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ABSTRACT

MICROALGAE TO BIOFUELS EVALUATION THROUGH EXPERIMENTALLY VALIDATED
MODELS

Microalgae have been of interest as a feedstock for biofuels but until recently
have not been economically feasible. Recent energy uncertainties coupled with
technological advancements have made microalgae more appealing as an alternative
feedstock for transportation fuel. Algae characteristically have many advantages over
traditional terrestrial based biofuel feedstocks. Prior to commercialization of the
microalgae to biofuels process there are technological challenges that need to be
overcome.

The work presented can be divided into three primary modeling efforts, a
process level analysis, bulk growth evaluation, and a diffuse versus direct light
evaluation. All models presented are experimentally validated and used to assess the
near term realizable impact of microalgae. Results from this work are intended to
accurately represent the current state of the field by more accurately representing the

current potential and technologies being explored.



Biofuels derived from microalgae have the potential to replace petroleum fuel
and first-generation biofuel, but the efficacy with which sustainability goals can be
achieved is dependent on the lifecycle impacts of the microalgae-to-biofuel process.
This work proposes a detailed, industrial-scale engineering model of the growth,
dewater, extraction, conversion, and transportation and distribution stages of the
microalgae to biofuels process for the species Nannochloropsis using a photobioreactor
architecture. This process level model is integrated with a lifecycle energy and
greenhouse gas emissions analysis compatible with the methods and boundaries of the
Argonne National Laboratory GREET model, thereby ensuring comparability to
preexisting fuel-cycle assessments. Results are used to evaluate the net energy ratio
(NER) and net greenhouse gas emissions (GHGs) of microalgae biodiesel in comparison
to petroleum diesel and soybean-based biodiesel with a boundary equivalent to “well-
to-pump”. The resulting NER of the microalgae biodiesel process is 0.93 MJ of energy
consumed per MJ of energy produced. In terms of net GHGs, microalgae-based biofuels
avoids 75 g of CO2-equivalent emissions per MJ of energy produced. The scalability of
the consumables and products of the proposed microalgae-to-biofuels processes are
assessed in the context of 150 billion liters (40 billion gallons) of annual production.

A more detailed bulk growth model has been assembled to more accurately
represent the growth of microalgae. To date, there is little published data on the
productivity of microalgae in growth systems that are scalable to commercially viable
footprints. To inform the development of more detailed assessments of industrial-scale

microalgae biofuel processes, this paper presents the construction and validation of a



model of microalgae biomass and lipid accumulation in an outdoor, industrial-scale
photobioreactor. The model incorporates a time-resolved simulation of microalgae
growth and lipid accumulation based on solar irradiation, species specific characteristics,
and photobioreactor geometry. The model is validated with 9 weeks of growth data
from an industrially-scaled outdoor photobioreactor. A sensitivity of the model input
parameters is presented.

The model presented was used to more accurately represent the current US
productivity potential. Current calculations for the large-scale productivity potential of
microalgae are based on growth data from small-scale non-industrially representative
systems. To accurately assess the near-term large-scale microalgae potential, a thermal
basin model is presented and combined with a bulk growth model previously validated
with industrial-scale outdoor photobioreactor growth data. The combined models
require meteorological data to accurately predict microalgae growth and lipid
production. This study integrates 15 years of hourly historical weather data from 864
locations in the US to accurately assess the current productivity potential of microalgae
in the US. Geospatial information system (GIS) land availability and slope data are used
to generate a set of dynamic maps of the current feasible locations and productivity
potential of microalgae in the US based on a variety of geographic characteristics and
restrictions. A comparison of model results based on optimal location with current
productivity potentials reported in literature shows the need for more realistic

estimation of microalgae growth potential for future LCA.



The bulk growth model does not differentiate between diffuse and direct light
growth. The microalgae growth as a function of diffuse versus direct light with the
application to reactor design evaluation was evaluated for Nannochloropsis salina
experimentally with modeling applications. For the application to large scale cultivation
modeling and evaluation, a small scale reactor representative test apparatus was
constructed to investigate the growth response of Nannochloropsis salina under a
variety of real world relevant light intensities and temperatures on a batch growth time
scale with the intention of modeling growth in larger scale devices. Growth data was
also collected from two geometrically different large scale indoor photobioreactors
under a variety of light intensities for model evaluation. The application of small scale
data to accurately predict growth at large scale enables the evaluation of
photobioreactor geometry. Temperature experimentation illustrates the detrimental
effect that temperatures above 30 °C and below 7 °C have on microalgae batch growth.
Discussion focuses on the application of the data set to reactor design and evaluation
and modeling efforts and evaluation of photic volume data reduction. Results show a
significant difference in growth from direct light compared to diffuse light and the
difficulty of photic volume growth modeling.

The work presented uses the results of a high level environmental assessment of
microalgae biofuels to guide further research in growth modeling and process
evaluation based on pilot plant experience. A more detailed bulk growth model
incorporating 21 species and reactor specific characteristics with primary inputs of light

and temperature was developed from literature and validated with real world large-



scale photobioreactor data. This model was used to illustrate the current microalgae
productivity potential in the US. This modeling effort illustrated the need for a more
fundamental understanding of diffuse versus direct light utilization in microalgae
cultivation. Experimental setup was designed and operated to generate a
photosynthesis irradiance curve. This curve was used to inform a model validated with
growth data from large scale photobioreactors. This data was directly used in the
evaluation of photobioreactor geometry and used to investigate optimum geometry
based on the metric of areal productivity.

The experimentally validated models presented are used to critically evaluate
the current state of the microalgae to biofuels process. Previous efforts have made
unrealistic assumptions leading to the mis-representation of the environmental impact

and productivity potential of microalgae.
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Chapter 1-Introduction to Microalgae Biofuels

1.1 Research motivation

The current instability in domestic oil prices has researchers and entrepreneurs
searching for alternative answers to transportation fuel and energy needs Figure 1
(Energy Information Administration, 2010). This coupled with the current rising global
temperature due to green house gas emissions has renewed interest in alternative or
green fuels for use in transportation vehicles (Doney, 2011; Kerr and Kintisch, 2010;
Trenberth, 2010). It is expected with the development of new growing economies, such
as China and India, the global demand for transportation fuel and energy will raise
leading to more volatility in energy prices and environmental damage (Adams and

Shachmurove, 2008; Hang and Tu, 2007; Lutz et al., 2010).
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Figure 1. Historical cost of oil in 2008 US dollars illustrating the current volatility and
renewed interest in alternative fuels (Energy Information Administration, 2010).

GHG emissions have more of an effect on the environment then just increasing
global temperatures. Currently the ocean absorbs approximately one third of the CO,
emitted every year. As the CO, concentration in the atmosphere increases the pH in the
ocean gradually becomes more acidic. The decrease in pH can lead to the destruction of
marine habitat such as coral reefs causing a change in the marine ecosystem which will
inevitably affect surface life.

The solution to global warming is a multidisciplinary task with a host of solutions
required including alternative fuels and energy. Clean and renewable fuels and energy
are currently taking a front runner in answering the increased global demand and

reduction of GHG emissions. In the energy sector, nations around the world have set



renewable energy goals and are moving forward with projects to meet those goals.
Renewable energy is defined here as energy that comes from natural resources.
Currently Germany is leading the way in the European Union with 16.1% renewable
energy with a goal of 35% by 2020. Renewable energy is currently being generated
around the world using thermal and photovoltaic solar cells, geothermal, wind turbines,
and hydro-electric generation; however it is still at relatively small levels. Each of the
alternatives has advantages and disadvantages depending on the location of
implementation some are more successful than others but all are commercially viable
for energy production. Biofuels production is expected to offer a similar answer for
liquid transportation fuels in GHG reductions, develop long term replacement of
petroleum fuels, increase energy security, and diversify fuel sources.

Biodiesel and bio-ethanol are currently the most common biofuels and are
commercially available in the continental US. Current biodiesels are considered drop in
fuels requiring no modification to vehicles for the use of the alternative fuel. These
biofuels are currently being produced and represent a safe replacement due to already
existing transportation and distribution infrastructure as compared to other options
such as hydrogen. Currently biofuels are more expensive than traditional petroleum
fuels; production continues to increase in countries around the world with a current
production of over 35 billion liters.

Currently in the US, the primary feedstock for bio-ethanol is corn (Pimentel and
Patzek, 2005). Bio-ethanol derived from a food crops or first generation feedstocks lead

to instability in food availability and prices but more importantly do not scale to DOE



2030 alternative goals (Chisti, 2007; Department of Energy, 2007). Biodiesel is currently
derived from variety of feedstocks with a primary source being soybeans. The scalability
of biodiesel production in the US is similar to bio-ethanol when considering the use of
first generation feedstocks, coupled with the ethical issue of utilizing a food based crop
for fuel has lead the search for an alternative second generation feedstock, which
include but are not limited to miscanthus, cellulosic ethanol, palm, and jatropha.
Currently microalgae are considered a third generation feedstock based on the
immaturity of the technology. Of the second and third generation feedstocks currently
being investigated, microalgae have some distinct advantages which have lead to an
increase in research and development around the microalgae to biodiesel process.

The work presented here looks at the environmental impact of microalgae
biofuels, the current US productivity potential considering geographic impacts, and
presents experimentally validated growth models used for reactor design evaluation

and optimization.

1.2 Microalgae overview

1.2.1 What are microalgae?

Microalgae are prokaryotic or eukaryotic photosynthetic microorganisms that
can grow rapidly and live in diverse environments due to their unicellular or simple
multi-cellular structure. There size range from a few micrometers (um) to a few
hundreds of micrometers. Examples of some typical microalgae currently being looked

at as feedstocks for biofuels are: Nannochloropsis salina, Chlorella, Tetraselmis sueica,



Chlorella vulgaris, Botryococcus braumii based on high productivities and high neutral
lipid content (Raja et al., 2008). A more in depth description of microalgae is presented
in Richmond (2004).

Microalgae represent a diverse organism that currently lives in all earth
ecosystems, aquatic and terrestrial. There are estimated 50,000 different species with
30,000 strains researched or currently being studied. There are a variety of collections
that have been assembled through the world, the largest being at the University of
Coimbra (Portugal) with 4000 strains and 1000 species. The biodiversity of microalgae is
far superior to any other feedstock currently being investigated (Richmond, 2004).

Due to their simple cellular structure, microalgae are very efficient
photosynthetic organisms (6-20%) compared to terrestrial plants (0.5-2.2%) (Aresta et
al., 2005; Li et al., 2008). Microalgae are typically grown in an aqueous environment
which provides them ready access to key growth constituents. Algae have naturally
adapted to a range of ecosystems and can be grown in freshwater, brackish, marine and
hyper-saline habitats with a range of pH and nutrients (Harwood and Guschina, 2009;

Hu et al., 2008).

1.2.2 Microalgae advantages

There are many reports on the advantages of microalgae as a feedstock for
biofuels production (Chisti, 2007; Hossain et al., 2008; Hu et al., 2008; Li et al., 2008; Li
et al., 2008; Rodolfi et al., 2009; Rosenberg et al., 2008; Schenk et al., 2008; Sheehan et
al., 1998; Tsukahara and Sawayama, 2005). Compared to other biofuel feedstocks,

microalgae are characterized by higher solar energy yield, year-round cultivation, the



use of lower quality or brackish water, the ability to sequester CO,, and the use of less-
and lower-quality land (Batan et al., 2010; Brown and Zeiler, 1993; Dismukes et al.,
2008; Li et al., 2008; Mata et al., 2010; Posten and Schaub, 2009; Raja et al., 2008; 2008;
Wijffels and Barbosa, 2010; Williams et al., 2009).

Microalgae compared to traditional terrestrial crops have significantly higher
growth rates and high lipid percentages thus high productivity potentials. The
theoretical maximum production of oil from microalgae has been calculated at 354,000
L-ha-a~* (38,000 gal-acre ™-a™*) (Weyer et al., 2009), but scalable experimental data
have shown a near term realizable production of 46,000 liters-hectare™-a™ (5000
gal-acre™-a™), compared to 2,533 liters-hectare™*-a™ (271 gal-acre™-a™) of ethanol from
corn or 584 liters-hectare™*-a™ (62.5 gal-acre'l-a'l) of biodiesel from soybeans (Ahmed et
al., 1994; Chisti, 2007; Pimentel, 2005; Pradhan et al., 2008; Yeang, 2008) Figure 2.
Current research has shown under typical conditions of commercial scale reactor
systems, Nannochloropsis salina can achieve a lipid content of 50% by weight (Emdadi
and Berland, 1989; Fabregas et al., 2004; Suen et al., 1987), and an average annual
growth rate of 25 g-m'z-day'1 (Boussiba et al., 1987; Gudin and Chaumont, 1991; Suen et
al., 1987). In laboratory conditions, Nannochloropsis can attain lipid percentages of 60%
by weight and growth rates of 260 mg-L™-hr™ or 150 g-m*-day™ (Richmond et al., 2003;
Rodolfi et al., 2009). The values reported in Figure 2 represent the current near term
large scale production potential from microalgae based on this disertation work and are

not a scale up of small scale laboratory data.
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Figure 2. Comparison of different feedstocks for biofuels. For this comparison the

value reported for microalgae represents the near term realizable potential not the

optimistic long term potential reported in literature. 1*(Chisti, 2007) h‘(Quinn etal,
2011)

Different microalgae species can adapt to environmental conditions. This makes
it possible to geographically optimize productivity potentials by cultivating specific
species. This is not possible with first generation feedstocks. Traditional terrestrial
crops have high tolerances to soil, water, and other uncontrollable environmental
factors.

Microalgae have the potential to integrate with waste streams. Inherent in

microalgae growth is the absorption of carbon. Microalgae are typically cultivated with
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supplemental CO, in order to improve growth rates. Researchers have shown that
microalgae feedstock cultivation can be coupled with coal fired power plants, natural
gas aiming plants, and other CO, sources to sequester CO,. Microalgae do not require
potable water and has the potential to utilize nutrients from wastewater treatment
plants (Chisti, 2008; Li et al., 2008; Schenk et al., 2008; Wijffels and Barbosa, 2010).
Microalgae do not compete for valuable agricultural land and represent a non-
food based bio-feedstock. The diversity of microalgae and their ability to grow in any
environment enable cultivation locations where traditional feedstocks are not feasible.
The advantages presented have lead to an increased interest in the microalgae

biofuels process.

1.2.3 Cultivation technologies

Two primary architectures for mass-culture of algae have been proposed: open
ponds and photobioreactors (PBR). The traditional method is open pond cultivation

with some selected illustrations presented in Figure 3.



Figure 3. Open raceway pond architecture for the cultivation of microalgae, picture
courtesy of Ami Ben-Amotz (top). Closed photobioreactor architecture for microalgae
cultivation, picture courtesy of Solix Biosystems (bottom).

Open pond cultivation is characterized by low algae density, the potential for

contamination by non desirable species, a thermal regulation requirement, and high



evaporative water losses. Closed photobioreactor cultivation has advantages over open
raceway ponds (ORP) in they can achieve higher algae densities, higher productivity, can
mitigate contamination, and capture direct and diffuse light, however have a higher
capital and operating cost (Li et al., 2008; Pulz, 2001; Richmond, 2004). Current
technological advances have reduced the capital and operating costs of PBRs making

them more appealing as a commercially viable system (Richmond, 2004).

10



Chapter 2-Research Challenges

2.1 Current challenges

The utilization of microalgae as a potential feedstock was initially evaluated by
NREL in the Aquatic Species Program. The research effort was in response to the energy
crisis of the 1970’s but was abandoned for economic reasons (Sheehan et al., July 1998).
Renewed interest in microalgae as a potential alternative feedstock for biofuels has
emerged again due to the volatility of crude oil markets, interest in energy
independence, and carbon sequestration. This renewed enthusiasm has reenergized

microalgae research communities.

2.1.1 Growth modeling

The mechanisms defining growth are conceptually understood and 1* order
models that are reactor specific have been developed. These models are typically based
on light, temperature, and nutrients (Fernandez et al., 1998; Fuentes et al., 1999; Qiang
et al., 1998; Rossignol et al., 2000). Most of the models generated are based on
laboratory scale growth systems with constant optimized light (Benson et al., 2007).
Mixing assumptions are assumed and in turn light interactions with algae are
generalized including microalgae growth kinetics which ignore complex fluid dynamics

and strictly focus on biological light utilization and absorption. The understanding,
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modeling, and optimizing of such a complex growth system is extremely difficult. The
CFD of air mixed reactor systems is computationally difficult based on two phase flow
dynamics. Few have taken on the challenge of understanding the fundamental kinetics
of mixing, let alone incorporating light dynamics (Posten, 2009). To get a first order
understanding of light intensity, the effect on productivity mixing must initially be
ignored. There is evidence to support that at low cell densities that light utilization is
more important than mixing when the mixing is not extremely high or low (Hu et al.,
1996; Qiang and Richmond, 1996; Qiang et al., 1998).

Current modeling efforts have focused on the utilization of indoor artificially
illuminated data for validations. This type of validation does not facilitate the use of the
models to outdoor systems. Models have been generated that represent large outdoor
systems, however archaic reactor scaling factors limit the application of the models
(Molina et al., 2000).

Due to the inherent complexity in growth modeling of microalgae cultures there
has been limited work on the effects of diffuse light (Hu et al., 1996; Richmond, 2004).
Diffuse light capture is fundamentally what extended photobioreactors depend on being
significant to increasing productivity compared to open raceway ponds and offset higher

operational and capital costs.

2.1.2 LCA

The life-cycle energy consumption of the microalgae to biofuel process is

consumed predominantly in three places, mixing during growth, de-water, and
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extraction. There is little published data about the effect of mixing less than 1 VVM on
productivity. Experimental setups operate with mixing energies that are orders of
magnitude higher then what is commercially used in pilot plant facilities such that
mixing is not a primary variable in the experimentation (Barbosa et al., 2003; Chisti,
1998 ; Hu et al., 1996; Lehr and Posten, 2009; Qiang and Richmond, 1996).

Life cycle assessment (LCA) has been the fundamental tool to evaluate the
sustainability of biofuels. The LCA literature makes use of the metrics of net energy
ratio (NER, defined here as the ratio of energy consumed to fuel energy produced) and
GHG emissions per unit of energy produced as the functional units for comparison
purposes. Although LCA is a well recognized method, published standards are few and
not widely adhered to (Delucchi, 2004). As a result, there are many different
approaches and thus many conflicting results among authors (Aresta et al., 2005; Batan
et al., 2010; Campbell et al., 2011; Clarens et al., 2010; Davis et al., 2009; Farrell et al.,
2006; Hill et al., 2006; Hirano et al., 1998; Jorquera et al., 2010; Lardon et al., 2009;
Minowa and Sawayama, 1999; Pimentel and Patzek, 2005; Stephenson et al., 2010).
The conflicting results can partially be attributed to LCA results being highly sensitive to
definitions of system boundaries, life-cycle inventories, process efficiencies, and
functional units. Other factors differ among studies, including definitions of NER, key
parameter values, sources of fossil energy, and co-product allocation and displacement
methods make comparison among studies difficult (Davis et al., 2009; Farrell et al.,

2006; Hill et al., 2006; Kim and Dale, 2002; Pimentel, 2005; Sheehan et al., 1998) As
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such, LCA is best used to compare technologies, policies, and scenarios within sets of
consistent assumptions.

LCAs of the microalgae-based biodiesel process exist in the literature but
consensus on the inputs and methods appropriate for microalgae-based biofuels is
lacking. Hirano (1998) considered the production of algae-derived methanol and
derived a NER of 1.1. Minowa and Sawayama (1999) studied different algae strains with
some strains achieving promising results with NERs greater than 1. Studies that include
models of the feedstock processing stages of the microalgae-to-biofuel process (growth,
dewater, and extraction) are less common. Minowa and Sawayama (1999) perform a
net energy analysis of algae gasification with nitrogen recovery but do not incorporate a
detailed process model. Campbell (2008) performs a net energy analysis based on
review of previous studies, however the combination of data from different microalgae
strains presents a problem of consistency. Lardon (2009) provides a thorough life cycle
assessment of an open raceway pond system for the production of algae biodiesel, but
does not address co-product allocation, making comparison to other studies more

difficult.

2.2 Research questions, tasks, and plan

Based on these Challenges, a primary research thrust can be posed:

PRIMARY RESEARCH Charge: RESEARCHERS HAVE SHOWN THAT THE SYSTEM

SCALE ECONOMIC AND SUSTAINABILITY PERFORMANCE OF MICROALGAE BIOFUELS IS
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DEPENDANT ON THE CONSUMPTIONS AND PRODUCTS OF THE ALGAE DURING THE
FEEDSTOCK STAGES. IN ORDER TO QUANTIFY THE SENSITIVITY OF ALGAE FEEDSTOCK
GROWTH AND PROCESSING ON SYSTEM-SCALE PERFORMANCE METRICS WE MUST
CONNECT LOW-LEVEL MODELS OF ALGAE GROWTH AND PROCESSING TO THESE

SYSTEM-SCALE PERFORMANCE METRICS.

To address this challenge a system of models must be developed and individually
validated. The validated models can then be integrated into a system where high level
questions can be proposed and answered.

The primary research challenge can be broken down into three fundamental
questions. Each of the following fundamental research questions can be used to help

answer the primary research challenge.

2.2.1 Research Question 1:

WHAT IS THE STRUCTURE AND COMPONENTS OF A VALIDATED AND
EXTENSIBLE MODEL OF THE GROWTH STAGE OF NANNOCHLOROPSIS SP.?

Previous work has developed models of the algae growth that uses a bulk growth
model incorporating light absorption within the algae reactor. This has limitations in
terms of the understandings that can be gained and also in terms of the applicability of
these models to the engineering challenges that are in reactor design today. By
developing a more detailed model of the light utilization by microalgae, reactor

geometry can be evaluated and optimized based on a closed PBR geometry.
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2.2.1.1 Hypotheses 1.1

A detailed model of incident and diffuse light is required in order to enable a
more fundamental understanding of growth kinetics. This model overlaid with a high
level economic analysis enables the validated design of optimized PBR reactor

geometries.

2.2.1.2 Task 1.1 - Generate light model based on diffuse versus direct light
Develop a model based on literature data to evaluate the impact of

diffuse light on algal productivity.

2.2.1.3 Task 1.2 - Experimentally generate small scale growth model
Design and build an experiment to evaluate the productivity of
Nannochloropsis sp. under different intensities of light while maintaining

thermal regulation and constant mixing.

2.2.1.4 Task 1.3 - Experimentally generate large scale growth data
Design and build a large scale (3 m x 1.5 m x 1.5 m) indoor growth system

that can accommodate discreetly different reactor geometry.

2.2.1.5 Task 1.4 - Validate the scalability of small scale growth reactor
Use light and growth measurements from large scale system to critically

evaluate the scalability of the small scale Pi growth model generated.
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2.2.1.6 Task 1.5 - Evaluate the impact of the proposed model
Evaluating the diffuse versus direct light utilization of microalgae is
important in establishing economic feasibility of extended area
photobioreactors. To date the primary means for mass cultivation of
microalgae is in open raceway ponds. There are distinct differences
between photobioreactors and open raceway ponds. Economically
speaking open raceway ponds are significantly cheaper to build,
maintain, and operate, however they are susceptible to contamination
crashes, have a lower areal productivity, operate at a lower density which
impacts dewatering economics, among other things. Extended area
photobioreactors utilize not only direct light but a large amount of diffuse
light. Understanding the productivity due to diffuse light will shed light
on the feasibility of large scale microalgae production in

photobioreactors.

2.2.1.7

Evaluate the reduction of the data based on attributing the growth in the
system to the active photic volume. Experimentation must be preformed
to evaluate the attenuation coefficient of light into the culture such that
the data collected in the small and large scale system can be reduced on
a photic volume metric. The scalability of the data reduction can then be

evaluated.
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2.2.2 Research Question 2:

What is the potential productivity and feasibility of large scale algae
production in the US?

Dynamic maps have been generated by NREL illustrating potential wind and solar
resources in the US. Utilizing a validated bulk growth model, historical hourly average
PAR, ambient temperatures, wind speeds, land, water, and CO, availability a microalgae

biomass potential map can be generated.

2.2.2.1 Hypotheses 2.1

The economic value and environmental sustainability of algae production for
biofuels in the US will be highly dependent on environmental compatibility of the
geography to the algae production process. Utilizing historical average weather data
collected at various places throughout the US, a map of the summer, winter, and annual
algae productivity can be developed. Year round cultivation will be limited to the milder

climates of the southern US.

2.2.2.2 Task 2.1 - Develop macro scale growth model
Develop and validate a microalgae growth model based on a large scale
outdoor photobioreactor geometry and operating conditions. The macro

model is designed to capture the first order effects of light, temperature,
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and nutrients on microalgae growth. This model will include biomass

output along with lipid productivity potential.

2.2.2.3 Task 2.2 - Develop a thermal bath model
Develop and integrate a thermal bath model based on ambient average
measured temperatures and incident solar radiation with a validated
biological growth model specific to the Solix photobioreactor

configuration growing Nannochloropsis oculata.

2.2.2.4 Task 2.3 - Generate productivity feasibility maps
Develop the following regional maps:
1. Primary map of potential year round locations based on growth.
2. Secondary map of summer vs. winter production

3. Integrate land, water, and CO2 availability

2.2.2.5 Task 2.3 -Evaluate impact of microalgae based on proposed model
The Energy Policy Act of 1992 directed the US Department of Energy to
evaluate the goal of replacing 30% (~40 billion gallons) of the
transportation fuel consumed in the US by 2010 with replacement fuels.
In March of 2007 this goal was deemed unreachable and the deadline for
fuel replacement was changed to 2030 (Department of Energy, 2007).
Algae-based biofuels are purported to be the most scalable of the biofuel
processes currently available (Chisti, 2007). Evaluating microalgae

potential in the US will enable feasibility to be taken to the next level.
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Even though algae scale better then terrestrial crops, year round
cultivation is limited to temperate climates. Integrating resource
availability such as water and land will again narrow the possible

locations for mass production.

2.2.3 Research Question 3:

What is the potential environmental impact of the microalgae to biofuel
process?

A detailed engineering model based on material consumption and energy use in
the microalgae to biofuel process linked with a lifecycle assessment (LCA) model will
enable the evaluation of the environmental impact of the microalgae of biofuels
process. Maintaining a consistent LCA boundary, this process can be compared to soy
based biofuels as well as conventional diesel in terms of net energy ratio (NER) and
greenhouse gas (GHG) emissions. The engineering model should be constructed based
on large scale near term realizable production in order to evaluate the scalability of the

process.

2.2.3.1 Hypotheses 3.1

Currently there is a lack of a comprehensive systems level model of the
microalgae to biofuel process incorporating near term realizable growth, dewater, and
extraction technologies. Developing a detailed engineering model will enable a more
fundamental understanding of where the process is most energy intensive and how

changes to the fundamental stages of the process affect the overall GHG footprint. A
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modular format enables the evaluation of different growth, dewater, and extraction

technologies.

2.2.3.2 Task 3.1 - Develop integrated engineering model based on internal
knowledge
Develop an integrated engineering model for the growth, dewater, and
extraction technologies currently being investigated by Solix. This
requires a high level understanding of the key constituents (energy and

materials) in all of the technologies in each of the different processes.

2.2.3.3 Tack 3.2 - Develop integrated engineering model based on current
literature
Develop an integrated engineering model of growth, dewater, and
extraction technologies currently attainable in the near future. The data

for these phases is based on current research.

2.2.3.4 Task 3.3 - Integrate engineering model with GHG model
Integrate the individual models into a systems level model that produces
outputs that can be inputted into a life cycle assessment model,

specifically Argon National Labs GREET (Wang, 2005).

2.2.3.5 Task 3.4 - Evaluate process variable sensitivity
Evaluate the sensitivity of net energy ratio (NER) and GHGs to primary
system inputs such as growth rate, culture density, sparge rate, solvent

ratios, ect.
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2.2.3.6 Task 3.5 - Evaluate scalability of proposed system
Evaluate the scalability of the proposed microalgae to biofuel system at
40 billion gallons per year which represents the DOE 2030 alternative fuel
goals with respect to energy and material consumption (Department of

Energy, 2007).

2.2.3.7 Task 3.5 - Impact of Life Cycle Assessment
The next generation of biofuel feedstocks must be critically analyzed to
determine their energetic and GHG impact while considering scalability
to a level of tens of billions of gallons per year. Microalgae have many
sustainability and scalability advantages compared to terrestrial crops.
Compared to first-generation biofuel feedstocks, microalgae are
characterized by higher solar energy yield, year-round cultivation, the use
of lower quality or brackish water, the use of less- and lower-quality land
(Brown and Zeiler, 1993; Dismukes et al., 2008; Li et al., 2008; Posten and
Schaub, 2009; Raja et al., 2008; Williams et al., 2009). Algae have
experimentally been shown to produce biodiesel at 46,769
liters/hectare/yr (5000 gal/acre/yr) compared to 2,533 liters/hectare/yr
(271 gal/acre/yr) of ethanol from corn or 584 liters/hectare/yr (62.5
gal/acre/yr) of biodiesel from soybeans (Ahmed et al., 1994; Chisti, 2007,

Pimentel, 2005; Pradhan et al., 2008; Weyer, 2009; Yeang, 2008).
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2.2.4 Research Plan

A three stage research plan has been implemented to answer the three primary
research questions previously presented. The independent stages all add to a collective

knowledge but do not directly build on each other and can be worked on concurrently.

2.2.4.1 Stage 1:
Develop a full understanding of the entire life cycle of microalgae
biofuels. Utilizing appropriate tools to develop systems models for all
technologies realistically being considered for the following stages:
growth, dewater, extraction, conversion, and transportation and
distribution. The model requires detail such that fundamental questions
can be evaluated in terms of energy and material consumption at large

scale.

2.2.4.2 Stage 2:
Develop and validate (based on Solix data) a bulk growth model that
incorporates current Solix geometry, light, temperature, and nutrients.
Develop a thermal model and incorporate it into bulk biological model
that can then be utilized to develop a dynamic map of microalgae

biomass and lipid potential in the US.
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2.2.4.3 Stage 3:
Develop a productivity model that differentiates between direct and
diffuse light utilization. This model is validated through two independent
experiments to determine the potential impact of an extended surface
area reactor. Optimization of PBR geometry as a function of reactor

depth is based on light intensity.
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Chapter 3-Net Energy and Greenhouse Gas Emissions Evaluation of

Biodiesel Derived from Microalgae?

3. Abstract

Biofuels derived from microalgae have the potential to replace petroleum fuel
and first-generation biofuel, but the efficacy with which sustainability goals can be
achieved is dependent on the lifecycle impacts of the microalgae-to-biofuel process.
This study develops a detailed, industrial-scale engineering model for the species
Nannochloropsis using a photobioreactor architecture. This process level model is
integrated with a lifecycle energy and greenhouse gas emissions analysis compatible
with the methods and boundaries of the Argonne National Laboratory GREET model,
thereby ensuring comparability to preexisting fuel-cycle assessments. Results are used
to evaluate the net energy ratio (NER) and net greenhouse gas emissions (GHGs) of
microalgae biodiesel in comparison to petroleum diesel and soybean-based biodiesel
with a boundary equivalent to “well-to-pump”. The resulting NER of the microalgae
biodiesel process is 0.93 MJ of energy consumed per MJ of energy produced. Interms
of net GHGs, microalgae-based biofuels avoids 75 g of CO2-equivalent emissions per MJ

of energy produced. The scalability of the consumables and products of the proposed

! The work presented in this chapter is based on the publication Batan, L, Quinn, J, Willson, B, Bradley, T,
2010. Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ.
Sci. Technol., 44, 7975-7980. Co-authored by Batan and Quinn.
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microalgae-to-biofuels processes are assessed in the context of 150 billion liters (40

billion gallons) of annual production.

3.1. Introduction

The next generation of biofuel feedstocks must be critically analyzed to
determine their energetic and greenhouse gas (GHG) emissions impact while
considering scalability to a significant level of production. Compared to first-generation
biofuel feedstocks, microalgae are characterized by higher solar energy yield, year-
round cultivation, the use of lower quality or brackish water, and the use of less- and
lower-quality land (Brown and Zeiler, 1993; Dismukes et al., 2008; Li et al., 2008; Posten
and Schaub, 2009; Raja et al., 2008; Williams et al., 2009). Researchers have shown that
microalgae feedstock cultivation can be coupled with combustion power plants or other
CO, sources to sequester GHG emissions and has the potential to utilize nutrients from
wastewater treatment plants (Li et al., 2008). The theoretical maximum production of
oil from microalgae has been calculated at 354,000 L-ha™*-a™ (38,000 gal-acre *-a™)
(Weyer et al., 2009), but pilot plant facilities and scalable experimental data have shown
a near term realizable production of 46,000 liters-hectare™-a™ (5000 gal-acre™-a™),
compared to 2,533 liters-hectare™-a™ (271 gal-acre™-a™) of ethanol from corn or 584
liters-hectare™-a™* (62.5 gal-acre-a*) of biodiesel from soybeans (Ahmed et al., 1994;

Chisti, 2007; Pimentel, 2005; Pradhan et al., 2008; Yeang, 2008).
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Life cycle assessment (LCA) is the fundamental tool that has been used to
evaluate the sustainability of biofuels. Although LCA is a well recognized method,
published standards are incomplete and are not widely adhered to (Delucchi, 2004).
The LCA literature makes use of the metrics of net energy ratio (NER, defined here as
the ratio of energy consumed to fuel energy produced) and GHG emissions per unit of
energy produced as the functional units for comparison purposes. The results from LCA
are highly sensitive to definitions of system boundaries, life-cycle inventories, process
efficiencies, and functional units (Farrell et al., 2006; Hill et al., 2006; Pimentel, 2005).
LCA studies often include various NER definitions, key parameter values, sources of
fossil energy, and co-product allocation and displacement methods, complicating
comparisons among studies and policy synthesis (Davis et al., 2009; Farrell et al., 2006;
Hill et al., 2006; Kim and Dale, 2002; Pimentel, 2005; Sheehan et al., 1998).

LCAs of the microalgae-based biodiesel process exist in the literature but
consensus on the inputs and methods appropriate for microalgae-based biofuels is
lacking. Hirano (1998) considered the production of microalgae-derived methanol and
derived a NER of 1.1 (Hirano et al., 1998). Minowa and Sawayama (1999) perform a net
energy analysis of microalgae gasification with nitrogen recovery which increases the
NER (>1) but do not incorporate a detailed process model (Chisti, 2008; Minowa and
Sawayama, 1999). Campbell et al. (2008) perform a net energy analysis based on review
of previous studies, but the combination of data from different microalgae strains
presents a problem of consistency (Campbell et al., 2010). Lardon et al. (2009) provides

a thorough life cycle assessment of an open raceway pond system for the production of
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microalgae biodiesel. Lardon et al. extrapolates laboratory-scale results to assign the
energy burdens due to cultivation and allocates energy consumption to co-products
without using co-product displacements (Lardon et al., 2009). Clarens et al. 2010 does
not incorporate energy and materials for conversion of microalgae oil to fuel, but does
include energy for the procurement of CO, (Clarens et al., 2010). Performing a coherent
LCA of the microalgae to biodiesel process requires detailed models of each of the
feedstock processing stages (growth, dewater, extraction, conversion, and distribution)
combined with a standard and consistent set of LCA boundary conditions.

Based on the state of the field, there exists a need to quantify the sustainability
effects of the microalgae-to-biofuel process. This study builds on academic literature,
industrial consultation, and pilot plant experience of microalgae feedstock processing to
generate a model of net energy and GHG emissions of the microalgae-to-biofuel
process. This baseline LCA will be used to compare and contrast the net energy and
GHGs of microalgae to that of conventional petroleum-based diesel and soybean-based
biodiesel. For clarity and comparability, these comparisons are made using the same

assumptions and LCA boundaries as GREET 1.8c (Wang, 2005).

3.2. Methods

In order to describe the net energy and GHG impacts of microalgae biodiesel, we
must develop a valid, extensible, and internally consistent model of the materials inputs,
energy use, and products for the process. The simulation architecture is shown in Figure

4,
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The three primary components of this model are: a detailed engineering process
simulation of microalgae from growth through extraction, a more generalized model of
microalgae from conversion to end use, and an integrated calculation of net energy and
GHG emissions due to impacts from the inputs, outputs, processes, and co-product
allocation for the microalgae biodiesel production. A more detailed representation of

the modular nature of the engineering model is presented in Figure 5.

The engineering model is constructed to be a modular such that a variety of

technologies can easily be evaluated.

3.2.1. Detailed Engineering Process Model

The purpose of the detailed engineering process model of the microalgae
growth, harvest, and extraction phases is to describe the material inputs, material
outputs, and types and amounts of energy consumed in the microalgae feedstock
processing stages. The baseline model of microalgae to biodiesel process is based on a
315 hectares (776 acres) facility, which includes photosynthetically active and built
areas. The temporal unit for evaluation of the process is 1 year. The model
incorporates the recycling of growth media but does not recover nitrogen from
extracted biomass (Chisti, 2008). Additional material recycling will affect the results of
the LCA, but a lack of data regarding the energy and material costs preclude its inclusion

in this study.

30



sa8e)s Suissadsoad
2y31 Jo yoed wodj pue 01 moj} AS1aud pue ssew 3yl Sunesisn||i |opow ssadoad SundauiSua pajieaq 's a4nsi4

——— ——— — —
JUALISSASSY APAD mﬂ

jue|d Suissanosd pue Ajjoeq-
SNOILINI3A OIdYNIDSINNISTE
S1NdNI

SISKTYNY aneA3ayeN-
ALIBYIYIS _ DHD ANY ADHINI _ H_:m._“,u,wﬂ._._m”
S0k BA0RW _ dINAEOLNIVELS _ SA0HLIN ZO_._.e.uOm_._e.._.ujn__Omn_n_.Du
ALIMLISNES _ T300W _ Afojouyra3Fulssanolg-
NOILY20TV L2 Na0¥d-02 NO ILY20TY sjuawalinbal adieds-
_ 12Maoud-02 _ uo)dWNswod 132|134~
Isuap ainyny-
SUDISSIWA BHD 13N - _I = —— q__umﬂ.__ Ew:m«mou _uu__n_m_.
[M3In) oney ASiaul 3an - pnpoid 07 el Mol D-
ALIMLISNES ALMIEVIEYA S53D04dIVETY
AMAVIHYA S53D0Hd VDTV
S}IuN [eiodwi 3} pue [Buoiung-
S3|QEWNSUOD P UE S|[ELAEA -
SUDISSIW3 BHD 13N - sadA] pue s304N0s 13zZ)| Wa34-
(w3N) oney ASiauz 1aN - E adiy Jopeay-
OIdY NIDS INIMISYE (192 Juajuod pidi| ‘a3 Yymols)
A. S1sUAIRIEYD 3EF RO N -
NOILdWNNSNOD aunos Afiau3-
ADHINT ONY SIVIHILYIN 9 uoleao|

SUOISS|IUR DY D PUE 3sn
Af1aua weansumop pueweassdn

s1NdLno

31



3.2.1.1. Growth Model

Two primary architectures for mass-culture of microalgae have been proposed:
open ponds (ORP) and photobioreactors (PBR). PBR cultivation has advantages over
ORP in they can achieve higher microalgae densities, higher productivity, and mitigate
contamination. Current technological advances have reduced the capital and operating
costs of PBRs making them more appealing as a commercially viable system (Richmond,
2004).

The microalgae strain Nannochloropsis salina was selected and modeled because
of its high lipid content and high growth rate. Under the conditions of the Colorado
State University pilot plant scale reactor system, Nannochloropsis salina can achieve a
lipid content of 50% by weight (Emdadi and Berland, 1989; Fabregas et al., 2004; Suen
et al., 1987), and an average annual growth rate of 25 g-m™-day ™ (Boussiba et al., 1987;
Gudin and Chaumont, 1991; Suen et al., 1987). The use of these validated data for this
study is conservative and proper, considering that under laboratory conditions,
Nannochloropsis can attain lipid percentages of 60% by weight and growth rates of 260
mg-L™-hr" or 150 g-m™-day " extrapolated to the system modeled (Richmond et al.,
2003; Rodolfi et al., 2009). The nitrogen and phosphate content of the microalgae are
defined as 15% and 2% by mass according to biological growth requirements and lipid
productivity research (Arrigo, 2005; Redfield, 1958; Rodolfi et al., 2009). The salinity of
the system is set at 20 g-L™* (Abu-Rezq et al., 1999). CO, enriched air (2% CO,) is sparged
through the bioreactor to provide carbon and active mixing of the culture. The energy
required for sparge is based on an experimentally validated specific power requirement
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of 0.4 W-m™ (Weissman et al., 1988). Mixing by sparge is performed during periods of
photosynthetically active growth and when bio-available nitrogen is present in the
media. The facility is assumed to be located in a temperate region of the US where the
amount of energy required for thermal regulation is assumed negligible due to the
availability of very low power thermal regulation resources (including ground and pond
loop heat exchangers). The difference between precipitation and evaporation results in
water losses of 2.5 cm-day™ (1 in-day™) from the water bath that supports the reactors
(Smith et al., 1994). The life cycle costs of the polyethylene PBR bags are include and
assumed to be replaced at 5 year intervals.

The biological growth facility modeled for this work is illustrated in Figure 6.

Figure 6. lllustration and photograph of the pilot facility modeled for this study
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The modeled photosynthetic facility is composed of a number of 36 meter (120
ft) long and 0.12 milimeter thick clear polyethylene photobioreactors suported in a
thermal bath, as shown in Figure 6. The reactors incorporate an air sparge system
designed to provide CO, and turbulent mixing. The reactors are assumed to have a
lifetime of 5 years based on biofouling and other material failures. The bags are
subdivided into three different reactor sets: incubation reactors, growth/stress reactor
set 1, and growth/stress reactor set 2.

The growth process as modeled is a batch system comprised of one set of
incubation reactors and 2 sets of growth/stressing reactors. The incubation reactors are
used to provide microalgae innoculum for the growth/stress reactor sytems. The
growth/stress reactors are used to used to grow and stress the culture in a procedure to
maximize lipid yield, while minimizing energy consumption.

The growth process begins with the innoculation of microalgae into nutrient-rich
medium in the incubator reactors. All bioavailable nutrients are absorbed in the first 2
days of growth. The culture is then cultivated until it transitions from linear growth
stage (nutrient-rich growth) to a stationary growth stage (nutrient-deprived) after
approximately 5 days. The stationary growth stage represents a growth stage with
lower biomass productivity rate (approximately 15 g m™day™), but with increased lipid
production. On the 5t day, all of the culture in the incubation reactors is harvested, and
mixed with nutrient-rich media. Part of the culture is injected into the incubation

reactors, the remainder is injected into the growth/stress reactors. This incubation,
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growth, and innoculation process is repeated every 5 days within the incubation
reactors.

In the growth/stress reactors, the innoculum from the incubation reactors will
grow for 5 days and will then transision from the linear growth phase into the stationary
growth phase. For the next 5 days, the culture is cultivated under nutrient-deprived
stationary growth conditions. Lipid content increases to 50% of cell weight during the
stationary stress growth (Emdadi and Berland, 1989). At the end of a 10 day growth
cycle, the cuture is harvested and the reactors are re-innoculated with culture from the
incubation reactors. This innoculation, linear growth, stationary growth, harvest cycle is
repeated every 10 days with each set of growth/stress reactors. Two sets of
growth/stress reactors with their 10 day cycle time are required to match the 5 day
cycle of the incubation reactors. The facility is assumed to operate year round and does
not require annual repopulation.

It has been shown that increasing sparge rates can improve yields, however the
level of sparge typically utilized in laboratory experimentation is economically
disadvantageous for a product such as biodiesel. It has also been shown in low density
cultures that the sparge rate does not have a major effect on growth (Qiang and
Richmond, 1996).

Electricity is used to power pumping and sparging. Diesel is used to fuel
transportation on the facility for maintenance and inspection. The microalgae facility is
assumed to be located next to a pure CO; source, such as a natural gas amine plant,

which implies no transportation costs, preprocessing costs, or energy requirements to

35



deliver CO,. This assumption is based on the current abundance of pure CO,. The
material inputs, material outputs, and energetic inputs for the growth model are

detailed in Table 1.

3.2.1.2. Dewater Model

The removal of free water from the harvested microalgae is required and can be
achieved through flocculation, centrifugation, vacuum belt dryers, or solar driers.
Centrifugation is modeled for this study because it is currently commercially used and
represents a mature technology (Grima et al., 2003).

The energy consumption for transport of the microalgae medium from the PBR
to a centralized processing unit is based on losses from pumping through a 13 cm (5 in)
PVC pipe over a distance of 500 m with a pump efficiency of 70% (Glover, 2000; White,
1999). The energy consumption required for centrifugation is modeled based on the
performance of a continuous clarifier that consumes 45 kW steady state with a
throughput of 45,000 liters-hour™ (based on the particle size of Nannochloropsis)
(Yanovsky, 2009). The centrate (free water) from the clarifier is recycled with a 0.1
micron polypropylene filtration system (Keystone_Division, 2002). The microalgae paste
is then conveyed from the clarifier output to the extraction stage requiring 19.4 J-kg™* m’
' (Herum, 1960).

Energy consumption for these processes is derived entirely from electricity as

summarized in Table 1.
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3.2.1.3. Extraction Model

The lipid extraction and recovery model is designed from literature to represent
a scalable and near-term realizable and commercially viable extraction process. The
process is based off of the process for recovery of lipids from soybeans due to the lack
of large scale oil recovery systems for microalgae. The process incorporates a shear
mixer, centrifuge, decant tank, solvent recovery, and two distillation units for the
recovery of solvents.

The extraction system uses a hexane to ethanol solvent mixture of 9:1, at a
solvent to oil ratio of 22:1, which recovers 90% of the lipids present in the microalgae.
The parameters of this process are assumed to be identical to the extraction process
used for other oil crops (Conkerton et al., 1995; Dominguez et al., 1995; Gandhi et al.,
2003; Zhang and Liu, 2005). Counter flow heat exchangers with an effectiveness of 0.90
are used to recover process heat (Shah, 2003). Evaporator-condenser systems with 80%
energy recovery are used for solvent recovery and oil separation. The energy required
to move and centrifuge is modeled based on 500 m length, 13 cm (5 in) diameter PVC
transfer pipe with a pump efficiency of 70% and a centrifugal separator respectively
(Glover, 2000; Yanovsky, 2009).

Energy consumption for these processes is derived from electricity for pumping,
shear mixing, and centrifugation and natural gas for heating, with all solvents being

recycled as summarized in Table 1.
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3.2.1.4. Conversion Model

The conversion stage consists of the chemical and industrial processes required
to convert the extracted microalgae lipids into biodiesel through transesterification.
The process requires the reaction of lipids (triacylglycerols) with methanol in the
presence of a catalyst, producing fatty acid methyl esters (biodiesel) and glycerin.
Microalgae lipids and soybean lipids are composed of similar triacylglycerols but at
slightly different composition percentages (Reske et al., 1997; Tonon et al., 2002). For
this study, the types and quantities of energy and material inputs to the conversion
processes are assumed identical and are derived from the GREET 1.8c soy-oil conversion
model.

Natural gas is used for process heating at a rate of 2.10 MJ-kg™ of microalgae
biodiesel and electricity is used for mixing and transport at a rate of 0.03 KWh-kg™ of
biodiesel. The methanol, catalyst (sodium methoxide), and neutralizer (hydrochloric
acid) are consumed in proportion to the quantity of biodiesel produced, as summarized

in Table 1.

3.2.1.5. Transportation and Distribution Model

The microalgae production facility modeled includes facilities for growth,
dewater, extraction, and conversion stages, enabling the transportation of the feedstock
to the processing plant to be performed by conveyor. The distances and means of

transportation and distribution (barge, rail, and truck) are assumed to be the same as

38



soybean-based biofuel. Energy consumption for the transportation and distribution

stage is summarized in Table 1.

3.2.2. Lifecycle Assessment Model

The Center for Transportation Research at Argonne National Labs was funded by
the U.S. department of Energy’s Office of Energy Efficiency and Renewable Energy
(EERE), to develop a full life cycle model for the evaluation of various fuel and vehicle
combinations. The project generated the GREET (Greenhouse gases, Regulated
Emissions, and Energy use in Transportation) model (Wang, 2005), which evaluates the
energy and material consumption and the corresponding emissions of a full fuel-cycle.
GREET incorporates more than 100 fuel production pathways with the general fuel
pathways illustrated in Figure 7. The LCA boundary of GREET can be defined by either

III

“well-to-pump” or “well-to-wheel” as illustrated in Figure 8.
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GREET separates the energy use by type (petroleum, coal, natural gas, nuclear,
etc) to more accurately evaluate environmental impacts. GREET evaluates the type of
energy consumed to calculate upstream energy and GHG emissions implicit in materials
and energy flows. GREET draws on open literature, engineering analysis, and
stakeholder inputs to generate an accurate data base of energy and material
requirements for specific processes. The major assumptions in GREET on “well-to-
pump” study are the energy efficiencies of the fuel production activities, GHG emissions
of the fuel production activities and the emission factors of fuel combustion
technologies. In this study, the GREET model was utilized to evaluate the microalgae life
cycle with a boundary defined as “strain-to-pump” (cultivation stage of microalgae,
dewatering microalgae, microalgae oil extraction, microalgae oil conversion and
microalgae biodiesel transportation and distribution) which is analogous to “well-to-
pump” for conventional diesel. The system boundaries for the analysis performed are
presented in Figure 9.

The GREET model utilizes data from Energy Information Administration (EIA) and
US Department of Agriculture (USDA) for all energy and material inputs in the process of
recovery and refinery of petroleum based diesel, and the production and process of
soybean based biodiesel, including the stages of agricultural farming, harvesting,
transportation of feedstock, soybean oil extraction, conversion and biodiesel

transportation and distribution to the pump stations.
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The GREET 1.8c model was used to simulate the material consumption, net
energy use, and GHG emissions for the life cycle of the microalgae-to-biofuel process.
The boundaries of the life-cycle considered for this study start with the growth stage of
the microalgae and end at the point of distribution of biodiesel to consumer pumping
stations. This LCA boundary is called “strain-to-pump” and is analogous to the “well-to-
pump” boundary for conventional crude oil.

GREET 1.8c was modified to represent the microalgae-to-biodiesel process, with
no changes in methodology inherent in the original model. To allow a direct comparison
of these results to previous GREET LCAs on soybean-based and conventional petroleum
fuels, this study applies the same lifecycle boundaries as does GREET. For example,
GREET 1.8c excludes the energy required to construct agricultural facilities, processing
facilities and refineries. Similarly, this study excludes the energy required to construct

the microalgae bioreactors.

3.2.2.1. Lifecycle Energy Model

The modified GREET model is used to calculate both direct and upstream energy
consumption throughout the microalgae-to-biofuel process and to calculate energy
credits due to co-products. The total energy consumption can be represented as a NER
with units of MJ of energy consumed per MJ of energy produced. The modifications
required to the GREET model for the evaluation of microalgae based biofuel were the
inclusion of life cycle energy and emissions of salt (NaCl) and high density polyethylene

(HDPE) bags (material for construction of the photobioreactors) to the database.
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3.2.2.2. GHG Emission Model

GREET is used for the evaluation of the lifecycle GHG emissions associated with
the microalgae-to-biofuel process. GREET accounts for CO,, CH4 and N,O emissions
originated from specific sources of energy and materials consumed and their respective
upstream emissions. IPCC global warming potentials are applied to CH, and N,O
emissions to calculate the CO, equivalent (CO,-eq) emissions of the microalgae-to-
biofuel process (Ipcc, 2006). GREET also accounts the avoidance of CO, emissions due to
allocation of co-products, i.e. replacement of conventional products by microalgae-to-
biofuel co-products.

GREET also calculates the emissions of six criteria air pollutants: non-methane
volatile organic compounds (NMVOCs), carbon monoxide (CO), nitrogen oxides (NO,),
particulate matter with a diameter of 10 micrometers or less (PM10) and 2.5
micrometers or less (PM2.5), and sulfur oxides (SOy). Both this study and GREET assign
an indirect GHG emissions equivalency to NMVOC and CO emissions. This indirect GHG
emissions equivalency considers that NMVOC and CO emissions are converted into CO,
in the atmosphere (Seinfeld and Pandis, 1998). Molecular weight ratios are used to
convert NMVOC and CO emissions to CO,-eq emissions. This method for assessing
environmental burden from CO and NMVOC has been the subject of debate and revision
at IPCC. Although IPCC methods do not define a global warming potential associated

with CO or NMVOC emissions, IPCC assessment reports do quantify an indirect global
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warming potential for CO and NMVOCs (Forster, 2007). Inclusion of indirect emissions is
methodologically defensible (Gillenwater, 2008), and the methods used in GREET and in

this paper have been used in peer-reviewed publication (Huo et al., 2009). The inclusion
of the indirect emissions of CO and NMVOCs using the molecular weight method allows

for direct comparison to GREET’s conventional and biofuel models.

GREET contains a database of the GHG emissions for many types of energy
sources, fertilizers, and other relevant materials used in this assessment. Only the
upstream GHG emissions and energy consumption due to the production of NaCl
(required for replacing salt lost in media recycling) had to be added to the GREET
inventory.

The GHG emissions model totals the CO, captured during microalgae growth
with the CO; credits due to co-products and combines the CO, and CO,.¢q emissions due

to the energy and materials consumed for a final result.

3.2.2.3. Co-Product Allocation Methods

In evaluating the life cycle energy consumption of the microalgae-to-biofuel
process, the biomass that is not converted to fuel can be considered as a co-product.
For this study, the microalgae co-product credits are allocated using the displacement
method. The displacement method assumes that the co-product displaces a preexisting
conventional product. The displacement co-product credits represent the lifecycle

energy and GHG emissions that would be required to produce the displaced product.
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Co-product credits are subtracted from the overall energy and GHG emissions of the
microalgae-to-biofuel process.

The two primary co-products of the microalgae to biofuels process are extracted
microalgae biomass (generated from the extraction stage) and glycerin (generated from
the conversion stage). For the displacement method, the extracted microalgae biomass
is used to displace conventional microalgae biomass, which is an ingredient in
aquacultural fish feed. The displaced microalgae biomass is cultivated using
conventional, industrial-scale processes (Aresta et al., 2005; Carraretto et al., 2004;
Markovits et al., 1992; Rebolloso-Fuentes et al., 2001; Renaud et al., 1991; Sukenik et
al., 1993). The microalgae extract mass to microalgae mass displacement ratio is 1.3:1
due to the higher content of protein in microalgae extract. Microalgae-derived glycerin
is assumed to directly displace petroleum-derived glycerin (Wang, 2005). Sensitivity to
co-product allocation is also presented based on an energy value, and market value co-

product methods.

3.3. Results

The process parameters presented above and the displacement co-product
allocation method define the baseline scenario designed to represent a near-term
realizable, industrially relevant microalgae-to-biofuel production process based on a
PBR configuration. A sensitivity analysis to co-product credit allocation method, energy

sources, and process parameters are also presented.
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3.3.1. Materials and Energy Consumption of the Microalgae-to-Biofuel

Process

The first results of the microalgae-to-biofuel process model are a tabulation of
the consumables and energy consumption of each process stage, presented in Table 1.

The quantities and types of these direct consumables are the inputs to the NER
and GHG calculation models which translate these consumptions into lifecycle energy
consumption and GHG emission rates.

There are a few steps of the microalgae-to-biofuel process that make up a large
proportion of the primary energy consumption. 99% of the electrical energy consumed
in the growth phase is consumed to compress air for sparge. 76% of the energy
consumed during extraction is required for solvent recovery. Some other steps of the
process are energetically negligible (moving the microalgae and recycling media

consume less than 1% of the total electrical energy).
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Table 1. Summary material and energy inputs and outputs for the baseline microalgae
to biofuel process for a period of 1 year

VALUE UNITS

STAGE/Inputs
GROWTH STAGE

Photosynthetic area per facility area 0.80 ha-ha™

Salt consumption 134 g-(kg dry algae)™

Nitrogen fertilizer consumption 147 g-(kg dry algae)™

Phosphorus fertilizer consumption 20 g-(kg dry algae)™

Polyethylene consumption 1.17 m*ha™

Diesel fuel consumption 10 L-ha™

Electricity consumption 41,404 kWh-ha™

Microalgae biomass yield 91,000 kg-ha™
DEWATER STAGE

Electricity use 30,788 kWh-ha™
EXTRACTION STAGE

Natural gas consumption 141,994 MJ-ha™

Electricity consumption 12,706 kWh-ha™

Extracted oil yield 43,009 L-ha™
CONVERSION STAGE

Natural Gas consumption 2.10 MJ-(kg biodiesel)™

Electricity consumption 0.03 kWh-(kg biodiesel)™

Methanol consumption 0.10 kg-(kg biodiesel)™

Sodium hydroxide consumption 0.005 kg-(kg biodiesel)™

Sodium methoxide consumption 0.0125 kg-(kg biodiesel)™

Hydrochloric acid consumption 0.0071 kg-(kg biodiesel)™
TRANSPORTATION & DISTRIBUTION

Diesel consumption 0.0094 L-(kg biodiesel)™

3.3.2. Net Energy Results

The second result of this analyses is a comparison of the net energy of the

microalgae-to-biofuel process to the soybean-to-biofuel process and to a conventional

petroleum-to-diesel process (both obtained from U.S. average data of GREET 1.8c),

illustrated in Table 2. It is notable that both soybean-based biodiesel and microalgae-

biodiesel take advantage of co-product credits to reduce the net energy consumed.
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Since refineries produce multiple products, the energy use and emission of petroleum-
based fuel are calculated by allocating total refinery energy use into individual refinery
products at the aggregate refinery level (Wang, 2008). The microalgae biofuel has 30%
less input energy per unit of product (before co-product allocation) than conventional

soybean-based biofuel.

Table 2 shows that the energy required to support the growth stage during
microalgae cultivation is 2.1 times higher than the energy required to support the
growth stage for soy cultivation. Microalgae oil extraction uses less energy than soy oil
extraction, however, the microalgae-to-biofuels process requires an energy intense
dewatering stage that is not present in the soybean-to-biofuels process. The primary
energetic advantage of the microalgae process, relative to soy, is related to the energy
embedded in the feedstock. Soybeans contain 18% lipid by dry weight, whereas
Nannochloropsis salina contains 50%. This means that less microalgae is required to
produce 1 unit of biofuel energy than is required of soybeans. GREET quantifies this
relationship as a conversion ratio, defined as the ratio of the lower heating value (LHV)
of biodiesel to the LHV of the feedstock. For soybeans, the ratio of the energy of the
feedstock to the energy of the fuel output is 40% compared to 70% for microalgae. A
higher conversion ratio means that a lower fraction of the LHV of the feedstock input to
the conversion process is lost to co-products. In summary, although algae cultivation is
more energy intensive, as has been asserted in previous studies (Hirano et al., 1998;
Nash and Frankel, 1986; Posten, 2009; Reijnders, 2008; Richmond, 2004; Sawayama et
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al., 1999; Spolaore et al., 2006), lifecycle analysis shows that the microalgae-to-biofuels

process is less energy intensive per unit of energy output.

3.3.3. GHG Emissions Results

Total GHGs can provide a more holistic comparison of the environmental impact
of the production of these fuels. Table 3 presents the comparison of the GHG
components and net emissions for production of petroleum diesel, biodiesel from
soybean and microalgae feedstocks.

These results show that soybean and microalgae based biofuels processes can
realize GHG reductions relative to a petroleum diesel baseline. Both biofuels result in a
net negative CO; output due to CO; capture intrinsic in the production of biomass
during photosynthesis, the displacement of petroleum, and the displacement of co-
products. The microalgae biodiesel process has a 5% better performance in terms of net
GHGs compared to soybean based biodiesel in the boundary “strain-to-pump”. A
notable component of the microalgae GHG emissions reduction is the net avoidance of
N,O that is achieved. Although the microalgae growth stage uses a higher mass of N-
fertilizer than the soy growth stage, the aerobic conditions of microalgae cultures
suppress the direct emission of N,O. For microalgae, no biomass is left in the field
where it can be subject to de-nitrification and the closed PBRs do not experience loss of
fertilizer through runoff (Bothe, 2007; Flynn et al., 1993; Golterman, 1985; Jannasch,

1960; Sacks and Barker, 1949; Skerman and Macrae, 1957).
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Due to their high global warming potential value, N,O emissions can have a
significant impact in the total GHG emissions. For terrestrial crops, N,O emissions are
produced in 3 distinct ways,

® From upstream N,O emissions during manufacture of nitrogen-based
fertilizer,

® From direct emissions from the fertilizer applied to the field,
® From residual biomass left in the field after harvesting.

For microalgae biofuels, these upstream, direct, and residual biomass sources of
N,O emissions must be reconsidered for their applicability to the microalgae growth
system.

For the upstream emissions, the default GREET 1.8c N,O emissions from the
manufacturing of nitrogen-based (urea) fertilizer are used.

For the direct and residual biomass sources of N,O, the microalgae growth
system is fundamentally different than a traditional terrestrial crop system. This study
proposes that the direct and residual biomass N,O emissions for the microalgae-to-
biofuel are negligible due to the processes and controls used to cultivate microalgae. In
terrestrial crop N,O emissions, the guideline for calculating the emissions assumes that
1% of the total nitrogen applied is converted to N,O (lpcc, 2006). This percentage
includes:

e fertilizer converted into N,O by denitrifying bacteria in the soil,
e biomass left in the field which is afterward converted into N,0,

e fertilizer carried away by runoff and then converted into N,O in the
watershed.
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The mechanism for the generation of N,O in terrestrial crop fields is the
anaerobic de-nitrification of nitrogen based fertilizer by bacteria found in the soil
(Bothe, 2007; Delwiche, 1981; Golterman, 1985). Despite the presence of bio-available
nitrogen within microalgae reactors, de-nitrification (and direct N,O emissions) will not
occur within the reactors because the system is a closed system where denitrifying
bacteria is not present, and because the reactors are an aerobic environment. In the
microalgae growth stage, nitrogen is supplied in the form of dissolved fertilizer at the
beginning of the batch growth process. The uptake rate of the nitrogen by the
microalgae is a light-dependent process and the bio-available nitrogen is depleted in 36
hours (Flynn et al., 1993; Takagi et al., 2000; Yamaberi et al., 1998). During
photosynthetically active periods, the microalgae produce oxygen and therefore are
growing in an aerobic environment (Jannasch, 1960; Skerman and Macrae, 1957). At
night, an oxygen level of 8 ppm can be achieved by sparging air through the culture.
Maintaining an oxygen level greater than 0.2 ppm will inhibit the reduction of nitrogen
by denitrifying bacteria (Skerman and Macrae, 1957). Denitrifying bacteria that are
grown in a high oxygen environment will not synthesize the nitrogen-reducing enzyme,
thereby inhibiting the potential for N,O emission (Sacks and Barker, 1949). For this
study, the system is sparged 24 hours per day during periods of bio-available nitrogen to
generate an aerobic environment, eliminating de-nitrification and direct N,O emissions.

For this study, the microalgae reactor is a self-contained closed photobioreactor
(PBR) and thus does not have any loss of fertilizer through runoff with the assumption

that all bio-available nitrogen is utilized by the microalgae.
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Co-product displacement provides additional net-negative N,O emissions. The
net N,O emission avoidance that can be realized through the microalgae-to-biofuels
process represents a significant difference between the GHG emissions profiles of
microalgae compared to other agricultural bioenergy processes, which often have N,0
emissions as the largest source of positive GHG emissions (Adler et al., 2007). The
sensitivity of these results to energy source assumptions is provided in section 3.3.6.

In addition to the “strain-to-pump” analysis, this study has also run simulations
using the “strain-to-wheel” LCA boundary, which includes all stages of “strain-to-pump”
as well as the combustion of fuel in transportation vehicles. Results are presented in
Table 4. GREET assumes that soybean-derived and microalgae-based diesel fuels are
used in 100% pure form in compression-ignition, direct-injection (CIDI) engine vehicles.
Due to the lack of emissions data from the combustion of microalgae based biofuel, it
was assumed that the fuel economy and emissions from soy- and microalgae-based
biofuels in CIDI vehicles are the same. These simulations result in 93.08 g CO,-eq/MJ for
petroleum-based diesel, 5.01 g CO,-eq/MJ for soy-based biodiesel, and the avoidance of

1.31 g CO,-eq/MJ for microalgae-based biodiesel.
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3.3.4. Scalability

The Energy Policy Act of 1992 directed the US Department of Energy to evaluate
the goal of replacing 30% (~150 billion liters) of the transportation fuel consumed in the
US by 2010 with replacement fuels. In March of 2007 this goal was deemed
unreachable and the deadline for fuel replacement was changed to 2030 (Department
of Energy, 2007). Algae-based biofuels are purported to be the most scalable of the
biofuel processes currently available (Chisti, 2007). In order to understand the
scalability of the proposed processes, material inputs and material outputs, the baseline
engineering process model was scaled so as to produce 150 billion liters per year with
the corresponding consumables and products presented in Table 4.

Limits on water availability, nitrogen availability, and the constraints of the
glycerin co-product market will limit the scale to which this type of microalgae biofuels
production model can be extrapolated, which are not considered in this study.
Alternative sources of nitrogen and water, including perhaps from wastewater (Yun et
al., 1997) or anaerobic digestion for nitrogen recovery from the extracted biomass
(Chisti, 2008), and other uses for the glycerin co-product (Yazdani and Gonzalez, 2007)

must be considered to achieve long-term process scalability.
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The results of this study are limited to assessment of the scenarios proposed and
investigated, but this work has shown that a microalgae biodiesel process using
currently available technologies can show significant improvement in lifecycle GHG
emissions and NER. Technology and biofuels system-level improvements which are
currently under investigation by a variety of researchers will improve the environmental
performance and scalability of the microalgae-to-biofuels process. This study suggests
that near-term algae biofuels production can be environmentally beneficial compared to
petroleum-based diesel, and that the proposed microalgae to biofuel process exhibits

significant NER and GHG advantages over soybean-based biodiesel.

3.3.5 Sensitivity to Co-Product Allocation

This section presents an analysis of the sensitivity of the LCA results to variation
in the co-product allocation methods. The production of microalgae-based biofuel has
not been performed at industrial scale, the uses and values of the microalgae co-
products are highly uncertain. To test the sensitivity of the results of this study to co-
product end-uses, allocations of co-product credits are considered in three different
ways: displacement, energy-value allocation, and market-value allocation.

With the displacement method, it is assumed that a conventional product is
displaced by a co-product generated in the biofuel process. The life cycle energy that
would have been used and the emissions that would have been generated during

production of the displaced product are counted as credits for the co-product generated

60



by the biofuel pathway. These credits are subtracted from the total energy use and
emissions associated with the fuel pathway under evaluation. The allocation method
allocates the feedstock use, energy use, and emissions between the primary product
and co-products on the basis of mass, energy content, or economic revenue. In this
study, glycerin and extracted biomass are produced as co-products during the
production of algae-based fuel.

The displacement method is based on the displacement of microalgae used as
fish and rotifer feed in aquaculture by the microalgal extract produced in the
microalgae-to-fuel process. An averaged value for the energy dedicated to cultivation of
microalgae for fish feed in aquaculture of 7.6 MJ kg™* of dry microalgae (3,250 Btu (lb of
dry algae)'l) was used (Aresta et al., 2005; Kadam, 2002). For GHG emissions allocation,
the energy used during the microalgae cultivation was assumed to be primarily
electricity from coal and natural gas powered plants.

The energy-value allocation method bases the value of the co-product credits on
the heating value of the co-product. This study assumes that the extracted biomass can
be used as co-firing material with a heating value of 14.2 M) kg'1 (Kadam, 2002).
Glycerin is allocated at its lower heating value.

The market value method bases the value of the co-product credits on the
economic revenue potential of the co-product. The value of extracted biomass as an
economic commodity has not been fully investigated due to the immaturity of the
technology. At present, a large-scale use of microalgae biomass is as a component of

the feed used for the cultivation of fish fry in aquaculture. The current commercial
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(Kost, 2010) market value of fish feed for aquaculture, is US $2.65 kg'l. This feed is
composed of a minimum of 50% protein and of 20% oil content. The extracted biomass
can be used to construct a feed of similar composition. The extracted biomass is 36.7%
protein and 5% oil on a dry weight basis. Canola oil at $0.93 kg'1 (20) is added to the
extracted biomass to produce a product with the same ratio of protein to oil. To create
an equivalency between the algae-canola feed and the conventional feed, a mass
displacement of 1.5 is applied, where 1.5 |b of algae-canola feed can replace 1 |b of fish
feed (De Pauw et al., 1984; Lubzens et al., 1995; Metting, 1996; Pulz and Gross, 2004;
Richmond, 2004). A market value for the original microalgae extract (before oil
addition) is then estimated is $1.87 kg™. Costs relating to oil mixing and transportation
are not included. The market value of glycerin applied in the simulation is $0.81 kg™,
which is the average of the range of $0.62-50.99 kg™ (21)

The NER obtained using the displacement method is 0.93 MJ of energy
consumed per MJ of fuel energy produced, which is lower than the NER of 1.29 M) Myt
and 0.83 MJ MJ™, obtained by energy- and market-value methods, respectively. In
terms of NER, the displacement and market-value methods find that the proposed
microalgae-to-biofuels process realizes more energy than it consumes. The CO,
equivalent discounts as calculated using the displacement method are higher than those
calculated using the energy-value or the market-value method. For the metric of net
GHG emissions, the sustainability benefits of the proposed process are shown to be

sensitive to these three methods of co-product allocation as presented in Table 6.
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3.3.6 Sensitivity to Electricity Sources

This section presents an analysis of the sensitivity of the LCA results to variation
modeled source of electricity. A major component of the energy used in the microalgae
to biofuels process is electricity, as shown in Table 1.

As such, the composition of the electricity will have an effect on the process NER
and GHG emissions. Average US electricity mix, the Northeast electricity mix, and the
California electricity mix are compared to understand the sensitivity of this analysis to
electricity sources.

The average US electricity mix is composed of 50.4% coal, 20% Nuclear power,
18.3% natural gas, and 11.3% biomass, residual oil and others. Northeast (NE) mix is
composed of 33.9% nuclear, 29.9% coal, 21.7% natural gas, 14.5% biomass, residual oil
and others. The California mix is composed of 36.6% natural gas, 28.3% variety of
renewable sources, 20.5% nuclear, 13.3% coal and 1.3% biomass (Wang, 2005). The NER
and GHG emissions for the different power sources are presented in Table 7 and Table

8, respectively.

Table 7. Net Energy Ratio per Electricity Source and Mix with a LCA boundary of
“strain-to-pump” for the baseline scenario

Electricity Source NER

US Average Mix 0.93 MJ MJ*!
North-east Mix 0.86 MJ MJ*!
California Mix 0.82 MJ MJ*!
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The small variation in NER and GHG emissions shown in Table 7 and Table 8 are
due to the different efficiencies and sources for electricity generation. The California
mix as electricity source presents the best net GHG emission and NER compared to
Northeast and US average mix.

This analysis shows that the NER and GHG performance of the proposed

microalgae-to-biofuels process is robust to assumptions regarding electricity sources.

3.3.7 Sensitivity to Process Parameters

This section presents an analysis of the sensitivity of the LCA results to variation
in the process model. The parameters of the detailed microalgae-to-biofuels process
model were used to evaluate some of the alternative biological growth systems and
alternative extraction techniques that have been proposed to improve the productivity,
economics, and sustainability of microalgae-based biofuels. For each stage of the
process, we seek to understand how effective the proposed changes are at improving
the NER and GHG emissions of microalgae-based biofuels. Six potential improvements

to the baseline process scenario are proposed.

65



6C'SL- €v'88- LV"96- €LTL- vT' LT (LMIA®>20D 8) DHD 19N
¥59°91- ¥59°91- 95°9T- 85°0 L00 (1NN 3) O°N
VL0 S¥'0 S¥'0 wo 8¥'C (1NN 3) "HD
6765 veTL- 9€°08- €L'TUL- 6911 (1NN 3) 20D
XIN XIN Awo13o3)3 XIN XIN XIN
A11011109]7 1SedYION 931e)S elulojie) AMpuLdg *s'n AMpu93 SN Apudg 's'n
|9salpolg aedjeosdl N |9salpolg ueaqAos  |9sa1Q |EUOIIUDAUO)

ol4eudds aujjaseq ay3 Joj , dwnd-o03-ulens,, jo Atepunoq 1 e yum A3d14329|3 o 924nos 1ad HHO 19N Jo sisAjeuy "8 d|qel

66



The high lipid case represents a scenario where the lipid content of the
microalgae has been improved to 70% by weight. The 2x growth rate case represents a
scenario where the growth rate of the microalgae has been doubled to 50 g m™ day™.
The % nutrient case represents a scenario where the nutrients required for microalgae
growth are halved. The 2x density case represents a scenario where the microalgae
culture is grown at double the currently realizable density. These changes to the growth
parameters of the microalgae have been proposed as possible results from genetic
engineering, bio-prospecting, or integration of microalgae/wastewater facilities (Beer et
al., 2009; Ghirardi et al., 2000; Hu et al., 2008). These results are achieved without
changes in reactor size, mixing rates, extraction efficiency, or other process parameters.
The sparge CO, case represents a scenario where the sparge of an air/CO, mixture in the
baseline scenario is replaced with purely CO,. The energy consumption of the sparge
CO; case is based on a uptake of 50% accomplished by 10 passes with an average uptake
of 5% per pass (Sheehan et al., 1998). The % solvent case represents the scenario where
the ratio of microalgae to solvent can be halved in the extraction stage (Zhang and Liu,
2005). This scenario might represent the commercialization of new extraction

processes, or catalysts.
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The results of these sensitivity analyses are presented in Figure 10 and Figure 11
in order of NER reduction efficacy. It is notable that the proposed improvements in the
microalgae lipid content, growth rates, and culture density are only marginally effective
at reducing the energy consumption and GHG emissions of the microalgae-to-biofuels
process. The scenarios most effective at reducing energy consumption and GHG
emissions are the reduced nutrient and reduced sparge cases. These cases have the
additive effect of reducing energy and material consumption. In general, these results
show that some of the improvements to microalgae feedstocks that have been
proposed are relatively ineffective at improving the NER and GHG emissions of the
microalgae-to-biofuels process. For example, although improving the lipid content of
microalgae has been suggested to reduce the cost of microalgae-based biofuels, it is less
effective at improving sustainability metrics than other process improvements, such as
optimization of the sparge system.

The sensitivity analysis presented illustrates the importance of a more detailed
understanding of the growth system. Nutrients, mixing energy, and growth rate have

the largest impact on the process based on environmental impact.
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3.4. Conclusion

Biofuels derived from microalgae have the potential to replace petroleum fuel
and first-generation biofuel, but the efficacy with which sustainability goals can be
achieved is dependent on the lifecycle impacts of the microalgae-to-biofuel process. A
detailed, industrial-scale engineering model for the species Nannochloropsis using a
photobioreactor architecture has been constructed to accurately represent the biofuels
process from growth to transportation and distribution of fuel. The purpose of the
detailed engineering process model of the microalgae growth, harvest, and extraction
phases is to describe the material inputs, material outputs, and types and amounts of
energy consumed in the microalgae feedstock processing stages. The baseline model of
microalgae to biodiesel process is based on a 315 hectares (776 acres) facility, which
includes photosynthetically active and built areas. The temporal unit for evaluation of
the process is 1 year. The model incorporates the recycling of growth media but does
not recover nitrogen from extracted biomass. Additional material recycling will affect
the results of the LCA, but a lack of data regarding the energy and material costs
preclude its inclusion in this study. This process level model is integrated with a lifecycle
energy and greenhouse gas emissions analysis compatible with the methods and
boundaries of the Argonne National Laboratory GREET model, thereby ensuring
comparability to preexisting fuel-cycle assessments. Results are used to evaluate the
net energy ratio (NER) and net greenhouse gas emissions (GHGs) of microalgae biodiesel
in comparison to petroleum diesel and soybean-based biodiesel with a boundary
equivalent to “well-to-pump”. The resulting NER of the microalgae biodiesel process is
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0.93 MJ of energy consumed per MJ of energy produced. Interms of net GHGs,
microalgae-based biofuels avoids 75 g of CO2-equivalent emissions per MJ of energy
produced. The scalability of the consumables and products of the proposed microalgae-
to-biofuels processes are assessed in the context of 150 billion liters (40 billion gallons)

of annual production.
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Chapter 4-Microalgae Bulk Growth Model with Application to Industrial

Scale Systems?

4. Abstract

The scalability of microalgae growth systems is a primary research topic in
anticipation of the commercialization of microalgae-based biofuels. To date, there is
little published data on the productivity of microalgae in growth systems that are
scalable to commercially viable footprints. To inform the development of more detailed
assessments of industrial-scale microalgae biofuel processes, this dissertation presents
the construction and validation of a model of microalgae biomass and lipid
accumulation in an outdoor, industrial-scale photobioreactor. The model incorporates a
time-resolved simulation of microalgae growth and lipid accumulation based on solar
irradiation, species specific characteristics, and photobioreactor geometry. The model is
validated with 9 weeks of growth data from an industrially-scaled outdoor
photobioreactor. Discussion focuses on the sensitivity of the model input parameters, a
comparison of predicted microalgae productivity to the literature, and an analysis of the
implications of this more detailed growth model on microalgae biofuels lifecycle

assessment studies.

? The work presented in this chapter is based on the publication Quinn, J, Dewinter, L, Bradley, T, 2011.
Microalgae bulk growth model with application to industrial scale systems Bioresour. Technol.
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4.1. Introduction

Microalgae-based biofuels have several sustainability, economic, and
environmental benefits over more conventional biofuels. When compared to first-
generation biofuel feedstocks, microalgae are characterized by higher solar energy yield,
year-round cultivation, the use of lower quality or brackish water, and the use of less-
and lower-quality land. Microalgae feedstock cultivation can be coupled with
combustion power plants or other CO, sources to sequester GHG emissions and it has
the potential to utilize nutrients from wastewater treatment facilities (Batan et al.,
2010; Schenk et al., 2008; Wijffels and Barbosa, 2010). These advantages have lead to
an increased interest in microalgae as a second generation feedstock for biofuels.

Analyses that have attempted to model the productivity, economics, and
lifecycle environmental impacts of the latest generation of microalgae cultivation
systems have relied on scale-up of laboratory data to model microalgae growth at
industrial scale. Previous modeling efforts have undertaken the specific challenge of
modeling growth and lipid accumulation in nutrient limited algal systems, however
validation was done utilizing small-scale laboratory data (Mairet et al., 2011; Packer et
al., 2010). The scaling of laboratory data has been justified due to the immaturity of the
microalgae-to-biofuels process and lack of peer reviewed, published, scalable growth
data. Itis well-understood that these laboratory-scale processes do not accuratly
represent industrial-scale facilities (Chisti, 2007; Wijffels and Barbosa, 2010). To fully
understand the productivity potential of microalgae-based biofuels, models must be
constructed, and validated to predict the productivity of the microalgae in a realizeable
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configuration and at industrial scale while incorperating real locational characteristics
(James and Boriah, 2010).

This study presents a literature-based bulk growth model incorporating the
primary factors that affect microalgae growth and lipid accumulation. This article then
describes the experimental methods including the Solix research and development
microalgae growth facility located at Colorado State University, and presents a direct
comparison and validation of the model using actual Nannochloropsis oculata growth
data from outdoor Solix Generation 3 photobioreactors. The discussion focuses on a
sensitivity analysis and some potential applications of the model. Specifically, the model
results are applied to illustrate the sensitivity of scalability calculations and life-cycle
assessment (LCA) studies to the increased fidelity available from this model of

microalgae growth and lipid productivity.

4.2. Materials and Methods

4.2.1 Modeling Equations Overview

The following sections detail the governing equations and parameters of the
microalgae bulk growth and lipid production model. The purpose of the model is to
accurately represent microalgae growth and lipid accumulation of an outdoor
photobioreactor. The primary factors that have been experimentally and theoretically
shown to effect the productivity of microalgae are: light intensity, photosynthetic rate,
respiration rate, temperature, nutrient availability, and lipid production (Richmond,

2004; Sheehan et al., 1998). The bulk model presented here takes into account all of
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these factors. The model incorporates 7 sub-systems defined by 16 species-specific
modeling parameters. The model requires inputs of light and reactor temperature, and
has outputs of biomass growth and lipid accumulation for the reactor system modeled.
The origins and application of the subsystems and species parameters are detailed.

The bulk model equations and microalgae characteristics are developed from
literature, coded in I\/IatLab®, and validated with growth data of Nannochloropsis oculata

cultivated at Solix in outdoor photobioreactors.

4.2.1.1 Light distribution modeling

In this model, a primary input is light which is represented as a volumetric
average light intensity calculated based on light intensity at reactor surface. Mixing
microalgae cultures has an effect on growth by increasing the frequency of light to dark
cycling of the cells. In systems that operate at a relative low cell density, in short optical
path reactors, at relatively low sparge rates, mixing dynamics will not dramatically affect
the microalgae culture growth rates (Qiang and Richmond, 1996). This model therefore
assumes that the culture is adapted to the average light intensity (Richmond, 2004).

The alternative is to simultaneously model time-resolved microalgae growth kinetics,
fluid dynamics, and light penetration, but the increase in computational cost and
validation effort for this alternative is currently not justified.

At low densities within the reactor, the intensity of light will fall off exponentially

according to the Lambert-Beer Law (Richmond, 2004):

E(L) = E, - e *%¥aw'L (1)
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At higher densities scattering can become an important consideration for
determining local light intensities. This model uses an average light intensity and uses
Lambert-Beer for a 1** order approximation to conservatively estimate the amount of
light that passes completely through the reactor, which for the reactor system modeled
would only occur at low cell densities where Lambert-Beer law is applicable. The

average light intensity in the plate reactor modeled can then be calculated as:

1—e~aXgqw'B

E., =E, (2)

aXqw'B
It is well accepted that light modeling in algal cultures increases in complexity with
increasing densities due to the potential effects of light scattering from microalgae. A
variety of modeling efforts have made different assumptions regarding the overall
impact of scattering with a variety of models developed to accurately capture the
penetration depth of light into dense cultures (Fernandez et al., 1997; Gitelson et al.,
1996; Janssen et al., 2003; Kim et al., 2002; Packer et al., 2010). The literature agrees
that at ultra high densities Lambert-Beer assumptions are not valid; however there is no
agreement on what constitutes ultra high density. Packer et al. (2010) use the same
Lambert-Beer assumption used in this modeling effort to calculate average light
intensities for a modeling effort validated with culture densities of greater than 7 g-L™.
Fernandez et al. (1997) did experimental hyperbolic model (absorption and scattering)
validation of light penetration and compared the results with Lambert-Beer (absorption)
and a model proposed by Cornet et al. (1992) (absorption and scattering). The results
of this study illustrate that all three models capture the holistic trends with the
proposed hyperbolic model more accurate (average coefficient of determination 0.998)
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then Lambert-Beer (average coefficient of determination 0.981) but not dramatically
more accurate than the model proposed by Cornet et al. (1992) (average coefficient of
determination 0.998). The results also indicate that Lambert-Beer can accurately
capture penetration depths for densities close to 3 g-L™* depending on the metabolic
state of the microalgae.

There currently lacks sufficient data for light penetration effects as a function of
density for Nannochloropsis oculata. The majority of the articles surveyed integrate or
directly use Lambert-Beer assumptions regarding light penetration. The modeling effort
presented in this work uses Lambert-Beer to conservatively estimate the amount of light
that directly passes through the reactor and to calculate an average light intensity as

detailed in the main document.

4.2.1.2 Photosynthetic rate modeling

A chemical reaction analogy overview of the photosynthetic process in provided by

CO; + H,0 + ‘light energy’ = CH,0 + O,

Photosynthesis occurs in the chloroplasts in two stages, typically referred to as

light reactions and dark reactions. The light reactions can be further broken down

according to:

8 photons + 2 H,0 + 2 NADP* + 3 ADP + 3 P; > 0, + 2 H" + 2 NADPH + 3 ATP
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for an idealized system. The ATP and NADPH produced by the light reactions are
used to fix carbon via the action of the enzyme ribulose-biphosphate carboxylase

(Rubisco) in the Calvin cycle, regenerating the substrates NADP, ADP and P;:
CO; + 2 NADPH + 3 ATP + 2H" = CH,0 + H,0 + 2 NADP" + 3 ADP + 3 P;

The combination of the later two chemical formulas forms the overall equation
of photosynthesis. Thus the carbon specific rate of photosynthesis (P.) is dependent on
the light intensity, light absorption, and the efficiency of using photons as illustrated by
(3) (Geider and Osborne, 1992; Williams et al., 2002)

For this model, biomass growth is calculated based on an energy balance
incorporating photosynthetic, respiration, and energy required for the uptake of
nitrogen. Photosynthesis involves a series of reactions that start with light absorption,
involve synthesis of NADPH and ATP as intermediate energy-conserving compounds,
and lead to carbon fixation in the Calvin cycle. The carbon specific rate of this reaction
(P) is dependent on the light intensity, light absorption, and the efficiency of using

photons (Geider and Osborne, 1992; Williams et al., 2002):

Pc = Pc_calc ' (1 — exp [LIDEW]) (3)

Pcfcalc

P.max is affected by two efficiency factors (see 2.1.5 and 2.1.6 for definitions of ¢

and g xint) Figure 12:

Pc_calc = I'c_max " Pr ° Pgn xint (4)
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The final expression (3) balances energy flow with carbon fixation including,
respiration losses, and energy loss requirements for nitrogen uptake when bioavailable

nitrogen is present (more details on nitrogen effects are presented in 2.1.6)

4.2.1.3 Respiration rate modeling

This model incorporates respiration losses from metabolic costs of biosynthesis
and the costs of cell maintenance. Metabolic costs such as the reduction of nitrate to
ammonium and incorporation of ammonium into biomass is incorporated as a function
of the specific uptake rate of nitrogen and biosynthetic efficiency which is not
incorporated into the respiration portion of the model (Geider et al., 1998).
Researchers in the past have shown that respiration rates during the night are the same
as respiration rates during the day, indicating that maintenance respiration is neither
stimulated nor inhibited by growth (Geider and Osborne, 1992). For this model
maintenance respiration (rR.) is defined as a constant.

The respiration rates observed in the field are the combination of bacterial and
microalgae respiration. This model assumes that contamination levels of bacteria are
insignificant; however, as described below, the respiration of the culture modeled is
based on growth data that would include the effects of respiration from bacteria, if

present.

4.2.1.4 Growth rate modeling

The model presented defines the carbon specific growth rate as a function of the

photosynthetic rate, the respiration rate, and specific uptake rate of nitrogen:
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1 dcC.X
ccx dt

p=F—-rR. = TN (5)

The dry weight (DW) of the biomass in the reactor (cXqw) can be calculated for
each time step based on the assumption that the biomass is 50% carbon. The specific
growth rate, |, is calculated at each time step and is assumed to be constant for the
duration of the time step:

cXgw =2-¢C, X, ett (6)

4.2.1.5 Temperature rate dependence modeling

In this model the temperature dependence of photosynthesis is described by the
effect of temperature on ribulose-biphosphate carboxylase (Rubisco) activity. When
considering a seasonal cycle, temperature is the environmental factor that consistently
accounts for the largest part of the variance in growth (Geider and Osborne, 1992). This
model assumes that temperature only affects the light-saturated photosynthesis rate,
and not the initial slope of the photosynthesis-irradiance curve, Figure 12 (Geider et al.,
1997). Itis assumed that the reactor temperature affects the culture photosynthetic
rate and respiration rate equally.

Photosynthetic light response is typically classified into three primary zones, 1)
limiting photon flux density (PFD) where the photosynthetic rate increases linearly with
increasing light intensity, 2) light saturation photosynthetic rate characterized by
constant photosynthetic rate with increasing PFD, and 3) photo-inhibition characterized
by a decrease in photosynthetic rate with increasing PFD (Henley, 1993; Macintyre et
al., 2002; Richmond, 2000). The modeling effort here captures the first two regimes as

illustrated by Figure 12.
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Figure 12 illustrates that the initial slope of the photosynthetic curve is not affected
by the temperature or nitrogen efficiency, just the overall maximum photosynthetic rate
is affected.

For this modeling effort photo-inhibition is not incorporated due to the nature of the
system being modeled. Photo-inhibition typically occurs at high light intensities which
are not achieved in the system modeled (Goldman, 1979; Henley, 1993).

The model presented by Alexandrov and Yamagata (2007) relating
thermodynamic concepts, such as activation energy, to the typical bell shape of the

enzyme activity temperature curve illustrated in (7) and (8) have been adapted to this

model.
_2f(D)
b=y 7)
Ea _E
f(T) — eRTopt RT (8)

The efficiency factor for temperature (@), is a dimensionless number between 0
and 1. At the optimum growth temperature ¢ = 1, and for temperatures higher or

lower than the optimum temperature, 0 < ¢4 < 1 according to (7).

4.2.1.6 Nitrogen dependence modeling

For the model presented, it is assumed that microalgae growth is limited by
nitrogen availability and not by phosphorus availability based on the relative required
amounts from the Redfield ratio and the lipid accumulation modeling used in this study
(Redfield, 1958). The model presented incorporates nitrogen dependence modeling to

accurately capture the growth and lipid production. The components of the cellular
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photosynthetic apparatus account for a large fraction of the total nitrogen in
microalgae. Therefore, microalgae respond to a reduction in nitrogen availability by
reducing the size of the photosynthetic apparatus. A linear dependence of maximum
photosynthesis rates on nutrient-limited growth has been observed. Correlated with
this reduction in maximum photosynthesis rate is a decrease in the proportion of cell
nitrogen, which is associated with a decrease in Rubisco. In general, the light-limited
photosynthesis rates are less affected by nutrient limitation than the light-saturated
rates (Geider and Osborne, 1992). Geider et al. (1997) assumed in their model that
nutrient-limitation affects growth rate only by imposing a limit on the light-saturated
photosynthesis rate. Nutrient limitation will be modeled by multiplying maximum
photosynthesis rate with an efficiency factor for nutrient-limitation (¢pqnxint) according
to the Droop model (4).

The Droop model assumes that microalgal growth rate is dependent on intra-

cellular nitrogen concentration (Lemesle and Mailleret, 2008):

U= Unax " [1 - %} (9)

The cell quota (gN, X) is defined as the mass of internal nitrogen per total mass of
biomass. This quota can be experimentally measured and is time varying. The
minimum cell quota (gN,Xmin) is the internal nitrogen level where cells cease to grow.
The dimensionless efficiency factor for intercellular nitrogen will therefore be described
by:

— 1 — N Xmin
(qu,Xint =1 qN, X (10)
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The efficiency factor for the specific uptake rate of nitrogen considering external
nitrogen concentration is treated as a Michaelis-Menten function (Geider et al., 1998;

Legovic and Cruzado, 1997):

_ __ CNmedium (11)
(quEXt CNediumtKN

When the extracellular concentration of nitrogen is low or the intercellular
concentration of nitrogen is high, specific uptake rate is low.

When nitrogen is present in the medium in the form of nitrate, uptake is an
energy-linked process and happens mostly during daylight (Richmond, 2004). The
maximum specific uptake rate of nitrogen is a function of maximum photosynthetic
rate. The calculated specific uptake rate of nitrogen (rNcac) is calculated by multiplying
the maximum specific uptake rate of nitrogen with three efficiency factors: intracellular
concentration of nitrogen efficiency (10), extracellular concentration of nitrogen
efficiency (11), and temperature efficiency (7) (Geider et al., 1998):

TNeaie = "Ninax * Pgn xint * Pqnext * Pt (12)

The specific uptake rate of nitrogen can now be defined by (13).

Integration of (13) yields the total nitrogen in the biomass, (14).

12Xy = DNeale 4p (13)
qN.X dt qN,X
gN,X = qN,X, - e™* (14)

The total remaining nitrogen in the growth media can now be calculated through

mass balance.
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4.2.1.7 Lipid accumulation modeling

The model incorporates a lipid accumulation model that has been developed to
predict the lipid production of the microalgae based on a mass balance due to the
effects of nitrogen. Once nitrogen is depleted, microalgae metabolism switches from
protein synthesis to lipid or carbohydrate synthesis causing a change in the biomass
composition (Richmond, 2004). Suen et al. (1987) reported lipid concentrations of 55%
under nitrogen limited growth of Nannochloropsis sp. Hu and Gao (2006) found that
lipid content upon nitrogen depletion increased from 9 to 62% of dry weight, while
protein content decreased from 59% to 23% of dry weight in Nannochloropsis sp. grown
under low nitrogen concentration with carbohydrate content only increased by 10%
upon nitrogen depletion. These results suggest that in Nannochloropsis sp. metabolism
almost entirely shifts from protein synthesis to lipid synthesis.

The model presented is a mass balance model based on the carbohydrate, protein,
and lipid content of the cell. The protein content of the cell is calculated based on the
internal nitrogen content of the cell, P = q - 4.78.

The conversion factor of 4.78 was obtained from Diagnostic Center for Population
and Animal Health Michigan State University (Diagnostic Center for Population and
Animal Health Michigan State University, 2008).

For this model it is assumed that the microalgae metabolism is primarily protein
synthesis to lipid and the protein molar percentage, the carbohydrate molar percentage,
and the lipid molar percentage in the biomass stays constant:

Biomass = Lipid + CHO + PRO (15)
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It is assumed that the overall carbohydrate percentage of the cell remains constant
at 40% based on previous cell characterization. A plot of the carbohydrate, protein, and
lipid percentages in the cell for two seeks of ideal radiation as predicted by the REST2
model are presented in Figure 13.

As illustrated in Figure 13 the composition of the cell drastically changes
throughout the growth of the culture from 1 to 3 g-L™". The culture is turned at 3 g-L™*
after just over 5 days of growth and nutrients are added thus causing a change in the
intercellular composition.

It should be noted that other environmental factors, like salinity and
temperature, can also have an influence on lipid production (Richmond, 2004).
Although (13) represents a 1* order relationship between lipid content and nitrogen

content, validation data (presented in 4.3.3) illustrates its effectiveness.

4.2.2 Model Parameters Summary

The following section presents an overview of the inputs to the model with the
specific assumptions explained. The model is based off of the cultivation of
Nannochloropsis oculata grown in an outdoor Solix photobioreactor. Model inputs
and parameters are summarized in Table 10 with ideal model outputs shown in
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4.2.2.1 Light saturation level

Researchers have shown that the light saturation of green microalgae typically
occurs at 10% of full sunlight. Fabregaz et al. (2004) grew Nannochloropsis sp. under
diverse light intensities in a 12 hour light, 12 hour dark cycle determining a light
saturation level of 220 umol m™?s™. Gentile and Blanch (2001) determined a light
saturation of 180 pmol-m™s™* for Nannochloropsis gaditana. Lower values of the light
saturation (74 umol-m'2 .s'!) have been reported, however those cultures where
cultivated under constant light conditions (Fang et al., 2004). Considering the mixing
level, density operated, diurnal light characteristics, along with the most relevant
experimental data, a light saturation of 200 pmol-m™-s ™ is assumed. It is important to
note that the nutrient levels can affect the light saturation value because nutrient
depletion reduces the chlorophyll content of the microalgae. This effect is accounted
for in this model through the efficiency factors associated with nitrogen uptake (Flynn et

al., 1993).

4.2.2.2 Absorption coefficient

The absorption coefficient was determined experimentally for Nannochloropsis ,
0.0752 mz-g'1 (Gentile and Blanch, 2001). The absorption coefficient of microalgae will
vary over the course of a batch; however the variance is not significant in this

application.

4.2.2.3 Maximum growth rate

The maximum cell-specific growth rate represents the highest growth rate

attainable in the exponential growth phase. The maximum cell-specific growth rate
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under nutrient rich conditions for this modeling effort is 2.5-10°h™ (Flynn et al., 1993;

Gentile and Blanch, 2001).

4.2.2.4 Maintenance respiration rate

A linear relationship between the maximum photosynthetic rate and the
maximum growth rate has been observed (Geider and Osborne, 1992). This observation
coupled with (4) shows that the respiration rate and the maintenance respiration rate
can be defined as a percentage of the maximum photosynthetic rate. For this model, a

respiration rate of 2% is selected to match experimental data.

4.2.2.5 Biosynthetic efficiency

Energy is required for the reduction of nitrate to ammonium, incorporation of
ammonium into amino acids, and polymerization of amino acids into proteins. This
energy is accounted for through biosynthesis efficiency, {, set at 4 g biomass per g
nitrogen assimilated (Geider et al., 1998). Details on the maximum and minimum

nitrogen to carbon ratios are presented in 2.2.8 and 2.2.9.

4.2.2.6 Optimum temperature

A literature review indicates the optimum temperature of Nannochloropsis
oculata is between 21 and 24 oC (Spolaore et al., 2006). For this modeling effort an

optimum temperature of 23 2C is selected.

4.2.2.7 Activation energy

The activation energy for this model is based on the energy required for activity

of the Rubisco enzyme. Light-saturated photosynthesis and the carboxylase activity of
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Rubisco are characterized by an activation energy of 54-72 kJ-mol™ (Geider and

Osborne, 1992). A value of 63 kJ-mol™ has been selected for this model.

4.2.2.8 Maximum cell quota of nitrogen

The maximum cell quota of nitrogen is the maximum amount of nitrogen that
can be contained in the cell. Analysis of the biomass produced in the Solix
photobioreactor yields a maximum cell quota of 0.15 g nitrogen per g biomass and
selected for this modeling effort. For comparison, Hu and Gao (2003) determined that
the protein content of Nannochloropsis sp. ranges between 34-41%. This converts to a
maximum cell quota of 0.07-0.09 g nitrogen per g biomass. Flynn et al. (1993) found a

lower maximum cell quota of 0.2 g nitrogen per g biomass.

4.2.2.9 Minimum cell quota of nitrogen

Flynn et al. (1993) found a maximum carbon-nitrogen ratio of 28, corresponding
to a cell quota of 0.036 g nitrogen per g biomass . Ambrose (2006) uses a smaller
number, 0.0072 g nitrogen per g biomass, therefore, for this study the minimum cell
guota is assumed to be between the two literature values, 0.010 g nitrogen per g

biomass .

4.2.2.10 Cell quota of nitrogen in inocula

Inocula are obtained from a sample of a mature, harvested culture. An analysis
of the biomass composition of harvested microalgae showed a protein content of 29%.
Using a nitrogen-to-protein conversion factor of 4.78, the nitrogen content for inocula is

set at 0.060 g nitrogen per g biomass.
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Biomass cultivated in the growth system detailed was analyzed for content by
Diagnostic Center for Population and Animal Health at Michigan State University (MSU)
and Dairyland Laboratories Inc, Table 11 (Daityland Laboratories Inc., 2008; Diagnostic
Center for Population and Animal Health Michigan State University, 2008). Results from
this analysis were used in determining some model parameters.

Table 11 is supported by the research of Rebolloso-Fuentes (2001), in which an
average protein content of 28.8% was found for Nannochloropsis sp. (Rebolloso-Fuentes
et al., 2001). A conversion factor applied to the amount of protein in the cell to
determine nitrogen content has been proposed in literature and used for conversion,
4.78 (Lourenco et al., 2004). These results are utilized in characterizing the nitrogen

content in the biomass at inoculation.

4.2.2.11 Half Saturation constant for nitrogen uptake

The half saturation constant for nitrogen uptake determines the rate at which
the specific uptake rate of nitrogen declines when nitrogen concentration in the
medium decreases. A value of 0.005 g-L™ will be assumed for this model (Ambrose,

2006).

4.2.2.12 Maximum specific uptake rate of nitrogen

The maximum specific uptake rate of nitrogen is a function of the maximum
photosynthetic rate with units of g nitrogen per g biomass per hour:
"Nimax = Femax " AN, Xmax (16)

From (16) the maximum specific uptake rate of nitrogen is 1.5-10° g-g™-h™.
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Table 11. Summary of analysis of Nannochloropsis oculata cultivated Solix
photobioreactor analyzed by MSU and Dairyland. Data used with published literature
data for model input parameters.

Nannochloropsis oculata Composition

MSU Dairyland

% Moisture 36.5 39.32
% Dry Matter 63.5 60.68
% Crude Protein 18.42 17.41
% Lignin 0.95 0.01
% Crude Fat 8.26 0.6

% Ash 4.98 5.08
% Calcium 0.14 0.14
% Phosphorus 0.46 0.39
% Magnesium 0.25 0.23
% Potassium 0.71 0.66
% Sodium 0.89 0.74
% Sulfur 0.33 0.34
ppm Copper 11 16

ppm lron 100 168

ppm Zinc 105 144

ppm Manganese 12 18
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4.2.2.13 Maximum photosynthetic rate

The maximum specific carbon photosynthetic rate is linked to the maximum

growth rate and can be calculated by combining (5), (12), and (16):

“max+RC

Pe max = 1-0qN X (17)

Based on these relations, P._may is calculated as 3.6:10° h™.

4.2.2.14 Photon efficiency

The photon efficiency in this model is a set value, because the maximum
photosynthetic rate, the absorption coefficient, and the saturation parameter are set

and the following identity is assumed valid:

Ek: Pemax (18)

ad,,
The bulk growth model, as illustrated by (18), assumes a minimum quantum
requirement of approximately 46 photons, equal to a photon efficiency of 0.0217 or
6.5-10” g CH,O:(umol photons)"l. According to the Z-scheme of photosynthesis, Ex is
0.125 (8 mol of photons needed for production of one mole of CH,0), representing an
idealized number of photons, which is not attainable in non-idealized systems. To
model realistic systems, there are other metabolic processes that must be considered,
including photorespiration and losses (Geider and Osborne, 1992). These two effects
significantly lower the photon efficiency below its theoretical limit. Energy required for
nitrogen absorption is incorporated into the biosynthetic efficiency term not the photo

efficiency term.
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4.2.3 Experimental Materials and Methods

The model presented above was validated using weather and outdoor growth
data from the Solix research and development facility located at Colorado State
University. The following section details the cultivation system, operation, and

monitoring for data collected and used in model validation.

4.2.3.1 Organism, culture media, and inoculation

The culture Nannochloropsis oculata obtained from the Provasoli-Guillard
National Center for Culture of Marine Phytoplankton was cultivated in batch mode
starting at 1 g-L™ in modified f/2-20 g-L™* media (0.425 g-L™ sodium nitrate, 0.005 g-L"
potassium phosphate, 1mL-L"" Guillard trace metals) . The microalgae was initially
cultivated in flasks under 24 hour low light (200 pmole-m™-s™) until 160 g were obtained
to populate one large outdoor photobioreactors at 1 g-L*. All media are prepared and
pushed through a 0.2 micron absolute filter into a tank with the required inocula where

it is mixed to ensure homogeneity prior to inoculation.

4.2.3.2 Outdoor culture system

The reactor system modelled for this effort is based on the Solix Generation 3
photobioreactor. The thickness of an individual reactor is 0.05 m with reactors spaced
at approximately 0.15 meters. The growth system comprises 16 reactors constructed
out of 0.12 mm polyethylene and structurally supported in a thermal basin. Mixing is
provided through sparge air that is operated continuously at 2.5 litres per minute of

sparge per litre of culture (VVM). CO; is supplied into the sparge air and delivered to
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the system with a duty cycle determined by pH feedback control (pH maintained at 7.3
+/-0.1). The reactors are operated in repeated batch mode, growing from the
inoculation density of 1 g-L™" to a harvest density of 3 g-L™. Part of the mature culture is
harvested and then fresh filtered nutrient media are added such that the reactors are
re-inoculated at 1 g-L™.

Model validation was done utilizing data from Solix photobioreactors. A schematic
of the overall geometry is presented in Figure 14. The Solix reactor test bed is located in
Fort Collins, Colorado adjacent to the Engines and Energy Conversion laboratory at
Colorado State University. The basin measures 3 meters by 18 meters and has sixteen
reactors with dimensions detailed in Figure 14. The outer most reactors receive more
light and grow at a slightly elevated rate and were not included in the data set used for
validation. The system was operated in two groups of 8 reactors. Growth was
monitored continuously in one of the eight reactors as previously detailed with manual

samples taken from all reactors to verify uniform growth.
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Reactors were harvested as a group. All of the culture was removed from the
reactors, mixed for homogeneity and the required inocula were removed. The
remainder of the culture was harvested by centrifugation. New nutrient rich media was
prepared, filtered, and added to the inocula. It is noted that media recycling (centrate
from the centrifuge) could be done but was not standard practice. The required culture
volume was then re-injected into the reactors to complete the inoculation process.

The temperature of the culture is maintained by the thermal mass of water basin
which also supplies the structural support for the reactors. The temperature was
continuously monitored and maintained between 19 and 26 °C via a Marley evaporative
cooling system with a capacity at the location of 270,000 BTU or Jandy Lite2 pool heater

with a capacity of 325,000 BTU.

4.2.3.3 Growth monitoring

Two independent techniques where used for monitoring the growth of the
culture. Optical density was monitored continuously using an Optech model ASD19-N
absorption probe connected to a Fermenter Control Hardware A1. Datum were logged
on a minute time scale and converted to dry mass using a calibration factor. The sensor
was monitored for bio-fouling and periodically cleaned.

Manual samples of the culture were taken daily to monitor growth, nutrient
content, and salinity. Samples were drawn using a 10 ml syringe through sample lines
attached to sample ports at the head of the reactors. Samples were then prepared for
an optical density reading using the following technique: 980 pL of 0.2 micron filtered 20
g-L™ salt water was pipetted into 1.5 ml 10mm optical path length cuevette. Depending
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on the dilution required, 20-40 uL of sample was added to the cuevette and mixed using
a 1000 pL pipette. Samples were diluted such that the measured optical density was in
a range of 0.1 to 0.3 such that a previously determined conversion of optical density to
dry mass could be applied. Manual optical density measurements at 750 nm were
performed on a Hach DR5000 spectrophotometer. Previous sampling experimentation
showed that sampling location does not affect experimental results due to the

homogeneity of the culture.

4.2.3.4 Lipid assay

Lipid fractions were determined using an in-situ transesterification. The
following procedure was performed based on the methods of Gonzalez et al. (1998): 5
mg of microalgae sample was spun down at 4000 relative centrifugal force (RCF) for 5
minutes followed by the removal of the supernatant. An auto-pipette was used to
dispense 2.5 mL of 0.2 N KOH in methanol onto the 5 mg microalgae pellet. Samples
were pipette mixed and transferred to a glass test tube previously washed in 1% HCI
acid. An additional 2.5 mL of 0.2 N KOH in methanol was added and pipette mixed.
Samples were then aggressively mixed using a VWR Analog Vortex Mixer on a speed
setting of 10 (scale of 1 to 10) for 20 seconds followed by heating to 37 2C for 30
minutes. 1 mL of acetic acid and 2 mL of HPLC grade heptane were then added and the
samples were aggressively mixed by using a VWR Analog Vortex Mixer on a speed
setting of 10 (scale of 1 to 10) for 20 seconds and then centrifuged at 2000 RCF for 5
min. The organic layer was then removed and processed in a gas chromatograph (GC)

to determine lipid content and composition.
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Tranzesterified samples were prepared for GC analysis by first diluting the
sample 1:10 with heptane. An internal standard (23:0) obtained from NU-CHEK PREP,
Inc is added to the sample and the head space is then filled with nitrogen. Samples
were analyzed with an Agilent Technologies 7890A GC machine utilizing a 30m x
0.32mm x 0.25um Restek FAMEWAX column. A spit-less injection is used requiring 1 uL
of sample. Helium at 1.5 mL-min™" is used as the carrier gas. The oven is operated at 90
°C for 0.5 minutes and then ramped to 208 °C at 70 °C-min™, then ramped to 230 °C at 3
°C-min™, and finally to 240 °C ramped at 2 °C-min™* and held for 1 minute. Prior to
running samples a bank is run followed by the generation of a 4 pt standard curve using

a GLC-461 standard obtained from NU-CHEK PREP, Inc

4.3. Results and Discussion

4.3.1 Sample Growth Results

The model is used to simulate microalgae growth for the ideal summer (June-
solid blue line) and ideal winter (January-dashed black line) conditions based on cloud
free, clear-sky solar irradiance for Fort Collins, Colorado based on the REST2 solar

model,
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(Gueymard, 2008).
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There are several notable characteristics in

. The culture is cultivated from 1 to 3 g-L™ for both summer-time and winter-
time simulations. Nitrogen uptake is a direct function of light, thus in the winter the
uptake of the bioavailable nitrogen from the media takes significantly longer. The
overall growth in the winter is signifigntly lower than summer due to lower light
intensity and shorter days. The specific growth rate during the dark period is negative

due to respiration effects for both cases. The results presented in

are typical of the function of growth observed at the Solix research and

development facility.
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4.3.2 Growth Model Validation

Validation of the bulk growth model was performed by quantitatively and
qualitatively comparing modeled results with real world growth results. Validation of
the model is based on the American Institute of Aeronautics and Astronautics definition
of model validation with the intended use of the model presented is to accurately
capture the bulk growth and lipid production of an outdoor scalable photobioreactor
system (Aiaa, 1998).

The model was validated using data collected at Solix Biofuels in the Summer
and Fall of 2008. Two panels (A&B) were monitored during peak summer-time (high-
light data); panel A for approximately three weeks followed by panel B for an additional
three. The reactors were continuously monitored using insitu sensors and sampled
every day manually as detailed in the main document. The primary inputs to the model
are PAR and basin temperature measured at the Solix facility. The PAR was measured
using a Spectrum Technologies, Inc. Quantum Light Sensor and the temperature was
measured using a standard thermocouple (Spectrum Technologies Inc, 2003). All data
was collected and logged using National Instruments Compact Field Point data
acquisition system. An example of typical raw PAR and temperature data can be found
in Figure 16.

As illustrated in Figure 16, the validation data was for a variety of real weather
conditions. The first two days of summertime data presented where relatively could

free days while the next three days had afternoon partly cloudy skies decreasing the
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intensity of the light. The thermal basin was maintained in such a way to keep
temperature within the accepted growth range of 19-26 °C.

Winter-time (low-light data) was also collected for approximately three weeks in
November and December to complete the data set. Reactor configuration, light, and
temperature data from the location of the outdoor photobioreactor installation was
used as primary inputs to the model with 1 week of summer-time (high-light data) and 1
week of winter-time (low-light data) model productivity results plotted against real time
growth data and manual OD 750 samples, Figure 17.

As shown in Figure 17, the model qualitatively captures the growth trends from
day to day including respiration during the dark period. A more quantitative
comparison of the modeled growth versus actual growth on a minute time scale is
presented in Figure 18 for summer-time (high-light data) and winter-time (low-light

data).
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High Light Model Evaluation
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Figure 18. Plot of predicted versus actual daily change in density on a minute time
scale for 6 weeks of growth during high light conditions, summer (top) and 3 weeks of
growth during low light conditions, winter (bottom).
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The maximum deviations over the 9 weeks worth of data presented in predicted

biomass versus measured biomass are 0.26 g-L™ and -0.23 g-L™ respectively. Analysis of

the difference between the measured biomass density and the predicted biomass

density on a minute time scale shows a mean of -0.00339 g-L™ with a standard deviation

of 0.0678 g-L™* (n=70,224), indicating the model accurately captures the bulk growth of

the system however, slightly overestimates the growth. The model is shown to be
robust up to 160 hours under real diurnal light of varying intensity with a maximum
overestimation of 0.15 g-L™* (9.2%) and under estimation of 0.06 g-L™* (-2.8%) and

average over prediction of 3% for the 8 batches modeled, Table 12.

Table 12. Summary of total change in biomass as predicted by the model and

measured by the sensor for 8 batches, (6 high light and 2 low light) including total time

of the batch.

Model Actual Batch

Reactor (0gL™Y) (0g-L™Y) Length (hr)
A-high light 1.89 1.82 135
A-high light 1.77 1.62 157
A-high light 1.56 1.54 167
A-low light 1.08 0.99 199
B-high light 2.08 2.14 147
B-high light 2.27 2.20 168
B-high light 1.68 1.60 166
B-low light 0.74 0.78 301

The validated biomass model incorporates real diurnal light and meteorological

effects to accurately capturing the bulk biomass growth of the scalable outdoor

photobioreactor system modeled. For the purposes of predicting bulk biomass growth
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under instantaneous and batch operation for real-world climactic and thermal

conditions, the model is considered validated to within the accuracies described above.

4.3.3 Lipid Model Validation

Lipid accumulation in microalgae can be triggered by a variety of variables
including but not limited to nutrients, pH, salinity, temperature, and light (Fabregas et
al., 2004; Fang et al., 2004; Hu and Gao, 2006; Richmond, 2004; Suen et al., 1987). The
system being modeled here enters a nutrient depleted stress mode. Lipid levels as
predicted by the model to reach a maximum of 44%. Lipid percentages in literature for
Nannochloropsis oculata grown in batch mode have been reported to vary with a
maximum of 55% (Suen et al., 1987). Lipid percentage of the biomass was monitored on
a regular basis for three weeks of operation and is presented along with lipid percentage

as predicted by the model in Figure 19.
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The model accurately captures the trend of the lipid content. The reactors
modeled did achieve a maximum lipid percentage of 51% nine days after inoculation
during normal operation, which is slightly higher than the model. Biologically, cultures
grown in batch mode will transition from linear growth into stationary growth
depending on nutrient availability and other factors. A different physiological model
representing growth and lipid accumulation for the stationary phase is required to
accurately represent growth and composition of the microalgae. In stationary growth,
energy dedicated to lipid accumulation would need to be considered in more detail.

For the purposes of predicting biomass lipid content under batch operation for
real-world climactic and thermal conditions, the model is considered validated with a

standard deviation of error of 8.8% lipid by mass.

4.3.4 Sensitivity Analysis

The sensitivity analysis performed on the model involved altering fundamental
model inputs by +/- 20% and looking at the biomass output at 100 hr. The baseline
scenario involved optimum constant temperature and cloud fee clear sky solar radiation
as predicted by the REST2 model for the month of June for Fort Collins, Colorado
(Gueymard, 2008). An illustration of the biomass growth for the variance of the

maximum photosynthetic rate is presented in Figure 20.
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Figure 20. Growth of baseline bulk model with the max photosynthetic rate increased
and decreased by 20% for sensitivity analysis.

The raw growth data for increasing and decreasing input parameters by 20 percent
is presented in Table 13.

Table 13 illustrates that increasing some parameters by 20 percent has an
increase on the overall biological output while others have a negative impact on overall
output. This data shows the overall impact of the individual model inputs on a biomass
productivity matrix.

Statistical analysis of variance was used to estimate t-ratios for each input

parameter. Results are presented in Figure 21.
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Table 13. Summary of biomass output of model for increasing and decreasing input
parameters by 20%. The baseline model density at 100 hr is 2.54 g-L™ under cloud free
irradiation with optimum thermal basin component.

Biomass (g-L-1) at 100 hr

Model Input
plus 20% minus 20%
Max Growth Rate 2.95 2.15
Max Photosynthetic Rate 2.95 2.13
Light 2.74 231
Max Nitrogen Cell Quota 2.73 2.37
Photon Efficiency 2.73 2.30
Biosythetic Efficiency 2.69 241
Cell quota for Nitrogen 2.55 2.51
Molecular Weight 2.54 2.54
Max Nitrogen Uptake Rate 2.53 2.53
Activation Energy 2.53 2.53
Half Saturation constant-Nitrogen Uptake 2.53 2.53
Maintenance Respiration rate 2.52 2.54
Min Nitrogen Cell Quota 2.50 2.56
Optimum Temperature 2.45 2.45
Absorption Coefficient 2.36 2.78
Light Saturation 2.35 2.78

As illustrated in Figure 21, variables associated with growth parameters, light
modeling, and nitrogen factors have the largest effect on the biomass productivity. The
model is insensitive to variations in some parameters such as molecular weight of the
microalgae.

Results from this sensitivity analysis are important to consider when adapting

the model to other microalgae species. Factors with a t-ratio greater than the t-ratio at
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the 95% confidence interval have a large effect on the models output thus need to be
known to higher degree of certainty than characteristics inside this interval.

The validated model presented in this study provides a more detailed
representation of industrial scale microalgae growth facilities to more accurately
represent the true current microalgae growth potential. To understand the effects that
this more detailed model will have on these scalability assessments, the model will be
used to simulate a year of growth for a proposed high productivity location.

The southwestern US is primarily where deployment of first generation, large-
scale microalgae facilities has been proposed. Historical weather data from Yuma,
Arizona were input to the model because Yuma has the most cloud free days in the US
(242 days) with 90% of annual sunlight hours being cloud free. This location assumption
assumes that water and CO; are readily available and that optimum thermal conditions

exist in the thermal basin.
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Two different harvesting schemes were simulated: “time harvest”, where
harvest of the culture occurs at 160 hr or 3 g-L'1 (whichever occurs first), which is more
representative of the function of the research and development facility used in model
validation, and “density harvest”, where culture is harvested at 3 g-L™ regardless of
elapsed time.

These results represent current maximum yields which might be achievable in
the continental US due to the ideal thermal conditions and ideal geographic location
selected. The time harvest simulation results in a productivity of 5.72-:10*kg-ha™-yr™ of
biomass or 26.452 m*-ha™-yr™* of oil. For the density harvest, the simulation results in a
productivity of 5.79-10* kg-ha™-yr" of biomass or 28.744 m*-ha™-yr™ of oil. The time
harvest scheme represents a -1.1% difference in biomass but a -8.7% difference in oil
production, relative to the density harvest scheme. Culture growth in the high-light,
long days of summer facilitates the growth of the culture to 3g-L™ in a short period of
time. Inthe winter, the lower light intensities and shorter days mean 3 g-L'1 is not
achievable in a 160 hour time period, thus the microalgae is harvested before reaching
maximal lipid content.

The validated model predicts a realistic annual productivity potential that is 7
times lower than the highest value reported in the literature surveyed, and is
significantly lower than the median productivity reported in literature as shown in Table

14.
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The reduced productivity can be attributed to a variety of effects that are
present in this model but are not present in other models. The development of the
more detailed bulk growth and lipid productivity model allows for the consideration of
the effects of facility scale, harvesting strategies, meteorological effects, seasonal
effects, and more. Although the resulting productivity of 26.5 m*-ha™-yr™ of oil may still
represent an optimistic estimation of the annual production of oil at a large-scale
photobioreactor facility, this result represents the most realistic industrial scale

productivity value to date.

4.3.6 Life Cycle Assessment (LCA) Modeling

LCA is a fundamental tool that has been used to evaluate the sustainability of
biofuels. The results from LCA are highly sensitive to engineering model assumptions,
definitions of system boundaries, life-cycle inventories, process efficiencies, and
functional units. Increasing interest in microalgae as a secondary feedstock for
transportation fuels has lead to multiple LCA studies. Inherent in these studies is an
engineering model of the microalgae to biofuels process that incorporates a growth

model.
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Table 14. Table comparing reported productivity potentials (some calculations
performed for comparison purposes) from various sources. Some authors reported a
range of productivity potential, consequently the high (1) and low (¥) values are

repeated.
Source Oil (m*-ha™-yr?) Notes
Schenk et al. 2008+ 12 30%°
Chisti, 2008b* 20.7 20%°, poi=880 kg-m
Idealized, Time Harvest, Yuma,
Bulk model, this study 26.5 AZ
Huntley and Redalje, 2007+ 30.7 40%°, po1=880 kg-m™
50%°, 3% solar conversion
Wijffels and Barbosa, 2010 40 efficiency
Yeang, 20087 46
Hirano et al. 1998 49.8 40%°, po1=880 kg-m™
Lardon et al. 2009 51.4 50%°, poi=880 kg-m™
Chisti, 2008b 1+ 51.8 50%°, poi=880 kg-m™
Batan et al. 2010°t 51.8 50%°, poi=880 kg-m™
Chisti, 2007 58.7 30%°
Sheehan et al. 1998+ 62.2 50%°, poi=880 kg-m™
Campbell et al. 2010 62.3 50%°, poi=880 kg-m™
Schenk et al. 20081t 98.5 50%°
Huntley and Redalje, 2007++ 99.5 40%°, p61=880 kg-m™
Batan et al. 2010°t+ 103.8 50%°, poi=880 kg-m™
Sheehan et al. 1998t+ 124.4 50%°, poi=880 kg-m™
Chisti, 2007t 136.9 30%°
Yeang, 20081+ 184

®oil content in biomass

The majority of the microalgae LCA published to date use a simplistic growth

model based on a daily productivity number obtained from a small scale laboratory

growth facility. Large scale productivity over an entire year is then calculated based on

this laboratory number. Batan et al. (2010)*, Lardon et al. (2009), Hirano et al. (1998),

3 Co-authored, Batan and Quinn
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and Campbell et al. (2010) all use a fixed growth rate between 10-30 g-m>-d™* (3.6-10"-
11.0-10* kg-ha™-yr'") in their growth models. Due to the lack of published data on
realistic, large-scale productivities, three of the studies discussed above run multiple
scenarios using a range of fixed growth rates in modeling the productivity of large-scale
facilities (Batan et al., 2010; Campbell et al., 2010; Lardon et al., 2009). This is indicative
of the sensitivity of LCA analysis to the growth models implemented in the process
model.

This study presents a validated, large-scale growth model that accurately
captures diurnal and annual weather impacts on microalgae growth. The model can be
integrated with historical weather data and can be used to more accurately represent
the growth of microalgae at specific geographical locations. The majority of the
geographic locations of the LCA studies surveyed are warm coastal regions.
Meteorological data for the costal location of San Diego, California were used to
illustrate realistic biomass productivity and compare results to the LCA studies
discussed. The thermal basin temperature was assumed to be regulated for optimum
growth and the time harvest strategy was used, resulting in a productivity of 5.42-10*
kg-ha™-yr' of biomass or 15 g-m™>-d™*. This analysis shows that the current realizable
productivity of microalgae is less than the median of the typical growth rates used in the
LCA models surveyed.

To enable more accurate environmental assessments of biofuel from microalgae,

LCA studies need to use more accurate growth models. To date, LCA studies have made
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geographic location assumptions based on material availability and nearness to markets,
but have not included the effect of geographic location on growth. The model
developed for this study will enable a more accurate representation of feasible large-
scale production, thus improving the environmental assessment of the microalgae to

biofuels process.

4.4. Conclusion

A literature-based bulk growth and lipid production model was constructed
incorporating 16 species-specific variables, using light and temperature as primary
inputs. Validation of this model was done utilizing 9 weeks of stochastic weather and
growth data from a large scalable outdoor photobioreactor cultivating Nannochloropsis
oculata. Historical weather data for the idealized solar location of Yuma, Arizona was
used to illustrate the current productivity potential of 5.72-10* kg-ha™-yr" of biomass or
26.4 m*-ha™-yr™ of oil given optimum thermal conditions. The model was also used to
illustrate the requirement for more in-depth and accurate growth modeling for LCA

analysis.
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Chapter 5- Current US Biofuel Potential from Microalgae Cultivated in

Large-Scale Photobioreactors

5. Abstract

The scalability of microalgae growth systems is a primary research topic in
anticipation of the commercialization of microalgae-based biofuels. Current calculations
for the large-scale productivity potential of microalgae are based on growth data from
small-scale non-industrially representative systems. To accurately assess the near-term
large-scale microalgae potential a thermal basin model is presented and combined with
a bulk growth model previously validated with industrial-scale outdoor photobioreactor
growth data. The combined models are used with 15 years of hourly historical weather
data from 864 locations in the US to accurately assess the current productivity potential
of microalgae. Geospatial information system (GIS) land availability and slope data are
used to generate a dynamic map of the current feasible locations and productivity
potential of microalgae in the US. The discussion focuses on a comparison of model
results with productivity potentials currently reported in literature illustrating the need
for more realistic assessment of the current near-term realizable productivity potential

of microalgae at industrial scale.
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5.1 Introduction

Analyses that have attempted to model the productivity, economics, and
lifecycle environmental impacts of the latest generation of microalgae cultivation
systems at industrial scale have relied on the scale-up of laboratory data to model
microalgae growth. The scaling of laboratory data has been justified due to the
immaturity of the microalgae-to-biofuels process and lack of peer reviewed, published,
scalable growth data. It is well-understood that these laboratory-scale processes do not
accuratly represent industrial-scale facilities (Chisti, 2007; Wijffels and Barbosa, 2010).
To more accuratly understand and represent the productivity potential of microalgae-
based biofuels, microalgae growth and lipid accumulation models validated with
industrial scale outdoor growth data must be used that incorperate real locational
characteristics (James and Boriah, 2010; Quinn et al., 2011).

Previous GIS studies have generated maps highlighting feasible cultivation sights
for large-scale microalgae based on land avalibility and slope, but fail to incorperate
detailed growth models for accurate prediction of microalgae potential (Magnuson,
2010). The majority of the geographical evaluation of productivity potential has been
based on a conversion of solar irradiance to biomass potenital based on photosynthetic
efficiency, which does not accuratly represent the current large scale growth potential
(Maxwell et al., 1985).

This study presents the integration of a thermal basin model with a validated
industrially representivie growth and lipid accumulation model to investigate the near-
term realizable prodcutivity potential of microaglae in locations that meet the land
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alalibility and slope criteria as set forth by the DOE algae roadmap. In an effort to
accuratly represent the current US biomass and lipid production as a function of
geographical location in the US, the models were run with 15 years of hourly
meteriological data collected from 864 US locations. These results where averaged on
an annual basis and overlayed with GIS land avalibility and slope data to produce a
dynamic map of the feasible large-scale microalgae production locations in the US
including productivity potential. The discussion focuses on a comparison of the
modeled prodcutivity results to current values reported in litereautre with an evaluation

of the current total productivity potential.

5.2 Materials and Methods

The following section details the thermal basin model and the meteorological
weather data required for model operation, a basic overview of the validated bulk
growth model, and the data and criteria for the GIS filters based on slope and land
availability. The bulk model equations and thermal basin models are coded in MatLab

with GIS data reduction done using ArcGIS.

5.2.1 Validated bulk growth model

A bulk growth model previously presented and validated in chapter 4 was
adapted to this study. The model accurately captures the biomass and lipid production
of Nannochloropsis oculata cultivated in Solix Generation 3 photobioreactors requiring

primary inputs of basin temperature and solar photosynthetic active radiation (PAR).
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The photobioreactors modeled are structurally and thermally supported by a water
basin as illustrated in Figure 22.

The bulk growth model incorporates 21 species and reactor specific
characteristics to accurately depict batch biomass growth and lipid accumulation based
on real-world climactic and thermal conditions. For the purposes of predicting bulk
biomass growth, the model is considered validated to within the accuracies described by

Quinn et al. (2011).

Figure 22. Image of cultivation system modeled courtesy of Solix Biosystems.
Photobioreactors are structurally and thermally supported in a water basin.

The model was operated for this study with a “time harvest”, where harvest of
the culture occurs at 160 hr or 3 g-L™* (whichever occurs first), which is more

representative of the function of the research and development facility used in model
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validation. Complete details on the model equations and validation can be found in

Quinn et al. (2011).

5.2.2 Thermal basin model

To accurately incorporate geographical temperature effects on growth, a heat-
balance model incorporating radiative, conduction, convection, and evaporative heat
balance based on meteorological effects is used. The model is structured to accurately
represent the temperature of the water basin pictured in Figure 22. It is assumed for
this effort that the temperature of the basin and the microalgae are equivalent.

The model was adapted from the methods of Weyer-Geigel (2008). For this
modeling effort, the water in the basin was represented by 16 equally spaced vertical
nodes in order to capture temperature gradients. Typical thermal models for swimming
pools use a single node for thermal calculations assuming no temperature gradients due
to continuous circulation and a low surface to volume ratio (Molineaux et al., 1994;
Szeicz and Mcmonagle, 1983). The system modeled here does not implore continuous
circulation for energetic reasons and has the potential to have thermal gradients thus
multiple nodes. A resistance thermal model between the nodes and the ambient are
solved incrementally at each time step to accurately predict the heat-flux between
nodes. Similar to solar heated hot water tanks, when an inverted temperature gradient
occurs it is assumed that due to a density gradient the two adjacent nodes will mix
(Duffie and Beckman, 2006). It is assumed that all nodes receive solar energy with a

distribution based on the absorption characteristics of water incorporating losses at the
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air water interface based on Snell’s Law and solar incident angles. Heat loss with the
ground and the walls is assumed to be through conduction with a heat transfer
coefficient of 10 W-m? based on soil characteristics (Molineaux et al., 1994). The Sartori
equation was used for evaporative loss calculations instead of a pan evaporative model
based on the assumption of a large scale facility (Sartori, 2000).

The thermal basin incorporates solar radiation, dry-bulb temperature, dew-point
temperature, wind speed, wind direction, cloud cover, and atmospheric pressure to
calculate the heat balance and temperature of the basin. The model was developed to
accurately represent the temperature of the water basin used in the Solix Generation 3
photobioreactor technology. It is interesting to note that the thermal basin model
would approximate the thermal profile of an open raceway pond that operated at a

depth of 60 cm.

5.2.3 Geospatial information system (GIS)

The debate of fuel versus food currently has not been applied to microalgae
based biofuels due to the ability to cultivate microalgae on low quality land (U.S. Doe,
2010). An evaluation of the current locations for microalgae cultivation and the
productivity potential of these locations can be done by incorporating GIS land
availability and slope data with the growth model presented.

The National Land Cover Database (NLCD) 2001 assembled by the Multi-
Resolution Land Characteristics Consortium to accurately represent the land cover of

the United States, Alaska, Hawaii, and Puerto Rico on a 30 meter cell resolution was
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used to illustrate the current feasible location of microalgae production based on land
classifications. The following NLCD land cover classifications where considered as
available land for cultivation for the baseline scenario: Barren, Scrubland, Shrubland,
and Grassland/Herbaceous (Maxwell et al., 1985; U.S. Geological Survey, 2001). A
minimum continuous land parcel of 20 hectares was also assumed based on economics
of large-scale processing of harvested biomass.

Slope data with a resolution of 90 m was used to refine the current feasible
microalgae cultivation locations (Arcgis, 2010). A survey of the literature illustrates
there is a debate on the acceptable degree of slope. Benemann et al. 1982 (1982),
Lansford et al. 1990 (1990) and Mubhs et al. 2009 (2009) define a requirement for the
slope to be 2% or less for economic reasons considering the construction of open
raceway ponds with the DOE algae road map (2010) defining an acceptable slope of 5%
or less. A 5% slope is assumed based on the DOE algae road map and the flexibility of
the photobioreactor modeled to be adapted to reference the top water surface thus

requiring a lower tolerance for land grading.

5.2.4 Historical weather data

The bulk growth model and the thermal basin model both require
meteorological weather data as primary inputs. Hourly weather data from 1991 to 2005
from 864 US locations was obtained and used as primary inputs to the thermal basin
model and the bulk growth model (Wilcox, 2007). The thermal basin model output

evaporation and basin temperature that were then input into the growth model with
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solar characteristics to accurately predict biomass and lipid yields on an hourly basis
over the 15 years simulated. The biomass and lipid yields where then averaged on an

annual time scale.

5.3 Results

The results from this work are divided into two sections, the first being a map
illustrating the current near term realizable productivity potential of microalgae in the
US and the second effort integrating the productivity results with GIS land availability

and slope criteria

5.3.1 Dynamic map

The models presented were used to simulate biomass and lipid production in the
US based on 15 years of hourly historical meteorological data and then averaged on an
annual basis, Error! Reference source not found..

The microalgae productivity results were then filtered with GIS slope and land
availability data as detailed above to generate the dynamic maps presented in Figure 24.

The results presented in Figure 24 represent the current near-term realistic
microalgae productivity potential. It is important to note that the productivity
potentials presented are on a per photosynthetic area basis and do not include land
required for large scale cultivation infrastructure. The lipid potentials reported are lipids
produced and do not include potential losses from extraction or tranzesterification
which would be expected to affect results by less than 5%. For comparison a slope

restriction of 2% was used to generate the dynamic map presented in Figure 25. For
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comparison a slope restriction of 2% was used to generate the dynamic map presented

in Figure 26.
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US Bioalgae Productivity Potential
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Figure 24. Dynamic map of near-term realizable large scale microalgae oil production
in m*>hal-yr!. Areas that do not meet the land availability and slope criteria defined

for the baseline scenario have been grayed out.
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Figure 25. Dynamic map of near-term realizable large scale microalgae oil production
in m*>ha-yrl. Areas that do not meet the land availability and 2% slope criteria have
been grayed out.
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Figure 26 Dynamic map of near-term realizable large scale microalgae oil production in
m>hal.yrl. Areas that do not meet the land availability and 1% slope criteria have
been grayed out.

Based on the cultivation of microalgae, a packing factor of 0.8, and looking at
high productivity zones (corresponding to greater than 18 ms-hectare'l-yr'l), 13.1
million hectares of land would be required to meet the DOE 2030 alternative
transportation fuel goal of 1 billion barrels of fuel (Batan et al., 2010; Department of
Energy, 2007). The results from this study show based on the productivity, land, and
slope criteria there are 146 million hectares that can produce 20.8 billion barrels of oil.

This corresponds to 20.8 times the DOE 2030 alternative transportation fuel goal. A
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comparison of the land slope and the total production potential is presented in Table

15.

Table 15. Table of the land availability and total US production for slope criteria of 1%,

2%, and 5%.

Slope Area (ha) Production (m”3)
<1% 29,716,881 514,838,322
<2% 72,472,045 1,249,345,933
<5% 146,313,014 2,475,830,752

The 1% slope criteria represent 4.2 times the DOE 2030 alternative fuel initiative.

5.4 Discussion

5.4.1 Current practical production potential of microalgae compared to

literature

Hype around microalgae based biofuels is typically supported with productivity
potentials that are orders of magnitude higher than tradition terrestrial crops (Chisti,
2007; Mata et al., 2010; Scott et al., 2010). The productivity potentials reported are
typically calculated by the linear scaling of small-scale laboratory based growth and lipid
data, which is far from representative of the true current productivity potential. The
simplistic scaling of small-scale laboratory based data and the application to growth
modeling quickly leads to erroneous assumptions about industrial growth facility
function, and a large uncertainty in the productivity potential of microalgae. The true
large-scale production potential of microalgae is currently unrecognizable due to the

vast range of values being reported. The acceptance of this type of scaling for
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productivity potentials in review articles has lead to similar analysis applied to growth

models used in economic and LCA modeling that are in turn unrealistically evaluating

microalgae biofuels.

Values reported in literature surveyed range from 8.2 m*-ha™-yr™ reported by

Scott et al. 2010 (2010) to 184.0 m*-ha™-yr™ reported by Yeang 2008 (2008) with Clarens

et al. 2010 (2010), Schenk et al. 2008 (2008), Lardon et al. 2009 (2009), Campbell et al.

2010 (2010), Sheehan et al. 1998 (1998), Huntley and Redalje 2007 (2007), Chisti et al.

2007, 2008a, 2008b (2007; 2008; 2008), Rodolfi et al. 2009 (2009), Hirano et al. 1998

(1998), Wijffels and Barbosa 2010 (2010), Williams and Laurens et al. 2010 (2010),

Sawayama et al. 1999 (1999), Batan et al. 2010 (2010), and Mata et al. 2010 (2010)

reporting values between these extremes, Table 16.

Table 16. Table comparing reported productivity potentials (some calculations
performed for comparison purposes) from various sources. Some authors reported a
range of productivity potential, consequently the high (1) and low (*) values are

repeated.
Oil Yield Purpose of
Source a4 Article Type . Notes
(m®-ha™-yr) Scaling

Scott et al. 2010 (2010) t 8.2 Review Microalgae Potential 46% oil
Clarens et al. 2010 (2010) + 11.8 Research-Model LCA-Modeling Effort 9.45
Schenk et al. 2008 (2008) 12.0 Review Microalgae Potential 10 g/m2/d,
Clarens et al. 2010 (2010) + 16.1 Research-Model Economic-Modeling 12.9
Lardon et al. 2009 (2009) * 18.0 Research-Model LCA-Modeling Effort 24.75
Campbell et al. 2010 (2010) 18.7 Research-Model LCA-Modeling Effort 15 g/m2/d,
Sheehan et al. 1998 (1998) 21.2 Research-Model Economic-Modeling 17 g/m2/d,
Huntley and Redalje et al. 30.7 Research-Model Economic-Modeling 18.5g/m2/d
Lardon et al. 2009 (2009) + 30.8 Research-Model LCA-Modeling Effort 19.25
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Chisti et al. 2008 (2008) * 31.1 Letter Response Microalgae Potential 25g/m2/d
Rodolfi et al. 2009 (2009) 34.1 Research-Model Economic-Modeling location
Campbell et al. 2010 (2010) 373 Research-Model LCA-Modeling Effort 30 g/m2/d,
Hirano et al. 1998 (1998) 37.4 Research-Model NER-Modeling Effort 30 g/m2/d,
Wijffels and Barbosa et al. 40.0 Perspective Microalgae Potential 3% solar
Scott et al. 2010 (2010) ++ 40.0 Review Microalgae Potential 50% oil
Williams and Laurens et al. 40.7 Review Economic-Modeling 28 g/m2/d,
Yeang et al. 2008 (2008) + 46.0 Opinion Microalgae Potential

Chisti et al. 2008 (2008) *t 51.9 Letter Response Microalgae Potential 25g/m2/d
Sawayama et al. 1999 (1999) 51.9 Research-Model Modeling Effort 15g/m2/d
Batan et al. 2010 (2010) 51.9 Research-Model LCA-Modeling Effort 25 g/m2/d,
Chisti et al. 2007 (2007) 58.7 Review Microalgae Potential 30% oil,
Mata et al. 2010 (2010) t 58.7 Review Microalgae Potential 30% oil
Sheehan et al. 1998 (1998) 74.7 Research-Model Economic-Modeling 60 g/m2/d,
Chisti et al. 2008 (2008) 98.4 Opinion Microalgae Potential 1.535
Schenk et al. 2008 (2008) tt 98.5 Review Microalgae Potential 50 g/m2/d,
Huntley and Redalje et 99.6 Research-Model Economic-Modeling 60g/m2/d,
Chisti et al. 2007 (2007) t+ 136.9 Review Microalgae Potential 70% oil
Mata et al. 2010 (2010) t+ 136.9 Review Microalgae Potential 70% oil
Yeang et al.2008 (2008) 1 184.0 Opinion Microalgae Potential
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In evaluating the productivity potentials reported in literature compared to this
study, the peak annual productivity potential in the southwestern US (defined here as
the continental US land area below a latitude of 37° and between a longitude of -120°
and -100°) which includes southern California, southern Nevada, Arizona, New Mexico,
and western Texas is 7.6 times lower than the highest value reported in the literature
surveyed, and is lower than the median productivity reported in literature by 2.3 times.
The reduced productivity can be attributed to a variety of effects that are present in this
model but are not present in other models. The development, validation, and
implementation of the more detailed bulk growth and lipid productivity model allows
for the consideration of the effects of facility scale, harvesting strategies, meteorological
effects, seasonal effects, and more. The results presented here represent the current
realistic estimation of the annual production of oil at a large-scale based on a

photobioreactor facility.

5.5 Conclusion

The model presented in this study provides a more detailed representation of
industrial scale microalgae growth potential by incorporating hourly meteorological
effects. The results presented represent the geographically specific current near-term
microalgae potential based on a photobioreactor achievable. Results from this study
are compared to current large scale productivity potentials reported in literature
showing the majority of the studies surveyed over estimate the current near term

realizable productivity potential. The productivity results are combined with GIS slope
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and land availability data to generate a dynamic map illustrates the current locations for
large scale production. Results show the southwestern US including western Texas as

prime areas for large scale microalgae cultivation based on productivity potential.
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Chapter 6- Scale-Up of Flat Plate Photobioreactors Considering Diffuse

and Direct Light Characteristics>

Abstract

This study investigates the scale up of photobioreactors based on the
productivity of Nannochloropsis salina as a function of direct and diffuse light. The scale
up and optimization of photobioreactors was analyzed by determining the growth
response of a small scale system designed to represent a core sample of a large scale
photobioreactor. The small scale test apparatus was operated at a variety of light
intensities on a batch time scale to generate a photosynthetic-irradiance (PI) growth
data set with the data collected was used to inform a Pl growth model. The scalability
of the Pl growth model to predict productivity in large scale systems was evaluated by
comparison with experimental growth data collected from two geometrically different
large-scale photobioreactors operated at a variety of light intensities. For direct
comparison, the small and large scale experimental systems presented were operated
similarly and in such a way to incorporate large scale relevant time scales, light
intensities, mixing, and nutrient loads. Validation of the scalability of the Pl growth

model enables the comparisons of different photobioreactor geometries and design

> The work presented in this chapter is based on the publication Quinn, J, Turner, C, Bradley, T, in review.
Scale-up of flat plate photobioreactor considering diffuse and direct light characteristics. Appl. Microbiol.
Biotechnol.
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optimization incorporating growth effects from diffuse and direct light. Discussion
focuses on the application of the Pl growth model to assess the effect of diffuse light
growth compared to direct light growth for the evaluation of photobioreactor
geometries followed by the use of the model for photobioreactor geometry

optimization based on areal productivity.

6.1 Introduction

Microalgae have several sustainability, economic, and environmental impact
benefits, when compared to first-generation biofuel feedstocks (Batan et al., 2010).
Microalgae are characterized by higher solar energy yield, year-round cultivation, the
use of lower quality or brackish water, and the use of less- and lower-quality land
(Brown and Zeiler, 1993; Dismukes et al., 2008; Li et al., 2008; Posten and Schaub, 2009;
Raja et al., 2008; Wijffels and Barbosa, 2010; Williams et al., 2009). Of the thousands of
species of microalgae a select few are currently being considered for the commercial
cultivation for the production of biofuel. Under conditions typical of commercial scale
reactor systems, Nannochloropsis salina can achieve a lipid content of 50% by weight
(Emdadi and Berland, 1989; Fabregas et al., 2004; Suen et al., 1987), and an average
annual growth rate of 25 g m day'l(Boussiba et al., 1987; Gudin and Chaumont, 1991;
Suen et al., 1987). In laboratory conditions, Nannochloropsis can attain lipid
percentages of 60% by weight and growth rates of 260 mg L hr' or 150 g m’ day’
(Richmond et al., 2003; Rodolfi et al., 2009). These charcteristically high productivities

are primary reasons this species is being investigated for cultivation at large scale.
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Previous research studies have characterized some microalgae species for
photosynthetic behavior and applied this data to modeling efforts, but these studies
have unresolved problems. The majority of photosynthetic-irradiance (Pl) curves
generated use second time scales, which is not applicable to large scale systems where
growth rates must be characterized in significantly longer time scales (Ilhnken et al.,
2010). Studies have shown time of day and photon flux density history can affect the
initial slope of the Pl curve in phytoplankton thus short-time scale Pl curves do not
capture all relevant growth behavior (Furuya et al., 1998; Harding et al., 1982; Henley,
1993). Pl curves have been generated for some microalgae species, Chlorella,
Scenedesmus, Chlamydomonas, and Chaetoceros on one day time scales, however
inconsistencies in light levels and exposure time make the application of data to large
scale modeling and reactor evaluation difficult (Ihnken et al., 2010; Sorokin, 1957).
Geider and Osborne (1986) generated a Pl curve for Nannochloris atomus on a longer
time scale, however did not measure growth at light intensities greater than 200 umol
m* s which are required for application to outdoor systems. To date there is a lack of
growth data characterizing the growth of Nannochloropsis salina at variable light
intensity on long time scales that is applicable to large-scale, outdoor reactor modeling
and design optimization and evaluation.

Previous modeling efforts have looked into the scale-up of microbiological
systems, however inconsistent assumptions and arbitrary scaling factors limit the
application of previous studies to large scale reactor design. Janssen et al. (2003)

evaluate the feasibility of the scalability of a variety of photobioreactor geometries, but
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do not support their conclusions with calculations or data. Others have focused effort
on conceptualizing the scale up of photobioreactors but again fail to incorporate any
real data (Perner-Nochta and Posten, 2007; Sastre et al., 2007). Some modeling efforts
have successfully scaled small systems, however the utilization of arbitrary scaling
factors limit the application of the work (Molina et al., 2000). There is a current need
for transparent, scalable growth modeling techniques with applications to large scale
reactor design optimization and evaluation.

This article presents experimental results that address the problems present in
previous studies and the application of data to modeling and reactor evaluation and
optimization efforts at large scale. Two systems were constructed, a small scale test
reactor system and a large scale photobioreactor system. For the purpose of scalability,
the small scale system was designed and built to represent a core sample of the large
scale reactors. The small scale system was operated at a variety of light intensities on a
batch time scale with the data collected used to generate a Pl growth model that
incorporates diffuse and direct light growth characteristics. The large-scale
photobioreactor test system was constructed and used to generate growth data from
two geometrically different photobioreactors under a variety of light intensities for the
evaluation of scalability of the Pl growth model. Results show the small scale Pl growth
model accurately predicts growth in the large scale system at a variety of light
intensities validating the core sample technique. The discussion presents an evaluation

of photobioreactors based on diffuse versus direct light growth and a geometric
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optimization based on the Pl growth model of a flat plate photobioreactor on the metric

of areal productivity.

6.2 Experimental Materials and Methods

The following section details the small scale and large scale test reactor
configurations, operation of the test reactors, culture and media, and measurement
techniques used for data collection. The small scale test apparatus was constructed to
mimic the large scale system through a core sample technique. The core sample
technique is based on describing the growth in the large photobioreactor based on
multiple small core samples, Figure 27.

The productivity characterization of the small scale reactors as a function of light
intensity on a batch time scale was done with results used to generate a logarithmic Pl
growth model based on light intensity. The model generated from the data collected in
the small scale system is then used to predict the large scale photobioreactor
productivity. Correlation illustrates the effectiveness of the core sample technique for

capturing productivity at large scale without arbitrary scaling factors.
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Figure 27 Schematic of core sample technique relating the geometry of the small scale
system to the large scale system.

6.2.1 Small Scale System

6.2.1.1 Reactor geometry, illumination, and operation

For small scale reactor data collection, two identical test apparatuses where
constructed. Each test apparatus consisted of 6 cylindrical glass reactor vessels, 8.9 cm
deep and 7.7 cm in diameter. Two culture volumes based on inherent variability in
thickness of the large scale system were tested in the small scale experimentation: 1)

the high volume scenario with 150 mL of culture corresponding to a depth of 0.036 m,
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and 2) the low volume scenario with 75 mL of culture corresponding to a depth of 0.018
m. The outer surface of each reactor was coated with an opaque material, making the
top surface the only illuminated surface. All reactors shared a common polycarbonate
headspace which was continually purged with filtered (0.2 micron) humidified air at a
rate of 0.28 m* hr'! (10 SCFH) during photoactive periods, Figure 28. The pH of the
reactors was monitored and controlled by introducing 2% CO, (5.7 10°m? hr!) into the
humidified air to ensure a pH range of 7.5 +/- 0.3 during photoactive periods.

The polycarbonate structure was manufactured to integrate with a Polyscience
28 L shaking thermal water bath system. The shaker was operated 24 hours a day at a
rotational speed of 140 revolutions per minute at an eccentricity setting of 9 with the
thermal basin set at 23°C.

[llumination of the system was done using a Sun Systems Yield Master Il Classic
with a 1000 watt daylight metal halide grow lamp selected for its accurate
representation of solar photosynthetic active radiation (PAR). The illumination system
was operated on a 16 hour light, 8 hour dark period. A variety of light intensities were
tested with the desired light intensity achieved in two ways, 1) by varying the height of
the artificial lights and 2) by applying screens to the top of the polycarbonate structure.
The system was operated in biological triplicate for each of the light intensities tested.

A labeled schematic of the test reactor systems is presented in Figure 29.
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Figure 28 CAD representation of one test apparatus consisting of 6 test reactors (left).

Two of the apparatus (left) were constructed with each one attached to a Polyscience

28 L shaking thermal basin and illuminated with a Sun Systems, Yield Master Il classic
with a 1000 watt metal halide grow lamp (right).
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Figure 29. Picture of one of two small scale units used for data collection (left). Picture
of two test apparatuses (right).
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The reactors where grouped according to the measured light intensities such
that the three reactors grouped all have similar light intensities. The desired light
intensity was achieved through raising and lowing the light source and by shading the
system with standard metal window screen with a screen mesh of 18 wires per inch by

14 wires per inch.

6.2.1.2 Growth monitoring equipment and technique

Growth monitoring was performed daily, at the beginning of the light cycle.
Prior to sampling, the volume of each reactor was checked and 0.2 micron filtered de-
ionized water was added to restore the reactors to the original inoculation volume.
Optical density (OD) measurements at 750 nanometres were performed on a Hach
DR5000 spectrophotometer. Samples were prepared for an optical density reading
using the following technique: Depending on the dilution required, 80-160 pL of sample
was added to a 3 mL-10 mm optical path length cuevette using a 200 uL pipette. 1840-
1960 pL (depending on dilution) of 0.2 micron filtered 20 g-L'1 salt water was pipetted
into the cuvette followed by pipette mixing. Samples were diluted such that the
measured optical density was in a range of 0.1 to 0.3 such that a previously determined
conversion of optical density to dry mass could be applied. Conversion of OD to dry
mass was done using a previously determined correlation factor. Previous sampling
experimentation showed that sampling location and depth did not appreciably affect

experimental results.
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6.2.1.3 Photo-adaptation and data collection batches

For each of the light intensities tested, a photo-adaptation batch was cultivated
for a minimum of 4 light cycles. The photo-adaptation cycles were not used in data
processing. After photo-adaptation, two data acquisition batches (4 light cycles) where
run. Inoculation for the data acquisition batches involved the mixing of the three
biological triplicate cultures, combining the required inocula with nutrient rich media

(detailed below) and re-inoculating the reactors at 1.1 g L™ with a 0 =0.087 (n=114).
6.2.2 Large Scale System

6.2.2.1 Reactor geometry, illumination, and operation

The large indoor cultivation system was modeled after the Solix AGS generation
3 photobioreactor. The cultivation system comprised 16 reactors divided into two
groups of 8 with the geometries of one reactor from each group detailed in Figure 30

(support structure not depicted).
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Figure 30 Geometry of large scale photobioreactors based on Solix generation 3
technology, 0.28m deep reactors-left and 0.14 m deep reactors-right. The primary

difference between the two geometries is the culture height and volume is halved.
Support structure is not detailed.
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The large indoor photobioreactor test bed, based on the geometry of the Solix
generation 3 photobioreactor technology, was constructed such that the reactor depth
could be varied discretely. Experimentation involved the construction of four different
reactor depths, two for growth data collection and model validation and two additional
reactor configurations for light characterization. The growth reactor geometries differ
in depth by a factor of 2: one having a culture depth of 0.28 m and the second geometry
having a depth of 0.14 m. For light characterization two more reactors where
constructed with depths of 0.56 m and 0.84 m. The photobioreactors were constructed
out of 0.12 mm polyethylene and structurally and thermally supported by a water basin
measuring 3 m x 1.2 m x 1.5 m. Temperature in the basin was maintained at 23°C+/- 2°C
using a pool heater. The thickness of an individual photobioreactor is approximately
0.05 m but varies due to the flexible structure by approximately 0.01 m. The reactors
were spaced at 0.15 m. Mixing was provided by filtered sparge air 24 hours a day at a
rate of 0.34 m> hr' per reactor. The pH of the system was maintained with CO, mixed
with the sparge air during photo-active (light) periods to maintain a pH of 7.5 +/- 0.3.

The system was illuminated using 10 lamps (Sun Systems Yield Master Il Classic)
with 1000 watt daylight metal halide grow lamps mounted on a light rack above the
thermal basin. Two light regimes where simulated with the system: 1) a high light
scenario-which involved 10 lights angled at 5°, and 2) a low light scenario-which
involved 5 lights angled at 35° with two additional low light T5 florescent banks

mounted towards the rear of the basin. The addition of the low light florescent banks
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was to improve the uniformity of the light in the low light scenario. The illumination
system for both the high and low light scenarios were operated on a 16 hour light, 8
hour dark cycle.

Detailed images of the large scale system are presented in Figure 31. Data
collected from the reactors closest to the front and back walls was not used due to
increased light intensity from reflection off the thermal basin walls.

The light rack which supported the 10 lights used could be pulled back for

harvest and re-inoculation. Two large squirrel cages where ducted to the light banks to

provide the required cooling air to the illumination system.
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Figure 31. Photograph with light bank removed of large scale reactors (left).
Photograph of large scale growth system with lights turned on (right).
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6.2.2.2 Growth monitoring equipment and technique

Manual samples of the culture to monitor growth were taken daily at the beginning
of the light cycle. Samples were drawn using a 10 mL syringe through sample lines
attached to the reactors. Previous sampling experimentation showed that sampling
location does not affect experimental results. OD measurements at 750 manometers
were performed on a Hach DR5000 spectrophotometer with dry mass calculated by a
previously determined correlation constant. Samples were prepared for an optical
density reading using the following technique: Depending on the dilution required, 80-
160 pL of sample was added to a 3 mL-10 mm optical path length cuevette using a 200
uL pipette. 1840-1960 pL (depending on dilution) of 0.2 micron filtered 20 g-L™ salt
water was pipetted into the cuvette followed by pipette mixing. Samples were diluted
such that the measured optical density was in a range of 0.1 to 0.3 such that a
previously determined conversion of optical density to dry mass could be applied. The
effects of evaporative losses on OD measurements were corrected for by measuring the

volume of the reactors at both inoculation and at harvest.

6.2.2.3 Photo-adaptation and data collection batches

Inocula were obtained from Solix with flow cytometry performed to verify a
contamination level of less than 1% by count. Prior to inoculation in the experimental
reactors, the culture obtained from Solix was cultivated in the indoor system in one,
0.28 m deep reactor to a density of 3 g L™. The culture was then harvested, mixed with

nutrient rich media (detailed below), and injected into three, 0.28 m deep reactors and
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cultivated to 3 g L. The 16 reactor system was then inoculated from this culture at 1 g
L™

So as to simulate the growth behavior of a large-scale PBR system, data was
collected from only the middle six of the eight reactors in each experimental set. The
two exterior reactors were excluded from data analysis because of reactor edge effects

including reflection of light from the sides of the thermal basin.

6.2.3 Culture and Growth Media

Nannochloropsis salina 1776 was originally obtained by Solix Biofuels from the
Provasoli-Guillard National Center for Culture of Marine Phytoplankton. The nutrient
rich growth media was made by modifying f/2 growth media to a salinity of 20 g L%,
adding 10 mM NO;’ L'l, 7.9mM PO, L and 1 mLL? Guillard trace metals. All growth

media was filtered using a 0.2 micron absolute filter.

6.2.4 Light Measurement Device and Technique

Light intensity was measured using a Heinz Walz US-SQS/L spherical PAR sensor
connecter to a LI-COR L1-250A light meter. For measuring the light in the small scale
system, a light measuring reactor was constructed to mimic the biological reactors. For
accuracy, the light was measured at the four extremes (north, east, south, and west) of
the shaker motion and averaged.

The light intensity on the surface of the reactors in the large scale system were

measured at 0.025 m intervals.
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6.2.5 Comparison of Small Scale and Large Scale Growth Systems

The two systems presented are very different in shape and physical operation.
The two systems utilize different mixing regimes. Mixing will have an impact on the
growth if the system is mixed on a time scale where algae is receiving light on a time
scale similar to the time required to activate the photosynthesis system. This type of
mixing represents a turbulent fluid system and requires a large amount of energy. The
fluid dynamics of both the small scale and large scale systems presented operate in a
regime where mixing does not play a critical role on the growth (Qiang and Richmond,
1996). Increasing the mixing to a level that will have an effect is not commercially
feasible for microalgae biofuels.

In all other logistic operations the two systems where operated similarly, harvest
and inoculations where performed during the dark period, the culture cultivated went
through photo-adaptation periods prior to data collection, sampling was performed on
both systems at the beginning of the light cycle, and both systems operated on a 16/8

light light/dark cycle. These similarities enable the comparison of the two data sets.

6.3 Results

This section details the productivity results of the small scale system, Pl growth
model based on the growth data collected in the small scale reactors, the large scale
reactor data, and the evaluation of scaling of the small scale Pl growth model to predict

the growth in the large scale system.
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6.3.1 Small Scale Reactor Growth Data

The 150 mL scenario experimentation consisted of the testing of 73 light
intensities ranging from 72 to 1471 pmoles m?s™. The 75 mL scenario consisted of the
testing of 40 light intensities with light ranging from 119 to 1477 umoles m? s™. Raw
growth data collected for 4 different light intensities is presented in Figure 32.

The productivity data collected over a 4 day batch was averaged and plotted in

Figure 33 with a logarithmic curve fit performed.

Density (g-L 1)

Time (hr)

Figure 32. Raw growth data collected for 4 different light intensities. The percentages
reported in the figure are light intensity with respect to 1500 pmoles-m2s™.
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Figure 33 Batch averaged growth data from small scale test reactor. Growth reported
in average 24 hour productivity in grams per liter of culture based on a 4 day batch
versus light intensity for the two volumes tested, 150 mL and 75 mL.

The data presented in Figure 33 has the same typical shape and characteristics of
traditional Pl curves. Equations to model Pl data have been presented in the literature.
The following section uses literature-based models to statistically evaluate the Pl data
collected from the small scale system used in this study. The Pl models of Smith(1936)
(1) and Webb et al. (1974) (2) were selected and fit to the baseline data (o= 0.933 g:s:m’
2.umol™?, P, =0.70 g-L™, Rg=-0.05 g-L ™).

al

/Przn+(a1)2

P=P, + Ry

(1)

—al
P =Pm(1—epm)+Rd
(2)
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Qualitatively results from this analysis show the data is of the expected shape.
For a more quantitative analysis, the data was compared to the two Pl models and the
natural logarithmic curve fit previously presented. The absolute average difference and
standard deviation (n=114) for the two literature models and the natural logarithmic
curve fit are: Smith (1936) 1 x1=0.0527 g-L"* and 6=.0419, Webb et al. (1974)I X I= -
0.131g-L"! and 0 =0.0430, and In curve fit | x| = 0.0484g-L"" and 6 =0.0455. This analysis
illustrates that both models accurately capture the data with Smith (1936) slightly over
predicting growth, Webb et al. (1974) slightly under predicting growth, and the natural
logarithmic curve representing the most accurate model. Thus the natural logarithmic
curve was used for predicting the growth of the large scale system presented in the
results section of the main document.

A statistical analysis presented of the three models, Smith(1936), Webb et al.

(1974), and the logarithmic curve fit, the logarithmic curve fit most accurately describes
the data with a coefficient of determination of 0.8519, an absolute average difference of
I x1=0.0484g L™ and a standard deviation of 6 =0.0455. This represents a strong

correlation considering the variability inherent in biological systems.

6.3.2 Large Scale Reactor Growth Data

Daily productivity data was collected from six-0.28 m deep and six-0.14 m deep
reactors over the course of 6 four day batches (three high light and three low light

growth scenarios) with productivity data presented in Table 17.
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The productivity per unit area of the system detailed increases by 66% with the
doubling of the depth of the reactors (doubling the volume). A Student’s t-test with
99% confidence interval was used to show the doubling of the depth of a reactor from

0.14 m to 0.28 m has a significant impact on the productivity.

6.3.3 Modeling- Large Scale Growth Based on Small Scale PI Data

The data collected in the small scale system was used to inform a Pl growth
model based on a core sample technique. The small scale data was used to generate a
Pl growth model as a function of light intensity based on a natural logarithmic curve fit,

eqn. 1, with A=0.1845 and B=-0.8283.

G()=AIn(I)+B (1)

To evaluate the core sample technique, the Pl growth model, egn 1, was used
to predicting the productivity (Piotal) Of the large scale system using light measurements
collected on the surface of the large scale reactor, I(x), as the primary input (2).

It was assumed for the high light scenario when all 10 lights where being used at
an angle of 5 degrees that the light intensity on all of the reactors was the same. The
light measurements for the high light scenario for the 0.28 m and 0.14 m deep reactors
are presented in Figure 34. The light intensity on the reactors for the low light scenario

was not uniform as presented in Figure 35.
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Figure 34. Light measurements for the high light scenario for the 0.28 m and 0.14 m
deep reactors with the water surface being zero and down into the basin being
positive.
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Figure 35. Light intensity on the 0.14 m deep reactors (left) and the 0.28 m reactors
(right) for the low light scenario.
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The light intensity on reactors 3 and 5 where not directly measured but assumed

to be the average of the surrounding reactors.

Protar = ) GU() = Y AIn(I(x) +B

area area (2)

The resulting predicted productivity of the large scale system based on the small
scale PI model was compared to the measured productivity for the evaluation of the

scalability of the core sample modeling technique Figure 36.
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Figure 36 Predicted 24 hour productivity in large reactors by Pl growth model based
small scale data versus measured 24 hour productivity in large scale reactors.

The absolute average deviation of the 24 hour predicted productivity compared

to the actual 24 hour productivity is | X1=0.060 g L. The application of the small scale P!
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growth model to accurately predict the large scale system under a variety of light

intensities is validated to this uncertainty.

6.4 Discussion

Previous characterization of microalgae has focused on the evaluation of
productivity potential as a function of light intensity in systems that are not
representative of large scale reactors. The small scale data collected in this study was
used to inform a Pl growth model that accurately predicts the productivity in a large
scale system without arbitrary scaling factors, illustrating the effectiveness of the core
sample technique in capturing productivity at scale. The following section details the
application of the data and model generated in this study to reactor design based on
diffuse versus direct light utilization, and presents a geometric optimization analysis of

the photobioreactor geometry presented.

6.4.1 Application of Data to Modeling and Evaluation of Photobioreactors

Photobioreactors have many advantages over open raceway ponds, one being
the ability to capture both direct and diffuse light (Li et al., 2008; Pulz, 2001; Richmond,
2004). Hu et al. (1996) illustrates the importance of considering diffuse light in outdoor
photobioreactor systems, however previous modeling efforts of photobioreactors
typically have not directly accounted for growth from diffuse light (Mairet et al., 2011,
Packer et al., 2010; Quinn et al., 2011). This study incorporates the effects of diffuse

light for future systems level modeling, design optimization, and evaluation efforts by
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collecting reactor relevant growth data at applicable outdoor diffuse and direct light

intensities.

6.4.1.1 Diffuse versus direct light growth

In comparison to open raceway ponds that collect strictly high light intensities, a
photobioreactor has a percentage of area that receives high light but a second area that
collects diffuse light (Hu et al., 1996; Qiang and Richmond, 1994). Diffuse light
represents an important component when considering the design and modeling of
photobioreactors due to the extended surface area inherent in their design. The data
presented can be used to make a high level assessment of extended surface area growth
in photobioreactors.

Direct sunlight at noon on a summer day is 2000 pmol m™ s™. By making the
assumption that diffuse light is 10% the intensity of direct sunlight (Gueymard, 2008),
the growth on a square meter of diffusely illuminated area compared to the same area
directly lit is 3.8 times less based on the data presented. Thus, in order to justify the
increased capital and operating costs of a photobioreactor based on productivity
increases from diffuse light collection, there must be significant area dedicated to
diffuse light capture.

The redistribution of high light to the low light portions of the reactor through
reflection or diffusion could have an impact on productivity by increasing the
photosynthetic efficiency of the system. Analysis of the data presented in Figure 33

shows that there is a significant increase in growth when light intensity is increased to a
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level of 500 umol m™ s™ with further increases in light intensity having diminished
returns in terms of productivity. The photosynthetic efficiency in the high light portion
of the reactor is low due to light saturated photosynthesis while the growth in the
diffusely illuminated portions are light limited with a high photosynthetic efficiency. An
increase in the light intensity in the diffusely illumined portion of the reactor from the
redistribution of high light will result in an overall increase in productivity based on the
logarithmic relationship between light and growth presented.

Redistribution of light in the 0.28 m deep reactors based on simulation could
increase the overall productivity to 33.9 g m?2d*(an increase of 19.6%). Redistribution
of light in the 0.14 m deep reactors would have minimal impact on the overall
productivity due to the already high intensity of light incident on both the front and
back surfaces. Analysis was performed for the redistribution of light based on
conservation of light and maximal productivity to show a depth of 0.51 m yields a
maximum productivity of 35 g m* d™. The potential to increase productivity combined
with other photobioreactor advantages make the redistribution of light in

photobioreactor architecture an area of increasing research and development.

6.4.1.2 Photobioreactor design evaluation and optimization

Utilizing the data presented, the question of what is the optimal depth for the
photobioreactor presented can be answered. For large scale application, typical growth
productivities are reported in the metric of grams per square meter per day. The

growth data collected in the large scale reactors was reduced to this metric for
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discussion purposes. In order to evaluate an optimum photobioreactor depth,
photobioreactors were constructed with a 0.56 m and 0.84 m depth and inoculated for
the purpose of measuring the light intensity on the surface of the reactors for the
highlight condition (see supplementary online material for light measurement data).
The growth in the deeper reactors can be predicting using the PI growth model coupled
with these light measurements and used to evaluate optimum reactor depth based on a
g m? d*! metric, Figure 37.

Increasing the reactor depth (diffusely illuminated portion) of the
photobioreactor indicates a global maximum based on the metric of total areal
productivity (g m?2d?). The growth data presented shows that increasing the reactor
depth and volume by a factor of 2, going from the 0.14 m to 0.28 m, yields an overall
increase in areal productivity of 66%. Increasing the depth and volume by a factor of 2
again, going from a depth of 0.28 m to 0.56 m, increases productivity by 6% onagm?d’
"metric. In evaluating this on a process level, the energy required for dewater linearly
scales with the volume processed based on centrifugation, thus the optimization of
photobioreactor geometry cannot be limited strictly to areal productivity but must be

integrated into a process level analysis for optimization on a systems level.
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An optimization analysis based on a maximal areal productivity was performed
based on the data presented in Figure 37 to determine an optimum reactor depth.
Results of the analysis illustrate an optimum reactor depth of 0.55 m corresponding to
an areal productivity of 33.0 g m>d™. This optimization does not consider the
redistribution of light on the photobioreactor surface.

In comparing the growth in g L' d™ as a function of increasing depth an
exponential decrease is observed. The 0.14 m deep reactors average productivityona g
L™ d! basis is 17.4% higher than the 0.28 m deep reactors, 56.2% higher than the 0.56 m
deep reactors, and 70.2% higher than the 0.84 m deep reactors. This increased
productivity rate could be important to consider in contexts of the robustness of a

culture to native invasive species.

6.4.2 Photic Reduction

In reactors that operate at relatively high density, the culture can be divided into
two different zones, the illuminated “photic” zone and the “dark” zone. For data
reduction it is then assumed that all growth can be attributed to the photic zone. The
photic zone is defined for this study by the penetration depth of the light based on a
cutoff light intensity of 15 pmole-m™-s™.

Previous modeling efforts have presented analysis and scale up of reactor data
based on the concept of a photic-volume (Molina et al., 2000). In an effort to evaluate

the scale up of the photic-volume concept the data presented in this study was reducing

173



using similar techniques presented by Molina et al. (2000). To determine the photic-
volume the penetration depth must be determined.

It is well accepted that light modeling in algal cultures increases in complexity
with increasing densities due to the potential effects of light scattering. A variety of
modeling efforts have made different assumptions regarding the overall impact of
scattering (Fernandez et al., 1997; Gitelson et al., 1996; Janssen et al., 2003; Kim et al.,
2002; Packer et al., 2010). A survey of the literature indicates ideal Lambert-Beer
assumptions will lead to erroneous conclusions at the culture densities studies. There
currently lacks sufficient data for light penetration effects at the densities studied for
Nannochloropsis salina. The modeling effort presented in this work directly measured
the light attenuation characteristics of Nannochloropsis salina cultures and used these
results to determine the penetration depth and in turn the photic-volume.

To determine the light penetration depth experimental data was collected at
three different densities and in three different sized culture vessels. Experimental
setup and results for determining the light penetration depth is presented in the
supplementary material. It is interesting to note that the results from this
experimentation show that Lambert-Beer assumptions do not apply which is supported

by literature (Fernandez et al., 1997).

6.4.2.1 Penetration Depth

As illustrated in the literature Lambert-Beer law is not applicable for modeling

local light intensities in high density cultures (Fernandez et al., 1997). Due to a lack in
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published data the attenuation characteristics of high density Nannochloropsis salina

was determined experimentally.

6.4.2.1.1 Materials and Methods

In order to evaluate the attenuation characteristics of Nannochloropsis salina, an
experiment was conducted measuring the light intensity that passes through a know
culture depth. The depth of the culture was continually increased with light
measurements taken at each depth increase. This process was done in three different
sized beakers, 200 mL, 100 mL, and 80 mL with three different densities tested, 2.07 g-L’
! 3.28 g-L-1, and 4.87 g-L™. A schematic of the experimental setup is presented in Figure

38.
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Figure 38. Schematic for attenuation experimentation.

The light was measured using a Heinz Walz US-SQS/L spherical PAR sensor
(Effeltrich, Germany) connecter to a LI-COR L1-250A light meter (Lincoln, NE).
[llumination of the system was done using a Sun Systems Yield Master Il Classic (Denver,
CO) with a 1000 watt Hortilux-Blue daylight metal halide grow lamp (Mentor, OH).

Results

6.4.2.1.2 Results

Preliminary data reduction illustrated a logarithmic relationship in light
attenuation, however not linear as Lambert-Beer would predict. In the reduction of the
data each beaker had a different “dark” light measurement due to the geometry of the

lip of the beakers. This offset was subtracted from the measured values. The depth of
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the culture was determined in technical triplicate with calipers. The data was reduced

and fit with a quadratic curve fit, Figure 39.

-3
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Figure 39. Results from absorption characterization experimentation. Data is from
three densities all tested in three different beaker sizes.

A quadratic curve fit was used to more accurately represent the data. The
reduction of the data presented in the main document on the metric of photic volume
was done based on the results of this experimentation with a surface area of 0.0047 m>.
The surface area was calculated based on the fluid geometry of the reactors in motion.

Assuming that all of the growth in the small scale reactors is attributed to a
photic-volume (defined by the illuminated surface area of the microalgae and the
penetration depth), results for the baseline and half volume data is presented in Figure

40.

177



1200 1

+ *
od ;

1000 - N —
— D
€ : ' * S
a0 800 . + 1 + a + I:+ +ﬂ +
:E' + + D o «+ + 40
= G800 |- + oo + i
% L ot o
9 *tt[& _‘+ﬂ+ [m] fa ]
b0 400 o .. = -
- + + +
> 4 b *
o) + e
= 200 ¢ § ong -
=t o
ol

0
o + baseline (150 mL)
O half volume (75 mL)
-200 : !
0 So00 1000 1500

Light Intensity (umoles-m=~2-s1)

Figure 40. Plot of baseline (150 mL) and half volume (75 mL) small scale growth data
reduced based on attributing the growth to a photic-volume defined by the surface
area of the reactors and a light penetration depth. The average productivity based on
a 4 day batch is presented in grams of microalgae per cubic meter of photic-volume.

The data presented in Figure 40 shows that on a small scale photic-volume
growth can be used to accurately predict the growth in a slightly larger reactor. To
further investigate the scaling of the concept of photic-volume growth data, the large
scale growth data previously presented was similarly reduced using the concept of
photic-volume growth.

A growth model based on the small scale data presented in Figure 40 was used
to predict the growth in the large scale system. To accurately represent the small scale
system a natural logarithmic curve was fit with a coefficient of determination of 0.768.
This model with the measured light intensities of the large scale system was used to
predict the growth of the large scale system. The results of the predicted versus
measured growth are presented in Figure 41.
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Figure 41. Predicted 24 hour productivity in large scale reactors based on natural
logarithmic model of small scale growth data
(Figure 40) versus measured 24 hour productivity in large scale.

Analysis of the error involved in photic-volume modeling of the growth in the
large scale reactors based on the small scale data is 46.4%. This shows that scaling the
small scale data to predict the large scale growth based on photic-volume significantly
overestimates the large scale growth.

An analysis was performed to evaluate the scaling of the :x reactor data to
predict the growth in the 1x reactors. A natural logarithmic curve was fit to the %x
reactor growth data reduced using the concept of photic-volume growth and used to
predict the growth in the 1x reactors. An analysis of the error involved with this type of
scaled modeling showed an absolute average over prediction of 22.7% (see
supplementary material for figures). This combined with the results presented in Figure
41 illustrates the limited application of the scaling of photic-volume growth data.
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6.4.2.2 1/2x reactor predicting 1x reactor growth

6.4.2.2.1 photic data reduction

A similar analysis was performed as previously detailed to look at the accuracy of
the %x reactor data reduced using the concept of photic-volume to predict the growth
in the 1x reactors. The %x reactor growth data was reducing using the previously

detailed photic-volume concept with a natural logarithmic curve fit, Figure 42.
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Figure 42. . %2x reactor photic growth data with a natural logarithmic curve fit. Photic

growth data is 24 hr batch averaged growth based on a 4 day batch plotted against
average light intensity on the surface of the reactors.

The natural logarithmic curve fit has a coefficient of determination of 0.138. The
measured light on the surface of the 1x reactors was input into the curve to predict the
growth. The predicted versus actual 24 hour batch average photic growth based ona 4

day batch is presented in .
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Figure 43. Predicted 24 hour photic growth in 1x reactors by ¥:x photic data versus
measured 24 hour photic growth in 1x reactors.

An analysis of the absolute error is scaling the % x reactor data to predict the 1x

reactor growth is an absolute average under prediction by 64.4%.

6.4.2.2.2 g-L-1data reduction

As previously detailed the scaling of the %x reactor data to predict the 1x reactor

data was evaluated. A natural logarithmic curve was fit to the ¥x reactor data Figure 44.
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Figure 44. %:x reactor growth data with a natural logarithmic curve fit. Growth data is
24 hr batch averaged growth based on a 4 day batch plotted against average light
intensity on the surface of the reactors.

The natural logarithmic curve fit has a coefficient of determination of 0.661. The
measured light on the surface of the 1x reactors was input into the curve to predict the
growth. The predicted versus actual 24 hour batch average growth based on a 4 day

batch is presented in Figure 45.
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Figure 45. Predicted 24 hour productivity in 1x reactors by %x data versus measured
24 hour productivity in 1x reactors.

The scaling of the :x reactor data to predict the productivity in the 1x reactors is

accurate with an error absolute average error | X1=0.067 g-L™.

6.5 Conclusions

For the purpose of photobioreactor evaluation and design optimization at large
scale, this study presents the experimental results from two growth platforms and the
resulting validated large scale growth model incorporating diffuse and direct light
characterization for Nannochloropsis salina. The data collected from the small scale test
reactors, designed to represent a core sample of a large scale photobioreactor, is used
to generate a Pl growth model that incorporates diffuse and direct light effects. The

scalability of the Pl growth model is validated with growth data from two geometrically
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different large scale photobioreactors operated at a variety of light intensities. The
resulting validated large scale growth model is then used for design optimization and
evaluation of large scale photobioreactors. An evaluation of diffuse light growth
compared to direct light growth for large scale outdoor photobioreactors based on the
data collected indicates the growth in the diffuse portion of the reactor is significantly
lower than that in the directly illuminated portion. Optimization of the reactor
geometry based on the Pl growth model show on an areal metric an optimum depth of
0.55 m corresponding to an areal productivity of 33.0 g m™ d™ can be achieved for the

system presented.
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Chapter 7-Conclusions

The renewed interest in microalgae biofuels based on energy uncertainty has
lead to the need for more detailed analysis to critically evaluate the microalgae to
biofuels process. This dissertation presented a literature review of the current status of
life-cycle assessments and growth modeling which confirms the need for more detailed
and more accurate modeling of the microalgae process for integration into system level
assessments. Current large scale modeling efforts use laboratory based growth and
process data to evaluate microalgae at large scale that inevitably misrepresent
microalgae potential and has lead to erroneous conclusions around scalability,
productivity potential, and environmental impact. The models and analysis presented in
this dissertation are experimentally validated with large scale systems and used to
critically evaluate the microalgae to biofuels process in more detail than any other work
to date. The work presented in this dissertation can be broken down into three
components, each uniquely add significant knowledge to the field of microalgae

biofuels:

1. Modular engineering process model used for life-cycle assessment
2. Aliterature based bulk growth model used to evaluate the current

productivity potential in the US
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3. Adetailed growth model incorporating diffuse and direct light characteristics

used for design optimization and evaluation.

7.1 Engineering Process Model and LCA

The LCA presented is based on an engineering model that goes into more detail
than any previous work, was built modular for evaluation of alternative processes, and
utilized consistent boundaries to more accurately represent the current near term
realizable environmental impact of a large scale photobioreactor growth facility.

Biofuels derived from microalgae have the potential to replace petroleum fuel
and first-generation biofuel, but the efficacy with which sustainability goals can be
achieved is dependent on the lifecycle impacts of the microalgae-to-biofuel process.
This dissertation work presents a detailed, industrial-scale engineering model for the
species Nannochloropsis using a photobioreactor architecture constructed to accurately
represent the biofuels process from growth to transportation and distribution of fuel.
The purpose of the detailed engineering process model of the microalgae growth,
harvest, and extraction phases is to describe the material inputs, material outputs, and
types and amounts of energy consumed in the microalgae feedstock processing stages
based on a large scale facility (315 hectares). The temporal unit for evaluation of the
process is 1 year. The engineering model incorperates waste heat recovery, recycling of
materials through out the process to accuraly represent the current technologies. The
engineering model is integrated with a lifecycle energy and greenhouse gas emissions

analysis compatible with the methods and boundaries of the Argonne National
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Laboratory GREET model, thereby ensuring comparability to preexisting fuel-cycle
assessments. Results are used to evaluate the net energy ratio (NER) and net
greenhouse gas emissions (GHGs) of microalgae biodiesel in comparison to petroleum
diesel and soybean-based biodiesel with a boundary equivalent to “well-to-pump”.
Results from this study show that microalgae biofuels outperform soy based biodiesel
on the metric of NER and GHG. The scalability of the consumables and products of the
proposed microalgae-to-biofuels processes are assessed in the context of 150 billion
liters (40 billion gallons) of annual production showing potential problems with nitrogen

consumption and glycerin production.

7.2 Bulk Growth Modeling

The novelty behind the literature based bulk growth model is the detailed
construction and validation using outdoor large scale growth data at a variety of light
and temperatures. This validated model was then used to significantly advance the
current methods for evaluating productivity potential. A dynamic map critically
evaluate the geographical potential of microalgae based on real meteorological effects
was generated using 15 years of hourly historical data and GIS land availability and slope
representing a new frontier in evaluating large scale growth locations. The data
presented from the thermal growth model when compared to current large scale
productivity potentials reported in literature shows the majority of the studies surveyed

over estimate the current near term realizable microalgae productivity potential.
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Scalability results do show microalgae do scale to 2030 DOE alternative fuel goals with

Texas having the productivity potential of Arizona, New Mexico, and Hawaii combined.

7.3 Diffuse Versus Direct Light Evaluation

The diffuse versus direct light growth characterization presented is the first
instance where small scale growth modeling has been used to accurately represent a
large scale system without arbitrary scaling factors. This work presents a core sample
technique for characterizing microalgae growth as a function of light intensity that is
applicable to reactor design and evaluation. The work is novel by characterizing the
growth of Nannochloropsis sp. based on reactor relevant growth configurations and
applying that to photobioreactor optimization.

Data was collected from small scale test reactors, designed to represent a core
sample of a large scale photobioreactor, used to generate a Pl growth model that
incorporates diffuse and direct light effects. The scalability of the PI growth model
based on the small scale test configuration was validated with growth data from two
geometrically different large scale photobioreactors operated at a variety of light
intensities. The resulting validated large scale growth model was then used for design
optimization and evaluation of large scale photobioreactors. An evaluation of diffuse
light growth compared to direct light growth for large scale outdoor photobioreactors
based on the data collected indicates the growth in the diffuse portion of the reactor is

significantly lower than that in the directly illuminated portion. The results from this
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study indicate natural diffuse light does not have the impact as previously reported in

literature and adapted into PBR design.

7.4 Dissertation impact

The experimentally validated modeling efforts presented in this dissertation are
designed and used to accurately represent the current near term realizable microalgae
potential and environmental impact. Models are built transparently and validated to
show where microalgae biofuels are today in terms of environmental impact,
productivity potential, and reactor evaluation. The work presented significantly
contributes to the field of microalgae biofuels by realistically evaluating growth through

experimentally validated models with novel scaling techniques presented.

189



Chapter 8- Future Work in Feasibility of Large Scale Production

To date my research has focused on the evaluation of the microalgae to biofuels
process and the optimization of growth systems with published results on Life-Cycle
Environmental Assessment, Growth Biology Kinetics, and Growth Systems Modeling.
The following is a summary of my research experience, focus, objectives, and strategies

presented in this work. The summary is followed by three future research proposals.

The research presented can be summarized with the following research charge.

RESEARCHERS HAVE SHOWN THAT THE SYSTEM SCALE ECONOMIC AND
SUSTAINABILITY PERFORMANCE OF MICROALGAE BIOFUELS IS DEPENDANT ON THE
CONSUMPTIONS AND PRODUCTS OF THE MICROALGAE DURING THE FEEDSTOCK
STAGES. IN ORDER TO QUANTIFY THE SENSITIVITY OF MICROALGAE FEEDSTOCK
GROWTH AND PROCESSING ON SYSTEM-SCALE PERFORMANCE METRICS WE MUST
CONNECT HIGH-LEVEL MODELS OF MICROALGAE GROWTH (VALIDATED THROUGH
EXPERIMENTAL GROWTH DATA) AND PROCESSING TO THESE SYSTEM-SCALE

PERFORMANCE METRICS.

This charge breaks down into the following three primary research topics. Each

topic details the research work done, currently being untaken, and future efforts.
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8.1 The Potential Productivity and Feasibility of Large Scale Microalgae

Production in the US

Evaluation and feasibility of mass production of second generation biomass
feedstocks for the production of non-petroleum based fuels is a key component to the
current R&D path set forward by DOE. Current microalgae productivity reported in
literature range from 12 m>-ha™.yr' reported by Schenk et al. to 184.0 m*-ha™-yr*
reported by Yeang (Schenk et al., 2008; Yeang, 2008). Gouveia and Oliveira, Huntley and
Redalje , Rodolfi et al., Sheehan et al., Wijffels and Barbosa, Clarens et al., and Chisti
report values between these extremes (Chisti, 2007; Chisti, 2008; Chisti, 2008; Clarens
et al., 2010; Huntley and Redalje, 2007; Sheehan et al., July 1998; Wijffels and Barbosa,
2010). The majority of the productivity potentials reported are based on small scale
laboratory data which do not relate to large scale or, more importantly, incorporate
meteorological or season effects on microalgae productivity.

| developed and validated a bulk growth model that enabled the generation of a
dynamic map for the realistic near term production potential of microalgae in the US,
Figure 47. The map was constructed utilizing a validated bulk growth model. The bulk
growth model is founded in literature and incorporates 16 species specific
characteristics and a reactor configuration that utilizes light and temperature as primary
inputs. The model was then validated with experimental data, utilizing 9 weeks worth
of light, temperature, and growth data from a large scale outdoor photobioreactor

operated in batch mode, Figure 46.
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Figure 46. Plot of model output (Model), institute OD sensor (Sensor), and manual
sample performed daily (Manual Sample) in reactor A at high light (June 13-18) and in
reactor B at low light (November 11- 16). Some sensor data has been removed due to

sensor maintenance.

The integration of this model with a thermal basin model and historical weather
data from various locations across the US was used to generate a dynamic map

illustrating current the biomass and lipid productivity potential (Quinn et al., 2010).
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Figure 47. Biomass productivity potential of the US generated using validated bulk
growth model including thermal effects. Plot generated using 15 years of historical
weather information from 788 Continental US location.

My current research effort is dedicated to using the growth model to evaluate
day to day logistic operations of a large scale microalgae facility. Multiple factors will
affect the operations of large scale facilities including but not limited to microclimates,
geographical location, diurnal variation, meteorological phenomenon, harvesting
scheme, and species contamination. Evaluation of these factors can be done
computationally utilizing this bulk growth model. The bulk growth model incorporates
the effects of light, temperature, and species specific characteristics to accurately
predict microalgae biomass growth and lipid accumulation. Incorporating this model
with a systems level process flow model will enable the evaluation of current and

proposed processing technologies on a large scale.
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In an effort to continue to evaluate the scalability and footprint of large scale
production, | am proposing a future research project to evaluate the integration of
waste water streams with microalgae cultivation.. Researchers have shown that, on a
small scale, microalgae have the potential to have a major impact as a second
generation biofuel, however there are key roadblocks, a major one being scalability. My
scalability analysis of an engineering growth model shows that at large scale the
nutrient requirements are astronomically high and will require the utilization of waste
streams (Batan et al., 2010).

Currently, few commercial facilities are utilizing commercial nitrogen or CO;
waste streams. It is imperative to establish if there is a detrimental effect on microalgae
growth from commercial waste nitrogen or CO, exhaust. This study proposes the use of
a variety of nitrogen and CO; sources, including coal fired power plant exhaust, CO,
from amine plant, CO, from the brewing of beer, nitrogen from extracted biomass,
nitrogen from secondary treated wastewater, etc.

The results from this experiment will be incorporated into a modeling effort that
will enable a more realistic evaluation of the commercial production of microalgae from
commercial nitrogen and CO, waste sources. A full proposal of this work is presented

at the end of this summary.
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8.2 Net Energy and Greenhouse Gas Emissions Evaluation of Biodiesel Derived

from Microalgae

Microalgae Biofuels have the potential to replace petroleum fuels and first-
generation biofuels, but the efficacy with which sustainability goals can be achieved is
dependent on the lifecycle impacts of the microalgae-to-biofuel process (Chisti, 2007;
Wijffels and Barbosa, 2010). One charge of my research has focused on the
environmental assessment of the microalgae to biofuel process as compared to
conventional diesel sources through Life Cycle Assessment. In order to describe the
environmental impact (net energy and green house gas impacts) of microalgae
biodiesel, a | have constructed a valid, extensible, and internally consistent model of the
materials inputs, energy use, and products for the process. The three primary
components of this model are: a detailed engineering process simulation of microalgae
from growth through extraction, a more generalized model of microalgae from
conversion to end use, and an integrated calculation of net energy and greenhouse gas
(GHG) emissions due to impacts from the inputs, outputs, processes, and co-product
allocation for the microalgae biodiesel production. This study was built on academic
literature, industrial consultation, and pilot plant experience of microalgae feedstock
processing to generate a model of net energy and GHG emissions of the microalgae-to-
biofuel process.

Maintaining a consistent LCA boundary, the microalgae to biofuel process was
compared to soy based biofuels as well as conventional diesel in terms of net energy
ratio (NER) and GHG emissions . The fundamental results of the study show microalgae
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have a NER of 0.93 MJ/MJ compared to soy at 1.64 MJ/MJ and on a GHG basis
microalgae realize a -75.29 gCOz_F_‘q-I\/IJ'1 reduction with soy at -71.73 gCOz_eq-I\/IJ'l. A
sensitivity analysis highlighted the importance of understanding the kinetics of
microalgae growth, nutrient, and water consumption (Batan et al., 2010).

This analysis illustrated the need for the evaluation of direct Nitrous Oxide (N,O)
emissions from microalgae. | am currently involved in the design and implementation of
an experiment to evaluate N,O emissions from microalgae. These emissions are yet
unknown and could represent a major environmental impact due to the amount of
fertilizer required for growth coupled with the high (299 CO,eq) global warming
potential of N,O. Previous LCA studies have ignored or assumed N,O emissions to be
negligible (Aresta et al., 2005; Batan et al., 2010; Campbell et al., 2010; Clarens et al.,
2010; Lardon et al., 2009; Stephenson et al., 2010). The experiment being conducted
cultivates microalgae in 2 L Erlenmeyer flasks intended to simulate the cultivation
conditions in a large scale closed photobioreactor. Theoretical calculations using the
Intergovernmental Panel on Climate Change (IPCC) standards for terrestrial crops (1% of
available nitrogen is converted into N,0) suggest that N,O concentrations of up to 120
ppm would be expected. Initial results show N,O concentration accumulated in the
headspace over an 8 hour period on the order of 60+.2ppm above atmospheric N,O
levels, indicating that under normal growing conditions, microalgae do produce the
same level of N,O as terrestrial plants. Further experimentation is being conducted to
determine the cultivation conditions under which N,O emissions might be elevated or

suppressed.
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I am proposing a more detailed LCA project that incorporates these experimental
results and utilizes the validated bulk growth model presented above. This project
would more accurately represent the growth potential based on geographical location
by adapting the already validated bulk growth model instead of scaling single laboratory
based growth data as previous studies have done (Aresta et al., 2005; Batan et al., 2010;
Campbell et al., 2010; Clarens et al., 2010; Hirano et al., 1998; Lardon et al., 2009). The
bulk growth model presented will be integrated into a systems level model of the
microalgae to biofuel process and capture growth, lipid, protein, and carbohydrate
composition of the biomass produced. The bulk growth model integrated with historical
weather data will enable a realistic realizable location specific annual evaluation that
incorporates variability of microalgae composition and its effects on product and co-
product allocation inherent in a LCA. This study also proposes the use of recent N,0O
experimental data to more accurately represent the evaluation of the energy burden
required for the suppression of N,O, and the environmental impact comparison of
photobioreactors and open raceway ponds.

A full proposal of this work is presented at the end of this summary.

8.3 Direct versus Diffuse Light Utilization-Design Optimization though

Experimentally Validated Models

Previous research efforts developed models of microalgae growth that use a 1*
order model of light absorption within the algae reactor. This has limitations in terms of

the understanding that can be gained and also in terms of the applicability of these
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models to the engineering challenges that are in reactor design today. | have
undertaken three primary tasks to look at the design optimization of light utilization in
photobioreactors. The first task was the generation of photosynthetic irradiation (PI)
data curves of Nannochloropsis salina based on a photic volume growth metric, Figure
48 (Quinn et al.,, 2010). Researchers have developed Pl curves for various species,
however the time scales the collected data do not facilitate accurate growth modeling
or application to large scale outdoor systems (Coutinho and Yoneshigue, 1988; Furuya et
al., 1998; Lizotte and Sullivan, 1991; Macintyre et al., 2002; Sorokin, 1957; Williams and
Laurens, 2010). The data presented in Figure 48 was generated by designing, building,
and monitoring a small scale growth system that was representative of a large outdoor

system.
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Figure 48. Experimental growth data at two different culture volumes normalized to
active photic volume and logarithmically curve fit. Data presented is batch averaged
growth collected over a 5 day period in biological triplicate.
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The second task is the integration of the Pl data with growth and geometry
modeling. Using the concept of an active photic volume, | compared, head to head,
different growth architectures. Finally, this model was validated utilizing data attained
from a secondary experimental apparatus designed to directly evaluate growth as a
function of reactor geometry.

The initial modeling and data presented illustrates the potential impact of
improving light utilization through altering the distribution of high intensity natural light
to diffusely lit portions of photobioreactors. My recent publication of productivity in an
outdoor scalable photobioreactor shows that current productivity is well below the
mean of theoretical potential (Quinn et al.,, 2010). For microalgae to be achieving
expected theoretical productivities, the light utilization must be improved through
innovation. The research | propose here would be an initial step towards improving the
light utilization thus improving the productivity of microalgae.

My proposed research would utilize preexisting growth concepts to directly
improve the overall productivity of photobioreactor cultivated microalgae. The core
concept of is the redistribution of high intensity light such that the reactor operates at a
higher overall efficiency. Wasted light impingent on the directly illuminated portion of
the photobioreactor can be reflected onto the diffusely illuminated portion of the
photobioreactor adjacent. The increased light intensity with dramatically improve the
overall productivity of the diffusely illuminated portion of the reactor with the directly

illuminated portion of the reactor taking a minor hit in productivity, Figure 48.
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This research would build on fundamental growth concepts previously detailed
in literature. The project would enable the initial evaluation of advance light altering
photobioreactors prior to intensive capital investment in materials research. A full

proposal of this work is presented at the end of this summary.

8.4 Research Proposal-Integration of Microalgae Growth Utilizing Commercial

CO2 and Nutrient Sources

8.4.1 Background

Microalgae have several environmental, sustainability, and economic benefits,
when compared to first-generation biofuel feedstocks (Batan et al., 2010). Microalgae
are characterized by higher solar energy yield, year-round cultivation, the use of lower
quality or brackish water, and the use of less- and lower-quality land (Brown and Zeiler,
1993; Dismukes et al., 2008; Li et al., 2008; Posten and Schaub, 2009; Raja et al., 2008;
Williams et al., 2009). The theoretical maximum production of oil from algae has been
shown to be 354,000 L-ha-1-year-1 (38,000 gal-ac-1-year-1) (Weyer, 2009). Pilot plant
facilities and scalable experimental data have shown a near term realizable production
of 46,000 liters/(hectare*yr) (5000 gal/(acre*yr)), compared to 2,533 liters/(hectare*yr)
(271 gal/(acre*yr)) of ethanol from corn or 584 liters/hectare/yr (62.5 gal/(acre*yr)) of
biodiesel from soybeans (Ahmed et al., 1994; Chisti, 2007; Pimentel, 2005; Pradhan et
al., 2008; Weyer, 2009; Yeang, 2008).

A detailed industrial-scale engineering model for the growth of the species

Nannochloropsis using a photobioreactor architecture has been built. The engineering
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model builds on academic literature, industrial consultation, and pilot plant experience
of microalgae feedstock processing to generate a model

Thus the model produced is valid, extensible, and internally consistent. The
primary output of the model is the material inputs and material outputs from the

microalgae growth process.

8.4.2 Engineering Growth Model

The baseline model of microalgae to biodiesel process is based on a 315 hectares
(776 acres) facility, which includes photosynthetically active and built areas. The
temporal unit for evaluation of the process is 1 year.

Two primary architectures for mass-culture of microalgae have been proposed:
open raceway ponds (ORP) and photobioreactors (PBR). PBR cultivation has advantages
over ORP in they can achieve higher microalgae densities, higher productivity, and
mitigate contamination. Current technological advances have reduced the capital and
operating costs of PBRs making them more appealing as a commercially viable system
(Richmond, 2004).

The microalgae strain Nannochloropsis salina was selected and modeled because
of its high lipid content and high growth rate. Under the conditions of the Colorado
State University pilot plant scale reactor system, Nannochloropsis salina can achieve a
lipid content of 50% by weight (Emdadi and Berland, 1989; Fabregas et al., 2004; Suen
et al., 1987), and an average annual growth rate of 25 g-m'z-day'1 (Boussiba et al., 1987;

Gudin and Chaumont, 1991; Suen et al., 1987). The use of these validated data for this
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study is conservative and proper, considering that under laboratory conditions,
Nannochloropsis can attain lipid percentages of 60% by weight and growth rates of 260
mg-L™-hr" or 150 g-m™-day ™ extrapolated to the system modeled (Richmond et al.,
2003; Rodolfi et al., 2009). The nitrogen and phosphate content of the microalgae are
defined as 15% and 2% by mass according to biological growth requirements and lipid
productivity research (Arrigo, 2005; Redfield, 1958; Rodolfi et al., 2009). The salinity of
the system is set at 20 g-L™* (Abu-Rezq et al., 1999). CO, enriched air (2% CO,) is sparged
through the bioreactor to provide carbon and active mixing of the culture. The
difference between precipitation and evaporation results in water losses of 2.5 cm-day™
(1in-day™) from the water bath that supports the reactors (Smith et al., 1994). The
polyethylene PBR bags are replaced at 5 year intervals. Diesel is used to fuel
transportation on the facility for maintenance and inspection. The material inputs, and

material outputs for the growth model are detailed in Table 1.
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Table 18. Summary material and energy inputs and outputs for the baseline
microalgae growth
process for a period of 1 year

VALUE UNITS
STAGE/Inputs
GROWTH STAGE
Photosynthetic area per facility area 0.80 ha-ha™
Salt consumption 134 g-(kg dry
algae)™
Nitrogen fertilizer consumption 147 g-(kg dry
algae)™
Phosphorus fertilizer consumption 20 g-(kg dry
algae)™
Polyethylene consumption 1.17 m*ha™
Diesel fuel consumption 10 L-ha™
Electricity consumption 41,404 kWh-ha™
Microalgae biomass yield 91,000 kg-ha™

The Energy Policy Act of 1992 directed the US Department of Energy to evaluate
the goal of replacing 30% (~150 billion liters) of the transportation fuel consumed in the
US by 2010 with replacement fuels. In March of 2007 this goal was deemed
unreachable and the deadline for fuel replacement was changed to 2030 (Department
of Energy, 2007). Algae-based biofuels are purported to be the most scalable of the
biofuel processes currently available (Chisti, 2007). The baseline growth model was
scaled assuming realistic extraction efficiencies to determine the feasibility of producing

on a large scale.
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Table 4 illustrates the need for the evaluation of the cultivation of microalgae
utilizing CO, from commercial facilities and need for the evaluation of alternative

nitrogen sources. Alternative sources of nitrogen and water, including wastewater (Yun et al.,

1997) or anaerobic digestion for nitrogen recovery from the extracted biomass (Chisti, 2008) have
been proposed but there lacks physical growth evidence to the effect of such changes on

microalgae.

8.4.3 Research Question

Based on the preliminary results, a primary research question can be posed:
How does the integration of commercial CO, exhaust gases and nitrogen from
wastewater treatment plants effect the overall design and performance of a microalgae

growth system?
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Table 19. Scalability metrics derived from the baseline microalgae to biofuels process
model scaled to a production of 40 billion gallons per year of microalgae biodiesel

Value
Scalability Metric

Notes

4.41x10° hectares
Land Required
(1.09x10’ acres)

CO, Consumption 8.17 x10" kg-a™

5.07 x10" L-a™
Water Consumption
(1.34 x10* gal-a™)

Nitrogen Consumption 4.71 x10" kg-a'1

150 x10° L-a™

Algae Biodiesel Production
(40 x10° gal-a™)

16% of Colorado Land Area
(0.45% of US Land Area) (U.S.
Census Bureau, 2009)

32% of CO, from US power
generation (Energy Information
Administration, 2007)

27% of Colorado river annual
flow (Reisner, 1993)

1900% of US urea production
(U.S. Census Bureau, 2009)
18% of US Transportation
Energy Sector (Energy
Information Administration,

2009)

8.4.4 Research Tasks

The research can be broken down into four primary tasks, (1) design and

optimization of a growth system for integration of alternative CO, and nutrient sources,
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(2) modeling of gas absorption kinetics, (3) Environmental assessment of alternative

nitrogen sources, (4) optimization of the system to maximize CO, utilization.

8.4.5 Research Impact

Evaluation and feasibility of mass production of second generation biomass
feedstocks for the production of non-petroleum based fuels is a key component to the
current R&D path set forward by DOE. Researchers have shown on small scale
microalgae have the potential to have a major impact on as a second generation
feedstock, however there are key roadblocks to commercialization, including scalability.
Currently few commercial facilities are utilizing commercial CO; exhaust. It is imperative
to establish if there is a detrimental effect on microalgae growth from commercial CO,
exhaust. This study proposes the use of a variety of CO, sources, including coal fired
power plant exhaust, CO, from the brewing of beer, CO, from amine plant, etc. A
kinetics model of the interactions from other gases present in exhaust gases will help to
pinpoint any build up of potential toxins in the growth media. The results from this
experiment and modeling effort will enable a more realistic evaluation of the
commercial production of microalgae from commercial CO, sources. The utilization of
CO, would also be evaluated. The Aquatic Species Program attained a CO, utilization of
greater than 90%, however it represented an energy intensive process. The recycling of
headspace gasses in closed photobioreactors represents a more economically appealing
solution. This study would look into the feasibility of obtaining low cost high CO,

utilization.
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The integration of non-traditional nutrient sources is a key milestone to the
success of microalgae at large scale. Currently, microalgae biomass is produced in the
laboratory or pilot plant facility so the nutrient load is not significant. As illustrated in
the scalability of the engineering growth model, at large scale the nutrient requirements
are astronomically high. The integration of wastewater nutrients with microalgae have
been done previously, however not for the end goal of biofuel. A primary focus of this
study is to actually integrate the utilization of nutrients from wastewater in the growth
of microalgae currently being researched for cultivation for the production of biofuels.
This study would aim to then evaluate the ease of integration at scale.

This study would also generate a preliminary model to evaluate the
environmental impact of recovery of nitrogen from extracted biomass. The recycling of
nitrogen from extracted biomass could represent a more energy intensive process then
the direct manufacturing of fertilizer on a life-cycle assessment metric. The
development of a detailed engineering model capturing the materials and energy
required for the recycling of internal nitrogen in the biomass would enable the

environmental evaluation of the process.

8.4.6 Summary

Microalgae cultivation is the subject of research funding from DOE, DOD, NSF,
C2B2, and others. The integration of commercial CO2 exhaust and alternative nutrient
sources is a new frontier and represents a key hurdle in the large scale

commercialization of microalgae to biofuel.
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8.5 Research Proposal-Net Energy and Life Cycle Assessment of Current

Microalgae Cultivation Systems

8.5.1 Background

The next generation of biofuel feedstocks must be critically analyzed to
determine their energetic and greenhouse gas (GHG) emissions impact while
considering scalability to a significant level of production. Compared to first-generation
biofuel feedstocks, microalgae are characterized by higher solar energy yield, year-
round cultivation, the use of lower quality or brackish water, and the use of less- and
lower-quality land (Brown and Zeiler, 1993; Dismukes et al., 2008; Li et al., 2008; Posten
and Schaub, 2009; Raja et al., 2008; Williams et al., 2009). Researchers have shown that
microalgae feedstock cultivation can be coupled with combustion power plants or other
CO, sources to sequester GHG emissions and has the potential to utilize nutrients from
wastewater treatment plants (Li et al., 2008). The theoretical maximum production of
oil from microalgae has been calculated at 354,000 L-ha™*-a™ (38,000 gal-acre *-a™)
(Weyer et al., 2009), but pilot plant facilities and scalable experimental data have shown
a near term realizable production of 46,000 liters-hectare™-a™ (5000 gal-acre™-a™),
compared to 2,533 liters-hectare™-a™ (271 gal-acre™-a™) of ethanol from corn or 584
liters-hectare™-a™* (62.5 gal-acre-a*) of biodiesel from soybeans (Ahmed et al., 1994;
Chisti, 2007; Pimentel, 2005; Pradhan et al., 2008; Yeang, 2008).

Life cycle assessment (LCA) is the fundamental tool that has been used to

evaluate the sustainability of biofuels. Although LCA is a well recognized method,
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published standards are incomplete and are not widely adhered to (Delucchi, 2004).
The LCA literature makes use of the metrics of net energy ratio (NER, defined here as
the ratio of energy consumed to fuel energy produced) and GHG emissions per unit of
energy produced as the functional units for comparison purposes. The results from LCA
are highly sensitive to definitions of system boundaries, life-cycle inventories, process
efficiencies, and functional units (Farrell et al., 2006; Hill et al., 2006; Pimentel, 2005).
LCA studies often include various NER definitions, key parameter values, sources of
fossil energy, and co-product allocation and displacement methods, complicating
comparisons among studies and policy synthesis (Davis et al., 2009; Farrell et al., 2006;
Hill et al., 2006; Kim and Dale, 2002; Pimentel, 2005; Sheehan et al., 1998).

Current Life-cycle Assessment Modeling

LCA is a fundamental tool that has been used to evaluate the sustainability of
biofuels. The results from LCA are highly sensitive to engineering model assumptions,
definitions of system boundaries, life-cycle inventories, process efficiencies, and
functional units. Increasing interest in microalgae as a secondary feedstock for
transportation fuels has lead to multiple LCA studies. Inherent in these studies is an
engineering model of the microalgae to biofuels process which incorporates a growth
model.

The majority of the microalgae LCA published to date utilize a simplistic growth
model based on a daily productivity number obtained from a small scale laboratory
growth facility. Large scale productivity over an entire year is then calculated based on

this laboratory based number. Batan et al. 2010, Lardon et al. 2009, Hirano et al. 1998,
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and Campbell et al. 2010 all use a fixed growth rate between 10-30 g-m*d™* (3.6-10"
11.0-10* kg-ha™-yr'!) in their growth models (Batan et al., 2010; Campbell et al., 2010;
Hirano et al., 1998; Lardon et al., 2009). Clarens et al. 2010 scaled productivity data
collected in open raceway ponds which was normalized to incident PAR on a monthly
time scale. This approach does a better job of modeling growth then previous studies,
however inconsistencies in the growth data as a function of light intensity lead to
potential errors when scaled to other geographical locations (Clarens et al., 2010). Due
to the lack of published data on realistic large scale productivities, three of the studies
discussed above run multiple scenarios using a range of fixed growth rates in modeling
the productivity of large scale facilities (Batan et al., 2010; Campbell et al., 2010; Lardon
et al., 2009). This is indicative of the sensitivity of LCA analysis to the growth models
implemented in the process model.

This study proposes the use of a validated large scale growth model that
accurately captures diurnal and annual weather impacts on microalgae growth (Quinn
et al., 2010). The model presented can be integrated with historical weather data and
can be used to more accurately represent the growth of microalgae at specific
geographical locations. The majority of the geographic locations of the LCA studies
presented are warm coastal regions. Meteorological data for the costal location of San
Diego, California was used to illustrate realistic biomass productivity and compare
results to the LCA studies discussed. The thermal basin temperature was assumed to be
regulated for optimum growth and time harvest logic was used, resulting in 5.42-10*

kg-ha™-yr of biomass produced or 15 g-m>-d™. This analysis shows that the current
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realizable productivity of microalgae is less than the median of the typical growth rates

used in the LCA models surveyed.

8.5.2 Research Question

Based on the preliminary results a primary research question can be posed: How
does the integration of a more detailed growth model effect current NER and GHG

emissions of a microalgae to biofuels process?

8.5.3 Research Tasks

The research can be broken down into two primary tasks, (1) integrate a detailed
validated growth model with engineering process model of the microalgae to biofuel,
(2) utilize GREET to evaluate and compare NER and GHG of conventional biofuels and
microalgae, (3) perform a sensitivity analysis based on growth scheme and geographical

location.

8.5.4 Research Impact

Evaluation and feasibility of mass production of second generation biomass
feedstocks for the production of non-petroleum based fuels is a key component to the
current R&D path set forward by DOE. Researchers have shown on small scale that
microalgae have the potential to have a major impact on biofuel production as a second
generation feedstock, however there are key roadblocks including accurately
representing the annual productivity potential of microalgae. Current environmental
assessments rely on the scaling of laboratory based data for growth modeling. This

211



project would more accurately represent the growth potential based on geographical
location by adapting a validated bulk growth model. The growth model will be used to
evaluate on a NER and GHG basis of alternative growth schemes.

The growth model presented for integration into a systems level model of the
microalgae to biofuel process and captures growth and lipid, protein, and carbohydrate
composition of the biomass produced. The system level model incorporating this level
of composition detail will enable the evaluation of operations on a more systems level
metric. The bulk growth mode integrated with historical weather will enable a
statistically significant annual evaluation that incorporates variability of microalgae
composition and its effects on product and co-product allocation inherent in a LCA.

This study proposes the use of recent N20 experimental data to more accurately
represent the evaluation of the energy burden required for the suppression of N20.
The systems level model will be expanded to include the evaluation of open raceway
ponds (ORP) and photobioreactors (PBR) in order to directly compare the GHG

emissions of systems capable of suppressing N20 (PBR) and systems that cannot (ORP).

8.5.5 Summary

Microalgae biofuels is the subject of research funding from DOE, DOD, NSF,
C2B2, and others. The integration of current realistic growth modeling with systems
level modeling is a new frontier and represents a key hurdle in environmental assessment

of microalgae to biofuel.
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8.6 Research Proposal-Optimization of Light Utilization in Outdoor

Photobioreactors

8.6.1 Background

Microalgae-based biofuels have several sustainability, economic, and
environmental impacts benefits (Batan et al., 2010). When compared to first-
generation biofuel feedstocks, microalgae are characterized by higher solar energy yield,
year-round cultivation, the use of lower quality or brackish water, and the use of less-
and lower-quality land. Microalgae feedstock cultivation can be coupled with
combustion power plants or other CO, sources to sequester green house gas (GHG)
emissions and has the potential to utilize nutrients from wastewater treatment plants
(Chisti, 2008; Schenk et al., 2008; Wijffels and Barbosa, 2010). The theoretical maximum
production of oil from microalgae has been calculated at 354,000 L-hata™ (38,000
gal-acre ™-a™) (Weyer et al., 2009), but pilot plant facilities and scalable experimental
data have shown a near term realizable production of 46,000 liters-hectare™-a™ (5000
gal-acre™-a™), compared to 2,533 liters-hectare™-a™ (271 gal-acre*-a™) of ethanol from
corn or 584 liters-hectare*-a™ (62.5 gal-acre'l-a'l) of biodiesel from soybeans (Ahmed et
al.,, 1994; Chisti, 2007; Pimentel, 2005; Pradhan et al., 2008; Yeang, 2008). These
advantages have led to an increased interest in microalgae as a second generation
feedstock for biofuels.

Two primary architectures for mass-culture of microalgae have been proposed:

open raceway ponds (ORP) and photobioreactors (PBR). PBR cultivation has advantages
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over ORP in they can achieve higher microalgae densities, higher productivity, and
mitigate contamination. Current technological advances have reduced the capital and
operating costs of PBRs making them more appealing as a commercially viable system

(Richmond, 2004).

8.6.2 Diffuse versus Direct Light Utilization

There is limited data on the growth of microalgae at light levels that are
consistent with diffuse light levels in outdoor photobioreactors. A model was
constructed to estimate the effect of diffuse light on the overall productivity of a
photobioreactor. Data from Qiang and Richmond 1994 was used to estimate the impact
of diffuse light (Qiang and Richmond, 1994). The model was constructed to simulate the
overall productivity of a photobioreactor incorporating direct and diffuse light regions.
The reactor geometry that was simulated was a photobioreactor with an optical path of
0.05 meters with reactor spacing of 0.15 meters. The overall productivity was
calculated by first determining the light intensity on a photobioreactor on an hourly
basis and mapping this light intensity with growth data from Qiang and Richmond 1994
to calculate the productivity. Results from the modeling effort are presented in Figure
49.

The data used for simulation was generated at a range of densities. For this

modeling effort all of the densities where simulated.
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The model was used to evaluate the effect of diffuse light in two different
reactor configurations, 1x which corresponds to a photobioreactor that is 0.3 meters
deep and 2x which corresponds to a photobioreactor that is 0.6 meters deep. As
illustrated in Figure 49, the diffuse light constitutes between 11% and 54% of the overall
annual productivity. Increasing the depth of the system by a factor of 2 approximately
doubles the diffuse light of the system; however the overall productivity due to the
diffusely lit portion of the system only increases by 60%.

Preliminary literature data supports that above a certain light intensity
microalgae are very inefficient. Photosynthesis-irradiation (Pl) curves have been
generated for a variety of microalgae species with data collected for Nannochloropsis
salina and fit with the Smith, Webb et al., and a natural logarithmic curve presented in

Figure 50 (Smith, 1936; Webb et al., 1974).
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Figure 49. Modeling results of direct, diffuse and total productivity in a
photobioreactor. Two geometries are presented, 1x, photobioreactor depth of 0.3 m
and 2x, photobioreactor depth of 0.6 m
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Figure 50. Pl curve for Nannochloropsis Salina cultivated in a 5 day batch fit with Smith
model using a= 0.778 g-s-m”-umol™, P, =0.50 g-L™", Ry= -0.05 g-L™.
Pl curves are used for species characterization (Furuya et al., 1998; Harding et
al., 1982; Henley, 1993; lhnken et al., 2010; Sorokin, 1957). As illustrated in Figure 50,
for light intensities above 500 pmol*-m?s™ there is not a significant increase in
productivity. At low light intensities the growth is typically 4-5 times lower then at the

higher light intensities.

8.6.3 Research Question

Based on the preliminary results presented above, a primary research question can
be posed: Can the incident light be more efficiently utilized to increase the productivity

of the photobioreactor geometry?
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8.6.4 Research Tasks

The research can be broken down into four primary tasks, (1) development of a
test bed for the development of the implementation of growth experimentation, (2)
develop a baseline growth scenario involving traditional PBR geometry and illumination,
(3) develop an advanced light distribution PBR system, (4) Evaluate commercial

feasibility of advanced PBR.

8.6.5 Research Impact

Current microalgae productivity reported in literature range from 12 m>-ha™*yr*
reported by Schenk et al. to 184.0 m*ha™-yr’ reported by Yeang (Schenk et al., 2008;
Yeang, 2008). Gouveia and Oliveira, Huntley and Redalje , Rodolfi et al., Sheehan et al.,
Wijffels and Barbosa, Clarens et al., and Chisti report values between these extremes
(Chisti, 2007; Chisti, 2008; Chisti, 2008; Clarens et al., 2010; Huntley and Redalje, 2007;
Sheehan et al., July 1998; Wijffels and Barbosa, 2010). Recent publication of
productivity in an outdoor scalable photobioreactor shows the current productivity
below the mean of these reported values. For microalgae to be achieving expected
theoretical productivities, the light utilization must be improved through innovation.
The research proposed here would be an initial step towards improving the light
utilization and therefore signifigntly improving the productivity of microalgae.

The initial modeling and data presented in the background illustrates the
potential impact of the proposed research. The proposed research would utilize

preexisting growth concepts to directly improve the overall productivity of
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photobioreactor cultivated microalgae. The core concept of the research is
redistributing the light such that the reactor operates at a higher overall efficiency.
Wasted light impingent on the directly illuminated portion of the photobioreactor can
be reflected onto the diffusely illuminated portion of the photobioreactor adjacent. The
increased light intensity would dramatically improve the overall productivity of the
diffusely illuminated portion of the reactor with the directly illuminated portion of the
reactor taking only a minor hit in productivity.

The research proposed builds on fundamental growth concepts previously
detailed in literature. The project would enable the initial evaluation of advanced light
altering photobioreactors. The initial proof of principle evaluation is required prior to

the capital-intensive materials research.

8.6.6 Summary

Microalgae biofuels is the subject of research funding from DOE, DOD, NSF,
C2B2, and others. The integration of current realistic growth modeling with growth
experimentation is a new frontier and represents a key hurdle in achieving productivity

potential expected from microalgae.
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