1, u1]; ...; an = [ln, un]; ip = [ip1, .., ipn])

Here [a1, a2, ..., an] ǫA where AǫZ+ represents the set of attributes, with lower limits

as [l1, l2, ..., ln] ǫZ+ upper limits as [u1, u2, ...un] ǫZ+ respectively and [ip1, ip2, .., ipn] ǫIP

where IP is a set of unique ip addresses for each specific resource.

The multi-attribute resources used for simulation are generated from the resource generation

simulation tool ResQue [7]. The attribute values are considered to be static, where the values

of the attributes remain constant over time. These static attributes are of PlanetLab Nodes

[23]. A typical S of resources of PlanetLab Nodes is as mentioned in Table 6.1 with min,

max, range and mean (µ), std devn (σ) for each resource.

The CDF plots for each different attribute is shown in the Figure 6.1-4. CDF plot for

MSize, MFree%, CSp, NCore, and CFree for each resource is shown in Figure 6.1. CDF plot

for DSize and DFree for each resource is shown in Figure 6.2.

CDF plot for TX , and RX for each resource is shown in Figure 6.3. CDF plot for 1mLd,

5mLd, and 15mLd for each resource is shown in Figure 6.4.

The probability distribution function (p.d.f) for each attribute is as shown below. The

p.d.f for CFree is as shown in Figure 6.5 and CSp is as shown Figure 6.6.

57

Table 6.1. PlanetLab Attribute Details

Attrb max min range µ σ
CSp 3.6 0.731 2.869 2.885 0.301
NCore 8.0 1.0 7.0 6.041 0.301
CFree 100.6 7.3 93.3 96.637 7.927
1mLd 100.6 7.3 93.3 5.342 6.50
5mLd 39.74 0.03 39.71 4.197 5.134
15mLd 37.43 0.0 37.43 3.85 4.71
MSize 31.36 0.21 31.156 2.945 2.221
MSizep 100.0 1.0 99.0 97.95 9.12
DSize 2742.78 47.55 2695.22 406.83 275.40
DFree 2640.43 0.00 2640.43 358.94 278.73
Tx 8465.0 0.0 8465 1062.11 1215.202
Rx 9078.0 0.0 9078.0 1031.029 1254.69

Figure 6.1. CDF plot
for MSize, MFree%, CSp,
NCore, and CFree for each
resource

Figure 6.2. CDF plot for
DSize and DFree for each
resource

The p.d.f for memory size (MSize) and memory free MFree, are shown in Figure 6.7 and

Figure 6.8.

The p.d.f for number of cores (NCore) is as shown in Figure 6.9 and the p.d.f for disk

size DSize, and disk free DFree is as shown in Figure 6.10. The p.d.f for DSize and DFree

as shows has a µ and σ for both the resources are correlated.

58

Figure 6.3. CDF plot for
TX , and RX for each re-
source

Figure 6.4. CDF plot for
1mLd, 5mLd, and 15mLd
for each resource

Figure 6.5. p.d.f for CFree Figure 6.6. p.d.f for CSp

Figure 6.7. p.d.f for MSize Figure 6.8. p.d.f for MFree

59

Figure 6.9. p.d.f for NCore
Figure 6.10. p.d.f for
DSize and DFree

Figure 6.11. p.d.f for
1mLd, 5mLd, and 15mLd

Figure 6.12. p.d.f for TX

and RX

The p.d.f for 1mLd, 5mLd and 15mLd is as shown in Figure 6.11 and the p.d.f for TX

and RX is as shown in Figure 6.12. The p.d.f for 1mLd, 5mLd and 15mLd and that of TX ,

RX also shows that they are correlated with µ and σ nearly close to each other.

6.1. Multi-Ring Architecture for Query resolution

In this section multi attribute query resolution with Multi-Ring architecture is discussed.

This section also presents the simulation results and analysis for the same. For comparison

60

Table 6.2. Multi-Attribute Queries for Testing ROR architecture

Q1 Q2

CSp [3.6 ∼ 0.93] [3.39 ∼ 1.26]
NCore [8 ∼ 1] [8 ∼ 1]
CFree [100.2 ∼ 23.6] [100.6 ∼ 7.8]
1mLd [18.56 ∼ 0.08] [24.85 ∼ 0.07]
5mLd [12.94 ∼ 0.08] [19.78 ∼ 0.03]
15mLd [11.82 ∼ 0.1] [18.05 ∼ 0]
MSizep [3.9 ∼ 0.73] [3.84 ∼ 0.92]
MFree [100 ∼ 82] [100 ∼ 88]
DSize [2742.78 ∼ 58.87] [909.01 ∼ 57.06]
DFree [2640.43 ∼ 0.30] [896.86 ∼ 0]
RX [8465 ∼ 0] [5400 ∼ 0]
TX [9078 ∼ 0] [5561 ∼ 0]

and indicating the novelty and efficiency of our methodology, a conventional ROR architec-

ture is used. This conventional ROR architecture doesn’t use Bloom-filter messages for its

query resolution.

6.1.1. Query Formation: Queries for our simulation are generated by considering set

of values for each attribute. The number of values to be considered in the set is decided

by the user. Then lower limit and upper limit values are calculated for each of these set of

values corresponding to each attribute. All these attributes along with their lower limit and

upper limit, combined together forms a query. Example queries (Q) Q1, Q2 with ranges are

as mentioned in the Table 6.2.

The source code for generating queries for ROR architecture is presented in Appendix-D.

The total number of queries generated to test ROR architecture is 100, and the total run

time is approximately 150 minutes.

6.1.2. Simulation Environment: The number of resources, number of nodes in the

test-bed, and the number of attributes for each resource for our simulation is as mentioned

61

Table 6.3. Test Environment Specifications for ROR architecture

Num. of Attributes 12
Num. of Resources 700
Num. of Nodes in test bed [24, 36, ..., 84]

Figure 6.13. Variation of
false positive for query Q1

in ROR architecture

Figure 6.14. Variation of
false positive for query Q2

in ROR architecture

in the Table 6.3. Each of the queries Q are generated at random, fed to the Qnode which

resolves it, and sends the reply back to the user.

The fp values are calculated for each of the queries for different values of k and m/n

ratio. The value of n is count of ip addresses (IPlist) for each attributes. The value of n

used, is calculated and obtained at each node receiving the query for each and every single

attribute. The value of m is kept constant (for performing bit-wise AND). It is noticed from

the analysis that the optimum value for k is 6 and m/n ratio is 10, for all the ranges of query

Q1 as shown in Figure 6.13 and that for query Q2 is shown in Figure 6.14

6.1.3. Results and Analysis: The number of nodes in the simulation are then in-

creased from 24 to 84 and average hop-counts, average delay in response, average size of

messages exchanged and average load per node are measured. Here hop-counts refer to the

62

total number of hops it took to resolve a multi-attribute query. This count is the cumulative

count starting from query reaching the Qnode, till the generation of final list of resources

corresponding to the query. Each query undergoes the following steps and the hops for each

step are noted and added up.

• Query traverse along MR starting from Qnode, where each MR node parses out

attributes they are responsible of along with range

• Each queried attribute along with their range traverses along SR, to create Bloom-

filter

• Each of the Bloom-filters from SRs are sent back to Qnode

• Qnode performs bitwise AND, and creates the resultant Bloom-filter

• Qnode sends the Bloom-filter back to the SR nodes

• SR nodes after getting the resultant Bloom-filter creates list of resources

• These list of resources are sent back to the Qnode, to perform the final intersection

• After the final intersection, the list of resources generated are sent to user, as a

response to the query

Since in our simulation the number of queries generated are 100 for each network configura-

tion (24, 36, 48, .., 84) the average number of hop-count taken to resolve a query with that

configuration is noted. The variation in average hop-count for each configuration is as shown

in Table 6.4. The variation of hop-count with number of nodes in the test-bed is as shown

in Figure 6.15. It is noted that with the increase in the number of nodes the hop-count

increases at a logarithmic rate. As shown in Figure 6.15, the rate of increase in hop-count

reduces after the number of nodes in the test-bed increases after 60.

The variation of hop-count follows a logarithmic trend as the network scales up. With

the increase in number of nodes in SR, the bitspace within that SR is shared by more number

63

Figure 6.15. Variation of avg. Hop-count with Num. of Nodes in ROR architecture

Table 6.4. Variation of avg. Hop-count for ROR architecture

Num. of Nodes Hop-counts in ROR using BF
24 74
36 98
48 117
60 130
72 133
84 136

of nodes, hence more number of ranges for that attribute. Now with the arrival of a query

within a SR, this query needs to traverse through more number of nodes to get the queried

range satisfied. This causes the hop-count to increase with the increase in the number of

nodes. The upper and lower bounds for the hops is as mentioned in Table 6.5

But since Chord protocol is followed both in MR as well as SR the overall complexity for

increase in hops is logarithmically bounded. For example, the query to traverse along the MR

it takes O(M logNMR), where M is the number of attributes, and NMR the number of nodes

64

Table 6.5. Ranges of avg. Hop-count for ROR architecture

Num. of Nodes Range of Hop-counts in ROR using BF
24 [78, 70]
36 [102, 94]
48 [120, 114]
60 [132, 128]
72 [134, 131]
84 [139, 133]

Table 6.6. Variation of avg. Delay (msec) in response for ROR architectures

Num. of Nodes Conv. Sytem (msec) Using BF (msec) Diff (%age)
24 738.015 675.119 8.5
36 854.25 790.056 7.5
48 989.18 918.298 7.15
60 1068.796 988.899 7.47
72 1203.431 1139.005 5.35
84 1269.066 1189.416 6.27

in MR. Each queried attribute then takes O(logNSR) hops within a SR to get it resolved.

So the overall complexity for any query to get resolved will take O(M ∗ logNMR ∗ logNSR)

which is O(M logN) where M and N are positive integers.

The average delay in response is as shown in Figure 6.16, is also found to increase with

the increase in number of nodes in the network, but as compared to the conventional ROR

system the delay is reduced. As mentioned in Table 6.6 the average percent reduction in

delay is nearly 7%.

The load per node for each query greatly reduces for each query, with the increase in

number of nodes present in the network, indicating the distributed feature of Chord provides

load balancing and robustness. Using Bloom-filters the load at each node gets reduced, as

compared to the conventional ROR architecture. The variation of average load with number

of nodes is as shown in Figure 6.17. The load reduction is nearly 10%, using Bloom-filters

as mentioned in Table 6.7.

65

Figure 6.16. Variation of avg. Delay in response with Num. of Nodes in
ROR architecture

Table 6.7. Variation of avg. Load per node for ROR architectures

Num. of Nodes Conv. Sytem Using BF Diff (%age)
24 1297.901 1192.065 8.15
36 896.980 801.494 10.64
48 652.574 601.208 7.87
60 522.474 476.329 8.83
72 435.395 391.108 10.17
84 373.195 323.806 13.23

The size of messages exchanged using Bloom-filter is get reduced by 30%, as compared

to the conventional ROR attribute resolution methodology. The variation of message sizes

exchanged with the variation in the number of nodes in the test bed is as shown in Figure

6.18. The difference in sizes exchanged is listed in Table 6.8. It is noted that the reduction

in message sizes exchanged averages out to nearly 30%, and this indicates that cost of

communication and the memory overhead gets reduced using Bloom-filters, than it would

66

Figure 6.17. Variation of avg. Load per Node with Num. of Nodes in ROR architecture

Table 6.8. Variation of avg. Msg Size exchanged (bytes) for ROR architectures

Num. of Nodes Conventional Sytem Using BF Diff (%age)
24 220544 143353 35
36 215398 142162 34
48 190955 130301 31.76
60 213476 143028 33
72 220598 156806 28.9
84 211466 151108 28.5

had been if the long list of IP addresses been exchanged between nodes, as in the conventional

system.

So it can be inferred that by using the ROR architecture with Bloom-filter messages

metrics like hop count, delay in response, load per node and communication cost are signif-

icantly reduced for query resolution. It provides great improvement than the conventional

ROR system for all the above metrics. Here in this simulation the optimal parameters are

67

Figure 6.18. Variation of avg. Msg Size exchanged with Num. of Nodes in
ROR architecture

k = 6, m/n = 10, and number of nodes for simulation as 60, i.e 5 nodes per attribute. The

variation in fp for the mentioned values of k and m/n ratio w.r.t resource count obtained

from simulation is as shown in Figure 6.19.

The difference in resource count obtained from simulation and that of actual count for ROR

architecture is as shown in Table 6.9. The difference is less when the number of resources

corresponding to a query is less. For example, when the resource count is in the range of

[0, 399], ∆N is 0, (refer Table 6.9) whereas when the resource count is in the range [600, 698],

∆N is 3. Here ∆N is the difference in resource count obtained from simulation to that of

the actual count. This difference increases with the increase in resource count corresponding

to each individual query. The reason being with more number of resources the Bloom-filter

gets more and more populated i.e more indices of Bloom-filter are set to 1 from 0. This

phenomenon gets reflected in the Resultant Bloom-filter as well. As a result more number

68

Table 6.9. Variation of difference in resource count with Num. of Resources
for ROR architectures

Range of Resource Count (N) ∆N
[0, 399] 0
[400, 499] 1
[500, 599] 2
[600, 698] 3

700 0

Figure 6.19. Variation of False Positive Probability (fp) with Resource Count

of resources are able to pass the resultant Bloom-filter hence causing the final set obtained

from simulation to grow.

If the Table 6.9, is looked closely it can be observed that ∆N remains constant for a

particular range of resource count, both for high value as well as low value within that

range. This causes the false positive probability (fp) to go down within a range, as shown

in Figure 6.19. Since ∆N remains constant, fp reduces within a particular range.

69

Table 6.10. Multi-Attribute Queries for Testing Caching and Overlapped
Ring architectures

Q1 Q2

1mLd [253.55 ∼ 0.25] [91.32 ∼ 0.09]
5mLd [226.18 ∼ 0.17] [78.09 ∼ 0.04]
15mLd [157.63 ∼ 0.2] [75.36 ∼ 0.07]
DSize [1825.89 ∼ 63.1188] [909.01 ∼ 65.4566]
DFree [1790.6 ∼ 10.9158] [906.543 ∼ 15.5237]
TX [4915.0 ∼ 0.0] [24369.0 ∼ 0.0]
RX [5671.0 ∼ 0.0] [16126.0 ∼ 0.0]

So, it can be inferred from Figure 6.19 that the fp decreases with the increase in resource

count with a range.

6.2. Caching and Overlapped Architecture Simulation

This section presents the results and simulation of Caching Methodology and Overlapped

Ring architectures.

6.2.1. Query Formation: Example Queries (Q), Q1, Q2 are generated with ranges as

mentioned in the Table 6.10 using the same methodology as in Multi-Ring Architecture.

These queries Q are generated at random, fed to the Qnode which propagates it to the test

bed resolves the query along with the Qnode and send the reply back to the user. The fp

values are calculated for each of the queries for different values of k and m/n ratio. The

value of n is the count of IP addresses for each and every attribute. The value of m is kept

constant (for performing bit-wise AND).

6.2.2. Simulation Environment: The number of resources, node count in the net-

work, and the number of correlated attributes are as mentioned in the Table 6.11

The variation of fp for different values of m, for query Q1 is as shown in Figure 6.20 and

for Q2 is as shown in Figure 6.21. From each of the fp values, with respective values of k

and m/n, the optimum value chosen for k is 4 and the m/n ratio is chosen to be 10. Each

70

Table 6.11. Test Environment Specifications for Caching and Overlapped
Ring architecture

Num. of correlated attributes 7
Num. of Resources 700
Num. of Machines in test bed [6, 9, 12, 15, 18, 21]

Figure 6.20. Variation of
false positive for query
Q1 for Caching and Over-
lapped Architectures

Figure 6.21. Variation of
false positive for query
Q2 for Caching and Over-
lapped Architectures

of the queries are then tested varying scales of network and the performance is evaluated for

this particular value of k and m/n.

The source code for generating queries for Caching and Overlapped Ring architecture is

presented in Appendix-D. The total number of queries generated to test the architecture is

100, and the total run time is approximately 125 minutes each.

6.2.3. Results and Analysis: The number of nodes in the test-bed are then increased

from 6 to 21. For each configuration, average hop count and delay are measured. The average

hop count for each configuration is mentioned in Table 6.12. Here also the hop-count refers

to the cumulative number of hops it took to get a query resolved, similar to what is described

for the ROR architecture. The plot for variation in hop count is as shown in Figure 6.22.

71

Table 6.12. Variation of avg. Hop Count for Caching and Overlapped Ring Architectures

Num. of Nodes Hop− CountCaching Hop− CountOverlappedRing

6 30 31
9 31 34
12 35 36
15 40 39
18 41 42
21 42 43

Figure 6.22. Variation of avg. Hop Count with Num. of Nodes for Caching
and Overlapped Architecture

The hop-count increases with the increase in the number of nodes present in the net-

work, but due to the use of Chord protocol in MR and SR the hop-counts are logarithmically

bounded. The range of hop-counts for Caching and Overlapped ring architecture for each

configuration is as mentioned in Table 6.13.

The variation of average delay (in msec) is as mentioned in Table 6.14. The plot for

average delay for both the architectures is as shown in Figure 6.23.

72

Table 6.13. Variation of range in avg. Hop Count for Caching and Over-
lapped Ring Architectures

Num. of Nodes Hop− CountCaching Hop− CountOverlappedRing

6 [32, 28] [32, 30]
9 [33, 31] [36, 32]
12 [34, 36] [37, 35]
15 [42, 38] [40, 38]
18 [42, 40] [43, 41]
21 [44, 40] [44, 42]

Table 6.14. Variation of avg. Delay (msec) for Caching and Overlapped
Ring Architectures

Num. of Nodes DelayCaching(msec) DelayOverlappedRing(msec)
6 197.223 218.512
9 217.336 233.125
12 221.005 240.0
15 240.128 255.36
18 258.748 263.158
21 278.158 280.956

Figure 6.23. Variation of avg. Delay in response with Num. of Nodes for
Caching and Overlapped Ring Architectures

73

Table 6.15. Variation of avg. Message Size (bytes) for Caching and Over-
lapped Ring Architectures

Num. of Nodes Msg.SizeCaching(bytes) Msg.SizeOverlappedRing(bytes)
6 100675 100680
9 98786 98868
12 100983 100965
15 101348 101485
18 100786 101158
21 103345 103348

It can be noticed that there is a linear increase in the average hop count and an exponen-

tial increase in the average delay of response for each of the architectures with increase in the

number of nodes in the test bed. Since the bitspace in each SR is divided proportionately

for the entire range of each individual attribute so the hop count increases linearly. Also

the hop count for the overlapped ring is slightly more, than that of the caching technique,

because the logarithmic mapping from one attribute to the others do not satisfy the entire

range exactly in one hop, so it became necessary to have one more hop. It is noted that

the delay in response for overlapped is less than that of caching, since the query for each

individual value of the attributes are resolved at the same time.

The average message sizes (in bytes) exchanged to and fro from nodes within the network

are as mentioned in Table 6.15. The variation is as shown in Figure 6.24.

The average load per node (lpn) for both architectures are as mentioned in Table 6.16

and Figure 6.25 shows the load distribution for both architectures. It can be noted that

with the addition of every single node in both architectures, the load per node reduces.

This indicates the distributed feature of the architectures, the load for query resolution gets

distributed more when the number of nodes increases.

As the network scales up the loading per node decreases, with loading much less in caching

architecture as compared to overlapped rings architecture. This is because in the overlapped

74

Figure 6.24. Variation of avg. Message Size exchanged (bytes) with Num.
of Nodes for Caching and Overlapped Ring Architectures

Table 6.16. Variation of avg. Load per Node with Num. of Nodes for
Caching and Overlapped Ring Architectures

Num. of Nodes lpnCaching lpnOverlappedRing

6 23.56 26.85
9 18.92 22.69
12 15.98 17.01
15 13.25 14.83
18 11.93 13.01
21 9.83 10.00

rings architecture, the values for each attribute are mapped from values of another attribute,

which takes comparably more computational time in processing the query.

The difference in resource count obtained from simulation and that of actual count for

Caching architecture is as shown in Table 6.17. The difference is less when the number of

resources corresponding to a query is less. For example, when the resource count is in the

range of [0, 299], ∆NCaching is 0, (refer Table 6.17) whereas when the resource count is in

75

Figure 6.25. Variation of avg. Load per Node with Num. of Nodes for
Caching and Overlapped Ring Architectures

Table 6.17. Variation of difference in resource count with Num. of Resources
for Caching Architectures

Range of Resource Count (N) ∆NCaching

[0, 299] 0
[300, 399] 1
[400, 499] 2
[500, 599] 3
[600, 678] 3

700 0

the range [600, 698], ∆NCaching is 3. Here ∆N is the difference in resource count obtained

from simulation to that of the actual count. This difference increases with the increase in

resource count corresponding to each individual query. The reason being with more number

of resources the Bloom-filter gets more and more populated i.e more indices of Bloom-filter

are set to 1 from 0. This phenomenon gets reflected in the Resultant Bloom-filter as well. As

a result more number of resources are able to pass the resultant Bloom-filter hence causing

the final set obtained from simulation to grow.

76

Figure 6.26. Variation of False Positive Probability (fp) with Resource
Count (Caching Architecture)

If the Table 6.17, is looked closely it can be observed that ∆NCaching remains constant

for a particular range of resource count, both for high value as well as low value within that

range. This causes the false positive probability (fp) to go down within a range, as shown

in Figure 6.26 for the Caching Architecture. Since ∆N remains constant, fp reduces within

a particular range.

So, it can be inferred from Figure 6.26 that the fp decreases with the increase in resource

count with a range. Similarly the ∆NOverlappedRing values for Overlapped Ring architecture

is as described in Table 6.18. Here also the difference increases with the increase in number

of resources.

77

Table 6.18. Variation of difference in resource count with Num. of Resources
for Overlapped Ring Architectures

Range of Resource Count (N) ∆NOverlappedRing

[0, 349] 0
[350, 449] 1
[450, 549] 2
[550, 649] 3
[650, 679] 4

700 0

Figure 6.27. Variation of False Positive Probability (fp) with Resource
Count (Overlapped Ring Architecture)

The phenomenon of having the difference constant within a range of resource count is

also reflected here, as shown in Figure 6.27. It causes the false positive probability fp to

decrease within a range as well.

78

Table 6.19. Variation of avg. Hop Count for all architectures for correlated attributes

Nodes per SR HopsCaching HopsOverlappedRing HopsBF HopsConventional

2 30 31 73 74
3 32 34 98 98
4 35 36 119 119
5 40 41 129 128
6 41 42 131 130
7 42 43 135 135

6.3. Comparison of Caching and Overlapped Architectures with Multi-Ring

Architecture

This subsection presents a comparative analysis of avg. hop-count, avg. delay, and avg.

load per node for query resolution of correlated attributes with all the architectures discussed

namely, conventional ROR, RORs using bloom filters, Caching Methodology and Overlapped

Ring architecture. The variation of these results for each individual architecture are obtained

by keeping the number of nodes same in each of the sub-rings for the architectures and then

varying the number of nodes per rings for each respectively.

The variation in hop count is as mentioned in Table 6.19. It is noted that the hop count

reduces considerably for each configuration. The average reduction in hop count is 58.5%

for the Caching architecture and 57.3% for the Overlapped Ring architecture as compared

to the ROR architecture using Bloom-filter messages. The reduction takes places since the

queries for each individual attribute are solved on the basis of correlation. The queries don’t

have to travel a separate SR for its resolution. The plot for variation in average hop count

is as shown in Figure 6.28

The delay in response for query resolution also get reduced. The variation in delay (in

msec) is as mentioned in Table 6.20. The average reduction in delay is 56.63% for Caching

Architecture and 52.06% for the Overlapped Ring architecture. The reason behind it remains

the same since, the query doesn’t travel the other SRs for its resolution.

79

Figure 6.28. Variation in avg. Hop Count with Num. of Nodes for all
architectures for correlated attributes

Table 6.20. Variation of avg. Delay (msec) for all architectures for correlated attributes

Nodes per SR DelayCaching DelayOverlappedRing DelayBF DelayConventional

2 198.225 219.124 457.118 458.015
3 217.232 233.128 590.225 536.158
4 222.156 240.02 753.080 729.1
5 240.158 255.39 779.936 780.796
6 278.259 273.185 898.936 886.431
7 318.741 302.985 927.363 930.066

The plot for variation in avg. Delay (in msec) is as shown in Figure 6.29

The variation in average message sizes exchanged (in bytes) is as mentioned in Table

6.21. The average message sizes exchanged gets reduced by 10.4% for both Caching archi-

tecture and Overlapped Ring architectures as compared to the multi-ring architecture using

Bloom-filter. The reduction is caused since the messages from extra SRs are not taken into

consideration.

80

Figure 6.29. Variation in avg. Delay with Num. of Nodes for all architec-
tures for correlated attributes

Table 6.21. Variation of avg. Message size (bytes) for all architectures for
correlated attributes

Nodes per SR MsgCaching MsgOverlappedRing MsgBF MsgConventional

2 100675 100681 112356 146063
3 98786 98856 121162 158723
4 100984 100958 123222 163886
5 101346 101483 121112 157446
6 100780 101156 123859 161017
7 103344 103347 123085 161242

The plot for variation in average message size (bytes) exchanged is as shown in Figure

6.30

The variation in load per node (lpn) is as mentioned in Table 6.22. The lpn for the

Caching and Overlapped Ring Architectures are higher than both the ROR architectures,

with and without Bloom-filters. The reason being, the nodes for resolution of queries in the

overlapped and caching architectures have to resolve multiple attributes at the same time.

Also with same number of nodes in the SRs, the number responsible for the resolution of

81

Figure 6.30. Variation in avg. Msg. Size exchanged with Num. of Nodes
for all architectures for correlated attributes

Table 6.22. Variation of avg. Load per node for all architectures for corre-
lated attributes

Nodes per SR lpnCaching lpnOverlappedRing lpnBF lpnConventional

2 124.73 135.451 88.451 88.98
3 119.79 125.314 85.314 86.14
4 114.98 116.746 81.746 82.20
5 103.59 105.605 78.605 79.09
6 101.68 103.046 73.046 74.108
7 98.99 99.896 72.896 73.806

queries for each attribute is high in multi-ring architectures than the overlapped and caching

architectures. Having more number of nodes greatly distributes the load amongst themselves

while query resolution than resolving the same query with less number of nodes.

The average lpn for Caching architecture is 29% higher than the multi-ring architecture

(using Bloom-filter), and that of Overlapped Ring is 34% higher than the multi-ring archi-

tecture for the same configuration. The plot for variation in load per node is as shown in

Figure 6.31.

82

Figure 6.31. Variation in avg. Load per node with Num. of Nodes for all
architectures for correlated attributes

Table 6.23. Variation of difference in resource count with Num. of Resources
for ROR Architecture (Correlated Attributes)

Range of Resource Count (N) ∆NROR

[0, 399] 0
[400, 499] 1
[500, 599] 2
[600, 698] 3

700 0

The difference in resource count for ROR architecture (the one obtained from simulation

and the actual count) for correlated attributes is mentioned in Table 6.23. The difference

(∆NROR), increases with the increase in number of resources.

The false positive probability (fp), increases with the increase in count of resources,

but within a range fp decreases, since the number resources corresponding to that query

83

Figure 6.32. Variation of False Positive Probability (fp) with Resource
Count (ROR Architecture for Correlated attributes)

increases as shown in Figure 6.32. So, with the increase in resources, fp value increases but

stays within a limit for a specific range.

So, Caching and Overlapped ring architectures provides better optimized solution for

multi-attribute query resolution, in terms latency of response, and communication cost. Only

drawback being the lpn to be high for these architectures. It is therefore recommended to use

high performance and high configuration machines when using these kind of architectures

for the resolution of same set of queries.

84

CHAPTER 7

Conclusion and Future Work

This chapter deals with the summary and conclusion of the work that has been done

related to Multi-Attribute Query resolution using Structured Peer-to-Peer Networks, using

Bloom-filter messages and having ROR architecture. The attributes chosen here are those

of PlanetLab Nodes. The resources are generated using a simulation tool “ResQue”. Each

of the architectures namely ROR, Caching and Overlapped Rings are discussed in detail.

The query generated for each of the architectures are also discussed, and how they are

resolved. The results and their analysis follows next related to resolution of multi-attributes

as well as correlated attributes for each architecture. The later part of the chapter deals

with the future work which can be built on top of this methodology so as to achieve more

deterministic set of approaches for resolving multi-attribute queries. The trade-offs related

to the use of the Bloom-filter can also be minimized by having more accurate values of the

size of Bloom-filters and the number of hash function for a countable set of elements.

7.1. Summary and Conclusion

A multi-attribute query resolution methodology is proposed, discussed and analyzed here

using ROR structured P2P architecture and using Bloom-filter messages. The approach

targets in reducing message overhead, communication cost, and latency in response. The

selection of resources for each attribute falling in a query range has a worst case algorithmic

time complexity of O(n) and its lookup takes O(N logN) for each individual attribute (N

representing number of nodes). The resources represented using Bloom-filters takes O(n).

The Bloom-filter operation has a worst case time complexity O(m ∗ n), where n is the num-

ber of attributes and m is the size of Bloom-filter. The significant improvement is obtained

85

because the size of Bloom-filter remains constant. Since these Bloom-filters are carried

around at the time of query resolution, the long list of resources gets represented within a

small data structure thereby reducing communication cost. It is found that this method-

ology causes significant reduction in message overhead, communication cost and latency in

response. The space complexity using this methodology is O(m ∗ n), where m is constant

and is significantly small as compared to query resolution methodology using conventional

ROR architecture (not using Bloom-filter messages) for large scale systems. For resolving

the multi-attribute query as a whole considering each individual attribute along-with their

range, a resultant Bloom-filter needs to be generated using bitwise-AND operation. The

time-complexity for bitwise-AND is O(m), which is constant for a chosen Bloom-filter size

for query resolution. The ideal choice for the number of hash functions and size of Bloom-

filter has a trade-off with its parameters namely size, number of hash functions and number

of resources represented by the Bloom-filter to attain minimum false positive probability.

Using this methodology, the delay in response for query resolution, average load per node,

communication cost and message sizes exchanged, to resolve a particular query has been

significantly reduced than the conventional ROR architecture, without using Bloom-filter

messages. The results obtained for a simulation environment consisting of 700 resources,

each with 12 different types of attributes, and the number of nodes varying from 24 to 84

indicates a 30% reduction in communication overhead, 7% reduction in delay in response,

and 10% reduction in average load per node. The optimum number of hash functions for

the Bloom-filter is 6, and the m/n ratio is kept 10 where m is the size of Bloom-filter and

n is the number of resource count. The optimum number of nodes responsible for each at-

tribute is found to be 5. This research shows that a structured ROR P2P architecture with

Bloom-filter messages as a novel feature is useful to resolve multi-attribute queries.

86

For attributes which are correlated, two different architectures for query resolution of cor-

related multi-attribute are also discussed here, namely Caching and OverlappedRing ar-

chitecture. For selecting resources falling in query range Caching architecture has presents

algorithmic time complexity of O(m ∗ n2) for three correlated attributes and O(m ∗ n) for

two correlated attributes. Overall the worst-case time complexity is O(m∗n2). For resource

selection in OverlappedRing architecture, the algorithmic time complexity is O(n) irrespec-

tive of the number of correlated attributes queried for to get resolved. In terms of space

complexity for each methodology, both caching and overlapped ring has space complexity

of O(m ∗ n). The ideal choice for the number of hash functions and size of Bloom-filter has

a trade-off if it needs to be generalized for any type of query resolution to attain minimum

value of false positive probability. Using these methodologies the hop count, delay in re-

sponse for query resolution, communication cost and message message overhead has been

significantly reduced than the conventional ROR architecture. However, the load per node

for each of these kind of architecture being high, the nodes participating in these architec-

tures need machines with high resources values, to resolve queries. The nodes participating

in ROR architecture for resolving same set of queries does not require machines with that

much high resource values, as compared to former. Significant research efforts are still needed

to reduce the time complexity to gain deterministic performance and to enhance key phases

of resource aggregation. In case of correlated attributes, for the same set of resource count

and number of nodes (as in ROR architecture) the caching and overlapped ring architec-

ture (using Bloom-filters), provides 58.5% and 57.3% reductions in hop-count, 56.63% and

52.06% reductions in delay in response, message sizes gets reduced by 10% and the average

load per node gets reduced by 29% and 34% respectively. The comparison is done over

the ROR architecture using Bloom-filters. The number of hash functions for Bloom-filters

87

is considered 4, m/n ratio to be 10 and with 4 nodes per attribute in case of co-related

attribute resolution. This research shows that Overlapped Rings and Caching techniques

along with Bloom-filter messages in a peer to peer system are useful to resolve correlated

multi-attribute queries.

7.2. Future Work

Significant research efforts are still needed to reduce the time complexity, hop count and

delay to gain deterministic performance and to enhance key phases of resource aggregation.

Also the metrics for Bloom-filter needs to be generalized for any type of query resolution, by

looking into the parameters for resources. To get query resolved it is necessary to execute

the simulation several times by iterating for multiple values of m and k for various values

of n to have the fp considerably less. This procedure for selection of metrics for Bloom-

filter before starting query resolution needs to be implemented with minimum time span.

This research shows that a structured ROR P2P architecture with Bloom-filters is useful to

resolve multi-attribute queries.

88

Bibliography

[1] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, Kc claffy Transport Layer Iden-

tification of P2P Traffic Oct’ 2004, IMC04, Taormina, Sicily, Italy.

[2] Vivek Vishnumurthy, Paul Francis A Comparison of Structured and Unstructured P2P

Approaches to Heterogeneous Random Peer Selection 2007 USENIX Annual Technical

Conference.

[3] H. M. N. Dilum Bandara, Anura P. Jayasumana, Michael Zink Radar Networking in

Collaborative Adaptive Sensing of Atmosphere: State of the Art and Research Challenges

Dec. 2012 Proc. IEEE Globecom Workshop on Radar and Sonar Networks.

[4] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan Chord:

A Scalable Peer-to-peer Lookup Service for Internet Applications August 27-31, 2001

SIGCOMM01.

[5] Min Cai, Martin Frank, Jinbo Chen, Pedro SzekelyMAAN: A Multi-Attribute Addressable

Network for Grid Information Services 2003 Proceedings of the Fourth International

Workshop on Grid Computing.

[6] Tao He, Jun Ni, Alberto M Segre1, Shaowen Wang, Boyd M Knosp SkipMard: A Multi-

attribute Peer-to-Peer Resource Discovery Approach 2007 Second International Multi-

symposium on Computer and Computational Sciences.

[7] H. M. N. Dilum Bandara, Anura P. Jayasumana On Characteristics and Modeling of

P2P Resources with Correlated Static and Dynamic Attributes Dec. 2011, In Proc. IEEE

GLOBECOM ’11.

[8] https://docs.mongodb.com/manual/introduction/

[9] http://cassandra.apache.org/

[10] https://hbase.apache.org/

89

[11] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber Bigtable: A Dis-

tributed Storage System for Structured Data OSDI’06: Seventh Symposium on Operating

System Design and Implementation, Seattle, WA, November, 2006.

[12] Ilya Mironov Hash functions: Theory, attacks, and applications Nov. 2005, Microsoft

Research, Silicon Valley Campus.

[13] B. H. Bloom Space/time trade-offs in hash coding with allowable errors Commun. ACM,

13(7):422426, 1970.

[14] A. Z. Broder, M. Mitzenmacher Network applications of bloom filters: A survey. Internet

Mathematics, 1:485509, January 2004.

[15] Mark C. Jeffrey, J. Gregory Steffan Understanding Bloom Filter Intersection for Lazy

Address-Set Disambiguation SPAA11, June 46, 2011, San Jose, California, USA.

[16] Haiying Shen, Amy Apon, Cheng-Zhong Xu LORM: Supporting Low-Overhead P2P-

based Range-Query and Multi-Attribute Resource Management in Grids 2007 IEEE.

[17] Prasanna Ganesan, Beverly Yang, Hector Garcia-Molina One Torus to Rule them All:

Multi-dimensional Queries in P2P Systems June 17-18, 2004 Seventh International Work-

shop on the Web and Databases (WebDB 2004).

[18] Paolo Costa, Jeff Napper, Guillaume Pierre, Maarten van Steen Autonomous Resource

Selection for Decentralized Utility Computing.

[19] H. Marais and K. Bharat. Supporting Cooperative and Personal Surfing with a Desktop

Assistant In Proceedings of the 10th Annual ACM Symposium on User Interface Software

and Technology, pp. 129138. New York:ACM Press, 1997.

90

[20] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost. Informed Content Delivery over

Adaptive Overlay Networks ACM SIGCOMM Computer Communication Review (Pro-

ceedings of the 2002 SIGCOMM Conference) 32:4 (2002), 4760.

[21] J. Byers, J. Considine, and M. Mitzenmacher. Fast Approximate Reconciliation of Set

Differences Boston University Technical Report 2002-019, July 2002.

[22] P. Reynolds and A. Vahdat. Efficient Peer-to-Peer Keyword Searching In Middleware

2003: ACM/IFIP/USENIX International Middleware Conference, Rio de Janeiro, Brazil,

June 1620, 2003, Proceedings, Lecture Notes in Computer Science 2672, pp. 2140. New

York: Springer, 2003.

[23] https://www.planet-lab.org/

[24] E. Heien, D. Kondo, and D. P. Anderson Correlated resource models of Internet end

hosts In Proc. 31st Int. Conf. on Distributed Computing Systems (ICDCS 11), June

2011.

[25] CMPRG Correlated Multi-attribute P2P Resource Generator, available: http://

www.cnrl.colostate.edu/Projects/CP2P/.

[26] J. C. Strelen Tools for dependent simulation input with copulas In Proc. 2nd Int. Conf.

on Simulation Tools and Techniques, Mar. 2009.

91

APPENDIX A

Multi-Attribute Formation Source Code

This chapter deals presents the source code for the simulations of the Multi-Ring Ar-

chitecture for Multi-Attribute Query Resolution. The source code presented is written in

Python 2.7. Package used are numpy, pandas.

User Instructions:

Copy the src code in a file named “controller.py”, the parts mentioned later respectively

as “work.py”, “workMR.py”, “workSR.py”, “bloomfilter.py”, and “bitwiseand.py”. The

“parameterCal.py”, “locationAssgn.py” is mentioned in Appendix-E. The contents of each

of the files mentioned above are presented in each respective sections. All the src code

files are to be put in the same working directory along with a resource list generated from

“ResQue”. The methodology of generating resource list is mentioned in [25].

Executions:

To execute the src code, only the controller src code needs to be executed, every thing else

comes to play on its own, it’s been automated. To execute:

sudo chmod +x controller.py

sudo ./controller.py -f <Multiattribute - filename> -n <num of Nodes in network>

-m <Num of bits Mainring> -s <Num of bits Sub ring> -o <hostname>

Before the start of simulation, the Bootstrap server should be running, see the instructions

for running Bootstrap server in Appendix - E. The number of nodes in the network should be

greater than or equal to the number of attributes mentioned of the resources. “Multiattribute

- filename” is the file containing list of resources generated from ResQue. “hostname” refers

92

to the host name of the machine where the simulation is executed. Number of bits for the

main ring and number of bits for the sub ring depends upon the user. The simulation makes

IPC calls using TCP connections (TCP sockets). There will be log files created for each

individual node present in the node, corresponding to each of its PID. These log files are

useful for error checking and result analysis. At the end of successful execution the ROR

architecture will be formed ready to accept test cases from the user as mentioned in the next

appendices.

• Multi-Attribute Architecture Formation, contents for “controller.py”

import files

import numpy as np

import pandas as pd

import random

import math

import os

import time

import getopt

import sys

import socket

from parameterCal import calParam

from locationAssgn import locAssgn, workAssgnMainID, workAssgnSubID

from multiprocessing import Pool, Process, Manager, Lock

from work import workAssgn

from workMR import workAssgnMR

from workSR import workAssgnSR

from bloomfilter import query_resolution

93

from bitwiseand import bitand

buff = 51200 # Recv. Buffer size

processCount = 0

userPort = 10500

os.system("clear")

f = open(’controller.log’, ’w’) # Controller log file

f.close()

f = open(’controller.log’, ’a’)

nAttrb = 0

Data Structures

IPAddress = []

Attrb = {}

idMainRing = []

idSubRing = []

idMainSubRing = []

numNodes = 0

normalBF = []

countingBF = []

processes = []

ports = []

dataBase = []

94

reply_ports = []

bloomFilters = {}

Client module with send only

def client_without_recv(Msg, port, hostname, f):

port = int(port)

ip = str(socket.gethostbyname(hostname))

time.sleep(5)

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((ip, port))

sock.send(Msg)

sock.close()

return

Client with both send & recv

def client(msg, port, hostname):

port = int(port)

ip = str(socket.gethostbyname(hostname))

time.sleep(5)

global buff

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((ip, port))

sock.send(msg)

data = sock.recv(buff)

sock.close()

95

return data

Spawing of processes for Main Ring and Sub Ring Nodes

def startProcess(bitsMR, bitsSR, bitSpaceMR, bitSpaceSR, l, Attrb, n,

workAssgnMainID, workAssgnSubID, hostname):

var = "Process-"+str(n+1)

print "Starting: " + var

print "Main PID: " + str(os.getppid())

print "PID: " + str(os.getpid())

PID = os.getpid()

MPID = os.getppid()

print "--"

var1 = "Process-"+str(n+1)+".log"

f1 = open(var1, ’w’)

f1.close()

f1 = open(var1, ’a’)

f1.write("----- Starting Process-"+str(n+1)+" "+

time.strftime("%c")+’-----\n’)

f1.write(’ Parent ID: ’+str(MPID)+ ’\n’)

f1.write(’ PID: ’+str(PID)+’ \n’)

port = 10000

f1.write("----- Message Propagation -----\n")

line = "REG"+" "+str(var)+" "+str(PID)

length = len(line)

96

msg = "00"+str(length)+" "+line

f1.write("----- "+str(var)+" --> "+" Controller ----- \n")

f1.write("Message: " +str(msg) +" \n")

reply = client(msg, port, hostname)

f1.write("----- Controller --> "+str(var)+" ----- \n")

f1.write("Message: " +str(reply) +" \n")

print "----- Controller --> "+str(var)+" -----"

print reply

words = reply.split(" ")

word = words[1]

if (word == "REGOK"):

w = str(words[2])

if (w == "MR"):

attrName = words[5]

portNum = words[6]

mainRingID = words[7]

subRingID = words[8]

print "I am "+str(var)+" responsible for "+str(attrName)+"

listening at "+str(portNum)+" MR-ID: "+str(mainRingID)+"

SR-ID: "+str(subRingID)

f1.write("-- Work Allocation -- \n")

f1.write("Process Name: "+str(var)+" Ring Type: "+str(w)+" \n")

f1.write("Attribute: "+str(attrName)+" \n")

97

f1.write("Port Num: "+str(portNum)+" \n")

f1.write("Main Ring ID: "+str(mainRingID)+" \n")

f1.write("Sub Ring ID: "+str(subRingID)+" \n")

wMR = workAssgnMR()

bsReply = wMR.contactBS(hostname, w, portNum, attrName,

mainRingID, subRingID, f1, var)

time.sleep(2)

wMR.analyzeData(hostname, bsReply, portNum, f1, attrName,

mainRingID, subRingID, bitSpaceMR, bitsMR, bitSpaceSR,

bitsSR, Attrb)

if (w == "SR"):

attrName = words[5]

portNum = words[6]

subRingID = words[7]

print "I am "+str(var)+" responsible for "+str(attrName)+"

listening at "+str(portNum)+" SR-ID: "+str(subRingID)

f1.write("-- Work Allocation -- \n")

f1.write("Process Name: "+str(var)+" Ring Type: "+str(w)+" \n")

f1.write("Attribute: "+str(attrName)+" \n")

f1.write("Port Num: "+str(portNum)+" \n")

f1.write("Sub Ring ID: "+str(subRingID)+" \n")

wSR = workAssgnSR()

bsReply = wSR.contactBS(hostname, w, portNum, attrName,

subRingID, f1, var)

98

time.sleep(2)

wSR.analyzeData(bsReply, hostname, f1)

time.sleep(10)

wSR.contact_MR_host(subRingID, portNum, hostname, attrName,

bitSpaceSR, bitsSR, f1)

wSR.contact_SR_host(hostname, subRingID, portNum, attrName,

bitSpaceSR, bitsSR, Attrb, f1)

else:

print "Unknown Reply from Controller..!!"

f1.write("Unknown Reply from Controller..!!" +" \n")

return

def update_message(data):

words = data.split(" ")

num_of_words = len(words)

hop_count = int(words[3])

hop_count = hop_count + 1

words[3] = str(hop_count)

k = num_of_words

line = " "

while (k > 0):

if int(k) != num_of_words:

if str(words[k-1]) != " ":

line = words[k - 1]+" "+line

99

k -= 1

mod_data = line

mod_data = mod_data.strip()

return mod_data

Main method for the start of simulation

def main(argv):

num_of_bloomfilters = 0

num_of_bloomfilters_recv = 0

iplist_count = 0

f.write(’--- Shibayan: Thesis Multi-Attribute Query Resolution ---\n’)

f.write(’--- Controller Log --- ’+time.strftime("%c")+’ ---\n’)

filename = ’’

try:

opts, args = getopt.getopt(argv,"hf:n:m:s:o:",["ifile=",

"nodes=","bitsMain=","bitsSubring=","hostname="])

except getopt.GetoptError:

print ’python controller.py -f <Multiattribute - filename> -n

<num of nodes in network>

-m <Num of bits Mainring> -s <Num of bits Sub ring> -o

<hostname>’

sys.exit(2)

for opt, arg in opts:

100

if opt == ’-h’:

print ’python controller.py -f <Multiattribute - filename> -n

<num of nodes in network>

-m <Num of bits Mainring> -s <Num of bits Sub ring> -o

<hostname>’

sys.exit()

elif opt in ("-f", "--ifile"):

filename = arg

elif opt in ("-n", "--nodes"):

nodes = arg

elif opt in ("-m", "--bitsMain"):

bM = arg

elif opt in ("-s", "--bitsSubring"):

bS = arg

elif opt in ("-o", "--hostname"):

hostname = arg

numNodes = int(nodes)

bitsMain = int(bM)

bitsSubring = int(bS)

print "------- Attributes --------"

print "File name: ", filename

print "Main Ring Size: ", (2**(bitsMain))

print "Sub Ring Size: ", (2**(bitsSubring))

101

print "Number of Nodes: ", numNodes

print "---------------------------"

f.write(’-------- Attributes ---------\n’)

f.write(’Reading from file: ’+str(filename)+’\n’)

f.write(’Main Ring Capacity: ’+str(2**(bitsMain))+’\n’)

f.write(’Sub Ring Capacity: ’+str(2**(bitsSubring))+’\n’)

f.write(’Num of machines in n/w: ’+str(numNodes)+’\n’)

f.write(’-----------------------------\n’)

rf = calParam()

nAttrb, ipCount, line_params,_ = rf.readFile(filename, numNodes,

(2**bitsMain), Attrb, f)

f.write("params: "+str(line_params)+" \n")

if nAttrb == -1:

exit(0)

bitspaceMain = 2**(bitsMain)

bitspaceSubRing = 2**(bitsSubring)

loc = locAssgn()

idMainRing, idMainSubRing, idSubRing =

loc.bitspaceAlloc(bitspaceMain, bitspaceSubRing, numNodes, nAttrb,

f)

102

workAssgnMainID, workAssgnSubID = loc.workAllocation(idMainRing,

idMainSubRing, idSubRing, Attrb, f)

loc.generateIP(ipCount, IPAddress, f)

loc.finalDataset(Attrb, IPAddress, f)

ports = random.sample(range(13000, 30000), numNodes) # Random

port selection for each individual node

mrPorts = []

k = 0

for k in range(nAttrb):

mrPorts.append(ports[k])

print "Main PID: " + str(os.getpid())

f.write(’\n-------- Spawing Multiple Processes ----------\n’)

f.write("Main PID: " + str(os.getpid())+ ’ \n’)

lock = Lock()

n = 0

for n in range(numNodes):

p = Process(target = startProcess, args = (bitsMain, bitsSubring,

bitspaceMain, bitspaceSubRing, lock, Attrb, n,

workAssgnMainID, workAssgnSubID, hostname))

p.start()

processes.append(p)

w = workAssgn()

103

print "Waiting for Machines to initialize...."

f.write("Waiting for network machines to initialize \n")

print "Entering Server Mode..!!, Port: 10000"

print "Waiting for Connections..!!"

f.write("Entering Server Mode; listening at PORT: 10000 \n")

btnd = bitand() # Making object for bitwise and operation

global processCount

send_time = 0

hop_count = 0

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

ip = str(socket.gethostbyname(hostname))

server_address = (ip, 10000)

sock.bind(server_address)

print "Server Address: "+str(server_address)

sock.listen(numNodes)

while True:

conn, addr = sock.accept()

data = conn.recv(buff)

print "----- "+str(addr)+" --> Controller -----"

print " Message: "+str(data)

f.write("----- "+str(addr)+" --> Controller ----- \n")

f.write("Message: "+str(data)+" \n")

104

words = data.split(" ")

word = words[1]

if (word == "REG"):

portNum = ports[processCount]

pName = words[2]

pNum = words[3]

msg = w.regWorkers(nAttrb, data, portNum, pName, pNum,

processCount, f, workAssgnMainID, workAssgnSubID, dataBase)

processCount = processCount + 1

conn.send(msg)

elif (word == "GET"):

if str(words[2]) == "LIST":

msg = str(nAttrb)+" "+str(ipCount)+str(line_params)

msgL = len(msg)

Msg = "00"+str(msgL)+" GETOK LIST "+msg

print Msg

f.write("----- Controller --> "+str(addr)+" -----\n")

f.write("Message: "+str(Msg)+" \n")

conn.send(Msg)

if str(words[2]) == "IPLIST":

ip = str(socket.gethostbyname(hostname))

time.sleep(5)

msg_to_be_checked = data

105

num_of_words = len(words)

send_time = words[num_of_words - 1]

result_num = num_of_words - 5

num_of_bloomfilters = int(result_num / 3)

print "I shall be getting "+str(num_of_bloomfilters)+"

bloomfilters from the clients"

f.write("I shall be getting "+str(num_of_bloomfilters)+"

bloomfilters from the clients \n")

Data = update_message(data)

print "Forwarding Query to Peers"

f.write("Forwarding Query to Peers \n")

l = (len(mrPorts) - 1)

slInd = random.randint(0, l)

selectPort = ports[slInd]

client_without_recv(Data, selectPort, hostname, f)

elif (word == "NBF"):

print "Got normal bloom filter from address: "+str(addr)

num_of_bloomfilters_recv = num_of_bloomfilters_recv + 1

print "Bloom filters received till now:

"+str(num_of_bloomfilters_recv)

f.write("Bloom filters received till now:

"+str(num_of_bloomfilters_recv)+" \n")

len_of_words = len(words)

bloom_client_port = str(words[len_of_words - 2])

106

reply_ports.append(bloom_client_port)

hops = int(words[len_of_words - 1])

hop_count = hop_count + hops

btnd.anding(data, reply_ports, hostname, hop_count, Attrb,

num_of_bloomfilters, num_of_bloomfilters_recv,

bloomFilters, f)

elif (word == "EXIT"):

k = 0

print "Requesting all sub-processes to exit !"

f.write("Requesting all sub-processes to exit ! \n")

for k in range(len(ports)):

target_port = int(ports[k])

client_without_recv(data, target_port, hostname, f)

print "Stopped all processes"

print "Exiting simulation environment"

f.write("Exiting simulation environment \n")

f.write("Stopping all processes \n")

time.sleep(2)

exit(0)

elif (word == "IPLIST"):

iplist_count = iplist_count + 1

print "IPList received till now "+str(iplist_count)

hops = int(words[2])

107

hop_count = hop_count + hops

btnd.analyse_ip(msg_to_be_checked, iplist_count,

num_of_bloomfilters, send_time, hop_count, Attrb, data,

hostname, f)

else:

Msg = "UNKNOWN REQUEST..!!"

MsgL = len(Msg)

msg = "0"+str(MsgL)+" "+Msg

f.write("----- Controller --> "+str(addr)+" -----\n")

f.write("Message: "+str(msg)+" \n")

conn.send(msg)

return

if __name__ == "__main__":

main(sys.argv[1:])

• Work assignment for each individual nodes, contents for “work.py”

import time

#from controller import submemberCount

submemberCount = 0

class workAssgn:

108

def regWorkers(self, nAttrb, data, portNum, pName, pNum, processCount, f,

workAssgnMainID, workAssgnSubID, dataBase):

global submemberCount

f.write("----- "+str(pName)+" --> Controller ----- \n")

f.write("Message: "+str(data)+" \n")

#portMain = ’0’

#l = len(workAssgnSubID)

#print "Process Count: " +str(processCount)+ " nAttrb: " +str(nAttrb)

time.sleep(2)

#print "Sub Member Count1: ", submemberCount

if processCount < nAttrb:

attr = "Attr"+str(processCount)

Msg = "REGOK MR"+" "+pName+" "+str(pNum)+"

"+str(workAssgnMainID[processCount][0])+" "+str(portNum)+"

"+str(workAssgnMainID[processCount][1])+"

"+str(workAssgnMainID[processCount][2])

MsgL = len(Msg)

msg = "00"+str(MsgL)+" "+Msg

f.write("----- Controller --> "+str(pName)+" -----\n")

f.write("Message: "+str(msg)+" \n")

dataBase.append([str(workAssgnMainID[processCount][0]), str(portNum)])

if processCount >= nAttrb:

#print "Sub Member Count2: ", submemberCount

attr = str(workAssgnSubID[submemberCount][1])

’’’

109

k = len(dataBase)

i = 0

for i in range(k):

if attr == dataBase[i][0]:

portMain = str(dataBase[i][1])

’’’

Msg = "REGOK SR"+" "+pName+" "+str(pNum)+" "+attr+" "+str(portNum)+"

"+str(workAssgnSubID[submemberCount][0])

MsgL = len(Msg)

msg = "00"+str(MsgL)+" "+Msg

f.write("----- Controller --> "+str(pName)+" -----\n")

f.write("Message: "+str(msg)+" \n")

submemberCount = submemberCount + 1

return msg

• Working of Main-Ring Nodes, contents for “workMR.py”

import socket

import time

import random

from multiprocessing import Process

from bloomfilter import query_resolution

bsPort = 11000

conPort = 10000

buff = 5120000

110

MembersMR = []

RoutingTableMR = []

FingerTableSR = []

query = []

processes_px = []

normalBF = []

qr = query_resolution()

def client_without_recv(Msg, port, hostname, f1):

global buff

port = int(port)

ip = str(socket.gethostbyname(hostname))

time.sleep(5)

Creating TCP Socket

global buff

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((ip, port))

sock.send(Msg)

sock.close()

return

def sub_process(k, mod_msg, forwarding_port, Attrb, hostname, indx,

FingerTableSR, attrN, portNum, set_val, hop_count, f1):

global selected_IP

111

f1.write("Entering subprocess \n")

print "Entering Sub Process"

k = int(k)

if k == 0:

print "Sending parsed out message to other members.."

f1.write("Sending parsed out message to other members.. \n")

f1.write("Modified message: "+str(mod_msg)+" \n")

f1.write("Forwarding Port: "+str(forwarding_port)+" \n")

time.sleep(10)

client_without_recv(mod_msg, forwarding_port, hostname, f1)

return

elif k == 1:

f1.write("Processing data \n")

print "Processing data: "

u_limit = query[indx][1]

l_limit = query[indx][2]

f1.write("u_limit: "+str(u_limit)+" \n")

f1.write("l_limit: "+str(l_limit)+" \n")

print "u_limit: "+str(u_limit)

print "l_limit: "+str(l_limit)

normalBF = qr.make_bloom_filter(Attrb, attrN, u_limit, l_limit, f1)

sending_updated_bloomfilter_to_controller(normalBF, hostname, portNum,

set_val, hop_count, attrN, f1)

return

112

else:

print "Unknown process condition .."

print "Doing nothing .."

return

def update_message(data):

words = data.split(" ")

num_of_words = len(words)

hop_count = int(words[3])

hop_count = hop_count + 1

words[3] = str(hop_count)

k = num_of_words

line = " "

while (k > 0):

if int(k) != int(num_of_words - 1):

if str(words[k-1]) != " ":

line = words[k - 1]+" "+line

k -= 1

mod_data = line

return mod_data

def sending_updated_bloomfilter_to_controller(normalBF, hostname,

portNum, set_val, hop_count, attrN, f1):

113

f1.write("Sending updated normal & counting bloomfilter to controller..

\n")

print "Sending updated normal & counting bloomfilter to controller.."

k = 0

chkSum_normalBF = 0

for k in range(len(normalBF)):

chkSum_normalBF = chkSum_normalBF + normalBF[k]

if int(set_val) == 0:

print "Size of updated normal bloomfilter: "+str(len(normalBF))+" Check

Sum: "+str(chkSum_normalBF)

f1.write("Size of updated normal bloomfilter: "+str(len(normalBF))+"

Check Sum: "+str(chkSum_normalBF)+" \n")

msg = "NBF "+str(attrN)+" "+str(normalBF)+" "+str(chkSum_normalBF)+"

"+str(portNum)+" 1"

msgL = len(msg)

Msg = str(msgL)+" "+str(msg)

time.sleep(2)

#msg_updated = update_message(Msg)

client_without_recv(Msg, conPort, hostname, f1)

if int(set_val) == 1:

print "Size of updated normal bloomfilter: "+str(len(normalBF))+" Check

Sum: "+str(chkSum_normalBF)

f1.write("Size of updated normal bloomfilter: "+str(len(normalBF))+"

Check Sum: "+str(chkSum_normalBF)+" \n")

114

msg = "NBF "+str(attrN)+" "+str(normalBF)+" "+str(chkSum_normalBF)+"

"+str(portNum)+" "+str(hop_count)

msgL = len(msg)

Msg = str(msgL)+" "+str(msg)

time.sleep(2)

#msg_updated = update_message(Msg)

client_without_recv(Msg, conPort, hostname, f1)

return

class members:

def addmembers(self, name, port, i):

MembersMR.append([name, port, i])

return

def updateRoutingTable(self, mainringID, attrN, pNum, mrID, f1):

print "MR-Attr: "+str(attrN)+" MR-ID: "+str(mrID)+" Port: "+str(pNum)+"

joining the network..!!"

f1.write("Updating Routing-Table for MR-Attr: "+str(attrN)+ " ID:

"+str(mrID)+ " Port: "+str(pNum)+" \n")

if mainringID == attrN:

f1.write("Updation failed for "+str(attrN)+" ID "+str(mrID)+" Port:

"+str(pNum)+" \n")

return -1

115

else:

RoutingTableMR.append([attrN, pNum, mrID])

k = 0

for k in range(len(RoutingTableMR)):

f1.write(str(RoutingTableMR[k]) + " \n")

return 1

def makeFingerTable(self, bitsSR, subRingID, hostname, portNum, f1):

f1.write("Making Finger Table on self.. \n")

bitsSR = int(bitsSR)

ip = str(socket.gethostbyname(hostname))

subRingID = int(subRingID)

k = 0

for k in range(bitsSR):

func = (pow(2,(k))+subRingID)

succ = (pow(2,(k+1))+subRingID)

interval = [func, succ]

FingerTableSR.append([interval, subRingID, ip, portNum])

k = None

f1.write("--- My Finger Table --- \n")

for k in FingerTableSR:

f1.write(str(k)+" \n")

return

116

def updateFingerTable(self, attrN, pNum, srID, subRingID, f1):

print "Updating finger table for id: "+str(srID)+ " port: "+str(pNum)

f1.write("Updating finger table for id: "+str(srID)+" port: "+str(pNum)+"

\n")

if int(srID) == int(subRingID):

print "Matching key found ! new ID: "+str(srID)+ " and my id:

"+str(subRingID)

print "Updation of finger table not possible !"

f1.write("Updation not possible, matching keys new id: "+str(srID)+" and

m id: "+str(subRingID)+" \n")

return -1

else:

srID = int(srID)

subRingID = int(subRingID)

pNum = int(pNum)

if srID > subRingID:

k = 0

for k in range(len(FingerTableSR)):

first = int(FingerTableSR[k][0][0])

second = int(FingerTableSR[k][0][1])

if srID > first and srID <= second:

idPresent = int(FingerTableSR[k][1])

distNew = abs(srID - subRingID)

distOld = abs(idPresent - subRingID)

117

if idPresent == subRingID:

FingerTableSR[k][1] = srID

FingerTableSR[k][3] = pNum

else:

if distNew < distOld:

FingerTableSR[k][1] = srID

FingerTableSR[k][3] = pNum

else:

#print "Updation not possible, memberID present is less than the incoming

memberID"

print "Updation not possible MemberID present: "+str(subRingID)+"

Incoming memberID: "+str(srID)

#f1.write("Updation not possible, memberID present is less than the

incoming memberID")

f1.write("Updation not possible MemberID present: "+str(subRingID)+"

Incoming memberID: "+str(srID)+" \n")

else:

if srID > first and srID > second:

idPresent = int(FingerTableSR[k][1])

distNew = abs(srID - subRingID)

distOld = abs(idPresent - subRingID)

if idPresent == subRingID:

FingerTableSR[k][1] = srID

FingerTableSR[k][3] = pNum

118

else:

if distNew < distOld:

FingerTableSR[k][1] = srID

FingerTableSR[k][3] = pNum

else:

#print "Updation not possible, memberID present is less than the incoming

memberID"

print "MemberID present: "+str(subRingID)+" Incoming memberID: "+str(srID)

f1.write("Updation not possible, memberID present is less than the

incoming memberID")

f1.write("MemberID present: "+str(subRingID)+" Incoming memberID:

"+str(srID)+" \n")

if srID < subRingID:

k = 0

for k in range(len(FingerTableSR)):

first = int(FingerTableSR[k][0][0])

second = int(FingerTableSR[k][0][1])

if srID <= first and srID <= second:

idPresent = int(FingerTableSR[k][1])

distNew = abs(srID - subRingID)

distOld = abs(idPresent - subRingID)

if idPresent == subRingID:

FingerTableSR[k][1] = srID

FingerTableSR[k][3] = pNum

119

else:

if distNew > distOld:

FingerTableSR[k][1] = srID

FingerTableSR[k][3] = pNum

else:

print "Updation not possible, memberID present is less than the incoming

memberID"

print "MemberID present: "+str(subRingID)+" Incoming memberID: "+str(srID)

f1.write("Updation not possible, memberID present is less than the

incoming memberID")

f1.write("MemberID present: "+str(subRingID)+" Incoming memberID:

"+str(srID)+" \n")

elif srID > first and srID <= second:

idPresent = int(FingerTableSR[k][1])

distNew = abs(srID - subRingID)

distOld = abs(idPresent - subRingID)

if idPresent == subRingID:

FingerTableSR[k][1] = srID

FingerTableSR[k][3] = pNum

else:

if distNew > distOld:

FingerTableSR[k][1] = srID

FingerTableSR[k][3] = pNum

else:

120

print "Updation not possible, memberID present is less than the incoming

memberID"

print "MemberID present: "+str(subRingID)+" Incoming memberID: "+str(srID)

f1.write("Updation not possible, memberID present is less than the

incoming memberID")

f1.write("MemberID present: "+str(subRingID)+" Incoming memberID:

"+str(srID)+" \n")

print "My new Finger Table "

k = None

for k in FingerTableSR:

print k

f1.write("--- My new Finger Table ---\n")

k = None

for k in FingerTableSR:

f1.write(str(k)+" \n")

return 1

m = members()

class work_MR():

def parse_data_and_forward(self, msg, attrN, hostname, Attrb, portNum,

f1):

global selected_IP

flag = 0

121

indx = 0

set_val = 0

f1.write("Query message: "+str(msg)+" \n")

print "Query message: "+str(msg)+" at: "+str(attrN)

msg = msg.strip()

words = msg.split(" ")

l = len(words)

#print "length of words at parse_data_and_forward: ", str(l)

k = 4

while (k <= (l - 1)):

#print "k here: "+str(k)+" word: "+str(words[k])

an = str(words[k])

k += 1

r1 = str(words[k])

k += 1

r2 = str(words[k])

k += 1

query.append([an, r1, r2])

#print "Query: ", query

k = 0

for k in range(len(query)):

if str(query[k][0]) == str(attrN):

print "I got query for my attribute "+str(attrN)

f1.write("I got query for my attribute"+str(attrN)+" \n")

122

flag = 1

indx = int(k)

if flag == 1:

if len(query) == 1:

set_val = 1

print "Nothing to forward"

print "Calling bloom filter functions !"

u_limit = query[0][1]

l_limit = query[0][2]

f1.write("Processing data \n")

print "Processing data: "

f1.write("u_limit: "+str(u_limit)+" \n")

f1.write("l_limit: "+str(l_limit)+" \n")

print "u_limit: "+str(u_limit)

print "l_limit: "+str(l_limit)

time.sleep(2)

hop_count = int(words[3])

hop_count = hop_count + 1

normalBF = qr.make_bloom_filter(Attrb, attrN, u_limit, l_limit, f1)

sending_updated_bloomfilter_to_controller(normalBF, hostname, portNum,

set_val, hop_count, attrN, f1)

else:

k = 0

123

line = " "

for k in range(len(query)):

if k != indx:

attr_n = str(query[k][0])

u = str(query[k][1])

l = str(query[k][2])

line = line + str(attr_n)+" "+str(u)+" "+str(l)+" "

attr_main = attr_n

k = 0

for k in range(len(RoutingTableMR)):

if str(attr_main) == str(RoutingTableMR[k][0]):

forwarding_port = str(RoutingTableMR[k][1])

print "Attribute: "+str(attr_main)+" Forwarding Port:

"+str(forwarding_port)

#f1.write("Outgoing Message : \n")

hop_count = int(words[3])

hop_count = hop_count + 1

words[3] = str(hop_count)

new_msg = "GET IPLIST "+str(hop_count)+line

msgLen = len(new_msg)

mod_message = "00"+str(msgLen)+" "+new_msg

print "Analyzing my query & Sending out the rest of the query..!"

print "Query modified: ", str(mod_message)

#mod_message = update_message(modified_message)

124

hop_count = 0

num_p = 2

k = 0

for k in range(num_p):

px = Process(target=sub_process, args=(k, mod_message, forwarding_port,

Attrb, hostname, indx, FingerTableSR, attrN, portNum, set_val,

hop_count, f1))

time.sleep(2)

px.start()

processes_px.append(px)

return

else:

print "I don’t have any query for my attribute"

print "Picking out the first machine to send query"

f1.write("I don’t have any query for my attribute \n")

f1.write("Picking out the first machine to send query \n")

attr_name = query[0][0]

#msg_updated = update_message(msg)

for k in range(len(RoutingTableMR)):

if str(attr_name) == RoutingTableMR[k][0]:

forwarding_port = int(RoutingTableMR[k][1])

client_without_recv(msg, forwarding_port, hostname, f1)

return

125

wr = work_MR()

def serverMode(bitsMR, attrName, portNum, hostname, subRingID, Attrb, f1):

global buff

global conPort

global selected_IP

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

ip = str(socket.gethostbyname(hostname))

portNum = int(portNum)

server_address = (ip, portNum)

sock.bind(server_address)

print "Server Address: "+str(server_address)

sock.listen(20)

while True:

conn, addr = sock.accept()

data = conn.recv(buff)

words = data.split(" ")

print "Data at sub process: ", str(data)

word = words[1]

if str(word) == "REG":

word1 = words[2]

if str(word1) == "MR":

f1.write(str(addr)+" --> "+str(attrName)+":"+str(portNum)+" \n")

f1.write(str(data)+" \n")

print str(addr)+" --> "+str(attrName)+":"+str(portNum)

126

print str(data)

attrN = str(words[3])

pNum = int(words[4])

mrID = int(words[5])

ret = m.updateRoutingTable(bitsMR, attrN, pNum, mrID, f1)

if ret == 1:

msg = "REGOK MR "+str(attrN)+" ID: "+str(mrID)

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

f1.write(str(attrName)+":"+str(portNum)+" --> "+str(addr)+" \n")

f1.write(str(Msg)+" \n")

conn.send(Msg)

else:

msg = "REGNOTOK MR "+str(attrN)+" ID: "+str(mrID)

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

f1.write(str(attrName)+":"+str(portNum)+" --> "+str(addr)+" \n")

f1.write(str(Msg)+" \n")

conn.send(Msg)

if str(word1) == "SR":

f1.write(str(addr)+" --> "+str(attrName)+":"+str(portNum)+" \n")

f1.write(str(data)+" \n")

print str(addr)+" --> "+str(attrName)+":"+str(portNum)

print str(data)

127

attrN = str(words[3])

pNum = int(words[4])

srID = int(words[5])

ret = m.updateFingerTable(attrN, pNum, srID, subRingID, f1)

if ret == 1:

msg = "REGOK SR "+str(attrN)+" ID "+str(srID)

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

f1.write(str(attrName)+":"+str(portNum)+" --> "+str(addr)+" \n")

f1.write(str(Msg)+" \n")

conn.send(Msg)

else:

msg = "REGNOTOK MR "+str(attrN)+" ID: "+str(mrID)

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

f1.write(str(attrName)+":"+str(portNum)+" --> "+str(addr)+" \n")

f1.write(str(Msg)+" \n")

conn.send(Msg)

elif str(word) == "GET":

word1 = words[2]

if str(word1) == "IPLIST":

wr.parse_data_and_forward(data, attrName, hostname, Attrb, portNum, f1)

elif str(word) == "EXIT":

128

print "Exiting simulation environment, at "+str(attrName)+"-MR"

f1.write("Exiting simulation environment, at "+str(attrName)+"-MR \n")

exit(0)

elif str(word) == "RBF":

msg, hopCount = qr.get_ip_list(data, Attrb, attrName, f1)

Msg = "IPLIST "+str(hopCount)+" "+str(msg)

msgL = len(Msg)

Msg_sent = str(msgL)+" "+Msg

Msg_sent = Msg_sent.strip()

print "Final Message to be sent to controller: "

print str(Msg_sent)

f1.write("Final Message to be sent to controller: \n")

f1.write(str(Msg_sent)+" \n")

client_without_recv(Msg_sent, conPort, hostname, f1)

else:

f1.write("Unknown request from: "+str(addr)+" -->

"+str(attrName)+":"+str(portNum)+" \n")

f1.write(str(data)+" \n")

print "Unknown request from: "+str(addr)+" -->

"+str(attrName)+":"+str(portNum)

print str(data)

return

129

def clientmode(Msg, attrName, portNum, a, p, hostname, f1):

p = int(p)

ip = str(socket.gethostbyname(hostname))

time.sleep(5)

global buff

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((ip, p))

f1.write(str(attrName)+":"+str(portNum)+" --> "+str(a)+":"+str(p)+" \n")

f1.write(str(Msg)+" \n")

sock.send(Msg)

data = sock.recv(buff)

f1.write(str(a)+":"+str(p)+" --> "+str(attrName)+":"+str(portNum)+" \n")

f1.write(str(data)+" \n")

sock.close()

return data

class workAssgnMR:

def contactBS(self, hostname, w, portNum, attrName, mainRingID,

subRingID, f1, var):

global bsPort

global buff

f1.write("-- "+str(var)+" --> Boostrap Server -- \n")

print str(var)+" --> Boostrap Server"

130

msg = "REG"+" "+str(var)+" "+str(w)+" "+str(attrName)+" "+str(portNum)+"

"+str(mainRingID)+" "+str(subRingID)

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

print Msg

f1.write(" "+str(Msg)+" \n")

port = int(bsPort)

ip = str(socket.gethostbyname(hostname))

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((ip, port))

sock.send(Msg)

data = sock.recv(buff)

f1.write("-- Boostrap Server --> "+str(var)+" -- \n")

f1.write(" "+str(data)+" \n")

sock.close()

print "Boostrap Server --> "+str(var)

print data

return data

def analyzeData(self, hostname, msg, portNum, f1, attrName, mainRingID,

subRingID, bitSpaceMR, bitsMR, bitSpaceSR, bitsSR, Attrb):

words = msg.split(" ")

#id = None

m.makeFingerTable(bitsSR, subRingID, hostname, portNum, f1)

word = words[2]

131

if str(word) == "FIRST":

print "I am the first one to join the network"

print "Entering server mode !"

f1.write("--- AttrName: "+str(attrName)+" MR-ID: "+str(mainRingID)+"

SR-ID: "+str(subRingID)+" -- \n")

f1.write("Entering Server Mode... \n")

serverMode(bitsMR, attrName, portNum, hostname, subRingID, Attrb, f1)

else:

time.sleep(2)

l = len(words)

l = l-1

print "Contacting Peers !"

f1.write("--- AttrName: "+str(attrName)+" MR-ID: "+str(mainRingID)+"

SR-ID: "+str(subRingID)+" -- \n")

k = 2

while k < l:

name = words[k]

k += 1

port = words[k]

k += 1

id = words[k]

m.addmembers(name, port, id)

k += 1

132

f1.write("Contacting Peers ! \n ")

k = 0

for k in range(len(MembersMR)):

msg = "REG MR "+str(attrName)+" "+str(portNum)+" "+str(mainRingID)

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

a = str(MembersMR[k][0])

p = int(MembersMR[k][1])

i = int(MembersMR[k][2])

reply = clientmode(Msg, attrName, portNum, a, p, hostname, f1)

words = reply.split(" ")

word = str(words[1])

if word == "REGOK":

m.updateRoutingTable(mainRingID, a, p, i, f1)

else:

print "MR-Attr: "+str(a)+" ID: "+str(i)+ " not reponsive !!"

f1.write("MR-Attr: "+str(a)+" ID: "+str(i)+ " not reponsive !! \n")

serverMode(bitsMR, attrName, portNum, hostname, subRingID, Attrb, f1)

return

• Working of Sub-Ring Nodes, contents for “workSR.py”

import socket

import time

bsPort = 11000

133

buff = 1024

myRing = []

srhPort = []

srhID = []

mrhostPort = 0

mrhostID = 0

def clientmode(Msg, port, hostname, attrName, portNum, f1):

ip = str(socket.gethostbyname(hostname))

time.sleep(5)

Creating TCP Socket

global buff

port = int(port)

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

time.sleep(30)

sock.connect((ip, port))

f1.write(str(attrName)+":"+str(portNum)+" --> "+str(ip)+":"+str(port)+"

\n")

f1.write(str(Msg)+" \n")

sock.send(Msg)

data = sock.recv(buff)

f1.write(str(ip)+":"+str(port)+" --> "+str(attrName)+":"+str(portNum)+"

\n")

134

f1.write(str(data)+" \n")

sock.close()

return data

def server_sub_ring_members(portNum, hostname, subRingID, Attrb,

attrname, f1):

print "Entering server mode !"

f1.write("Entering server mode \n")

global buff

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

ip = str(socket.gethostbyname(hostname))

Binding the socket to the port

portNum = int(portNum)

server_address = (ip, portNum)

sock.bind(server_address)

print "Server Address: "+str(server_address)

Listening for incoming connections

sock.listen(50)

while True:

conn, addr = sock.accept()

data = conn.recv(buff)

words = data.split(" ")

word = words[1]

if str(word) == "REG":

word1 = words[2]

135

if str(word1) == "SR":

attrname = words[3]

idSR = words[4]

port = words[5]

f1.write(str(addr)+" --> "+str(attrname)+":"+str(port)+" \n")

f1.write(str(data)+" \n")

print str(addr)+" --> "+str(attrname)+":"+str(port)

print str(data)

f1.write("Updating finger table for "+str(addr)+" \n")

ret = fing.updateFingerTable(port, idSR, subRingID, f1)

if ret == 1:

msg = "REGOK SR "+str(attrname)+" ID "+str(id)

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

print str(attrname)+":"+str(portNum)+" --> "+str(addr)

print str(Msg)

f1.write(str(attrname)+":"+str(portNum)+" --> "+str(addr)+" \n")

f1.write(str(Msg)+" \n")

conn.send(Msg)

else:

print "Unknown REG request from "+str(addr)

f1.write("Unknown REG request from "+str(addr)+" \n")

elif str(word) == "IPLIST":

print "Hold on, on its way"

136

elif str(word) == "EXIT":

print "Exiting simulation environment, at "+str(attrname)+"-SR"

f1.write("Exiting simulation environment, at "+str(attrname)+"-SR \n")

exit(0)

else:

f1.write("Unknown request from: "+str(addr)+" -->

"+str(attrname)+":"+str(port)+" \n")

f1.write(str(data)+" \n")

print "Unknown request from: "+str(addr)+" -->

"+str(attrname)+":"+str(port)

print str(data)

return

class finger_table():

def makeFingerTable(self, bitsSR, subRingID, hostname, portNum, f1):

f1.write("Making Finger Table on self.. \n")

bitsSR = int(bitsSR)

ip = str(socket.gethostbyname(hostname))

subRingID = int(subRingID)

k = 0

for k in range(bitsSR):

137

func = (pow(2,(k))+subRingID)

succ = (pow(2,(k+1))+subRingID)

interval = [func, succ]

myRing.append([interval, subRingID, ip, portNum])

k = None

f1.write("--- My Finger Table --- \n")

for k in myRing:

f1.write(str(k)+" \n")

return

def updateFingerTable(self, pNum, srID, subRingID, f1):

Updating finger table from here

print "Updating finger table for id: "+str(srID)+ " port: "+str(pNum)

f1.write("Updating finger table for id: "+str(srID)+" port: "+str(pNum)+"

\n")

if int(srID) == int(subRingID):

print "Matching key found ! new ID: "+str(srID)+ " and my id:

"+str(subRingID)

print "Updation of finger table not possible !"

f1.write("Updation not possible, matching keys new id: "+str(srID)+" and

m id: "+str(subRingID)+" \n")

return -1

else:

srID = int(srID)

subRingID = int(subRingID)

138

pNum = int(pNum)

if srID > subRingID:

k = 0

for k in range(len(myRing)):

first = int(myRing[k][0][0])

second = int(myRing[k][0][1])

if srID > first and srID <= second:

idPresent = int(myRing[k][1])

distNew = abs(srID - subRingID)

distOld = abs(idPresent - subRingID)

if idPresent == subRingID:

myRing[k][1] = srID

myRing[k][3] = pNum

else:

if distNew < distOld:

myRing[k][1] = srID

myRing[k][3] = pNum

else:

print "Updation not possible, memberID present is less than the incoming

memberID"

print "MemberID present1: "+str(subRingID)+" Incoming memberID:

"+str(srID)

f1.write("Updation not possible, memberID present is less than the

incoming memberID")

139

f1.write("MemberID present: "+str(subRingID)+" Incoming memberID:

"+str(srID)+" \n")

else:

if srID > first and srID > second:

idPresent = int(myRing[k][1])

distNew = abs(srID - subRingID)

distOld = abs(idPresent - subRingID)

if idPresent == subRingID:

myRing[k][1] = srID

myRing[k][3] = pNum

else:

if distNew < distOld:

myRing[k][1] = srID

myRing[k][3] = pNum

else:

print "Updation not possible, memberID present is less than the incoming

memberID"

print "MemberID present2: "+str(subRingID)+" Incoming memberID:

"+str(srID)

f1.write("Updation not possible, memberID present is less than the

incoming memberID")

f1.write("MemberID present: "+str(subRingID)+" Incoming memberID:

"+str(srID)+" \n")

if srID < subRingID:

140

k = 0

for k in range(len(myRing)):

first = int(myRing[k][0][0])

second = int(myRing[k][0][1])

if srID <= first and srID <= second:

idPresent = int(myRing[k][1])

distNew = abs(srID - subRingID)

distOld = abs(idPresent - subRingID)

if idPresent == subRingID:

myRing[k][1] = srID

myRing[k][3] = pNum

else:

if distNew > distOld:

myRing[k][1] = srID

myRing[k][3] = pNum

else:

print "Updation not possible, memberID present is less than the incoming

memberID"

print "MemberID present: "+str(subRingID)+" Incoming memberID: "+str(srID)

f1.write("Updation not possible, memberID present is less than the

incoming memberID")

f1.write("MemberID present: "+str(subRingID)+" Incoming memberID:

"+str(srID)+" \n")

elif srID > first and srID <= second:

idPresent = int(myRing[k][1])

141

distNew = abs(srID - subRingID)

distOld = abs(idPresent - subRingID)

if idPresent == subRingID:

myRing[k][1] = srID

myRing[k][3] = pNum

else:

if distNew > distOld:

myRing[k][1] = srID

myRing[k][3] = pNum

else:

print "Updation not possible, memberID present is less than the incoming

memberID"

print "MemberID present: "+str(subRingID)+" Incoming memberID: "+str(srID)

f1.write("Updation not possible, memberID present is less than the

incoming memberID")

f1.write("MemberID present: "+str(subRingID)+" Incoming memberID:

"+str(srID)+" \n")

print "My new Finger Table "

k = None

for k in myRing:

print k

f1.write("--- My new Finger Table ---\n")

k = None

for k in myRing:

f1.write(str(k)+" \n")

142

return 1

fing = finger_table()

class workAssgnSR:

def contactBS(self, hostname, w, portNum, attrName, subRingID, f1, var):

global bsPort

global buff

f1.write("-- "+str(var)+" --> Boostrap Server -- \n")

print str(var)+" --> Boostrap Server"

msg = "REG"+" "+str(var)+" "+str(w)+" "+str(attrName)+" "+str(portNum)+"

"+str(subRingID)

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

print Msg

f1.write(" "+str(Msg)+" \n")

port = int(bsPort)

ip = str(socket.gethostbyname(hostname))

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((ip, port))

sock.send(Msg)

data = sock.recv(buff)

f1.write("-- Boostrap Server --> "+str(var)+" -- \n")

143

f1.write(" "+str(data)+" \n")

sock.close()

print "Boostrap Server --> "+str(var)

print data

return data

def analyzeData(self, msg, hostname, f1):

global mrhostPort

global mrhostID

f1.write("Parsing msg.. \n")

words = msg.split(" ")

#f1.write("Words length: "+str(len(words))+ " \n")

’’’

for word in words:

f1.write("Words : "+str(word)+ " \n")

’’’

ip = str(socket.gethostbyname(hostname))

mrhostPort = words[3]

mrhostID = words[4]

f1.write("--- Main Ring host details ---\n")

f1.write("IP Address -> " + str(ip)+":" +str(mrhostPort)+" \n")

f1.write("Main Ring host ID -> "+str(mrhostID)+" \n")

f1.write("------------------------------\n")

144

if len(words) > 6:

k = 6

f1.write("--- Sub Ring host details ---\n")

while k < (len(words) - 1):

srhostPort = words[k]

srhPort.append(srhostPort)

k += 1

srhostID = words[k]

srhID.append(srhostID)

k += 2

k = 0

for k in range(len(srhPort)):

f1.write("Sub Ring host -"+str(k+1)+" \n")

f1.write("IP Address -> " + str(ip)+":" +str(srhPort[k])+" \n")

f1.write("Sub Ring host ID -> "+str(srhID[k])+" \n")

return

else:

return

def contact_MR_host(self, subRingID, portNum, hostname, attrName,

bitSpaceSR, bitsSR, f1):

fing.makeFingerTable(bitsSR, subRingID, hostname, portNum, f1)

145

f1.write("Contacting Main Ring Host \n")

msg = "REG SR "+str(attrName)+" "+str(portNum)+" "+str(subRingID)

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

time.sleep(10)

reply = clientmode(Msg, mrhostPort, hostname, attrName, portNum, f1)

words = reply.split(" ")

if (str(words[1]) == "REGOK"):

print "Updating finger table for main ring host "

f1.write("Updating finger table for main ring host \n")

fing.updateFingerTable(mrhostPort, mrhostID, subRingID, f1)

else:

f1.write("MR Host not responding \n")

print "MR Host not responding"

return

def contact_SR_host(self, hostname, subRingID, portNum, attrName,

bitSpaceSR, bitsSR, Attrb, f1):

if srhPort:

f1.write("Contacting Sub Ring members \n")

msg = "REG SR "+str(attrName)+" "+str(subRingID)+" "+str(portNum)

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

k = 0

for k in range(len(srhPort)):

146

port = srhPort[k]

idSR = srhID[k]

time.sleep(10)

reply = clientmode(Msg, port, hostname, attrName, portNum, f1)

words = reply.split(" ")

if (str(words[1]) == "REGOK"):

print "Updating finger table for sub ring host id:"+str(srhID[k])

f1.write("Updating finger table for sub ring host id:"+str(srhID[k])+"

\n")

fing.updateFingerTable(idSR, port, subRingID, f1)

else:

print "Updation not possible for sub ring host id:"+str(srhID[k])

f1.write("Updation not possible in finger table for sub ring host

id:"+str(srhID[k])+" \n")

server_sub_ring_members(portNum, hostname, subRingID, Attrb, attrName, f1)

return

147

APPENDIX B

Caching Architecture Formation Source Code

This chapter presents the source code for Caching Mechanism for the resolution of Co-

related Attributes. The src code uses “Python2.7”, along with “numpy” and “pandas”

packages. The simulation to be started with the execution of “caching.py”. The other

files necessary are “readfile.py”, “workCaching.py”, “bloomfilterop.py”, and resource list

obtained from “ResQue”. The “readfile.py” is mentioned in Appendix-E To execute the src

code:

sudo chmod +x caching.py

./caching.py -f <Multiattribute - filename> -n <num of nodes in network> -m <Num

of bits Mainring> -s <Num of bits Sub ring> -o <hostname>

The number of nodes present in the network should be greater than or equal to the number

of attributes mentioned in resources list obtained from “ResQue”. The contents for each

file name is mentioned along with each sections. At the end of successful execution of sim-

ulation “Caching” architecture will be formed ready to resolve queries related to correlated

attributes.

• Caching Architecture Formation, contents for “caching.py”

import socket

import numpy as np

import pandas as pd

import random

import math

import os

148

import time

import getopt

import sys

from readfile import calParam

from multiprocessing import Pool, Process, Manager, Lock

from workCaching import startWork

from bloomfilter_op import BloomFilter_Operation

bf = BloomFilter_Operation()

os.system("clear")

f = open(’caching.log’, ’w’)

f.close()

f = open(’caching.log’, ’a’)

Attrb = {}

corrAttrb = []

processes = []

IPAddress = []

RoutingTable = {}

bloomFilters = {}

ip_List = {}

buff = 51200

normalBF = []

counter = 3

149

def client_without_recv(Msg, port, hostname, f):

global buff

port = int(port)

ip = str(socket.gethostbyname(hostname))

time.sleep(5)

Creating TCP Socket

global buff

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((ip, port))

sock.send(Msg)

sock.close()

return

def client(msg, port, hostname):

port = int(port)

ip = str(socket.gethostbyname(hostname))

time.sleep(5)

global buff

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((ip, port))

sock.send(msg)

data = sock.recv(buff)

sock.close()

return data

150

def startProcess(port, corrAttr, lock, Attrb, n, hostname):

var = "Process-"+str(n+1)

print "Starting: " + var

print "Main PID: " + str(os.getppid())

print "PID: " + str(os.getpid())

PID = os.getpid()

MPID = os.getppid()

print "--"

conPort = 10000

var1 = "Process-"+str(n+1)+".log"

f1 = open(var1, ’w’)

f1.close()

f1 = open(var1, ’a’)

f1.write("----- Starting Process-"+str(n+1)+" "+

time.strftime("%c")+’-----\n’)

f1.write(’ Parent ID: ’+str(MPID)+ ’\n’)

f1.write(’ PID: ’+str(PID)+’ \n’)

selAttrb = []

attrKey = []

valKey = []

if corrAttr[0] == "mLd1":

selAttrb = [str(corrAttr[0]), str(corrAttr[1]), str(corrAttr[2])]

151

f1.write("I am reposible for correlation of:

"+str(selAttrb[0])+";"+str(selAttrb[1])+";"+str(selAttrb[2])+"

\n")

print "I am reposible for correlation of:

"+str(selAttrb[0])+";"+str(selAttrb[1])+";"+str(selAttrb[2])

ind = []

Key1 = selAttrb[0]

Key2 = selAttrb[1]

Key3 = selAttrb[2]

Val1 = Attrb[Key1].flatten()

Val2 = Attrb[Key2].flatten()

Val3 = Attrb[Key3].flatten()

i = 0

for i in range(len(Val1)):

key = Val1[i]

if (key not in attrKey) and (int(key) != 0):

j = 0

ind = []

for j in range(len(Val1)):

if Val1[j] == key:

ind.append(j)

attrKey.append([key])

print "Key: "+str(key)+" Ind: "+str(ind)

k = 0

ind1 = []

152

ind2 = []

ip = []

for k in range(len(ind)):

ind1.append(Val2[ind[k]])

ind2.append(Val3[ind[k]])

ip.append(IPAddress[ind[k]])

valKey.append([ind1, ind2, ip])

k = 0

f1.write("Selected Attribute Keys - Value pair:\n")

for k in range(len(attrKey)):

f1.write(str(attrKey[k])+" -> "+str(valKey[k])+"\n")

print "Length of Keys: ", len(attrKey)

f1.write("Length of Keys: " +str(len(attrKey))+" \n")

print "Length of Values: ", len(valKey)

f1.write("Length of Values: " +str(len(valKey))+" \n")

else:

selAttrb = [str(corrAttr[0]), str(corrAttr[1])]

print "I am reposible for correlation of:

"+str(selAttrb[0])+";"+str(selAttrb[1])

f1.write("I am reposible for correlation of:

"+str(selAttrb[0])+";"+str(selAttrb[1])+" \n")

ind = []

Key1 = selAttrb[0]

Key2 = selAttrb[1]

Val1 = Attrb[Key1].flatten()

153

Val2 = Attrb[Key2].flatten()

i = 0

for i in range(len(Val1)):

key = Val1[i]

if (key not in attrKey) and (int(key) != 0):

j = 0

ind = []

for j in range(len(Val1)):

if Val1[j] == key:

ind.append(j)

attrKey.append([key])

print "Key: "+str(key)+" Ind: "+str(ind)

k = 0

ind1 = []

ip = []

for k in range(len(ind)):

ind1.append(Val2[ind[k]])

ip.append(IPAddress[ind[k]])

valKey.append([ind1, ip])

k = 0

f1.write("Selected Attribute Keys - Value pair:\n")

for k in range(len(attrKey)):

f1.write(str(attrKey[k])+" -> "+str(valKey[k]) +"\n")

print "Length of Keys: ", len(attrKey)

f1.write("Length of Keys: " +str(len(attrKey))+" \n")

154

print "Length of Values: ", len(valKey)

f1.write("Length of Values: " +str(len(valKey))+" \n")

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

ip = str(socket.gethostbyname(hostname))

port = int(port)

ipList = []

server_address = (ip, port)

sock.bind(server_address)

print "Entering server mode at: ", var

f1.write("Entering server mode at: " +str(var)+" \n")

print "Server Address: "+str(server_address)

f1.write("Server Address: "+str(server_address)+" \n")

sock.listen(20)

sw = startWork()

while True:

conn, addr = sock.accept()

data = conn.recv(buff)

words = data.split(" ")

print "Received conn from: " +str(addr)+"

"+str(time.strftime("%c"))

print "Message: ", data

f1.write("Received conn from: " +str(addr)+"

"+str(time.strftime("%c"))+" \n")

f1.write("Message: "+str(data)+" \n")

word = words[1]

155

if word == "GET":

if words[2] == "LIST":

if len(selAttrb) == 3:

line = str(Key1)+" "+str(max(Val1))+"

"+str(min(Val1))+" "+str(Key2)+" "+str(max(Val2))+"

"+str(min(Val2))+" "+str(Key3)+" "+str(max(Val3))+"

"+str(min(Val3))

if len(selAttrb) == 2:

line = str(Key1)+" "+str(max(Val1))+"

"+str(min(Val1))+" "+str(Key2)+" "+str(max(Val2))+"

"+str(min(Val2))

conn.send(line)

if word == "IP":

msg, ipList = sw.getIPList(selAttrb, data, attrKey, valKey, f1)

msgL = len(msg)

Msg = "00"+str(msgL)+" BF "+str(msg)

print "Generated Bloom filter!"

client_without_recv(Msg, conPort, hostname, f1)

if word == "RBF":

msg = sw.select_IP_Address(ipList, data, f1)

msgL = len(msg)

Msg = "00"+str(msgL)+" IP "+str(msg)

client_without_recv(Msg, conPort, hostname, f1)

if word == "EXIT":

print "Exiting Myself: "+str(var)

156

exit(0)

return

def generateIPAddress(ipCount):

k = 0

for k in range(ipCount):

ip1 = str(random.randint(100,255))

ip2 = str(random.randint(100,255))

ip3 = str(random.randint(100,255))

ip4 = str(random.randint(100,255))

ipLine = ip1+"."+ip2+"."+ip3+"."+ip4

IPAddress.append(ipLine)

return

def main(argv):

f.write(’--- Shibayan: Thesis Multi-Attribute Query Resolution /

Caching ---\n’)

f.write(’--- Caching Log --- ’+time.strftime("%c")+’ ---\n’)

filename = ’’

try:

opts, args = getopt.getopt(argv,"hf:n:m:s:o:",["ifile=","nodes=",

"bitsMain=","bitsSubring=","hostname="])

except getopt.GetoptError:

157

print ’python caching.py -f <Multiattribute - filename> -n <num

of nodes in network> -m <Num of bits Mainring> -s <Num of bits

Sub ring> -o <hostname>’

sys.exit(2)

for opt, arg in opts:

if opt == ’-h’:

print ’python caching.py -f <Multiattribute - filename> -n

<num of nodes in network> -m <Num of bits Mainring> -s

<Num of bits Sub ring> -o <hostname>’

sys.exit()

elif opt in ("-f", "--ifile"):

filename = arg

elif opt in ("-n", "--nodes"):

nodes = arg

elif opt in ("-m", "--bitsMain"):

bM = arg

elif opt in ("-s", "--bitsSubring"):

bS = arg

elif opt in ("-o", "--hostname"):

hostname = arg

numNodes = int(nodes)

bitsMain = int(bM)

bitsSubring = int(bS)

158

print "------- Attributes --------"

print "File name: ", filename

print "Main Ring Size: ", (2**(bitsMain))

print "Sub Ring Size: ", (2**(bitsSubring))

print "Number of Nodes: ", numNodes

print "---------------------------"

f.write(’---------------- Attributes -----------------\n’)

f.write(’Reading from file: ’+str(filename)+’\n’)

f.write(’Main Ring Capacity: ’+str(2**(bitsMain))+’\n’)

f.write(’Sub Ring Capacity: ’+str(2**(bitsSubring))+’\n’)

f.write(’Num of machines in n/w: ’+str(numNodes)+’\n’)

f.write(’---\n’)

rf = calParam()

_, nIP = rf.readFile(filename, Attrb, f)

f.write("Co-related params: "+str(Attrb.keys())+" \n")

if len(Attrb.keys()) == -1:

print "No corelated attributes present"

exit(0)

corr_attr = rf.calCorrelation(Attrb, f)

generateIPAddress(nIP)

k = None

print "Correlated Attributes: "

for k in corr_attr:

159

print k

f.write(str(k) + "\n")

ports = [19000, 20000, 21000]

RoutingTable[’mLd1’] = 19000

RoutingTable[’mLd5’] = 19000

RoutingTable[’mLd15’] = 19000

RoutingTable[’Tx’] = 20000

RoutingTable[’Rx’] = 20000

RoutingTable[’DSize’] = 21000

RoutingTable[’DFree’] = 21000

corrAttr = [[’mLd1’, ’mLd5’, ’mLd15’], [’Tx’, ’Rx’, ’-’], [’DSize’,

’DFree’, ’-’]]

numNodes = len(corrAttr)

lock = Lock()

n = 0

for n in range(numNodes):

p = Process(target = startProcess, args = (ports[n], corrAttr[n],

lock, Attrb, n, hostname))

p.start()

p.join()

processes.append(p)

llist = []

160

LongList = []

lenIPs = 0

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

ip = str(socket.gethostbyname(hostname))

server_address = (ip, 10000)

sock.bind(server_address)

count = 0

countIP = 0

print "Entering server mode"

f.write("Entering server mode \n")

print "Server Address: "+str(server_address)

f.write("Server Address: "+str(server_address)+" \n")

sock.listen(numNodes)

while True:

conn, addr = sock.accept()

data = conn.recv(buff)

print "-- "+str(time.strftime("%c"))+" -- "+str(addr)+" -->

Controller -----"

print " Message: "+str(data)

f.write("-- "+str(time.strftime("%c"))+" -- "+str(addr)+" -->

Controller ----- \n")

f.write("Message: "+str(data)+" \n")

words = data.split(" ")

word = words[1]

if (word == "GET"):

161

if (words[2] == "LIST"):

k = 0

line = ’’

for k in range(len(ports)):

recvMsg = client(data, ports[k], hostname)

line = line + str(recvMsg) +" "

print "Msg received: ", line

line = "GET LIST OK "+str(line)

msgLen = len(line)

msg = "0"+str(msgLen)+" "+str(line)

conn.send(msg)

if (words[2] == "IP"):

hopCount = int(words[3])

hopCount += 1

sendTime = float(words[4])

i = 0

for i in range(len(corrAttr)):

j = 0

llist = []

for j in range(len(corrAttr[i])):

if corrAttr[i][j] is not "-":

if corrAttr[i][j] in words:

k = 5

l = len(words)

attrb = corrAttr[i][j]

162

while (k < (l-1)):

if words[k] == attrb:

k += 1

maxV = float(words[k])

k += 1

minV = float(words[k])

llist.append([attrb, maxV, minV])

k += 1

else:

k += 1

LongList.append([attrb, maxV, minV])

x = 0

line = ’’

for x in range(len(llist)):

y = 0

for y in range(len(llist[x])):

line = line + " " + str(llist[x][y])

msg = "IP"+str(line)

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

print "Sending message to peers: ", Msg

forwardingPort = RoutingTable[attrb]

client_without_recv(Msg, forwardingPort, hostname, f)

if word == "BF":

163

count += 1

bf.analyseBF(count, data, bloomFilters, counter, ports,

hostname, f)

if word == "IP":

countIP += 1

bf.find_resultant_IP(hopCount, sendTime, countIP, data,

counter, hostname, ip_List, f)

if word == "EXIT":

k = 0

for k in range(len(ports)):

client_without_recv(data, ports[k], hostname, f)

time.sleep(3)

print "Exiting Myself !"

exit(0)

return

if __name__ == "__main__":

main(sys.argv[1:])

• Caching Mechn. Working, contents for “workCaching.py”

import socket

import random

import math

164

import os

import time

import sys

from hashVals import hashfunctions

hf = hashfunctions()

class startWork:

def getIPList(self, selAttrb, data, attrKey, valKey, f1):

K_Val = []

M1_Val = []

BF = []

data = data[:-1]

ll = []

words = data.split()

print "Length of words: ", len(words)

k = 2

while k < len(words):

attrb = words[k]

k += 1

maxV = float(words[k])

k += 1

minV = float(words[k])

k += 1

ll.append([attrb, maxV, minV])

165

ipList = self.calParam(ll, selAttrb, attrKey, valKey, f1)

f = open(’param.conf’, ’r’)

line = f.read()

line_words = line.split(’\n’)

f.close()

print "Reading parameters from conf file "

f1.write("Reading parameters from conf file \n")

i = 0

while i < (len(line_words)):

if line_words[i] == ’# K-Values’:

K_Val = line_words[i+1].split(’ ’)

if line_words[i] == ’# M-Values’:

M1_Val = line_words[i+1].split(’ ’)

i += 1

K_Val = int(K_Val[0]) # Needs to be modified if there are

multiple values

M = int(M1_Val[0])

N = len(ipList)

if str(K_Val) == "-":

K = int((M / N) * math.log(2))

K += 1

else:

K = K_Val

166

print "K-Val: "+str(K)+" M-Val: "+str(M)+" N-Val: "+str(N)

f1.write("K-Val: "+str(K)+" M-Val: "+str(M)+" N-Val: "+str(N)+"

\n")

k = 0

for k in range(M):

BF.append("-")

primeNum = hf.prime_num_gen()

f1.write("\n Initial Bloom Filter: \n")

f1.write("\n"+str(BF)+" \n")

i = 0

for i in range(len(ipList)):

hVal = hf.hash_values(M, K, ipList[i], primeNum, f1)

print str(ipList[i])+" -> "+str(hVal)

j = 0

for j in range(len(hVal)):

ind = int(hVal[j])

if str(BF[ind]) == "-":

BF[ind] = 1

k = 0

checkSum = 0

for k in range(len(BF)):

if BF[k] == "-":

BF[k] = 0

else:

checkSum = checkSum + BF[k]

167

f1.write("\n")

f1.write("\n")

f1.write("Final Bloom Filter: \n")

f1.write(str(BF)+" \n")

f1.write(str(checkSum)+" \n")

Msg = str(BF)+" "+str(checkSum)

return (Msg, ipList)

def calParam(self, ll, selAttrb, attrKey, valKey, f1):

ipList = []

ind = []

if len(selAttrb) == 2:

attr1 = selAttrb[0][0]

maxVal1 = float(ll[0][1])

minVal1 = float(ll[0][2])

attr2 = selAttrb[1][0]

maxVal2 = float(ll[1][1])

minVal2 = float(ll[1][2])

f1.write("\n")

f1.write("------------------------ \n")

f1.write(str(attr1)+" -> "+

str(maxVal1)+":"+str(minVal1)+";"+str(attr2)+" ->

"+str(maxVal2)+":"+str(minVal2)+" \n")

k = 0

for k in range(len(attrKey)):

168

if float(attrKey[k][0]) > minVal1 and float(attrKey[k][0])

< maxVal1:

ind.append(k)

f1.write(str(attrKey[k][0])+" -> ")

print str(attrKey[k][0])+" -> "

f1.write("\n")

print "Indices: ", ind

f1.write("Indices: "+str(ind)+" \n")

k = 0

for k in range(len(ind)):

Ind = ind[k]

i = 0

for i in range(len(valKey[Ind][0])):

if float(valKey[Ind][0][i]) > minVal2 and

float(valKey[Ind][0][i]) < maxVal2:

ipList.append(valKey[Ind][1][i])

f1.write(str(valKey[Ind][0][i])+" ->

"+str(valKey[Ind][1][i])+" \n")

print str(valKey[Ind][0][i])+" ->

"+str(valKey[Ind][1][i])

f1.write("-- \n")

if len(selAttrb) == 3:

attr1 = selAttrb[0][0]

maxVal1 = float(ll[0][1])

minVal1 = float(ll[0][2])

169

attr2 = selAttrb[1][0]

maxVal2 = float(ll[1][1])

minVal2 = float(ll[1][2])

attr3 = selAttrb[2][0]

maxVal3 = float(ll[2][1])

minVal3 = float(ll[2][2])

f1.write("\n")

f1.write("-------------------------------------- \n")

f1.write(str(attr1)+" -> "+

str(maxVal1)+":"+str(minVal1)+";"+str(attr2)+" ->

"+str(maxVal2)+":"+str(minVal2)+";"+str(attr3)+" ->

"+str(maxVal3)+":"+str(minVal3)+" \n")

k = 0

for k in range(len(attrKey)):

if float(attrKey[k][0]) > minVal1 and float(attrKey[k][0])

< maxVal1:

ind.append(k)

f1.write(str(attrKey[k][0])+" -> ")

print str(attrKey[k][0])+" -> "

f1.write("\n")

print "Indices: ", ind

f1.write("Indices: "+str(ind)+" \n")

k = 0

for k in range(len(ind)):

Ind = ind[k]

170

i = 0

for i in range(len(valKey[Ind][0])):

if float(valKey[Ind][0][i]) > minVal2 and

float(valKey[Ind][0][i]) < maxVal2:

if float(valKey[Ind][1][i]) > minVal3 and

float(valKey[Ind][1][i]) < maxVal3:

ipList.append(valKey[Ind][2][i])

f1.write(str(valKey[Ind][0][i])+" ->

"+str(valKey[Ind][1][i])+" ->

"+str(valKey[Ind][2][i])+" \n")

print str(valKey[Ind][0][i])+" ->

"+str(valKey[Ind][1][i])+" ->

"+str(valKey[Ind][2][i])

f1.write("----------------------------------- \n")

return ipList

def select_IP_Address(self, ipList, data, f1):

elemns = data.split(",")

words = data.split(" ")

l = len(words)

chkSum_sent = int(words[l-1])

ff = open(’param.conf’, ’r’)

line = ff.read()

line_words = line.split(’\n’)

ff.close()

171

i = 0

while i < (len(line_words)):

if line_words[i] == ’# K-Values’:

K_Val = line_words[i+1].split(’ ’)

if line_words[i] == ’# M-Values’:

M1_Val = line_words[i+1].split(’ ’)

i += 1

K_Val = int(K_Val[0]) # Needs to be modified if there are

multiple values

M = int(M1_Val[0])

N = len(ipList)

if str(K_Val) == "-":

K = int((M / N) * math.log(2))

K += 1

else:

K = K_Val

mParam = int(M1_Val[0])

tempBF = []

ipSelected = []

tempBF.append(int(elemns[0][-1:]))

k = 1

for k in range(1, (len(elemns)-1)):

tempBF.append(int(elemns[k][1:2]))

tempBF.append(int(elemns[len(elemns) - 1][1:2]))

k = 0

172

chkS = 0

for k in range(len(tempBF)):

chkS = chkS + tempBF[k]

print "----------------------------------"

print "Checksum sent: "+str(chkSum_sent)+"|"+"Checksum recv:

"+str(chkS)

print "RBF Size sent: "+str(mParam)+"|"+"RBF Size recv:

"+str(len(tempBF))

print "----------------------------------"

f1.write("-------------------------------- \n")

f1.write("Checksum sent: "+str(chkSum_sent)+"|"+"Checksum recv:

"+str(chkS)+" \n")

f1.write("RBF Size sent: "+str(mParam)+"|"+"RBF Size recv:

"+str(len(tempBF))+" \n")

f1.write("-------------------------------- \n")

if int(chkS) == int(chkSum_sent) and int(len(tempBF)) ==

int(mParam):

i = 0

primeNum = hf.prime_num_gen()

for i in range(len(ipList)):

hVal = hf.hash_values(M, K, ipList[i], primeNum, f1)

j = 0

count = 0

for j in range(len(hVal)):

if tempBF[int(hVal[j])] == 1:

173

count += 1

if count == K:

ipSelected.append(ipList[i])

line = ’’

k = 0

for k in range(len(ipSelected)):

line = line +" "+str(ipSelected[k])

line = line + " " +str(len(ipSelected))

line = line[1:]

print "IPs: ", str(line)

f1.write("IPs: "+str(line)+" \n")

return line

• Bloom-Filter Oprn for Caching Mechanism, contents for “bloomfilterop.py”

import threading

import socket

import time

lock = threading.Lock()

def client_without_recv(Msg, port, hostname, f):

global buff

port = int(port)

ip = str(socket.gethostbyname(hostname))

time.sleep(5)

174

Creating TCP Socket

global buff

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((ip, port))

sock.send(Msg)

sock.close()

return

class BloomFilter_Operation:

def analyseBF(self, count, msg, bloomFilters, counter, ports,

hostname, f):

lock.acquire()

print "Received #-"+str(count)+" "+"BloomFilter"

f.write("Received #-"+str(count)+" "+"BloomFilter"+" \n")

words = msg.split(" ")

l = len(words)

chkSum_sent = int(words[l-1])

elemns = msg.split(",")

print "Elements: ", elemns[0]

print "Elements count: ", len(elemns)

f1 = open(’param.conf’, ’r’)

line = f1.read()

line_words = line.split(’\n’)

f1.close()

175

print "Reading parameters from conf file "

f.write("Reading parameters from conf file \n")

i = 0

while i < (len(line_words)):

if line_words[i] == ’# M-Values’:

M1_Val = line_words[i+1].split(’ ’)

i += 1

mParam = int(M1_Val[0])

tempBF = []

print "Elements:

"+str(elemns[0][-1:])+","+str(elemns[len(elemns) - 1][1:2])

print "Elements: ", elemns[1][1:2]

tempBF.append(int(elemns[0][-1:]))

k = 1

for k in range(1, (len(elemns)-1)):

tempBF.append(int(elemns[k][1:2]))

tempBF.append(int(elemns[len(elemns) - 1][1:2]))

k = 0

chkS = 0

for k in range(len(tempBF)):

chkS = chkS + tempBF[k]

print "Temp BF: ", tempBF

print "---------------------------"

176

print "Checksum sent: "+str(chkSum_sent)+"|"+"Checksum recv:

"+str(chkS)

print "BF Size sent: "+str(mParam)+"|"+"BF Size recv:

"+str(len(tempBF))

print "----------------------------"

f.write("------------------------ \n")

f.write("Checksum sent: "+str(chkSum_sent)+"|"+"Checksum recv:

"+str(chkS)+" \n")

f.write("BF Size sent: "+str(mParam)+"|"+"BF Size recv:

"+str(len(tempBF))+" \n")

f.write("------------------------ \n")

if int(chkS) == int(chkSum_sent) and int(len(tempBF)) ==

int(mParam):

bloomFilters[count] = tempBF

lock.release()

if count == counter:

self.bitwiseand(bloomFilters, ports, hostname, f)

return

def bitwiseand(self, bloomFilters, ports, hostname, f):

Keys = bloomFilters.keys()

tempBF = []

k = 0

for k in range(len(Keys)):

if k == 0:

177

tempBF = bloomFilters[Keys[k]]

else:

i = 0

for i in range(len(tempBF)):

tempBF[i] = bloomFilters[Keys[k]][i] & tempBF[i]

l = len(tempBF)

k = 0

s = 0

for k in range(len(tempBF)):

s = s + tempBF[k]

bloomFilters[len(Keys)+1] = tempBF

print "------------------------- "

print "Resultant Bloom Filter: "

print tempBF

print "CheckSum: "+str(s)+" Size: "+str(l)

print "-------------------------- "

f.write("----------------------- \n")

f.write("Resultant Bloom Filter: \n")

f.write(str(tempBF)+" \n")

f.write("CheckSum: "+str(s)+" Size: "+str(l)+" \n")

f.write("----------------------- \n")

self.forward_resultant_BF(tempBF, ports, s, hostname, f)

return

def forward_resultant_BF(self, tempBF, ports, s, hostname, f):

178

f.write("Sending resultant bloom filter to the sub rings \n")

print "Sending resultant bloom filter to the sub rings \n"

msg = "RBF "+str(tempBF)+" "+str(s)

lenMsg = len(msg)

Msg = "00"+str(lenMsg)+" "+str(msg)

f.write(str(Msg)+" \n")

k = 0

for k in range(len(ports)):

client_without_recv(Msg, ports[k], hostname, f)

return

def find_resultant_IP(self, hopCount, sendTime, countIP, data,

counter, hostname, ip_List, f):

lock.acquire()

words = data.split(" ")

c = int(words[len(words) - 1])

k = 0

ipTemp = []

for k in range(2, (len(words) - 1)):

ipTemp.append(words[k])

if len(ipTemp) == c:

ip_List[countIP] = ipTemp

lock.release()

if countIP == counter:

print "Final data base: ", ip_List

179

f.write("Final data base: " +str(ip_List)+" \n")

self.IP_list_user(hopCount, sendTime, ip_List, counter,

hostname, data, f)

return

def IP_list_user(self, hopCount, sendTime, ip_List, counter,

hostname, data, f):

Keys = ip_List.keys()

if len(Keys) == counter:

ipTemp = []

k = 0

for k in range(len(Keys)):

if k == 0:

ips = []

ips = ip_List[Keys[k]]

i = 0

for i in range(len(ips)):

l = [ips[i], 1]

ipTemp.append(l)

else:

ips = []

ips = ip_List[Keys[k]]

print "IPS: ", ips

i = 0

for i in range(len(ipTemp)):

180

j = 0

for j in range(len(ips)):

if ips[j] == ipTemp[i][0]:

print "I am here"

c = ipTemp[i][1]

c += 1

ipTemp[i][1] = c

’’’

k = None

for k in ipTemp:

print k

’’’

fList = []

k = 0

for k in range(len(ipTemp)):

if int(ipTemp[k][1]) == counter:

fList.append(ipTemp[k][0])

print "Final IP-List: "

f.write("---------------------------------- \n")

f.write("Final IP-List: \n")

k = None

line = ’’

for k in fList:

f.write(str(k)+" \n")

line = line +" "+str(k)

181

f.write("---------------------------------- \n")

calculate fp

userPort = 10500

ip_List[counter + 1] = fList

msg = "IPLIST-CR "+str("-")+" "+str(sendTime)+"

"+str(hopCount)+line+" "+str(len(fList))

msgL = len(msg)

print "Sending final message to user: "

f.write("Sending final message to user: \n")

Msg = "00"+str(msgL)+" "+str(msg)

print Msg

f.write(str(Msg)+" \n")

client_without_recv(Msg, userPort, hostname, f)

f.write("End of simulation \n")

print "End of simulation"

return

182

APPENDIX C

Overlapped Ring Architecture Source Code

This chapter presents the source code for Overlapped Architecture for the resolution of

Co-related Attributes. The src code uses “Python2.7”, along with “numpy” and “pandas”

packages. The simulation to be started with the execution of “overlapped.py”. The other

files necessary are “readfile.py”, “workOverlapped.py”, “bloomfilterop.py”, and resource list

obtained from “ResQue”. The “readfile.py” is mentioned in Appendix-E To execute the src

code:

sudo chmod +x overlapped.py

./caching.py -f <Multiattribute - filename> -n <num of nodes in network> -m <Num

of bits Mainring> -s <Num of bits Sub ring> -o <hostname>

The number of nodes present in the network should be greater than or equal to the number

of attributes mentioned in resources list obtained from “ResQue”. The contents for each

file name is mentioned along with each sections. At the end of successful execution of

simulation, “Overlapped” architecture will be formed ready to resolve queries related to

correlated attributes.

• Over-lapped Ring Architecture Formation, contents for “overlapped.py”

import socket

import os

import sys

import time

import getopt

import random

183

import numpy as np

from readFile import calParam

from multiprocessing import Pool, Process, Manager, Lock

from workOverlapped import startWork

from Bloomfilter_op import BloomFilter_operation

bf = BloomFilter_operation()

os.system(’clear’)

f = open(’overlapped-ring.log’, ’w’)

f.close()

f = open(’overlapped-ring.log’, ’a’)

RoutingTable = {}

bloomFilters = {}

ip_List = {}

IPAddress = []

processes = []

Attrb = {}

buff = 51200

counter = 3

def client_without_recv(Msg, port, hostname, f):

global buff

port = int(port)

184

ip = str(socket.gethostbyname(hostname))

time.sleep(5)

Creating TCP Socket

global buff

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((ip, port))

sock.send(Msg)

sock.close()

return

def client(msg, port, hostname):

port = int(port)

ip = str(socket.gethostbyname(hostname))

time.sleep(5)

global buff

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((ip, port))

sock.send(msg)

data = sock.recv(buff)

sock.close()

return data

def startProcess(port, corrAttr, lock, Attrb, n, hostname, mccount,

bitsSubring, mainRingID):

var = "Process-"+str(n+1)

185

print "Starting: " + var

print "Main PID: " + str(os.getppid())

print "PID: " + str(os.getpid())

PID = os.getpid()

MPID = os.getppid()

ipList = []

print "--"

print "My Main Ring ID: ", mainRingID

print "Num of machines in my subring: ", mccount

subRingIDs = random.sample(xrange(2**bitsSubring), mccount)

print "My Subring mc ID’s: ", subRingIDs

conPort = 10000

var1 = "Process-"+str(n+1)+".log"

f1 = open(var1, ’w’)

f1.close()

f1 = open(var1, ’a’)

f1.write("----- Starting Process-"+str(n+1)+" "+

time.strftime("%c")+’-----\n’)

f1.write(’ Parent ID: ’+str(MPID)+ ’\n’)

f1.write(’ PID: ’+str(PID)+’ \n’)

f1.write("My Subring mc ID’s: "+str(subRingIDs)+"\n")

selAttrb = []

attrKey = []

valKey1 = []

valKey2 = []

186

if corrAttr[0] == "mLd1":

selAttrb = [str(corrAttr[0]), str(corrAttr[1]), str(corrAttr[2])]

f1.write("I am reposible for correlation of:

"+str(selAttrb[0])+";"+str(selAttrb[1])+";"+str(selAttrb[2])+"

\n")

print "I am reposible for correlation of:

"+str(selAttrb[0])+";"+str(selAttrb[1])+";"+str(selAttrb[2])

Key1 = selAttrb[0]

Key2 = selAttrb[1]

Key3 = selAttrb[2]

Val1 = Attrb[Key1].flatten()

Val2 = Attrb[Key2].flatten()

Val3 = Attrb[Key3].flatten()

i = 0

for i in range(len(Val1)):

attrKey.append(Val1[i])

i = 0

for i in range(len(Val2)):

valKey1.append(Val2[i])

i = 0

for i in range(len(Val3)):

valKey2.append(Val3[i])

else:

selAttrb = [str(corrAttr[0]), str(corrAttr[1])]

187

print "I am reposible for correlation of:

"+str(selAttrb[0])+";"+str(selAttrb[1])

f1.write("I am reposible for correlation of:

"+str(selAttrb[0])+";"+str(selAttrb[1])+" \n")

Key1 = selAttrb[0]

Key2 = selAttrb[1]

Val1 = Attrb[Key1].flatten()

Val2 = Attrb[Key2].flatten()

i = 0

for i in range(len(Val1)):

attrKey.append(Val1[i])

i = 0

for i in range(len(Val2)):

valKey1.append(Val2[i])

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

ip = str(socket.gethostbyname(hostname))

port = int(port)

server_address = (ip, port)

sock.bind(server_address)

print "Entering server mode at: ", var

f1.write("Entering server mode at: " +str(var)+" \n")

print "Server Address: "+str(server_address)

f1.write("Server Address: "+str(server_address)+" \n")

sock.listen(20)

sw = startWork()

188

while True:

conn, addr = sock.accept()

data = conn.recv(buff)

words = data.split(" ")

print "Received conn from: " +str(addr)+"

"+str(time.strftime("%c"))

print "Message: ", data

f1.write("Received conn from: " +str(addr)+"

"+str(time.strftime("%c"))+" \n")

f1.write("Message: "+str(data)+" \n")

word = words[1]

if word == "GET":

if words[2] == "LIST":

if len(selAttrb) == 3:

line = str(Key1)+" "+str(max(Val1))+"

"+str(min(Val1))+" "+str(Key2)+" "+str(max(Val2))+"

"+str(min(Val2))+" "+str(Key3)+" "+str(max(Val3))+"

"+str(min(Val3))

if len(selAttrb) == 2:

line = str(Key1)+" "+str(max(Val1))+"

"+str(min(Val1))+" "+str(Key2)+" "+str(max(Val2))+"

"+str(min(Val2))

conn.send(line)

if word == "IP":

189

msg, ipList = sw.getIPList(selAttrb, data, attrKey, valKey1,

valKey2, IPAddress, f1)

msgL = len(msg)

Msg = "00"+str(msgL)+" BF "+str(msg)

client_without_recv(Msg, conPort, hostname, f1)

if word == "RBF":

msg = sw.select_IP_Address(ipList, data, f1)

msgL = len(msg)

Msg = "00"+str(msgL)+" IP "+str(msg)

client_without_recv(Msg, conPort, hostname, f1)

if word == "EXIT":

print "Exiting Myself: "+str(var)

exit(0)

return

def generateIPAddress(ipCount):

k = 0

for k in range(ipCount):

ip1 = str(random.randint(100,255))

ip2 = str(random.randint(100,255))

ip3 = str(random.randint(100,255))

ip4 = str(random.randint(100,255))

ipLine = ip1+"."+ip2+"."+ip3+"."+ip4

IPAddress.append(ipLine)

return

190

def main(argv):

f.write(’--- Shibayan: Thesis Multi-Attribute Query Resolution /

Overlapped Ring ---\n’)

f.write(’--- Overlapped-ring Log --- ’+time.strftime("%c")+’ ---\n’)

filename = ’’

try:

opts, args = getopt.getopt(argv,"hf:n:m:s:o:",["ifile=","nodes=",

"bitsMain=","bitsSubring=","hostname="])

except getopt.GetoptError:

print ’python overlapped.py -f <Multiattribute - filename> -n

<num of nodes in network> -m <Num of bits Mainring> -s <Num of

bits Sub ring> -o <hostname>’

sys.exit(2)

for opt, arg in opts:

if opt == ’-h’:

print ’python overlapped.py -f <Multiattribute - filename> -n

<num of nodes in network> -m <Num of bits Mainring> -s

<Num of bits Sub ring> -o <hostname>’

sys.exit()

elif opt in ("-f", "--ifile"):

filename = arg

elif opt in ("-n", "--nodes"):

nodes = arg

191

elif opt in ("-m", "--bitsMain"):

bM = arg

elif opt in ("-s", "--bitsSubring"):

bS = arg

elif opt in ("-o", "--hostname"):

hostname = arg

numNodes = int(nodes)

bitsMain = int(bM)

bitsSubring = int(bS)

print "------- Attributes --------"

print "File name: ", filename

print "Main Ring Size: ", (2**(bitsMain))

print "Sub Ring Size: ", (2**(bitsSubring))

print "Number of Nodes: ", numNodes

print "---------------------------"

f.write(’---------------- Attributes -----------------\n’)

f.write(’Reading from file: ’+str(filename)+’\n’)

f.write(’Main Ring Capacity: ’+str(2**(bitsMain))+’\n’)

f.write(’Sub Ring Capacity: ’+str(2**(bitsSubring))+’\n’)

f.write(’Num of machines in n/w: ’+str(numNodes)+’\n’)

f.write(’---\n’)

192

mainRingIDs = random.sample(xrange(2**bitsMain), 3)

nummcSR = numNodes - 3

numsrmcCount = random.sample(xrange(nummcSR), 3)

rf = calParam()

_, nIP = rf.readFile(filename, Attrb, f)

f.write("Co-related params: "+str(Attrb.keys())+" \n")

if len(Attrb.keys()) == -1:

print "No corelated attributes present"

exit(0)

corr_attr = rf.calCorrelation(Attrb, f)

generateIPAddress(nIP)

k = None

print "Correlated Attributes: "

for k in corr_attr:

print k

f.write(str(k) + "\n")

ports = [19000, 20000, 21000]

RoutingTable[’mLd1’] = 19000

RoutingTable[’mLd5’] = 19000

RoutingTable[’mLd15’] = 19000

RoutingTable[’Tx’] = 20000

RoutingTable[’Rx’] = 20000

RoutingTable[’DSize’] = 21000

193

RoutingTable[’DFree’] = 21000

corrAttr = [[’mLd1’, ’mLd5’, ’mLd15’], [’Tx’, ’Rx’, ’-’], [’DSize’,

’DFree’, ’-’]]

numNodes = len(corrAttr)

lock = Lock()

n = 0

for n in range(numNodes):

p = Process(target = startProcess, args = (ports[n], corrAttr[n],

lock, Attrb, n, hostname, numsrmcCount[n],bitsSubring,

mainRingIDs[n]))

p.start()

processes.append(p)

llist = []

LongList = []

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

ip = str(socket.gethostbyname(hostname))

server_address = (ip, 10000)

sock.bind(server_address)

count = 0

countIP = 0

lenIPs = 0

print "Entering server mode"

f.write("Entering server mode \n")

print "Server Address: "+str(server_address)

194

f.write("Server Address: "+str(server_address)+" \n")

sock.listen(numNodes)

while True:

conn, addr = sock.accept()

data = conn.recv(buff)

print "-- "+str(time.strftime("%c"))+" -- "+str(addr)+" -->

Controller -----"

print " Message: "+str(data)

f.write("-- "+str(time.strftime("%c"))+" -- "+str(addr)+" -->

Controller ----- \n")

f.write("Message: "+str(data)+" \n")

words = data.split(" ")

word = words[1]

if (word == "GET"):

if (words[2] == "LIST"):

k = 0

line = ’’

for k in range(len(ports)):

recvMsg = client(data, ports[k], hostname)

line = line + str(recvMsg) +" "

print "Msg received: ", line

line = "GET LIST OK "+str(line)

msgLen = len(line)

msg = "0"+str(msgLen)+" "+str(line)

conn.send(msg)

195

if (words[2] == "IP"):

hopCount = int(words[3])

hopCount += 1

sendTime = float(words[4])

i = 0

for i in range(len(corrAttr)):

j = 0

llist = []

for j in range(len(corrAttr[i])):

if corrAttr[i][j] is not "-":

if corrAttr[i][j] in words:

k = 3

l = len(words)

attrb = corrAttr[i][j]

while (k < (l-1)):

if words[k] == attrb:

k += 1

maxV = float(words[k])

k += 1

minV = float(words[k])

llist.append([attrb, maxV, minV])

k += 1

else:

k += 1

LongList.append([attrb, maxV, minV])

196

x = 0

line = ’’

for x in range(len(llist)):

y = 0

for y in range(len(llist[x])):

line = line + " " + str(llist[x][y])

msg = "IP"+str(line)

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

print "Sending message to peers: ", Msg

forwardingPort = RoutingTable[attrb]

client_without_recv(Msg, forwardingPort, hostname, f)

if word == "BF":

count += 1

bf.analyze_bloomfilter(count, data, bloomFilters, counter,

ports, hostname, f)

if word == "IP":

countIP += 1

bf.find_resultant_IP(hopCount, sendTime, countIP, data,

counter, hostname, ip_List, lenIPs, f)

if word == "EXIT":

k = 0

for k in range(len(ports)):

client_without_recv(data, ports[k], hostname, f)

time.sleep(3)

197

print "Exiting Myself !"

exit(0)

return

if __name__ == "__main__":

main(sys.argv[1:])

• Overlapped Resource Selection, contents for “workOverlapped.py”

import socket

import random

import math

import os

import time

import sys

import numpy as np

from hashCalculate import hashfunctions

hf = hashfunctions()

class startWork:

def funcTxRx(self, x):

return float((np.log(x)) + x + 1)

def funcDSDF(self, x):

return float((np.log(x**(-10.20587197)) + (1.02847843 * x)))

198

def funcmLd15(self, x):

return (np.log(x**(0.14554757)) + (0.7263016 * x) + 0.16900252)

def funcmLd115(self, x):

return (np.log(x**(0.18088713))+ (0.63456338 * x) + 0.27296098)

def getIPList(self, selAttrb, data, attrKey, valKey1, valKey2,

IPAddress, f1):

K_Val = []

M1_Val = []

BF = []

data = data[:-1]

ll = []

words = data.split()

k = 2

while k < len(words):

attrb = words[k]

k += 1

maxV = float(words[k])

k += 1

minV = float(words[k])

k += 1

ll.append([attrb, maxV, minV])

f = open(’param.conf’, ’r’)

199

line = f.read()

line_words = line.split(’\n’)

f.close()

print "Reading parameters from conf file "

f1.write("Reading parameters from conf file \n")

i = 0

while i < (len(line_words)):

if line_words[i] == ’# K-Values’:

K_Val = line_words[i+1].split(’ ’)

if line_words[i] == ’# M-Values’:

M1_Val = line_words[i+1].split(’ ’)

i += 1

K_Val = int(K_Val[0]) # Needs to be modified if there are

multiple values

M = int(M1_Val[0])

ipList = self.calParam(ll, selAttrb, attrKey, valKey1, valKey2,

IPAddress, f1)

N = len(ipList)

if str(K_Val) == "-":

K = int((M / N) * math.log(2))

K += 1

else:

K = K_Val

print "K-Val: "+str(K)+" M-Val: "+str(M)+" N-Val: "+str(N)

200

f1.write("K-Val: "+str(K)+" M-Val: "+str(M)+" N-Val: "+str(N)+"

\n")

k = 0

for k in range(M):

BF.append("-")

primeNum = hf.prime_num_gen()

f1.write("\n Initial Bloom Filter: \n")

f1.write("\n"+str(BF)+" \n")

i = 0

for i in range(len(ipList)):

hVal = hf.hash_values(M, K, ipList[i], primeNum, f1)

print str(ipList[i])+" -> "+str(hVal)

j = 0

for j in range(len(hVal)):

ind = int(hVal[j])

if str(BF[ind]) == "-":

BF[ind] = 1

k = 0

checkSum = 0

for k in range(len(BF)):

if BF[k] == "-":

BF[k] = 0

else:

checkSum = checkSum + BF[k]

f1.write("\n")

201

f1.write("\n")

f1.write("Final Bloom Filter: \n")

f1.write(str(BF)+" \n")

f1.write(str(checkSum)+" \n")

Msg = str(BF)+" "+str(checkSum)

return (Msg, ipList)

def calParam(self, ll, selAttrb, attrKey, valKey1, valKey2,

IPAddress, f1):

ipList = []

ind = []

if selAttrb[0] == ’mLd1’:

minVal = float(ll[0][2])

minpredictedmLd5 = self.funcmLd15(minVal)

if float(minpredictedmLd5) <= 0.0:

minpredictedmLd5 = 0.0

minpredictedmLd15 = self.funcmLd115(minVal)

if float(minpredictedmLd15) <= 0.0:

minpredictedmLd15 = 0.0

maxVal = float(ll[0][1])

maxpredictedmLd5 = self.funcmLd15(maxVal)

maxpredictedmLd15 = self.funcmLd115(maxVal)

202

print "mLd1: ["+str(maxVal)+","+str(minVal)+"] -> Actual mLd5

["+str(float(ll[1][1]))+","+str(float(ll[1][2]))+"] ->

Actual mLd15

["+str(float(ll[2][1]))+","+str(float(ll[2][2]))+"]"

print "mLd1: ["+str(maxVal)+","+str(minVal)+"] -> Overlapped

mLd5 ["+str(maxpredictedmLd5)+","+str(minpredictedmLd5)+"]

-> Overlapped mLd15

["+str(maxpredictedmLd15)+","+str(minpredictedmLd15)+"]"

print "mLd5 actual range: "+str(float(ll[1][1]) -

float(ll[1][2]))

print "mLd15 actual range: "+str(float(ll[2][1]) -

float(ll[2][2]))

f1.write("mLd1: ["+str(maxVal)+","+str(minVal)+"] -> Actual

mLd5 ["+str(float(ll[1][1]))+","+str(float(ll[1][2]))+"]

-> Actual mLd15

["+str(float(ll[2][1]))+","+str(float(ll[2][2]))+"] \n")

f1.write("mLd1: ["+str(maxVal)+","+str(minVal)+"] ->

Overlapped mLd5

["+str(maxpredictedmLd5)+","+str(minpredictedmLd5)+"] ->

Overlapped mLd15

["+str(maxpredictedmLd15)+","+str(minpredictedmLd15)+"]

\n")

f1.write("mLd5 actual range: "+str(float(ll[1][1]) -

float(ll[1][2]))+" \n")

203

f1.write("mLd15 actual range: "+str(float(ll[2][1]) -

float(ll[2][2]))+" \n")

i = 0

for i in range(len(valKey1)):

if float(valKey1[i]) >= minpredictedmLd5 and

float(valKey1[i]) <= maxpredictedmLd5:

if float(valKey2[i]) >= minpredictedmLd15 and

float(valKey2[i]) <= maxpredictedmLd15:

ind.append(i)

i = 0

f1.write("Selected IP Addresses \n")

f1.write("--------------------------------------- \n")

for i in range(len(ind)):

ipList.append(IPAddress[ind[i]])

f1.write(str(IPAddress[ind[i]])+" \n")

f1.write("--------------------------------------- \n")

if selAttrb[0] == ’Tx’:

minVal = float(ll[0][2])

minpredictedRx = self.funcTxRx(minVal)

if float(minpredictedRx) <= 0.0:

minpredictedRx = 0.0

maxVal = float(ll[0][1])

maxpredictedRx = self.funcTxRx(maxVal)

print "Tx: ["+str(maxVal)+","+str(minVal)+"] -> Actual Rx

["+str(float(ll[1][1]))+","+str(float(ll[1][2]))+"]"

204

print "Tx: ["+str(maxVal)+","+str(minVal)+"] -> Overlapped Rx

["+str(maxpredictedRx)+","+str(minpredictedRx)+"]"

print "Rx actual range: "+str(float(ll[1][1]) -

float(ll[1][2]))

print "Rx overlapped range: "+str(float(maxpredictedRx) -

float(minpredictedRx))

f1.write("Tx: ["+str(maxVal)+","+str(minVal)+"] -> Actual Rx

["+str(float(ll[1][1]))+","+str(float(ll[1][2]))+"] \n")

f1.write("Tx: ["+str(maxVal)+","+str(minVal)+"] -> Overlapped

Rx ["+str(maxpredictedRx)+","+str(minpredictedRx)+"] \n")

f1.write("Rx actual range: "+str(float(ll[1][1]) -

float(ll[1][2]))+" \n")

f1.write("Rx overlapped range: "+str(float(maxpredictedRx) -

float(minpredictedRx))+" \n")

i = 0

for i in range(len(valKey1)):

if float(valKey1[i]) >= minpredictedRx and

float(valKey1[i]) <= maxpredictedRx:

ind.append(i)

i = 0

f1.write("Selected IPAddresses: \n")

f1.write("------------------------- \n")

for i in range(len(ind)):

ipList.append(IPAddress[ind[i]])

f1.write(str(IPAddress[ind[i]])+" \n")

205

f1.write("------------------------- \n")

if selAttrb[0] == ’DSize’:

minVal = float(ll[0][2])

minpredictedDFree = self.funcDSDF(minVal)

if float(minpredictedDFree) <= 0.0:

minpredictedDFree = 0.0

maxVal = float(ll[0][1])

maxpredictedDFree = self.funcDSDF(maxVal)

print "DSize: ["+str(maxVal)+","+str(minVal)+"] -> Actual

DFree ["+str(float(ll[1][1]))+","+str(float(ll[1][2]))+"]"

print "DSize: ["+str(maxVal)+","+str(minVal)+"] -> Overlapped

DFree

["+str(maxpredictedDFree)+","+str(minpredictedDFree)+"]"

print "DFree actual range: "+str(float(ll[1][1]) -

float(ll[1][2]))

print "DFree overlapped range: "+str(float(maxpredictedDFree)

- float(minpredictedDFree))

f1.write("DSize: ["+str(maxVal)+","+str(minVal)+"] -> Actual

DFree ["+str(float(ll[1][1]))+","+str(float(ll[1][2]))+"]

\n")

f1.write("DSize: ["+str(maxVal)+","+str(minVal)+"] ->

Overlapped DFree

["+str(maxpredictedDFree)+","+str(minpredictedDFree)+"]

\n")

206

f1.write("DFree actual range: "+str(float(ll[1][1]) -

float(ll[1][2]))+" \n")

f1.write("DFree overlapped range:

"+str(float(maxpredictedDFree) -

float(minpredictedDFree))+" \n")

i = 0

for i in range(len(valKey1)):

if float(valKey1[i]) >= minpredictedDFree and

float(valKey1[i]) <= maxpredictedDFree:

ind.append(i)

i = 0

f1.write("Selected IPAddresses: \n")

f1.write("------------------------- \n")

for i in range(len(ind)):

ipList.append(IPAddress[ind[i]])

f1.write(str(IPAddress[ind[i]])+" \n")

f1.write("------------------------- \n")

return ipList

def select_IP_Address(self, ipList, data, f1):

elemns = data.split(",")

words = data.split(" ")

l = len(words)

chkSum_sent = int(words[l-1])

ff = open(’param.conf’, ’r’)

207

line = ff.read()

line_words = line.split(’\n’)

ff.close()

i = 0

while i < (len(line_words)):

if line_words[i] == ’# K-Values’:

K_Val = line_words[i+1].split(’ ’)

if line_words[i] == ’# M-Values’:

M1_Val = line_words[i+1].split(’ ’)

i += 1

K_Val = int(K_Val[0]) # Needs to be modified if there are

multiple values

M = int(M1_Val[0])

N = len(ipList)

if str(K_Val) == "-":

K = int((M / N) * math.log(2))

K += 1

else:

K = K_Val

mParam = int(M1_Val[0])

tempBF = []

ipSelected = []

tempBF.append(int(elemns[0][-1:]))

k = 1

for k in range(1, (len(elemns)-1)):

208

tempBF.append(int(elemns[k][1:2]))

tempBF.append(int(elemns[len(elemns) - 1][1:2]))

k = 0

chkS = 0

for k in range(len(tempBF)):

chkS = chkS + tempBF[k]

print "-----------------------------"

print "Checksum sent: "+str(chkSum_sent)+"|"+"Checksum recv:

"+str(chkS)

print "RBF Size sent: "+str(mParam)+"|"+"RBF Size recv:

"+str(len(tempBF))

print "-----------------------------"

f1.write("--------------------------- \n")

f1.write("Checksum sent: "+str(chkSum_sent)+"|"+"Checksum recv:

"+str(chkS)+" \n")

f1.write("RBF Size sent: "+str(mParam)+"|"+"RBF Size recv:

"+str(len(tempBF))+" \n")

f1.write("--------------------------- \n")

if int(chkS) == int(chkSum_sent) and int(len(tempBF)) ==

int(mParam):

i = 0

primeNum = hf.prime_num_gen()

for i in range(len(ipList)):

hVal = hf.hash_values(M, K, ipList[i], primeNum, f1)

j = 0

209

count = 0

for j in range(len(hVal)):

if tempBF[int(hVal[j])] == 1:

count += 1

if count == K:

ipSelected.append(ipList[i])

line = ’’

k = 0

for k in range(len(ipSelected)):

line = line +" "+str(ipSelected[k])

line = line + " " +str(len(ipSelected))

line = line[1:]

print "IPs: ", str(line)

f1.write("IPs: "+str(line)+" \n")

return line

• Bloom-Filter Operation for Over-lapped Ring Architecture, contents for

“Bloomfilterop.py”

import threading

import socket

import time

lock = threading.Lock()

def client_without_recv(Msg, port, hostname, f):

210

global buff

port = int(port)

ip = str(socket.gethostbyname(hostname))

time.sleep(5)

Creating TCP Socket

global buff

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((ip, port))

sock.send(Msg)

sock.close()

return

class BloomFilter_operation:

def analyze_bloomfilter(self, count, msg, bloomFilters, counter,

ports, hostname, f):

lock.acquire()

print "Received #-"+str(count)+" "+"BloomFilter"

f.write("Received #-"+str(count)+" "+"BloomFilter"+" \n")

words = msg.split(" ")

l = len(words)

chkSum_sent = int(words[l-1])

elemns = msg.split(",")

print "Elements: ", elemns[0]

print "Elements count: ", len(elemns)

211

f1 = open(’param.conf’, ’r’)

line = f1.read()

line_words = line.split(’\n’)

f1.close()

print "Reading parameters from conf file "

f.write("Reading parameters from conf file \n")

i = 0

while i < (len(line_words)):

if line_words[i] == ’# M-Values’:

M1_Val = line_words[i+1].split(’ ’)

i += 1

mParam = int(M1_Val[0])

tempBF = []

print "Elements:

"+str(elemns[0][-1:])+","+str(elemns[len(elemns) - 1][1:2])

print "Elements: ", elemns[1][1:2]

tempBF.append(int(elemns[0][-1:]))

k = 1

for k in range(1, (len(elemns)-1)):

tempBF.append(int(elemns[k][1:2]))

tempBF.append(int(elemns[len(elemns) - 1][1:2]))

k = 0

chkS = 0

for k in range(len(tempBF)):

212

chkS = chkS + tempBF[k]

print "Temp BF: ", tempBF

print "---------------------------------"

print "Checksum sent: "+str(chkSum_sent)+"|"+"Checksum recv:

"+str(chkS)

print "BF Size sent: "+str(mParam)+"|"+"BF Size recv:

"+str(len(tempBF))

print "---------------------------------"

f.write("----------------------------- \n")

f.write("Checksum sent: "+str(chkSum_sent)+"|"+"Checksum recv:

"+str(chkS)+" \n")

f.write("BF Size sent: "+str(mParam)+"|"+"BF Size recv:

"+str(len(tempBF))+" \n")

f.write("----------------------------- \n")

if int(chkS) == int(chkSum_sent) and int(len(tempBF)) ==

int(mParam):

bloomFilters[count] = tempBF

lock.release()

if count == counter:

self.bitwiseand(bloomFilters, ports, hostname, f)

return

def bitwiseand(self, bloomFilters, ports, hostname, f):

Keys = bloomFilters.keys()

tempBF = []

213

k = 0

for k in range(len(Keys)):

if k == 0:

tempBF = bloomFilters[Keys[k]]

else:

i = 0

for i in range(len(tempBF)):

tempBF[i] = bloomFilters[Keys[k]][i] & tempBF[i]

l = len(tempBF)

k = 0

s = 0

for k in range(len(tempBF)):

s = s + tempBF[k]

bloomFilters[len(Keys)+1] = tempBF

print "----------------------- "

print "Resultant Bloom Filter: "

print tempBF

print "CheckSum: "+str(s)+" Size: "+str(l)

print "----------------------- "

f.write("---------------------\n")

f.write("Resultant Bloom Filter: \n")

f.write(str(tempBF)+" \n")

f.write("CheckSum: "+str(s)+" Size: "+str(l)+" \n")

f.write("---------------------\n")

self.forward_resultant_BF(tempBF, ports, s, hostname, f)

214

return

def forward_resultant_BF(self, tempBF, ports, s, hostname, f):

f.write("Sending resultant bloom filter to the sub rings \n")

print "Sending resultant bloom filter to the sub rings \n"

msg = "RBF "+str(tempBF)+" "+str(s)

lenMsg = len(msg)

Msg = "00"+str(lenMsg)+" "+str(msg)

f.write(str(Msg)+" \n")

k = 0

for k in range(len(ports)):

client_without_recv(Msg, ports[k], hostname, f)

return

def find_resultant_IP(self, hopCount, sendTime, countIP, data,

counter, hostname, ip_List, lenIPs, f):

lock.acquire()

words = data.split(" ")

c = int(words[len(words) - 1])

k = 0

ipTemp = []

for k in range(2, (len(words) - 1)):

ipTemp.append(words[k])

if len(ipTemp) == c:

ip_List[countIP] = ipTemp

215

lenIPs = lenIPs + c

lock.release()

if countIP == counter:

print "Final data base: ", ip_List

f.write("Final data base: " +str(ip_List)+" \n")

self.IP_list_user(hopCount, sendTime, ip_List, counter,

hostname, lenIPs, f)

return

def IP_list_user(self, hopCount, sendTime, ip_List, counter,

hostname, lenIPs, f):

Keys = ip_List.keys()

if len(Keys) == counter:

ipTemp = []

k = 0

for k in range(len(Keys)):

if k == 0:

ips = []

ips = ip_List[Keys[k]]

i = 0

for i in range(len(ips)):

l = [ips[i], 1]

ipTemp.append(l)

else:

ips = []

216

ips = ip_List[Keys[k]]

print "IPS: ", ips

i = 0

for i in range(len(ipTemp)):

j = 0

for j in range(len(ips)):

if ips[j] == ipTemp[i][0]:

print "I am here"

c = ipTemp[i][1]

c += 1

ipTemp[i][1] = c

’’’

k = None

for k in ipTemp:

print k

’’’

fList = []

k = 0

for k in range(len(ipTemp)):

if int(ipTemp[k][1]) == counter:

fList.append(ipTemp[k][0])

print "Final IP-List: "

f.write("------------------------ \n")

f.write("Final IP-List: \n")

k = None

217

line = ’’

for k in fList:

f.write(str(k)+" \n")

line = line +" "+str(k)

f.write("------------------------ \n")

calculate fp

userPort = 10500

ip_List[counter + 1] = fList

msg = "IPLIST-OR "+str(lenIPs)+" "+str(sendTime)+"

"+str(hopCount)+line+" "+str(len(fList))

msgL = len(msg)

print "Sending final message to user: "

f.write("Sending final message to user: \n")

Msg = "00"+str(msgL)+" "+str(msg)

print Msg

f.write(str(Msg)+" \n")

client_without_recv(Msg, userPort, hostname, f)

f.write("End of simulation \n")

print "End of simulation"

return

218

APPENDIX D

Test Cases for Multi-Attribute, Caching and

Overlapped Ring

This chapter presents the source code for testing Multi-Attribute (ROR) architecture,

Caching Mechanism and Overlapped Architecture. The src code mentioned here provides

test cases for generating queries to each individual methodologies mentioned above. The

src code uses “Python2.7”, along with “numpy” and “pandas” packages. The “filename”

mentioned as input is the resource list obtained from “ResQue”. To execute the src code:

sudo chmod +x testmultiring.py

./python testmultiring.py -o hostname -f filename -s segments

The hostname is the host name of the machine on which the simulation is to be executed.

The entire list of resources are divided into multiple segments (value determined by the

user), and the upper limit and lower limit for each individual attribute within a segment

is calculated. These attributes along-with their upper limit and lower limit are combined

together and passed on as a single query. For example a random query will look like:

0032 GET IPLIST NCore 4 2 Tx 1200 800 DSize 200 173 MSize 100 53

The query generated will contain all the attributes that is mentioned in the resource list. If

the user wants to generate query for a some of the attributes not all that needs to be done

manually.

• Test-Cases for Multi-Attribute query resolution using ROR Architecture,

contents for “testmultiring.py”

219

import sys

import socket

import os

import time

import datetime

import getopt

import random

import pandas as pd

import numpy as np

os.system("clear")

f = open(’search.log’, ’w’)

f.close()

f = open(’search.log’, ’a’)

randserver_port = 10500

buff = 4096

controller_Port = 10000

boostrap_port = 11000

Vals = []

ncore = []

processes_ui = []

Attrb = {}

seg = []

220

queryAttrb = {}

querycrAttrb = {}

port_alive = [10000, 10500]

tSent = 0

def cal_time():

ts = time.time()

st = datetime.datetime.fromtimestamp(ts).strftime(’%H:%M:%S’)

return ts

def client_without_recv(msg, port, hostname, f):

port = int(port)

ip = str(socket.gethostbyname(hostname))

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((ip, port))

sock.send(msg)

sock.close()

return

def client(msg, port, hostname, f):

port = int(port)

ip = str(socket.gethostbyname(hostname))

global buff

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((ip, port))

221

print "Contacting server... "

sock.send(msg)

time.sleep(3)

print "Wait for the reply..."

msg = sock.recv(buff)

sock.close()

return msg

def ip_list(data, f):

print "IP-List: ", str(data)

words = data.split(" ")

print "length: ", len(words)

return

class search():

global controller_Port

def getlist(self, hostname, f):

msg = "GET LIST"

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

f.write("Contacting controller for getting attribute list ... \n")

f.write(str(Msg) + " \n")

print "Contacting controller for getting attribute list ..."

222

print "Message: "+str(Msg)

rep = client(Msg, controller_Port, hostname, f)

f.write("Reply from controller ... \n")

f.write(str(rep) + " \n")

print "Reply from controller"

print rep

return rep

def analyse_data(self, dataSet, segment, reply, f):

print "Analyzing controller data.."

f.write("Analyzing controller data.. \n")

msg = reply.strip()

words = msg.split(" ")

l = len(words)

print "Length: "+str(l)

nAttrb = words[3]

nIP = words[4]

k = 5

c = 0

while k < (l-1):

attr = str(words[k])

k += 1

minV = str(words[k])

k += 1

maxV = str(words[k])

223

k += 1

r = str(words[k]) # r is the range

Vals.append([minV, maxV, r, attr])

c +=1

k += 1

print "---------------------"

print "Num of Attributes: "+str(nAttrb)

print "Num of Resources: "+str(nIP)

print "---------------------"

print " Attributes | Upper Limit | Lower Limit | Range "

k = 0

for k in range(len(Vals)):

print str(Vals[k][3])+" | "+str(Vals[k][1])+" |

"+str(Vals[k][0])+" | "+str(Vals[k][2])

print "---------------------"

f.write("------------------- \n")

f.write("Num of Attributes: "+str(nAttrb)+" \n")

f.write("Num of Resources: "+str(nIP)+" \n")

f.write("------------------- \n")

k = 0

f.write(" Attributes | Upper Limit | Lower Limit | Range \n")

for k in range(len(Vals)):

f.write(str(Vals[k][3])+" | "+str(Vals[k][1])+" |

"+str(Vals[k][0])+" | "+str(Vals[k][2])+" \n")

224

f.write("------------------- \n")

numLines = dataSet.shape[0]

parts = numLines / segment

print "Parts: ", parts

k = 0

initSeg = k

newSeg = parts

for k in range(segment):

partn = [initSeg, newSeg]

seg.append(partn)

initSeg = newSeg + 1

newSeg = parts * (k+2)

if initSeg < numLines:

partn = [initSeg, numLines - 1]

seg.append(partn)

print "Segments: ", seg

data = dataSet.values

CSp = np.array(data[:,0:1])

NCore = np.array(data[:,1:2])

CFree = np.array(data[:,2:3])

mLd1 = np.array(data[:,3:4])

mLd5 = np.array(data[:,4:5])

mLd15 = np.array(data[:,5:6])

MSize = np.array(data[:,6:7])

MFree = np.array(data[:,7:8])

225

DSize = np.array(data[:,8:9])

DFree = np.array(data[:,9:10])

Rx = np.array(data[:,10:11])

Tx = np.array(data[:,11:12])

Attrb[’Csp’] = CSp

Attrb[’NCore’] = NCore

Attrb[’CFree’] = CFree

Attrb[’1mLd’] = mLd1

Attrb[’5mLd’] = mLd5

Attrb[’15mLd’] = mLd15

Attrb[’MSize’] = MSize

Attrb[’MFree%’] = MFree

Attrb[’DSize’] = DSize

Attrb[’DFree’] = DFree

Attrb[’Rx’] = Rx

Attrb[’Tx’] = Tx

k = 0

for k in range(len(seg)):

line = ’’

lowerLimit = seg[k][0]

upperLimit = seg[k][1]

r1 = float(min(np.array(data[lowerLimit:upperLimit,0:1])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,0:1])))

line = line +" "+"CSp "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,1:2])))

226

r2 = float(max(np.array(data[lowerLimit:upperLimit,1:2])))

line = line +" "+"NCore "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,2:3])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,2:3])))

line = line +" "+"CFree "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,3:4])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,3:4])))

line = line +" "+"1mLd "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,4:5])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,4:5])))

line = line +" "+"5mLd "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,5:6])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,5:6])))

line = line +" "+"15mLd "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,6:7])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,6:7])))

line = line +" "+"MSize "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,7:8])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,7:8])))

line = line +" "+"MFree% "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,8:9])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,8:9])))

line = line +" "+"DSize "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,9:10])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,9:10])))

227

line = line +" "+"DFree "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,10:11])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,10:11])))

line = line +" "+"Rx "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,11:12])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,11:12])))

line = line +" "+"Tx "+str(r2)+" "+str(r1)

line = line[1:]

queryAttrb[k+1] = line

k = 0

for k in range(len(seg)):

line = ’’

lowerLimit = seg[k][0]

upperLimit = seg[k][1]

r1 = float(min(np.array(data[lowerLimit:upperLimit,3:4])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,3:4])))

line = line +" "+"1mLd "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,4:5])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,4:5])))

line = line +" "+"5mLd "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,5:6])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,5:6])))

line = line +" "+"15mLd "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,8:9])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,8:9])))

228

line = line +" "+"DSize "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,9:10])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,9:10])))

line = line +" "+"DFree "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,10:11])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,10:11])))

line = line +" "+"Rx "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,11:12])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,11:12])))

line = line +" "+"Tx "+str(r2)+" "+str(r1)

line = line[1:]

querycrAttrb[k+1] = line

return

def userInterface(self, hostname, segment, f):

while True:

print " --------------------- "

print " 1 -> LOOKUP "

print " 2 -> LOOKUP CR "

print " 3 -> EXIT "

print " --------------------- "

ch = int(raw_input("Enter your choice: "))

if ch == 3:

self.exitMessage(hostname, f)

elif ch == 1:

229

self.lookup_list(hostname, segment, f)

elif ch == 2:

self.lookup_list_cr(hostname, segment, f)

else:

print "Unknown choice, try again !"

def lookup_list_cr(self, hostname, segment, f):

msg = "EXIT"

msgl = len(msg)

Msg = str(msgl)+" "+str(msg)

client_without_recv(Msg, boostrap_port, hostname, f)

print "Here are the look up options:"

print "------------------------------------"

print "Num of segments for query: ", len(seg)

print "Parts: 1, 2, ... , "+str(len(seg))

print "------------------------------------"

print "Query format: Attr_1 <u_1 l_1> Attr_2 <u_2 l_2> ..

Attr_n <u_n l_n>"

tSent = cal_time()

choice = int(raw_input("Enter your segment choice: "))

print "Contacting controller for IP List"

msg = "GET IPLIST 0 "+str(querycrAttrb[choice])+" "+str(tSent)

msgL = len(msg)

Msg = "0"+str(msgL)+" "+str(msg)

print "Sending Msg: ", Msg

230

client_without_recv(Msg, controller_Port, hostname, f)

return

def lookup_list(self, hostname, segment, f):

msg = "EXIT"

msgl = len(msg)

Msg = str(msgl)+" "+str(msg)

client_without_recv(Msg, boostrap_port, hostname, f)

print "Here are the look up options:"

print "------------------------------------"

print "Num of segments for query: ", len(seg)

print "Parts: 1, 2, ... , "+str(len(seg))

print "------------------------------------"

print "Query format: Attr_1 <u_1 l_1> Attr_2 <u_2 l_2> ..

Attr_n <u_n l_n>"

tSent = cal_time()

choice = int(raw_input("Enter your segment choice: "))

print "Contacting controller for IP List"

msg = "GET IPLIST 0 "+str(queryAttrb[choice])+" "+str(tSent)

msgL = len(msg)

Msg = "0"+str(msgL)+" "+str(msg)

print "Sending Msg: ", Msg

client_without_recv(Msg, controller_Port, hostname, f)

return

231

def exitMessage(self, hostname, f):

msg = "EXIT"

num = 2

k = 0

for k in range(num):

msgl = len(msg)

Msg = str(msgl)+" "+str(msg)

port = int(port_alive[k])

client_without_recv(Msg, port, hostname, f)

print "Exiting myself !"

f.write("Exiting myself ! \n")

exit(0)

return

s = search()

def main(argv):

f.write(’--- Shibayan: Thesis Multi-Attribute Query

Resolution ---\n’)

f.write(’--- Search Log --- ’+time.strftime("%c")+’ ---\n’)

global myPort

global buff

try:

232

opts, args = getopt.getopt(argv,"ho:f:s:",["ifile=", "hostname=",

"segment="])

except getopt.GetoptError:

print ’python testmultiring.py -o hostname -f filename -s

segments’

sys.exit(2)

for opt, arg in opts:

if opt == ’-h’:

print ’python testmutliring.py -o <hostname> -f <filename> -s

<segments>’

sys.exit()

elif opt in ("-o", "--hostname"):

hostname = arg

elif opt in ("-f", "--ifile"):

filename = arg

elif opt in ("-s", "--segment"):

segment = arg

print "Filename: ", filename

segment = int(segment)

dataSet = pd.read_csv(filename, sep = ’\t’)

print "Dataset shape: ", dataSet.shape

nAttrb = dataSet.shape[1]

nAttrb = int(nAttrb)

reply = s.getlist(hostname, f)

233

s.analyse_data(dataSet, segment, reply, f)

s.userInterface(hostname, segment, f)

if __name__ == "__main__":

main(sys.argv[1:])

The src code mentioned here provides test cases for generating queries related to

correlated attributes only. These queries are resolved only by caching and overlapped

ring architecture. The src code uses “Python2.7”, along with “numpy” and “pandas”

packages. The “filename” mentioned as input is the resource list obtained from

“ResQue”. To execute the src code:

sudo chmod +x testcorrelated.py

./python testcorrelated.py -o hostname -f filename -s segments

The hostname is the host name of the machine on which the simulation is to be

executed. The entire list of resources are divided into multiple segments (value

determined by the user), and the upper limit and lower limit for each individual

attribute within a segment is calculated. These attributes along-with their upper

limit and lower limit are combined together and passed on as a single query. For

example a random query will look like:

0032 GET IPLIST Tx 1200 800 Rx 1100 700 DSize 200 173 DFree 100 53

234

The query generated will contain all the correlated attributes that is mentioned in

the resource list. If the user wants to generate query for a some of the attributes

not all that needs to be done manually.

• Test-Cases for Caching and Overlapped Ring Architecture, contents for

“testcorrelated.py”

This test case is used for Caching & Overlapped Ring Architectures

The queries are generated at random for the same resource list used

for the above mentioned mechanisms

import sys

import socket

import os

import time

import datetime

import getopt

import random

import pandas as pd

import numpy as np

os.system("clear")

f = open(’search.log’, ’w’)

f.close()

f = open(’search.log’, ’a’)

randserver_port = 10500

235

buff = 4096

controller_Port = 10000

Vals = []

lineNum = []

Attrb = {}

queryAttrb = {}

seg = []

portAlive = [10000, 10500]

def cal_time():

ts = time.time()

st = datetime.datetime.fromtimestamp(ts).strftime(’%H:%M:%S’)

return ts

def client_without_recv(msg, port, hostname, f):

port = int(port)

ip = str(socket.gethostbyname(hostname))

global buff

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((ip, port))

print "Contacting server... "

sock.send(msg)

time.sleep(3)

print "Wait for the reply, in the output screen"

print "Getting back to to user screen"

236

sock.close()

return

def exitMessage(hostname, f):

msg = "EXIT"

num = 2

k = 0

for k in range(num):

msgl = len(msg)

Msg = str(msgl)+" "+str(msg)

port = int(portAlive[k])

client_without_recv(Msg, port, hostname, f)

print "Exiting myself !"

f.write("Exiting myself ! \n")

exit(0)

return

def client(msg, port, hostname, f):

port = int(port)

ip = str(socket.gethostbyname(hostname))

global buff

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((ip, port))

print "Contacting server... "

sock.send(msg)

237

time.sleep(3)

print "Wait for the reply..."

msg = sock.recv(buff)

sock.close()

return msg

def getlist(hostname, f):

msg = "GET LIST"

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

f.write("Contacting controller for getting attribute list ... \n")

f.write(str(Msg) + " \n")

print "Contacting controller for getting attribute list ..."

print "Message: "+str(Msg)

rep = client(Msg, controller_Port, hostname, f)

f.write("Reply from controller ... \n")

f.write(str(rep) + " \n")

print "Reply from controller"

print rep

return rep

def analyse_data(dataSet, segment, reply, f):

print "Analyzing controller data.."

f.write("Analyzing controller data.. \n")

msg = reply[:-1]

238

words = msg.split(" ")

l = len(words)

print "Length: "+str(l)

k = 4

while k < (l-1):

attr = str(words[k])

k += 1

maxV = str(words[k])

k += 1

minV = str(words[k])

k += 1

r = float(maxV) - float(minV)

Vals.append([attr, maxV, minV, r])

print "---------------------"

f.write("------------------ \n")

print "Num of Attributes: "+str(len(Vals))

f.write("Num of Attributes: "+str(len(Vals))+" \n")

print "---------------------"

f.write("------------------ \n")

print " Attributes | Upper Limit | Lower Limit | Range "

f.write(" Attributes | Upper Limit | Lower Limit | Range \n")

k = 0

for k in range(len(Vals)):

239

print str(Vals[k][0])+" | "+str(Vals[k][1])+" |

"+str(Vals[k][2])+" | "+str(Vals[k][3])

f.write(str(Vals[k][0])+" | "+str(Vals[k][1])+" |

"+str(Vals[k][2])+" | "+str(Vals[k][3])+" \n")

print "----------------------"

f.write("------------------ \n")

numLines = dataSet.shape[0]

parts = numLines / segment

print "Parts: ", parts

k = 0

initSeg = k

newSeg = parts

for k in range(segment):

partn = [initSeg, newSeg]

seg.append(partn)

initSeg = newSeg + 1

newSeg = parts * (k+2)

if initSeg < numLines:

partn = [initSeg, numLines - 1]

seg.append(partn)

print "Segments: ", seg

data = dataSet.values

mLd1 = np.array(data[:,3:4])

mLd5 = np.array(data[:,4:5])

mLd15 = np.array(data[:,5:6])

240

DSize = np.array(data[:,8:9])

DFree = np.array(data[:,9:10])

Rx = np.array(data[:,10:11])

Tx = np.array(data[:,11:12])

Attrb[’mLd1’] = mLd1

Attrb[’mLd5’] = mLd5

Attrb[’mLd15’] = mLd15

Attrb[’DSize’] = DSize

Attrb[’DFree’] = DFree

Attrb[’Rx’] = Rx

Attrb[’Tx’] = Tx

k = 0

for k in range(len(seg)):

line = ’’

lowerLimit = seg[k][0]

upperLimit = seg[k][1]

r1 = float(min(np.array(data[lowerLimit:upperLimit,3:4])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,3:4])))

line = line +" "+"mLd1 "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,4:5])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,4:5])))

line = line +" "+"mLd5 "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,5:6])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,5:6])))

line = line +" "+"mLd15 "+str(r2)+" "+str(r1)

241

r1 = float(min(np.array(data[lowerLimit:upperLimit,8:9])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,8:9])))

line = line +" "+"DSize "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,9:10])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,9:10])))

line = line +" "+"DFree "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,10:11])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,10:11])))

line = line +" "+"Rx "+str(r2)+" "+str(r1)

r1 = float(min(np.array(data[lowerLimit:upperLimit,11:12])))

r2 = float(max(np.array(data[lowerLimit:upperLimit,11:12])))

line = line +" "+"Tx "+str(r2)+" "+str(r1)

line = line[1:]

print "Query Line:", line

queryAttrb[k+1] = line

return

def lookup_list(hostname, segments, f):

print "Here are the look up options:"

print "------------------------------------"

print "Num of segments for query: ", len(seg)

print "Parts: 1, 2, ... , "+str(len(seg))

print "------------------------------------"

print "Query format: Attr_1 <u_1 l_1> Attr_2 <u_2 l_2> ... Attr_n

<u_n l_n>"

242

tSent = cal_time()

choice = int(raw_input("Enter your segment choice: "))

msg = "GET IPLIST 0 "+str(tSent)+" "+str(queryAttrb[choice])

msgL = len(msg)

Msg = "0"+str(msgL)+" "+str(msg)

print "Sending Msg: ", Msg

client_without_recv(Msg, controller_Port, hostname, f)

return

def userInterface(hostname, segment, f):

while True:

print " --------------------- "

print " 1 -> LOOKUP "

print " 2 -> EXIT "

print " --------------------- "

ch = int(raw_input("Enter your choice: "))

if ch == 2:

exitMessage(hostname, f)

elif ch == 1:

lookup_list(hostname, segment, f)

else:

print "Unknown choice, try again !"

def main(argv):

243

f.write(’--- Shibayan: Thesis Correlated-Attribute Query Resolution

---\n’)

f.write(’--- Search Log --- ’+time.strftime("%c")+’ ---\n’)

global myPort

global buff

try:

opts, args = getopt.getopt(argv,"ho:f:s:",["ifile=", "hostname=",

"segment="])

except getopt.GetoptError:

print ’python testcorrelated.py -o hostname -f filename -s

segments’

sys.exit(2)

for opt, arg in opts:

if opt == ’-h’:

print ’python testcorrelated.py -o <hostname> -f <filename> -s

<segments>’

sys.exit()

elif opt in ("-o", "--hostname"):

hostname = arg

elif opt in ("-f", "--ifile"):

filename = arg

elif opt in ("-s", "--segment"):

segment = arg

244

print "Filename: ", filename

segment = int(segment)

dataSet = pd.read_csv(filename, sep = ’\t’)

print "Dataset shape: ", dataSet.shape

nAttrb = dataSet.shape[1]

nAttrb = int(nAttrb)

reply = getlist(hostname, f)

analyse_data(dataSet, segment, reply, f)

userInterface(hostname, segment, f)

if __name__ == "__main__":

main(sys.argv[1:])

245

APPENDIX E

Bootstrap Server, Hash-Value Generation Source

Code

This chapter presents the source code for Bootstrap Server, Hash-Value generation, and

reading the resource list. The Bootstrap server provides the information regarding what all

nodes are already present in the network for ROR architecture, Caching, and Overlapped

Architecture to be formed. The Bootstrap server source code is executed as:

sudo chmod +x bootstrap.py

sudo ./bootstrap.py -n <num of nodes in network> -o <hostname>

• Bootstrap Server src code, content for “bootstrap.py”

This Bootstraper Code is essential for all the below architectures:

Multi-Attribute Query Resolution

Caching Mechanism

Over-lapped Architecture

import sys

import socket

import os

import time

import getopt

import random

os.system("clear")

f = open(’boostrap.log’, ’w’)

246

f.close()

f = open(’boostrap.log’, ’a’)

recordMR = []

recordSR = []

myPort = 11000

nodes = 0

buff = 1024

def client(msg, port, hostname, f):

port = int(port)

ip = str(socket.gethostbyname(hostname))

time.sleep(10)

Creating TCP Socket

global buff

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((ip, port))

print "Contacting server..."

sock.send(msg)

data = sock.recv(buff)

sock.close()

return data

def updateMRecord(pName, attrType, portNum, mrID, srID):

l = len(recordMR)

if l == 0:

#print "I am here !"

247

time.sleep(2)

recordMR.append([pName, attrType, portNum, mrID, srID])

k = None

#for k in recordMR:

print k

return "-1"

else:

k = len(recordMR)

i = 0

time.sleep(2)

line = ’’

#print "I am here2 !"

for i in range(k):

line = line + str(recordMR[i][1])+" "+str(recordMR[i][2])+"

"+str(recordMR[i][3])+" "

#print "Line: ",line

recordMR.append([pName, attrType, portNum, mrID, srID])

return line

def updateSRecord(pName, attrType, portNum, srID):

l = len(recordMR)

k = 0

line = ’’

for k in range(l):

if str(recordMR[k][1]) == str(attrType):

248

line = line + str(recordMR[k][1])+" "+str(recordMR[k][2])+"

"+str(recordMR[k][4])+" "

#print "Line at SR (MR): ", line

l = len(recordSR)

if l == 0:

recordSR.append([pName, attrType, portNum, srID])

return line

else:

k = 0

for k in range(l):

if str(attrType) == str(recordSR[k][1]):

line = line + str(recordSR[k][1])+"

"+str(recordSR[k][2])+" "+str(recordSR[k][3])+" "

#print "Line at SR (SR): ", line

recordSR.append([pName, attrType, portNum, srID])

return line

def send_query_to_clients(hostname, data, f):

l = len(recordMR)

x = random.randint(0, l)

pName, attrType, portNum, mrID, srID

port = int(recordMR[x][2])

ip = str(socket.gethostbyname(hostname))

time.sleep(10)

Creating TCP Socket

249

print "Creating socket to transfer data, address ->

"+str(ip)+":"+str(port)

f.write("Creating socket to transfer data ->

"+str(ip)+":"+str(port)+" \n")

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

print "Connecting and sending query ..."

f.write("Connecting and sending query ... \n")

sock.connect((ip, port))

sock.send(data)

print "Query: "+str(data)+ " send to addr: "+str(ip)+":"+str(port)

f.write("Query: "+str(data)+ " send to addr:

"+str(ip)+":"+str(port)+" \n")

return

def main(argv):

f.write(’--- Shibayan: Thesis Multi-Attribute Query Resolution ---\n’)

f.write(’--- Boostrap Log --- ’+time.strftime("%c")+’ ---\n’)

global nodes

global myPort

global buff

try:

opts, args = getopt.getopt(argv,"hn:o:",["nodes=","hostname="])

except getopt.GetoptError:

250

print ’python bootstrap.py -n <num of nodes in network> -o

<hostname>’

sys.exit(2)

for opt, arg in opts:

if opt == ’-h’:

print ’python bootstrap.py -n <num of nodes in network> -o

<hostname>’

sys.exit()

elif opt in ("-n", "--nodes"):

nodes = arg

elif opt in ("-o", "--hostname"):

hostname = arg

nodes = int(nodes)

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

ip = str(socket.gethostbyname(hostname))

Binding the socket to the port

server_address = (ip, myPort)

sock.bind(server_address)

print "Boostrap Server Address: "+str(server_address)

f.write(’Boostrap Server Address: ’+str(server_address)+’ \n’)

Listening for incoming connections

sock.listen(nodes)

while True:

conn, addr = sock.accept()

251

data = conn.recv(buff)

#print "Got Connection from: "+str(conn)

print "----- "+str(addr)+" --> Boostrap Server -----"

print " Message: "+str(data)

f.write("----- "+str(addr)+" --> Boostrap Server ----- \n")

f.write("Message: "+str(data)+" \n")

words = data.split(" ")

word = words[1]

if word == "REG":

rtype = words[3]

if rtype == "MR":

pName = words[2]

attrType = words[4]

portNum = words[5]

mrID = words[6]

srID = words[7]

val = updateMRecord(pName, attrType, portNum, mrID, srID)

if val == "-1":

msg = "REGOK FIRST"

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

f.write("----- Boostrap Server -->

"+str(addr)+" ----- \n")

f.write("Message: "+str(Msg)+" \n")

print "----- Boostrap Server -->

252

"+str(addr)

print Msg

conn.send(Msg)

else:

msg = "REGOK"+" "+val

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

f.write("----- Boostrap Server -->

"+str(addr)+" ----- \n")

f.write("Message: "+str(Msg)+" \n")

print "----- Boostrap Server -->

"+str(addr)

print Msg

conn.send(Msg)

if rtype == "SR":

pName = words[2]

attrType = words[4]

portNum = words[5]

srID = words[6]

val = updateSRecord(pName, attrType, portNum, srID)

msg = "REGOK"+" "+val

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

f.write("----- Boostrap Server -->

"+str(addr)+" ----- \n")

253

f.write("Message: "+str(Msg)+" \n")

print "----- Boostrap Server -->

"+str(addr)

print Msg

conn.send(Msg)

elif word == "EXIT":

print "Exiting simulation environment"

f.write("Exiting simulation environment \n")

time.sleep(2)

exit(0)

else:

print "Request received: ", str(data)

msg = "UNKNOWN REQUEST"

msgL = len(msg)

Msg = "00"+str(msgL)+" "+str(msg)

f.write("----- Boostrap Server -->

"+str(addr)+" ----- \n")

f.write("Message: "+str(Msg)+" \n")

print "----- Boostrap Server -->

"+str(addr)

print Msg

conn.send(Msg)

return

if __name__ == "__main__":

254

main(sys.argv[1:])

• Resource Hash Value generation src code, contents for “hashVal.py”

This file is used for Hash-Value Calculation of the resources for all

architectures:

Multi-Attribute Query Resolution

Caching

Over-lapped Ring

import hashlib

def hash_gen(m, k, ip, prime_num, f1):

hVal = []

’’’ Need to change the parameters of u

and l if range is not sufficient ’’’

lP = len(prime_num)

f1.write("Prime numbers generated are: " +str(prime_num)+ " \n")

f1.write("Num of prime numbers: " +str(len(prime_num))+ " \n")

if int(lP * 5) < int(k):

print "ERROR: Can’t generate hash values, Expand the range "

f1.write("ERROR: Can’t generate hash values, Expand the range \n")

return -1

count = 0

prime_ind = 0

while (count < k):

255

p = int(prime_num[prime_ind])

h = hashlib.md5()

h.update(ip)

p = int(p)

keyVal = int(h.hexdigest(), 32)

keyVal1 = int(keyVal % p)

k1 = str(keyVal1 % m)

hVal.append(k1)

h = hashlib.sha224()

h.update(ip)

p = int(p)

keyVal = int(h.hexdigest(), 32)

keyVal1 = int(keyVal % p)

k2 = str(keyVal1 % m)

hVal.append(k2)

h = hashlib.sha256()

h.update(ip)

p = int(p)

keyVal = int(h.hexdigest(), 32)

keyVal1 = int(keyVal % p)

k3 = str(keyVal1 % m)

hVal.append(k3)

256

h = hashlib.sha384()

h.update(ip)

p = int(p)

keyVal = int(h.hexdigest(), 32)

keyVal1 = int(keyVal % p)

k4 = str(keyVal1 % m)

hVal.append(k4)

h = hashlib.sha512()

h.update(ip)

p = int(p)

keyVal = int(h.hexdigest(), 32)

keyVal1 = int(keyVal % p)

k5 = str(keyVal1 % m)

hVal.append(k5)

count = count + 5

prime_ind = prime_ind + 2

l = len(hVal)

print "Hash values needed: "+str(k)+" and generated: "+str(l)+" for

ip: "+str(ip)

f1.write("Hash values needed: "+str(k)+" and generated: "+str(l)+"

\n")

f1.write("Hash Values: "+str(hVal)+" \n")

return hVal

257

class hashfunctions:

def hash_values(self, m, k, ip, prime_num, f1):

k = int(k)

m = int(m)

hval = []

if k == 1:

h = hashlib.md5()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k1 = str(keyVal % m)

hval = [k1]

elif k == 2:

h = hashlib.md5()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k1 = str(keyVal % m)

h = hashlib.sha224()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k2 = str(keyVal % m)

hval = [k1, k2]

258

elif k == 3:

h = hashlib.md5()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k1 = str(keyVal % m)

h = hashlib.sha224()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k2 = str(keyVal % m)

h = hashlib.sha256()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k3 = str(keyVal % m)

hval = [k1, k2, k3]

elif k == 4:

h = hashlib.md5()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k1 = str(keyVal % m)

h = hashlib.sha224()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k2 = str(keyVal % m)

h = hashlib.sha256()

259

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k3 = str(keyVal % m)

h = hashlib.sha384()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k4 = str(keyVal % m)

hval = [k1, k2, k3, k4]

elif k == 5:

h = hashlib.md5()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k1 = str(keyVal % m)

h = hashlib.sha224()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k2 = str(keyVal % m)

h = hashlib.sha256()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k3 = str(keyVal % m)

h = hashlib.sha384()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

260

k4 = str(keyVal % m)

h = hashlib.sha512()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k5 = str(keyVal % m)

hval = [k1, k2, k3, k4, k5]

elif k == 6:

p = prime_num[0]

h = hashlib.md5()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k1 = str(keyVal % m)

k6n = keyVal % p

k6 = str(k6n % m)

h = hashlib.sha224()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k2 = str(keyVal % m)

h = hashlib.sha256()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k3 = str(keyVal % m)

h = hashlib.sha384()

h.update(ip)

261

keyVal = int(h.hexdigest(), 32)

k4 = str(keyVal % m)

h = hashlib.sha512()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k5 = str(keyVal % m)

hval = [k1, k2, k3, k4, k5, k6]

elif k == 7:

p = prime_num[1]

h = hashlib.md5()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k1 = str(keyVal % m)

k6n = keyVal % p

k6 = str(k6n % m)

h = hashlib.sha224()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k2 = str(keyVal % m)

k7n = keyVal % p

k7 = str(k7n % m)

h = hashlib.sha256()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

262

k3 = str(keyVal % m)

h = hashlib.sha384()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k4 = str(keyVal % m)

h = hashlib.sha512()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k5 = str(keyVal % m)

hval = [k1, k2, k3, k4, k5, k6, k7]

elif k == 8:

p = prime_num[2]

h = hashlib.md5()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k1 = str(keyVal % m)

k6n = keyVal % p

k6 = str(k6n % m)

h = hashlib.sha224()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k2 = str(keyVal % m)

k7n = keyVal % p

k7 = str(k7n % m)

263

h = hashlib.sha256()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k3 = str(keyVal % m)

k8n = keyVal % p

k8 = str(k8n % m)

h = hashlib.sha384()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k4 = str(keyVal % m)

h = hashlib.sha512()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k5 = str(keyVal % m)

hval = [k1, k2, k3, k4, k5, k6, k7, k8]

elif k == 9:

p = prime_num[3]

h = hashlib.md5()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k1 = str(keyVal % m)

k6n = keyVal % p

k6 = str(k6n % m)

h = hashlib.sha224()

264

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k2 = str(keyVal % m)

k7n = keyVal % p

k7 = str(k7n % m)

h = hashlib.sha256()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k3 = str(keyVal % m)

k8n = keyVal % p

k8 = str(k8n % m)

h = hashlib.sha384()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k4 = str(keyVal % m)

k9n = keyVal % p

k9 = str(k9n % m)

h = hashlib.sha512()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k5 = str(keyVal % m)

hval = [k1, k2, k3, k4, k5, k6, k7, k8, k9]

elif k == 10:

p = prime_num[4]

265

h = hashlib.md5()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k1 = str(keyVal % m)

k6n = keyVal % p

k6 = str(k6n % m)

h = hashlib.sha224()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k2 = str(keyVal % m)

k7n = keyVal % p

k7 = str(k7n % m)

h = hashlib.sha256()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k3 = str(keyVal % m)

k8n = keyVal % p

k8 = str(k8n % m)

h = hashlib.sha384()

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k4 = str(keyVal % m)

k9n = keyVal % p

k9 = str(k9n % m)

h = hashlib.sha512()

266

h.update(ip)

keyVal = int(h.hexdigest(), 32)

k5 = str(keyVal % m)

k10n = keyVal % p

k10 = str(k10n % m)

hval = [k1, k2, k3, k4, k5, k6, k7, k8, k9, k10]

else:

if k > 10:

hval = hash_gen(m, k, ip, prime_num, f1)

return hval

def prime_num_gen(self):

u = 100000

l = 50000

prime_num = []

lower = int(l)

upper = int(u)

for num in range(lower,upper + 1):

prime numbers are greater than 1

if num > 1:

for i in range(2,num):

if (num % i) == 0:

break

else:

267

prime_num.append(num)

return prime_num

• Source code to read the resource list and calculate parameters, contents

for “calParam.py”

This src code is used for reading resource list generated from ResQue

import numpy as np

import pandas as pd

import random

import math

import os

import time

import getopt

import sys

import socket

minVals = []

maxVals = []

rangeVals = []

def average(x):

assert len(x) > 0

return float(sum(x)) / len(x)

def pearson_def(x, y):

268

assert len(x) == len(y)

n = len(x)

assert n > 0

avg_x = average(x)

avg_y = average(y)

diffprod = 0

xdiff2 = 0

ydiff2 = 0

for idx in range(n):

xdiff = x[idx] - avg_x

ydiff = y[idx] - avg_y

diffprod += xdiff * ydiff

xdiff2 += xdiff * xdiff

ydiff2 += ydiff * ydiff

return diffprod / math.sqrt(xdiff2 * ydiff2)

class calParam:

def readFile(self, filename, Attrb, f):

dataSet = pd.read_csv(filename, sep = ’\t’)

print "Dataset shape: ", dataSet.shape

nAttrb = dataSet.shape[1]

nIP = dataSet.shape[0]

print "Num of attribute: ", nAttrb

269

f.write("Dataset shape: "+str(dataSet.shape)+" Num of attribute:

"+str(nAttrb)+" \n")

data = dataSet.values

mLd1 = np.array(data[:,3:4])

mLd5 = np.array(data[:,4:5])

mLd15 = np.array(data[:,5:6])

DSize = np.array(data[:,8:9])

DFree = np.array(data[:,9:10])

Rx = np.array(data[:,10:11])

Tx = np.array(data[:,11:12])

Attrb[’mLd1’] = mLd1

Attrb[’mLd5’] = mLd5

Attrb[’mLd15’] = mLd15

Attrb[’DSize’] = DSize

Attrb[’DFree’] = DFree

Attrb[’Rx’] = Rx

Attrb[’Tx’] = Tx

return (Attrb, nIP)

def calCorrelation(self, Attrb, f):

corr_attr = []

f.write(’\n’)

f.write(’----------- Correlation Calculation --------- \n’)

f.write(’# Attributes with correlation value more than 0.90 will

be considered correlated \n’)

270

f.write(’\n’)

keyList = Attrb.keys()

i = None

j = None

for i in keyList:

firstList = Attrb.get(i)

for j in keyList:

if j != i:

secondList = Attrb.get(j)

corCoeff = pearson_def(firstList, secondList)

if corCoeff > 0.85:

f.write(’Attribute #: ’+str(i)+ ’ Attribute #:

’+str(j)+’ Correlation: ’+str(corCoeff)+’\n’)

print str(i)+" "+str(j)+" "+str(corCoeff)

corr_attr.append([i, j])

return corr_attr

• To assign locations to each individual nodes in the ROR architecture

import numpy as np

import pandas as pd

import random

import math

import os

import time

import getopt

271

import sys

import socket

workAssgnMainID = []

workAssgnSubID = []

class locAssgn:

def bitspaceAlloc(self, spaceMain, spaceSubRing, nNodes, nAttr, f):

diff = nNodes - nAttr

idMainRing = random.sample(xrange(spaceMain), nAttr)

idMainSubRing = random.sample(xrange(spaceSubRing), nAttr)

idSubRing = random.sample(xrange(spaceSubRing), diff)

f.write(’------------------ Main Ring IDs

---------------------\n’)

f.write(’Main Ring IDs: ’+ str(idMainRing)+’ \n’)

f.write(’Main-Sub Ring Member IDs: ’+ str(idMainSubRing)+’ \n’)

f.write(’Sub Ring IDs: ’+ str(idSubRing)+’ \n’)

f.write(’--\n’)

return (idMainRing, idMainSubRing, idSubRing)

def workAllocation(self, idMainRing, idMainSubRing, idSubRing, Attrb, f):

f.write(’---------------- Work Allocation

---------------------\n’)

print "\n"

272

keyList = Attrb.keys()

i = 0

k = None

for k in keyList:

workAssgnMainID.append([str(k), str(idMainRing[i]),

str(idMainSubRing[i])])

i = i + 1

l = len(idSubRing)

kl = len(keyList)

if l == kl:

k = None

i = 0

for k in keyList:

workAssgnSubID.append([str(idSubRing[i]), str(k)])

i = i + 1

print "------------------ Work Allocation ---------------"

print "Attribute -> Main Ring mc ID -> Main-Sub Ring mc ID ..."

f.write(’Attribute -> Main Ring mc ID -> Main-Sub Ring ID \n’)

k = 0

for k in range(kl):

line = str(workAssgnMainID[k][0])+" ->

"+str(workAssgnMainID[k][1])+" ->

"+str(workAssgnMainID[k][2])

273

print line

f.write(line+’ \n’)

print "Attribute -> Sub Ring mc ID ..."

f.write(’Attribute -> Sub Ring ID \n’)

k = 0

for k in range(kl):

line = str(workAssgnSubID[k][1]) + " ->

"+str(workAssgnSubID[k][0])

print line

f.write(line+’ \n’)

if l > kl:

k = None

i = 0

for k in keyList:

workAssgnSubID.append([str(idSubRing[i]), str(k)])

i = i + 1

if (i < l):

diff = l - i

k = 0

val = []

for k in range(diff):

v = int(random.uniform(0, kl))

274

val.append(str(keyList[v]))

#print "Val: ", val

k = 0

for k in range(diff):

workAssgnSubID.append([str(idSubRing[i]), str(val[k])])

i = i + 1

k = 0

print "----- Work Allocation ------"

print "Attribute -> Main Ring mc ID -> Main-Sub Ring mc ID ..."

f.write(’Attribute -> Main Ring mc ID -> Main-Sub Ring mc ID \n’)

for k in range(kl):

line = str(workAssgnMainID[k][0])+" ->

"+str(workAssgnMainID[k][1])+" -> "+str(workAssgnMainID[k][2])

print line

f.write(line+’ \n’)

print "Attribute -> Sub Ring mc IDs ..."

f.write(’Attribute -> Sub Ring mc IDs \n’)

k = 0

for k in workAssgnSubID:

print k

f.write(str(k)+’ \n’)

275

print "---------------------------\n"

f.write(’-------------------------\n’)

return (workAssgnMainID, workAssgnSubID)

def generateIP(self, ipCount, IPAddress, f):

k = 0

for k in range(ipCount):

ip1 = str(random.randint(100,255))

ip2 = str(random.randint(100,255))

ip3 = str(random.randint(100,255))

ip4 = str(random.randint(100,255))

ipLine = ip1+"."+ip2+"."+ip3+"."+ip4

IPAddress.append(ipLine)

l = len(IPAddress)

print "Num of IP Addresses created: ", str(l)

print str(IPAddress[0]) + " " + IPAddress[l-1] + "\n"

f.write(’\n’)

f.write(’------- IP Address creation -------\n’)

f.write(’Num of IP Addresses created: ’+str(l)+’ \n’)

f.write(IPAddress[0]+"/"+IPAddress[1]+"/"+IPAddress[2]

+ "/ /"+IPAddress[l-3]+"/"+IPAddress[l-2]+

"/"+IPAddress[l-1]+’ \n’)

f.write(’-----------------------------------\n’)

return IPAddress

276

def finalDataset(self, Attrb, IPAddress, f):

Attrb[’IPAddress’] = IPAddress

keysAttrb = Attrb.keys()

f.write(’\n’)

f.write(’Updated Attributes: ’+str(keysAttrb) + ’ \n’)

createNewFile(Attrb, keysAttrb, f)

return Attrb

def createNewFile(Attrb, keyAttrb, f):

’’’

Creating a new file named derived-dataset.txt

for final cross verification, no need

but still creating

’’’

num_keys = len(keyAttrb)

print "Number of keys present in the dataset:

"+str(num_keys)

f.write("Number of keys present in the dataset:

"+str(num_keys)+" \n")

df = open(’derived-dataset.txt’, ’w’)

df.write(str(keyAttrb)+ " \n")

df.close()

df = open(’derived-dataset.txt’, ’a’)

df.close()

277

return

• To calculate parameter for each individual attribute

import numpy as np

import pandas as pd

import random

import math

import os

import time

import getopt

import sys

import socket

minVals = []

maxVals = []

rangeVals = []

def average(x):

assert len(x) > 0

return float(sum(x)) / len(x)

def pearson_def(x, y):

assert len(x) == len(y)

n = len(x)

assert n > 0

278

avg_x = average(x)

avg_y = average(y)

diffprod = 0

xdiff2 = 0

ydiff2 = 0

for idx in range(n):

xdiff = x[idx] - avg_x

ydiff = y[idx] - avg_y

diffprod += xdiff * ydiff

xdiff2 += xdiff * xdiff

ydiff2 += ydiff * ydiff

return diffprod / math.sqrt(xdiff2 * ydiff2)

class calParam:

def readFile(self, filename, numNodes, mainRSpace, Attrb, f):

dataSet = pd.read_csv(filename, sep = ’\t’)

header = list(dataSet.columns.values)

print "The headers are: ", str(header)

print "Dimension of dataset: "+str(dataSet.shape[0])+" X

"+str(dataSet.shape[1])

f.write(’\nDataset.shape: ’+ str(dataSet.shape[0])+’ X

’+str(dataSet.shape[1])+ ’\n’)

nAttrb = dataSet.shape[1]

279

nIP = dataSet.shape[0]

print "Num of attributes: ", nAttrb

data = dataSet.values

f.write(’Number of attributes: ’ + str(nAttrb)+ ’\n’)

if nAttrb > numNodes:

f.write(’Network topology doesnt have enough machines\n’)

f.write(’Exiting..!!’)

return -1

if (mainRSpace < nAttrb) or (mainRSpace < numNodes):

print "Num. of attrb. are more than network capacity..!!"

print "Exiting..!!"

f.write(’Num. of attrb. are more than network capacity..!! \n’)

return -1

if (numNodes < 2*nAttrb):

print "At-least two nodes should be present for each attribute..!!"

print "Exiting..!!"

f.write(’At-least two nodes should be present for each attribute..!! \n’)

return -1

i = 0

f.write(’---\n’)

for i in range(len(header)):

line = str(header[i])

280

Attrb.update({line:data[:, i: i+1]})

keyList = Attrb.keys()

f.write(’Attrb-Type: ’+str(keyList)+’\n’)

line_params = " "

k = None

for k in keyList:

currentList = Attrb.get(k)

minVal = currentList.min()

minVals.append(minVal)

maxVal = currentList.max()

maxVals.append(maxVal)

rangeVal = maxVal - minVal

rangeVals.append(rangeVal)

f.write(str(k)+" ["+str(minVal)+" "+str(maxVal)+"] Range:

"+str(rangeVal)+’ \n’)

line_params = line_params + str(k)+" "+str(minVal)+" "+str(maxVal)+"

"+str(rangeVal)+ " "

f.write(’---\n’)

return (nAttrb, nIP, line_params, header)

def calCorrelation(self, Attrb, f):

corr_attr = []

f.write(’\n’)

281

f.write(’----------- Correlation Calculation --------- \n’)

f.write(’# Attributes with correlation value more than 0.90 will be

considered correlated \n’)

f.write(’\n’)

keyList = Attrb.keys()

i = None

j = None

for i in keyList:

firstList = Attrb.get(i)

for j in keyList:

if j != i:

secondList = Attrb.get(j)

corCoeff = pearson_def(firstList, secondList)

if corCoeff > 0.90:

f.write(’Attribute #: ’+str(i)+ ’ Attribute #: ’+str(j)+’ Correlation:

’+str(corCoeff)+’\n’)

corr_attr.append([i, j])

print "Correlated attributes: "

f.write("Correlated attributes: \n")

k = None

for k in corr_attr:

print k

f.write(str(k)+" \n")

f.write(’---\n’)

return corr_attr

282

