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Abstract—The problem of two-channel constrained least squares
(CLS) filtering under various sets of constraints is considered, and
a general set of solutions is derived. For each set of constraints,
the solution is determined by a coupled (asymmetric) gener-
alized eigenvalue problem. This eigenvalue problem establishes
a connection between two-channel CLS filtering and transform
methods for resolving channel measurements into canonical or
half-canonical coordinates. Based on this connection, a unified
framework for reduced-rank Wiener filtering is presented. Then,
various representations of reduced-rank Wiener filters in canon-
ical and half-canonical coordinates are introduced. An alternating
power method is proposed to recursively compute the canonical
coordinate and half-canonical coordinate mappings. A deflation
process is introduced to extract the mappings associated with
the dominant coordinates. The correctness of the alternating
power method is demonstrated on a synthesized data set, and
conclusions are drawn.

Index Terms—Alternating power method, canonical coordi-
nates, constrained least squares, generalized eigenvalue problem,
half-canonical coordinates, reduced-rank Wiener filtering, rank
reduction, SVD, two-channel least squares.

I. INTRODUCTION

TWO-CHANNEL problems find numerous applications
in signal processing, communication, sonar, radar, and

sensor fusion. In filtering and communication, one of the chan-
nels (the -channel) contains the unobserved source variables
to be estimated, and the other channel (the -channel) contains
the observed measurement variables. In radar and sonar, the
two channels may be the outputs of two subarrays in space
or the outputs over two subintervals in time. In sensor fusion,
the channels correspond to different sensory measurements of
the same process. The problem we pose in this paper is one of
estimating a linear function of variables in one channel from a
linear combination of variables in the other, under constraints.
This is the idea behind constrained least squares (CLS) filtering
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and canonical correlation analysis [1]–[5]. By imposing various
constraints, we aim to further illuminate the essence of CLS
filtering in various important coordinate systems and establish
connections between CLS filtering, mutual information, infor-
mation rate, and linear dependence.

The most general form of two-channel linear least squares is
, where is the quadratic function

tr (1)

The matrix is a linear map that takes
into , and is a linear map that takes
into . This problem, without any constraints on
and , yields the trivial solution . However, we
show in this paper that under special constraints the optimiza-
tion problem (1) formulates the canonical coordinate decompo-
sition [1]–[5], half-canonical coordinate decomposition [6], [7],
or Programmable Canonical Correlation Analysis (PCCA) coor-
dinate decomposition [8], [9]. The first two coordinate systems
are important for optimal reduced-rank Wiener filtering [4]–[7],
[10]–[13] and the third for adaptive source separation [8], [9].
Canonical coordinates are also optimal for analyzing informa-
tion rate and capacity of Gaussian communication channels and
for decomposing the linear dependence and mutual information
between two data channels [4], [5].

The first goal of this paper is to derive a general set of solu-
tions to the two-channel CLS problem, clarifying in the process
the connections between two-channel CLS filtering, various
canonical coordinate systems, and reduced-rank Wiener fil-
tering. A unified framework is established for deriving various
optimal reduced-rank Wiener filters. Depending on the crite-
rion, either canonical coordinates or half-canonical coordinates
are optimal for rank reduction [4]–[7], [10], [13].

The second goal is to develop a simple method for recur-
sively computing the canonical coordinates and half-canonical
coordinates required for reduced-rank Wiener filtering. The
conventional methods of finding canonical coordinates [4],
[5] and half-canonical coordinates [6], [7] for reduced-rank
Wiener filters involve computation of square-root-inverses of
covariance matrices followed by a singular value decomposi-
tion (SVD) [14] of a coherence matrix. For low-rank modeling,
only a few dominant coordinates and the corresponding cor-
relations are required. However, the conventional methods do
not offer a simple way to recursively compute the canonical
or half-canonical coordinates, one by one. In addition, they do
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not allow an easy update of the coordinates in time, as new
observations for the channels become available. An alternating
power method for computing the reduced-rank Wiener filter
has been reported in [10]. This method is a generalization of
an Iterative Quadratic Minimum Distance (IQMD) algorithm
[12]. It may also be viewed as a generalization of power iter-
ations [14]–[17]. In this paper, we present a new alternating
power method, with deflation, to recursively compute canon-
ical coordinates, half-canonical coordinates, and reduced-rank
Wiener filters, and also to update them in time. The method
may be viewed as a two-step decomposition of the standard
power method [14]–[17] as it solves a coupled (asymmetric)
generalized eigenvalue problem through power iterations. The
algorithm does not require any matrix square-roots or inverses.
One of the algorithms presented in this paper (an alternating
block power method) has been reported in [9] to solve the
PCCA problem. This algorithm may also be generalized to
incorporate deflation by blocks.

II. TWO-CHANNEL CLS PROBLEMS AND SOLUTIONS

Consider the two-channel problem of Fig. 1, with two random
vectors, and . If were greater than

, then we would simply reverse the roles of and . The in-
terpretation of and depends on the application. In commu-
nications, is the information-bearing symbol vector, and is
a filtered version of , observed in noise. In radar or sonar,
and may be snapshots of subarrays or consecutive vectors of
sampled data. In sensor fusion, and may be different mea-
surements of the same process. Usually, the problem is to design
the filters and so that the linear dependence between
and is carried in pairwise dependence between the elements
of and in Fig. 1. When and are mutually Gaussian, this
linear dependence uniquely characterizes mutual information.

Assume that and have zero means and share the com-
posite covariance matrix

(2)

The two-channel CLS problem is defined as , sub-
ject to constraints on and , where is the scalar objective
function

tr

tr

(3)

The matrices and have equal column
dimensions, tr denotes trace of a matrix, and denotes
expectation. By completing the square, we may rewrite as

tr

(4)

Fig. 1. Two-channel problem.

where is the Schur complement of
. Alternatively

tr

(5)

where is the Schur complement
of . The virtue of these formulas is that they suggest an
alternating sequence of approximations to and . For ex-
ample, for given in (4), has minimum for

. For given in (5), has minimum for
. This basic idea of iterating between and

will be a consistent theme of our methods, even when con-
straints are imposed. Let us now consider the constraints.

A. Case 1: Canonical Coordinates

Referring to Fig. 1, the objective is to whiten and
, and diagonally cross-correlate them, while mini-

mizing . Thus, the constraints are

and

diag (6)

where is the identity matrix. The diagonal matrix is
not known a priori. However, it may be assumed, without loss
of generality, that the diagonal elements of are arranged in
descending order. That is

(7)

The coordinates and are said to be canonical because any
function of that is invariant to nonsingular transformations
of and must be a function of [3]. We will have more
to say about canonical coordinates as we proceed with our
development.

Using the method of Lagrange multipliers, the constrained
minimization problem may be written as , where
is the scalar objective function

tr

tr

tr tr

(8)

or equivalently as

tr

tr

tr tr

(9)
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where , and are Lagrange multipliers. It can
be verified easily that the trace constraints in (8) and (9) indeed
impose the actual constraints in (6). Taking the derivative of
with respect to and and setting the results to zero yields
the coupled equations

(10)

(11)

Pre-multiplying (10) by and (11) by yields the coupled
equations

(12)

At the solution, the Lagrange multipliers force the constraints
in (6), and thus, (12) reduces to

(13)

which implies that , assuming is nonsingular.
Using (13), we may rewrite (10) and (11) as the coupled system

(14)

Equivalently, we may combine these two equations as

(15)

The set of equations in (14) and (15) are key results, for they
characterize the solutions for and to minimize under the
constraints of (6). These solutions, in turn, produce the coordi-
nates and and correlations
of and . The equations in (15) are (symmetric) general-
ized eigenvalue problems for and , with the shared
eigenvalue matrix. We refer to (15) as a “coupled (symmetric)
generalized eigenvalue problem.” Correspondingly, (14) may
be viewed as a coupled (asymmetric) generalized eigenvalue
problem. In Section V, we will give an alternating power method
for solving (14). The advantage of solving (14) rather than (15)
is that no inverse of or is required. In Section III, we
will establish that and are, indeed, the
standard canonical coordinates of and .1

B. Case 2: Half-Canonical Coordinates

Referring again to Fig. 1, the objective is now to whiten
only, and diagonally cross-correlate and ,

while minimizing . The constraints in this case are

and

diag (16)

1If, instead of the set of constraints in (6), we had only constrained the di-
agonal elements of W R W and D R D to be unity, we could still have
obtained the generalized eigenvalue problems in (14) and (15) for W and D.
However, solving (14) and (15) under this new set of constraints would not have
guaranteed thatW R W = I;D R D = I, orW R D diagonal. Con-
sequently, u = W x and v = D y would not have been the canonical coor-
dinates of x and y.

The diagonal matrix is not known a priori. However, similar
to Case 1, it is assumed that its diagonal elements satisfy (7). The
coordinates and are said to be half-canonical because any
function of that is invariant to nonsingular transformations
of only must be a function of . Since the matrix is square
and full rank, it follows that , as well.

The Lagrange multiplier method for the objective function in
(3) and constraints in (16) yields the coupled equations

(17)

(18)

where , and are Lagrange multipliers. Pre-
multiplying (17) by and (18) by and enforcing the
constraints in (16) yields

(19)

Using these solutions for and and assuming that
is nonsingular, we may rewrite (17) and (18) as the coupled
equations

(20)

or equivalently as

(21)

The set of equations in (20) and (21) are key results, for they
characterize the solutions for and to minimize under the
constraints of (16). Equation (21) is a coupled (symmetric) gen-
eralized eigenvalue problem for and , with the shared
eigenvalue matrix. Correspondingly, (20) is a coupled (asym-
metric) generalized eigenvalue problem. In Section III, we will
establish that and are, indeed, half-canonical coordinates of

and , and in Section V, we will give an alternating power
method for solving (20).

C. Case 3: Programmable Canonical Correlation Analysis

In this case, the objective is to whiten and
, while minimizing [8]. The constraints in this case are

and (22)

Comparing to Case 1, the constraint on the diagonal cross-co-
variance is not imposed. The term PCCA [8] suggests that

and are canonical coordinates programmed
by and . We will show that this constrained minimization
problem is not well-posed because the solution given in [8] is
really the unique solution for Case 1, which happens to be just
one of an infinite number of solutions to the PCCA problem.

Contrary to the two-channel CLS problem in Case 1, in
PCCA the constraint that be diagonal is relaxed.
Nonetheless, in [8], the coupled (symmetric) generalized eigen-
value problem (15) is solved for and . Thus, the solution
of [8] for the PCCA coordinates is actually a solution for Case
1, canonical coordinates, and not for the problem posed. We
wish to clarify this point by contrasting the two solutions.
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In the case of PCCA, the Lagrange multiplier method for (3),
with constraints in (22), yields the equations

(23)

where and are Lagrange multipliers. At the solu-
tion, (22) is satisfied, and thus, we have

(24)

Without constraints on , there is no way to determine
and . Nonetheless, we may proceed with them undeter-

mined to rewrite (23) as

(25)

or equivalently as

(26)

Since is not necessarily diagonal, neither
equation in (26) is a generalized eigenvalue problem. However,
noting that and are sym-
metric and have the same eigenvalues, we may consider the
eigenvalue decompositions

(27)

where and are orthogonal matrices, i.e.,
, and is a diagonal eigenvalue matrix.

Using (27), we may rewrite (26) as

(28)

This equation is a coupled (symmetric) generalized eigenvalue
problem for and . The corresponding coupled (asym-
metric) generalized eigenvalue problem is

(29)

These generalized eigenvalue problems for and are the
same as those for and in Case 1, i.e., (14) and (15). There-
fore, we may write

and (30)

where subscript CC stands for Canonical Coordinates (Case 1)
and PCCA for Programmable Canonical Correlation Analysis
(Case 3). That is, in the PCCA case, solving (29) determines

and up to unknown (right) orthogonal matrices and .

The ambiguity in the solution, however, does not affect the
minimum value of (3). The solution for Case 1 (
and ) would solve the PCCA problem, corre-
sponding to

, and ,
with diagonal. However, so would and

, where is any orthogonal matrix.
In this latter case,

, but
is not diagonal. In summary, a

nonunique solution to the PCCA problem, as originally posed
in [8], is made unique by imposing the additional constraint of
Case 1, which we have called the canonical coordinates case.

III. TWO-CHANNEL CLS AND VARIOUS CANONICAL

COORDINATE SYSTEMS

In Section II, the two-channel CLS problems were given what
might have appeared to be arbitrary names. In this section, we
legitimize these names by establishing the connections between
the two-channel CLS problems in Cases 1 and 2 and various
well-established canonical coordinate systems.

A. Canonical Coordinates

Consider the constraints in (6) for the two-channel CLS
problem of Case 1. These constraints may be rewritten as

and

(31)

where ,
and . Thus,

is a thin SVD [14] of the coherence matrix
[4]. The thin SVD of a rectangular ma-

trix is a trimmed-down version of the SVD of , in which
the zero singular values of and their corresponding singular
vectors are discarded in forming the SVD.

Using (31), we may now write

(32)

Define the canonical coordinates of the composite vector
as [4], [5]

(33)

and note that they share the composite covariance matrix

(34)
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Thus, the diagonal matrix is
the canonical correlation matrix of canonical correlations

. Correspondingly, the matrices

and (35)

map and to their respective canonical coordinates
and . Thus, we call and , which are

solutions to the two-channel CLS problem of Case 1, canonical
coordinate maps.

Using (31) and (35), along with the cyclic property of trace,
the minimum value of for Case 1, which is denoted by ,
may be written as

tr

tr

tr tr

tr (36)

It is interesting to compare this index with the mean-squared
error (MSE) when estimating from . From (34), the linear
minimum MSE estimator of from is , and its cor-
responding error covariance matrix is . Then, the MSE
of estimating from is

MSE tr tr

tr (37)

which is equal to the first term on the right side of (36). Thus,
the connection between and MSE is

MSE tr

MSE (38)

We see that is within tr , an invariant for
this two-channel problem, of the MSE for estimating from

, further clarifying the connection between two-channel CLS
filtering and canonical correlation analysis.

B. Half-Canonical Coordinates

For the two-channel CLS problem of Case 2, the constraints
in (16) may be written as

and

(39)

where , and . Thus,
is a thin SVD of the half-coherence matrix

. Therefore, we may write

(40)

Define the half-canonical coordinates of the composite vector
as [6], [7]

(41)

and note that they share the composite covariance matrix

(42)

The diagonal matrix is the
half-canonical correlation matrix of half-canonical correlations

. Correspondingly

and (43)

are the matrices that map and to their respective half-canon-
ical coordinates and . Thus, we call
and , which are solutions to the two-channel CLS problem
of Case 2, half-canonical coordinate maps.

Using (39) and (43), along with the cyclic property of trace,
the minimum value of for Case 2, which is denoted by ,
may be written as

tr tr

tr tr

tr (44)

The first term on the right side of (44) (tr tr
MSE ) is the MSE for estimating from ,

using the Wiener filter . Therefore, we have

MSE tr (45)

Thus, is within tr , an invariant for this
two-channel problem, of the MSE for estimating from , fur-
ther clarifying the connection between two-channel CLS fil-
tering and half-canonical correlation analysis.

IV. TWO-CHANNEL CLS AND REDUCED-RANK

WIENER FILTERING

Our aim now is to establish the connections between two-
channel CLS filters and different classes of optimal reduced-
rank Wiener filters. Let be a rank estimate
of for some rank- linear transformation of . The covariance
matrix of the error may be written as

(46)

where is the full-rank Wiener filter. The choice of
coordinate system for building the optimal rank- Wiener filter

depends on the measure to be optimized. In [10], common
measures for reduced-rank Wiener filtering are reviewed:

tr tr

The first two measures have been shown to be equivalent.
In this section, we intend to review the connections between
different classes of optimal reduced-rank Wiener filters and
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further clarify their connections with canonical coordinates,
half-canonical coordinates, and two-channel CLS filters. We
demonstrate that canonical coordinates are optimal for rank re-
duction based on the first two measures, whereas half-canonical
coordinates are optimal for rank reduction based on the third
measure. Our results reproduce what is known from [10], but
our unified method follows the line of argument given in [7] for
deriving the reduced-rank Wiener filter in half-canonical coor-
dinates. Finally, we present several equivalent implementations
of reduced-rank Wiener filters in canonical and half-canonical
coordinates.

A. Reduced-Rank Filtering in Canonical Coordinates

Here, the objective is to find the rank- filter
that minimizes the trace of the weighted error covari-
ance matrix [10]. We note that
tr tr
tr is the MSE for the rank- Wiener estimator of

from [5]; therefore, we
denote it by MSE

MSE tr

tr

(47)

Using , we may rewrite MSE as

MSE tr

tr

(48)

The first term on the right side of this equation is fixed. Thus,
minimizing MSE is equivalent to minimizing the second
term

tr

(49)

which is the Frobenius norm of the matrix .
It measures the extra MSE introduced by rank reduction. The
optimum choice for the rank- Wiener filter is the
rank- matrix that best approximates the coherence matrix

by minimizing [18].
Thus, it is given by , or

(50)

where diag is the first block of diagonal
. Using (50), the optimal value of MSE is

MSE

tr tr

MSE (51)

The first term on the right-hand side of (51) is the minimum
MSE for a full-rank estimator of from , and the second term
is the extra MSE due to rank reduction.

We now show that the minimization of MSE in (47) is
equivalent to minimization of the volume of the concentration
ellipse . This volume is propor-
tional to determinant of the error covariance matrix [7].
We may write this determinant as

(52)

The terms and do not affect minimiza-
tion of and thus may be dropped. We may then
rewrite the middle determinant as

(53)

where the ’s are the singular values of
. Thus, minimization of reduces

to minimization of the ’s. Given a fixed matrix and a rank-
matrix of the same dimension as , the singular values of

are minimized if is the rank- approximation of that
is computed from the SVD of [13], [19]. Thus, the optimal
rank- Wiener filter must satisfy

(54)

where the matrix is the rank- approxima-
tion of the matrix computed from the SVD of

. Plugging in in
the right-hand side of (54) and using the thin SVD in (31) for
the coherence matrix reduces
(54) to

(55)

Premultiplying (55) by and
post-multiplying by yields

(56)
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This is the optimal rank- Wiener filter that minimizes (52)
and is equivalent to the optimal rank- Wiener filter in (50) that
minimizes the measure MSE in (47). Therefore, canon-
ical coordinates are the right coordinate system for reduced-rank
Wiener filtering with the determinant measure in (52) as well.
The corresponding rank- Wiener estimate of from is given
by . The optimal value of in (52) is

(57)

which is proportional to the volume of the concentration ellipse
for the rank- estimator .

It can be shown [4] that when the composite vector
is normally distributed, the rate at which the rank-

estimate carries information about is

(58)

where is the rate at which (or
alternatively, the full-rank estimate of from ) carries infor-
mation about . However, when is non-Gaussian, is not
the actual information rate. Nonetheless, the log of the volume
of the concentration ellipse in (58) may still be used as a loose
measure of information rate. It is seen that the information rate
is additively decomposed by the squared canonical correlations

.
The standard measure of linear dependence for the composite

vector is the Hadamard ratio inside the inequality
[4]

(59)

where

(60)

is the composite covariance matrix for the composite vector ,
and ’s are the diagonal elements of . The ratio takes
the value 0 iff there is linear dependence among elements of ;
it takes the value 1 iff elements of are mutually uncorrelated.

Using (57) and (60), the Hadamard ratio in (59) may be written
as

(61)

The first term on the right-hand side measures the linear depen-
dence among the elements of , and the third term measures the
linear dependence among the elements of . The middle term

measures the linear dependence
between the elements of and . It is seen that the linear depen-
dence is proportional to the volume of the concentration
ellipse. This linear dependence may also be written as

(62)

where measures the linear dependence be-
tween elements of and . We see that the linear dependence
is multiplicatively decomposed by the squared canonical corre-
lations, even for non-Gaussian data.

Various Implementations: Using (35), the rank- Wiener
filter in (50) may be written in terms of the canonical coordinate
maps as

(63)

This rank- Wiener filter may also be implemented with
projection matrices, as we now show. Let us partition and
into and , and define

(64)

where is an identity matrix. In (31), premultiplying
by and post-multiplying it by

yields

(65)

Substituting for in (50) yields the implementa-
tion

(66)

where is the orthogonal projection onto the span
of , and is the full-rank Wiener filter. The
interpretation here is that the output of the full-rank Wiener
filter is whitened by , projected onto the subspace

, and recolored by . Alternately, premultiplying
in (31) by and postmulti-

plying it by yields

(67)
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Fig. 2. Equivalent representations of the rank-r Wiener filter in canonical coordinates. (a) H(r) = R F�(r)G R . (b) H(r) = R W�(r)D .
(c) H(r) = R P R H. (d) H(r) = P H. (e) HR P R . (f) H(r) = HP .

Substituting for in (50) yields the implementation

(68)

where is the orthogonal projection onto the
span of . The interpretation here is that the measurement is
whitened by , projected onto the subspace , recol-
ored by , and then filtered by the full-rank Wiener filter .

Partitioning and into and
and plugging them into (35) yields

and (69)

Using (69), the rank- Wiener filter in (50) and (68) may be
implemented as

and

(70)

where and are the following oblique projection [20],
[21] operators:

and (71)

The interpretations of these implementations are obvious. Thus,
the rank- Wiener filter has six equivalent representations,
which are depicted in Fig. 2. Reading down the left-hand side,
from (a) to (c) to (e), produces various implementations for
in the orthogonal coordinates of and , using the orthog-
onal projections and . Reading down the right-hand
side, from (b) to (d) to (f), produces various implementations
for in the nonorthogonal coordinates of and , using
the oblique projections and .

B. Reduced-Rank Filtering in Half-Canonical Coordinates

Here, the objective is to find the rank- filter that min-
imizes the trace of the error covariance matrix in (46).
Thus, the measure to be minimized is

MSE tr

tr (72)

which we may rewrite as

MSE tr tr

(73)

The first term on the right side of this equation is the MSE for es-
timating from with the full-rank Wiener filter
and is fixed. The second term

tr

(74)

is the Frobenius norm of the matrix , which
measures the extra variance introduced by rank reduction [6],
[7]. The optimum choice for the rank- Wiener filter is the
rank- matrix that best approximates the half-coherence matrix

, by minimizing . Thus, it is

given by or [6], [7]

(75)

Correspondingly, is the rank- Wiener estimate of
from . Using (75), the optimal value of MSE is

MSE tr tr

MSE (76)

which is the MSE of the rank- Wiener estimator . The first
term on the right-hand side of (76) is the minimum MSE for the
full-rank estimator of from , i.e., , and the second
term is the extra MSE due to rank reduction.

Various Implementations: Using (43), the rank- Wiener
filter in (75) may be written, in terms of the half-canonical
coordinate maps, as

(77)

Similar to Section IV-A, we may implement with projec-
tion matrices. Let us partition and into and

. In (39), premultiplying by
and post-multiplying it by yields

(78)

Substituting for in (75) yields the implementa-
tion

(79)

where is the orthogonal projection onto the span
of . The interpretation is that a full-rank Wiener filter is
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Fig. 3. Equivalent representations of the rank-r Wiener filter in half-canonical coordinates. (a)H(r) = U�(r)V R . (b)H(r) = W�(r)D . (c)H(r) =
P H. (d) H(r) = P H. (e) H(r) = HR P R . (f) H(r) = HP .

followed by a projection onto the subspace . Alternately,
premultiplying in (39) by and post-
multiplying it by yields

(80)

Substituting for in (75) yields the implementation

(81)

where is the orthogonal projection onto the
span of . The interpretation here is that the measurement
is whitened with , projected onto the subspace ,
recolored by , and then filtered by the full-rank Wiener
filter .

Partitioning and into and
and plugging them into (43) yields

and (82)

Using (82), the rank- Wiener filter in (79) and (81) may be
implemented as

and

(83)

where and are the following orthogonal and oblique
projection operators:

and (84)

Thus, similar to Section IV-A, the rank- Wiener filter
associated with measure (72) has six equivalent representations.
These representations are depicted in Fig. 3. Reading down
the left-hand side, from (a) to (c) to (e), produces various
implementations for in the coordinates of and .
Reading down the right-hand side, from (b) to (d) to (f),
produces various implementations for in the coordinates
of and .

V. COMPUTING CANONICAL COORDINATE AND

HALF-CANONICAL COORDINATE MAPPINGS

A conventional method of canonical coordinate de-
composition does not offer a simple way to compute a
small subset of canonical coordinates that are required for
low-rank modeling. A full SVD for the coherence matrix

has to be computed, re-
gardless of the rank-reduction. There are indeed simple and
fast algorithms to compute the principal singular vectors of a
matrix, e.g., [14], [22]–[26]. However, the conventional method
also requires the computation of the square-root-inverses of the
covariance matrices and . In addition, the conventional
method does not allow an easy update of the canonical coordi-
nate mappings in time for expanding data samples, making it
intractable for online applications. A similar argument may be
made about a conventional method of half-canonical coordinate
decomposition.

In this section, various alternating power methods are de-
rived to recursively compute the canonical and half-canonical
coordinate mapping vectors (columns of and ) one by one
or in group. These algorithms also allow for an update of the
mapping vectors in time as new samples of the channels are
observed. Provided that the rank-reduction is relatively large
and the singular values of the coherence matrix are not close
together, the alternating power methods can be more efficient
in computation than the conventional methods as they require
no matrix square-roots. The algorithms presented here are iden-
tical in form to the alternating power methods derived in [10]
to compute the factorization of the rank- Wiener filter

. However, the algorithms in [10] do not yield the
canonical and half-canonical coordinate maps and , and the
corresponding canonical and half-canonical correlation matrix

. Therefore, what is original here is the idea that
alternating power methods may be used to compute canonical
and half-canonical coordinate maps and correlations, making
them even more applicable in signal processing problems than
they would appear from the work in [10].

A. Computing Canonical Coordinate Mappings

The power method [14]–[17] may be the simplest and oldest
method for computing the principal eigenvectors of a matrix. It
is also a natural choice for computing the principal subspace of
a matrix [26]. Our aim is to adapt it to the coupled generalized
(symmetric) eigenvalue problem in (15) or, equivalently, to the
coupled (asymmetric) generalized eigenvalue problem in (14).

A standard power method [14]–[17] for computing the first
columns of and , i.e., and , associated with the dom-
inant eigenvalue of (15), may be summarized as follows. Let

denote the index of iteration, start with a random choice for
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and , and iterate the following equa-
tions on until convergence:

(85)

The normalization to obtain from and from en-
sures that and for each iteration

.
Alternating Power Method: A simpler algorithm can be

developed based on the coupled (asymmetric) generalized
eigenvalue problem in (14) to find and . Let us rewrite
(14) as

(86)

(87)

These equations suggest an alternating sequence of approxima-
tions to and . Given a random initial guess , the first
estimate of is computed from (86). With this estimate of

, (87) is used to compute a new estimate of . This iterative
alternation between (86) and (87) continues until convergence.
We can summarize the algorithm as follows. Randomly select

, start with , and iterate the following equa-
tions on until convergence:

(88)

This algorithm is a two-step decomposition of the standard
power method of (85). Therefore, the convergence of it follows
from the convergence of the standard power method. Provided
that the first eigenvalue of (14) is larger than the second one
(i.e., ) and the initial guess of is not orthogonal to

(i.e., ), the estimates and
converge to and . The estimation error at iteration
converges to zero as an exponential function of the ratio of the
second eigenvalue to the first one, i.e., as [14]–[17].

The algorithm in (88) may be rewritten as

(89)

Therefore, at each iteration , the vectors
and are determined by solving the linear sys-
tems of equations and

, respectively. Any stan-
dard method for solving a linear system of equations may be

used here. For various methods, see [14]. We call the algorithm
in (89) an alternating power method, in the sense that it solves
a coupled generalized eigenvalue problem using alternating
iterations. As mentioned earlier, it may be viewed as a two-step
decomposition of the standard power iterations for computing
the principal eigenvector of a matrix.

The alternating power method reported and analyzed in [10]2

for computing the canonical components of a reduced-rank
Wiener filter is a generalization of an Iterative Quadratic
Minimum Distance (IQMD) method [12]. It furnishes ma-
trices and that decompose the rank- Wiener filter
as . The matrices and are related to the
canonical coordinate maps and as and

, where and contain the first columns
of and , and is any nonsingular matrix. Because
of the ambiguous matrix , the algorithm cannot be used to
compute the canonical coordinate maps or their corresponding
canonical correlations .

Alternating Block Power Method: [9]. If the ratio is
close to one, then the convergence rate is very slow. One way to
address this problem is to combine the block power method of
[16] and [17] with the above alternating procedure to solve for
several columns of and . The idea is to start with or-
thogonal vectors and, after each iteration, use a Gram–Schmidt
orthogonalization procedure to guarantee that the constraints

and are satisfied. This al-
gorithm may be summarized as follows. Initialize with
orthogonal columns, start with , and iterate the following
equations on until convergence:

Solve for

such that

Solve for

such that

(90)

where GSO is a Gram–Schmidt Orthogonalization. The GSO
for may be summarized as follows. At each iteration , do
the following for :

(91)

where . A similar
set of equations may be written for the GSO for . In [9], this
algorithm was used to iteratively compute and of the
PCCA.

Alternating Power Method With Deflation: We now extend
the previous algorithm by introducing an alternating power
method with deflation for computing the canonical coordinate
maps. Assume that the first canonical coordinate

2The alternating power method of [10] is not a simple two-step decomposition
of the standard power method, and therefore, its convergence analysis requires
special treatment.
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mappings (the first columns of and ) have already been
found. Partition , , and into

and

(92)

To compute the th pair of canonical coordinate mappings,
deflate the first canonical coordinate mappings from the left
hand sides of (14) to get

(93)

The th canonical coordinate mappings and
are the first columns of and , which are now asso-
ciated with the dominant eigenvalue of (93). The Appendix
makes this claim precise. Thus, these mappings can be com-
puted by iterating between the two equations in (93) with a
random initialization. The dominant eigenvalue of (93), i.e.,

, is the th canonical correlation
of and .

The deflation process may also be implemented with projec-
tion matrices. Using (71), we may rewrite (93) as

(94)

Thus, the alternating power method for finding and
may be summarized as follows. Randomly select

, set , and iterate the following equations on until
convergence:

Solve
for

Solve
for

(95)

Provided that , this algorithm yields the th pair
of canonical coordinate mappings at the rate of . We
note that the alternating block power method in (90) may be used
to simultaneously compute several columns of and as-
sociated with the dominant eigenvalues of the deflated coupled
(asymmetric) generalized eigenvalue problem in (94). This pro-
duces an alternating block power method with deflation.

Unlike the conventional method of canonical coordinate de-
composition, the alternating power method, with deflation, in
(95) requires no matrix square-roots. Moreover, all operations
are matrix-vector multiplications, where the number of vectors
might be much smaller than the number of columns of the ma-
trix. Therefore, provided that the eigenvalues associated with the
desired canonical coordinates are not close to each other, the al-
ternating power method, with deflation, in (95) is an efficient
algorithm for practical extraction of a few dominant canonical
coordinate mappings and canonical correlations.

Order-Recursive Alternating Power Method: In most appli-
cations, the number of canonical coordinate pairs to be extracted
is not known a priori, or it may vary with time. One may run
a test of information rate or linear dependence based on (58)
and (62) to determine if a prespecified threshold is met. If the
threshold is not reached, additional canonical coordinate pairs
must be extracted. However, if the threshold is exceeded, com-
putation of the mapping vectors associated with the less signif-
icant canonical coordinate pairs may be stopped to reduce the
computational load. Thus, the alternating power method will
be modified in the next paragraph to allow for changes in the
number of columns of and to be computed, during the it-
erations of the algorithm.

The alternating block power method in (90) yields and
asymptotically. Thus, (90) and (95) can be run at the same

time, with and in (95) being replaced by and
. At each iteration , the combination of (90) and (95)

can be run successively for to
extract up to columns of and . This algorithm may be
summarized as follows. At each iteration , do the following
for

Solve for

Solve for

(96)

Note that the computations that require and must be
ignored. The value of may be changed during the iterations
of the algorithm to meet the prespecified criterion. The above
algorithm only involves scalar-vector and vector-matrix multi-
plications, and no matrix-matrix multiplication is required.

Online Implementation: For online implementation, the idea
is simply to allow the correlation matrices , and
to be updated as new data become available during the iteration
of the alternating power method. This may be done using the
standard rank-one update equation

(97)

where is a forgetting factor. To prevent from
becoming singular at early iterations, may be chosen

, where is small. After each rank-one update of
the covariance matrices, the alternating power method (any ver-
sion) may be iterated for one or more iterations. During the it-
erations, the covariance matrices are kept fixed. When the next
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sample pair of the data is observed, covariance matrices are up-
dated again, and the procedure is repeated. The number of times
that the equations in an alternating power method are iterated in-
troduces a tradeoff between the accuracy of the algorithm and
computational load. This tradeoff is illustrated in Section VI.

B. Computing Half-Canonical Coordinate Mappings

Similar to Section V-A, we may derive alternating power
methods for solving the coupled (asymmetric) generalized
eigenvalue problem in (20) to find the half-canonical coordi-
nate mappings. However, it is interesting to note that when

is set to , the generalized eigenvalue problem of
(14) for canonical coordinate maps reduces to the generalized
eigenvalue problem of (20) for half-canonical coordinate maps.
Thus, all variations of the alternating power methods intro-
duced for computing the canonical coordinate mappings, may
be used to compute the half-canonical coordinate mappings by
replacing with . Note that in the alternating power
method with deflation, (95), the oblique projection matrix

is replaced by the orthogonal projection
.

VI. SIMULATION RESULTS

This section demonstrates the correctness of the alternating
power method for extracting canonical coordinate mappings on
a synthesized data set. The data set is constructed from the
channel models

where , and . The matrices
, and are known, and and

are two independent white Gaussian vectors.
Let and denote the estimates of the th canonical co-

ordinate mappings and . We define the normalized error
norm of the th estimated canonical coordinate mapping as

and

We also define the rank-r group errors of the ideal canonical
coordinate mappings and as

and

where denotes the Frobenius norm tr .
In these definitions, the vectors and , their estimates
and , the matrices and , and their estimates and

are normalized in sign.
Alternating Block Power Method in Batch Mode: The co-

variance matrices are computed from samples and
kept constant during the iteration of the alternating block power
method in (90). Fig. 4(a) and (b) shows the rank-3 group errors
associated with and when ten independent initializations
are used. The errors are very small after the seventh iteration.

Fig. 4. Rank-3 group errors for the alternating block power method, in batch
mode, with ten independent initializations. (a) E linear scale. (b) E
logarithmic scale. (c) E linear scale. (d) E logarithmic scale. The results
confirm that convergence of the alternating block power method is exponential
in iteration number.

Fig. 5. Rank-3 group errors E and E for the alternating block power
method, in online mode, with a variable number of iterations per sample index.
(a) E : One iteration. (b) E : Four iterations. (c) E : One iteration.
(d) E : Four iterations.

The logarithmic versions of these plots are given in Fig. 4(c) and
(d). The exponential convergence of the algorithm is prominent
in these figures.

Alternating Block Power Method in Online Mode: For this
case, the covariance matrices are updated using the rank-one
time updating equation in (97) as a new sample pair and

becomes available. After each time (sample) update, the
covariance matrices may be used in one or more iterations of
the alternating block power method. The forgetting factor used
for updating the covariance matrices is chosen to be .
All other assumptions are as in the previous case. Fig. 5(a)–(d)
shows the rank-3 group errors associated with and versus
the iteration index (for ten independent initializations). In these
plots, the number of iterations of the algorithm for each new
sample pair is 1 and 4, respectively.
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Fig. 6. Normalized error norms of the estimated canonical coordinate
mappings for the alternating power method with deflation, in batch mode,
in logarithmic scale with ten independent initializations. (a) e . (b) e .
(c) e . (d) e . (e) e . (f) e . The results confirm that convergence of the
alternating power method with deflation is exponential in iteration number.

Alternating Power Method with Deflation in Batch
Mode: The covariance matrices are computed in batch mode
from the 500 samples of the data channels and kept fixed during
the iterations of the alternating power method in (95). We use
the algorithm in (95) to compute the first three pair of canonical
coordinate mappings. The computation of the th canonical
coordinate mappings and is started after
the estimates of the th canonical coordinate mappings
have converged. In computing and , the matrices
and are set to zero. Fig. 6(a)–(f) shows the normalized
error norms of the estimated canonical coordinate mappings
associated with and versus iteration number
when ten independent initializations are used. The plots are
given in logarithmic scale. The straight decaying lines show
that the convergence of the algorithm is exponential in iteration
number. The constant error levels in Figs. 6(c) and (f), after ap-
proximately seven iterations, are due to the numerical precision
of MATLAB, and the error propagation caused by deflation.

Order-Recursive Alternating Power Method in Online
Mode: Here, the covariance matrices are updated using the
rank-one time updating equation in (97) as a new sample pair

and becomes available. Each updated covariance ma-
trix is used for four iterations in the alternating power method
in (96) before it is updated again. The forgetting factor used
for updating the covariance matrices is . Fig. 7(a)–(f)
shows the normalized error norms of the estimated canonical
coordinate mappings and versus the sample
index for ten initializations of the algorithm.

VII. CONCLUSION

A general class of two-channel CLS problems, with various
constraints, has been introduced. Depending on the constraints,
the two-channel solution decomposes the two data channels into
one of three important coordinate systems: canonical coordi-

Fig. 7. Normalized error norms of the estimated canonical coordinate mapping
for the order recursive alternating power method, in online mode, in logarithmic
scale with ten independent initializations. (a) e . (b) e . (c) e . (d) e .
(e) e . (f) e .

nates, half-canonical coordinates, or PCCA coordinates. The so-
lution to each two-channel CLS problem is determined from a
coupled (asymmetric) generalized eigenvalue problem.

A unified framework for deriving and implementing three
different classes of reduced-rank Wiener filters is presented.
Each class corresponds to a particular error measure for reduced-
rank estimation. Two of the classes, corresponding to whitened
MSE and volume of concentration ellipse, are equivalent [10],
and canonical coordinates are optimal for reduced-rank Wiener
filtering under these error measures. For MSE estimation,
half-canonical coordinates are optimal for reduced-rank Wiener
filtering [7]. We have derived all of these results in a unified
way, using variations on the arguments of [4], [7], and [10].

The alternating power methods presented in this paper are
simple methods for recursive computation of the canonical coor-
dinate and half-canonical coordinate mappings. Consequently,
they are simple methods for computing reduced-rank Wiener fil-
ters, regardless of the coordinate system. They may be used in
deflation, block, or block-deflation mode. Moreover, they may
be used in batch mode on a fixed data sample or in recursive
mode on expanding data samples.

APPENDIX

SOLUTION TO THE DEFLATED COUPLED GENERALIZED

EIGENVALUE PROBLEM

From (31) and (35), we have the SVD

(A.1)

Premultiplying (A.1) by , postmultiplying it by , and
using yields

(A.2)
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Assume that the first columns of and and their cor-
responding ’s have already been found. Rewrite (A.2) using
(92) as

(A.3)

Postmultiplying (A.3) by and recalling that
gives

(A.4)

where is the identity matrix. Rearranging
(A.4) yields

(A.5)

Similarly starting with and following
a similar procedure results in

(A.6)

Equations (A.5) and (A.6) introduce a coupled generalized
eigenvalue problem for , and , wherein is de-
flated by and by . Thus,

and are now the generalized eigenvectors associ-
ated with the dominant eigenvalue of (A.5) and (A.6).
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