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Abstract

Highly Scalable Algorithms For Scheduling Tasks and Provisioning

Machines on Heterogeneous Computing Systems

As high performance computing systems increase in size, new and more efficient algo-

rithms are needed to schedule work on the machines, understand the performance trade-offs

inherent in the system, and determine which machines to provision. The extreme scale of

these newer systems requires unique task scheduling algorithms that are capable of handling

millions of tasks and thousands of machines. A highly scalable scheduling algorithm is de-

veloped that computes high quality schedules, especially for large problem sizes. Large-scale

computing systems also consume vast amounts of electricity, leading to high operating costs.

Through the use of novel resource allocation techniques, system administrators can examine

this trade-off space to quantify how much a given performance level will cost in electricity, or

see what kind of performance can be expected when given an energy budget. Trading-off en-

ergy and makespan is often difficult for companies because it is unclear how each affects the

profit. A monetary-based model of high performance computing is presented and a highly

scalable algorithm is developed to quickly find the schedule that maximizes the profit per

unit time. As more high performance computing needs are being met with cloud computing,

algorithms are needed to determine the types of machines that are best suited to a particular

workload. An algorithm is designed to find the best set of computing resources to allocate to

the workload that takes into account the uncertainty in the task arrival rates, task execution

times, and power consumption. Reward rate, cost, failure rate, and power consumption can

be optimized, as desired, to optimally trade-off these conflicting objectives.
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CHAPTER 1

Introduction and Overview

High performance computing systems have continued to grow in computational capacity.

This computational growth is often obtained by increasingly larger quantities of machines

fitted with fast special purpose coprocessors. There are often tens to hundreds of thousands

of machines that compose today’s computing systems. The need for these extremely large

high-performance computing (HPC) systems is driven by increasingly large HPC workloads

composed of potentially millions of tasks. Thus, efficiently scheduling tasks onto machines

at such a large scale is becoming more important.

For a variety of reasons, HPC systems are often composed of different types of machines.

Machine heterogeneity can be caused by building the HPC system in multiple phases, where

each expansion phase involves purchasing a newer/different server model. Heterogeneity

might also be introduced into a system from the start to decrease the run time of relatively

slow tasks. For example, GPUs and specialized co-processors have been used to greatly

accelerate the computation of data parallel tasks [1]. Systems composed of a non-uniform

set of compute resources are called heterogeneous computing (HC)) systems. The focus

of this research is on HC systems that are heterogeneous in both performance and power

consumption. For example, some tasks may execute faster on machines that support a

particular CPU instruction set while another set of tasks may execute faster on machines

with higher memory IO bandwidth. The energy consumed by a task running on a GPU-

enabled machine may be different than when running solely on the CPU. The nature of a task

dictates how efficient, in run time and energy, it will perform on any given machine. This

task and machine heterogeneity provides additional degrees of freedom that can be leveraged
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by the scheduling algorithms to create resource management schedules that improve the

workload’s run time performance and reduce the energy consumption of the overall system.

A novel algorithm for minimum makespan scheduling for very large scale systems is

addressed in Chapter 2. Solution quality and scalability results of the proposed algorithms

are shown to outperform many best-of-breed scheduling algorithms.

The race for increased performance in HPC systems has resulted in a large increase in

the power consumption of these systems [2]. This increase in power consumption can cause

degradation in the electrical infrastructure that supports these facilities, as well as increase

electricity costs for the operators [3]. The goals of HPC users conflict with the HPC operators

in that the users’ goal is to finish their workload as quickly as possible. That is, the small

energy consumption desired by the system operator and the high system performance desired

by the users are conflicting objectives that require the sacrifice of one to improve the other.

Balancing the performance needs of the users with energy costs proves difficult without tools

designed to help a system administrator choose from among a set of solutions.

A set of efficient and scalable algorithms are proposed in Chapter 3 that build on Chap-

ter 2 that can help system administrators quickly gain insight into the energy and perfor-

mance trade-off of their HPC systems through the use of intelligent resource allocation. The

algorithms proposed have very fast run times, good asymptotic algorithm complexity, and

produce schedules that are closer to optimal as the problem size increases. As such, this

approach is very well suited to large scale HPC systems.

While minimizing energy consumption and increasing performance is desirable, it is often

not the driving factor for decision making within organizations. Often decision makers are

driven to directly maximize profit. Chapter 4 builds on Chapter 3 to describe a novel

algorithm to efficiently compute a near-optimal maximum profit schedule.
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Some HPC users are turning to cloud providers to complete their work due to the potential

cost effectiveness and/or ease of use of cloud computing. The ability to provision hardware

on-demand from a pre-defined set of different machine types is very powerful. The hardware

can be provisioned in such a way as to increase the performance of the particular workload

at that time while minimizing costs. When making a hardware provisioning decision not

all the information is necessarily available nor is the information perfectly accurate. For

example, arrival rates of tasks or the performance of the machines might not be known

perfectly. In fact, studies have shown that machines of the same type can vary significantly

in performance as discussed in [4–6].

An algorithm to find the number of each type of machine to provision to maximize the

performance of the system for processing a user-defined workload is presented in Chapter 5.

This algorithm simultaneously optimizes the schedule for the tasks and the number of ma-

chines to purchase using multiple conflicting objectives while accounting for the uncertainty

in the task arrival rates, performance of the machines, and power consumption.
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CHAPTER 2

Makespan Scheduling 1

2.1. Introduction

Today’s HPC systems often have hundreds of thousands of machines. The need for these

extremely large HPC systems is driven by increasingly larger HPC workloads comprising

potentially millions of tasks. The increase in computational capability of HPC environments

can only be maintained if the tasks can be intelligently assigned to machines quickly. There-

fore, there is a growing need for efficiently scheduling tasks to machines in such large-scale

environments.

Our work considers a common scheduling model where users submit a set of independent

tasks known as a bag-of-tasks [10]. We assume that the full bag-of-tasks is known a priori

[10] (i.e., static scheduling), a task can be scheduled to execute on only one machine, and

machines may only process one task at a time. The HPC environments of primary interest

have highly heterogeneous tasks and machines and are known as HC systems [11].

HC systems often have some special-purpose machines that can perform specific tasks

quickly, while other tasks might not be able to run on them. Another cause of heterogeneity

is differing computational requirements, input/output bottlenecks, or memory limitations.

For instance, a task that runs on a GPU might execute much faster than the same task run

on a general-purpose machine. The heterogeneity in execution time of the tasks provides the

scheduler with degrees of freedom to greatly decrease the maximum of all the task finishing

times, known as the makespan, compared to a näıve scheduling algorithm. The makespan

is a very common offline scheduling objective [12, 13]. The algorithms in this work can be

1This work is under review with co-authors Ryan Friese, Anthony A. Maciejewski, and Howard Jay Siegel
[7]. A preliminary version of this work appeared in [8, 9] with the same co-authors.
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adapted to online batch mode scheduling algorithms where the makespan is minimized for

each batch of tasks. When a new task arrives or a task is removed from the batch because

it is now running on a machine, the schedule for the batch of tasks can be recomputed.

Finding the optimal schedule for this static scheduling problem is NP-Hard in general [14].

Therefore we seek to design algorithms that find near-optimal solutions relatively quickly.

In this study, a set of efficient and scalable algorithms are proposed that schedule het-

erogeneous tasks to a set of heterogeneous machines with the goal of minimizing makespan.

These algorithms compute a lower bound using linear programming (LP) and then quickly

compute the fully feasible schedule. The algorithms have very small run times, find sched-

ules that have solutions closer to optimal as the problem size increases, and good asymptotic

algorithmic complexity. This approach is therefore very well suited to large-scale HPC envi-

ronments. Often large computing systems are composed of heterogeneous clusters of homo-

geneous machines. The proposed algorithms decompose naturally into a high level scheduler

that determines which cluster should process the task followed by a lower level scheduler per

cluster that assigns the task to a particular machine.

In summary the contributions of this chapter are:

(1) the formulation and evaluation of an algorithm that efficiently computes a tight lower

bound on the makespan,

(2) the design and evaluation of a recovery algorithm to take the lower bound solution and

compute a near-optimal feasible schedule,

(3) a comparison to other heuristic scheduling algorithms, and

(4) an evaluation and analysis of the scaling properties of the proposed algorithms and

algorithms from the literature.
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The rest of this chapter is organized as follows. First an algorithm for minimum makespan

scheduling is presented in Section 2.2. Section 2.3 describes the nominal HC system and

workload used for simulations and evaluation. Bounds on the solution quality are provided

by the algorithm and are discussed in Section 2.4. In Section 2.5, we compare this algorithm

to other heuristic algorithms. The applicability of the algorithm to very large-scale problems

is shown in Section 2.6 along with simulation results for very large system configurations.

We discuss related work in Section 2.7, and Section 2.8 concludes this study and presents

some ideas for future work.

2.2. Algorithm Design

2.2.1. Approach. The fundamental approach of this work is to apply divisible load

theory (DLT) [15, 16] to ease the computational requirements of calculating a solution to

the makespan scheduling problem. The technique operates in two steps to calculate the

lower and upper bounds on makespan. The first step uses DLT, where we assume a single

task is allowed to be divided and scheduled onto any number of machines, to calculate the

lower-bound solution. After the lower-bound solution is computed, a two-phase algorithm

is used to recover a feasible solution from the infeasible lower-bound solution. The feasible

solution will be shown empirically to be a tight upper bound on the optimal makespan.

HC systems often have groups of machines, typically purchased at the same time, that

have identical or very similar performance characteristics. This allows one to group these

similar machines (for the purposes of analysis) into a unique machine type. Machines belong-

ing to a machine type have virtually indistinguishable performance properties with respect

to the workload. Machines of the same type may differ vastly in feature sets so long as the

performance of the tasks under consideration are not affected. Tasks often exhibit natural
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groupings as well. Tasks of the same task type are often submitted many times to perform

statistical simulations and other repetitive jobs. Having groupings for tasks and for machines

permits less profiling effort to estimate the run time for each task on each machine.

Traditionally the static scheduling problem is posed as assigning all tasks to all machines.

The classic formulation is not well suited for recovering a high quality feasible solution from

a relaxation of the problem. The decision variables in the classic formulation are binary

valued (a task is assigned or not assigned to a machine), and rounding a real value from the

lower bound to a binary value can change the objective significantly. Complicated rounding

schemes are necessary to iteratively compute a suitable solution. Rather than addressing

the problem of assigning all tasks to all machines, we pose the problem as determining the

number of tasks of each type to assign to machines of each type. With this modification,

decision variables will be large integers � 1, resulting in only a small error to the objective

function when rounding to the nearest integer. This approximation is most accurate when

the number of tasks assigned to each machine type is large. In addition to easing the

recovery of the integer solution, another benefit of this formulation is that it is significantly

less computationally intensive due to solving the higher level assignment of tasks types to

machine types with DLT, before solving the fine-grain assignment of individual tasks to

machines. As such, this approach can be thought of as a hierarchical solution to the static

scheduling problem.

2.2.2. Lower Bound. The lower bound on the makespan is given by the solution to an

LP problem and is formulated as follows. Let there be T task types and M machine types.

Let Ti be the number of tasks of type i and Mj be the number of machines of type j. Let µij

be the number of tasks of type i assigned to machine type j, where µij ∈ R is the primary

decision variable in the optimization problem. Let ETC be a T ×M matrix where ETC ij
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is the estimated time to compute a task of type i on a machine of type j. The ETC matrix

is frequently used in scheduling algorithms (e.g., [10, 17–20]). ETC is generally obtained

from historical data in real environments.

The lower bound on the finishing time of the machines of a given type is found by allowing

tasks assigned to a machine type to be divided among all machines to ensure the minimal

finishing time. With this conservative approximation, all machines of type j finish at the

same time. The finishing time of all machines of type j for divisible tasks, denoted by Fj, is

given by

(1) Fj =
1

Mj

∑
i

µijETC ij .

Throughout this chapter, sums over i always go from 1 to T and sums over j always go

from 1 to M , thus the ranges are omitted. Given that Fj is a lower bound on the finishing

time for a machine type, the tightest lower bound on the makespan is

(2) MSLB = max
j
Fj .

The resulting optimization problem for the lower bound is:

(3)

minimize
µ,MSLB

MSLB

subject to: ∀i
∑

j µij = Ti

∀j Fj ≤ MSLB

∀i, j µij ≥ 0 .
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The objective of Equation (3) is to minimize MSLB , where µ is the primary decision

variable. MSLB is an auxiliary decision variable necessary to model the objective function

in Equation (2). The first constraint ensures that all tasks in the bag-of-tasks are assigned

to machine types. The second constraint is the makespan constraint. Because the objective

is to minimize makespan, the MSLB variable will be equal to the maximum finishing time of

all the machine types. The third constraint ensures that there are no negative assignments

in the solutions.

Ideally, this LP problem would be solved optimally with µij ∈ Z≥0. However, for practical

scheduling problems, finding the optimal integer solution is often not possible due to the

high computational cost. Fortunately, efficient algorithms exist that produce high quality

sub-optimal feasible solutions. The next few sections describe how we take an infeasible

real-valued solution from the linear program and build a complete feasible allocation.

2.2.3. Recovery Algorithm.

2.2.3.1. Overview. An algorithm is necessary to recover a feasible solution (or full re-

source allocation) from the infeasible solution obtained from the lower bound in Equation (3).

Numerous approaches have been proposed in the literature for solving integer LP problems by

first relaxing them to real-valued LP problems [21]. Our approach here follows this common

technique except using computationally inexpensive algorithms tailored to this particular

optimization problem. The recovery algorithm is decomposed into two phases. The first

phase rounds the solution while taking care to maintain feasibility of Equation (3). The

second phase assigns tasks to actual machines to build the full resource allocation. The next

two sections detail the two phases of this recovery algorithm.

2.2.3.2. Rounding. Let the optimal real-valued solution from Equation (3) be µ∗. Due

to the nature of the problem, µ∗ often has few non-zero elements per row, thus requiring
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the rounding of only a few elements. Usually all the tasks of one type will be assigned to a

small number of machine types. In the original scheduling problem, tasks are not divisible,

therefore this solution needs to be converted to a solution with an integer number of tasks

to assign to each machine type. The following algorithm finds µ̂ij ∈ Z≥0 such that it is

near µ∗ij while maintaining the task assignment constraint. Recall that the task assignment

constraint requires the sum of the elements in a row of µ∗ be equal to Ti, an integer. Finding

an integer solution near the original solution is important because it will make for a tighter

bound on the objective. Algorithm 1 finds µ̂ that minimizes
∑

j|µ̂ij − µ∗ij| for a given i.

Algorithm 1 Round to the nearest integer solution while maintaining the constraints

1: for i = 1 to T do
2: n← Ti −

∑
jbµ∗ijc

3: ∀j fj ← µ∗ij − bµ∗ijc
4: Let set K be the indices of the n largest fj

5: ∀j µ̂ij ←

{
dµ∗ije, j ∈ K
bµ∗ijc, otherwise

6: end for

Algorithm 1 operates on each row (i.e. task type) of µ∗ independently. The variable n is

the number of assignments in a row that must be rounded up to satisfy the task assignment

constraint. Let fj be the fractional part of the number of tasks (of type i) that are assigned

to machine type j. The algorithm rounds up (ceiling operator) those n assignments that

have the largest fractional parts, and all other fractional assignments are rounded down

(floor operator). The result is an integer solution µ̂ that still assigns all tasks properly and

is close to the lower-bound solution. Algorithm 1 minimizes the L1 norm between the integer

solution and the real-valued solution. This algorithm chooses n entries to round up that will

introduce the least error per entry and thus the least overall error in the L1 norm sense

because the L1 norm is separable.
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To illustrate the behavior of the algorithm, let the input µ∗ be given by Equation (4).

The values in bold indicate assignments that are to be rounded up. The output µ̂ of the

algorithm is given in Equation (5). The first row has n = 0, thus does not need to be

rounded. The second row has n = 1, thus rounds up 9.6 because 0.6 ≥ 0.4 and rounds every

other component down. The third row also has n = 1 but shows that the algorithm does

not perform traditional rounding because it rounds up 11.4 due to 0.4 ≥ 0.3. The last row

shows how the algorithm would round up two values when n = 2.

(4) µ∗ =



3 0 9 11 0 0

3 0 9.6 11.4 0 0

3 15.3 9.3 11.4 0 0

3 15.2 9.9 11.4 2.3 4.2



(5) µ̂ =



3 0 9 11 0 0

3 0 10 11 0 0

3 15 9 12 0 0

3 15 10 12 2 4


The makespan computed from the integer solutions produced by Algorithm 1 may still

not be realizable, even though an integer number of tasks are assigned to each machine

type. To obtain the makespan of the integer solution, computed similarly to Equation (2)

as max
j

1
Mj

∑
i µ̂ijETC ij, one might still be forced to split tasks among machines of a given

machine type to force the finishing times of all the machines to be the same. Having a

schedule with a fraction of a task assigned to a machine is not a feasible allocation. Figure 2.1
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Figure 2.1. For any given machine type, even though there are an integer
number of tasks of each type (blue and red task types) the lower-bound fin-
ishing time of the integer solution, Fint , may not be equal to the true finishing
time, because the last blue (dashed outline) task on machine 1 would be di-
vided.

shows an example where four blue tasks and two red tasks are assigned to three machines of

the same machine type. Even with an integer number of tasks assigned to the machines, the

makespan is still larger than the lower-bound on the finishing time of the integer solution,

Fint , shown in the figure, because the last blue task (dashed outline) would be divided. In the

next subsection we explain our local assignment algorithm that will remedy this by forcing

each task to be wholly assigned to a single machine.

2.2.3.3. Local Assignment. The last phase in recovering a feasible assignment solution

schedules the tasks, already assigned to each machine type, to specific machines within that

group of machines. This scheduling problem is much easier than the general, heterogeneous,

case because the execution characteristics of all machines in a group are the same. This

problem is formally known as the multiprocessor scheduling problem [22]. One must schedule

a set of heterogeneous tasks onto a set of identical machines. The longest processing time

(LPT) algorithm is commonly used for solving the multiprocessor scheduling problem [22].

Algorithm 2 uses the LPT algorithm to independently schedule each machine type.
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Algorithm 2 Assign tasks to machines using LPT algorithm for each machine type

1: for j = 1 to M do
2: Let z be an empty list
3: for i = 1 to T do
4: z ← join(z, (task type i replicated µ̂ij times))
5: end for
6: y ← sort descending by ETC(z)
7: for k = 1 to ‖ y ‖ do
8: assign task yk to the earliest ready time machine of type j
9: update ready time

10: end for
11: end for

Each column (i.e., machine type) of µ̂ is processed independently. List z contains µ̂ij

tasks for each task type i. The tasks are then sorted in descending order by execution time.

Next the algorithm loops over this sorted list one task at a time and assigns the task to

the machine that has the earliest ready time. The ready time of a machine is the time at

which all tasks assigned to it will complete. This heuristic packs the largest tasks first in a

greedy manner. The body of the outer loop of Algorithm 2 can be thought of as scheduling

heterogeneous tasks onto a homogeneous cluster of machines. For environments where the

identical machines are arranged in distinct clusters of homogeneous machines, this scheduling

would likely be performed by the lower level cluster schedulers.

Algorithms exist that will produce better solutions, but it will be shown that the effect

of the sub-optimality of this algorithm on the overall performance diminishes as the problem

size becomes large. The makespan of this feasible solution is an upper bound on the optimal

makespan. The quality of these solutions is evaluated in Section 2.4.

2.3. Simulation Setup

An ETC matrix is needed to evaluate the algorithms. To generate this matrix a set of

five benchmarks executed over nine machine types were used to construct the initial matrices

[23]. Then the method found in [24] was used to construct a larger ETC matrix. Nominally
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there are 1,100 tasks composed of 30 task types. The number of tasks per task type varies

from 11 to 75 and was generated by the method used in [24]. There are nine machine types

with four machines of each type for a total of 36 machines. This environment will be referred

to as the nine machine type environment. For a complete description of this environments

see the supplementary material. This environment was chosen to highlight key aspects of

the algorithms. The simulations where executed for 200 Monte Carlo trials unless otherwise

noted. In Section 2.6 the size of the environment will be scaled up considerably to show the

efficiency of the proposed algorithm.

The simulations were performed on an Apple MacBook Pro Mid 2014, 2.2 GHz Intel Core

i7. The software is single threaded so timing results are for one core. All the algorithms

were implemented in C++ and optimized using our best effort. The COIN-OR CLP solver

was used to solve the LP problems. The third party CLP library is open source and written

in C++.

2.4. Minimum Makespan Quality Bounds

2.4.1. Introduction. In this section, we empirically evaluate the tightness of the bounds

computed by the minimum makespan scheduling algorithm described in Section 2.2 (hence-

forth referred to as LP-makespan). The lower bound is compared to an alternative lower

bound based on minimum execution time (MET) for each task. The lower and upper bounds

are compared to each other to show how small the margin for improvement is in the solu-

tion quality of LP-makespan. Lastly, we compare the run times of the three phases of the

algorithm. The nine machine type environment is used for this set of simulations. These sim-

ulations vary the number of tasks to show the scaling trends. The bag-of-tasks is generated
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by sampling with replacement from the original task type distribution. All other parameters

remain unchanged.

2.4.2. MET Lower Bound Comparison. One lower bound on makespan used in the

literature is found by assigning each task to its MET machine and assuming all machines are

equal to that task’s MET machine. The bound can be thought of as processing each task

sequentially by distributing a task over all machines assuming all the machines are identical

to the MET machine for that task. This is a lower bound because not all machines will be

the MET machine for a given task type. This lower bound is feasible when machines are

homogeneous and the number of tasks is a multiple of the number of machines. The MET

lower bound is given by

(6) MSMET
LB =

∑
i Ti min

j
ETC ij∑

j Mj

.

Figure 2.2 shows the MET-based lower bound alongside the LP-makespan lower bound.

The width of the glyphs represent the normalized sample probability density of the makespan.

In statistics, these are referred to as relative frequency distributions [25]. The wider the glyph

the more probability density that exists at that value for makespan. The glyphs are offset

in the x-axis; however, they correspond to the same number of tasks for each lower bound

shown. The LP-makespan lower bound is much tighter (i.e., larger makespan).

2.4.3. Upper and Lower Bound Tightness. LP-makespan produces upper and

lower bounds that can be used to determine how much improvement in makespan is theoret-

ically possible. The feasible schedule’s makespan cannot be smaller than the LP-based lower

bound. This lower bound is only achievable when the optimal schedule has no machine idle
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Figure 2.2. Distributions of lower bounds from the LP-makespan and MET
algorithms: The shape of the glyphs in this figure show the probability density
of different y-axis values for a given x-axis value. The broader the shape, the
higher the probability at that y-axis value. LP-makespan lower bound is much
tighter than the MET-based lower bound.

for any length of time. Figure 2.3 shows the probability distributions of the percent increase

in the upper bound’s makespan compared to the lower bound as the number of tasks to be

executed increases. The gap between the upper and lower bound decreases as the number of

tasks increase because the lower bound becomes tighter as the constraint of task indivisibility

has less of an effect. The variance in the gap also decreases as the number of tasks increase.

On average, only a 1.8 % improvement might be possible in the LP-makespan algorithm at

2,500 tasks. It is hard to determine where the optimal makespan lies within the lower and

upper bounds because it is extremely computationally expensive to compute.

2.4.4. Run Times for the Algorithm Phases. Figure 2.4 shows the probability

distributions of the run times of the three phases of the LP-makespan algorithm. The number

of tasks is varied to show the dependence on that parameter. The plot is logarithmic in the

time axis because the run times of the rounding and local assignment are much shorter than

the time required to find the lower bound for these small problem sizes. Only the local

assignment has a strong dependence on the number of tasks to be scheduled. The run time
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Figure 2.3. Distribution of the percent change in the LP-makespan upper
bound relative to the LP-makespan lower bound: The room for improvement
in the LP-makespan algorithm is less than a few percent as the number of
tasks grows large for this particular environment.

Figure 2.4. Distributions of the logarithm of the run time for the three
phases of the LP-based algorithm when varying the number of tasks: Lower-
bound algorithm and rounding algorithm are not strongly dependent on the
number of tasks. The local assignment algorithm run time is linear in the
number of tasks. The lower-bound algorithm dominates the run times for the
size of problems considered and takes a few milliseconds to complete.

of all the phases of the algorithm is reasonably small, taking only a few milliseconds to

complete for this HPC environment.
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2.5. Heuristic Algorithms Comparison

2.5.1. Overview. It has been shown that the min-min and max-min algorithms are

effective heuristics for minimizing makespan within a reasonable amount of computation time

for heterogeneous computing systems [10, 26]. The solution quality, run time, and scalability

of both these heuristic algorithms and the LP-makespan algorithm will be analyzed in this

section.

2.5.2. Classical Algorithm. The min-min and max-min algorithms are described in

[10]. The max-min algorithm, to be described later, is a variant of the min-min algorithm.

In the classical min-min algorithm, there is no assumption that one has groups of task types

and machine types [27]. Algorithm 3 is the min-min algorithm designed without any regard

to task and machine groups. Let ttype and mtype be the types of task t and machine m,

respectively. Let the ready time of machine m be given by rtm. The min-min algorithm

iteratively assigns the task with the minimum completion time to that task’s minimum

completion time machine.

Algorithm 3 Classic min-min algorithm

1: U = set of all tasks from all task types
2: ∀m rtm = 0
3: while U 6= ∅ do
4: for t in U do
5: mct t ← min

m

(
rtm + ETC ttype mtype

)
6: mt ← arg min

m

(
rtm + ETC ttype mtype

)
7: end for
8: t∗ ← arg min

t
mct t

9: m∗ ← mt∗

10: assign task t∗ to machine m∗

11: rtm∗ ← mct t∗
12: U ← U \ t∗
13: end while
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Algorithm 3 starts with a set of tasks U and sets the the ready times of all machines to

zero. This algorithm then loops over all the tasks. Each iteration computes the minimum

completion time, mct t for each task t and records the minimum completion time (MCT)

machine as mt. The overall minimal MCT pair (t∗,m∗) is chosen for assignment. Lastly, the

ready time of the assigned machines and the set of unassigned tasks U are updated.

2.5.3. Optimized Algorithm. The classic min-min algorithm described in Algorithm 3

is not optimized with respect to run time and scalability for our problem formulation. To

provide fairer run time and scalability comparisons to the LP-based algorithm, some imple-

mentation improvements to the min-min algorithm are desirable. Most of the improvements

to the classic min-min algorithm are algorithmic and are used to reduce the computational

complexity of the optimized min-min algorithm. Some of the improvements are implementa-

tion improvements that are known best practices and have been empirically shown to improve

the performance of the algorithm. The classic and the optimized algorithms produce iden-

tical output thus only the optimized min-min algorithm will be used for comparison. The

outline of the improvements to Algorithm 3 is:

(1) The outer minimization step is computed on the fly keeping track of the current best

overall MCT task-machine pair.

(2) Groups of tasks and groups of machines are used to reduce the complexity where pos-

sible.

(3) A data structure containing the best machine for each task type is maintained to avoid

recomputing the best match.

(4) The task type entry is purged from the list when there are no tasks of that type left to

be assigned.

(5) Parameters and return values are counts of tasks instead of lists of tasks or task types.
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Computing the new best minimum MCT task and machine pair at each iteration of the

outer loop of the algorithm is a minor optimization. Each task of the same type has the

same execution time properties, thus, when computing a task’s best match the algorithm

only needs to consider each task type and not each individual task. This computation to find

the best candidate match for each task type need not be recomputed if that task type’s MCT

machine was not assigned the task on the last iteration. Thus, the optimized algorithm stores

each task types’s best match and removes the match if that machine was assigned in the

last iteration. The algorithm also stores the task type list in such a way that the task type

entries that have no more tasks to be assigned can be quickly and safely removed from the

list to reduce overhead of subsequent iterations. An important improvement in the algorithm

was to remove a large amount of dynamic memory allocation in terms of both number of

allocations and size of the allocations, for the function parameters and returned schedule.

The parameter that described the bag-of-tasks could easily be implemented as a list of tasks

to be assigned. This has the downside of requiring a huge amount of storage when scheduling

a large number of tasks. Instead an array of length T that contains the number of tasks

of each type is used to describe the bag-of-tasks. The mapping of a particular task to a

particular machine is irrelevant when that task has the same run time characteristics as all

other tasks of the same type. All that is relevant is the number of tasks of type i that are

assigned to a machine. As such, no more information than necessary is computed, which

further improves the performance. The resultant task assignments are also stored in a single

dense ragged (i.e., irregular) [28] array of integers where the first dimension is of size T , the

second dimension is of size M , and the last is of size Mj. The entries of this array, denoted

yijk, are the number of tasks of type i assigned to machine type j, machine k. Algorithm 4

incorporates all of these improvements into the min-min algorithm.
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Algorithm 4 Optimized min-min algorithm

Require: G: set of all task types
1: ∀i ni = number of tasks of type i in G
2: ∀j, k rt jk = 0
3: prior = ∅
4: ∀i, j, k yi,j,k = 0
5: while G 6= ∅ do
6: for i in G do
7: if best i = prior then
8: best i ← arg min

j,k
(rt jk + ETC ij)

9: end if
10: j, k ← best i
11: if rt jk + ETC ij < rt j∗k∗ + ETC i∗j∗ then
12: i∗, j∗, k∗ ← i, j, k
13: end if
14: end for
15: yi∗j∗k∗ ← yi∗j∗k∗ + 1
16: rt j∗k∗ ← rt j∗k∗ + ETC i∗j∗

17: ni∗ ← ni∗ − 1
18: if ni∗ = 0 then
19: G← G \ i∗
20: end if
21: prior ← (j∗, k∗)
22: end while
23: return y

The set G in Algorithm 4 is an array of task type entries. The outer loop of Algorithm 4

iterates exactly as many times as there are tasks (line 5), similar to Algorithm 3. The inner

loop processes one task type i per iteration and recomputes the best match only if the last

task assignment iteration assigned a task to the best machine for task type i (lines 7-9). As

the loop iterates it also maintains the overall minimum completion time task machine tuple

as (i∗, j∗, k∗) (lines 10-13). Once the loop completes, the best task-machine tuple is used to

update the result yijk, ready times rt jk, and the remaining number of tasks for the currently

considered task type ni (lines 14-17). If the remaining number of tasks for that task type

is zero then the task type is removed from the list G (lines 18-20). Lastly, prior is set to

the machine type and machine pair to which the most recent assignment was made (line 21)
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to be used for invalidating the saved best task assignments. The assignment stored in y, is

returned as a ragged array.

The max-min algorithm is very closely related to the min-min algorithm. To convert

Algorithm 3 from the min-min algorithm into the max-min algorithm, the min operator

on line 8 is changed to the max operator. Algorithm 4 can be converted to the max-min

algorithm by reversing the inequality on line 11.

Algorithm 4 is significantly faster than Algorithm 3, especially as the number of tasks

becomes large. The complexity of Algorithm 3 is quadratic in the total number of tasks

because both the inner and outer loop effectively iterate over all tasks. Algorithm 4 is only

linear in the total number of tasks because the inner loop only iterates over task types.

2.5.4. Results. Figure 2.5 shows the makespan of the min-min and max-min compared

to the makespan of the LP-makespan algorithm for the nine machine type environment. For

all but small numbers of tasks the LP-makespan algorithm produces a shorter makespan. For

large numbers of tasks, the min-min algorithm produces on average a 13 % longer makespan

than LP-makespan for this particular HPC environment. Max-min performed even worse as

the number of tasks become large, producing schedules that are on average 26 % longer than

LP-makespan. The LP-makespan algorithm outperforms both heuristics for large problem

sizes because it solves a global optimization problem for the relaxation allowing it to make

very complex decisions about the allocation to directly minimize makespan. The heuristics

only indirectly minimize makespan. When the problem size is small, the task divisibility

modeling assumption breaks down leading to poor performance from the LP-makespan al-

gorithm. The variance of the relative makespan distribution is very large for small numbers

of tasks, however, the variance decreases rapidly as the number of tasks become larger.
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Figure 2.5. Distributions of the makespan from min-min and max-min rel-
ative to LP-makespan as the number of tasks varies: The LP-makespan algo-
rithm produces better schedules for sufficiently large number of tasks.

The run time comparison between min-min using Algorithm 4 and LP-makespan is shown

in Figure 2.6 for the nine machine type environment. Min-min is linearly dependent on the

number of tasks, while the LP-makespan algorithm has a fixed run time cost to solve the LP

problem but nearly no increase thereafter. LP-makespan is slightly slower than the heuristic

algorithms for less than 1,300 tasks, but faster for larger numbers of tasks. The max-

min algorithm differs from the min-min algorithm in the orientation of a single inequality

operator yet its run time is measurably worse. The difference lies in the effectiveness of

storing the MCT machine for each task. This storage is invalidate when the machine is

this task’s MCT machine that was assigned a task in the previous iteration. For min-

min 70 % were valid whereas for max-min only 60 % of the reads were valid. This means

that the expensive operation of computing the MCT machine for a task type (iterating

over all machines of all types) occurs more often for max-min then it does for min-min for

this particular environment. When the MCT machine storage is disabled (i.e., the MCT

machine is found every iteration), the algorithms have identical run times. There are some

environments where max-min will have a higher percentage of valid reads from the MCT
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Figure 2.6. Distributions of the algorithm run time for min-min, max-min,
and LP-makespan as the number of tasks is increased: The LP-makespan
algorithm is faster for large numbers of tasks.

machine storage, so this property is not intrinsic to the algorithms but rather a property of

the environment.

A set of randomly generated simulation environments are used to compare the min-min

and max-min algorithms with the LP-makespan algorithm. There are 15 task types and

ten machine types in these systems. One million tasks were used with each task type being

equally likely. One thousand machines were used with each machine type being equally likely.

Three different methods are used to generate the ETC matrix. The “random” method has

independent elements that are uniformly distributed from 1 s to 10 s. The “range” method

is the range-based method described in [26, 29] with parameters 100 and 10 for tasks and

machines respectively. The coefficient of variation (CoV) based method, denoted CVB, is

defined in [29] and is based on the gamma distribution. The CoV used for the tasks and

machines is 0.6 with a mean of 10 s. Figure 2.7 shows the makespan and run time of the

min-min and max-min relative to LP-makespan for 200 different systems for each ETC

generation method.
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(a) makespan (b) run time

Figure 2.7. Distributions of the (a) makespan and (b) run time of min-min
and max-min relative to LP-makespan: For each ETC generation method,
200 different environments were used. LP-makespan has a smaller makespan
in every case and is over 20 times faster.

The LP-makespan algorithm took only 64 ms to schedule one million tasks to one thou-

sand machines in Figure 2.7. For ten million tasks and ten thousand machines the LP-

makespan algorithm takes only 0.87 s while the min-min takes over 476 s to produce a sched-

ule who’s makespan is longer than LP-makespan.

From Figures 2.5 to 2.7 it can be seen that for large problems the LP-makespan algorithm

should be preferred. For the HPC environments under consideration, the LP-makespan

algorithm has smaller run times and shorter schedules compared to both the min-min and

max-min algorithms.

2.6. Computational Complexity

2.6.1. Analysis. A complexity analysis of each phase of the LP-makespan algorithm

reveals desirable properties. A real-valued LP problem must be solved to compute the

lower bound on the makespan. Using the simplex algorithm to solve the LP problem yields

exponential complexity (i.e., traversing all the vertices of the polytope) in the worst case;

however the average case complexity for a very large class of problems is polynomial time

[21]. Recall that there are T task types and M machine types. The lower bound LP problem
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has T + M nontrivial constraints and TM + 1 variables. The average case complexity of

computing the lower bound is (T + M)2(TM + 1). Next is the rounding algorithm. The

outer loop iterates T times, and the rounding is dominated by the sorting of M items. Thus

the complexity of rounding algorithm defined by Algorithm 1 is O (T (M logM)). The local

assignment algorithm defined by Algorithm 2 has an outer loop that is run M times. Inside

this loop there are two steps. The first step is sorting at most T items which takes O (T log T )

time. The second step is a loop that iterates nj =
∑

i µij times and finds the machine with

the earliest ready time each iteration, a procedure with O (logMj) complexity. The worst

case complexity of local assignment is thus O
(
M max

j
(T log T + nj logMj)

)
.

Let Ttotal =
∑

i Ti be the total number of tasks and Mtotal =
∑

j Mj be the total number

of machines. Assume for the sake of analysis that tasks and machines are evenly distributed

across machine types so nj ≈ Ttotal

M
and Mj ≈ Mtotal

M
. The computational complexity of

local assignment can then be written as

M max
j

(T log T + nj logMj)

=M max
j

(
T log T +

Ttotal

M
log

Mtotal

M

)
=MT log T + Ttotal log

Mtotal

M

=MT log T + Ttotal logMtotal − Ttotal logM .

(7)

The local assignment scales linearly in the number of tasks, Ttotal. The complexity in the

number of machine types follows the negative logarithm. The complexity in the number of

machines is actually sub-linear.
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The complexity of the overall algorithm to find both the lower bound and upper bound

(full allocation) is driven by either the lower-bound algorithm or the local assignment al-

gorithm. Complexity of the lower bound and rounding algorithms are independent of the

number of tasks and machines. Those algorithms depend only on the number of task types

and machine types. This is a very important property for large-scale HPC environments.

Very large numbers of tasks and machines can be handled easily if the machines can be rea-

sonably placed in a small number of homogeneous machine types and, likewise, tasks can be

grouped by a small number of task types. Only the local assignment algorithm’s complexity

has a dependence on the number of tasks and machines. This phase is only necessary if a

full allocation or schedule is required. The lower bound can be used to analyze much of the

behavior of the system at less computational cost. Furthermore, local assignment can be

trivially parallelized because each machine type is scheduled independently.

2.6.2. Results. An important property of a scheduling algorithm is its ability to scale

well as the size of the problem grows. Simulations were carried out to quantify how the

relative error and the computational cost of the algorithm scales. These simulations are

used to validate the complexity analysis results from Section 2.6.1. The environment used

for this set of simulations is a scaled up version of our typical nine machine type environment.

The number of machines was increased to 36,000 and the number of tasks was increased to

1,100,000, still with nine machine types and 30 task types, respectively. The distributions of

the task types and machines types remain the same as the nine machine type environment.

The number of tasks, machines, task types, and machine types are varied independently to

show the scalability of the LP-makespan algorithm w.r.t. each parameter. For environments

this large, it is intractable to solve for the optimal makespan. It is even too expensive to

solve the LP relaxation of the assignment of individual tasks to individual machines for
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this environment. This highlights the need for much more scalable algorithms such as LP-

makespan. Even though the optimal solution is not known it is still possible to compare

bounds on the makespan to gain insight into the algorithm’s solution quality. Each of the

parameter sweeps is computed by taking random subsets with replacement to handle the

sweep variable. These results are averaged over 50 Monte Carlo trials.

Figure 2.8 shows the relative change in makespan as the number of tasks increase. The

number of task types, machines, and machine types are held constant and are the same as

the nominal environment. The relative increase in makespan is shown from the makespan

lower bound, MSLB , to the makespan after rounding. Also shown is the increase in makespan

from the integer solution to the full allocation. The relative increase in makespan from the

lower bound to the upper bound or full allocation is also shown. The loss in quality of the

makespan from the rounding algorithm is relatively low. Most of the increase in makespan

is caused by local assignment. However, Figure 2.8 also shows that the relative increase in

makespan diminishes as the number of tasks increase. This is because the approximation

that tasks are divisible has less of an impact on the solution as the number of tasks per

machine increases. Figure 2.8 shows a cyclical or periodic pattern in the quality of the local

assignment algorithm. This pattern is not present in the lower bound or the integer solutions.

This pattern is caused by the discrete nature of the problem of assigning tasks to machines.

The makespan can increase significantly when just one task is added to the bag-of-tasks that

does not pack well onto the machines. Recall that local assignment, by design, only assigns

tasks to within a single type of machine so the degrees of freedom are limited in how the

algorithm can distribute the load and mitigate the peaks in the relative makespan.

To quantify the computational efficiency of our algorithms, we show the run time of the

techniques as a function of the number of tasks in Figure 2.9. Figure 2.9a is the time taken to
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compute the lower bound (i.e., solve the LP problem). Figure 2.9b shows the time required

to round the solution. Both of the computations required to compute the lower bound and

the integer solution do not depend on the number of tasks. This corresponds to the results

derived for the complexity of the algorithm. Figure 2.9c shows that the local assignment

algorithm scales linearly with the number of tasks. This also corresponds to the analysis in

Section 2.6.1. Notice that the magnitude of the run times are rather small. Even for 108

tasks (not shown in the figure) the total run time is only 8.4 s running on a single core. The

LP-makespan algorithm is highly parallelizable so further improvements in runtime could be

made if necessary.

The relative increase in makespan when varying the total number of machines is shown

in Figure 2.10. The figure shows the same three curves as Figure 2.8, however in this case,

varying the total number of machines. The number of tasks, machine types, and task types

are held constant. As the number of machines grow, the increase in makespan due to the

local assignment step grows rapidly. This is caused by assigning fewer tasks to each machine

as the number of machines increases. The approximation that tasks are divisible becomes a

worse approximation as the number of machines increases relative to the number of tasks.

Figure 2.11 shows the run time of the three parts of the scheduling algorithm as the

total number of machines is varied. Both the lower bound and the rounding are independent

of the number of machines. The local assignment step is approximately logarithmic in the

number of machines. This corresponds to the analysis in Section 2.6.1.

Figure 2.12 shows the same three curves as Figure 2.8, however in this case varying the

number of task types. The number of tasks, machines, and machine types are held constant

for this simulation. Figure 2.12 shows that the local assignment algorithm (integer to full

allocation) is again causing most of the degradation in makespan. The relative increase
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Figure 2.8. Relative percent increase in makespan as a function of the total
number of tasks : The relative increase in makespan is shown between the lower
bound and integer solutions, the integer and full allocation solutions, and the
lower bound and full allocation solutions. The relative increase in makespan
decreases, thus the quality of the solution improves, as more tasks are used.

(a) lower bound (b) rounding (c) local assignment

Figure 2.9. Algorithm run time versus total number of tasks : Both the lower
bound and the rounding algorithms run time, (a) and (b) respectively, are
independent of the number of tasks. The local assignment complexity (c),
used to obtain the full allocation, is linearly dependent on the number of
tasks.

in makespan does not tend to zero because increasing the number of task types does not

improve the quality of the approximation. LP-makespan still finds a solution that is within

just 6 % of optimal.

Figure 2.13 shows the run time of the three phases when varying the number of task

types. Here the lower bound has small super linear dependence on the number of task

types. According to the complexity analysis, this relationship should be cubic. However,

Figure 2.13a does not exhibit such poor scaling behavior. This is likely due to the increase

in the sparsity of the constraint matrix as the number of tasks types increase making the LP
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Figure 2.10. Relative percent increase in makespan as a function of the total
number of machines : The relative increase in makespan is shown between the
lower bound and integer solutions, the integer and full allocation solutions,
and the lower bound and full allocation solutions. The quality of the solution
decreases as more machines are used.

(a) lower bound (b) rounding (c) local assignment

Figure 2.11. Algorithm run time versus total number of machines : Both the
lower bound and the rounding algorithm run times, (a) and (b) respectively,
are independent of the number of machines. The local assignment complexity
(c), used to obtain the full allocation, is logarithmically dependent on the
number of machines.

problem more efficient to solve. The rounding algorithm increases linearly, which matches

our complexity analysis. The local assignment phase seems to be linearly dependent on the

number of task types. This is close to the analysis that expected a log-linear dependence on

the number of task types.

Figure 2.14 shows the relative increase in makespan as the number of machine types

varies. In the previous parameter sweeps, the number of tasks of a particular type may be

zero if the random sampling selected that configuration. Allowing the number of machines

within a machine type to be zero is problematic because some constraint coefficients will
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Figure 2.12. Relative percent increase in makespan as a function of the
number of task types : The relative increase in makespan is shown between the
lower bound and integer solutions, the integer and full allocation solutions,
and the lower bound and full allocation solutions. Quality of the solutions
is tightly bounded and is approximately independent of the number of task
types.

(a) lower bound (b) rounding (c) local assignment

Figure 2.13. Algorithm run time as a function of number of task types :
The complexity of the lower bound algorithm (a) grows super linearly with
the number of task types. The rounding and local assignment algorithm run
times, (b) and (c) respectively, are linearly dependent on the number of task
types.

be ∞ (due to dividing by zero in Equation (1)). Practically, Mj = 0 means that the jth

column of ETC should be removed and the solution should never assign a task to that

machine type because it has no machines. To avoid this case, each machine type is forced

to have at least one machine to avoid degeneracy. Figure 2.14 also shows that the quality of

the rounding algorithm decreases as the number of machine types increase. This is expected

because there are less tasks to assign to each machine’s type, making the approximation

weaker.
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Figure 2.14. Relative percent increase in makespan as a function of the
number of machine types : The relative increase in makespan is shown between
the lower bound and integer solutions, the integer and full allocation solutions,
and the lower bound and full allocation solutions. Overall performance is
approximately independent of the number of machine types.

(a) lower bound (b) rounding (c) local assignment

Figure 2.15. Algorithm run time versus the number of machine types :
Lower-bound algorithm complexity (a) is super linear in the number of ma-
chines types. The rounding algorithm run time (b) is approximately linear in
the number of machine types. Local assignment algorithm run time (c) goes
like the negative of the logarithm in the number of machine types.

Figure 2.15 shows the run time as the number of machine types is increased. As ex-

pected, the lower bound calculation has an approximately cubic relationship to the number

of machine types. The rounding algorithm grows roughly linearly in the number of machine

types. As the number of machine types increases, the time spent performing local assign-

ment for each machine type decreases because fewer tasks are scheduled to fewer machines.

This matches our analysis in Section 2.6.1.

Even though the run time and solution quality of the polynomial time LP-makespan al-

gorithm is desirable, there is some prior work on theoretical bounds that should be noted. In
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[30], it is proven that there exists no polynomial algorithm that can provably find a schedule

that is less than 3/2 the optimal makespan, unless P = NP . Even though Figures 2.8 to 2.15

suggest that one can do better then 3/2, this is only the case on average.

In summary all three phases of the LP-makespan algorithm have reasonable run times

for large problems. The solution quality bounds also show that the solutions are very close

to the optimal makespan for sufficiently large problems.

2.7. Related Work

The LP-based approach in this chapter achieves significant decrease in run time and

increases in solution quality over prior methods by exploiting properties that are common

to static scheduling problems. Our approach takes advantage of the common property that

each machine in an HPC system is not unique but belongs to one of a few types of machines.

Our work also is focused on very large-scale environments and finding high quality solutions

on average, whereas [14, 31] are concerned with worst-case performance of the scheduling

algorithms.

Static scheduling for minimum makespan is surveyed in [10]. Min-min and max-min or

a hybrid of both algorithms are found to generally be the best algorithms for this problem

domain [32]. Our results in Section 2.5 show that min-min almost always performs better

than max-min. The max-min tends to perform better then min-min when there are many

more short running tasks than long running tasks [26]. The min-min algorithm will schedule

the shorter tasks to run on all the machines leaving the fewer long tasks to the end, increasing

the makespan. In our simulations there are similar numbers of short and long tasks so the

key conceptual benefit of max-min cannot be achieved.
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While this chapter deals with scheduling tasks to entire machines, the algorithms could

also be applied to scheduling tasks to cores within a machine or across cores on many ma-

chines. The full allocation recovery algorithm we use is conceptually similar to the algorithms

presented in [33]; however, those algorithms are designed for scheduling tasks on a single ma-

chine with deadlines to determine the best dynamic voltage and frequency scaling (DVFS)

parameters to use to minimize energy as a secondary objective. Another related algorithm is

presented in [34] that approximates makespan to provide computationally efficient schedules

while considering reliability for DVFS scheduling on identical processors.

In [20], the A∗ search algorithm is used to assign tasks to machines considering task

dependencies and communication constraints. This algorithm is very expensive for large

numbers of tasks because the algorithm’s branching factor is on the order of the number of

machines and the depth is on the order of the number of tasks.

Allocating services running within virtual machines to physical machines is addressed in

[35]. The services being considered are CPU bound processes that are allocated fractions

of machines. Multiple smaller services can be allocated to one machine. Their approach

is similar to ours in that they formulate a linear program, solve the relaxation, and then

recover a feasible solution. The authors note that using binary variables degrades the quality

of the solution from the rounding methods used after solving the linear program. We try

to address this issue by formulating the linear program to have decision variables that are

large values that round easily to large integers, resulting in little degradation in the quality

of the solution. They also propose a genetic algorithm (GA) and heuristic algorithms to

solve the problem faster and with a higher quality than rounding the result of their linear

program. The work in [35] is extended from a single homogeneous set of machines to a

heterogeneous collection of machines in [36]. Our work focuses on highly scalable algorithms
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whereas [35, 36] focus on algorithms that work on relatively small problem sizes and have

non-negligible run times for the schedulers.

2.8. Conclusions

A highly scalable scheduling algorithm for computing a near-optimal minimum makespan

schedule was presented. The three-phase LP-makespan algorithm was shown to outperform

the min-min and max-min heuristics with respect to makespan for larger problem sizes. The

LP-makespan has a further benefit in that it produces tight lower and upper bounds on the

optimal makespan. Furthermore, the scalability of the LP-makespan algorithm was evaluated

to show that a very large number of tasks can be scheduled in a very short amount of time.

The complexity of the first two phases of the LP-makespan algorithm are independent of

the number of tasks and machines. Only the last, computationally inexpensive and trivially

parallelizable, phase is dependent on the number of tasks and machines. The last phase of

the algorithm is computed on a per machine type basis, therefore, for very large systems

this work can be distributed among lower level schedulers (e.g., each responsible for a cluster

of homogeneous machines). The quality of the solution also improves as the size of the

problem increases. These scaling properties make this algorithm perfectly suited for very

large scheduling problems.

The LP-makespan scheduling algorithm only takes a fraction of a second to compute

a single schedule for a given bag-of-tasks so it is possible to use this scheduler for online

batch-mode scheduling. Specifically, this algorithm can be used to schedule tasks as they

arrive at the system by computing a schedule for all tasks waiting in the queue (as a batch)

and recomputing the schedule when a task completes or a new task arrives.
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CHAPTER 3

Energy-Aware Scheduling 1

3.1. Introduction

Today’s HPC systems often have hundreds of thousands of cores, processors, and/or

machines. The need for these extremely large HPC systems is driven by increasingly large

HPC workloads comprising potentially millions of tasks. The increase in computational

capability of HPC systems also results in a significant increase in its energy consumption.

Therefore, there is a growing need for computationally efficient algorithms for energy-aware

scheduling of tasks to machines in such large-scale environments.

HPC systems have seen dramatic increases in their power consumption [2, 38]. This in-

crease in power consumption can increase electricity costs for the operators, cause degrada-

tion in the electronic components, and create additional stress on the electrical infrastructure

that supports these facilities [3]. Additionally, the goals of HPC users often conflict with the

goals of HPC operators. The user’s goal is to finish their workload as quickly as possible.

Often, this is in conflict with the goal of the system operator to consume less energy, and

typically such a situation requires the sacrifice of one of the goals to satisfy the other. To

balance the performance and energy costs of the system it is important to provide the system

administrator with a tool that provides a set of solutions that trade-off these objectives.

In this study, a set of efficient and scalable algorithms are proposed that can help system

administrators quickly gain insight into the energy and performance trade-offs of their HPC

system through the use of intelligent resource allocation. The algorithms proposed have

very fast run times, good asymptotic algorithm complexity, and produce schedules that are

1This work is under review with co-authors Ryan Friese, Anthony A. Maciejewski, and Howard Jay Siegel
[37]. A preliminary version of this work appeared in [8, 9] with the same co-authors.
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closer to optimal as the problem size increases. This approach is therefore very well suited

to large-scale HPC environments.

Our work considers a common scheduling model where users submit a set of independent

tasks known as a bag-of-tasks [39]. We assume that the full bag-of-tasks is known a priori

[10] (i.e., static scheduling), a task executes on only one machine, and a machine may only

process one task at a time. We study HPC environments that have highly heterogeneous

tasks and machines, known as HC systems [11].

HC systems often have some special-purpose machines that can perform specific tasks

quickly, while other tasks might not be able to run on them. Another cause of heterogeneity

is differing computational capability, input/output bottlenecks, or memory limitations. The

machines may further differ in the average power consumed for each task type. Machines can

have different architectures, leading to vastly different power consumption characteristics.

For instance, a task that runs on a GPU might consume more power but execute much

faster, therefore consuming less energy to execute than the same task run on a general-

purpose machine. The heterogeneity in execution time of the tasks provides the scheduler

degrees of freedom to greatly improve the performance as compared to a näıve scheduling

algorithm. Similarly the heterogeneity in the power consumption allows the scheduler to

decrease the energy consumption.

In this study, we consider optimizing two conflicting objectives. The first is to minimize

the makespan, that is, the maximum finishing time of all tasks. The second is to minimize the

total energy consumption of all machines in the HPC system. We design a novel technique

that utilizes a unique relaxation of this scheduling problem then solves it using, in part,

linear programming for generating a set of high-quality solutions that represent the tradeoff

space between makespan and energy consumption (i.e., Pareto front).
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In summary the contributions of this chapter are:

(1) the formulation and evaluation of algorithms that:

(a) efficiently compute tight lower bounds on the energy and makespan using LP,

(b) generate a set of high quality bi-objective solutions (i.e., Pareto front), and

(c) improve upon the Pareto front approximation via convex filling,

(2) the addition of idle power consumption to the formulation of the energy/makespan

problem in [39],

(3) a comparison to other Pareto front generation algorithms,

(4) the design and evaluation of a quantitative measure for comparing the quality of bounds

on the Pareto front.

The rest of this chapter is organized as follows: first an algorithm for minimum makespan

and energy scheduling is presented in Section 2.2. Vector optimization background is given

as a tool to solve the bi-objective energy and makespan scheduling problem in Section 3.2.

Section 3.3 describes an algorithm to generate Pareto fronts and the convex fill algorithm to

further improve the Pareto fronts. Section 3.4 presents the results by comparing the Pareto

fronts to an implementation of the non-dominated sorting genetic algorithm II (NSGA-II)

for various HPC environments. The algorithm’s complexity is given in Section 3.5 along with

experimental execution time results. We discuss related work in Section 3.6 and Section 3.8

concludes this study and presents some ideas for future work.

3.1.1. Approach. The fundamental approach of this chapter is to apply DLT [15] to

ease the computational requirements of calculating solutions for the makespan and energy

scheduling problem. The technique has two major steps. The first step uses DLT, where we

assume a single task is allowed to be divided and scheduled onto any number of machines, to

calculate the lower-bound solution. After the lower-bound solution is computed, a two-phase
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algorithm is used to recover a feasible solution from the infeasible lower-bound solution. The

feasible solution will be shown empirically to be a tight upper bound on the optimal solution.

HC systems often have groups of machines, typically purchased at the same time, that

have identical or very similar performance and power characteristics. This allows one to view

these similar machines (only for the purposes of analysis) as a unique machine type. Ma-

chines belonging to a machine type have virtually indistinguishable performance and power

properties with respect to the workload. Machines of the same type may differ vastly in

feature sets so long as the performance and power consumption of the tasks under consider-

ation are not affected. Tasks often exhibit natural groupings as well. Tasks of the same task

type are often submitted many times to perform statistical simulations and other repetitive

jobs. Having groupings for tasks and groupings for machines permits less profiling effort to

estimate the run time and power consumption for each task on each machine.

Traditionally the static scheduling problem is posed as assigning all tasks to all machines.

This formulation is not well suited for recovering a high quality feasible solution from a relax-

ation of the problem. The decision variables in the classic formulation are binary valued (a

task is assigned or not assigned to a machine), and rounding a real value from the lower bound

to a binary value can change the objective significantly. Complicated rounding schemes are

necessary to iteratively compute a suitable solution. Rather than addressing the problem of

assigning all tasks to all machines, we pose the problem as determining the number of tasks

of each type to assign to machines of each type. With this modification, decision variables

will be large integers � 1, resulting in only a small error to the objective function when

rounding to the nearest integer. This approximation is most accurate when the number of

tasks assigned to each machine type is large. In addition to easing the recovery of the integer

solution, another benefit of this formulation is that it is significantly less computationally
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intensive due to solving the higher level assignment of tasks types to machine types with

DLT, before solving the fine-grain assignment of individual tasks to machines. As such,

this approach can be thought of as a hierarchical solution to the static scheduling problem.

Furthermore, for the size of problems considered in this work, the classical relaxation is not

solvable in reasonable run time with current computing capabilities.

3.1.2. Lower Bound. The lower bound on the makespan and energy is given by the

solution to an LP problem and is formulated as follows. Let there be T task types and M

machine types. Let Ti be the number of tasks of type i and Mj be the number of machines

of type j. Let µij be the number of tasks of type i assigned to machine type j, where µij ∈ R

is the primary decision variable in the optimization problem. Let ETC be a T ×M matrix

where ETC ij is the estimated time to compute a task of type i on a machine of type j.

Similarly, let APC be a T ×M matrix where APC ij is the average power consumption for

executing a task of type i on a machine of type j. These matrices are frequently used in

scheduling algorithms (e.g., [10, 19, 20, 24, 40, 41]). ETC and APC are generally obtained

from historical data in real environments.

The lower bound on the finishing time of the machines of a machine type is found by

allowing tasks assigned to a machine type to be divided among all machines to ensure the

minimal finishing time. With this conservative approximation, all tasks in machine type j

finish at the same time. The finishing time of any machine of type j, denoted by Fj, is given

by

(8) Fj =
1

Mj

∑
i

µijETC ij .
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Throughout this work, sums over i always go from 1 to T and sums over j always go

from 1 to M , thus the ranges are omitted. Given that Fj is a lower bound on the finishing

time for a machine type, the tightest lower bound on the makespan, denoted by MSLB , is

(9) MSLB = max
j
Fj .

Without idle power, the energy consumed by a bag-of-tasks is given by
∑

i

∑
j µijAPC ijETC ij.

To incorporate idle power consumption, one must consider the time duration for which the

machines are powered on. In this model, the time duration is the makespan. Not all ma-

chines will finish executing tasks at the same time. All but the last machine(s) to finish

will accumulate idle power. The idle power consumption APC ∅j is that part of APC ij that

occurs when no task is executing on a machine of type j. The equation for the lower bound

on the energy consumed while incorporating idle power, denoted by ELB , is given by

ELB =
∑
i

∑
j

µijAPC ijETC ij

+
∑
j

MjAPC ∅j(MSLB − Fj)

=
∑
i

∑
j

µijETC ij (APC ij − APC ∅j)

+
∑
j

MjAPC ∅jMSLB

(10)

where the second term in the first equation accounts for the idle power. The second equation

in Equation (10) breaks the energy into dynamic power and idle power consumption terms.

Due to the idle power model, the energy consumption depends directly on the makespan.
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The bi-objective optimization problem for the lower bound is:

(11)

minimize
µ,MSLB

 ELB

MSLB



subject to: ∀i
∑

j µij = Ti

∀j Fj ≤ MSLB

∀i, j µij ≥ 0 .

The objective of Equation (11) is to minimize ELB and MSLB , where µ is the primary

decision variable. MSLB is an auxiliary decision variable necessary to model the objective

function in Equation (9). The first constraint ensures that all tasks in the bag are assigned

to some machine type(s). The second constraint is the makespan constraint. Because the

objective is to minimize makespan, the MSLB variable will be equal to the maximum finishing

time of all the machine types. The third constraint ensures that there are no negative

assignments in the solutions.

This vector optimization problem can be solved to find a collection of optimal solutions.

It is often solved by weighting the objective functions to form a linear programming (LP)

problem. Methods to find a collection of solutions are presented in Section 3.3.

Ideally, this LP problem would be solved optimally with µij ∈ Z≥0. However, for practical

scheduling problems, finding the optimal integer solution is often not possible due to the

high computational cost. Fortunately, efficient algorithms exist that produce high quality

sub-optimal feasible solutions. The next few sections describe how we take an infeasible

real-valued solution from the linear program and build a complete feasible allocation.
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3.1.3. Recovery Algorithm.

3.1.3.1. Overview. An algorithm is necessary to recover a feasible solution (i.e., full

resource allocation) from the infeasible solution obtained from the lower bound in Equa-

tion (11). Numerous approaches have been proposed in the literature for solving integer LP

problems by first relaxing them to real-valued LP problems [21]. Our approach here follows

this common technique except using computationally inexpensive algorithms tailored to this

particular optimization problem. The recovery algorithm is decomposed into two phases.

The first phase rounds the solution to the nearest solution while taking care to maintain

feasibility of Equation (11). The second phase, called local assignment, assigns tasks to

actual machines to build the full resource allocation. The details of the two phases of the

recovery algorithm are detailed in Section 2.2.3.

3.2. Linear Vector Optimization

3.2.1. Introduction. Multi-objective optimization is challenging because there is usu-

ally no single solution that is superior to all others. Instead, there is a set of superior feasible

solutions that are referred to as the non-dominated solutions [42]. When all objectives are

to be minimized, a feasible solution x dominates a feasible solution y when

∀i fi(x) ≤ fi(y)

∃i fi(x) < fi(y)

(12)

where fi(·) is the ith objective function. Feasible solutions that are dominated are generally

of little interest because one can always find a better solution in some or all objectives by

selecting a solution from the non-dominated set. The non-dominated solutions, also known

as outcomes and efficient points, compose the Pareto front.
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The optimization problem in Equation (11) is used to compute the lower bound to a bi-

objective linear convex optimization problem with convex constraints. The results to follow

in this section apply only to this lower-bound scheduling algorithm. These results do not

apply after the solution has been rounded or locally assigned because those are non-linear

operations. In this section, the term Pareto front will be used to denote the Pareto front of

the linear vector optimization problem (lower bound).

Let C ∈ Rm×n be the linear mapping from the schedule to the objective space. For

our scheduling problem this is a two-dimensional space consisting of energy and makespan;

however, these results apply to larger dimensional objective spaces as well. Let X ⊂ Rn be

the convex set of constraints, thus it has the property

(13) ∀xa, xb ∈ X =⇒ ∀λ ∈ [0, 1] : λxa + (1− λ)xb ∈ X .

The decision variable, x, is contained within X . For the lower-bound optimization problem

x is a vector that contains the schedule, µ, and the auxiliary decision variable, makespan.

Using the above notation, the linear convex vector optimization problem is

(14) minimize
x∈X

y = Cx .

The lower-bound optimization problem in Equation (11) can be easily converted to this form.

Let the objective space, spanned by y, be given by Y ⊂ Rm and its non-dominated

subspace given by YND ⊂ Y . The Pareto front is given by all the y ∈ YND . This Pareto front

is convex and will be proven below. Figure 3.1 is an illustration of the proof. It shows the

decision space X and the objective space Y . Given two points ya and yb along the Pareto
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front,

ya =Cxa ∈ YND

yb =Cxb ∈ YND ,

(15)

a point in-between can be found. For any λ ∈ [0, 1] let yc be on the line between ya and yb,

such that

yc =λya + (1− λ)yb

yc =λCxa + (1− λ)Cxb

yc =C (λxa + (1− λ)xb)

yc =Cxc

yc ∈Y .

(16)

Therefore yc is feasible and it is on the line between ya and yb so the Pareto front cannot

have any concave regions. If there were any concave regions of the Pareto front then for

some λ the point yc would not be in the feasible region. It is important that xc is a convex

combination of xa and xb. This fact will be used to help fill gaps in the Pareto front in

the convex fill algorithm described in Section 3.3.4. A more general version of this proof is

available in [43].

The Pareto front for a linear objective function and convex constraint set is also connected

[43]. This means that given one point in the Pareto front YND all other points in the Pareto

front can be found by taking infinitesimal steps along the Pareto front while never leaving

the Pareto front. This is important because if one can find points along the Pareto front

then it is possible to connect those points to form an approximation to the Pareto front.
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Figure 3.1. Illustration of the proof of convexity: Showing the linear map-
ping from the convex set in the decision space to the convex set in the objective
space.

3.2.2. Multiple Non-Dominated Solutions. It is desirable to tightly bound the

Pareto front using algorithms that are computationally efficient and scale well as the problem

size increases. Non-dominated solutions help to restrict the size of the regions where the

remaining Pareto front may exist. Given any optimal non-dominated solution, the Pareto

front does not exist to the region to the top right nor to the bottom left of the non-dominated

solution. When given any two non-dominated solutions there is more information about the

Pareto front that can be extracted when considering them jointly than when considering

each individually. Figure 3.2a shows an example of two non-dominated solutions ya and yb.

The orange regions in Figure 3.2a show where the Pareto front can reside. The Pareto front

cannot be in any of the unshaded areas. Regions 3, 4, and 8 are dominated by ya and/or yb
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so they cannot be in the Pareto front. Regions 5, 9, and 10 would dominate ya and/or yb

but ya and yb are in the Pareto front so these regions also cannot contain the Pareto front.

If the Pareto front were in regions 1, 7, or 11 then the Pareto front would not be convex

thus they are excluded as well. The orange regions 2, 6, and 12 are the only regions where

the Pareto front can reside.

With four non-dominated solutions, the region where the Pareto front can reside is re-

duced even further. Figure 3.2b shows four non-dominated solutions. The orange regions

show where the Pareto front can reside. For instance, the region between ya and yb is reduced

due to the convexity requirement imposed by yd and yc. It can be shown that adding a fifth

non-dominated solution outside of yd and yc would not reduce the region between ya and yb

any further due to convexity of the Pareto front.

3.2.3. Inner and Outer Approximations. In Section 3.3, multiple Pareto front ap-

proximation schemes will be discussed. Some of these approximations form an inner ap-

proximation while others form an outer approximation. Figure 3.3 shows an example of an

optimal Pareto front along with inner and outer approximations for the linear vector opti-

mization problem. The outer approximation is a polytope that encloses Y . Some solutions

in an outer approximation may not be feasible but it will encapsulate all the solutions. An

inner approximation is a polytope that is fully enclosed by Y . All solutions in an inner

approximation are feasible solutions. The Pareto solutions, YND , only exist between the

inner and outer approximations. Also shown in Figure 3.3 are the nadir and utopia points

that form the bounds on the objective space region of interest. To find the nadir and utopia

points one must first solve the optimization problem for each objective individually. The

nadir point is then found by selecting the maximum value of each objective. Likewise, the
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Figure 3.2. Given ya, yb, yc, and yd in the Pareto front only the orange
shaded regions may contain the Pareto front. Considering two points together
provide much more information than considering them independently. Four
points provide much more information than considering only two points due
to the convexity of the Pareto front.

utopia point is found by selecting the minimum value of each objective. The nadir and

utopia points will be used in the weighted sum and convex fill algorithms.

3.3. Pareto Front Generation

3.3.1. Introduction. Finding the Pareto front can be computationally expensive be-

cause it involves solving numerous variations of the optimization problem to find many op-

timal solutions. Most algorithms use scalarization techniques to convert the multi-objective

problem into a set of scalar optimization problems. Major approaches of scalarization in-

clude the hybrid method [43], elastic constraint method [43], Benson’s algorithm [44, 45], and

Pascoletti-Serafini scalarization [46]. Pascoletti-Serafini scalarization is a generalization of
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Figure 3.3. Inner and outer approximation of the Pareto front: the feasible
region is shown in yellow. The Pareto front is in the region between the inner
and outer approximation polygons.

many common approaches such as normal boundary intersection, ε-constraint, and weighted

sum. We will use the weighted sum algorithm in this work. The weighted sum algorithm can

find all the non-dominated solutions for problems with a convex constraint set and convex

objective functions, when enough weights are chosen [46]. Weighted sum is used for the

linear convex problem in Equation (11) to find all non-dominated solutions. A known issue

with the weighted sum algorithm is that it does not uniformly distribute the solutions along

the Pareto front. The clustering of solutions from weighted sum is mostly overcome by using

the algorithm in Section 3.3.4.

Finding the optimal schedule for makespan alone is NP-Hard in general [14], thus finding

the optimal (true) Pareto front is also NP-Hard. However, computing tight upper and lower

bounds on the Pareto front is still possible. Specifically, a lower bound on a Pareto front is

a set of solutions for which no feasible solution dominates any of the solutions in this set.

An upper bound on the Pareto front is a set of feasible solutions that do not dominate any
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Pareto optimal solutions. The true Pareto front only exists between the lower-bound curve,

an outer approximation, and the upper-bound curve, an inner approximation.

3.3.2. Weighted Sum. The weighted sum algorithm forms the convex combination of

the objectives and sweeps the weights to generate the Pareto front. The first step is to

compute the lower-bound solution for energy and makespan independently of each other.

This is used to find the nadir and utopia points, ynadir and yutopia respectively. This is

illustrated in Figure 3.3. The next step is to compute the maximum change in each dimension

as:

(17) ynadir − yutopia =

 ∆ELB

∆MSLB

 .

The scalarized objective for the energy and makespan scheduling problem is then given

by:

(18) minimize
µ,MSLB

(
α

∆ELB

ELB +
1− α

∆MSLB

MSLB

)
.

A lower bound on the Pareto front can be generated by using several values of α ∈ [0, 1]. As

the weights are changed, the objective function changes but the constraints all remain the

same. This means that the optimal solution to the LP in the prior step is still feasible in

the new problem however possibly sub-optimal. To decrease the run-time the prior solution

and the corresponding basis can be used to warm start the primal simplex algorithm [21]. In

practice, this leads to significant savings in algorithm run time. Weighted sums will produce

duplicate solutions (i.e., µ is identical for neighboring values of α). Duplicate solutions are

removed to increase the efficiency of the subsequent algorithms. Each solution is rounded

to generate an intermediate Pareto front. Rounding often introduces many duplicates that
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can be safely removed. Each integer solution is converted to a full allocation with the local

assignment algorithm to create the upper bound on the Pareto front.

3.3.3. Non-dominated Sorting Genetic Algorithm II. The non-dominated sort-

ing genetic algorithm II (NSGA-II) [47] is an adaptation of the GA optimized to find the

Pareto front of a multi-objective optimization problem. Similar to all GAs, the NSGA-II

uses mutation and crossover operations to evolve a population of chromosomes (solutions).

Ideally, this population improves from one generation to the next. Chromosomes with a

low fitness are removed from the population. The NSGA-II algorithm modifies the fitness

function to work well for discovering the Pareto front. In prior work [39], the mutation

and crossover operations were defined for this problem. The NSGA-II algorithm will be

seeded in two ways in the following results. The first seeding method uses the minimum

energy solution (only minimal energy when there is no idle energy), sub-optimal minimum

makespan solution (from the min-min [10] algorithm), and a random population as the initial

population. This is the original seeding method used in [39]. The second seeding method

uses the full allocations from the local assignment algorithm as the initial population for the

NSGA-II.

3.3.4. Convex Fill Algorithm. The weighted sum algorithm finds lower-bound so-

lutions that are on the vertices of the objective space convex set Y . As such, the weighted

sum algorithm’s solutions tend to be clustered because vertices of the polytope Y tend to be

non-uniformly distributed in the objective space. This leaves large gaps between solutions

in the Pareto front. Recall that Figure 3.2 shows that as the distance between the known

points along the Pareto front increase so does the size of the allowable region for the Pareto

front. To better contain or bound the Pareto front, solutions are needed to help fill the gaps
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f1(x)

f2(x)

convex fill solution

missed vertex

weighted sum solution

Pareto front

Figure 3.4. Example solutions from the weighted sum and convex fill algo-
rithms: Weighted sum’s solutions are red and convex fill’s additional solutions
are green. The Pareto front is the thick orange line. The white solution is a
non-dominated solution that the weighted sum algorithm did not discover due
to a limited number of weights that causes the neighboring convex fill solutions
to not be a lower bound. The convex fill algorithm accurately approximates
the solutions within the regions that the weighted sum algorithm missed.

between the weighted sum solutions. The convex fill algorithm developed next is a very fast

way to find these desired missing solutions.

Figure 3.4 shows an example of the lower-bound curve. Overlaid on the figure are the

weighted sum algorithm’s solutions in red. The white solution was not found by sweeping

the weights for the weighted sum algorithm due to a fixed number of weights. Convex fill’s

solutions are shown in green. These solutions fill in gaps between weighted sum solutions.

Recall from Section 3.2 that the convex combination of solutions is also a solution. The

convex fill algorithm populates the gaps in the objective space by using this convexity prop-

erty on the decision space. The convex fill algorithm uses all the unique lower-bound solutions

from the weighted sum algorithm.

Define the normalized objective value to be

(19) ȳ =
y − yutopia

ynadir − yutopia
.
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For the energy and makespan problem, this becomes

(20) ȳ =

 ELB−Eutopia
LB

∆ELB

MSLB−MSutopia
LB

∆MSLB

 .

The convex fill algorithm uses the L1 norm as the measure of distance between outcomes

in the normalized objective space. For the two-dimensional objective space, whenN solutions

are provided by weighted sum, the total distance is

(21)
N−1∑
t=1

‖ ȳt − ȳt+1 ‖1= 2 .

Let s be the desired maximum L1 norm distance between two adjacent points in the nor-

malized objective space.

Algorithm 5 Convex fill algorithm

Require: X be the list of lower-bound solutions from the weighted sum algorithm
Require: s be the maximum desired spacing between solutions

1: Z ← X
2: for all adjacent pairs (xa, xb) in X do
3: d←‖ ȳa − ȳb ‖1

4: n← dd/se − 1
5: for t = 1 to n do
6: λ← t

n+1

7: x← (1− λ)xa + λxb
8: y ← (1− λ)ya + λyb = Cx
9: Z ← Z ∪ {x}

10: end for
11: end for
12: return Z

Algorithm 5 gives our convex fill algorithm. It takes the list of lower-bound solutions

X and a maximum desired spacing s and produces a list of solutions Z that has no gaps

larger than s. This algorithm only works on vector optimization problems with a two-

dimensional objective space. Our convex fill algorithm iterates over adjacent solutions in
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X. Two solutions are said to be adjacent if they are nearest to each other in the objective

space. Practically, these adjacent solutions are found by first lexicographically sorting the

solutions by their objective vectors. For a sorted set of solutions, the adjacent solutions are

those that are consecutive in the list. The solutions from the weighted sum algorithm are

already lexicographically sorted if α is swept from 0 to 1. Let the distance between any two

solutions be d, and let n be the number of solutions to be added between ya and yb to ensure

maximum spacing of s. The convex combination of the pair of solutions and the objective

values of the solutions are computed. Lastly, the new solution x is appended to the list Z.

Unlike solutions from the weighted sum lower bound, the solutions from the convex fill

algorithm are not guaranteed to be a lower bound. This is because there is no guarantee that

all solutions were found when performing the weighted sum sweep. If all vertices or solutions

of Y are found, then convex fill will produce lower-bound solutions. Figure 3.4 illustrates

how a vertex that is not found by weighted sum, causes the convex fill algorithm’s solutions

to no longer be on the lower-bound curve. To use the convex fill algorithm for producing

lower-bound solutions, an optimal algorithm such as Benson’s algorithm is required [44].

Benson’s algorithm for Equation (11) is much slower than weighted sum.

To construct the full allocation from the lower bound, the recovery procedure described in

the Section 3.3.2 is used. Results for the convex fill algorithm are presented in Section 3.4.5.

3.3.5. Pareto Front Solution Quality. Many approaches to quantitatively and

qualitatively measure the quality of a Pareto front have been used in the literature. One

approach uses a measure of how well-spaced the solutions are in the objective space by

computing the sample variance of the distance between solutions [48]. While this is useful

in some cases it is not a good measure of the overall quality of an approximation to the

Pareto front. A byproduct of the weighted sum algorithm described in Section 3.3.2 is that
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it produces many lower and upper-bound solutions that can be used to constrain the Pareto

front to a small region. To quantitatively measure the performance of algorithms, we can

compute the area of this region. The true Pareto front becomes more tightly bounded when

the area of this region becomes smaller.

Computing the area of this region in a consistent manner is nontrivial. Careful definitions

of the outer approximation (lower bound) and the inner approximation (upper bound) are

necessary.

After the lower and upper-bound solutions are obtained, we begin the calculation for

the area of this region by computing the overall nadir point from the lower and upper-

bound solutions. We then add three more points to the Pareto front to form a closed

polygon, namely (Eutopia
LB ,MS nadir

LB ), (Enadir
LB ,MS utopia

LB ), and (Enadir
LB ,MS nadir

LB ). Next, the outer

approximation polygon is found using the convexity properties of the lower bound outlined

in Figure 3.2. The inner approximation polygon is computed by using the fact that only

the region to the top-right of each point should be included in the polygon. Both the inner

and outer approximation polygons are not convex polygons. The area where the Pareto

front can reside is found by taking the difference between the areas of the outer and inner

approximation polygons. Section 3.4 shows example inner and outer approximation polygons

in Figure 3.10.

3.4. Results

3.4.1. Simulation Setup. ETC and APC matrices are needed to evaluate the algo-

rithms. To generate these matrices, a set of five benchmarks executed over nine machine

types was used to construct the initial matrices [23]. Then the method found in [24] was used

to construct larger ETC and APC matrices. Nominally there are 1,100 tasks comprised of
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30 task types. The number of tasks per task type varies from 11 to 75 and was generated

by the method used in [24]. There are nine machine types with four machines of each type

for a total of 36 machines. A complete description of the environment are available in the

supplementary material. This environment will be referred to as the nine machine type

environment.

Unless noted otherwise, the simulations were performed on a mid-2009 MacBook Pro

with a 2.5 GHz Intel Core 2 Duo processor. All the algorithms were implemented in C++

and optimized using our best effort. The COIN-OR CLP solver was used to solve the LP

problems. The third party CLP library is also written in C++ [49]. The hardware being

used for running the NSGA-II simulations is a 2013 Dell XPS’15 with an Intel i7-4702HQ

2.2 GHz CPU. The NSGA-II code is implemented in C++.

The LP-based Pareto fronts are all generated with 1,000 evenly distributed weights. The

weights are used in the weighted sum algorithm to parametrically sweep the Pareto front.

Generally this leads to fewer than 100 full allocations depending on the particular problem.

3.4.2. Pareto Fronts. Figure 3.5 shows the lower bound and approximate Pareto

fronts for four different environments. The LP-based lower bound is shown by the red

shaded region. The figure shows the actual solutions as markers that are connected by lines

for the NSGA-II algorithm and the LP-based algorithm. The legend shows the techniques

associated with the markers in addition to the total algorithm execution time. All the

systems have zero idle power consumption. The NSGA-II algorithm was allowed to run for

one million generations when seeded with the basic seed. One thousand generations were

used when seeded with the full allocation seed.

Figure 3.5a shows the results for the nine machine type environment. The lower bound

and and LP-based full allocation are nearly indistinguishable along the entire Pareto front.
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This means that the true Pareto front is tightly bounded even though it is unknown. The

curve that is dominated (i.e., higher values in both makespan and energy) by all other

curves is the set of solutions generated by the NSGA-II using the first seeding method. This

means that it took NSGA-II over a day to find a set of solutions that are of poor quality

in comparison to our technique that took 0.1 s. The set of red solutions are those obtained

from seeding NSGA-II with the set of solutions produced by our local assignment algorithm.

Seeding with the full allocation allows the NSGA-II to both converge to an improved front

as well as decrease the run time. The NSGA-II attempts to evenly distribute the solutions

along the Pareto front as can be seen in Figure 3.5a. All the algorithms seem to perform

well at minimizing energy, presumably because computing the optimal minimum energy

solution is relatively easy compared to finding the optimal minimum makespan solution. To

obtain the minimum energy solution, each task is assigned to the machine that requires the

lowest energy to execute that task. Figure 3.5a shows that all the algorithms produce good

minimum energy solutions; however, for makespan there are significant differences in solution

quality. The new LP-based algorithms produce better quality solutions in significantly less

time.

A few different systems are used to further demonstrate the applicability of the LP-based

Pareto front generation technique. Figure 3.5b shows a system composed of just the first six

machine types from the previous system, with six machines per type. Figure 3.5c shows an

even smaller system by taking only the first two machine types, with 18 machines per type.

The total number of tasks, task types, and machines is unchanged. These figures show how

the lower bound and upper bound still outperform the NSGA-II algorithm even when the

number of machines types become small.
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(b) six machine type environment
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(c) two machine type environment
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(d) synthetic ten machine type en-
vironment

Figure 3.5. Lower bound and approximate Pareto fronts: The region ex-
cluded by the lower bound from the LP is shaded in orange and truly bounds
the approximate Pareto fronts. The full allocation or upper bound is very near
the lower bound so the Pareto front is tightly bounded. The times shown in
the parenthesis in the legend indicate the total time to compute the solution.
Solution quality is rather poor with the NSGA-II using the original seed and
expensive to compute, however the NSGA-II seeded with the full allocations
produces a reasonable result, close to the full allocation, in much less time,
but still is not as good as the full allocation in places.

The results in Figure 3.5d are based on an entirely different environment that was pre-

viously used in [39]. The HPC system has 50 machines selected from ten machine types.

There are 1,000 tasks made from 50 task types. The ETC and APC matrices were gen-

erated randomly with the CoV method described in [29]. Even though this environment is

very different from the previous environments, the LP-based algorithm produces a superior

Pareto front in significantly less time.
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3.4.3. Solution Progression. To further understand the effect of the three phases

of the proposed algorithm we can follow a set of solutions as they progress from the lower

bound to the upper bound. Figure 3.6 illustrates how the solutions progress through the

three phases of the algorithm. Figure 3.6a shows the progression without considering idle

power consumption. This figure is a zoomed in version of a portion of Figure 3.5a that details

the progression of individual solutions for the nine machine type environment. The lowest

line represents the lower bound on the Pareto front. Each orange arrow represents a solution

as it is rounded. In every case, the makespan increases while the energy may increase or

decrease. The energy consumption can change during the rounding phase because tasks may

become assigned to different machine types that may be more or less efficient compared to

the original fractional assignment. As a given solution, µ, is rounded, machines will finish

at different times, thus increasing the makespan. Each blue arrow represents a solution that

is being fully allocated via the local assignment algorithm. The energy in this case does not

change because the local assignment algorithm does not move tasks across machine types,

thus the power consumption cannot change. The makespan increases are highly varying

and depend on how well tasks in a machine type pack onto individual machines. The full

allocation solution second from the right dominates the one on the far right. In this case the

solution on the far right would be removed from the estimate of the Pareto front.

Figure 3.6b shows the progression of the solutions when considering idle power. The

idle power consumption is set to 10% of the mean power for each machine type, specifically

APC ∅j = 0.1
T

∑
i APC ij. As the makespan increases, more machines will be idle for longer,

so the idle energy increases. The local assignment phase now negatively affects the energy

consumption because it will typically have machines idle for some amount of time.
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(b) 10% idle power

Figure 3.6. Progression of solutions from lower bound to integer to upper
bound without idle power (a) and with idle power (b).

3.4.4. Idle Power Consumption. Figure 3.7 shows the effect of idle power on the

Pareto front for the nine machine type environment. The curves show the lower bound on

the optimal Pareto front with different percentages of idle power. The penalty for having a

large makespan increases as the idle power increases because a large fraction of machines are

idle for longer. The optimal energy solutions must now have a shorter makespan to reduce

energy usage. This causes the Pareto front to contract in the makespan dimension and shift

to the right slightly. As idle power usage approaches 100%, the problem degenerates to the

single objective minimum makespan scheduling problem.

3.4.5. Convex Fill. Figure 3.8 shows the solution front after convex filling while Fig-

ure 3.5a is shown without the convex filling. Convex filling increases the run time only

slightly, yet produces a much more complete Pareto front compared to using the weighted

sum algorithm alone.

Figure 3.9 shows how the solutions from the lower bound progress to the full allocation

when using the convex fill algorithm with s = 0.01. Comparing this figure to Figure 3.6a

shows that the solutions added by the convex fill algorithm to the lower bound generate

many unique integer and full allocation solutions. This allows the upper bound formed by
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Figure 3.7. Pareto front lower bounds when varying idle power: Idle power
is increased in 5% increments as labelled on the figure. As idle power increases,
the reward for minimizing makespan also increases. The curve without idle
power is only partially shown.
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Figure 3.8. Solutions after applying the convex fill algorithm: there are no
more large spaces between full allocation solutions as compared to Figure 3.5a.

the full allocations to be much tighter, as will be measured quantitatively in Section 3.4.6.

A decision maker also would benefit from having fewer gaps in the Pareto front solutions

when selecting an appropriate schedule. The additional run time of generating these extra

solutions is negligible compared to the run time of the weighted sum algorithm.
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Figure 3.9. Progression of solutions from lower bound to upper bound when
using the convex fill algorithm: Convex filling produces unique integer and full
allocations that tighten the Pareto front bounds compared to without convex
filling in Figure 3.6a.

3.4.6. Area Between Pareto Front Bounds. Using the algorithm detailed in Sec-

tion 3.3.5 to compute the area between the inner and outer approximations, the quality of

the different algorithms that generate bounds on the Pareto front can be quantified. Fig-

ure 3.10 shows examples of the inner and outer approximations of the Pareto front for the

nine machine type environment. The orange area is the region where the true Pareto front

can exist. The yellow region in the upper right is forbidden because full allocations have

been found that dominate every solution in that region. The white part of the graph to

the bottom left is also forbidden because there are no feasible solutions in that region. This

white region is bounded by the outer approximation found from the lower-bound solution.

The LP-based algorithm using just weighted sum is shown in Figure 3.10a. The same region

along the Pareto front after applying the convex fill algorithm is in Figure 3.10b. The convex

filling does not change the outer approximation but it does add more unique full allocations
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(a) LP-based (b) LP-based with convex fill

Figure 3.10. Inner and outer approximation polygons with and without con-
vex filling: The orange region is where the Pareto front can exist. The convex
fill algorithm greatly reduces the allowable area where the Pareto front can
exist.

that greatly increases the area of the inner approximation making the bound on the Pareto

front tighter.

Table 3.1 lists the area (in megajoule-seconds) that is between the inner and outer ap-

proximation polygons. When the area is small, the Pareto front is tightly bounded. The

area is computed using the method in Section 3.3.5. Of the Pareto front generation algo-

rithms discussed, only the LP-based algorithm produces an outer approximation or lower

bound. The LP-based outer approximation is used for all the results shown in Table 3.1. The

table shows four different algorithms for computing the inner approximation. The results

are shown for the nine, six, two, and ten machine type environments whose Pareto fronts

are shown in Figure 3.5. The NSGA-II with the basic seed can only very loosely bound

the Pareto front. The LP-based algorithm bounds the Pareto front much more tightly than

NSGA-II. However, running the NSGA-II algorithm as a post process to the LP-based al-

gorithm does improve the quality of the bounds. This is because the NSGA-II will find

solutions that are between the seeded full allocations thus filling in the gaps and reducing

the area. The convex fill algorithm is an alternative post process to the LP-based algorithm
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Table 3.1. Area between bounds

algorithm nine six two ten
NSGA-II 2149 1351 115 2.655
LP-based 684 339 63 1.011
NSGA-II seeded 436 306 53 0.851
LP with convex fill 231 238 38 0.762

that executes extremely fast. The convex fill algorithm bounds the Pareto front the tightest

for all environments considered here.

The lower bound can be tightened even further by using the technique described in

Section 3.7 at the cost of greater computation.

3.5. Computational Complexity

3.5.1. Analysis. A complete analysis of the scaling properties of the single objective

minimum makespan scheduling problem are in Chapter 2. Those results are summarized

below and then extended for the full Pareto front generation problem.

Recall that T and M are the number of task and machine types respectively. The

average case complexity of solving a single LP problem with the simplex algorithm is

(T + M)2(TM + 1). The complexity of the rounding algorithm is O (T (M logM)). Let

Ttotal =
∑

i Ti be the total number of tasks and Mtotal =
∑

j Mj be the total number of

machines. Assuming for the sake of analysis that tasks and machines are evenly distributed

so ∀j
∑

i µij ≈ Ttotal

M
and Mj ≈ Mtotal

M
. The local assignment algorithm has complexity

O (MT log T + Ttotal logMtotal − Ttotal logM).

The complexity of the overall algorithm to find both the lower bound and upper bound

(full allocation) is driven by either the lower-bound algorithm or the local assignment algo-

rithm. The complexity of the lower bound and rounding algorithms are independent of the

number of tasks and machines. Those algorithms depend only on the number of task types
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and machine types. This is a very important property for large-scale environments. Millions

of tasks and machines can be handled easily if the machines can be reasonably placed in a

small number of homogeneous machine types and, likewise, tasks can be grouped by a small

number of task types. Only the local assignment algorithm’s complexity has a dependence on

the number of tasks and machines. This phase is only necessary if a full allocation or sched-

ule is required. The lower bound can be used to analyze much of the behavior of the HPC

environment at a lower computational cost. Furthermore, the local assignment algorithm

can be trivially parallelized because each machine type is scheduled independently.

When generating a Pareto front the lower-bound solutions are generated by re-solving a

similar LP many times. The objective space of vector optimization problems are polytopes

so they have a finite number of vertices. This means that there is a maximum number of

solutions that can be found by the weighted sum algorithm because it is restricted to vertices.

Usually there are a large number of duplicate solutions from weighted sum that can safely

be removed thus reducing the computational cost of subsequent algorithms such as rounding

and local assignment.

3.5.2. Results. To demonstrate the scaling properties of our Pareto front generation

algorithm, a scaled up version of the nine machine type environment was used to generate

the larger environments used in this simulation. The number of machines per type was

changed from 4 to 400 so there are now 3,600 machines. Tasks for each trial were generated

by sampling the task type distribution with replacement. The mean of 50 trials is shown.

For this set of simulations the convex filling algorithm was used to improve the quality of

the Pareto front that was computed.

Figure 3.11 shows the relative area between the inner and outer approximation polygons

as a function of the number of tasks. The quality of the bound improves (i.e., relative area
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Figure 3.11. Relative percent increase in area as a function of the total
number of tasks : The quality of the solution improves as more tasks are used.
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(c) local assignment

Figure 3.12. Algorithm run time versus total number of tasks : Both the
lower bound and the rounding algorithms are independent of the number of
tasks. The local assignment, used to obtain the full allocation, is linearly
dependent on the number of tasks.

decreases) as the number of tasks to schedule increases. Figure 3.12 shows the run time of the

three phases of the algorithm as a function of the number of tasks. The Figure 3.12a shows

the time to run the weighted sum algorithm and solve all the resultant LPs. Corresponding

to the analysis in Section 3.5.1, the weighted sum algorithm is independent of the number of

tasks. The rounding algorithm is shown in Figure 3.12b. Its runtime is also approximately

independent of the number of tasks. Figure 3.12c shows the local assignment and is the only

phase of the algorithm that depends on the number of tasks. The dependency is linear which

matches the analysis in Section 3.5.1.
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The time required to solve the initial LP problem is on average 12.6 times more expensive

than doing a single re-solve of the problem after perturbing the weights. This is because

the LP problem changes only slightly in the objective function so only a few primal simplex

steps are required to restore optimality.

3.6. Related Work

Techniques for generating Pareto fronts have been well studied (e.g., [24, 39, 41, 42,

47]). Our LP-based approach achieves huge gains in run time and solution quality over

prior methods by exploiting properties that are common to static scheduling problems. Our

approach takes advantage of the common property that each machine in an HPC system

is not unique but belongs to one of a few machine types. Our work also is focused on

very large-scale systems and finding high quality solutions on average, whereas [14, 31]

are concerned with worst-case performance of the scheduling algorithms. The energy and

makespan problem is a specialization of the classic optimization problem of minimizing

makespan and cost [14, 31].

While our work deals with scheduling tasks to entire machines, the algorithms could

also be applied to scheduling tasks to cores within a machine or across cores on many

machines. The full allocation recovery algorithm we use is similar in nature to the algorithms

presented in [33] that deal with scheduling on a single machine with deadlines to determine

the best DVFS parameters to use to minimize energy as a secondary objective. An algorithm

is presented in [34] that minimizes energy while constraining makespan and reliability to

provide computationally efficient schedules for DVFS scheduling on identical processors.

In [20], the A∗ search algorithm is used to assign tasks to machines considering task

dependencies and communication constraints. This algorithm is very expensive for large
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numbers of tasks because the algorithm’s branching factor is on the order of the number of

machines and the depth is on the order of the number of tasks.

NSGA-II based approaches to find the energy and makespan Pareto front are in [39, 41]

without the use of task and machine types. Other algorithms exist in the literature that

may perform differently than NSGA-II such as the improved strength pareto evolutionary

algorithm (SPEA2) algorithm [50].

Makespan and energy bi-objective optimization is also proposed in [51] via a mixed integer

linear programming (MILP) formulation using the weighted sum algorithm to find solutions

along the Pareto front. They present an adaptive algorithm that fills in the weighted sum

solutions by solving additional MILP problems. They assign individual tasks to individual

machines so scalability will suffer. An extension of their work that uses vector ordinal

optimization to approximate the Pareto front is presented in [52].

3.7. Tighter Lower Bound on the Pareto Front

3.7.1. Motivation. The vector optimization in Equation (11) solved via weighted sums

in Section 3.3.2 provides a set of solutions that are on the outer approximation to the Pareto

front. In Section 3.3.5 these lower bound solutions are used to form a non-convex polygon

that is the outer approximation. This lower bound is not as tight as it could be because the

actual outer approximation must be convex.

Consider Figure 3.13 where y1, y2, and y3 are Pareto optimal for the linear vector opti-

mization problem in Equation (11). Points x1 and x2 in addition to solutions y1, y2 and y3

are used for the outer approximation polygon in Section 3.4.6. We introduce two new points

z1 and z2 that are unknown. The points y1, z1, y2, z2, and y3 form part of a convex polygon.

The polygon with maximum area can be used as the area for the lower bound polygon. Note
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Figure 3.13. Simple Pareto front: y1, y2, and y3 are from weighted sum
however z1 and z2 can be found to create a tighter bound then when using x1

and x2.

that z1 and z2 are not necessarily solutions like y1, y2, and y3. This convex polygon is not the

outer approximation polygon but rather has area that is required to be larger than the area

of the true Pareto front that is know to be convex. Next we start building the optimization

problem that finds this maximum area polygon.

The signed area of a triangle is used to develop the problem to follow. The signed area

of triangle ABC is given by [53]

area(A,B,C) =
1

2

∣∣∣∣∣∣∣∣∣∣∣
Ax Ay 1

Bx By 1

Cx Cy 1

∣∣∣∣∣∣∣∣∣∣∣
=

1

2
(−BxAy + CxAy + AxBy

− CxBy − AxCy +BxCy) .

(22)
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If A, B, and C are counter clockwise around the triangle then the area is positive.

Likewise if the points are clockwise the area is negative.

We desire to maximize the area(z1, y2, y1) + area(z2, y3, y2). From Equation (22) one

can see that this objective is linear in z1 and z2. The point z1 must be contained within

the triangle y1, y2, x1 to be within the original outer approximation and maintain a convex

polygon. Likewise the point z2 must be contained within the triangle y2, y3, x2. These

constraints are linear half plane constraints. To ensure that the polygon is convex, the point

y2 must be below the line defined by z1 and z2. At optimality z1, y2, and z1 will be collinear.

This is equivalent to area(z1, y2, z2) = 0. This constraint is quadratic in z1 and z2. This

problem is well defined and can be solved but first we generalize this to the case of an

arbitrary number of solutions.
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Figure 3.14. Generalization of the tighter, convex lower bound

3.7.2. Problem Formulation. Figure 3.14 shows the Pareto front with an arbitrary

number of Pareto efficient points. Let yi be the ith objective of the solution on the Pareto

front to the linear vector optimization problem. Let zi be the additional point in between yi

and yi+1 to form the convex outer approximation. Let there be N + 1 Pareto front points y;

thus there are N additional points z. To ease the problem formulation define y0 = y1 +(0, 1)

and yN+2 = yN+1 + (1, 0).
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The optimization problem becomes

maximize
z

N∑
i=1

area(zi, yi+1, yi)(23a)

subject to:(23b)

∀i ∈ {1, · · · , N − 1} area(zi, yi+1, zi+1) ≥ 0 weak collinear(23c)

∀i ∈ {1, · · · , N} area(zi, yi+1, yi) ≥ 0 upper(23d)

∀i ∈ {1, · · · , N} area(zi, yi−1, yi) ≥ 0 left(23e)

∀i ∈ {1, · · · , N} area(zi, yi+1, yi+2) ≥ 0 bottom .(23f)

The optimization problem in Equation (23) has the general form of

maximize
z

cTz(24a)

subject to:(24b)

∀i ∈ {1, · · · , N − 1} zTQiz + dT
i z ≥ 0 quadratic(24c)

∀i ∈ {1, · · · , 3N} Aiz ≥ bi linear(24d)

where the quadratic constraint is from the first constraint in Equation (23). The quadratic

coefficient matrix Q is not symmetric but can be made symmetric by letting

(25) Ri =
Qi + QT

i

2

and using the identity

(26) zTQiz = zTRiz .
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The symmetric matrix Ri is N ×N and very sparse with only four non-zero entries. It

can be shown that the matrix Ri has positive and negative eigen values, and thus it is an

indefinite matrix. So zTRiz+dT
i z is not a concave function and the corresponding constraint

defines a non-convex set [54]. This quadratically constrained linear programming problem

is thus a non-convex optimization problem. Using the first and second derivatives from the

constraints and objective, the interior point method can be used to find a local maxima

relatively easily. An initial marginally feasible point is zi = yi+1+yi
2

. The interior point

algorithm effectively converts the problem into an unconstrained non-linear optimization

problem and then uses Newton steps to obtain local optimality. To use the solution for the

lower bound, the provably optimal solution must be found which is not possible for this

class of problems. Due to how tightly constrained this optimization problem is in practice,

the local optimization solution seems to converge to the global maxima in practice for small

problems and medium sized problems.

3.7.3. Results. The optimization problem takes about 50 s to solve2 when N = 53.

Table 3.2 shows areas between different bounds for the nine, six, two, and ten machine type

environments. The table shows the LP-based convex filled area with the original loose lower

bound and the tighter convex lower bound. Also shown is a bound, labelled “exhaustive” in

Table 3.2, that is computed using Benson’s optimal algorithm [44, 45] or equivalently using

weighted sum algorithm with a sufficiently large (exhaustive) number of weights. In this

case all the vertices are found thus the outer approximation is just the convex hull of the

points.

2The optimization problem was implemented in Mathematica using FindMaximum[].
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Table 3.2. Area between bounds

algorithm nine six two ten
loose 231 238 38.1 0.762
convex 226 235 36.3 0.748
exhaustive 210 226 34.1 0.689

The convex lower bound is tighter than the original lower bound. It is more expensive to

compute but does provide a tighter lower bound. The exhaustive lower bound is the tightest

in all cases but is not practical for extremely large problems.

3.8. Conclusions

A highly scalable scheduling algorithm for the energy and makespan bi-objective op-

timization problem was presented. The complexity of the algorithm to compute the lower

bound on the Pareto front was shown to be independent of the number of tasks and machines.

Only the algorithm to compute the full allocation, that is computationally inexpensive and

trivially parallelizable, is dependent on the number of tasks and machines. The quality of

the solution also improves as the size of the problem increases. The LP-based Pareto front

was compared to the solution found with the NSGA-II algorithm and shown to be superior

in solution quality and algorithm run time for a variety of test environments. A post-process

to the LP-based algorithm was developed that fills in solutions quickly using the convexity

property of the relaxed problem. This was shown to further increase the quality of the Pareto

front with a negligible increase in run time. A new approach for quantifying the quality of

the Pareto fronts was developed and used to compare the different algorithms. These proper-

ties make this algorithm perfectly suited for very large-scale scheduling problems. This new

LP-based Pareto front generation algorithm allows decision makers to more easily trade-off

energy and makespan to reduce operating costs and improve efficiency of HPC systems.
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This work could be extended by considering alternative scalarization techniques to po-

tentially reduce the time required to compute the lower bound. Many of the LP problems

result in solutions that are identical, thus providing minimal information in forming the

Pareto front. It is possible to avoid generating duplicate solutions by utilizing different

scalarization techniques. The LP-based scheduling algorithm only takes a fraction of a sec-

ond to compute a single schedule for a given bag-of-tasks so it is possible to use this scheduler

for online batch-mode scheduling. Specifically, this algorithm can be used to schedule tasks

as they arrive at the system by computing a schedule for all tasks waiting in the queue (as

a batch) and recomputing the schedule when a task completes or a new task arrives.
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CHAPTER 4

Maximum Profit Scheduling 1

4.1. Introduction

4.1.1. Background. Scheduling tasks for high performance computing (HPC) systems

has been a focus of much research in the last few decades. The primary goal has been to

find algorithms that decrease the time required to process tasks [10]. Likewise, hardware

manufacturers have been focusing on increasing performance (i.e., reducing execution time).

As HPC systems have grown in computing capacity, they also have grown in power con-

sumption. Both the power consumed by these massive supercomputers as well as the energy

required to cool them has become increasingly significant [2]. In recent years, the high cost

of operating these systems has lead to research that tries to find resource allocation schedules

that reduce the required energy consumption to process tasks [9, 24, 37, 39, 41, 56]. While

minimizing energy consumption and increasing performance is desirable, it is often not the

driving factor for decision making within organizations. Often decision makers are driven to

directly maximize profit. This chapter describes a novel algorithm to efficiently compute a

near-optimal maximum profit schedule for extremely large problem sizes.

For a variety of reasons, HPC systems are often composed of different types of machines.

Machine heterogeneity can be caused by building the HPC system in multiple phases, where

each expansion phase involves purchasing a newer/different server model. Heterogeneity

might also be introduced into a system from the start to decrease the run time of relatively

slow tasks. For example, GPUs and specialized co-processors have been used to greatly

accelerate the computation of data parallel tasks [1]. Systems composed of a non-uniform

1This work appeared in [55] with co-authors Anthony A. Maciejewski, and Howard Jay Siegel.
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set of compute resources are called heterogeneous computing (HC) systems. The focus of this

work is on HC systems that are heterogeneous in both performance and power consumption.

For example, some tasks may execute faster on machines that support a particular CPU

instruction set while another set of tasks may execute faster on machines with higher IO

bandwidth. The energy consumed by a task running on a GPU enabled machine may be

different than when running solely on the CPU. The nature of a task dictates how efficient,

in run time and energy, it will perform on any given machine. This task and machine

heterogeneity provides additional degrees of freedom that can be leveraged by the scheduling

algorithms to create resource management schedules that improve the workload’s run time

performance and reduce the energy consumption of the overall system.

Trading-off the energy and performance (i.e., workload execution time) is difficult. There

are many schedules that can be considered optimal in this trade-off space. The least exe-

cution time schedules typically require the most average power however they may or may

not require more energy. Likewise the lowest energy schedule typically has a significantly

reduced performance. A system administrator is required to choose the balance between

these conflicting objectives. For typical scheduling scenarios, it is not desirable to have a

human in the scheduling loop. This chapter focuses on combining the energy and perfor-

mance objectives into a single profit objective. Profit is likely the driving factor behind

the system administrator’s decision so the scheduler should try to directly maximize profit.

Profit combines energy and run time performance into a single more meaningful objective.

4.1.2. Motivation. Possibly the most obvious use case for the scheduling algorithms

proposed in the chapter is software as a service (SaaS). For example, consider a specific

video transcoding SaaS that processes requests to convert users’ videos to many different

formats. The user pays a fixed price for this service based on the length of the videos and
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the formats requested. The SaaS provider would like to complete the work as inexpensively

as possible while recognizing that more work from other users is to follow and the user would

prefer to have the work completed promptly. Imagine that for each video format there is a

corresponding task type that represents converting one minute of a video. As such, video

conversion workloads can be broken into a small and finite number of task types. In this

example, there would be a large number of tasks but only tens of task types. Assume the

SaaS provider also has special purpose machines that have GPUs installed that will transcode

to particular video formats extremely quickly. It also has general purpose machines that can

transcode all supported formats but do so more slowly. The SaaS provider can easily estimate

the time to compute a task of a given task type on a machine of a given machine type. The

service provider performs the same transcoding operations (e.g. convert 1 minute of MOV to

MPEG-4) millions of times per day on all the different types of machines so they are likely

to know the average time to compute and power consumption accurately. The SaaS provider

is only paid for completed work, thus the scheduling algorithms should attempt to complete

the work as fast as possible while balancing the cost of energy to do the transcoding. Other

workloads such as scientific monte carlo simulations and computational biology (e.g., protein

folding) also fit this computational model.

4.1.3. Contributions and Outline. This chapter presents a monetary-based model

for HPC where there exists a logical or financial distinction between the service provider (the

one offering computing services) and the users (the ones submitting tasks). An algorithm is

then developed to find the schedule that maximizes the profit for the service provider.

The contributions of this chapter are:

(1) A model for two-party monetary-based HPC systems.
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(2) A scalable and efficient algorithm to find the near-optimal maximum profit schedule for

an HC system.

(3) Bounds on the achievable profit for a given HC system.

The remainder of this chapter is organized as follows. The next section defines a mone-

tary two-party model of computing. The fundamental algorithms to compute near-optimal

schedules and the results of these algorithms are presented in Section 4.3. An efficient profit

maximization algorithm is described in Section 4.4. In Section 4.5, the results are presented

based on a example system configuration. Useful extensions to the two-party model and

how to incorporate them into the algorithm are given in Section 4.6. Related work from the

literature is in Section 4.7. Lastly, in Section 4.8, we conclude and list ideas for future work.

4.2. Two-Party Monetary Model

HPC systems are often oversubscribed because users of these systems typically want to

complete more work than the systems are capable of completing in a timely manner. HPC

systems within organizations typically have ad hoc rules governing how their employees

share the compute resources. This makes it difficult to quantify optimality of schedules

when there is a need to consider the monetary operating costs in the scheduling problem.

Energy consumption and system performance must be converted into a space where they

are comparable. Moreover, these objectives often conflict with each other. Typically one

objective cannot be improved without compromising the other objective. The model in this

chapter assumes there are two distinct parties. The first party is the set of users who pay

money to submit work to the HPC system. The second party is the organization providing

a service to the users by operating the HPC system and accepting workloads. The users
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and the organization are loosely coupled. The HPC system administrator is responsible for

maximizing the profit from the HPC system.

Frequently HPC workloads consist of a bag-of-tasks [57]. Each task is executed on one

machine and is independent of all the other tasks. Let there be a price p that a customer

pays to have a bag-of-tasks processed that is based on that bag’s composition. The cost to

the organization for processing a bag-of-tasks is primarily the cost of electricity. Let c be the

cost per unit of electrical energy. Additional operating costs such as purchase, replacement,

and labor are discussed in Section 4.6.

Let the energy consumed by schedule or resource allocation x be E(x). Let the time nec-

essary to process the bag-of-tasks be MS (x). Specifically, MS (x) is known as the makespan

and is defined as the maximum finishing time of all machines. The profit that the organiza-

tion receives by executing a single bag-of-tasks is p− cE(x). This is the profit per bag but it

is not solely the quantity that the organization should maximize. The bag-of-tasks can take

a considerable amount of time to compute when trying to increase the profit per bag-of-tasks

by reducing electricity costs. Instead an organization should attempt to maximize the profit

per unit time given by p−cE(x)
MS(x)

, which is equivalent to

(27)
p

MS (x)
− c E(x)

MS (x)
.

The first term in Equation (27) is the average revenue per unit time. The second term is the

average operating cost per unit time, or equivalently c times the average power consumption.

In this work the bag-of-tasks is simply the set of tasks from all users that are available

to be run (i.e. all dependencies have been met) on the HPC system. The composition of the

bag of tasks can change at any time. Furthermore the tasks can finish earlier or later than

expected. The scheduler must attempt to maximize Equation (27) at all times by re-running
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the scheduler. Before addressing the maximum profit scheduling algorithm in Section 4.4

we first describe an algorithm to find high quality minimum energy and makespan schedules

that will be used to construct the maximum profit algorithm.

4.3. Energy and Makespan Scheduling

4.3.1. Overview. Classical scheduling algorithms consider the problem of assigning all

tasks to all machines in a single large optimization problem. For the large problems being

considered here, this approach is computationally prohibitive even when solving the linear

relaxation (non-integer) optimization problem. The classical approach also leads to a more

difficult procedure for recovering a feasible (integer) solution [7]. The approach used in our

algorithms exploits the existence of groups of similar machines and groups of similar tasks

to make the algorithm highly scalable. The scheduling problem is recast as a problem of

assigning some number of tasks of each type to machines types or groups instead of directly

assigning individual tasks to specific machines.

Profit per unit time is a function of both energy and makespan. In this section, algorithms

are developed to trade-off energy and makespan. The profit maximization algorithm in

Section 4.4 will employ all the key ideas and algorithms from this section. The minimum

energy and makespan scheduling algorithm first computes a lower bound on the energy

consumed by the machines for the schedule and a lower bound on the makespan of the

schedule. The lower bound allows tasks to be split among any number of machines. This

is a common practice in divisible load theory (DLT) [15]. In reality, divisible loads are not

very common so it is not enough to simply find this lower bound solution. The solution to

the lower bound is used to construct a complete resource allocation via a two-step process:
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1) the real-valued solution is first rounded and 2) the integer number of tasks are assigned

to actual machines within a machine type.

Finding the optimal schedule for makespan alone is NP-Hard in general [14], thus finding

the optimal profit per unit time is NP-Hard as well. However, computing tight upper and

lower bounds on the profit per unit time is still possible.

4.4. Profit Maximization Algorithm

Now we turn our attention back to the focus of this chapter, the profit maximization

problem. Recall that given a full resource allocation the profit can be computed using

Equation (27). One approach to determining the maximum profit solution is to compute

the profit for all of the full allocations computed via the weighted sum algorithm and take

the maximum. A more efficient approach is to find the maximum profit solution directly by

solving a related scalar optimization problem. This section describes an efficient algorithm

for finding the maximum profit schedule.

This algorithm combines the lower bounds on the energy and makespan objectives into

a single profit per unit time objective. A scalar non-linear optimization problem is then

formulated. This optimization problem is converted to an equivalent linear programming

problem that can be easily solved. The full task allocation or schedule is reconstructed by

using Algorithm 1 followed by Algorithm 2.

Given any optimal solution, x, from the vector optimization problem of Equation (11)

there exists no feasible solution that has both a energy less than ELB(x) and a makespan

less than MSLB(x). Recall from Section 4.2 that p is the price (revenue) per bag-of-tasks

and c is the cost per unit of energy. For a given solution, x, an upper bound on the profit
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per bag is p− cELB(x) and an upper bound on the profit per unit time is

(28)
p− cELB(x)

MSLB(x)
.

Note that dividing the largest value of the numerator by the smallest value of the denominator

is the largest possible value that can be obtained. The largest profit per unit time over all

feasible solutions is an upper bound on the optimal profit per unit time. This upper bound

for a single x, is further upper bounded by the maximum of Equation (28) over all possible

solutions when relaxing the task indivisibility constraint. This is a very important property

and drives the design of the algorithm to follow. Stated differently, there exists no feasible

schedule that has a profit per unit time greater than the maximum value of Equation (28)

over all possible solutions from the vector optimization problem in Equation (11). The

algorithm below finds the solution that maximizes Equation (28) thus forming a true upper

bound on the optimal profit per unit time for a given bag-of-tasks, p, c, and HPC system.

For any full allocation (feasible solution) the optimal profit per unit time must be greater

than or equal to the profit per unit time of the full allocation. This means that any fully

allocated solution is a lower bound on the optimal profit per unit time. Recall that recon-

struction Algorithms 1 and 2 attempt to find a feasible solution that is close to the lower

bound solution. This causes the bounds on profit per unit time to be very tight as the results

in Section 4.5 will show.

Let Pmax be the maximum allowed power consumption. This can be used to model the

capacity of the cooling and/or power distribution system. While still allowing tasks to be
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divisible, the optimization problem to maximize the profit is

(29)

maximize
x,MSLB

p
MSLB

− c ELB

MSLB

subject to: ∀i
∑

j xij = Ti

∀j Fj ≤ MSLB

∀i, j xij ≥ 0

MSLB ≥ 0

ELB

MSLB
≤ Pmax .

The optimization problem is identical to Equation (11) except an upper bound on the

profit is being maximized and a constraint has been added. The last constraint limits the

average power consumption. This constrains the long running average of power, which is

ideal for modeling a cooling system’s capacity. Unfortunately, this optimization problem has

a non-linearity in the objective function and in the last constraint. Recall that without idle

energy ELB =
∑

i

∑
j xijAPC ijETC ij. Thus the objective function and the constraint con-

tain terms that are ratios of decision variables such as xij/MSLB and 1/MSLB . Fortunately,

a variable substitution can be used to transform the objective and all the constants into a

linear optimization problem over a different set of decision variables. This is known as the

Charnes-Cooper transformation [58]. The necessary variable substitution is

(30) r ← 1

MSLB

and ∀i, j zij ←
xij

MSLB

.

The variable zij can be interpreted as the average number of tasks of type i on a machine

of type j per unit time and r is the number of bags per unit time. Matrix z and scalar r

become the new decision variables in the linear optimization problem. The average power
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consumption, ELB/MSLB becomes

(31) P̄ =
∑
i

∑
j

zijETC ij (APC ij − APC ∅j) +
∑
j

MjAPC ∅j

and the profit per unit time becomes pr − cP̄ . Notice that both P̄ and the profit per unit

time are linear in decision variables zij and r. The linear optimization problem is given by

(32)

maximize
z, r

pr − cP̄

subject to: ∀i
∑

j zij = Tir

∀j 1
Mj

∑
i zijETC ij ≤ 1

∀i, j zij ≥ 0

r ≥ 0

P̄ ≤ Pmax .

The first four constraints in Equation (29) were converted to constraints in Equation (32)

by dividing by MSLB and performing the variable substitution in Equation (30).

Let the optimal solution to the linear program be z∗ and r∗, then the optimal resource

allocation and makespan can be computed as x∗ij = z∗ij/r
∗ and MS ∗LB = 1/r∗. This optimal

solution can then be used to recover the full allocation by applying Algorithm 1 followed by

Algorithm 2. As such, this algorithm can find lower and upper bounds for the profit per unit

time.

This algorithm is very desirable for extremely large scale problems because the run time

of the algorithm is strongly dominated by computing the lower bound by solving a linear

programming problem. The complexity of solving Equation (32) is, for a very large class of

problems, polynomial in the number of nontrivial constraints, T + M + 1 and the number

of variables, TM + 1 [21]. The complexity is not dependent on the number of tasks nor the
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number of machines. This allows the algorithm to scale to millions of tasks and machines

easily so long as the number of task types and machines types remain reasonable. A complete

analysis and experimentation of the computational scalability of this collection of algorithms

is available in Chapter 2.

4.5. Results

4.5.1. Introduction. Simulation experiments were performed to further verify the cor-

rectness of Section 4.4 and to quantify the quality of the resultant schedules. To test the

algorithms, a representative HPC system and workload are necessary.

For these experiments the ETC and APC matrices are based on nine real systems from

five power consumption benchmarks [23]. The number of tasks was increased by applying

the method found in [24]. For all the simulations, there are nine machine types and 40

machines of each type for a total of 360 machines. The workload consists of 11,000 tasks

divided among 30 task types. A complete description of the HPC system, including values

for the ETC and APC matrices in addition to the values of Ti and Mj can be obtained

supplementary material.

All experiments were performed on a mid-2009 MacBook Pro with a 2.5 GHz Intel Core

2 Duo processor. The software was written in C++ and the LP solver used the simplex

method [21] from COIN-OR CLP[49].

To perform numerical experiments the price per bag p and the cost of electricity c must

be given. Let Emin be the lower bound on the minimum energy consumed when ignoring

makespan. Without loss of generality set c = 1 and p = γcEmin, where γ is a unitless

parameter that will be used to affect the price per bag. That is, γ = p
cEmin

is the ratio of

the price per bag to the minimal operational expenses per bag. As such, γ > 1 implies that

87



there exists a schedule such that positive profit is achievable, when tasks are divisible. Any

γ ≥ 0 is realizable. The parameter γ can be thought of as a profit ratio per bag that is

governed by what the market can bear.

4.5.2. No Idle Power. For the results in this subsection, machines are modeled with

no idle power consumption meaning they are turned off when not in use. In Section 4.5.3

the affect of non-zero idle power is considered.

Figure 4.1 shows different maximum profit solutions by sweeping the profit ratio. The

profit ratio is proportional to the price per bag. The profit ratio is given by the number at

the bottom left of each solution. The figure shows the energy and makespan of the maximum

profit solution for a given profit ratio for the full allocation and for the upper bound solution

from the LP problem. Notice that the upper bound and the corresponding full allocation are

very close to each other. This means that the profit per unit time is very well bounded. The

overall vertical length of the green bar above each solution is proportional to the profit per

unit time corresponding to that schedule. The profit increases as the profit ratio increases.

The knee of this curve is interesting because neither optimizing for energy or makespan alone

will produce optimal profits. Also shown in Figure 4.1 is a power constraint given by the

dashed line and the shaded region. When Pmax is set to 55 kW the solutions within the

shaded region satisfy the power constraint.

Figure 4.2 shows the relative decrease in profit between the upper bound and the lower

bound. Each experiment uses 100 random bag-of-tasks where the task type for each task

is sampled from the original task type distribution. The probability distribution for the

relative decrease in profit per unit time is shown for each experiment. The width of the

glyphs represent the normalized probability density of the relative profit decrease. The figure

repeats this experiment for three different bag sizes represented as the average number of
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Figure 4.1. Parameter sweep of the profit ratio: The blue line shows the
lower bound to the energy and makespan Pareto front. The shaded region
shows the power constraint with Pmax = 55 kW. The height of the green bars
indicates profit for the corresponding schedule which increases as the profit
ratio increases. The number beside the squares is the profit ratio γ. The profit
upper bound (square) and lower bound (diamond) nearly overlap indicating
that there is negligible loss in energy or makespan (and thus profit) from the
recovery algorithm and shows that the maximum profit is tightly bounded.

tasks per machine and profit ratios. The values of γ were chosen based on Figure 4.1. The

maximum profit solution for γ = 1.01 minimizes energy alone while γ = 1.5 forces makespan

to be minimized. The point where γ = 1.2 is roughly in the knee of the curve where neither

minimizing only makespan or energy will find the maximum profit schedule. The average

number of tasks per machine is shown on the x-axis. The y-axis shows the relative decrease

in profit per unit time from the LP-based upper bound and the full allocation based lower

bound. The lower the relative profit decrease, the better the approximation, and likewise,

the tighter the optimal solution is bounded. As the number of tasks per machine increases,

the quality of the solution improves. For γ = 1.5, minimizing makespan is the primary focus,

which is more difficult than minimizing the energy. The bounds are tighter for lower profit

ratios because energy is easier to minimize.
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Figure 4.2. Probability distributions of the relative decrease in profit per
unit time from the upper bound to the lower bound for various number of
tasks and profit ratios: As the bag size increases the accuracy of the maximum
profit solution improves. The quality of the solution is highest when the profit
ratio is small.

Not only does the maximum profit algorithm produce high quality solutions but it does

so extremely quickly. To find the maximum profit schedule for 10,000 tasks it takes 3.6 ms,

100,000 tasks it takes 8.9 ms, and 1,000,000 tasks it takes 74 ms. The run times are roughly

linear in the number of tasks and extremely fast in all cases consider here.

4.5.3. Idle Power and Negative Profit. To understand the effect of the idle

power consumption on the algorithms, experiments were performed with the idle power

set to 5% of each machine’s average power consumption. Specifically, this means APC ∅j =

0.05
T

∑
i APC ij. This is appropriate, for example, when modeling very-low power sleep states.

The methodology used here extends to any amount of idle power from very-low power sleep

states to the significantly higher power used by low frequency P-states [33]. For very high

idle power consumption, the optimal schedule will always minimize makespan because in

doing so energy will also be minimized, thus maximizing profit.
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Figure 4.3. Parameter sweep of the profit ratio with 5% idle power: The
red bars indicate a negative profit (i.e. loss) that are not along the energy and
makespan Pareto front.

Similar to Figure 4.1, Figure 4.3 shows the energy, makespan, and profit for various profit

ratios. The red bars indicate a negative profit or loss. The size of the downward bar indicates

the magnitude of the loss.

Schedules with negative profit might need to be realized in situations where a service

level agreement (SLA) is in place requiring the users’ workload to be processed in spite of

the loss. The loss might be caused by momentary increases in energy prices or maintenance

that takes some machines offline. In any case, the schedule that minimizes the loss to the

organization is highly desirable. When an SLA is not in place, the organization should choose

to not process any tasks until a positive profit is once again achievable (γ > 1).

Solutions that have a loss in profit depart from the energy and makespan Pareto front as

shown in Figure 4.3. This is somewhat counter-intuitive so further explanation is necessary.

The key to understanding this behavior lies in the fact that Equation (32) is not optimizing

profit but rather profit per unit time. This distinction is what makes the objective function

more realistic but also non-linear.
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Figure 4.4. Profit from the maximum profit algorithm and the maximum
profit from the Pareto optimal solutions: The max profit algorithm finds a
higher profit solution than the maximum profit solution from the Pareto front
for γ < 1.

Figure 4.4 shows the profit per unit time computed from the algorithm in Section 4.4

and the Pareto-based approach. The maximum profit solution from the Pareto front is lower

than the solutions generated by the maximum profit algorithm when γ < 1. The profit is

also negative for γ < 1. For γ ≥ 1 the max profit solution from Section 4.4 is equal to the

max profit solution along the Pareto front.

Figures 4.5a to 4.5c show the profit and the feasible solution space for profit ratios of

0.9, 1.2, and 1.5 respectively. The contours show equi-profit lines. The black line shows the

boundary of the convex feasible region. Specifically, this region is the convex set defined by

the constraints of Equation (29). This convex set is in the space of x and is projected onto

the energy and makespan subspace. This projection was computed with the convex hull

method described in [59]. When there is no idle power it is feasible to increase the makespan

indefinitely when a minimum energy solution is sought. For this reason, without idle power

the boundary of the feasible region and Pareto front have an asymptote that has infinite

makespan at the minimum energy. The same affect causes the boundary of the feasible
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Figure 4.5. Profit per unit time for three different profit ratios: The x-
axes is energy in mega joules and y-axes is makespan in minutes. The region
within the curved line is the feasible region. When the price is low the optimal
solution is along the top part of the feasible region which is not on the energy
and makespan Pareto front.

region to have an asymptote that has infinite energy at the minimum makespan solution.

However, this is not the case when idle energy is used. As the makespan increases so does

the energy, thus the feasible region shown in Figures 4.5a to 4.5c is more restrictive than

with no idle energy.

Figure 4.5c has a high price per bag so the maximum profit solution would minimize

makespan. Positive profits are not achievable in Figure 4.5a because the profit ratio is

less than unity. The non-linearity in the objective function can be seen by the lack of

parallel profit contours. The minimal loss solution in this case actually tries to increase both

makespan and energy. The optimal schedule slows down the processing of tasks to utilize

only the most efficient machines while simultaneously decreasing the power consumption

(operating expenses). This explains why a maximum profit solution is not necessarily Pareto

efficient in energy and makespan.

93



4.6. Model Extensions

As mentioned in Section 4.2 there are other costs associated with operating an HPC sys-

tem besides the cost of electricity. If conditioned power (uninterruptible power supply often

with a backup generator) is used then the effective cost for electricity should be increased ac-

cordingly. Cooling of HPC systems can consume as much energy as the machines themselves

depending on their geographic location and environment. Power usage efficiency (PUE) is

a common metric used to represent the efficiency of the infrastructure within a data center.

PUE is equal to the ratio of raw power to the power incident on the servers. PUE must

be above one and typically is below two. To account for these inefficiencies, APC can be

scaled by PUE. There may be an overhead cost, oh, associated with each bag-of-tasks to

cover billing activities or book-keeping. These overhead costs can be modeled by subtract-

ing oh/MS (x) from the profit per unit time. The wear and tear on the servers can also be

modeled. Let wear j be the maintenance cost per unit time of operating a machine of type

j, then the effect of this cost can be modeled by subtracting

(33)

∑
j FjMjwear j

MS (x)

from the profit per unit time. Purchasing of hardware can be modeled as a depreciation. Let

cost j and λj be the purchase price and mean time to failure of machine type j respectively.

To model this one can subtract

(34)
∑
j

Mjcost j
λj

from the profit per unit time.
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All of these operating expenses simply modify the objective function of Equation (29)

and can be converted to a linear optimization problem similar to Equation (32).

4.7. Related Work

This work focused on maximizing profit given a fixed price per bag and fixed cost for

energy. In practice, the cost of energy can fluctuate and decreases during off-peak hours.

Scheduling work among many data centers is shown in [56] to reduce the cost of electricity

for web server workloads. Models where the price to complete an HPC workload varies based

on the market are considered in [60, 61].

Our work is a generalization of the classic optimization problem of minimizing makespan

and cost [14, 31]. Our approach takes advantage of the common property that each machine

in an HPC system is not unique but belongs to one of a few machine types. Our work is

also focused on very large-scale systems and how to find high quality solutions on average,

whereas [14, 31] are concerned with worst-case performance of the scheduling algorithms.

This chapter deals with scheduling tasks to entire machines but it could also be applied

to scheduling tasks to cores within a machine or across cores on many machines. The full

allocation recovery algorithm we use is similar to the algorithms presented in [33] that deal

with scheduling on a single machine by using dynamic voltage and frequency scaling (DVFS).

4.8. Conclusions and Future Work

As the operating costs of HPC systems grow, new scheduling algorithms are necessary

to incorporate these costs into the task scheduling process. This work incorporates the

concept of profit into HPC scheduling. A novel algorithm was presented that efficiently

computes a near-optimal profit schedule. This algorithm computationally scales very well as

the number of tasks grows. In addition, the quality of the solution actually improves as the

95



problem size increases. The maximum profit solutions are along the energy and makespan

Pareto front when there is positive profit. The profit can be negative when there is idle

power consumption and the price per bag is sufficiently low. In this negative profit case, the

proposed algorithm still finds the maximum profit solution which is not on the energy and

makespan Pareto front.

As mentioned earlier, the price per bag in practice fluctuates based on the market. This

research can be extended to model a dynamic price per bag by taking into account backlog

and dynamic energy costs. This algorithm is fast enough that it can also be used for online

batch scheduling where the tasks arrive randomly and the algorithm must determine on the

fly how to assign tasks to machines.
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CHAPTER 5

Resource Provisioning and Planning 1

5.1. Introduction

Some HPC users are turning to cloud providers to complete their work due to the potential

cost effectiveness and/or ease of use of cloud computing. The ability to provision hardware

on-demand from a pre-defined set of different machine types, known as instance types, is

very powerful. In fact, a proof of concept cluster was built by Amazon Web Services from

their high performance instance types composed of over 26,000 cores with nodes connected

via 10G Ethernet. This cluster ranked 101 on the Top 500 list for November 2014 [63].

Cloud infrastructure as a service (IaaS) providers [64] charge for the amount of time a

virtual machine, known as an instance, is allocated (idle or active). This means that it

is advantageous to terminate some or all instances once the workload has been processed.

Leaving instances idle in the cloud is usually not cost effective. Once a new set of work needs

to be processed, the decision of what instance types to start can be reevaluated each time,

considering the size and composition of the workload and the current prices of the available

instance types. Selecting the ideal number of instances of each instance type a user needs is

challenging.

The approach to provisioning computational resources given in this chapter not only

applies to cloud resource provisioning but also to selecting physical machines to purchase

for use within HPC systems. The goal for provisioning HPC systems is to determine how to

originally select or upgrade a system in such a way that maximizes the performance of the

resultant system while meeting specific requirements that often include a budget constraint.

1This work is under review with co-authors Anthony A. Maciejewski, and Howard Jay Siegel [62].
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The instance types available in the cloud have widely varying capabilities, by design, so

that users can choose the resources that best match their workload and in doing so minimize

the cost. For example, there is no need to provision high memory instance types if the work-

load does not require large amounts of memory. The cost for the smaller memory instance

type will often be significantly less and provide nearly identical performance assuming all

else is equal. Within a single IaaS provider, instance types vary in the amount of memory,

number and type of CPUs, disk capacity and performance, and network performance. All of

these properties of instance types affects the performance of the workload executing on the

instances [65]. Due to the availability of heterogeneous resources, IaaS is inherently a HC

system.

This chapter focuses on bag-of-tasks or many-task computing (MTC) workloads com-

posed of a large number of many independent tasks. Each task is processed on a single

machine. Bag-of-tasks workloads are commonly run on MTC systems [57].

In MTC and high-throughput computing (HTC), the usual goal is to maximize the

number of completed tasks or jobs per unit time. In this research, a steady-state model of

MTC is presented and used to formulate a linear optimization problem that can be used

to optimize the number of tasks completed per unit time. In this work, types of tasks are

assigned different rewards for completing. The reward rate is the reward earned per unit

time by the system. In some situations, maximizing solely the reward rate is not desirable.

Sometimes a conflicting objective such as the upgrade cost should be optimized along with

the reward rate. The optimization problem we pose has multiple objectives from which

any subset can be chosen, or new objectives added, as needed. The four objectives in the

multi-objective optimization problem are reward rate, upgrade cost, failure rate, and power

consumption.
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When making a purchasing decision not all the information is necessarily available nor is

the information perfectly accurate. For example, arrival rates of tasks or the performance of

the machines might not be known perfectly. In fact, studies have shown that instances of the

same instance type can vary significantly in performance as discussed in Section 5.2. Often

only the distributional assumption can be made. That is, the probability distribution of key

parameters is known but the actual value of the parameter is unknown. This uncertainty is

incorporated in our steady-state model. A multi-objective stochastic programming problem

formulation is presented that incorporates the uncertainty in the parameters. Stochastic

programming techniques are applied to this provisioning problem to handle uncertainty.

In summary, the contributions of this chapter are:

(1) the formulation of an energy-aware steady-state model for MTC,

(2) the design of a linear optimization problem for resource provisioning (in the cloud or

physical hardware procurement),

(3) a model of uncertainty and a procedure for fitting this model,

(4) a stochastic programming formulation that combines the steady-state model and the

uncertainty model,

(5) an orthogonal weighted sum algorithm for generating Pareto fronts that illustrates po-

tential trade-offs between conflicting objectives, and

(6) a performance evaluation of the stochastic programming formulation.

The rest of this chapter is organized as follows. First some related work is given in

Section 5.2. The steady-state model of MTC is in Section 5.3. Section 5.4 presents the

model of uncertainty and Section 5.5 the stochastic programming formulation. Quantitative

measures for comparing the stochastic programming solution to other approaches is given

in Section 5.6. Section 5.7 describes the heuristics implemented for comparison purposes. A
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technique to solve multi-objective stochastic programs is in Section 5.8. In Section 5.9, the

simulation results are presented. Section 5.10 concludes this study and presents some ideas

for future work.

5.2. Related Work

Scheduling resources on the cloud is not new. An interesting technique was presented

in [52] that uses ordinal optimization to approximately solve a multi-objective optimization

problem. The approach schedules tasks to virtual clusters in the cloud. Scheduling pre-

emptable tasks on cloud resources has been studied recently as well [66]. Their approach

uses information from the actual execution times to improve the subsequent resource alloca-

tions. The HARNESS project is currently designing algorithms and implementing software

to provision resources on the cloud that benefit from highly heterogenous resources such as

hardware accelerators and SSDs [67]. The uncertainty-aware scheduling approach presented

here could one day be incorporated into such tools to improve the provisioning of resources.

A case study of using the cloud for HPC applications is in [68]. They show that the

performance degradation due to virtualization is low but the networking performance can

become a performance bottleneck if one is not careful.

The issue of HPC cluster reliability is addressed in [12]. This paper forms a bi-objective

optimization problem to schedule tasks onto the cluster that has machines that vary in

reliability. The author tries to minimize the maximum of all task completion times, known as

the makespan, and maximize the reliability. The reliability measure described in Section 5.3

is similar to this measure.
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We consider, in part, minimizing power consumption due to the explosive growth of

power consumption in data centers and HPC systems over recent years [2]. Energy usage is

becoming a major operating cost that requires algorithms to consider this from the start.

A technique to automatically scale the number of resources up or down based on the

dynamic arrival of workloads is presented in [69]. Their technique utilizes the inherit het-

erogeneity in the cloud offerings to select instance types. In a closely related paper [70],

automatic scaling is addressed. The paper models the uncertainty in the execution times of

the tasks but does not consider the heterogeneous aspects of IaaS.

Task scheduling is NP-hard so reasonable approximations to model the problem, and

scalable algorithms for its solution, are sought [14]. To design a scalable algorithm we use

a steady-state scheduling algorithm within the resource provisioning problem. A motivation

for using steady-state scheduling is given in [71]. Our steady-state model is inspired by the

Linear Programming Affinity Scheduling (LPAS) algorithm [72].

The performance variation within the cloud, from instance to instance, is high compared

to traditional hardware as studied in [4–6]. In [4], the measured CoV was up to 24 % for

Amazon Web Service’s EC2 instances. They also showed that the distribution of instance

performance can be bi-modal. Co-location of instances on the same physical hardware can

cause variation in performance of up to 2.5 times [6]. Another surprising finding is that

IO contention between VMs can cause upto a factor of 5 in performance degradation [5].

In [73], some uncertainty in the performance of an instance was taken into account when

determining both a set of instance types and task schedule via a particle swarm optimization

problem.

Due to this inherit uncertainty in cloud instance performance and task arrivals, the

stochastic nature of the problem cannot be ignored. Stochastic programming is the approach
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we take to rigorously account for the stochastic nature of the problem [74]. Stochastic

programming has been used for capacity expansion in telecommunications systems [75] which

is a similar application to computational resource provisioning.

5.3. Steady-State Model

Often there are millions of tasks and thousands of machines in large scale scheduling

problems. To build scheduling and planning algorithms that have manageable run times for

large problems, we use a steady-state formulation of the problem. This formulation focuses

on the behavior of the system on average and avoids considering the scheduling of each task

onto a particular machine. The steady-state model allows our algorithm’s computational

complexity to be independent of the number of tasks and machines in the problem. To build

a compact steady-state model, we assume that the tasks of the workload can be grouped

into a relatively small number of task types. All tasks belonging to a task type have similar

run time and power consumption properties. This is often the case in scientific workloads.

For instance, Monte Carlo simulations consist of a large number of tasks in the workload

that can usually all be considered a single task type. Machines (or instances in the cloud)

have a similar natural grouping called machine types (or instance types in the cloud). Task

types and machine types will be used to reduce the computational complexity and enable a

steady-state formulation of the problem.

The following steady-state model can be used for either determining which instance

types to launch for cloud resource provisioning or determining which physical machines to

purchase. Let there be T task types and M machine types. Let ETC ij be the estimated

time to compute (ETC) a task of type i running on a machine of type j. Likewise let APC d
ij

be the average dynamic power consumption of a task of type i running on a machine of type
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j. The static power consumption of a machine of type j is given by APC ∅j. The ETC

and APCd matrices are commonly used in scheduling applications for HC systems. These

matrices are often found by benchmarking the tasks. To model machines being turned off

when not in use let APC ∅j = 0.

This steady-state model can be used for either cloud provisioning or physical hardware

purchasing by correctly defining the cost of the machines. Let βB
j be the buying price or

cost of a machine of type j. For the physical hardware purchasing problem, the cost is the

total cost of ownership of the hardware (likely on a depreciation schedule) including support

and maintenance. The cost for a cloud instance is its cost per unit time that a user pays for

running an instance of type j. Let βS
j be the selling price of a machine of type j. The selling

price is only applicable to the purchasing of physical hardware. Typically βB
j > βS

j ≥ 0.

Cloud IaaS providers often limit the number of instances a user can have without prior

approval. Let M cur
j , Mmin

j , and Mmax
j be the current, minimum, and maximum number of

machines of type j, respectively. Let Mmin and Mmax be the overall minimum and maximum

number of machines, respectively. These parameters can be used to require the solution to

adhere to those type of restrictions. When purchasing physical hardware these parameters

may map to restrictions on the number of rack units available. Let MB
j and MS

j be the

number of machines of type j to buy and sell, respectively. The total number of machines

of type j is then Mj = M cur
j + MB

j −MS
j . Due to the buying price being higher than the

selling price, it makes no sense to buy and sell the same machine type.

Each task that is completed earns a reward based on the task type. Let ri be the reward

earned for completing a task of type i. The number of tasks of type i arriving per unit time

is given by λi.
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To compute the reward rate, failure rate, and power consumption, one must have a

schedule that maps tasks to machines. In the steady state, it is sufficient to know the

fraction of time a task of type i is running on a machine of type j. Let pij be this fraction

of time. The matrix p is referred to as the schedule as it denotes the fraction of time each

task type will be running on each machine type.

Sometimes it is useful to control the system failure rate. Machine failures when not

executing a task are ignored as they have little consequence. Let νj be the failure rate of a

machine of type j then the overall system failure rate is
∑

i

∑
j νjMjpij.

The optimization problem to determine the number of machines to buy and sell (i.e.,

MB and MS) and the resultant schedule (i.e., p) when maximizing the reward rate is given

by:

maximize
MB,MS,p

∑
i

ri
∑
j

1

ETC ij

Mjpij(35a)

subject to:

∀j MB
j ≥ 0, MS

j ≥ 0(35b)

∀i
∑
j

1

ETC ij

Mjpij ≤ λi(35c)

∀j
∑
i

pij ≤ 1(35d)

∀i, j pij ≥ 0(35e)

The optimization problem in Equation (35) will maximize the the reward earned per unit

time, namely the reward rate. The number of machines to buy and sell is required to be

nonnegative, Equation (35b). The arrival rate constraint is given by Equation (35c). The
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machine utilization constraint, Equation (35d), ensures that machines work no more then

100 % of the time on processing tasks. The last constraint, Equation (35e), ensures that the

fraction of time a machine is processing tasks is nonnegative.

The optimization problem in Equation (35) has a non-linear objective Equation (35a)

and a non-linear constraint Equation (35c) due to the terms that contain Mjpij. Both Mj

and pij are decision variables in the optimization problem. Solving non-linear optimization

problems is considerably more computationally expensive than linear optimization problems.

Fortunately, this non-linear problem can be transformed into an equivalent linear optimiza-

tion problem. One can replace Mjpij with a single variable, p̃ij. The variable p̃ij can be

interpreted as the effective number of machines of type j that are running tasks of type i.

The constraint, Equation (35d), can be rewritten as

(36) ∀j
∑
i

p̃ij ≤Mj

because Mj ≥ 0 and pij ≥ 0.

After adding the objectives (e.g., cost, failure rate, and power) and constraints, and

converting the non-linear problem in Equation (35) to a linear optimization problem, the

steady-state model based optimization problem becomes
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minimize
MB,MS, p̃



−
∑

i ri
∑

j
1

ETC ij
p̃ij∑

j M
B
j β

B
j −

∑
j M

S
j β

S
j∑

i

∑
j νj p̃ij∑

i

∑
j APC d

ij p̃ij +
∑

j APC ∅jMj


(37a)

subject to:

∀j Mmin
j ≤Mj ≤Mmax

j(37b)

Mmin ≤
∑
j

Mj ≤Mmax(37c)

∀j MB
j ≥ 0, MS

j ≥ 0(37d)

∀i
∑
j

1

ETC ij

p̃ij ≤ λi(37e)

∀j
∑
i

p̃ij ≤Mj(37f)

∀i, j p̃ij ≥ 0(37g)

∑
j

MB
j β

B
j −

∑
j

MS
j β

S
j ≤ β(37h)

∑
i

∑
j

νj p̃ij ≤ νmax(37i)

∑
i

∑
j

APC d
ij p̃ij +

∑
j

APC ∅jMj ≤ Pmax(37j)

In Equation (37), all the objectives are to be minimized. The first objective in Equa-

tion (37a) is the negative of the reward rate. The second objective is the upgrade cost. This

is the cost of purchasing machines minus the cost of selling machines. The third objective is
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the system failure rate. The last objective is the power consumption of the system including

static power consumption.

The constraints Equations (37b) and (37c) limit the number of machines of each type and

total, respectively. The constraints in the original problem correspond to Equations (37d)

to (37g). It is often beneficial to include bounds on the objective functions in multi-objective

optimization problems. The linear optimization problem Equation (37) has three additional

constraints corresponding to a bound on the upgrade cost with budget β, a failure rate bound

νmax, and a power consumption bound Pmax as constraints Equations (37h) to (37j).

The optimization problem in Equation (37) is a linear programming problem [21]. Single

objectives of this problem can be quickly solved with either the simplex algorithm or interior

point algorithm. A discussion of how to solve the multi-objective problem is presented in

Section 5.8.

5.4. Parameter Uncertainty Model

5.4.1. Overview. Uncertainty is a fact of life. Few parameters are known perfectly, so

employing Equation (37) is difficult because the effect of the unknown parameters on the

solution is hard to ascertain. A model of the uncertainty in the parameters is needed to

rigorously find and evaluate the solution to Equation (37). A major source of uncertainty

is the execution time and power consumption of the tasks running on the various machines.

Section 5.4.2 describes a model that decomposes ETC and APCd into parts. These parts

are used in Section 5.4.3 to model the randomness in the system due to uncertainty in

execution time.
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5.4.2. Execution Time and Power Consumption Models. This model decom-

poses ETC into a linear combination of abstract computational operations. As we will see,

these abstract operations need not map to physical instructions.

Let the number of abstract operation types be L, which is as small as possible to permit a

sufficiently accurate model. Let ηil be the number of abstract operations of type l necessary

to complete a task of type i. Let τlj be the seconds per abstract operation of type l on a

machine of type j. Then the ETC ij =
∑

l ηilτlj. In matrix form this is

(38) ETC = ητ .

This model can represent task heterogeneity and machine heterogeneity within the ETC

matrix. For L > 1, the model allows for arbitrary task machine affinity [76]. This minimal

model is a mixture model that has the necessary properties for characterizing the execution

time characteristics of an HC system. The model splits the ETC into two components. The

first component is η that represents the size of the tasks in terms of operations and is only

dependent on the task types’ properties. The second component τ is a property of only

the machine types. This decomposition is useful in representing the components of ETC as

correlated random variables. In practice an accurate model can be found with a small value

for L.

The APCd matrix can be decomposed similarly. Let ψlj be the dynamic energy to

execute an abstract operation of type l on a machine of type j. The energy of type l

abstract operations is then ηilψlj. The total energy can be computed as
∑

l ηilψlj. The total

average dynamic power consumption is

(39) APC d
ij =

∑
l ηilψlj∑
l ηilτlj

.
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Equation Equation (39) can be represented in matrix form, where division is element-wise,

as

(40) APCd =
ηψ

ητ
.

Generally only ETC and APCd are available so the above model parameters, namely η,

τ , and ψ, must be derived. These three parameter matrices have all nonnegative elements.

The first step is then to compute the non-negative matrix factorization (NNMF) of ETC

to find η and τ [77]. The NNMF is similar to the singular value decomposition but the

NNMF produces nonnegative matrices for the decomposition. The energy can be written as

APCd ∗ ETC = ηψ so we can approximate ψ via least squares. In the E3 environment,

described in Section 5.9.4, the relative errors from this approach for ETC and APCd are

0.8 % and 1.5 %, respectively.

5.4.3. Parameter Distributions. The dominant sources of uncertainty are generally

from the arrival rates λ, ETC, and APCd parameters. If the probability distributions of

the ETC and APCd model are known then they can be used directly. If instead only the

CoV is known then the following procedure can be used to estimate the variances of the

elements of τ . Here we assume that all the uncertainty is in the machines and not in the

tasks as was discussed in [4].

The mean and variance of the ETC entries are

E[ETC ij] =
∑
l

ηilE[τlj](41)

Var[ETC ij] =
∑
l

η2
ilVar[τlj](42)
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assuming all the elements of τ are independent. Using the definition of CoV, then sub-

stituting from Equation (42), and finally squaring both sides we have the following three

equations

√
Var[ETC ij] = CoVijE[ETC ij](43) √∑
l

η2
ilVar[τlj] = CoVijE[ETC ij](44)

∑
l

η2
ilVar[τlj] = CoV2

ijE
2[ETC ij] .(45)

Converted to matrix form this is

(46) η2σ2 = CoV2 ∗ ETC2

where the squares are element-wise. One can then compute σ2 via least squares. For the

E3 environment described in Section 5.9.4 the relative error of this approach is 0.8 % for the

variance of τ .

Nearly any probability distribution can be used within the stochastic programming for-

mulation to model uncertainty. Even multi-modal distributions can be used. The parameters

in the steady-state model are averages of execution times and arrival rates. There are no

parameters that model temporal changes in arrival rate as it is a steady-state model. Thus,

for our simulations we used uniform distributions for all uncertain parameters. Each uniform

distribution is specified by a mean and a variance. To ensure the mean is preserved and that

parameters only takes on positive values, the variance was capped as necessary.
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5.5. Stochastic Programming

Stochastic linear programming is an extension of linear programming, where some of the

coefficients in the objective and the constraints are random variables. For more information

on stochastic programming see [78].

The particular stochastic program we use is the recourse problem (RP) given in standard

form as

(47)

minimize
x

cTx + Eξ [Q(x, ξ)]

subject to: Ax = b

x ≥ 0

where: Q(x, ξ) = min
y

q(ξ)Ty(ξ)

such that: T(ξ)x + W(ξ)y(ξ) = h(ξ)

y(ξ) ≥ 0

where ξ is a random vector representing the uncertain parameters.

For the RP in Equation (47), the first stage decision variable, x is a flattened version

of MB and MS. The second stage decisions, y are flattened versions of the schedule p.

The constraints of the steady-state model that contain random parameters or elements of

p, namely Equations (37e) to (37g), (37i) and (37j) are represented by T, W, and h. The

constraints without any random variables and thus no dependence on the scenarios, Equa-

tions (37b) to (37d) and (37h), define A and b in Equation (47). The objective coefficients

are separated in a similar way. The coefficients that are deterministic are incorporated into

c and the coefficients that are random are incorporated into q.

This linear RP is similar to a linear program except for the expectation of the value

function, Q(x, ξ), in the objective. The RP in Equation (47) is known as a two-stage RP.
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The optimization problem finds the optimal x that minimizes the sum of the linear function

cTx and the expectation of Q(x, ξ).2 The second stage optimization problem finds optimal y

given a fixed realization of ξ. The random vector y is known as the recourse decision vector.

This RP finds a robust solution for x in the sense that the objective value will on average be

minimal when the optimal value of x is used. The solution x is robust to unknown values of

the parameters ξ. The vector x is often referred to as a strategy of the RP.

There are many ways to solve stochastic programs. We will only describe a rather

versatile approach to solving large scale stochastic programs that utilizes sample average

approximation (SAA) to build the deterministic equivalent program (DEP).3 The primary

issue with stochastic programming is accurately computing the expectation in the objective

function. The SAA approach uses many samples of ξ to compute the expectation as a sample

average. Realizations of ξ are called scenarios. The process of creating scenarios is known as

scenario generation. When using SAA, generating a reasonably small set of representative

scenarios is important. Let there be K scenarios. For scenario k the probability of occurring

is given by pk. With SAA, the scenarios are generated by randomly sampling ξ according to

its distribution, thus all the samples are equally probable. The expectation operator is linear

and being applied to a linear function, namely qTy(ξ). This lends itself to a linear program

that is much larger, yet is equivalent to the stochastic program (in the limit as K → ∞)

given in Equation (47). The DEP is given by

2This formulation of the value function is risk neutral. Risk seeking and risk adverse formulations are
also possible.

3The cloud resource provisioning problem is a two-stage stochastic program with relatively complete
recourse [78].
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(48)

minimize
x,yk

cTx +p1q
T
1 y1 · · · +pKqT

KyK

subject to: Ax = b

T1x +W1y1 = h1

...
. . .

...

TKx +WKyK = hK

x, y1, · · · yK ≥ 0

Each scenario (i.e., realization of the ξ) defines a set of matrices Tk and Wk, and vectors

qk and hk. Each scenario also introduces a new vector of decision variables yk into the

problem.

The SAA is an unbiased estimator of the mean. In practice, it converges to the mean

quickly in K. The DEP can have a large number of variables and constraints. For very large

problems a technique called the L-method can be used to exploit the block structure of the

constraint matrix to distribute the work of solving the linear program to many nodes [79].

The problem is broken into two coupled decisions. The first is what to provision or

purchase, namely MB and MS. Then the random variables in the problem are realized and

the second decision, known as the recourse decision, can be made. For this work, the random

variables are the arrival rates, execution times, and power consumption, but virtually any

other parameter in the model can be converted to a random variable. The recourse decision

involves selecting the schedule p that is optimal for the actual arrival rates, execution times,

and power consumption of the tasks.
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5.6. Value of Information

To provide insight into different decision making approaches, we will evaluate other ap-

proaches besides the standard RP. Let z(x, ξ) be the objective value using the optimal second

stage decision given the first stage decision x and a particular scenario ξ.

The wait-and-see (WS) solutions are found by waiting until ξ is realized then computing

the optimal solution. Formally, the objective value of the WS solution is given by

(49) WS = Eξ

[
min
x
z(x, ξ)

]
.

This objective value is generally unachievable because it requires perfect information about

the random variable. Thus, it provides an unachievable lower bound on the problem.

The RP is found by solving Equation (47) or Equation (48). The objective value of the

RP is given by

(50) RP = min
x

Eξ [z(x, ξ)] .

This objective value is achievable and is the optimal strategy or solution to the problem.

An optimization problem that is often used in lieu of the RP is the expected value

problem. This problem is also know as the mean value problem (MVP) because it uses only

the means of all parameters to pose the optimization problem. Specifically the objective

value for the MVP is

(51) EV = min
x
z (x,Eξ[ξ]) .

Let xEV be the optimal solution to the MVP in Equation (51). To compare this solution to

the WS and RP solutions one has to take the expected value over ξ of using xEV . Specifically
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this is

(52) EEV = Eξ [z(xEV , ξ)] .

This equation uses the optimal second stage decision that is using a potentially suboptimal

(based on the mean value of the parameters) decision for the first stage.

There are two standard measures used to compare these three standard approaches. The

first is the expected value of perfect information (EVPI) defined as EVPI = RP −WS ≥ 0.

The second is the value of the stochastic solution (VSS) defined as VSS = EEV −RP ≥ 0.

The EVPI is the amount the objective value for the RP, on average, would be lowered (i.e.,

improved) if the random vector ξ is known perfectly. VSS is the expected improvement in

the objective value over the MVP if the uncertainty in the parameters is handled properly

by using the RP.

5.7. Traditional Heuristic Strategies

Traditional strategies for purchasing hardware or provisioning cloud resources usually

involve selecting the single machine that has the “best” desired property. Often the price

and performance are used to select the machine to purchase. For comparison, we define two

common heuristics followed by one heuristic specific to our problem formulation. For each

heuristic, the machine type to purchase, j∗, is selected by

(53)

H1: j∗ = arg max
j

∑
i

1

ETC ij

H2: j∗ = arg max
j

1

βB
j

∑
i

1

ETC ij

H3: j∗ = arg max
j

1

βB
j

∑
i

λiri
1

ETC ij
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The three heuristics will be referred to as H1, H2, and H3. For the selected machine type,

the next step is to find the maximum number of machines that do not violate any constraints

(such as budget and power). The strategy is simply to let MB
j∗ equal the maximum number

of machines of that type that is feasible.

The first heuristic, H1 selects the machine that performs the best across all task types.

Heuristic H2 uses the price and performance ratio to select the machine to purchase. Heuristic

H3 weights the machine performance by the arrival rate and the reward for each task type.

There are clear limitations of these heuristics in terms of flexibility and performance. H1 and

H2 do not consider workload or differing reward between task types. None of the heuristics

incorporate reliability or the option to potentially sell machines. The heuristics only select

one machine type to purchase. As the results in Section 5.9 will show, typically the best

solution is found by combining multiple machine types to match the load. None of the

heuristics account for uncertainty in the parameters.

These strategies simply define the first stage of the problem. They do not describe how to

schedule the tasks after such a purchasing strategy is executed. To provide a fair comparison,

we use the optimal schedule from the MVP given that this particular strategy was chosen.

Then we compute the expected value of the objective using Equation (52) with xEV replaced

by the purchasing decision made by the heuristic.

5.8. Multi-Objective Stochastic Programming

5.8.1. Introduction. The RP derived from the base problem in Equation (37) is a

multi-objective stochastic programming problem. In this section, we extend the scalar sto-

chastic programming problem described in Section 5.5 to the multi-objective case [80, 81].
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Multi-objective optimization is challenging because there is usually no single solution

that is superior to all others. Instead, there is a set of superior feasible solutions that are

referred to as the non-dominated solutions [42]. When all objectives are to be minimized, a

feasible solution x1 dominates a feasible solution x2 when

∀d fd(x1) ≤ fd(x2)

∃d fd(x1) < fd(x2)

(54)

where fd(·) is the dth objective function. Feasible solutions that are dominated are generally

of little interest because one can always find a better solution from the non-dominated set.

The non-dominated solutions, also known as outcomes and efficient points, compose the

Pareto front.

There are many techniques for solving multi-objective optimization problems. For linear

optimization problems, there are two primary approaches. The first is known as Benson’s

algorithm that iteratively refines the Pareto front [44, 45]. The second is a technique that

converts the multi-objective problem into a set of scalar optimization problems through a

process called scalarization. There are many scalarization techniques but most are special-

izations of Pascoletti-Serafini scalarization [46], such as the weighted sum algorithm. We use

the weighted sum algorithm, described in Section 5.8.2, to compute the Pareto front for the

multi-objective stochastic program.

5.8.2. Weighted Sum Algorithm. The weighted sum algorithm forms the positive

convex combination of the objectives and then sweeps the weights to generate the Pareto

front [82]. The optimization problem in Equation (48) is linear and convex, thus by Theorem

3.15 in [43] the weighted sum algorithm can find all of the non-dominated solutions.
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Consider a D-objective optimization problem. Let the weight vector be ω that is used

to combine the objectives. To avoid a degenerate objective function, exclude ω = 0 from

the set of weights by imposing a somewhat arbitrary constraint that the
∑D

i=1ωi = 1. The

vector ω is in a D − 1 dimensional linear subspace of RD.

The first step in the weighted sum algorithm is to compute the utopia and nadir points.

Let the optimal solution vector for objective d be qd = arg min fd(·). The dth element of the

utopia and nadir points are then computed as

∀d yutopia
d = min

(
fd(q

1), . . . , fd(q
D)
)

= fd(q
d)(55)

∀d ynadir
d = max

(
fd(q

1), . . . , fd(q
D)
)
.(56)

In other words, the utopia point is the best possible value for all objectives and the nadir

point is the worst possible value from optimizing each objective individually. These two

vectors are used to normalize the objective functions to better span the space. They also

remove all units from the objective making the scalarized objective unitless. The normalized

objective function is defined as

(57) f̄(x) =
f(x)− ynadir

ynadir − yutopia

where the division is taken to be element-wise.

The second step in the weighted sum algorithm is traditionally done by recursively comb-

ing the objectives while ensuring that the weights sum to one [82]. Let ω1 = 1, then the
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recursion is

(58) ∀d = {2, 3, · · · , D} ωd =

αd−1ω
d−1

1− αd−1


The final weight vector is ωD ∈ RD. To sweep the space, each αd is varied uniformly from 0

to 1. This approach produces duplicate weight vectors and performs non-uniform sampling

in the subspace defined by
∑D

i=1 ωi = 1.

The orthogonal weighted sum algorithm finds an orthonormal basis (i.e., spanning set)

for the null space of 1D and sweeps independently in the D−1 dimensional space defined by

the basis vectors. Weight vectors with any negative component are dropped. This sweeps

the subspace uniformly, therefore, it does not prefer any objective to any other. To ensure

the whole space is swept, one must sweep αd from −∆ to +∆ where ∆ =
√

1− 1
D

.

The third step in the weighted sum algorithm is to solve the optimization problem for

each weight computed in step two. Specifically, for each l solve

(59) min
x
ωT

l f̄(x)

to find the Pareto front.

To compare the recursive and the orthogonal sweeping methods, Figure 5.1 shows the

weights in the subspace where the weights sum to one. The recursive algorithm in Figure 5.1a

uses more samples in the bottom right corner than it does elsewhere. That region is no more

important than the rest of the space so it is wasted sampling. Using roughly the same number

of points, Figure 5.1b more uniformly distributes the samples. The orthogonal weighted sum

algorithm was used to generate the Pareto fronts in Section 5.9.
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(a) recursive (b) orthogonal

Figure 5.1. Comparison of the recursive and the orthogonal weights drawn
in the 2D plane that they span: The recursive algorithm unnecessarily puts
more samples in the bottom right quadrant while the orthogonal algorithm
more uniformly spans the space.

5.8.3. Confidence Regions. While solving a single stochastic programming problem

it is useful to know the quality of the solution. To increase the quality of the solutions, the

number of generated scenarios K can be increased but only at the cost of increased run time

of the linear programming solver.

Confidence intervals are often used as a measure of the quality of these types of algo-

rithms. For multi-objective optimization, a multi-dimensional confidence region is necessary.

By the central limit theorem, the sample mean will converge to the multivariate normal dis-

tribution as K → ∞. Let ȳ and S be the sample mean and unbiased covariance matrix of

the samples of Q(x, ξ), respectively. Then the 100(1 − α)% confidence region of the true

mean, µ, is defined by

(60) (ȳ − µ)TS−1(ȳ − µ) ≤ (n− 1)p

(n− p)n
Fp,n−p(1− α)

where Fp,n−p(·) is the inverse CDF of the F-ratio distribution with p numerator and n − p

denominator degrees of freedom [83]. The boundary of the confidence region is an ellipse
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in 2D and an ellipsoid in 3D. In 1D, Equation (60) collapses down to regular confidence

intervals. Confidence regions will be plotted in Section 5.9.

5.9. Results

5.9.1. Overview. Three very different environments are used to analyze the behavior of

the proposed algorithms for resource provisioning. The heuristic-based algorithms H1, H2,

and H3, and the RP that uses stochastic programming are compared. The first environment

is a small example used to illustrate the behavior of the algorithms. The second environment

is a larger environment. The third environment was built based on benchmark data. A

complete description of the system parameters and simulation results are available in the

supplementary material. The data is provided as CSV and JSON files and further described

in the accompanying README.txt file.

The steady-state model and the scenario generation are written in C++. To generate

the DEP in Equation (48) the Coin-OR Stochastic Modeling interface (SMI) is used [84].

The underlying linear programming problem is solved with the Coin-OR Linear Program-

ming (CLP) solver [49]. CLP is a high quality open-source solver written in C++. All the

simulations where run on an Apple MacBook Pro Mid 2014, 2.2 GHz Intel Core i7. The

solver is single threaded so timing results are for one core.

To compare MVP, RP, and WS against the heuristics described in Section 5.7, one must

be able to compute all the objectives including reward rate. The reward rate is a function

of the steady-state schedule. To allow heuristics to perform as best as possible we use

the optimal schedule from the steady-state model by solving a linear programming problem

where the MB is fixed by the heuristic and MS = 0. When computing the expected objective

values the optimal schedule is used for each scenario.
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Table 5.1. ETC for E1

M1 M2 M3
T1 1 3 100
T2 100 3 1.1

Table 5.2. Solutions for E1

H1 H2 H3 MVP RP
M1 3.5 3.5 3.5 1. 1.9
M2 0 0 0 0 0
M3 0 0 0 2.5 1.6

5.9.2. Highly Heterogeneous Environment (E1). This environment is composed

of two task types and three machine types. The ETC matrix is given in Table 5.1. Machine

types 1 and 3 are special purpose machines and machine type 2 is a general purpose machine.

Machines of type 1 can execute tasks of type 1 rapidly but are slow to process tasks of type

2. The reverse is true for other special purpose machine type (i.e., type 3).

The cost for each type of machine is one per unit time (e.g, $1/hour instance on AWS

EC2 for a particular instance type). One task of each task type arrives (on average) every

time unit. There are no pre-existing machines in the environment. The power and failure

rate constraints are inactive. The only uncertainties in this environment are the arrival rates

of the tasks. The arrival rate for tasks of type 1 is uniform from 0 to 2. For tasks of type 2

the arrival rate is uniform from 1− 0.547 to 1 + 0.547. The budget is set to 3.5 so a total of

3.5 machines can be purchased.

Table 5.2 shows the number of machines of each type that the algorithms chose. All

three heuristics select machine type 1 to buy because it has the highest machine performance

Equation (53). Machine type 3 is the other special purpose machine but it has a slightly

lower machine performance, therefore, is not selected by the heuristics. MVP and RP both

select the special purpose machines but they differ on quantity of the machines.
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Figure 5.2 shows the performance of the three heuristics (H1, H2, and H3), MVP, RP,

and WS. Figure 5.2a shows the reward rates when using the mean value of the parameters

for evaluating the reward rate based on the model in Section 5.3. The WS solution is not

available because there is one solution (e.g., buying strategy) for each scenario and not one

solution for all scenarios. This is the same reason why the WS algorithm is not realizable

but can be used as an upper bound on performance. The heuristics all achieve a reward rate

of about 1.0 because they can only efficiently process tasks of type 1, the reward per task

is 1.0, and the mean arrival rate is 1.0. The MVP and RP purchase machines of different

types and achieve the maximum achievable reward rate of 2.0.

Figure 5.2b shows the expected value of the reward rate. This is the average reward one

could expect if the given algorithm was employed to select the machines to purchase. All the

solutions use the full budget that was allotted. The VSS and EVPI are also shown in the

figure. The MVP and RP perform much better then the heuristics because the heuristics

only choose one special purpose machine. The RP performs 13.8 % better than the MVP

indicated by the VSS. This is due to RP selecting more of machine type 1 because task type

1 has a much larger uncertainty in the arrival rate compared to task type 2. In this example

the EVPI is very small indicating that having fully realized parameters would not improve

the solution any further then what RP already found.

The budget has a strong influence on the expected reward rate. Figure 5.3 shows the

expected reward rate for the algorithms for different values of the budget. The results are

averaged over ten Monte Carlo trials with 3,000 scenarios each. With no budget, there is no

possibility of any reward. As the budget increases the reward increases until the maximum

achievable reward rate is reached at 2.0. The heuristics flatten out at around 1.0 because

they only process tasks of type 1. As the budget increases the heuristics buy more machines
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(a) objective value with mean parameters (b) expected objective value

Figure 5.2. Reward rates for various solutions for the E1 environment:
(a) shows the reward rate computed with the mean of the parameters.
(b) shows the expected reward rate over all uncertainty in the parameters.

Figure 5.3. Expected reward rate for different budgets for the E1 environ-
ment: The reward rate asymptotes at 2.0 with RP approaching WS. The other
algorithms never reach the maximum reward rate.

of type 1 but provide no value. MVP starts hitting a limit on the reward rate once it has

enough budget to purchase all the necessary machines to run the average number of tasks.

MVP does not consider the uncertainty in the arrival rates and so has no means of being

robust against this uncertainty. RP, on the other hand, fully considers the uncertainty in

the arrival rates to make the best use of the budget.

5.9.3. Medium Sized Problem (E2). Environment E2 has ten task types and five ma-

chine types. The number of abstract operations is two. This environment is a representative
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Table 5.3. ETC for E2

M1 M2 M3 M4 M5
T1 5 10 10 101 30
T2 15 30 30 300 90
T3 50 101 11 1010 303
T4 50 101 100 1010 303
T5 505 1010 1001 10100 3030
T6 15 30 12 300 90
T7 55 110 110 1100 330
T8 17 34 16 340 102
T9 6 11 10 110 33
T10 5 10 10 100 30

system and workload used to show some interesting properties of the different approaches.

In this environment, the arrival rates, η, τ , and ψ are all stochastic with known means and

a CoV of 100 %. There are ten machines of type five in the initial environment that can be

retained or sold by the algorithms. The ETC matrix is given in Table 5.3.

To understand how the stochastic programming approach scales, Figure 5.4 shows the

confidence in the solutions and run time for solving the RP for various numbers of scenarios.

The results shown in Figure 5.4 are the average of ten Monte Carlo trials. The one-sided

confidence interval in Figure 5.4a shows that a ±1.2 % confidence can be obtained after

about 8,000 scenarios. It takes only about four minutes to compute that solution. These

algorithms are meant to be used offline so these run times are reasonable.

The solutions from the different algorithms is in Table 5.4. The heuristics only select a

single machine type to buy and retain all 10 machines of type five. H2 and H3 both decided

on the same machine to purchase so they have identical results in Figure 5.5. The MVP

solution chose mostly machines of type three, but some type 2 machines were selected. The

MVP solution decided to sell all 10 of the existing type five machines indicated by the minus

sign. RP picks mostly type 2 machines but some of type 1 and 3. Only 6.7 of the existing

type five machines where sold.
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(a) confidence (b) run time

Figure 5.4. Confidence interval (a) and algorithm run time (b) versus the
number of scenarios for the E2 environment: The quality of the solution is
again acceptable after only a relatively small number of scenarios.

Table 5.4. Solutions for E2

H1 H2 H3 MVP RP
M1 31.8 0 0 0 10.
M2 0 67.3 67.3 8.5 26.9
M3 0 0 0 32. 11.5
M4 0 0 0 0 0
M5 0 0 0 -10. -6.7

Similar to Figure 5.2, the raw objective value and expected objective value are show in

Figure 5.5 for the E2 environment with 8,000 scenarios. When considering the performance

of each algorithm using the mean of the parameters, Figure 5.5a, the MVP performs slightly

better then all other algorithms. It even appears to outperform the RP solution. This

is misleading because the mean of the parameters is not a good measure of the expected

performance. It is only one possible realization of the parameters of the problem.4 Many more

realizations or scenarios are possible that are completely ignored in this measure, however

this is what is commonly used by practitioners. A better measure is the true expected

reward rate shown in Figure 5.5b. Due to the steady-state model and the stochastic model

4This is assuming the mean parameters have non-zero probability density. For multimodal or discrete
distributions the mean value of the parameters might not even be realizable.

126



(a) objective value with mean parameters (b) expected objective value

Figure 5.5. Reward rates for various solutions for the E2 environment:
(a) shows the reward rate computed with the mean of the parameters.
(b) shows the expected reward rate over all uncertainty in the parameters.

presented in Sections 5.3 and 5.4, computing the expected reward rate is easily accomplished.

The RP’s expected reward rate is over 13 % (given by VSS) higher then the MVP and the

heuristics. If the parameters could be perfectly known at the time of making the decision

then an additional 26.2 % (given by EVPI) improvement can be expected. The diversity in

the machine types for the MVP and the RP allowed the resultant systems to better match

the workload characteristics. In the case of the RP the workload was matched not only for

the mean parameters but for nearly all possible realizations of the parameters. It is not clear

how one could modify the heuristic based algorithms to better match the workload.

There are many possible scenarios that are possible in this environment. RP is guaranteed

to be the best performing solution on average but that does not imply it is the best for each

possible scenario. Figure 5.6 illustrates this by plotting the probability distribution of the

relative improvement that RP has over the other algorithms (i.e. H1, H2, H3, MVP). The

width of the glyphs represent the normalized probability density of the relative increase in

reward rate. RP can out perform the H1 heuristic by up to 300 %. For some scenarios, RP

can also underperform H1 by 40 %. However, on average, RP produces significantly higher

reward rates as seen by the positive mean of the distribution and by Figure 5.5b.
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Figure 5.6. Distributions of the relative improvement of RP over the other
algorithms for the E2 environment: The RP for certain scenarios can perform
as much as 300 % times better then the heuristics, but RP also performs worse
for some scenarios by as much as 40 %.

5.9.4. Benchmark Based Environment (E3). This environment is based on a set of

five benchmark applications that were run on nine different types of hardware. The execution

time and power consumption was recorded for these systems [23]. The method in [24] was

then used to increase the number of task types to ten. This environment has nine machine

types and ten task types that define the ETC and APCd matrices. The ETC matrix is

shown in Table 5.5. The algorithm in Section 5.4.2 was used to generate η, τ , and ψ. Based

on [4], the CoV for the ETC elements was taken to be 25 %. The algorithm in Section 5.4.3

is used to generate the variance of τ . The number of abstract operations, L, is three. The

arrival rates have a known mean with a CoV of 25 %. There is no power constraint in

this environment. The budget is $400,000 so hundreds of machines are provisioned by the

algorithms.

Figure 5.7a shows the one sided confidence interval for different number of scenarios. The

results shown in Figure 5.7a are the average of ten Monte Carlo trials. At 1,500 scenarios,

the error in the reward rate is under ±1 %. Figure 5.7b shows the corresponding run times
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Table 5.5. ETC for E3

M1 M2 M3 M4 M5 M6 M7 M8 M9
T1 57 28 72 45 41 19 27 28 26
T2 98 50 120 77 70 37 49 49 45
T3 463 303 362 342 314 311 303 290 264
T4 165 113 113 120 111 122 114 108 98
T5 167 91 185 129 118 74 90 88 81
T6 162 87 185 125 114 68 85 84 77
T7 45 22 57 36 33 15 22 22 20
T8 57 28 74 45 41 18 27 27 25
T9 59 36 54 44 41 34 36 35 32
T10 39 22 41 30 27 19 21 21 19

(a) confidence (b) run time

Figure 5.7. Confidence interval (a) and algorithm run time (b) versus the
number of scenarios for the E3 environment: Computing an accurate solution
is fast for this larger problem even though the number of machines being
provisioned and scheduled is large.

for solving RP and takes less then a minute in all cases. Due to the (at least) quadratic

growth of the run time w.r.t. the number of scenarios, it is important to use as few scenarios

as possible. At 3,000 scenarios, the DEP is rather large with 63,011 constraints (i.e., rows)

and 270,018 decision variables (i.e., columns). The constraint matrix in the DEP is very

sparse so solving this large linear programming problem only consumes about 180 MB.

For these simulations, MVP, RP, and WS are all trying to maximize reward rate but

as a secondary objective they are also trying to reduce the cost. This is accomplished by

weighting the reward rate with 1.0 and the upgrade cost objective with a small positive
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Table 5.6. Solutions for E3

H1 H2 H3 MVP RP
M1 0 0 0 0 0
M2 0 168.8 168.8 0 0
M3 0 0 0 0 4.3
M4 0 0 0 0 0
M5 0 0 0 0 0
M6 121.2 0 0 0 12.7
M7 0 0 0 0 4.5
M8 0 0 0 100. 73.8
M9 0 0 0 0 1.1

constant. Figure 5.8 gives the expected negative of the reward rate for 3,000 scenarios. The

upgrade cost is indicated below the labels at the bottom of the graph.

Table 5.6 shows the solution for each of the algorithms. All the proposed algorithms can

be solved with integer constraints on these variables however at a huge computational cost.

Even though the number of machines is fractional, a simple rounding policy can easily be

applied to the solutions in Table 5.6 when integers are required with negligible effect on the

reward rate.

All the heuristics use up the entire budget and still perform worse then MVP and RP.

The MVP solution does not use all the available budget. In fact, it only used $291K of

the budget. This is because the MVP solution does not provision for the uncertainty in the

arrival rates of tasks nor in the machine performance. In the MVP formulation, there is no

benefit to buying more machines once the workload can be handled hence it does not use all

the available budget. The MVP has extra degrees of freedom to improve the solution but has

no practical way of determining how to best select the machines. From the MVP perspective,

the algorithm is already achieving maximal reward. The RP takes the uncertainty of the

arrival rates and the machines into account and can achieve the same performance as the

MVP solution but at a lower cost of $274K. The RP solution uses many different types of
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Figure 5.8. Expected reward rates for various solutions for the E3 environ-
ment: The cost for each solution is indicated at the bottom of the figure. RP
ties for the best performance with MVP however with a solution that has a
lower cost.

machines to reduce the cost and still achieve the optimal performance. The upgrade cost

under the WS solution is the cost one would pay on average if they could select the machines

after knowing precisely the execution time of each task type on all machine types and the

arrival rates of the tasks.

5.9.5. Pareto Fronts. Pareto fronts are useful tools to quantify the trade-off between

conflicting objectives. The weighted sum algorithm described in Section 5.8.2 is used to

generate the Pareto front for the reward rate and power consumption objectives. Figure 5.9

shows the Pareto front for the E3 environment with 1,000 scenarios. This took only eight

minutes to compute. The solutions found by the weighted sum algorithm are blue dots. The

95 % confidence regions are shown as red ellipses centered at the blue dots. The confidence

regions are relatively small. The light blue shaded region is the feasible objective space for

this problem. Objective values outside this feasible space are not possible due to one or more

131



Figure 5.9. Reward rate and power consumption Pareto front and feasible
objective space for the E3 environment: The relatively small 95 % confidence
ellipses are shown in red. The blue shaded region is the feasible region of the
objective space. The blue dots are solutions that the weighted sum algorithm
found.

of the constraints in the problem. The feasible region is computed by solving the RP with

(61) ω =

cos θ

sin θ


for values of θ from 0 to 2π. More details on computing the feasible regions for linear

programming problems is available in [59].

5.10. Conclusions and Future Work

Stochastic programming is a powerful tool that can be applied to make robust decisions

in the midst of the inherit uncertainty in computing systems in both IaaS provider clouds

and traditional environments. The linear steady-state model and representative stochastic

model enables the use of an efficient two-stage stochastic program for solving the machine

provisioning problem. The new algorithms were compared to heuristic based algorithms

in a few different environments. The heuristic approaches tend to perform poorly when

considering their average performance. RP produces the best quality solution on average
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compared to the heuristics and the MVP. The inherit uncertainty in the execution times

and arrival rates necessitates algorithms that can incorporate random variables and their

statistics. RP can be used to reduce the upgrade cost for a computing system by exploiting

the uncertainty in the environment while maintaining the optimal level of performance. The

multi-objective optimization problem can be used to quickly generate Pareto fronts.

In the future, we would like to adapt this model to include aspects of spot pricing and the

uncertainty surrounding the price of the instances. We would also like to adapt these concepts

to existing cloud provisioning tools and computational models. Risk adverse formulations

are also possible that minimize the expected reward rate and the variance of the reward rate.

133



CHAPTER 6

Conclusions

Scheduling for large-scale systems is very challenging. This dissertation focused on ad-

dressing the run time and solution quality issues associated with scheduling very large num-

bers of tasks to large numbers of heterogeneous machines. The approach in this dissertation

leverages the techniques found in divisible load theory and steady-state scheduling to im-

prove the scaling properties of the algorithms. Many different objectives are considered in

the scheduling problems such as makespan, power, profit, reward rate, reliability, and cost.

It was shown that with this new approach the quality of the solution improves as the

problem size becomes large. For larger problems, these new algorithms were compared to

prior art and found to be significantly faster and produce higher quality solutions.

Efficient algorithms were developed to simultaneously optimize multiple objectives to

build Pareto fronts. These Pareto fronts can be used to analyze the trade-off between the

conflicting objectives. Furthermore, tight upper and lower bounds on the optimal Pareto

fronts were derived. These bounds were used to design a new measure of the quality of an

estimate of the Pareto front. The quality measure is then used to compare Pareto front

generation techniques. The Pareto front generation technique in this dissertation is faster

to compute and of higher quality than prior art.

Execution times, arrival rates, and power consumption parameters are never known per-

fectly in reality. A stochastic model was developed to represent the important aspects of

the hardware resource provisioning problem such as the correlation between execution times

of different tasks running on different machines. Then an algorithm was designed to ac-

count for the uncertainty to find schedules and hardware provisions that have the highest
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expected value. Simulations showed that the solutions from the new algorithm produced

better solutions, on average, than the prior art.
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