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ABSTRACT 

 

 

 

FINDING A SOLUTION FOR THE TRADEOFF BETWEEN TIME, COST AND 

SUSTAINABILITY/LEED CREDITS FOR NEW CONSTRUCTION 

 

 

 

Project complexity generated tradeoffs in construction, which evolved over decades. This research 

focuses on the tradeoff between time-cost and sustainability represented in the LEED credits 

(Materials and Resources in particular). The research was broken down into preliminary and 

validation studies, wherein the preliminary study used an exhaustive search to find the optimized 

solution. In validation case study, the size of dataset increased exponentially, and it became 

computationally incompatible to find the optimized solution. Genetic Algorithm (GA) was hence 

used to find the optimized solution based on priority factors entered by the user. Usage of GA was 

validated using the preliminary study data and then applied to the validation study data. A tradeoff 

could be seen between the priority factors and the optimized solution. It was found that the 

optimization model was successful in minimizing the time and cost, concurrently maximizing the 

credits for a validation case study conducted for a real-life project. 
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Chapter 1: Introduction 

In the past two decades, the complexity of construction projects has increased with 

development in the latest technology, which made it difficult to deliver projects on schedule and 

within budget, often leading to schedule and cost overruns, and making it difficult to solve the 

tradeoff between time and cost (Gidado, 1996). The construction industry has been facing the most 

basic tradeoff between time and cost regardless of the project scale (Hegazy, 1999). This type of 

tradeoff was first identified in the manufacturing industry’s supply chain management which is 

defined as “a set of three or more entities directly involved in the upstream and downstream flows 

of products, services, finances, and information from a source to consumer” (Mentzer et al., 2001). 

Altiparmak, Gen, Lin, and Paksoy (2006) determined that time and cost are affected greatly in a 

supply chain management and proposed the concept of optimization as the solution to that tradeoff. 

The tradeoffs were realized in the construction industry as well; transforming from the basic 

tradeoff between time and cost (Hegazy, 1999), to more complex tradeoffs (e.g. Time, cost and 

quality). With the increase of environmental awareness in the construction industry, the associated 

environmental impacts were realized and its mitigation efforts ensued in new construction (Ofori, 

1992). Thus, the concept of sustainability emerged to reduce the environmental impacts in new 

construction and renovation projects. However, it was debated that sustainability applications 

weren’t cost effective and projects often went over budget, as it required intense pre planning and 

budgeting before the start of project (Robichaud & Anantatmula, 2010). Contrarily, Langdon 

(2004) argued that using sustainable materials will reduce the building’s cost in operation and 

maintenance phase. In an article in Harvard Business Review, authors stated that owners have a 

misplaced belief that using sustainable materials would have a negative impact on their revenue 

due to increasing costs (Nidumolu, Prahalad, & Rangaswami, 2009), which was contrasted by the 
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authors’ findings which suggested that cost savings can be achieved using sustainable materials 

and processes. Sustainability along with the previously-mentioned constraints/factors (e.g. quality) 

were realized to be equally important, all of which combined have metamorphosed the project’s 

complexity, increasing the number of tradeoffs and making it harder to solve. As more projects 

opted for sustainable construction, the construction industry needed to rate the buildings based on 

standardized sustainability criteria. At the forefront, the United States Green Building Council 

(USGBC) came up with the Leadership in Energy and Environment Design (LEED) as a 

sustainability criteria rating system (Muse & Plaut, 2006). LEED is a credit based system where 

sustainability criteria for a building is formulated as points under the different credit sections of 

Location and Transportation, Sustainable Sites, Water Efficiency, Energy and Atmosphere, 

Material and Resources, Indoor Environment Quality, Innovation and Regional Priority. The total 

number of points earned by a building places it under different certification levels (certified, silver, 

gold, platinum) (USGBC, 2013).  

This thesis is focused on the tradeoff between Time, Cost, and the sustainability criteria for the 

Material & Resources credits (section of the LEED checklist). The Material and Resources (MR) 

section of the LEED aims at reducing and minimizing the waste generated and the embodied 

energy associated with it. The four major waste reduction approaches as directed by the 

Environment Protection Agency (EPA) are source reduction, reuse, recycle, and conversion of 

waste to energy. The LEED MR section gives a fresh perspective on the analysis of materials 

through Life Cycle Assessment (LCA), which helps in comparing two products with different 

sustainable features. It also takes into account, the materials’ manufacturing location to give an 

economic incentive to the companies using local materials for their projects (Cottrell, 2014).  
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Problem Statement  

The construction industry has dealt with several tradeoffs through the past decades, some 

of them being: time and cost (Hegazy, 1999); time, cost and quality (El-Rayes & Kandil, 2005); 

Quality and Sustainability (El-Mikawi, 2005); Time, Cost, and Environment Impacts (Ozcan-

Deniz, Zhu, & Ceron, 2011) etc. A change to any one of these factors may result in the change of 

one or more of the other project factors, typically causing cost and schedule overruns (Frimpong, 

Oluwoye, & Crawford, 2003; Mansfield, Ugwu, & Doran, 1994). These tradeoffs were attempted 

to be solved using optimization techniques that originated from manufacturing industry’s supply 

chain management (Altiparmak et al., 2006). After a successful use of optimization in the 

manufacturing industry, it was promoted as a tool to solve the tradeoffs in construction. Past 

decades saw the evolution of tradeoffs in construction industry from basic time – cost tradeoff to 

complex resource-based tradeoffs. El-Rayes and Kandil (2005) used optimization to solve the 

tripod tradeoff in construction, between time, cost and quality. Zahraie and Tavakolan (2009) 

discussed the usage of specific resources for selected activities which resulted in the optimization 

of time and cost, with a constrained resource usage,  which was later narrowed down into a more 

focused resource constrained project scheduling optimization problem (Kadam & Mane, 2015; 

Yu, Zhan, Nie, & Xu, 2009).    

As discussed above, a cornucopia of tradeoffs have been encountered and resolved using 

mathematical optimization techniques to enable the construction and manufacturing industries in 

managing such complex tradeoffs. Due to a growing emphasis on sustainable buildings, owners 

face a dilemma over the investment decisions in achieving the desired sustainability goals while 

maintaining the project’s budget and schedule. A study conducted in 2011 by Mapp, Nobe, and 

Dunbar (2011), showed that the LEED certification adds around 2% - 3% to the total construction 



4 

cost and around 2% to the overall project cost. It was also found that the LEED certification process 

adds architecture and engineering time, in addition to the modelling costs associated (Kats, 2003). 

Therefore, the cost, time and sustainability (mostly represented by LEED credits), became an 

inseparable tradeoff that has to be addressed. In this research, only the Material and Resources 

category has been taken into consideration which aims to use materials with low embodied energy 

that helps in reducing the total energy usage in construction (Thormark, 2002). 

This research directly addresses the problem faced by the owners and design-builders in 

solving the tradeoff between the time, cost and sustainability in construction projects. In addressing 

the research problem, the following research questions were developed: 

1. How to solve the tradeoff between time, cost and MR section of LEED? 

2. Which optimization method should be used to solve that tradeoff, and which algorithm 

should be used for the chosen method of optimization? 

3. How to find an optimal/near optimal solution? 

While answering these research questions, this study helps in providing a solution to one of 

the most recent tradeoffs in construction projects, represented in the tradeoff between time, cost, 

and sustainability. Though many aspects of the intended tradeoffs have been considered, the 

tradeoff between time, cost and Material and Resources section of the LEED has not been 

undertaken in previous research efforts. The following literature review will explore the different 

research efforts that have addressed similar problems and further clarify the novelty and the need 

of this research study. It will also clarify and address the numerous definitions and concepts used 

in the research study. 
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Chapter 2: Literature Review 

This chapter examines the existing body of knowledge regarding this research topic. First, 

the project factors/attributes are introduced and explained, followed by the tradeoffs between them. 

Thereafter, the concept of optimization is introduced along with its application in solving different 

tradeoffs in the manufacturing and construction industry. 

2.1 Project Tradeoff Factors/Attributes 

Any construction project has different attributes that defines the overall project success and 

implementation. For the purpose of this research, the main factors that will be addressed are the 

cost, time, and sustainability (as related to Material and Resources) of a project.  

2.1.1 Project Time/Duration 

Project duration is defined in the Project Management Body of Knowledge (PMBOK) as 

“The number of work periods (not including holidays or other non – working periods) required to 

complete an activity or other project elements” (PMBOK, 1996). A more comprehensive definition 

by Cleland and King (1983) took the projects’ life cycle into account in calculating project 

duration, which encompassed the total duration of the project, from the design to the closeout 

phase including the delays and impacts on the schedule. A project duration can be divided into 

construction duration and contract duration. Construction duration represents the total number of 

working days excluding the weekends and holidays. On the contrary, contract duration elucidates 

the duration defined in the contract between the owner and the contractor including all the holidays 

and the weekends (Williams, 2008).  

The duration of a project usually changes due to external factors (i.e., unforeseen 

conditions) which could result in schedule overruns. The solution to manage the schedule overruns 

is to find the underlying causes behind the delay and mitigate these causes to preserve the overall 
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project duration (Ahmed, Azhar, Castillo, & Kappagantula, 2002). Earlier studies have shown that 

location and building type did not have any effect on the duration of project (Bromilow, 1969), 

but was later negated by  reassessment studies which proved that the location of the project can 

have a significant effect on project duration (Bromilow, Hinds, & Moody, 1980). Kaka and Price 

(1991) came to a conclusion that public buildings take longer to complete on average as compared 

to private buildings. Assaf, Al-Khalil, and Al-Hazmi (1995) found 56 factors causing project 

delays and grouped them into 8 categories as mentioned below:  

1. Materials  

2. Manpower  

3. Equipment  

4. Financing  

5. Environment  

6. Changes  

7. Government relations 

8. Contractual relationships  

9. Scheduling and Controlling Techniques  

Wambeke, Hsiang, and Liu (2011) defined 10 most frequent factors that cause project delays 

and increase project duration, the most prominent being delay in shop drawings from the engineers. 

Earlier studies have concluded that the reduction or preservation of the overall project duration 

can only happen if the durations on the critical path is changed (Arditi & Pattanakitchamroon, 

2006; De Meyer, Loch, & Pich, 2002; Kelley Jr & Walker, 1959; Santiago & Magallon, 2009). 

However, several studies have shown that changes in duration of non – critical activities have 

compound effects. For example, increasing the duration of non – critical activities leads to 



7 

cessation of resource utilization pattern which leads to a high risk potential for schedule overruns 

and negative impacts on the project cost  (Harris & Ioannou, 1998; Ipsilandis, 2007). Decreasing 

the duration of non - critical activities could also increase the float which could be used by the 

General Contractors in case of delays, thus reducing the risk of schedule overruns within the total 

project duration (Al-Gahtani & Mohan, 2005). Cost overruns are closely associated with schedule 

overruns, where the impact of schedule overrun directly affects the project cost (Kaliba, Muya, & 

Mumba, 2009).  

2.1.2 Project Cost 

The Construction Management Association of America (CMAA) defines the project cost 

as “All costs attributed to the construction of the project, including the cost of contracts with the 

contractor(s), construction support items, general condition items, all purchased labor, material 

and fixed equipment” (CMAA, 2010). Similar to the project duration, project costs can be divided 

into several categories/types. Epstein and Maltzman (2013) defined types of costs associated with 

a project as: 

1. Fixed Costs  

2. Variable Costs  

3. Direct Costs  

4. Indirect Costs  

5. Sunk Costs  

Fixed costs are one-time costs incurred in a project in execution of an important purpose (Epstein 

& Maltzman, 2013). Wang and Yang (2001) iterates that the fixed costs do not show any changes 

with variation in the quantity. Insurance and legal bills are some examples of fixed costs (Pettinger, 

2017). On the contrary, variable costs are incurred over a period of time such as hiring skilled labor 
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or renting a crane which will vary with increase or decrease in quantity production (Epstein & 

Maltzman, 2013; Wang & Yang, 2001). Costs of materials, labor, management etc. which are 

incurred directly on a company towards execution of a project, is known as direct costs (Epstein 

& Maltzman, 2013). Indirect costs on the other hand are not culpable directly to the project (e.g. 

lighting, temporary facilities, etc…) but they are still needed for project execution (Epstein & 

Maltzman, 2013). In addition, Liljas (1998) categorized “absence from paid work” and “reduced 

productivity at work”, as components of the indirect cost. Sunk costs are considered losses already 

incurred on a project and which cannot be recovered (Epstein & Maltzman, 2013). For example, 

capital already spent on a project is considered as sunk costs, as it’s irrecoverable (DeBenedetti, 

2015). Regardless of the cost types, cost overruns can happen on any project as a result of the 

variability in any of these types. 

 Cost overruns are defined as, “the amount of money required to construct a project over 

and above original budgeted amount” (Kaliba et al., 2009). A study conducted by Christensen 

(1994), showed that 64% of completed defense projects ran into cost overruns. Another study 

showed the increasing trends of cost overruns (mostly doubled) in government infrastructure 

projects (Edwards & Kaeding, 2015). A construction industry wide survey conducted in early 

1990s suggested that 33% projects experienced cost overruns (Barrick, 1995). Similar pattern of 

cost overruns observed in the following years, where the percentage of dissatisfied construction 

clients reached 60%, due to cost overruns (Jackson, 2002). The majority of cost overruns may 

occur before the start of a project due to modification of the estimates or inflation (Kaliba et al., 

2009). Projects in remote locations are more prone to cost overruns as the cost of attracting, 

training and retaining labor (including training and transportation cost among others) is very high 
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(Jergeas & Ruwanpura, 2009). Kaliba et al. (2009) defines certain factors that leads to project cost 

overruns: 

1. Size of a project 

2. Project scope enlargement  

3. Inflation  

4. Length of time to complete the project  

5. Incompleteness of preliminary engineering and quantity surveys  

6. Engineering uncertainties  

7. Exogenous delays  

8. Complexities of administrative structures 

9. Inexperience of administrative personnel  

Cost overrun is considered a global scale challenge. In Nigeria, cost overruns are mostly 

attributed to finance and payment arrangements, poor contract management, materials shortages, 

inaccurate estimating and overall price fluctuations (Mansfield et al., 1994). A similar study was 

conducted in Ghana for groundwater projects in which 26 causes were determined from a 

questionnaire survey, the top 5 being (Frimpong et al., 2003): 

1. Monthly Payment Difficulties 

2. Material Shortage 

3. Material Procurement  

4. Obtaining materials at current prices  

5. Financial Difficulties of Contractor  
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An Indonesian study for high rise construction projects showed that the cost overruns were 

associated with inaccuracies of quantity takeoff, inflated cost of materials and cost increase due to 

environmental restrictions. However, on the scale of severity, inflated material cost ranked the 

highest followed by inaccuracies in quantity takeoff and cost increase due to environmental 

restrictions (Kaming, Olomolaiye, Holt, & Harris, 1997).  

Due to the evolvement of sustainable construction, buildings are now evaluated with the 

perspective of not just immediate construction cost, but the life cycle cost. Life Cycle Costs (LCC) 

can be defined as “the summation of cost estimates from inception to disposal for both equipment 

and projects as determined by an analytical study and estimate of total  costs experienced during 

their life” (Barringer, Weber, & Westside, 1995). LCC takes into account differing initial costs, 

operating costs and maintenance costs. A LCC analysis of a building predicts the costs incurred 

through the acquisition, design, construction phases, along with the building’s maintenance, 

demolition or rehabilitation. A brief overview of all the different costs associated with the LCC, 

can be summarized as in the following (Buildings, 2005): 

1. Utility Cost: Energy utilities such as gas and electric, and non-energy utilities like water 

and sewer service, are associated with utility costs.  

2. Maintenance Cost: Costs associated with maintaining the building functionality

3. Service Cost: Costs associated with daily activities such as janitorial services, pest control 

and maintenance of the elevator are some of the examples that falls under the service cost 

category.  

4. Remodeling Cost: This cost may/may not be included in the LCC analysis of the building 

depending on the project team choices and scope of work.  
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5. End- of- life Cost: The residual value of the building and the demolition or rehabilitation 

costs are included in this section.   

2.1.3 Sustainability  

Sustainability came into the picture as a result of adverse effects on the environment due 

to construction activities such as using harmful/polluting materials and non-renewable energy 

sources that contribute to the increase of greenhouse gas emissions. The United States 

Environmental Protection Agency (EPA) defines sustainability as a method to “create and 

maintain the conditions under which humans and nature exist in productive harmony to support 

present and future generations” (EPA, 2011). Sustainable construction can also be defined as 

constructing cost effective facilities in a way that preserves the environment and adds to the 

environmental and social value of the community (Halliday, 2008). According to a US survey by 

Augenbroe, Pearce, Guy, and Kibert (1998), 50% of nation’s wealth is attributed to buildings, 

which emphasizes the need of sustainable design that can save money, increase efficiency and 

most importantly, reduce the environmental impact of the construction industry. The widespread 

use of sustainable design demanded the development of rating and certification systems to rate the 

buildings’ sustainability. Some of these systems as defined by the US Green Building Council 

(USGBC) are Leadership in Energy and Environmental Design (LEED), Green Globes, The 

Living Building Challenge (LBC), and WELL. Among all, LEED is the most widely used system 

in US. As previously mentioned, the LEED MR section is the main sustainability criteria in this 

research study and it is discussed in detail in the following section. The Green globes accreditation 

body was founded in 2002, and is managed by the Green Globes organization (Globes, 2009; 

Smith, Fischlein, Suh, & Huelman, 2006). It is an online certification tool for green buildings, 

which could be used for a new construction, commercial interiors and existing buildings. 
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Interactiveness, flexibility and affordability are some of the major attributes possessed by green 

globes rating system. Green globes takes into account categories such as project management, site, 

energy , water, materials and resources, emissions and indoor environment (Globes, 2009). Living 

Building Challenge (LBC) is another rating system that was founded by the International Living 

Future Institute in 2011 with the goal of “transforming how we think about each act of design and 

construction as an opportunity to positively impact community of life and cultural fabric of human 

communities” (McLennan, 2006). LBC considers several categories such as type of place, water, 

energy, health and happiness, materials, equity, and beauty. WELL building standard was 

introduced by the International WELL building institute in 2013 (WELL, 2018). The WELL 

certification standard and rating systems focuses on health and wellness of building occupants 

considering around 100 performance metrics and requires on-site assessment by a third party 

(WELL, 2018). WELL has 8 different categories namely air, water, nourishment, light, fitness, 

comfort, mind and innovation as the grounds for certification (WELL, 2018).  

2.1.3.1 Leadership in Energy and Environment Design (LEED) 

According to USGBC, LEED version 2009 has different certification levels based on the 

points obtained by the building in the sustainability metric’s categories. There are 8 overall 

categories in the LEED certification system. The following are all the categories with the possible 

points per category:  

1. Location and Transportation [16 credits] 

2. Sustainable Sites [10 credits] 

3. Water Efficiency [11 credits] 

4. Energy and Atmosphere [33 credits] 

5. Material and Resources [13 credits] 
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6. Indoor Environmental Quality [16 credits] 

7. Innovation [6 credits] 

8. Regional Priority [4 credits] 

Each category has a possible set of earned points and the total points corresponds to the 

certification level a building can attain. There are four LEED certification levels as in the 

following: (1) Certified (40 to 49), Silver (50 to 59), Gold (60 to 79) and Platinum (80 to 110).  

2.1.3.1.1 Location and Transportation 

This category pertains to the building location, the nearby facilities & amenities available, 

the surrounding environment, and the modes of transportation available to the building’s residents. 

Several credits have been dedicated to promote biking and green vehicles in order to reduce 

environmental pollution and promote green transportation such as low carbon emission vehicles, 

electric automobiles, bicycles etc. (USGBC, 2013).  

Few points are also dedicated to reduce the parking footprint in and around the buildings. 

As logic dictates, the lesser the number of cars owned/parked by the residents, the lesser the 

parking footprint. In applying these credits, some countries like Taiwan have made changes to the 

most used mode of transport (Motorcycles in their case), replacing them with a greener and low 

carbon emission options to earn Green Vehicles credit in an effort to reduce carbon emissions by 

50% of the 2005s level (Trappey et al., 2012). In another effort to curb pollution, residents in 

California were asked if they would prefer more taxes and fees for those people whose vehicle 

contribute to a higher degree of pollution, to which more than 50% of the California residents 

agreed (Agrawal, Dill, & Nixon, 2010). 
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2.1.3.1.2 Sustainable Sites (SS) 

This category focuses on preserving the environment around the building, restoring the 

regional ecosystems and preserving the biodiversity. It ensures that new construction has minimal 

impact on the existing ecosystems by assessing the site, very early in the project cycle, to avoid 

any harm to the habitats and water resources near the site (Kibert, 2016).   

2.1.3.1.3 Water Efficiency (WE) 

Water efficiency (WE) focuses on reusing and conserving water. The main aim of this 

category is to reduce water waste and promote creative reuse techniques in the community. A 

major part of US energy usage goes into wastewater treatment which could be reduced by efficient 

use of water and by keeping waste to a minimum (USGBC, 2013). 

2.1.3.1.4 Energy and Atmosphere (EA) 

This category recognizes the reduction in the usage of conventional sources of energy 

(fossil fuel) which increase the greenhouse gas concentration in the atmosphere. It encourages the 

use of renewable energy sources and lowering the energy needs by adopting passive design 

strategies, while achieving an optimal thermal comfort (USGBC, 2013). 

2.1.3.1.5 Material and Resources (MR) 

USGBC (2013) defines the MR section scope as “to reduce waste generated by the building 

occupants that is disposed of, in landfills”. Disposing of waste in landfill is unsustainable as it 

generates methane gas (greenhouse gas) (Read, Hudgins, & Phillips, 2001). Converting waste into 

energy can reduce the amount of waste directed to landfills and offset the energy needs from the 

primary units, and reduce the greenhouse emissions (Psomopoulos, Bourka, & Themelis, 2009). 

The major aim of this category is to use materials with low embodied energy that helps in reducing 

the total energy usage in construction (Thormark, 2002). Mostly, materials pertaining to permanent 
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installations in a building are considered in the Materials and Resources category of LEED 

(Cottrell, 2014).  

 

Figure 1: Modus Operandi of Waste Reduction (Cottrell, 2014) 

According to Cottrell (2014), reducing, reusing, recycling and conversion of waste into 

energy are four major approaches for waste management as shown in figure 1. Reduction at source 

helps in reducing the life cycle cost, reusing the products helps reduce the greenhouse gas 

emissions, and recycling helps converting waste into reusable material. The materials which 

cannot be recycled can be transformed into energy to reduce the waste going into landfills. The 

MR LEED credits which have been considered for the purpose of this research due to data 

constraints are as in the following: 

1. Recycled Content  
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2. Regional Materials  

3. Rapidly Renewable Materials  

2.1.3.1.5.1 Recycled Content  

 These credits focus on reducing the environmental impacts associated with the use of 

materials by choosing materials with more recycled content. The sustainable value for recycled 

content is calculated by summing up the pre-consumer and ½ of the post-consumer recycled 

content percentages, all in terms of cost. Pre-consumer materials can be reused from the feedback 

loop of supply chain’s end product and post-consumer materials cannot be reused. A sustainable 

criteria value up to 10% of total cost earns 1 credit and 20% or more earns 2 credits (USGBC, 

2013). 

2.1.3.1.5.2 Regional Materials  

 These credits aim to reduce the environmental impacts by using materials that are 

manufactured locally, in order to reduce the associated cost of transportation and greenhouse 

emissions. For LEED 2009, the materials are considered regional if they are extracted within 500 

miles of the project location. According to USGBC (2013), the total distance of the materials from 

the point of manufacture to the project site is calculated using equation 1: 

(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑦 𝑟𝑎𝑖𝑙
3⁄ + 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑦 𝑖𝑛𝑙𝑎𝑛𝑑 𝑤𝑎𝑡𝑒𝑟
2⁄ + 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑦 𝑠𝑒𝑎
15

⁄

+  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑦 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑚𝑒𝑎𝑛𝑠 ) ≤ 500 𝑚𝑖𝑙𝑒𝑠 

      Equation 1: Total Travel Distance Calculation  

If 10% of total cost of materials are regionally extracted, then 1 credit is awarded and 2 credits 

are awarded for 20% or more of total material cost (USGBC, 2013). 
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2.1.3.1.5.3 Rapidly Renewable Materials 

 These credits focus on selecting materials which can be replenished with higher frequency, 

so that the usage of materials does not impact the ecosystem negatively. It is expected that the 

rapidly renewable products are manufactured/harvested under 10 years cycle and 1 credit is 

awarded if the cost of rapidly renewable materials is more than 2.5 % of the total cost of materials 

(USGBC, 2013).  

2.1.3.1.6 Indoor Environmental Quality (IAQ) 

The IAQ category addresses the air quality along with the physical and mental comfort of 

the building occupants. It aims at improving the occupant comfort level to have better productivity 

at work and good health. Passive design strategies promoting thermal comfort and developing 

areas for recreational activities are some ways of improving the indoor environmental quality 

(USGBC, 2013).  

2.1.3.1.7 Innovation 

This category considers all the innovative techniques developed in construction of a 

sustainable building. New and improved techniques to improve passive designs or reduce the 

embodied energy are some of the examples in this category (USGBC, 2013).  

2.1.3.1.8 Regional Priority 

This particular category aims at preserving the environment as related to a specific region. 

The metric for calculating the credits for this category may change from one region to another as 

different regions may have different requirements for environmental preservation (USGBC, 2013).  

In this research study, only the Materials and Resources category for LEED 2009 has been 

taken into consideration. 
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2.3 Tradeoffs  

These aforementioned project cost, time and sustainability factors, do not work 

individually, instead, all of these or some in pairs, give rise to tradeoffs which makes the decision 

making with respect to their prioritization, very difficult. These tradeoffs can be in many forms 

such as time- cost trade off, cost- quality trade off, time- cost- quality trade off, or a time-cost- 

quality-sustainability trade off, etc. Figure 2 represents The Iron Triangle followed by researchers 

in the past, as a framework to demonstrate a balance between the time, cost and quality (Atkinson, 

1999). It works on the analogy that if one side of the triangle is changed, then the other two sides 

would be modified in accordance with the change. The decisions related to these tradeoffs are 

usually based on the project stakeholders’ priorities. 

 

 

 

 

 

 

 

 

Figure 2: The Iron Triangle 

Higher quality of construction materials often increase the cost and duration of resources’ 

procurement due to the difficulty in procurement of rare and high quality materials (Sambasivan 

& Soon, 2007). The construction cost corresponds to the cost of resources (people, materials, 

equipment and working capital) and cost overruns are often associated with resources 

unavailability (Naik & Kumar, 2013). Sonmez, Iranagh, and Uysal (2016) pointed out that the 

resources for all construction projects are constrained. Thus, construction managers and 

Iron Triangle 

Quality 
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superintendents are always faced with a dilemma of optimum resource utilization based on the 

tradeoff between time, cost and quality (Afshar, Kaveh, & Shoghli, 2007; El-Rayes & Kandil, 

2005). El-Rayes and Kandil (2005) combined construction method, crew formation and crew 

overtime policy (decision variables having significant impacts on time, cost and quality), into a 

resource utilization variable, and concluded that quality is dependent on the resource utilization 

options. Some of the existing techniques of time- cost- quality optimization are mathematical 

models, heuristic methods and global search algorithms (Yang, 2009). Ahari and Niaki (2013) 

classified the time- cost- quality tradeoff problem as a multi- objective optimization problem to 

optimize multiple objective functions at the same time, subject to a set of constraints. The multi-

objective decision making technique had the capability of solving the three dimensional tradeoff 

of time-cost and quality (El-Rayes & Kandil, 2005).  

This dilemma of prioritizing different project factors can be solved using mathematical 

optimization methods that can maximize or minimize project factors, according to the project 

needs. The next section discusses the basic concepts of optimization, its need in solving multiple 

objectives with different priority factors, and the different areas where it has been used before, 

followed by a brief discussion on using optimization in solving the different tradeoffs in 

construction projects.  

2.4 Optimization 

Optimization is a mathematical method to maximize or minimize certain values/set of 

variables within a set of constraints to determine the best solution, among a pool of choices 

(UWASH, 2015). In mathematical optimization, a mathematical function is formulated and 

minimized or maximized depending on the required logic. The result obtained after a certain 

number of iterations would be the best possible minimum or maximum value, also known as the 
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Optimum value for the variable (Boyd & Vandenberghe, 2004). Deb (2014) (page V), defined the 

Optimization as “the task of finding one or more solutions which correspond to minimizing or 

maximizing one or more specified objectives, and which satisfy all constraints (if any).” 

Optimization can also be used for multiple objectives that need to be maximized or 

minimized at the same time which requires a different approach than a single objective 

optimization problem. The multiple objectives can be optimized using “Multi-Objective 

Optimization” which takes into consideration several contrary objectives. The multi-objective 

optimization solution is not a single optimal value, instead, a set of optimal values are obtained 

among which there is a tradeoff (Deb, 2014). Optimization, however, is not a new technique, but 

has existed since ancient times as discussed in the following section.  

2.4 History of Optimization 

The earliest work of optimization can be traced back to Greek Mathematicians when Euclid 

considered the minimum distance between a point and a line in 300 BCE (Cha, 2007). In 100 BCE, 

Heron proved that light travels between two points through the path with shortest length when 

reflecting from a mirror (Jenkins & White, 1957). Isaac Newton and Leibnitz created the calculus 

of variation which opened doors to finite optimization problems (Bertsekas, 1982). In 1784, G. 

Monge investigated one of the first combinatorial optimization problems known as the 

transportation problem (Schrijver, 2005). The 19th century saw the advent of first algorithms 

presented by Weierstrass, Steiner, Hamilton and Jacobi which further developed the calculus of 

variation (Grosholz & Breger, 2013). In 1826, Fourier formulated the Linear- Programming 

method to solve problems in mechanics and probability theory. By the 1870s, the works of Walras 

and Cournot made optimization an integral part of the economic theory (Novshek & Sonnenschein, 

1978). In the 20th century, the calculus of variation was further developed by Bolza, Caratheodory, 
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and Bliss while Hancock published the first book on optimization, “Theory of Minima and 

Maxima” in 1917. After World War II, optimization techniques rapidly developed with operational 

research. In 1944, Von Neuman used the idea of dynamic programming which works on the 

principle of breaking down a big problem into smaller subsets of problems and solving them. The 

solution subsets would be stored in the memory and could be used in the future if encountered by 

a similar problem subset (Backus, 1978). In 1951, Kuhn and Tucker invented optimal conditions 

for nonlinear problems (Kuhn, 2014) and by the 1980s, the heuristic algorithms for global 

optimization and large scale problems were developed as computers became more efficient in 

computation capabilities (Mandl, 1980). After 1990s, complex algorithms were developed and 

used in the optimization process thereafter (Kiranyaz, Ince, & Gabbouj, 2014). The first 

widespread application of optimization was in the manufacturing industry.  

2.4.1 Optimization in the Manufacturing Industry 

One of the early major problems encountered by the manufacturing industry was to 

“schedule scarce resources among different manufacturing demands” (Cai & Li, 2012). This 

required an optimization of the resources’ distribution among the different projects to ensure 

efficient utilization of the capital invested in these resources during the manufacturing process (Cai 

& Li, 2012). After 1980s, automation was required in supply chain management due to the 

increased product demands when Ascheuer (1995) used optimization to minimize the loading and 

unloading times of automated storage systems. In the 21st century, the technology became more 

advanced, and the market grew further due to the higher demands, all which required different 

methods to solve a larger scale problem.  

 Chen and Lee (2004) incorporated another variable factor i.e., price and used multi- 

objective optimization of supply chain networks with uncertain product demands and prices. 
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Altiparmak et al. (2006) solved a non- linear programming model for multi- objective optimization 

of Supply chain network design by using genetic algorithm to minimize cost and maximize 

customer service and capacity utilization, as the three main objectives. Pishvaee, Rabbani, and 

Torabi (2011) devised a robust optimization approach to a “closed- loop” supply chain network 

design under the uncertainty of fluctuation demands in different markets.  

Lagging behind the manufacturing industry, the optimization technique had been utilized in the 

construction industry to solve major tradeoffs and optimize resource utilization.  

2.4.2 Optimization in Construction Industry 

Optimization was introduced in the construction industry to solve different tradeoffs that 

overburdened the decision making process. Quality is one of the most difficult factors to quantify; 

El-Mikawi (2005) prioritized factors based on information from construction site (provided by 

project manager/superintendent), to calculate the quality of a project. Time and cost constraints in 

any construction project are closely associated with the utilization of resources. Resource 

utilization is a critical constraint for optimizing the time and cost in construction projects and avoid 

delays and cost overruns (Christodoulou, Ellinas, & Aslani, 2009). Lucko (2011a) emphasized the 

need for smart resource modelling into linear scheduling to enhance resource utilization efficiency 

in repetitive operations. Several scholars have used Genetic Algorithm as the computational 

technique to solve resource constrained problems and others used it with local search  and hyper 

heuristic techniques (Anagnostopoulos & Koulinas, 2010) to solve resource constrained problems.  

In solving these aforementioned tradeoffs, Genetic Algorithm (GAs), Particle Swarm 

Optimization, Simulated Annealing, Ant Colony Optimization, and Artificial Neural Networks 

(ANNs) were some of the different programming algorithms used to solve the different 

optimization problems in construction. These programming algorithms require a large amount of 
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data input, pertaining to the variability of the tradeoffs, and going through a number of iterations 

to reach the final result represented in a set of optimal values.  

2.4.2.1 Time – Cost – Quality Optimization  

Though the priority level of the project factors (time, cost and quality) usually depends on 

the superintendent and the project manager as decision makers, optimization techniques can help 

in determining the optimum values for the time, cost and quality of construction project.  

Atkinson (1999), used optimization to solve the tradeoff between time, cost and quality by 

maximizing the Quality function and Minimizing the Time and Cost functions to increase the 

project quality and lower the cost and duration. Lucko and Su (2014) used singularity functions to 

minimize the cost and time, and maximize the quality. Afshar et al. (2007) emphasized the 

importance of optimization of time, cost and quality as related to the new types of contracting 

techniques using the Ant colony optimization algorithm to find an optimal solution. A better 

approach to time-cost-quality optimization was developed by El-Rayes and Kandil (2005) focused 

on effective utilization of resources while optimizing the three project factors. El-Rayes and Kandil 

(2005) tried several resource options to calculate the duration and cost associated with each option, 

and measured the quality performance for each resource option using Genetic Algorithm to solve 

the three dimensional tradeoff problem. After addressing the tradeoff between time, cost and 

quality, resources began to be seen as a decisive aspect which could drive the duration and cost of 

a project. The next section focuses on optimization with a special orientation towards resources.  

2.4.2.2 Resource Oriented Optimization 

Much research has been done in resource optimization to find the most efficient resource 

utilization solution and minimize the cost of construction projects (Zahraie & Tavakolan, 2009). 

A variety of methods have been used to optimize resources, using mathematical modelling and 
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computer algorithms. The resource constrained project scheduling problem by Wall (1996) with 

the main objective to minimize the project duration, is one of the most prominent (Yu et al., 2009). 

Meta heuristic methods were also seen to be the best fit for finding an optimal solution for the 

resource optimization problem (Rajeev & Krishnamoorthy, 1992). Yu et al. (2009) used the 

Genetic Simulated Annealing Algorithm (GSA) for solving the resource constrained project 

scheduling problem with the objective of minimizing the project duration using genetic algorithms 

in combination with simulated annealing to “improve the local searching performance and boost 

up evolution capability”.  Kadam and Mane (2015) used a Genetic Algorithm with a local search 

technique to find the optimum solution, based on the principle of limited resource allocation to 

different activities. Lucko (2011b) used singularity functions for financial modelling and 

optimization of resource utilization.  

 Tseng and Chen (2009) solved the multimode resource constrained project scheduling 

problem (MRCPSP) for a very high number of iterations using two-phase genetic local search 

algorithm. MRCPSP type problems are categorized as a Non deterministic polynomial- time hard 

(NP – hard) problem, subject to constraints on the activity precedence and the limits of resources. 

The genetic local search algorithm was used to run different modes of execution with varying 

associated costs, in order to come up with minimum duration of project. The modes of execution 

were compared to determine the one with least cost and duration. 

 Anagnostopoulos and Koulinas (2010) used leveling priorities to level resources, followed 

by generation of random networks and usage of hyper – heuristic genetic algorithm to determine 

the network with least duration. Cai and Li (2012) observed that most research efforts were 

directed to optimize and distribute resources in a single project and considered a broader view of 

resources being distributed among multiple projects. Sonmez et al. (2016) combined both the 
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techniques of optimization of resources and the time- cost trade off problem under one umbrella 

and named it as the Resource Constrained Discrete Time- Cost Tradeoff Problem (RCDTCTP).  

Other aspects of tradeoff in construction have been also addressed such as contracting 

optimization. The contracting optimization problem is addressing the issue of optimizing the 

project to contractor selection during the contracting stages as different contractors might have 

different capacities of building projects. Assigning a complex project to a small contractor might 

result in low- quality product and assigning an easy project to a big contractor might be 

underutilizing their potential. Hence mathematical modelling and optimization was  used to assign 

construction jobs according to the contractors’ capability while minimizing construction costs 

(Ngowtanasuwan, 2013). 

The literature has shown that there have been tremendous research efforts in using different 

optimization methods to solve the time-cost, time-cost-quality, resource constrained time-cost 

tradeoffs, but the tradeoff between time, cost, and sustainability factors hasn’t been thoroughly 

addressed. This research focuses on solving the tradeoff between time, cost and sustainability 

represented in the LEED MR credits. The next section discusses the methodology of tackling this 

tradeoff problem.  
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Chapter 3: Methodology 

The literature review established the foundation of the scholarly research done in this study, 

and also uncovered the gap that this study is aiming to address. The main research problem as 

stated in the introduction section, was to solve the tradeoff between time, cost and sustainability 

(MR section of LEED credits). The methodology opted to solve the research problem is shown in 

Figure 3.  

 

Figure 3: Methodology Map 

As shown in figure 3, the research problem was formulated to solve the tradeoff between 

time, cost and sustainability through the presented methodology. This particular tradeoff was 
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categorized as a multi-objective optimization problem (discussed in the following section) and the 

underlying procedure is developed using the optimization category. Being a multi-objective 

optimization problem which needs fast computing methods to evaluate multiple objectives and 

combinations, Python 3.5 was used as the programming language for coding the multiple objective 

methodology. Testing the model code (in Python) started with running a preliminary set of data 

through an exhaustive search and finding the optimal solution based on the user entered priorities 

for time, cost and sustainability (LEED MR). It was realized that the exhaustive search would be 

highly inefficient for higher number of combinations and therefore, evolutionary algorithms (GAs) 

were introduced to significantly reduce the computational time. Two validation “real world 

project” case studies were introduced to validate the GA optimization model. Data collection and 

analysis of the case study was conducted on a LEED certified project as the case study. The 

analyzed data was run on the code created in Python using the GA optimization model, to find the 

near optimal solution based on the user-defined priorities. The second validation case study was 

introduced to check the reliability of the optimization model and check for coherence in results 

when applying the optimization model to various types of projects. Each of the step explained and 

illustrated in Figure 3 are discussed in detail in the following sections. 

3.1 Research Problem and defining Tradeoffs 

 The research problem was formulated based on the observed need in the literature review 

which resulted in identifying the tradeoff between time, cost and MR LEED credits (as defined in 

version 2009). Figure 4 shows a graphical representation of the research problem and the 

associated tradeoffs. It shows that any project has associated activities which could be executed in 

various ways or using different materials. For every combination of materials, there is an 
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associated time, cost and MR LEED credits. In this research, the MR LEED credits will include 

the recycled content, regional materials and rapidly renewable materials. 

 

 

Figure 4: Research Problem and Tradeoffs 

 

3.2 Formulating the tradeoff solution 

In answering the research questions in the problem statement, and with the input acquired 

from the literature review, optimization techniques were ascertained to be the best answer to 

analyze and solve the tradeoff between time, cost and sustainability (MR section of LEED. In 

particular, this optimization problem can be categorized as a Multi-Objective Optimization 
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problem which is one of the many Optimization techniques discussed below (Gropp & Moré, 

1997):  

1. Continuous Optimization Vs Discrete Optimization: Models that take on integer values for 

the variables are known as discrete optimization problems as they take on some specific 

set of values as the domain. Continuous optimization on the other hand, takes all real values 

for its variables.  

2. Unconstrained Optimization Vs Constrained Optimization: Constrained optimization 

problems are bound by the set of constraints on the variables and an unconstrained 

optimization has variables that can range to infinity.  

3. None, One or Many Objectives: In “none” objective optimization, the feasible solution is 

usually found with no objectives, meaning the user finds a feasible region in which the 

solution may be present without any variables being minimized or maximized. Most 

optimization problems however, are single objective which aim at either maximizing or 

minimizing the objective function based on a set of constraints. The most complex 

optimization among these three is the multi objective optimization which aims at both 

minimizing and maximizing the objective function, mostly in the case of tradeoffs.  

4. Deterministic Optimization Vs Stochastic Optimization: When one has an accurate set of 

data, then the deterministic optimization technique is applied however, in case the data is 

unpredictable or uncertain, the stochastic optimization technique is applied which includes 

robust optimization methods. 

This research’s optimization problem is a multi-objective optimization problem which aims to 

solve the tradeoff between time, cost and sustainability (LEED MR Credits), by minimizing time 

and cost, and maximizing the credits.  
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3.3 Criteria Modelling  

Modelling of a multi-objective function proceeds with the problem characterization, where 

the mathematical functions were formulated for each project factor and constraints were defined. 

This optimization problem has three different aspects of maximizing and minimizing elements. 

The number of credits for the Materials and Resources section of the LEED system had to be 

maximized while the material cost and Duration Associated with Materials (DAM) had to be 

minimized. The multi-objective optimization technique provided a set of optimal values as a 

tradeoff between the different objectives (Cover & Van Campenhout, 1977). In case of 

combinatorial optimization problems, as in this research problem, it was unfeasible to have a single 

optimal solution and hence a pragmatic way comprising of a set of optimal solutions was taken 

into consideration (Gropp & Moré, 1997; Konak, Coit, & Smith, 2006). Objective functions for 

each of MR Credits, DAM, Material Cost and MR Credits was formulated in equation 2, equation 

3 and equation 4, respectively.  

The maximized number of credits is described as a function of C, as shown below: 

Maximize Credits: 

𝐹(𝐶) =  𝐶0 + 𝐶1 +  𝐶2     

Equation 2: Calculation of Total Credits 

Subject to constraints: 

0 ≤  𝐶0  ≤ 2 

0 ≤  𝐶1  ≤ 2 

0 ≤  𝐶2  ≤ 1 
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F(C) = Function of Credits 

C0 = Recycled Content    

C1 = Regional Materials    

C2 = Rapidly Renewable Materials   

Function of credits F(C) can be expressed as a summation of C0, C1 and C2, which ranges from 0 

to 2, 0 to 2 and 0 to 1, respectively. These credits are determined based on the normalized value 

of recycled content, regional materials and rapidly renewable materials, all of which are based on 

the total material cost (discussed in detail in the literature review).  

The function of DAM is minimized as shown below: 

Minimize DAM: 

∑ 𝑇𝑖,𝑗

𝑖=𝑚
𝑗=𝑛
𝑖=1
𝑗=1

  

       

Equation 3: Total DAM 

Ti,j = DAM for each material option 

where i represents the activity, j represents the different material options, m is the upper limit for 

total number of activities and n is the total number of material options per activity. The DAM 

function takes into account the total duration associated with completing each activity using a 

particular material option in the project. The duration for each material option is computed 

separately, which is referred to as “DAM” in this research; multiple DAMs are calculated for each 

activity. These are then added together (one DAM per activity) to find the total duration, which is 
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referred to as total DAM in this research, hence working on an assumption that all activities are 

critical and consecutive in this project. Some activities out of the total activities under 

consideration would be critical according to the construction schedule, hence reducing the duration 

of these critical activities can reduce the project duration. However, as concluded from the 

literature review, reducing the duration of non – critical activities (as part of the original schedule) 

can reduce the project risk and increase the buffer time and floats that can be used when a delay 

occurs. Thus, any reduction in the DAM would in turn benefit the project either by reducing the 

overall project duration or by risk reduction. Similar to the DAM function, the cost function which 

is dependent on each of the material options used for every single activity, needs to be minimized.  

Minimize Cost: 

∑ [𝑀𝑖,𝑗]
𝑖=𝑚
𝑗=𝑛
𝑖=1
𝑗=1

  

Equation 4: Total Cost 

Mi, j = Material Cost of Activity 

Where i represents the activity, j represents the different material options for each activity, m is 

the upper limit for total number of activities and n is the total number of material options per 

activity. Material costs is used to find the total cost of the project. Equations 2, 3 and 4 explained 

the process of computing the three factors of the project, which have a tradeoff among them. To 

solve the tradeoff using multi-objective optimization process, it is essential to have a single number 

that takes into account minimizing of time and cost, and maximizing of credits. This is done using 

a Fitness Function, which is an encapsulation of all the project factors (time, cost and LEED MR 

Credits) into one equation. Within the fitness function, relative Importance Factors (RIFs) are 
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introduced to define the priority for the project factors based on the user input. These RIFs are 

introduced as weights for the different factors in the fitness function. A fitness function is 

formulated to combine the three project factors into a single number using equation 5. Each of the 

variables, including the weights, are normalized.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  − (𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 × (
𝑊𝑡

𝑊𝑡+𝑊𝑐+𝑊𝑐𝑟
)) −

(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 × (
𝑊𝑐

𝑊𝑡+𝑊𝑐+𝑊𝑐𝑟
)) + (𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑇𝑜𝑡𝑎𝑙 𝐶𝑟𝑒𝑑𝑖𝑡𝑠 × (

𝑊𝑐𝑟

𝑊𝑡+𝑊𝑐+𝑊𝑐𝑟
))  

Equation 5: Fitness Function 

Wt: The Relative Importance factor (RIF) for DAM,  

Wc: The Relative Importance factor (RIF) for Cost,  

Wcr: The Relative Importance factor (RIF) for Credits 

All the variables in equation 5 are normalized, which is important to maintain the consistency of 

dataset by making all numbers to fall in a range of 0 to 1. This makes it easier for the GA to run 

on the dataset without biases. The RIFs in equation 5 are defined by the decision maker or the 

model user (e.g., General Contractor, LEED consultant, etc.).  The option with the highest fitness 

value is considered the optimal solution. This is because of the fact that if positive numbers are 

arranged in a descending order, the negation of the order makes them in ascending order. Hence if 

the maximum fitness value is taken into consideration, the negative signs in the Fitness function 

achieves minimizing the DAM & Cost, and the positive sign achieves maximizing the credits. 

3.4 Python Coding  

 The mathematical modelling of the Multi-Objective criteria is done using a Python 3.5 

computer programmed code. Python is a higher level programming language which is user friendly 
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and the syntax allows programmers to express concepts in fewer lines of code, compared to C and 

C++ (Van Rossum, 2007). Coding the model starts with import of an Excel based data set, on 

which the mathematical operations are performed. One of the major reasons for selecting Python 

as the primary programming language in this research study, is the user friendliness nature of the 

syntax. Python syntax includes Jupyter notebook as the editor for coding and running the model, 

Numpy package to create the Multi – Objective model, and panda package to import the data set 

from excel.   

3.5 Preliminary Study 

A dummy data set is prepared to serve as data source for the preliminary study which was 

used to test the mathematical model capabilities and functions. The preliminary study data consists 

of a six activity project with 3 material options to execute each activity, making a total of 36, i.e., 

729 combinations for the total project activities’ execution. The small data set is used to find a set 

of optimal solutions by using an exhaustive search, as part of the preliminary study. This is 

accomplished using Python 3.5 platform, as described in the section above. The preliminary study 

Python code can be referenced in Appendix A – Code for Preliminary Study. Each method of 

execution (in the 6 activity set) has a material cost, DAM, and a sustainable criteria value for its 

recycle content, regional content and rapidly renewable materials. Since the total combinations 

(729) is considered a small number, an exhaustive search is applied to the data set to find the 

optimal value (Jain & Zongker, 1997). For this purpose, the total, DAM, cost and credits are 

calculated and the data is normalized by dividing every element by its column’s maximum value. 

This is done so as to overcome a variation in the data range and transform the dataset into a more 

coherent and parochial range (0 to 1 in this case). The fitness function, as described in equation 5 

is used to combine the three factors into a single number called the “fitness value”. With limited 
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activities, the exhaustive search can be used in this study. However, as in actual projects, this 

process is way more complicated when the number of activities increases, resulting in a large 

number of combinations (e.g. 320), which leads to combinatorial explosion (Tsang, 2005). 

Combinatorial explosion is an exponential increase in the size of combinations which prolongs the 

computational time significantly (Tsang, 2005). Hence the Genetic Algorithm is used to solve this 

problem as it reduces the computation time significantly (Jain & Zongker, 1997).   

3.6 Genetic Algorithm (GAs)  

GAs uses the theory of evolution to find the best possible outcome. The initial set of data 

is encoded into a chromosome (potential solution) which represents one of many potential 

solutions. The fitness of the solution is determined by evaluating the performance of chromosomes 

based on the objective function. The unfit chromosomes are eliminated by the process of survival 

of the fittest mechanism and offspring fitter than the parents are generated which replace the unfit 

members of the population (El-Rayes & Kandil, 2005; Mallawaarachchi, 2017; Whitley, 1994). 

This process continues until the criteria of a satisfactory solution is met which is called the “optimal 

or near optimal solution”. The GAs evolution process can be divided into four major steps: 

1. Data Initialization: Generation of initial set of solution (set of chromosomes) 

2. Fitness Function Evaluation: Calculation of fitness values for each chromosome  

3. Mutation: Randomly changing an element in a randomly chosen chromosome and removal 

of worst member (chromosome) of the population  

4. Crossover: Selection of 2 best members (considered as parents), producing 2 child 

members, and removal of the worst member.   

The flow process of the Genetic Algorithm described above is shown as in figure 5.     
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Figure 5: Genetic Algorithm 

3.6.1 Phase 1 - Data Initialization  

The first step in this algorithm is to initialize the data. This phase starts by importing the 

data into Python and defining 3 material options associated with each activity. This is essential 

because the data imported to Python is a cluster of numbers which have to be separated into 29 

distinct activities, having 3 material options each. Hereupon, 10 random chromosomes are 

generated to make the population. A sample chromosome is shown below:  

Table 1: Sample Chromosome 

a0 a1 a2 ˑˑˑˑ a26 a27 a28 

0 2 1 ˑˑˑˑ 0 1 1 
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In table 1, each number represents the material option ranging from 0 to 2 (since there are a total 

of 3 options e.g. option 0, 1 and 2), for every single activity. A small number (10 in this case) of 

chromosomes is generated, as a “population”, which produce the offspring (child chromosomes) 

that will be evaluated using the fitness function in the following phase.  

3.6.2 Phase 2 - Fitness Function Evaluation   

Function for fitness calculation (Equation 5) is coded in Python which starts with the 

calculation of total MR credits for each combination and normalization of the matrix thereafter. 

To find the number of MR credits for each combination, the total sustainable criteria value for 

Recycle Content, Regional Materials and Rapidly Renewable Materials, are calculated and divided 

by the total cost of materials for the same combination. If the percentage is between 10% and 20%, 

then 1 credit is assigned, if its more than 20%, 2 credits are assigned, for each of Recycle Content 

and Regional Materials. 1 credit is assigned for Rapidly Renewable Materials if the renewable 

materials are more than 2.5% of total material cost. Considering all three sub categories for MR; 

a total of possible 5 credits could be achieved. To normalize the matrix, each option total (total 

DAM, total Material Cost and total credits) are divided by the respective column’s maximum value 

for each combination so that all numbers fall in the range of 0 to 1. Fitness for the 10 chromosomes 

is calculated using equation 5. The chromosome with the highest fitness is selected for usage in 

the mutation phase.  

3.6.3 Phase 3 - Mutation  

The selected chromosome is randomly mutated and the new chromosome is added to the 

old population. A sample mutation is shown as in table 2:  
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Table 2: Mutation of Chromosome 

Original 

Chromosome 

a0 a1 a2 ˑˑˑˑ a26 a27 a28 

0 2 1 ˑˑˑˑ 0 1 1 

Mutated 

Chromosome 

a0 a1 a2 ˑˑˑˑ a26 a27 a28 

0 0 1 ˑˑˑˑ 0 1 1 

 

Table 2 shows a sample chromosome (The one with the highest fitness from the evaluation process 

in phase 2), which gets randomly mutated to form the mutated chromosome (mutated numbers are 

highlighted) assuming the numbers in between remained the same. It should be noted that the 

mutated chromosome is not overridden, but a clone of the original chromosome (with highest 

fitness) is created which then gets mutated. The fitness values are recalculated for the new 

population using equation 5. All the fitness values are compared to remove the worst chromosome 

of the population (with the lowest fitness value) before proceeding to the crossover phase  

3.6.4 Phase 4 - Crossover  

The Fitness is recalculated for the new population (after removal of the worst chromosome) 

and the two best chromosomes are selected (top two chromosomes) and crossed over to create two 

child chromosomes. A sample crossover has been shown below: 

Table 3: Crossover of Parent Chromosomes 

Parent 1 
a0 a1 a2 ˑˑˑˑ a26 a27 a28 

0 0 1 ˑˑˑˑ 2 1 0 

Parent 2 
a0 a1 a2 ˑˑˑˑ a26 a27 a28 

2 2 0 ˑˑˑˑ 1 2 1 

Child 1 
a0 a1 a2 ˑˑˑˑ a26 a27 a28 

0 0 0 ˑˑˑˑ 1 2 1 

Child 2 
a0 a1 a2 ˑˑˑˑ a26 a27 a28 

2 2 1 ˑˑˑˑ 2 1 0 
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A random point of crossover is chosen from the first parent and the same point of crossover is used 

for the second parent. In table 3, the point of crossover is after a1 in the parents, where child 1 is 

created by combining the first half (before the point crossover) and the second half (after the point 

of crossover) of the second parent, and child 2 is created by combining the first half of the second 

parent (before the point of crossover) and the first half of the first parent (after the point of 

crossover). The two child chromosomes are added to the old population and the fitness values are 

calculated considering the new population. The fitness of child chromosomes is compared with 

the parent chromosomes and the two lowest fitness chromosomes out of the 4 members, are 

removed from the population.  

Phase 2, 3 and 4 are reiterated 1000 times and the chromosome with the highest fitness 

value will be the resultant near optimal solution. The more the number of runs on the code (Phases 

2, 3 and 4), the more optimal the solution can be (Haupt, 2000). Consider an analogy of tossing a 

coin. Probability of getting a Heads or a Tails increases with the number of tosses (trials). 

Similarly, in GAs Optimization models, the more the number of runs for the code, the more optimal 

the solution can be. Another contributor to achieving a more optimal solution is the initial 

population selection in Phase 1 where the initial sample population was constructed using 10 

randomly selected chromosomes. Following the same logic, it can be inferred that the optimality 

of a solution can increase by increasing the number of runs, increasing the sample size (number of 

chromosomes) of initial population, or increasing both.  

3.7 Validation Case Study  

The validation case studies are required to substantiate the optimization model built using 

Python. It requires input of a larger data set and uses enhanced GA optimization model to solve 
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the tradeoff. The validation study Python code can be referenced in Appendix B – Code for 

Validation Study.  

3.7.1 Case study data collection and analysis  

The first validation research focused on a LEED certified building (according to LEED 

2009) and relevant data is obtained from the Facilities Management Department of Colorado State 

University (CSU) and Ambient Energy, the LEED consultant on the project. The project under 

study is the CSU Health and Medical Center (HMC), situated at the intersection of Prospect and 

College, in Fort Collins, Colorado. The project was completed in summer 2017 and achieved 

LEED Gold certification. The collected data comprises of three major domains namely: Material 

Cost, Duration Associated with Materials (DAM) and Credits associated with MR section of 

LEED. The duration of all the activities in consideration was obtained from Adolfson Peterson 

(the general contractor on the project), in the form of a construction schedule. The cost and credits 

data were both obtained from Ambient Energy, the LEED consultants on the project, in the form 

of the MR LEED calculator format. It consisted of different types of sustainable materials used on 

the HMC project with corresponding total cost of materials, sustainable criteria value for each of 

recycled content and regional materials. The second validation study operated on the same set of 

LEED variables and input data, considering a fire station project; for the purpose of just reinforcing 

the reliability of the optimization model. 

3.7.2 Workflow Construct  

In this research study, the Materials and Resources category is considered as part of the 

LEED certification criteria. Activities which pertain to the process of acquiring the credits for 

Materials and Resources are taken into consideration. . Cost data and the sustainable criteria value 

for each of the materials used, is extracted from the LEED data. The collected data were cleaned 
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and 2 additional material options are added to the set, resulting in 3 material options for each 

execution able activity. The additional material options were obtained by telephonic or email 

conversations with different suppliers in and around Fort Collins and for each project activity the 

3 material options included the cost, time and credits. At this stage, the dataset is ready to run 

through the GA optimization model in order to obtain near optimal results within the different 

scenarios that will be introduced in chapter 4.  
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Chapter 4: Data Analysis and Results  

In this chapter, the datasets for preliminary and validation case studies are presented and 

explained, followed by the optimization model results and its tradeoff solutions.  

4.1 Preliminary Study  

The preliminary study data set shown in table 4, describes a dummy data set of a six activity 

project with 3 material options for each activity. Each material option will have its associated Cost, 

DAM and sustainable criteria values.  

Table 4: Preliminary Data Set 

Column1 Column2 Column3 olumn4 Column5 Column6 Column7 

    DAM 

(Time) 

Cost ($) MR1 ($) MR2 ($) MR3 ($) 

  Method 1 6 50 35 20 50 

Activity 1 Method 2 8 45 40 0 25 

  Method 3 3 30 0 15 0 

  Method 1 7 55 45 55 0 

Activity 2 Method 2 6 40 40 40 25 

  Method 3 5 31 15 31 10 

  Method 1 10 65 0 10 13 

Activity 3 Method 2 11 60 55 60 50 

  Method 3 11 55 48 55 15 

  Method 1 5 100 65 98 45 

Activity 4 Method 2 8 120 0 0 0 

  Method 3 6 150 120 150 50 

  Method 1 5 30 10 30 0 

Activity 5 Method 2 6 28 20 28 0 

  Method 3 10 20 20 20 0 

  Method 1 10 85 85 85 0 

Activity 6 Method 2 11 78 70 75 65 

  Method 3 12 70 65 60 60 

 

Activity 1 to Activity 6, denote the different project activities (column 1), and each activity can be 

performed using 3 possible material options (column 2). Each method uses a unique material with 

an associated DAM and cost (columns 3 and 4 respectively). The following columns (columns 4, 
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5 and 6) are all associated with the MR sustainability criteria for each activity. Column 5 is 

associated with the sustainable criteria value for recycle content, calculated as a percentage of 

weights of recycled content. Column 6 represents the sustainable criteria value associated with 

regional materials which is calculated based on the percentage of components of a material which 

are manufactured in less than 500 miles of the project site. Column 7 is the sustainable criteria 

value for the rapidly renewable materials, which is calculated as a percentage of rapidly renewable 

content in the material. Following the methodology mentioned in the preliminary study, the RIFs 

are chosen by the user. The optimization model test runs considered 3 scenarios where the cost 

and time are minimized and credits are maximized according to the RIFs for each factor per 

scenario. The RIFs provides a method to mimic the factors prioritization based on stakeholder’s 

needs in different scenarios. In this preliminary study, the overall minimum total DAM, minimum 

total cost and maximum total credits for the dummy set of activities taken into account were 38, 

306, and 5, respectively.  

For the first scenario, the DAM is assumed to be the most important (highest priority) 

factor, with the RIFs for DAM, cost and credits being 9, 1 and 1 respectively. Using the formulated 

optimization model, the optimized solution results for these weights (RIFs) are:  

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 1 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 3 = 
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 2 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 3 = 
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 3 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 1 = 
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 4 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 1 = 
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 5 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 1 = 
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 6 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 1 = 

3 30 0 15 0
5 31 15 31 10

10 65 0 10 13
5 100 65 98 45
5 30 10 30 0

10 85 85 85 0

  

These results implied that Method 3 should be used for Activity 1, Method 3 for Activity 2, Method 

1 for Activity 3, Method 1 for Activity 4, Method 1 for Activity 5 and Method 1 for Activity 6. 

The total DAM associated with this combination is 38 which is the same as the minimum DAM 
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of the dataset. The result is in accordance with the user specified weights (RIFs), 9 being the 

highest importance for DAM and 1 being the lowest for Cost and Credits.  

For the second scenario, the RIFs are changed so that the Cost has the highest priority. The RIFs 

for DAM, Cost and Credits for this scenario are 1, 9 and 1 respectively. The optimized solution 

obtained after running the model on the preliminary dataset with said RIFs is:  

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 1 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 3 = 
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 2 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 3 = 
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 3 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 3 = 
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 4 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 1 = 
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 5 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 3 = 
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 6 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 3 = 

3 30 0 15 0
5 31 15 31 10

11 55 48 55 15
5 100 65 98 45

10 20 20 20 0
12 70 65 60 60

   

The total cost obtained for this combination of materials is 306 which is the same as minimum 

total cost among all the combinations. This result is coherent with user specified weights, highest 

being for the cost.  

The third scenario in consideration is when the credits have the highest priority. RIFs for this case 

are 1, 1 and 9, and the optimized solution results is:   

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 1 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 3 = 
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 2 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 3 = 
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 3 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 3 = 
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 4 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 1 = 
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 5 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 1 = 
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 6 ∶ 𝑀𝑒𝑡ℎ𝑜𝑑 1 = 

3 30 0 15 0
5 31 15 31 10

11 55 48 55 15
5 100 65 98 45
5 30 10 30 0

10 85 85 85 0

  

5 credits are obtained for this combination, being in accordance with the total maximum credits 

that could be obtained (which is 5). This shows that the RIFs determine the optimal solution and a 

user could define them to provide the minimum DAM or cost and maximum credits.  
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Based on the preliminary results, the DAM and cost are minimized and credits are maximized 

based on the priority factors entered by the user, hence verifying the authenticity of the 

mathematical equations, constraints and fitness function. The Python code follows the exhaustive 

search for the preliminary study and the solutions obtained are the most optimal among all possible 

combinations. However, in the validation case study, the number of combinations rises 

exponentially as the number of activities in a “real project” increases and using exhaustive search 

on the data set needs more computational power and time. Therefore, the GA optimization model 

was introduced to tackle the problem of computational inefficiency.    

4.2 Validation Case Study 1  

 The validation case study takes the previously identified HMC datasets as an input and 

runs the GA optimization model on the dataset while capturing user priority inputs in the form of 

RIFs to come up with optimal solutions. There are a total of 29 activities and 3 material options 

for each, making a total of 329 combinations. This cannot be solved using exhaustive search due to 

higher computational power required to run and solve the optimization functions with a bigger 

dataset (Haupt, 2000). Therefore, the Genetic Algorithm was introduced in the optimization model 

based on the four aforementioned phases (initialization, fitness evaluation, Mutation and 

crossover). A sample table for the HMC data showing the first three and last three activities is 

shown in table 5 and the complete dataset can be found in Appendix C-HMC Case study Full 

Dataset. In table 5, Column 1 describes the activities as executed for the HMC project. For each 

activity, there are 3 unique material options introduced in the 2nd column, each of which have an 

associated DAM (Column 4), material cost (Column 5), and sustainable criteria values (Column 

6, 7 and 8). This serves as the data set for the validation study which was imported into Python 3.5 

before running the GA optimization model.  
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Table 5: HMC Data Set 

Activity 

Name 

Material DAM Cost  MR1 MR2 MR3 

  Material 1 30 154900 $0.00 $125,469.00 $0.00 

Concrete Material 2 28 376533 $16,907.00 $376,533.00 $0.00 

  Material 3 27 337036 $15,167.00 $337,036.00 $0.00 

  Material 1 25 218656 $0.00 $218,656.00 $0.00 

Concrete - 

Cast in Place 

Material 2 20 564799 $25,360.00 $564,799.00 $0.00 

  Material 3 23 505554 $22,750.00 $505,554.00 $0.00 

  Material 1 20 238257 $218,006.00 $238,257.00 $0.00 

 Rebar - Cast 

in Place 

Material 2 20 795710 $698,633.00 $795,710.00 $0.00 

  Material 3 20 901804 $844,089.00 $901,804.00 $0.00 

  Material 1 26 30406 $5,170.00 $0.00 $0.00 

Flooring-

Resilient 

Material 2 25 151868 $25,818.00 $151,868.00 $0.00 

  Material 3 26 151414 $25,741.00 $151,414.00 $0.00 

  Material 1 16 68414 $11,973.00 $0.00 $0.00 

Flooring-Tile Material 2 14 86242 $15,093.00 $86,242.00 $0.00 

  Material 3 12 86304 $15,104.00 $86,304.00 $0.00 

  Material 1 21 20608 $1,443.00 $0.00 $0.00 

Flooring-

Rubber Base 

Material 2 19 20608 $1,443.00 $20,608.00 $0.00 

  Material 3 21 20608 $1,443.00 $20,608.00 $0.00 

 

 The total DAM, Cost and Credits for the combination used originally on HMC project are 

794 days, $ 5,818,463.00 and 4 credits respectively. After running the GA optimization model for 

1000 times through different scenarios, the results were obtained in the form of a set of values that 

represent the optimal solution for each of the four scenarios shown below.  

For the first scenario, the DAM is assumed to be the most important (highest priority) 

factor, with the RIFs for DAM, cost and credits being 9, 1 and 1 respectively. The optimized 

solution for these weights is as shown in table 6: 
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Table 6: Scenario 1 (9, 1, 1) 

Activity Name Method DAM Cost ($) MR1 ($) MR2 ($) MR3 ($) 

Activity 1 Method 3  27 337036 15167 337036 0 

Activity 2 Method 2 20 564799 25360 564799 0 

Activity 3 Method 1 20 238257 218006 238257 0 

Activity 4 Method 2 22 200000 183000 200000 0 

Activity 5 Method 2 4 250000 75000 250000 12500 

Activity 6 Method 3  9 42843 1778 0 86 

Activity 7 Method 2 37 170000 52700 170000 8500 

Activity 8 Method 2 40 13722 0 0 0 

Activity 9 Method 2 40 80997 6075 80997 0 

Activity 10 Method 3  1 303 271 303 0 

Activity 11 Method 2 4 7961 598 7961 0 

Activity 12 Method 2 25 54850 1591 54850 3182 

Activity 13 Method 2 40 25000 9375 25000 0 

Activity 14 Method 2 36 127253 37540 127253 0 

Activity 15 Method 2 1 1333 708 0 0 

Activity 16 Method 2 22 12000 4500 12000 0 

Activity 17 Method 2 3 4000 1260 4000 80 

Activity 18 Method 3  46 130000 39000 130000 0 

Activity 19 Method 3  70 273579 1751284 31346 0 

Activity 20 Method 2 50 100000 55000 0 5000 

Activity 21 Method 2 28 151620 593085 0 0 

Activity 22 Method 2 7 65000 40300 65000 3250 

Activity 23 Method 3  8 0 0 0 0 

Activity 24 Method 3  58 75000 15000 0 750 

Activity 25 Method 3  14 64508 5561 64508 0 

Activity 26 Method 2 35 140000 52500 140000 0 

Activity 27 Method 1 26 30406 5170 0 0 

Activity 28 Method 3  12 86304 15104 86304 0 

Activity 29 Method 2 19 20608 1443 20608 0 

 

Total DAM for this combination is 764 working days and total cost associated is $ 

6,281,101, and the total achievable credits is 4. DAM is seen to be lesser than the DAM for the 

combination used on HMC (which was 794 days).  
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Figure 6: Trend in Total DAM with increase in number of generations 

  For the second scenario, the cost is assumed to be the most important (highest priority) 

factor, with the RIFs for DAM, cost and credits being 1, 9 and 1 respectively. The optimized 

solution for these weights are shown in table 7: 

Table 7: Scenario 2 (1, 9, 1) 

Activity Name Method  DAM Cost ($) MR1 ($) MR2 ($) MR3 ($) 

Activity 1 Method 1 30 154900 0 125469 0 

Activity 2 Method 1 25 218656 0 218656 0 

Activity 3 Method 1 20 238257 218006 238257 0 

Activity 4 Method 3 24 198000 181170 198000 0 

Activity 5 Method 1 5 196600 70776 68810 0 

Activity 6 Method 1 13 23684 0 22263 0 

Activity 7 Method 2 37 170000 52700 170000 8500 

Activity 8 Method 2 40 13722 0 0 0 

Activity 9 Method 2 40 80997 6075 80997 0 

Activity 10 Method 3 1 303 271 303 0 

Activity 11 Method 2 4 7961 598 7961 0 

Activity 12 Method 2 25 54850 1591 54850 3182 

Activity 13 Method 1 42 20548 6165 0 0 

Activity 14 Method 1 38 32399 26568 0 0 

Activity 15 Method 2 1 1333 708 0 0 

Activity 16 Method 1 23 10790 1457 0 0 

Activity 17 Method 2 3 4000 1260 4000 80 

Activity 18 Method 1 50 117086 35126 117086 0 
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Activity 19 Method 3 70 2273579 1751284 31346 0 

Activity 20 Method 1 55 94069 47035 0 0 

Activity 21 Method 1 30 1103620 568365 0 0 

Activity 22 Method 2 7 65000 40300 65000 3250 

Activity 23 Method 3 8 0 0 0 0 

Activity 24 Method 2 60 71511 14303 0 0 

Activity 25 Method 1 17 14599 6570 0 0 

Activity 26 Method 2 35 140000 52500 140000 0 

Activity 27 Method 1 26 30406 5170 0 0 

Activity 28 Method 1 16 68414 11973 0 0 

Activity 29 Method 2 19 20608 1443 20608 0 

 

The total DAM obtained for this combination is 804 working days, cost being $ 5,439,614 

and 4 achievable credits. The cost is seen to be less than the cost for HMC combination (which 

was $ 5,818,463), validating that the cost did get minimized by setting the RIFs in favor of cost.  

 

Figure 7: Trend of Total Cost with increase in number of generations 

For the third scenario, the credits are assumed to be the most important (highest priority) 

factor, with the RIFs for DAM, cost and credits being 1, 1 and 9 respectively. The optimized 

solution for these weights are shown in table 8: 
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Table 8: Scenario 3 (1, 1, 9) 

Activity Name Method DAM Cost ($) MR1 ($) MR2 ($) MR3 ($) 

Activity 1 Method 1 30 154900 0 125469 0 

Activity 2 Method 1 25 218656 0 218656 0 

Activity 3 Method 1 20 238257 218006 238257 0 

Activity 4 Method 2 22 200000 183000 200000 0 

Activity 5 Method 1 5 196600 70776 68810 0 

Activity 6 Method 3 9 42843 1778 0 86 

Activity 7 Method 2 37 170000 52700 170000 8500 

Activity 8 Method 2 40 13722 0 0 0 

Activity 9 Method 2 40 80997 6075 80997 0 

Activity 10 Method 3 1 303 271 303 0 

Activity 11 Method 2 4 7961 598 7961 0 

Activity 12 Method 2 25 54850 1591 54850 3182 

Activity 13 Method 2 40 25000 9375 25000 0 

Activity 14 Method 1 38 32399 26568 0 0 

Activity 15 Method 2 1 1333 708 0 0 

Activity 16 Method 2 22 12000 4500 12000 0 

Activity 17 Method 2 3 4000 1260 4000 80 

Activity 18 Method 3 46 130000 39000 130000 0 

Activity 19 Method 3 70 2273579 1751284 31346 0 

Activity 20 Method 2 50 100000 55000 0 5000 

Activity 21 Method 1 30 1103620 568365 0 0 

Activity 22 Method 2 7 65000 40300 65000 3250 

Activity 23 Method 3 8 0 0 0 0 

Activity 24 Method 3 58 75000 15000 0 750 

Activity 25 Method 1 17 14599 6570 0 0 

Activity 26 Method 2 35 140000 52500 140000 0 

Activity 27 Method 1 26 30406 5170 0 0 

Activity 28 Method 3 12 86304 15104 86304 0 

Activity 29 Method 2 19 20608 1443 20608 0 

 

Total DAM for this combination is 804 working days, total cost is $ 5,439,614 and total 

maximum achievable credits is 4 which is in accordance with the baseline data of HMC project, 

which achieved 4 credits as well.  

Forth scenario is a mixed priorities scenario, with the RIFs for DAM, cost and credits being 

4, 2 and 9 respectively. The optimized solution for these weights are shown in table 9: 
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Table 9: Scenario 4 (4, 2, 9) 

Activity Name Method DAM Cost ($) MR1 ($) MR2 ($) MR3 ($) 

Activity 1 Method 1 30 154900 0 125469 0 

Activity 2 Method 1 25 218656 0 218656 0 

Activity 3 Method 1 20 238257 218006 238257 0 

Activity 4 Method 2 22 200000 183000 200000 0 

Activity 5 Method 1 5 196600 70776 68810 0 

Activity 6 Method 3 9 42843 1778 0 86 

Activity 7 Method 2 37 170000 52700 170000 8500 

Activity 8 Method 2 40 13722 0 0 0 

Activity 9 Method 2 40 80997 6075 80997 0 

Activity 10 Method 3 1 303 271 303 0 

Activity 11 Method 2 4 7961 598 7961 0 

Activity 12 Method 2 25 54850 1591 54850 3182 

Activity 13 Method 2 40 25000 9375 25000 0 

Activity 14 Method 1 38 32399 26568 0 0 

Activity 15 Method 2 1 1333 708 0 0 

Activity 16 Method 2 22 12000 4500 12000 0 

Activity 17 Method 2 3 4000 1260 4000 80 

Activity 18 Method 3 46 130000 39000 130000 0 

Activity 19 Method 3 70 2273579 1751284 31346 0 

Activity 20 Method 2 50 100000 55000 0 5000 

Activity 21 Method 1 30 1103620 568365 0 0 

Activity 22 Method 2 7 65000 40300 65000 3250 

Activity 23 Method 3 8 0 0 0 0 

Activity 24 Method 3 58 75000 15000 0 750 

Activity 25 Method 1 17 14599 6570 0 0 

Activity 26 Method 2 35 140000 52500 140000 0 

Activity 27 Method 1 26 30406 5170 0 0 

Activity 28 Method 3 12 86304 15104 86304 0 

Activity 29 Method 2 19 20608 1443 20608 0 

 

Total DAM obtained for this combination is 780 working days, total cost being $ 5,506,659 and 

total achievable 4 credits. Both the total DAM and cost are less than the baseline combination for 

HMC, validating the model yet again.  
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 It can be seen that the project factors are optimized very efficiently based on RIFs’ 

definition, providing a time and cost within or under the project. This study also validates the GA 

optimization model in providing the optimized set of solution. Next section discusses the 

limitations in this research, future study and conclusion. 

It can be seen that the project factors are optimized very efficiently based on RIFs’ 

definition, providing a time and cost within or under the project. This study also validates the GA 

optimization model in providing the optimized set of solution.  

4.2.1 Dependence of optimality on Population size and Number of runs 

 The optimality of the solutions depends on the initial population size and the number of 

runs for the GA. Several scenarios were executed to validate this dependence by keeping the 

relative importance factors fixed (DAM having highest importance in all scenarios) while 

manipulating the number of runs or the population size. The results are summarized in table 10 

where in one case, the population size was kept as 10 and the number of runs was increased from 

30 to 1000 in scenario number (Sc.no.) 1 and 2.  

Table 10: Dependence of Optimality of population size and runs 

S.no. 
Population 

Size 

No. of 

Runs 

Total DAM 

(days) 

Computation Time 

(seconds) 

1 10 30 736 0.55732892 

2 10 1000 724 5.416013707 

3 15 30 748 0.600213413 

4 25 30 735 0.760430409 

It can be seen that the total DAM decreased from 736 days to 724 days as the number of 

runs increased from 30 to 1000 (scenario 1 and 2), respectively. In another case, the population 

size was increased while keeping the number of runs constant. It can be seen that the total DAM 
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decreased from 748 days to 735 days as the initial population size was increased from 15 to 25 

(scenario 3 and 4), respectively. The computational time required to run every scenario has been 

tabulated in table 10.  

4.3 Validation Case Study 2 

 Another case study was taken into account to reinforce the validity of the optimization 

model. For the second validation case study, a fire station project was chosen and GA optimization 

model was applied to find the optimal solutions. The dataset has 15 different activities and 3 

material options associated with each activity, making a total of 315 combinations.  

Table 11: Fire Station Data Set 

Activity  

 DAM        

(days) 
Cost MR1 MR2 MR3 

 Material 1 10 $93,008.00 $0.00 $93,008.00 $0.00 

Concrete - 

Cast in Place Material 2 
8 $100,000.00 $14,000.00 $100,000.00 $5,800.00 

 Material 3 7 $56,326.00 $14,082.00 $56,326.00 $4,281.00 

 Material 1 3 $7,368.00 $6,742.00 $7,368.00 $0.00 

 Rebar - Cast 

in Place Material 2 
3 $10,000.00 $9,700.00 $10,000.00 $0.00 

 Material 3 3 $8,265.00 $10,125.00 $8,265.00 $521.00 

 Material 1 4 $134,422.00 $126,357.00 $86,030.00 $0.00 

Pre-Cast  Material 2 4 $120,000.00 $112,800.00 $102,000.00 $0.00 

 Material 3 5 $150,326.00 $139,052.00 $0.00 $6,765.00 

 

Therefore, the Genetic Algorithm was introduced in the optimization model based on the four 

aforementioned phases (initialization, fitness evaluation, Mutation and crossover). A sample table 

for the fire station project data showing some activities is shown in Table 11, and the complete 

dataset can be found in Appendix D – Fire Station Full Dataset. In table 11, Column 1 describes 

the activities as executed for the fire station project. For each activity, there are 3 unique material 

options introduced in the 2nd column, each of which have an associated DAM (Column 4), material 

cost (Column 5), and sustainable criteria values (Column 6, 7 and 8). This serves as the data set 
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for the validation study which was imported into Python 3.5 before running the GA optimization 

model.  

The total DAM, Cost and Credits for the combination used originally on fire station project are 95 

days, $ 580,564 and 4 credits respectively. After running the GA optimization model for 1000 

times through different scenarios, the results were obtained in the form of a set of values that 

represent the optimal solution for each of the four scenarios shown below.  

For the first scenario, the DAM is assumed to be the most important (highest priority) 

factor, with the RIFs for DAM, cost and credits being 9, 1 and 1 respectively. The optimized 

solution for these weights is as shown in table 12: 

Table 12: Scenario 1 (9,1,1) 

Activity DAM (days) Cost MR1 MR2 MR3 

Activity 1 7 $56,326.00 $14,082.00 $56,326.00 $4,281.00 

Activity 2 3 $7,368.00 $6,742.00 $7,368.00 $0.00 

Activity 3 4 $120,000.00 $112,800.00 $102,000.00 $0.00 

Activity 4 10 $16,326.00 $4,898.00 $0.00 $2,580.00 

Activity 5 6 $11,236.00 $9,551.00 $0.00 $292.00 

Activity 6 11 $6,258.00 $1,877.00 $0.00 $812.00 

Activity 7 10 $20,000.00 $27,500.00 $20,000.00 $1,200.00 

Activity 8 5 $85,625.00 $65,931.00 $72,781.00 $12,844.00 

Activity 9 5 $16,326.00 $17,550.00 $16,326.00 $0.00 

Activity 10 3 $13,910.00 $7,998.00 $13,910.00 $0.00 

Activity 11 8 $125,653.00 $30,157.00 $0.00 $0.00 

Activity 12 3 $87,984.00 $27,715.00 $0.00 $0.00 

Activity 13 4 $4,377.00 $744.00 $0.00 $0.00 

Activity 14 2 $4,562.00 $912.00 $2,965.00 $274.00 

Activity 15 6 $2,456.00 $0.00 $0.00 $246.00 
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Total DAM for this combination is 87 working days and total cost associated is $ 578,407, 

and the total achievable credits is 5. DAM is seen to be lesser than the DAM for the combination 

used on HMC (which was 95 days).  

 

Figure 8: Trend in total DAM with increase in Number of Generations 

For the second scenario, the cost is assumed to be the most important (highest priority) 

factor, with the RIFs for DAM, cost and credits being 1, 9 and 1 respectively. The optimized 

solution for these weights are shown in table 13.  

Table 13: Scenario 2 (1,9,1) 

Activity 
DAM 

(days) 
Cost MR1 MR2 MR3 

Activity 1 7 $56,326.00 $14,082.00 $56,326.00 $4,281.00 

Activity 2 3 $7,368.00 $6,742.00 $7,368.00 $0.00 

Activity 3 4 $120,000.00 $112,800.00 $102,000.00 $0.00 

Activity 4 10 $16,326.00 $4,898.00 $0.00 $2,580.00 

Activity 5 6 $11,236.00 $9,551.00 $0.00 $292.00 

Activity 6 15 $1,000.00 $460.00 $150.00 $0.00 

Activity 7 10 $20,000.00 $27,500.00 $20,000.00 $1,200.00 

Activity 8 5 $85,625.00 $65,931.00 $72,781.00 $12,844.00 

Activity 9 5 $16,326.00 $17,550.00 $16,326.00 $0.00 
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Activity 10 4 $10,259.00 $6,361.00 $0.00 $0.00 

Activity 11 8 $125,653.00 $30,157.00 $0.00 $0.00 

Activity 12 4 $75,321.00 $7,532.00 $48,959.00 $2,636.00 

Activity 13 4 $4,377.00 $744.00 $0.00 $0.00 

Activity 14 2 $4,562.00 $912.00 $2,965.00 $274.00 

Activity 15 6 $2,456.00 $0.00 $0.00 $246.00 

 

Total DAM for this combination is 93 working days and total cost associated is $ 556,835, 

and the total achievable credits is 5. DAM is seen to be lesser than the DAM for the combination 

used on HMC (which was 95 days). The cost is seen to be less than the cost for the fire station 

dataset combination (which was $ 580,564), validating that the cost did get minimized by setting 

the RIFs in favor of cost. 

 

Figure 9: Trend in total cost with increase in Number of Generations 

Forth scenario is a mixed priorities scenario, with the RIFs for DAM, cost and credits being 

4, 2 and 9 respectively. The optimized solution for these weights are shown in  
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Table 14: Scenario 3 (4,2,9) 

DAM 

(days) 
Cost MR1 MR2 MR3 

7 $56,326.00 $14,082.00 $56,326.00 $4,281.00 

3 $7,368.00 $6,742.00 $7,368.00 $0.00 

4 $120,000.00 $112,800.00 $102,000.00 $0.00 

10 $16,326.00 $4,898.00 $0.00 $2,580.00 

6 $11,236.00 $9,551.00 $0.00 $292.00 

11 $6,258.00 $1,877.00 $0.00 $812.00 

10 $20,000.00 $27,500.00 $20,000.00 $1,200.00 

5 $85,625.00 $65,931.00 $72,781.00 $12,844.00 

5 $16,326.00 $17,550.00 $16,326.00 $0.00 

3 $13,910.00 $7,998.00 $13,910.00 $0.00 

8 $125,653.00 $30,157.00 $0.00 $0.00 

3 $87,984.00 $27,715.00 $0.00 $0.00 

4 $4,377.00 $744.00 $0.00 $0.00 

2 $4,562.00 $912.00 $2,965.00 $274.00 

6 $2,456.00 $0.00 $0.00 $246.00 

 

Total DAM obtained for this combination is 87 working days, total cost being $ 578,407 

and total achievable 5 credits. Both the total DAM and cost are less than the baseline combination 

for HMC, validating the model yet again.  

It can be seen that the project factors are optimized very efficiently based on RIFs’ 

definition, providing a time and cost within or under the project. This study also validates the GA 

optimization model in providing the optimized set of solution. Next section discusses the 

limitations in this research, future study and conclusion. 
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Chapter 5: Findings, Discussion and Conclusion 

5.1 Research Summary  

 This research aimed to answer the research questions posed to solve the identified tradeoff 

between the cost, time and sustainability which was represented in the MR LEED category. In 

answering the research questions, the optimization technique was found to be the most suited to 

solve the tradeoff problem. Among the many types of optimization techniques, the multi-objective 

optimization was determined to be the befitting optimization type along with using the GA 

technique to solve the complexity of the problem and overcome the computational difficulties. 

Based on these choices, a mathematical model, represented in the multi-objective function, was 

formulated along with several problem constraints. The model’s mathematical capability was 

tested using a preliminary study before adding the GA technique and another case study was 

analyzed using the GA optimization model for model validation and optimal solving capability 

demonstration. 

5.2 Findings and Discussion  

 The preliminary study was used to run a sample data set on the optimization model created 

in Python, following the exhaustive search algorithm. It presents the most optimal solution based 

on user entered RIFs for time, cost and credits. The model is seen to be coherent with the attainable 

minimum cost and time, and maximum credits among all possible combinations.  

Another “real project” case study was used as a validation study after applying the genetic 

algorithm, while also considering the user input as RIFs to test the ability of solving for a tradeoff 

optimal/near-optimal solutions. It can be seen from the results that the optimal solution depends 

on three main factors: 

1. The initial size of the population (containing a set of chromosomes)  



59 

2. The Relative Importance Factors (RIFs) entered by the user  

3. Number of runs for the genetic algorithm code  

In this optimization model, the user defines the RIFs for time, cost and credits, which give a 

different optimal solution based on the user input. For example, cost would be given the priority 

to be minimized if the RIF for cost is the highest (meaning budget has the highest priority for the 

user). The number of runs for the genetic algorithm code determines the level of optimality of 

solution obtained, where a large number of runs mean that the initial population goes through 

mutation and crossover many more times, which increases the probability of finding an optimal 

solution. Recalling table 10, it is evident that as the number of runs was increased, the solution 

became more optimal (lower total DAM in that case). Similarly, when the model ran varying 

population sizes, it was found that the bigger the size of initial population, the better the optimal 

solution can be. This is due to the more number of combinations considered in a bigger population, 

hence increasing the probability of finding the optimal/near optimal solution. To strengthen the 

reliability of the optimization model, it was ran again using a dataset from a fire station project 

and it was seen to work in concordance with the priority factors set by the user.  

These factors show that in order to reach the most optimal solution or to increase the level of 

optimality, it is necessary to compute a wide range of combinations (either having a large initial 

population or having more runs in genetic algorithm) which further justifies the use of the GAs 

due to its computational efficiency. It should be noted from table 10 that the effect of increase of 

number of runs is more than increasing population size, as more number of chromosomes could 

be introduced in the population. Computational time increases with increase in population size 

because the GA would run the whole population size every time the fitness values need to be 

calculated (Haupt, 2000). It can be seen from table 10 that the computational time increases with 
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the number of runs and with the increased population size. The increase in computational time is 

greater, when numbers of runs is increased as compared to the population size, however, having a 

tradeoff with the optimality of solution. Hence the user needs to decide the level of optimality 

required and its tradeoff with the computational time required. This time would increase 

exponentially as the size of dataset increases. It is expected that the solution would be the most 

optimal if the GA is left to run for a sufficient time (large number of runs).  

5.3 Conclusion  

 The optimization model created in this research uses genetic algorithm, which is one of the 

most dynamic and user friendly evolutionary coding techniques. The model works efficiently and 

run 1000 times with changing RIFs to yield optimal solutions which can minimize a project’s cost 

and DAM, while maximizing the earned credits. This optimization model is beneficial to different 

stakeholders in the construction industry. It can reduce the workload of LEED consultants 

exponentially, by providing them with material options to use based on the importance factors 

provided by the owners. Similarly, Design-Builders can use it to optimize the owner’s budget 

while attaining the maximum credits for the LEED certification and reducing the risk of their 

schedules. 

In many cases, the owners (mostly state and federal facility owners, e.g. Educational 

facilities) have to meet certain minimal requirements for building certification and this model can 

be a time and cost efficient method of achieving the best possible material combinations for the 

cheapest price and highest number of attainable credits. The optimization model created to fulfill 

the purpose of this research is very dynamic and works with any datasets in the required format 

(DAM, cost, sustainable criteria values for MR1, MR2 and MR3 in order from left to right) as 

shown in both, the preliminary and the validation case studies where it worked in different project 
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sizes. The optimization model developed in this research has been seen to be highly successful in 

the preliminary study, which created a premise for the validation study using HMC data. The 

success from the validation study shows that the model not only works at the theoretical level, but 

also at a practical level and has the potential of getting embedded in a software package for industry 

use. Coding is highly dynamic and user friendly to new data sets and inexperienced users, 

respectively. The optimization model takes into account user defined priorities which can provide 

them with easy and efficient solution to these kinds of tradeoffs.  

5.4 Limitations and Future Study 

 This research considers LEED version 2009 for credits’ calculation, even though the latest 

version for LEED is V4. The reason for using LEED 2009 in this research study was that most 

completed projects have been certified using LEED 2009 and certification for projects in version 

V4 is still in progress. Another limitation of this study is that only the material and resources 

category of LEED has been considered due to the time constraints and data availability within the 

study. Finally, the DAM, which is the duration associated with materials is added directly, 

considering all activities on the critical path and the study didn’t utilize resource utilization pools 

to determine the critical activities. However, based on the previous literature about the effects of 

reducing the duration of both critical and non-critical activities, the value was still observed in the 

time reduction in, as a positive effect on the project by either minimizing the duration of the project 

or minimizing the risk associated with activity execution time.  

 As part of future study, the whole LEED system or any of the other certification systems 

could be chosen for optimization. Also, as the data pool for LEED V4 increases, the projects 

certified in accordance with the new version, can be used as the validation data set. Finally, a 
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resource utilization plan can be used in determining the criticality of activities which can allow for 

optimizing the targeted project critical path and not just the duration of a combination of activities.  
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Appendix A – Code for Preliminary Study 

 

import numpy as np 

from random import randint 

from math import factorial  

 

import pandas as pd 

df = pd.read_excel('Preliminary Data for thesis defense.xlsx') 

A = df.as_matrix() 

A 

 

A1 = np.array(A[0:3,:]) 

A1 

 

A2 = np.array(A[3:6,:]) 

A2 

 

A3 = np.array(A[6:9,:]) 

A3 

 

A4 = np.array(A[9:12,:]) 

A4 

 

A5 = np.array(A[12:15,:]) 

A5 

 

A6 = np.array(A[15:18,:]) 

A6 
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combo_i = [] 

for i1 in [0,1,2]: 

    for i2 in [0,1,2]: 

        for i3 in [0,1,2]: 

            for i4 in [0,1,2]: 

                for i5 in [0,1,2]: 

                    for i6 in [0,1,2]: 

                        combo_i.append(np.array([i1,i2,i3,i4,i5,i6])) 

                             

SOC = np.asarray(combo_i) 

print SOC 

 

len(combo_i) 

 

sol = 

np.array([[A1[SOC[0,0]],A2[SOC[0,1]],A3[SOC[0,2]],A4[SOC[0,3]],A5[SOC[0,4]],A6[SOC[0,

5]]]]) 

sol 

 

Cost_Sum_j = [] 

Time_Sum_j = [] 

Total_Cr_j =[] 

for j in range(729): 

    Solution_j = 

np.array([A1[SOC[j,0]],A2[SOC[j,1]],A3[SOC[j,2]],A4[SOC[j,3]],A5[SOC[j,4]],A6[SOC[j,5]]]

) 

    Time_Sum_j.append(np.sum(Solution_j[:,0])) 

    Cost_Sum_j.append(np.sum(Solution_j[:,1])) 

    Cost_Sum = np.sum(Solution_j[:,2]) 

    MR1_Sum = np.sum(Solution_j[:,2]) 
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    MR2_Sum = np.sum(Solution_j[:,3]) 

    MR3_Sum = np.sum(Solution_j[:,4]) 

     

    Perc_MR1 = (float(MR1_Sum)/float(Cost_Sum))*100 

    Perc_MR2 = (float(MR2_Sum)/float(Cost_Sum))*100 

    Perc_MR3 = (float(MR3_Sum)/float(Cost_Sum))*100 

     

    if ((Perc_MR1>=10) & (Perc_MR1<20)): 

        Cr1 = 1 

    elif Perc_MR1>=20: 

        Cr1 = 2 

    else: 

        Cr1 = 0 

     

         

    if ((Perc_MR2>=10) & (Perc_MR2<20)): 

        Cr2 = 1 

    elif Perc_MR2>=20: 

        Cr2 = 2 

    else: 

        Cr2 = 0 

     

    if (Perc_MR3>=2.5): 

        Cr3 = 1 

    else: 

        Cr3 = 0 

             

    Total_Cr_j.append(Cr1+Cr2+Cr3) 
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CostSum = np.asarray(Cost_Sum_j) 

print CostSum 

     

TimeSum = np.asarray(Time_Sum_j) 

print TimeSum 

 

CreditSum = np.asarray(Total_Cr_j) 

print CreditSum 

 

np.size(CostSum) 

 

TimeSum.size 

 

Mat = np.vstack(((CostSum,TimeSum),CreditSum)) 

Mat 

 

Final_Mat = np.transpose(Mat.astype(float)) 

Final_Mat 

 

p = np.max(CostSum) 

p 

 

q = np.max(TimeSum) 

q 

 

r = np.max(CreditSum) 

r 
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Norm_Cost = Final_Mat[:,0]/float(p) 

Norm_Cost 

 

np.size(Norm_Cost) 

 

Norm_Time = Final_Mat[:,1]/float(q) 

Norm_Time 

 

Norm_Credit = Final_Mat[:,2]/float(r) 

Norm_Credit 

 

Norm = np.vstack(((Norm_Cost,Norm_Time),Norm_Credit)) 

Norm 

 

Norm[0,0] 

 

Normalized_Mat = np.transpose(Norm) 

Normalized_Mat 

 

Wc = input('Enter the importance factor for time:') 

Wt = input('Enter the importance factor for cost:') 

Wcr = input('Enter the importance factor for credits:') 

 

Fitness_k = [] 

for k in range(729): 

    Fitness_k.append(-Normalized_Mat[k,0]*(float(Wt)/(Wt+Wc+Wcr)) - 

Normalized_Mat[k,1]*(float(Wc)/(Wt+Wc+Wcr)) + 

Normalized_Mat[k,2]*(float(Wcr)/(Wt+Wc+Wcr))) 
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Fitval = np.asarray(Fitness_k) 

print Fitval 

 

np.size(Fitval) 

 

Fitval[1] 

 

Fitness_Values = np.transpose(Fitval) 

Fitness_Values 

 

Max_Fit = np.max(Fitness_Values) 

Max_Fit 

 

Min_Fit = np.min(Fitness_Values) 

Min_Fit 

 

m = np.argmax(Fitness_Values) 

m 

 

n = np.argmin(Fitness_Values) 

n 

 

SOC[m,:] 

array([2, 2, 2, 0, 0, 0]) 

 

Optimal_Sol = [] 

Optimal_Sol = 

np.array([[A1[SOC[m,0],:],A2[SOC[m,1],:],A3[SOC[m,2],:],A4[SOC[m,3],:],A5[SOC[m,4],:],

A6[SOC[m,5],:]]]) 
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Optimal_Sol 

 

np.min(TimeSum) 

 

np.min(CostSum) 

 

np.sum(Optimal_Sol[:,0]) 

 

CreditSum[m] 

 

TimeSum[m] 

 

CostSum[m] 

 

CreditSum[m] 
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Appendix B – Code for Validation Study 

 

import numpy as np 

from random import randint  

 

import pandas as pd 

df = pd.read_excel('Validation data set_2.xlsx') 

A = df.as_matrix() 

A 

 

import pdb 

%pdb off 

Automatic pdb calling has been turned OFF 

 

np.shape(A) 

 

A1 = np.array(A[0:3,:]) 

A1 

 

A2 = np.array(A[3:6,:]) 

A2 

 

A3 = np.array(A[6:9,:]) 

A3 

 

A4 = np.array(A[9:12,:]) 

A4 

 

A5 = np.array(A[12:15,:]) 
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A5 

 

A6 = np.array(A[15:18,:]) 

A6 

 

A7 = np.array(A[18:21,:]) 

A7 

 

A8 = np.array(A[21:24,:]) 

A8 

 

A9 = np.array(A[24:27,:]) 

A9 

 

A10 = np.array(A[27:30,:]) 

A10 

 

A11 = np.array(A[30:33,:]) 

A11 

 

A12 = np.array(A[33:36,:]) 

A12 

 

A13 = np.array(A[36:39,:]) 

A13 

 

 

A14 = np.array(A[39:42,:]) 
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A14 

 

A15 = np.array(A[42:45,:]) 

A15 

 

A16 = np.array(A[45:48,:]) 

A16 

 

A17 = np.array(A[48:51,:]) 

A17 

 

A18 = np.array(A[51:54,:]) 

A18 

 

A19 = np.array(A[54:57,:]) 

A19 

 

A20 = np.array(A[57:60,:]) 

A20 

 

A21 = np.array(A[60:63,:]) 

A21 

 

A22 = np.array(A[63:66,:]) 

A22 

 

 

A23 = np.array(A[66:69,:]) 
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A23 

 

A24 = np.array(A[69:72,:]) 

A24 

 

A25 = np.array(A[72:75,:]) 

A25 

 

A26 = np.array(A[75:78,:]) 

A26 

 

A27 = np.array(A[78:81,:]) 

A27 

 

A28 = np.array(A[81:84,:]) 

A28 

 

A29 = np.array(A[84:87,:]) 

A29 

 

Combo_i = [] 

for i in range(10): 

    

Combo_i.append(np.array([randint(0,2),randint(0,2),randint(0,2),randint(0,2),randint(0,2),randint

(0,2),randint(0,2),randint(0,2),randint(0,2),randint(0,2),randint(0,2),randint(0,2),randint(0,2),rand

int(0,2),randint(0,2),randint(0,2),randint(0,2),randint(0,2),randint(0,2),randint(0,2),randint(0,2),ra

ndint(0,2),randint(0,2),randint(0,2),randint(0,2),randint(0,2),randint(0,2),randint(0,2),randint(0,2)

,])) 

SOC = np.asarray(Combo_i) 

print SOC 
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np.size(SOC) 

 

Wt = input('Enter the importance factor for Time:') 

Wc = input('Enter the importance factor for Cost:') 

Wcr = input('Enter the importance factor for Credits:') 

 

 import copy 

 

def 

fitness_function(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,A1

9,A20,A21,A22,A23,A24,A25,A26,A27,A28,A29,SOC): 

    Time_Sum_j = [] 

    Cost_Sum_j = [] 

    MR1_Sum_j = [] 

    MR2_Sum_j = [] 

    MR3_Sum_j = [] 

    Total_Cr_j = [] 

 

    for j in range(SOC.shape[0]): 

        Solution_j = 

np.array([A1[SOC[j,0]],A2[SOC[j,1]],A3[SOC[j,2]],A4[SOC[j,3]],A5[SOC[j,4]],A6[SOC[j,5]],

A7[SOC[j,6]],A8[SOC[j,7]],A8[SOC[j,7]],A9[SOC[j,8]],A10[SOC[j,9]],A11[SOC[j,10]],A12[S

OC[j,11]],A13[SOC[j,12]],A14[SOC[j,13]],A15[SOC[j,14]],A16[SOC[j,15]],A17[SOC[j,16]],A

18[SOC[j,17]],A19[SOC[j,18]],A20[SOC[j,19]],A21[SOC[j,20]],A22[SOC[j,21]],A23[SOC[j,2

2]],A24[SOC[j,23]],A25[SOC[j,24]],A26[SOC[j,25]],A27[SOC[j,26]],A28[SOC[j,27]],A29[SO

C[j,28]]]) 

        Time_Sum_j.append(np.sum(Solution_j[:,0])) 

        Cost_Sum_j.append(np.sum(Solution_j[:,1])) 

         

        Cost_Sum = np.sum(Solution_j[:,1]) 

        MR1_Sum = np.sum(Solution_j[:,2]) 
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        MR2_Sum = np.sum(Solution_j[:,3]) 

        MR3_Sum = np.sum(Solution_j[:,4]) 

     

     

    #MR2_Sum_j.append(np.sum(Solution_j[:,3])) 

    #MR3_Sum_j.append(np.sum(Solution_j[:,4])) 

         

        Perc_MR1 = (float(MR1_Sum)/float(Cost_Sum))*100 

     

        Perc_MR2 = (float(MR2_Sum)/float(Cost_Sum))*100 

    

        Perc_MR3 = (float(MR3_Sum)/float(Cost_Sum))*100 

     

        if ((Perc_MR1>=10) & (Perc_MR1<20)): 

            Cr1 = 1 

        elif Perc_MR1>=20: 

            Cr1 = 2 

        else: 

            Cr1 = 0 

     

         

        if ((Perc_MR2>=10) & (Perc_MR2<20)): 

            Cr2 = 1 

        elif Perc_MR2>=20: 

            Cr2 = 2 

        else: 

            Cr2 = 0 
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        if (Perc_MR3>=2.5): 

            Cr3 = 1 

        else: 

            Cr3 = 0 

     

        Total_Cr_j.append(Cr1+Cr2+Cr3) 

     

 

    TimeSum = np.asarray(Time_Sum_j)         

    CostSum = np.asarray(Cost_Sum_j) 

    CreditSum = np.asarray(Total_Cr_j) 

 

    Mat = np.vstack(((TimeSum,CostSum),CreditSum)) 

    Final_Mat = np.transpose(Mat.astype(float)) 

 

# All numbers are normalized by dividing them by the maximum. This is because every element 

being divided is a sum for one combination. 

 

    p = np.max(TimeSum) 

    q = np.max(CostSum) 

    r = np.max(CreditSum) 

 

    Norm_Time = Final_Mat[:,0]/float(p) 

    Norm_Cost = Final_Mat[:,1]/float(q) 

    Norm_Credit = Final_Mat[:,2]/float(r) 

 

    Norm = np.vstack(((Norm_Time,Norm_Cost),Norm_Credit)) 

    Normalized_Mat = np.transpose(Norm) 
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    Fitness_k = [] 

    for k in range(SOC.shape[0]): 

        Fitness_k.append(-Normalized_Mat[k,0]*(float(Wt)/(Wt+Wc+Wcr)) - 

Normalized_Mat[k,1]*(float(Wc)/(Wt+Wc+Wcr)) + 

Normalized_Mat[k,2]*(float(Wcr)/(Wt+Wc+Wcr))) 

     

    Fitval = np.asarray(Fitness_k) 

    Fitness_Values = np.transpose(Fitval) 

    Max_Fit = np.max(Fitness_Values) 

    return (Max_Fit,Fitness_Values,CreditSum) 

 

 

for i in  range(1000): 

    #pdb.set_trace() 

    #print ("iteration no.",i) 

    Max_Fit,Fitness_Values,CreditSum = 

fitness_function(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,A1

9,A20,A21,A22,A23,A24,A25,A26,A27,A28,A29,SOC) 

     

    m = np.argmax(Fitness_Values) 

     

    #Mutation 

    pos_to_mutate = randint(0,len(SOC[m,:])-1) 

     

    New_SOC=np.array(copy.copy(SOC[m,:])) 

    New_SOC[pos_to_mutate]=randint(0,2) 

         

    SOC = np.vstack((SOC,New_SOC)) 
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    Max_Fit,Fitness_Values,CreditSum = 

fitness_function(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,A1

9,A20,A21,A22,A23,A24,A25,A26,A27,A28,A29,SOC) 

     

    min = np.argmin(Fitness_Values) 

     

    Fitness_Values[min] 

     

    if Fitness_Values[SOC.shape[0]-1]>=Fitness_Values[min]: 

        SOC = np.delete(SOC,min,0) 

     

    else: 

        SOC = np.delete(SOC,SOC.shape[0]-1,0) 

     

    Max_Fit,Fitness_Values,CreditSum = 

fitness_function(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,A1

9,A20,A21,A22,A23,A24,A25,A26,A27,A28,A29,SOC) 

     

    #Start of crossover  

    x = np.argmax(Fitness_Values) 

     

    New_Fitness_Values = np.array(copy.copy(Fitness_Values)) 

     

    New_Fitness_Values = np.delete(New_Fitness_Values,x,0) 

     

    y = np.argmax(New_Fitness_Values) 

     

    if y>x: 

        y = y+1 
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    pos_to_crossover = randint(0,len(SOC[x,:])) 

     

    l = len(SOC[x,:]) 

     

    child1 = np.concatenate((SOC[x,0:pos_to_crossover],SOC[y,pos_to_crossover:l]),axis=0) 

    child2 = np.concatenate((SOC[y,0:pos_to_crossover],SOC[x,pos_to_crossover:l]),axis=0) 

     

    SOC = np.vstack((SOC,child1,child2)) 

     

    Max_Fit,Fitness_Values,CreditSum = 

fitness_function(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,A1

9,A20,A21,A22,A23,A24,A25,A26,A27,A28,A29,SOC) 

     

    min = np.argmin(Fitness_Values) 

     

    SOC = np.delete(SOC,min,0) 

     

    Max_Fit,Fitness_Values,CreditSum = 

fitness_function(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,A1

9,A20,A21,A22,A23,A24,A25,A26,A27,A28,A29,SOC) 

     

    min = np.argmin(Fitness_Values) 

     

    SOC = np.delete(SOC,min,0) 

     

    Max_Fit,Fitness_Values,CreditSum = 

fitness_function(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,A1

9,A20,A21,A22,A23,A24,A25,A26,A27,A28,A29,SOC) 

     

    max = np.argmax(Fitness_Values) 
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Optimal_Solution = [] 

Optimal_Solution = 

np.array([A1[SOC[max,0]],A2[SOC[max,1]],A3[SOC[max,2]],A4[SOC[max,3]],A5[SOC[max,

4]],A6[SOC[max,5]],A7[SOC[max,6]],A8[SOC[max,7]],A9[SOC[max,8]],A10[SOC[max,9]],A

11[SOC[max,10]],A12[SOC[max,11]],A13[SOC[max,12]],A14[SOC[max,13]],A15[SOC[max,1

4]],A16[SOC[max,15]],A17[SOC[max,16]],A18[SOC[max,17]],A19[SOC[max,18]],A20[SOC[

max,19]],A21[SOC[max,20]],A22[SOC[max,21]],A23[SOC[max,22]],A24[SOC[max,23]],A25[

SOC[max,24]],A26[SOC[max,25]],A27[SOC[max,26]],A28[SOC[max,27]],A29[SOC[max,28]]

]) 

Optimal_Solution 

       

np.shape(Optimal_Solution) 

 

np.sum(Optimal_Solution[:,0]) 

 

np.sum(Optimal_Solution[:,1]) 

 

CreditSum[m] 
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Appendix C – HMC Case study Full Dataset 

 

Activity 
Name 

Material DAM Cost 
($)  

MR1 MR2 MR3 

  Material 
1 

30 154900 $0.00 $125,469.00 $0.00 

Concrete Material 
2 

28 376533 $16,907.00 $376,533.00 $0.00 

  Material 
3 

27 337036 $15,167.00 $337,036.00 $0.00 

  Material 
1 

25 218656 $0.00 $218,656.00 $0.00 

Concrete - 
Cast in Place 

Material 
2 

20 564799 $25,360.00 $564,799.00 $0.00 

  Material 
3 

23 505554 $22,750.00 $505,554.00 $0.00 

  Material 
1 

20 238257 $218,006.00 $238,257.00 $0.00 

 Rebar - Cast 
in Place 

Material 
2 

20 795710 $698,633.00 $795,710.00 $0.00 

  Material 
3 

20 901804 $844,089.00 $901,804.00 $0.00 

  Material 
1 

24 261962 $246,245.00 $167,656.00 $0.00 

Pre-Cast  Material 
2 

22 200000 $183,000.00 $200,000.00 $0.00 

  Material 
3 

24 198000 $181,170.00 $198,000.00 $0.00 

  Material 
1 

5 196600 $70,776.00 $68,810.00 $0.00 

Cold Formed 
Metal 

Framing 

Material 
2 

4 250000 $75,000.00 $250,000.00 $12,500.00 

  Material 
3 

4 250984 $75,296.00 $250,984.00 $0.00 

  Material 
1 

13 23684 $0.00 $22,263.00 $0.00 

Sheathing  Material 
2 

10 74716 $0.00 $74,716.00 $0.00 

  Material 
3 

9 42843 $1,778.00 $0.00 $86.00 

  Material 
1 

40 174267 $54,023.00 $0.00 $0.00 
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Interior 
Non-Load 
Bearing 

Steel 

Material 
2 

37 170000 $52,700.00 $170,000.00 $8,500.00 

  Material 
3 

38 180000 $55,800.00 $180,000.00 $0.00 

  Material 
1 

43 13722 $0.00 $0.00 $0.00 

CertainTeed 
Ceiling Grid 
"Z" Furring 

Material 
2 

40 13722 $0.00 $0.00 $0.00 

  Material 
3 

42 15000 $0.00 $15,000.00 $0.00 

  Material 
1 

45 254382 $35,614.00 $244,207.00 $0.00 

Gypsum  
board  

Material 
2 

40 80997 $6,075.00 $80,997.00 $0.00 

  Material 
3 

41 128814 $4,509.00 $128,814.00 $387.00 

  Material 
1 

1 4000 $3,580.00 $0.00 $0.00 

Drywall 
Alum End 

Cap 

Material 
2 

1 420 $376.00 $420.00 $0.00 

  Material 
3 

1 303 $271.00 $303.00 $0.00 

  Material 
1 

5 25000 $750.00 $25,000.00 $0.00 

Gypsum 
Board - 
Shaft 

Material 
2 

4 7961 $598.00 $7,961.00 $0.00 

  Material 
3 

5 12660 $444.00 $12,660.00 $38.00 

  Material 
1 

29 162475 $8,124.00 $162,475.00 $0.00 

American 
Gypsum 

Firebloc X 

Material 
2 

25 54850 $1,591.00 $54,850.00 $3,182.00 

  Material 
3 

26 54850 $2,249.00 $54,850.00 $110.00 

  Material 
1 

42 20548 $6,165.00 $0.00 $0.00 
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Sound 
Attenuation 

Batt 
Insulation 

Material 
2 

40 25000 $9,375.00 $25,000.00 $0.00 

  Material 
3 

41 28650 $15,185.00 $0.00 $860.00 

  Material 
1 

38 32399 $26,568.00 $0.00 $0.00 

Aluminum 
Column 
Covers 

[Alloy 5052] 

Material 
2 

36 127253 $37,540.00 $127,253.00 $0.00 

  Material 
3 

37 143159 $12,341.00 $143,159.00 $0.00 

  Material 
1 

1 1985 $318.00 $1,906.00 $0.00 

Mbloc 
Abuse 

Resistant 
Board 

Material 
2 

1 1333 $708.00 $0.00 $0.00 

  Material 
3 

1 1341 $366.00 $0.00 $3.00 

  Material 
1 

23 10790 $1,457.00 $0.00 $0.00 

Roxul AFB Material 
2 

22 12000 $4,500.00 $12,000.00 $0.00 

  Material 
3 

22 50224 $8,036.00 $47,713.00 $0.00 

  Material 
1 

3 4500 $1,373.00 $4,500.00 $0.00 

Resin Panels Material 
2 

3 4000 $1,260.00 $4,000.00 $80.00 

  Material 
3 

3 5500 $1,733.00 $5,500.00 $0.00 

  Material 
1 

50 117086 $35,126.00 $117,086.00 $0.00 

Anchored 
Stone 

Veneer 

Material 
2 

48 125000 $37,500.00 $125,000.00 $0.00 

  Material 
3 

46 130000 $39,000.00 $130,000.00 $0.00 

  Material 
1 

75 2273579 $1,751,284.00 $31,346.00 $0.00 
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Steel Material 
2 

71 2273579 $1,751,284.00 $31,346.00 $0.00 

  Material 
3 

70 2273579 $1,751,284.00 $31,346.00 $0.00 

  Material 
1 

55 94069 $47,035.00 $0.00 $0.00 

Wood 
Veneer 
Faced 

Architectural 
Cabinets 

Material 
2 

50 100000 $55,000.00 $0.00 $5,000.00 

  Material 
3 

53 103500 $56,925.00 $0.00 $0.00 

  Material 
1 

30 1103620 $568,365.00 $0.00 $0.00 

Alum 
Storefront & 

Window 
Frames 

Material 
2 

28 1151620 $593,085.00 $0.00 $0.00 

  Material 
3 

30 1200000 $624,000.00 $0.00 $24,000.00 

  Material 
1 

8 71880 $44,566.00 $0.00 $0.00 

Metal 
Lockers  

Material 
2 

7 65000 $40,300.00 $65,000.00 $3,250.00 

  Material 
3 

8 65000 $19,500.00 $65,000.00 $0.00 

  Material 
1 

9 0 $0.00 $0.00 $0.00 

Toilet 
partitions 

Material 
2 

8 0 $0.00 $0.00 $0.00 

  Material 
3 

8 0 $0.00 $0.00 $0.00 

  Material 
1 

61 71511 $14,303.00 $0.00 $0.00 

HM Doors & 
Frames 

Material 
2 

60 71511 $14,303.00 $0.00 $0.00 

  Material 
3 

58 75000 $15,000.00 $0.00 $750.00 

  Material 
1 

17 14599 $6,570.00 $0.00 $0.00 

ACM Panels Material 
2 

15 57340 $16,916.00 $57,340.00 $0.00 



96 

  Material 
3 

14 64508 $5,561.00 $64,508.00 $0.00 

  Material 
1 

39 154564 $48,688.00 $0.00 $0.00 

Flooring-
Carpet 

Material 
2 

35 140000 $52,500.00 $140,000.00 $0.00 

  Material 
3 

38 160000 $56,000.00 $160,000.00 $0.00 

  Material 
1 

26 30406 $5,170.00 $0.00 $0.00 

Flooring-
Resilient 

Material 
2 

25 151868 $25,818.00 $151,868.00 $0.00 

  Material 
3 

26 151414 $25,741.00 $151,414.00 $0.00 

  Material 
1 

16 68414 $11,973.00 $0.00 $0.00 

Flooring-Tile Material 
2 

14 86242 $15,093.00 $86,242.00 $0.00 

  Material 
3 

12 86304 $15,104.00 $86,304.00 $0.00 

  Material 
1 

21 20608 $1,443.00 $0.00 $0.00 

Flooring-
Rubber Base 

Material 
2 

19 20608 $1,443.00 $20,608.00 $0.00 

  Material 
3 

21 20608 $1,443.00 $20,608.00 $0.00 
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Appendix D – Fire Station Full Dataset 

 

Activity  DAM 
(days) 

Cost MR1 MR2 MR3 

 

Material 
1 

10 $93,008.00 $0.00 $93,008.00 $0.00 

Concrete - 
Cast in Place 

Material 
2 

8 $100,000.00 $14,000.00 $100,000.00 $5,800.00 

 

Material 
3 

7 $56,326.00 $14,082.00 $56,326.00 $4,281.00 

 

Material 
1 

3 $7,368.00 $6,742.00 $7,368.00 $0.00 

 Rebar - Cast 
in Place 

Material 
2 

3 $10,000.00 $9,700.00 $10,000.00 $0.00 

 

Material 
3 

3 $8,265.00 $10,125.00 $8,265.00 $521.00 

 

Material 
1 

4 $134,422.00 $126,357.00 $86,030.00 $0.00 

Pre-Cast  
Material 
2 

4 $120,000.00 $112,800.00 $102,000.00 $0.00 

 

Material 
3 

5 $150,326.00 $139,052.00 $0.00 $6,765.00 

 

Material 
1 

15 $14,500.00 $5,220.00 $5,075.00 $0.00 

Cold Formed 
Metal 
Framing 

Material 
2 

20 $14,500.00 $5,438.00 $7,975.00 $0.00 

 

Material 
3 

10 $16,326.00 $4,898.00 $0.00 $2,580.00 

 

Material 
1 

12 $19,395.00 $0.00 $18,231.00 $0.00 

Sheathing  
Material 
2 

8 $25,000.00 $28,125.00 $23,750.00 $0.00 

 

Material 
3 

6 $11,236.00 $9,551.00 $0.00 $292.00 

 

Material 
1 

20 $3,177.00 $985.00 $0.00 $0.00 

Interior 
Non-Load 
Bearing 
Steel 

Material 
2 

15 $1,000.00 $460.00 $150.00 $0.00 

 

Material 
3 

11 $6,258.00 $1,877.00 $0.00 $812.00 
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Material 
1 

18 $25,712.00 $3,600.00 $24,683.00 $0.00 

Gypsum  
board  

Material 
2 

10 $20,000.00 $27,500.00 $20,000.00 $1,200.00 

 

Material 
3 

15 $30,236.00 $43,842.00 $30,236.00 $4,052.00 

 

Material 
1 

7 $98,126.00 $75,557.00 $1,472.00 $0.00 

Steel 
Material 
2 

5 $85,625.00 $65,931.00 $72,781.00 $12,844.00 

 

Material 
3 

8 $98,126.00 $63,782.00 $98,126.00 $0.00 

 

Material 
1 

5 $21,458.00 $10,729.00 $0.00 $0.00 

Wood 
Veneer 
Faced 
Architectural 
Cabinets 

Material 
2 

6 $30,000.00 $18,000.00 $0.00 $6,000.00 

 

Material 
3 

5 $16,326.00 $17,550.00 $16,326.00 $0.00 

 

Material 
1 

4 $13,910.00 $8,624.00 $0.00 $0.00 

Metal 
Lockers  

Material 
2 

4 $10,259.00 $6,361.00 $0.00 $0.00 

 

Material 
3 

3 $13,910.00 $7,998.00 $13,910.00 $0.00 

 

Material 
1 

8 $128,914.00 $25,783.00 $0.00 $0.00 

HM Doors & 
Frames 

Material 
2 

8 $125,653.00 $30,157.00 $0.00 $0.00 

 

Material 
3 

9 $130,548.00 $31,332.00 $130,548.00 $2,872.00 

 

Material 
1 

3 $87,984.00 $27,715.00 $0.00 $0.00 

Flooring-
Carpet 

Material 
2 

4 $75,321.00 $7,532.00 $48,959.00 $2,636.00 

 

Material 
3 

3 $87,984.00 $21,996.00 $0.00 $8,886.00 

 

Material 
1 

4 $4,377.00 $744.00 $0.00 $0.00 

Flooring-
Resilient 

Material 
2 

4 $5,326.00 $1,332.00 $3,462.00 $154.00 
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Material 
3 

4 $6,236.00 $3,118.00 $0.00 $1,253.00 

 

Material 
1 

5 $5,565.00 $974.00 $0.00 $0.00 

Flooring-Tile 
Material 
2 

2 $4,562.00 $912.00 $2,965.00 $274.00 

 

Material 
3 

3 $4,258.00 $852.00 $0.00 $0.00 

 

Material 
1 

6 $3,804.00 $266.00 $0.00 $0.00 

Flooring-
Rubber Base 

Material 
2 

8 $4,256.00 $0.00 $2,979.00 $426.00 

 

Material 
3 

6 $2,456.00 $0.00 $0.00 $246.00 
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