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ABSTRACT 
 
 
 

COOPERATIVE DEFENSE MECHANISM FOR DETECTION, IDENTIFICATION AND 

FILTERING OF DDOS ATTACKS 

 
 

Distributed Denial of Service (DDoS) attacks, which are intended to make the service 

unavailable for legitimate users, originate in a highly distributed manner providing the illusion of 

legitimate traffic. The number of attacks and the volume of traffic associated with attacks 

continue to increase dramatically. At these traffic intensities, the network infrastructure upstream 

from the intended victim also becomes severely affected necessitating that attack traffic be 

filtered as close as possible to the attack sources. However, it is difficult to anticipate and 

identify such nodes as the attacks originate at widely distributed nodes and spread through 

various routes. To successfully respond by dropping traffic, the mitigating approach must 

identify routers on traffic paths with significant attack traffic and respond with minimum effect 

on legitimate traffic. We develop a suite of solutions to address this problem. Cooperative 

Defense Mechanism (CDM), a distributed responsive defense mechanism for DDoS attacks is 

presented. CDM allows the identification of network routers closer to the attack sources and 

provides these routers a profile that facilitates discrimination between legitimate and malicious 

packets during the attack and thus enables them to drop traffic perceived as malicious in a 

distributed manner.  

The cooperative defense model consists of three main components: (1) an attack traffic 

identification mechanism, (2) a filtering mechanism, and (3) a cooperative mechanism to identify 

the most effective points for filtering.  
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First, we investigate the features of attack and normal traffic to develop an identification 

model for the attack traffic. The main challenge is to detect attack traffic without misclassifying 

legitimate traffic thus avoiding the disruption of normal services. The parameters such as 

source/destination IP address, port number, size of packet are employed to establish the 

identification model and develop a scoring mechanism that provides the basis to create a history-

based profile. The effectiveness of this approach is in blocking attack traffic and allowing the 

legitimate traffic at upstream routers. Experimental results, based on a recent traffic trace from 

Colorado State University, indicate that the filtering model is able to protect the victim node on 

average from ~95% of attack traffic while preserving ~75% of the normal legitimate traffic. 

Second component, the filtering mechanism, is aimed at dropping attack traffic closer to the 

sources while minimizing the impact on legitimate traffic. The filters are propagated to selected 

upstream routers during the attack, keeping the communication and memory overhead associated 

low. A Bloom filter based mechanism is proposed to efficiently implement and disseminate the 

proposed history-based profile. Moreover, we introduce a novel data structure, which we refer to 

as the Compacted Bloom Filter (CmBF) that further improves performance, uses less storage, 

reduces the communication and computation costs, and provides the same functionality as a 

standard Bloom filter. However, unlike the standard Bloom filter, CmBF limits false positives 

significantly at the expense of false negatives in membership queries. Our work is motivated by a 

class of applications that must transmit Bloom filters over a network and endpoint machines 

having limitations on memory availability to meet specific false positive probability. We derive 

expressions for the false positive and false negative rates. Simulation results are used to validate 

the derived expressions and explore the tradeoffs when using the CmBF. 
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The third component identifies the most effective points where the Bloom filter based 

mechanism can be placed to mitigate the attacks. We do this by monitoring the network traffic 

during the attack period. The approach tries to minimize the modifications required to the routers 

and the current protocols to combat DDoS attacks. Such modifications will have a low 

complexity and will be scalable. Our solution benefits by using a recently developed technology, 

typically implemented as Small Formfactor Probes (SFP) using FPGAs, which helps gather, 

distribute, and analyze information from a distributed Ethernet network. SFProbes can plug into 

any SFP compatible elements such as routers in a way that does not interfere with the traffic 

flow. Our approach uses a subset of probes to identify the nodes that carry attack traffic. 

Extensive simulation in OPNET© with CAIDA attack dataset shows that our solution is able to 

place all the filtering routers in the vicinity of the attacker nodes (within the first three routers) 

and stops 95% of attack traffic while allowing 77% of the legitimate traffic to reach the victim 

node when the percentage of participating SFProbes in the network is 80%. Results also 

demonstrate the effectiveness of the mechanism in preserving valuable network resources and 

link utilizations for other end-users during the attack time, thereby preserving the service 

availability and minimizing the attack impact. 

An analytical model for packet-pair dispersion signature in multi-hop networks is presented 

in the last part of our investigation. Path signature is an essential tool for numerous applications 

that need to distinguish between different network paths, diagnose problems, test protocols for 

realistic network conditions, and determine if two paths share common links. Our approach is a 

passive technique that relies on existing network traffic and hence does not consume network 

resources for measurements. The relationship between the input and the output gaps of packet-

pairs and the corresponding distribution of end-to-end packet-pair dispersions are derived. This 
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derivation is then used to determine the signature characterizing the path where the path 

signatures can provide other properties of a path, such as an available bandwidth estimate, 

utilization, and bottleneck capacity of the path to monitor and diagnose network problems. The 

analytical model was verified using OPNET® simulations and was used to evaluate the impact of 

factors such as the number of hops, initial dispersion, link capacities, and cross traffic that affect 

the shape of the signature. 

The proposed solutions are tested on either real world or realistic data to establish 

performance and accuracy. Real network traffic and DDoS attack dataset from sources such as 

Colorado State University (FRGP Continuous Flow Data), DARPA, CAIDA 2007 as well as 

Auckland University dataset have been used to evaluate the presented techniques.  
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CHAPTER 1 
 

INTRODUCTION 
 
 
 

Internet services and resources form an integral part of our daily life. It is, therefore, 

important to protect such services and resources from Denial-of-Service (DoS) attacks. DoS 

attacks, which are intended to make the service unavailable for legitimate users, have been 

known to the network research community since the early 1980s. From past incidents of DDoS 

attacks against commercial websites like Yahoo, E-bay and E*Trade, it is evident that all 

computer systems connected to the Internet are vulnerable to DDoS attacks [1], [2]. As 

emergency and essential services rely on their infrastructures, the consequences of DDoS attack 

could result in serious financial losses for E-commerce. It is for this reason(s) that defense 

against DDoS attacks has become one of the most important research issues in the Internet 

security community [3]. During a three-week period in mid-2001, researchers from the 

University of California, San Diego, detected approximately 128,000 DoS attacks against more 

than 5,000 targets [4]. On February 9, 2000, Yahoo, eBay, Amazon.com, E*trade, ZDnet, 

buy.com, the FBI, and several other websites fell victim to DDoS attacks, resulting in millions of 

dollars in damages and inconveniences [5], [6]. Despite significant research into 

countermeasures, DDoS attacks still remain a major threat today [4]. Recent examples include a 

record 400 Gbit/s DDoS attack against CloudFlare, a rate about 100 Gbit/s more than the largest 

previously seen DDoS attack [5]. The impact of DDoS attacks to legitimate users may vary from 

minor inconvenience to disastrous consequences. The frequencies and the impact of DDoS 

attacks have motivated researchers in the internet security community to provide techniques for 

preventing, detecting, and surviving such attacks [3]. The majority of proposed approaches have 



2 
 

failed to provide service availability in the presence of DDoS attacks. Towards this end, we 

investigate and develop a cooperative defense scheme based on an identification model for 

DDoS attacks located at routers closer to the attack sources. It is important to somehow 

distinguish attack traffic from legitimate traffic and allow legitimate traffic access to the victim 

node when an attack occurs.  

In general, there are several factors that make defending against DDoS attacks hard. First, the 

traffic flow volume through the victim node can reach very high values, e.g., 400Gbps [7]. 

Second, the attack occurs in a highly distributed manner – this gives the illusion of legitimate 

traffic and makes detection difficult. In addition, a flooding attack can appear like a flash crowd, 

which occurs when a large number of legitimate users connect to a server simultaneously [8]. 

Differentiating the attack traffic from flash crowd traffic is one of the hardest steps in detecting 

and protecting against DDoS attacks. The presence of zombies that spoof the IP address of the 

source of the attack make it even more difficult to identify and trace the attacks back to their 

actual sources. Researchers have worked on providing a mechanism that uses different features 

of traffic to distinguish attack traffic from legitimate ones. However, these mechanisms are able 

to detect only attacks having those specific features [9]. Moreover, once the attacker knows the 

features that are of interest to the detection mechanism, he can develop strategies that bypass the 

detection mechanisms. For example, consider the scheme based on the abrupt change of traffic 

volume [10], [11], [12], [13]. In this approach, the attacker can bypass the detection mechanism 

by sending out an attack flow to change the statistics of the traffic. For the scheme based on flow 

dissymmetry [14], [5], [15], [16], [17], the attacker may use randomly spoofed source IP 

addresses and send out the same amount of SYN packets and FIN/RST packets that can go 

unnoticed when compared to legitimate traffic flows. An effective approach presented in [18] has 
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established a history of a legitimate IP address that has appeared before; however, the adversary 

can bypass this mechanism by starting to send IP address frequently before beginning the attack. 

Therefore, we need a more robust and efficient defense mechanism for effectively stopping 

attack traffic while allowing legitimate traffic to the extent possible. The first step of our 

proposed approach addresses this problem and establishes an identification model to detect 

attack without misclassifying legitimate traffic. An unusually high traffic volume may not by 

itself be a good indicator of a DDoS attack, as it can occur due to flash crowds as well. Thus, 

other features that help distinguish attacks from normal traffic have to be incorporated. We look 

into multiple features of DDoS attacks and normal traffic to extract characteristics that give 

information to discriminate a DDoS attack. These features and their relationships are used to 

establish high confidence IP address history and develop a normal traffic profile that can be used 

to categorize normal and attack traffic more accurately. The parameter set for establishing the 

identification model are source IP address and port number, destination IP address, size of 

packet, packet type (ICMP, UDP, TCP), frequency of IP address and for TCP traffic, those IP 

addresses with a successful TCP handshake. These features are used to develop a scoring 

mechanism that provides the basis for normal traffic signatures. The effectiveness of this 

approach in blocking attack traffic and allowing legitimate traffic at upstream routers has been 

demonstrated using DARPA dataset [19], CSU dataset [20] as well as CAIDA attack dataset 

[21]. The experiments indicate that the filtering model can protect the victim node from ~95% of 

attack traffic while allowing ~75% of legitimate traffic.  

The second challenge after determining an identification model is how to effectively use 

history-based profile to prevent the attack in a cooperative defense model. During the attack 

period, prebuilt filters must be propagated to the routers at responsive points, and filter attack 
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traffic while preserving legitimate traffic. Moreover, the routers must check all packets destined 

for the victim node and this is a costly task for routers. Therefore, a well distributed, effective 

and efficient filtering structure would be a significant contribution. A Bloom filter is a space-

efficient probabilistic data structure that is used to test for set memberships in many domains, 

including networking applications. Although such a check can be done efficiently, false positives 

are possible. A Bloom filter is used for representing the contents of the history-based profile, 

which is used to distinguish between legitimate and attack traffic. Such a filter helps reduce 

communication and computation costs and also storage requirements of the upstream routers that 

check for malicious traffic. This mechanism requires passing Bloom filters as a part of the 

message. Consequently, it is important to minimize the size of the filters, such that storage and 

processing costs are minimized. We introduce a novel data structure, which we refer to as the 

Compacted Bloom Filter (CmBF) that improves performance, uses less storage, and provides the 

same functionality as a traditional Bloom filter for applications, such as IP traceback, web 

caching, and peer-to-peer networks. For the same fraction of false positives, the CmBF generally 

offers memory saving two or more bits over the standard Bloom filter. This space saving is 

determined by false negatives introduced in the CmBF structure, which does not exist in the 

standard Bloom filter. The false negative rate has a tradeoff between false positive rate and 

memory reduction size, which are all discussed in detail throughout Chapter 4. The other 

advantage of the CmBF is that it is very simple and practical, much like the standard Bloom filter 

construction and therefore, this construction is useful in practice. 

The final challenge to provide a cooperative defense mechanism is to determine where to 

apply the filtering mechanism. A victim node is a good point to discriminate a DDoS attack; 

however, the victim node is not a good point to filter the attack and may even crash. This is 
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exactly the goal of the attack. In addition, it is a late reaction to the DDoS attack, as huge attack 

traffic may strain Internet resources elsewhere. Since attackers cooperate to perform successful 

attacks, defenders must also form and cooperate with each other to defeat the DDoS attack. 

Therefore, a distributed approach that is able to effectively respond to DDoS attacks with 

minimum damage to legitimate traffic with minimal overhead is investigated. Placing filters at 

the upstream nodes may be expensive because all packets passing through such a node must be 

processed irrespective of whether a significant amount of attack traffic passes through it or not. 

Placing filters close to the victim nodes, in contrast, causes resource wastage, as the attack traffic 

passes through the network before it is stopped. Our proposed solution addresses this problem by 

using a recently developed technology, typically implemented as Small Formfactor Probes (SFP) 

using Field Programmable Gate Arrays (FPGAs). Our approach uses SFProbes, at a subset of 

ports in the network, to identify the upstream links, and thus, nodes which carry attack traffic and 

close to source of the attack. The technique has been validated with two real-world data sets. 

Compared with recent cooperative approaches, our scheme reduces processing overhead while 

maintaining the Quality of Service (QoS) for legitimate traffic during the attack period and 

making the scheme more deployable. Some works appear in distributed defense mechanisms for 

DDoS attacks [22] [23] [24] [25] [26]. Such schemes [22] [23] [24] detect attacks downstream 

close to the victim and this attack signature is propagated upstream to the routers doing filtering 

located close to the source of the attack. The drawback of these approaches is the difficulty of 

securely forwarding the attack signature to the upstream routers. Some schemes [23] [24] need a 

global key distribution infrastructure for authenticating and verifying the attack signature [27], 

which is used for differentiating attack traffic from the legitimate one. Note that creating an 

accurate attack signature is difficult due to the presence of zombies, who can spoof the IP 
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address of the attack source. Firecol mechanism [25] also presents a distributed collaborative 

system to detect flooding DDoS attacks. This mechanism relies on an Intrusion Protection 

System (IPS) located in the internet service providers. IPSs are effective in stopping attack 

traffic, but they have very large communications overhead and also significantly decrease the 

performance of the routers. We present a responsive defense mechanism that has low complexity 

and is scalable, named Cooperative Defense Mechanism (CDM), to combat DDoS attacks. 

Moreover, the approach tries to minimize the modifications required to the routers and the 

current protocols. Results for CAIDA attack set [21], for example, indicate that the responsive 

mechanism protects the victim nodes from 95% of attack traffic close to the sources of attack, 

while allowing 77% of legitimate traffic. 

The last part of our investigation presents a new analytical model for the packet-pair based 

signature that accurately describes the behavior of packet-pairs in multihop network paths with 

multiple tight links. Packet-pair dispersions can be used to generate path signatures and the 

signatures assist in distinguishing paths from one another, monitoring networks, diagnosing 

problems, developing deeper understanding of network behavior, testing protocols for realistic 

network conditions, and determining if two paths share common links. An accurate model of the 

packet-pair technique is important not only for creating accurate path signatures for different 

scenarios, but also for enhancing the accuracy and efficiency of measurement techniques for 

parameter estimation, where our work mainly addresses this challenge. 

The rest of the thesis is arranged as follows. Chapter 2 presents the precise problem statement 

addressed in this work. Characteristics of network traffic against DDoS attacks are addressed in 

Chapter 3. Compacted Bloom filter is presented in Chapter 4. Then, we proceed to the responsive 

defense mechanism. Chapter 5 discusses the distributed mechanism to protect victim node 
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against attack. A packet pair dispersion signature in multihop network is researched in Chapter 6. 

Conclusions are presented in Chapter 7. Finally, Appendix A lists key source codes. 
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CHAPTER 2 
 

PROBLEM STATEMENT 
 
 

 
Many works have tried to address DDoS in the past, but DDoS attacks remain a major 

security problem; detection and protection is hard, especially when it comes to highly distributed 

implementations. Most of the works deploy a single point (source-end, core-end and victim-end) 

to apply the responsive mechanism against DDoS traffic. As opposed to this approach, a 

distributed defense mechanism deploys different points for different tasks through the network to 

protect the victim node/network. In general, discriminating a DDoS attack at the victim point is 

straightforward compared to identifying it in a distributed manner; however, it is not a good 

point to filter the attack packets, and even if you do, it does not reduce the network traffic due to 

flooding attacks. On the other side, an efficient defense mechanism needs to drop attack packets 

at routers close to the source and not just at the victim node. Therefore, deployment at different 

points in the network is an important consideration for creating an accurate filter to separate 

good traffic from attack traffic, and finding an efficient method to filter. At present, there is no 

strong cooperation mechanism between routers and the victim node to identify and protect 

against the attack in a distributed scheme. Hence, providing a cooperative defense mechanism 

can be a significant improvement in this area.  

Challenges that inspired this work and overall research goals and objectives are reviewed in 

section 2.1. In section 2.2, the approach employed under this work is presented. 

2.1 Research Goals and Objectives 

On the Internet, the lack of authentication allows the attacks to create fake identities and send 

malicious traffic with impunity. It is growing rapidly and is becoming harder to defend against; 
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therefore, protecting resources from frequent and large DDoS attacks motivates this research 

community. However, the existing security mechanisms have achieved only limited success in 

providing service availability during the attacks, and we need an efficient defense method for 

effectively stopping attack traffic while preserving legitimate traffic as much as possible. The 

goal of our research is to develop distributed and responsive defense mechanisms to address this 

problem in a network. As attack identification is an important procedure to direct any further 

action, the first challenge is how to discriminate attack traffic without misclassifying traffic. It is 

difficult to discover the identity of the attackers, because attacks make use of source addresses of 

IP packets of innocent nodes by faking source addresses, for example, by randomly generating 

them. Identifying clues which can be used as precursors for detecting such attacks are 

proactively analyzed. For this, we seek the differentiating features between attacks and regular 

traffic, and identify traffic variables which give information about the occurrence of DDoS 

attacks. A history-based profile is a promising approach to create a high confidence IP address 

history that serves to distinguish good traffic from the bad during the attack time. Such a profile 

then may be used to create a filtering mechanism to ensure that the victim node can continue to 

receive most of the normal traffic and remain operational.  To prevent the network in the vicinity 

of the victim getting overloaded, it is necessary to develop a filtering mechanism that could be 

applied at different upstream router points. Thus an accurate and practical mechanism that 

requires low computational and storage overhead at routers is necessary. Furthermore, it is 

necessary to be able to deploy such a filter on demand with minimal overhead.  Our research 

therefore will investigate novel data structures which are efficient and effective in a distributed 

network environment. 
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After creating an appropriate filtering mechanism, the challenge is where to filter the attack 

traffic in an efficient way. As we discussed, victim point is not a good point to filter the attack 

packet, and even if you do, it does not reduce the network traffic due to flooding attacks. An 

efficient defense mechanism needs to drop the attack packet at routers close to the source and not 

just at the victim. The ultimate goal of this research is to develop a distributed model based on a 

cooperative scheme that can filter attack traffic before it reaches and congests the victim network 

as close as possible to source of attack.  

Recently developed technology that uses Small Formfactor Probes (SFP) using Field 

Programmable Gate Arrays (FPGAs) provide the potential for non-intrusive monitoring of traffic 

at router interfaces. This research makes effective use of SPF probes to identify the responsive 

points corresponding to routers which carry significant volumes of the attack traffic, and then 

activate packet filtering at such routers. Our approach aims at minimizing the modifications 

required to the routers with no changes to existing networking protocols, while maximizing the 

arrival rate for legitimate traffic and minimize the attack flow during the attack time.  

Also of interest are techniques that allow the characterization of links in networks, so that 

network conditions can be non-intrusively monitored. Thus we investigate packet-pair based 

signatures that can accurately describe the behavior of packet-pairs in multihop network paths 

with multiple tight links. Accurate models of the packet-pair technique are important not only for 

creating accurate path signatures for different scenarios, but also for enhancing the accuracy and 

efficiency of measurement techniques for parameter estimation. 

     As discussed above, the potential damages caused by internet threats have become more 

serious, the need for defending against these threats has increased significantly. Among all 

network attacks, the DDoS attack is one of the most common, most harmful, hard to be traced 
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and difficult to prevent, and therefore is very serious. As the DDoS attack makes use of many 

different sources to send a lot of useless or harmful packets to the target in a distributed way, a 

proper solution to taking on DDoS threats needs a cooperation mechanism from multiple points 

of the network. However, this is difficult. Our research objective is to develop a cooperative 

defense mechanism (CMD) to address this problem. The research objectives of this work are 

organized around the following four aspects:   

1- The identification of attacks is an important aspect of the defense of a DDoS attack, and 

affects the overall performance and effectiveness of the defense mechanism. When the 

attack is aborted or blocked by the defense mechanism, the victim should be able to 

continue operating normally. A key problem to tackle when trying to continue services 

under DDoS attacks is to distinguish attack traffic from legitimate traffic. Therefore, the 

first challenge in our research is to establish an identification model to discriminate 

between legitimate and attack traffic. It is important to maximize malicious traffic drops 

while minimizing legitimate traffic drops, and it is an important step and procedure to 

direct any further action. Selecting an effective set of parameters and defining a reliable 

history-based profile that can distinguish between normal packets and malicious packets is 

the main contribution of the first step. 

2- The next objective, after generating an identification model, is how the provided profile 

can be applied to stop attack traffic. The filtering mechanism is an appropriate technique 

to reduce the effect of attack traffic; however, it has some challenges. Looking up the 

entire profile in the routers during the attack time is a costly task, as upstream routers must 

process all packets toward the victim-node. It will create an extreme overhead on the 

routers and is the other challenge in this mechanism; therefore, an efficient method to 
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conduct filtering is a significant contribution and will cause significant improvements in 

this area. To overcome this problem, we investigate a novel idea.  

3- The next objective, after generating a filtering model, is where this mechanism should be 

deployed. According to the infrastructure of the internet, the responsive mechanism can be 

applied at different points. Victim-end point is a good point to detect and discriminate 

malicious traffic from legitimate traffic; however, the major problem with victim-end 

defense technique is that the victim points are not a good point for filtering attack traffic 

because the bandwidth might already be saturated. Moreover, it is too late to apply the 

filter where the source-end defense point is the appropriate point to filtering malicious 

traffic before the network congestion happens at the victim-end point [28]. Hence, a 

technique with a cooperative mechanism between those points can be an efficient defense 

technique against DDoS attacks. Our objective is to develop a novel structure as the 

cooperative defense model, in which the victim-end point is considered to discriminate 

DDoS traffic and generate a history-based profile, as described earlier, and the upstream 

routers are considered response points to block malicious traffic. Our proposed approach 

tries to minimize router resource consumption, identify heavy attack traffic flows, and, 

finally, filter the attack as close as possible to the attack sources, thus reducing the impact 

on the network. 

4- The next objective derive a model for the packet-pair technique for multihop paths with 

multiple tight links, thus more accurately capturing the stochastic nature of cross traffic 

and its interaction with packet-pairs. In contrast, the existing stochastic delay model, 

presented in [29], describes the analytical relationship between the input and output 

dispersions under the assumption of a single tight link. Such a model can potentially lead 
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to techniques that detect links with abnormal traffic increases correspond to DDoS type 

attacks.   

 2.2 Approach 

In this section, we establish the solution approaches to address the research objectives and 

goals identified so far. The first step is how to identify attack traffic without misclassifying 

traffic. Most of the existing solutions to detect attacks rely on monitoring the volume of traffic 

received by the victim. These methods may mistake a natural sudden increase in traffic as an 

attack. On the other hand, the attackers now tend to use spoofed IP addresses to perform DDoS 

attacks, which make it difficult to distinguish between normal flows and attack flows. In our 

research, we investigate the specific attack features as well as normal traffic characteristics to 

identify the attack traffic. To establish an identification model, a normal traffic history-based 

profile on some traffic properties, such as source IP, size of the packet, number of packets per IP, 

port number, and protocol type is created. This profile can assess to classify normal and attack 

traffic more accurately. To improve the identification quality, these features are used to develop 

a scoring mechanism that provides the basis for normal traffic signatures, and we investigate 

them in this section. According to our scheme, a collection of legitimate IPs creates a history that 

can differentiate good traffic from bad traffic during the attack time. Peng et al. [18] have shown 

that more reliable IP address are those that are used more frequently; therefore, to establish the 

history-based profile, we consider the frequency of the IP address as one of the features to create 

our identification model as well.  

In general, there are two mechanisms to respond to DDoS attacks: rate-limiting and filtering. 

In rate-limiting techniques, the attack traffic is not totally filtered, but the rate is limited and all 

traffic towards the victim is subjected to a limited rate, whether the traffic is legitimate or 
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malicious. In the filtering technique, the attack traffic is totally filtered according to an 

identification model. Filtering is a promising technique and inflicts extremely low damage to 

legitimate traffic while quickly detecting outgoing attacks. When an attack is blocked by a 

filtering mechanism, the victim node can continue to operate normally, and filtering does not 

harm legitimate traffic. This feature makes filtering an interesting solution to DDoS attacks, 

although it has some challenges. As we explained, it is challenging to select an effective set of 

parameters and define a reliable profile that can distinguish between normal packets and 

malicious packets. Therefore, we investigated strategies for creating an accurate filter to 

characterize normal and attack traffic in the first step and addressed those challenges in Chapter 

3. We further investigated characteristics of network traffic against DDoS attacks by analysis of 

network traffic collected from Colorado State University, Auckland University, and attack traffic 

from CAIDA.  

It is important to minimize the size of the filters such that storage and processing costs are 

minimized. A Bloom filter may be used as the basis to solve this problem. A Bloom filter is a 

space-efficient probabilistic data structure that checks whether an element is a member of a set. 

In recent years, the popularity of Bloom filters has grown, and they are now being used in 

different areas, including peer-to-peer systems, web caches, database systems, spell checkers -

[25] [26], and networking [27]. As a result, in the past decades, a lot of efforts have been put into 

improving Bloom filters. We present a new variant of the Bloom filter with the same 

functionality as the standard Bloom filter. We call it the Compacted Bloom filter (CmBF). Our 

work is motivated by applications that must transmit Bloom filters over the network and/or 

endpoint machines that have restrictions on available memory to meet specific false positive 

probability. We intend to reduce the message traffic that is blocked and introduce an efficient IP 
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address lookup mechanism during the attack. This approach degrades substantial overhead cost 

in the upstream routers when the filtering must check for every packet that comes to a victim 

node during attack time. Although a standard Bloom filter construct is space-efficient for simple 

membership queries, they are rather inefficient when the applications need to meet a specific 

false positive rate and the endpoints have limited storage capacity. Our work is motivated by 

applications that must transmit Bloom filters over the network and endpoint machines have 

restriction on memory availability to meet specific false positive probability. Our research 

presents the Compacted Bloom Filter (CmBF) structure to use as a novel idea to address this 

challenge, which improves performance in large networks and reduces memory compared to the 

original Bloom filter structure. The key idea of the proposed CmBF is that the CmBF indicates 

the location of 1’s that was set in the standard Bloom filter. This procedure reduces memory 

requirements by introducing false negatives in membership query.  

In order to combat such attacks, a distributed defense mechanism is needed that will thwart 

the attack traffic in real-time. We proposed one such mechanism that identify filters that block 

attack traffic and allow legitimate traffic as close to the source node as possible, so that network 

resources are not wasted in propagating the attack. Our solution benefits by using a recently 

developed technology, typically implemented as Small Formfactor Probes (SFP) using FPGAs 

(Field Programmable Gate Array). An example of such hardware is JDSU SFProbes and Packet 

Portal [30]. Packet Portal is a new approach to gathering, distributing and analyzing information 

from a distributed Ethernet network. These packet portals have been deployed on operating 

networks for network monitoring functions. Our approach uses these probes, at a subset of ports 

in the network, to identify the upstream links, and thus nodes which carry attack traffic. 
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Effectiveness of the scheme is evaluated using extensive simulation in OPNET© with a real-

world network topology and is presented in Chapter 5 in detail. 

In the last part of the research approach, the analytical model provides deeper insights to path 

signatures in the presence of multiple tight links, thus enabling efficient and accurate network 

monitoring, problem diagnosis, and estimation of link and path parameters, such as end-to-end 

network bandwidths and link capacities. We investigate the effects due to initial dispersion, cross 

traffic and the number of the hops on end-to-end signatures using the analytical model. We also 

show how link properties such as available bandwidth and arrival rate of cross traffic can be 

estimated based on link signatures. This is the case with passive techniques that rely on existing 

network traffic, thus not consuming network resources for measurements [31]. 
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CHAPTER 3 
 

ON THE CHARACTERISTICS OF NETWORK TRAFFIC AGAINST DDOS ATTACKS 
 

 
 

3.1 Introduction 
 

Distributed Denials of Service (DDoS) attacks have become one of the most serious threats on 

the Internet. With large-scale DDOS attacks, it is necessary to stop attack traffic closer to the 

sources without disrupting legitimate traffic to the maximum extent possible. A responsive 

defense model that filters potential attack traffic and prevents it from reaching the victim 

network is developed. We investigate the features of network traffic that can be used for 

discriminating attacks from normal traffic. We use these extracted features to develop an 

accurate and robust signature-based filtering model that forms the basis of a detection and 

defense mechanism. A Bloom filter based mechanism is proposed to efficiently implement and 

disseminate the proposed signature-based model; it helps reduce the communication and 

computation costs and the storage requirements of the upstream routers that check for malicious 

traffic. The approach is verified and evaluated using the DARPA 1998 dataset [19] as well as 

extensive analysis over Colorado State University [20] and University of Auckland dataset [6]. 

The experimental results show the effectiveness of our new scheme in blocking attack traffic and 

allowing most of the legitimate traffic at upstream router points. We analyze the impact of 

different packet features on the accuracy and efficacy of the filtering mechanism. 

Distributed Denial-of-Service (DoS) attacks on Internet based systems and infrastructure have 

become a common occurrence. Multiple machines, which typically are compromised, flood the 

victim at fast rates. Detecting these machines and isolating them in a timely manner is non-trivial. 

From the incidents of DDoS attacks against commercial websites like Yahoo, E-bay and 
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E*Trade, it is evident that all the computer systems connected to the Internet are vulnerable to 

DDoS attacks [1] [2], [32], [33], [34] A coordinated DDoS attack within a single day on them 

and several other websites resulted in millions of dollars in damages and service   unavailability 

[5] [6]. Latest instance include the biggest DDoS attacks against CloudFlare with 400 Gbit/s and 

break the record of largest DDoS attack [7].  

The effect of DDoS attacks can vary from minor disturbance to devastating outcomes. The 

iteration and the impact of DDoS attacks have motivated researchers to provide techniques for 

preventing, detecting, and responding [3] to them while most approaches have failed to provide 

service availability during the attacks. Our approach address this issue and demonstrate an 

effective method to distinguish attack traffic from legitimate traffic and allow legitimate traffic 

access to the victim node in the event of an attack. 

Researchers have worked on providing a mechanism that uses features that distinguish attack 

traffic from legitimate ones. However, these mechanisms have weakness within detection where 

they can only detect the attacks contain those specific features [9]. Moreover, the attacker is able 

to develop mechanism to bypass once knows those features. For instance, the scheme based on 

flow dissymmetry [14], [5], [15], [16], [17] can bypass with attacker by use the random spoofing 

source IP address and send out the same amount of SYN packet, and FIN/RST packets that can 

go unnoticed when compared with legitimate traffic flows. Moreover, a major drawback of the 

proposed approaches is that they cannot discriminate flash crowd traffic from DDoS attack 

traffic. An efficient approach [2] called a History-based IP Filtering (HIF) was proposed to 

discriminate good traffic from bad traffic. This approach is based on monitoring the number of 

the new source IP addresses instead of the volume of the traffic. Jung [35] discovered that most 

of the IP addresses in a flash crowd traffic appeared on the website before, while very few IP 
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addresses have made a prior appearance in the case of DDoS attacks. HIF keeps a history of the 

legitimate IP addresses that have appeared before and applies filters in the edge router based on 

this history. However, an adversary can bypass this mechanism by starting to send packets with 

its IP address before conducting the attack. Therefore, we need a more robust and efficient 

defense mechanism for efficiently stopping attack traffic while allowing legitimate traffic to the 

extent possible.  

The goal of this chapter is to introduce and evaluate a responsive defense mechanism against 

DDoS attacks. The first challenge is how to detect attack traffic without misclassifying legitimate 

traffic. We look into multiple features of DDoS attacks and normal traffic to extract 

characteristics that give information about the occurrence of the DDoS attack. These features and 

their relationships are used to establish high confidence IP address history and to develop a 

normal traffic profile that can be used to categorize normal and attack traffic more accurately. 

The high confidence IP history will be used to create filters that differentiate the good traffic 

from the bad ones during the attack. When the attack is blocked by an efficient filtering 

mechanism, the victim node can continue to receive most of the normal traffic and remain 

operational and filtering does not impact legitimate traffic. This feature makes filtering technique 

a desirable solution; however, filtering has additional overheads. The effectiveness of our 

approach is validated using the Colorado State University [20], University of Auckland [6] as 

well as DARPA 1998 Intrusion Detection Dataset [19] as describe in Section 3.4.1 and 3.4.2. 

During an attack, the filters must be propagated to the upstream routers, preferably as close to the 

source of attack as possible. Moreover, these routers must check each packet to determine 

whether it is legitimate or not. Towards this end, we propose an efficient approach based on 

Bloom filter data structure, which facilitates a distributed response from routers closer to attack 
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nodes and serves to prohibit attack packets from reaching the victim node while allowing the 

legitimate traffic to pass through. We will address this challenge in Chapter 5. 

The rest of this chapter is organized as follows. Section 3.2 reviews to the DDoS attack 

characteristics. Section 3.3 describes the proposed method to discriminate DDoS attacks from 

normal traffic in details. Section 3.4 validates our model using DARPA dataset, University of 

Auckland as well as Colorado State University dataset. Section 3.5 concludes the chapter.  

3.2 DDoS Attacks 

In general DDoS attacks send large volumes of packets and consume critical resources in a 

network that makes the service unavailable for legitimate use. The attacker usually uses spoofed 

IP addresses in order to make a trace back more difficult, thereby thwarting the discovery of the 

real source of the attack. Flooding attack is one of the well-known types of DDoS attacks (e.g., 

spoofed/non spoofed UDP flood, ICMP flood, TCP SYN flood, DNS flood, VoIP flood, etc. [36], 

[8]) that focus on exhausting bandwidth of the victim’s network. Typically, DDoS attacks 

involve two steps. In the first step, some vulnerable systems are compromised and attack tools 

are installed on these systems. These compromised machines are called “zombies”. In the second 

step, the attacker requests the zombies to send a flood of packets to the victim(s) [37]. DDoS 

flooding attacks can be divided into two types: direct attacks and reflector attacks. In a direct 

attack, the attacker sends a flood of packets directed towards the victim through the zombies [28] 

as shown in Figure. 3.1 (a). In the reflector attacks, there is one more layer between the attacker 

and the victim. The attacker sends attack message to the reflector machine through the zombies 

and uses the IP address of the victim as the source IP address. The reflector machine replies in 

response to the victim, causing packet flooding as shown in Figure. 3.1 (b). 
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(a) 

 

(b) 
Figure. 3.1. Flooding attacks. (a) direct attack (b) reflector attack 

 
3.3 Identification Mechanism 

    In this section, we explain our approach for classifying normal and attack traffic. Our 

responsive defense mechanism differentiates between legitimate and attack packets during the 

attack and responds to it by causing traffic perceived as malicious to be dropped. To successfully 

respond to attack the approach must accurately detect the attacks and respond by minimally 

blocking legitimate traffic. It should also have low communication, computation, and storage 

overheads. 
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In order to continue to provide services under DDoS attacks, we need to distinguish attack 

traffic from legitimate traffic. An unusually high traffic volume may not be a good indicator of a 

DDoS attack, as it can occur due to flash crowds as well. We need to consider other features that 

help distinguish DDoS attacks from normal traffic. Since many of the previous approaches 

depend on monitoring the volume of the traffic, detecting distributed flooding attacks is hard. 

During bandwidth attacks, most source IP addresses are new to the victim, whereas most IP 

addresses in a flash crowd have appeared at the victim before. Specifically, Jung et al. [35] 

mentions that around 82.9% of all IP addresses involved in flash crowd events have sent prior 

requests. Peng et al. [38] advocate the use of network connection history to distinguish good 

packets from bad ones. Many enterprises, e.g., universities, banks, etc., also have a group of 

users that access their services regularly. Although the user base fluctuates with new additions, 

deletions, etc., in general such a base changes at a much slower time scale compared to attacks 

and disruptions. These observations often form the basis of mechanisms to filter out the attack 

traffic at the victim. This provides a practical solution based on IP address history of previous 

addresses that arrive at the victim node to distinguish bad and good packet. However, the 

attacker can bypass the history-based IP filtering if attacker starts to send requests and 

communicate with a victim node prior to conducting the attack. 

We address this problem by using multiple features that help distinguish normal and attack 

traffic and by developing accurate normal traffic signatures and a scoring mechanism based on 

these features. The normal traffic signatures and the scoring mechanism help create a high 

confidence IP history that serves to differentiate the good traffic from the bad traffic during the 

attack time. Using this high confidence IP address history, we can defend against DDoS attacks 

as explained below.  
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3.3.1 Feature Selection 

We investigate DDoS attacks in details in order to find the features that help distinguish 

between attacks and normal traffic. Lee et al. [39] mention some parameters such as 

source/destination IP address, port number, and packet type (ICMP, TCP, UDP) that have been 

used to detect DDoS attacks. We will use them together with packet size to form the features in 

our identification model. The other feature is the frequency of an IP address. Recall that, Jung et 

al [35] determined that most source IP addresses are new to the victim during bandwidth attacks, 

whereas with flash crowd traffic known source IP addresses are most common. Thus, the 

frequency of an IP address is a feature that may help distinguish an attack from normal traffic. 

Since our goal is in creating a history based only on legitimate and valid IP addresses, we only 

consider those IP addresses with a successful TCP handshake. Note that, a spoofed IP address 

will not have a complete three-way handshake [38]. The attackers are therefore forced to use 

legitimate IPs and establish a three-way handshake. This limits the number of IP addresses that 

an attacker can use and the attack can be identified by monitoring for abrupt change in the traffic 

volume during the attack time. Our approach uses a much more comprehensive set of features 

compared to existing identification approaches, and use them in an integrated manner to create 

filters as described later in Section 3.3.2.  

3.3.2 Metrics    

Our parameter set, denoted by P, for establishing the identification model for historical IP 

addresses are as follows: 

─ Source IP address  

─ port number 
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─ Size of packet 

In our model K=3 where we consider source IP address, size of packet and port number as the 

parameters and the other features such as Packet type (ICMP, UDP, TCP) and establish three-

way handshake for TCP traffic can be added. For each of the set of parameters in the set P= {Pi | 

i=0,..K} our model maintains the frequency of occurrence within a certain time window and it’s 

Cumulative Distribution Function (CDF).  

Frequency (fij):  For each Pi, we evaluate the frequency of occurrence of different values                                

fi1,fi2…, fiM within a time window. In our case, i=1  corresponds to source IP address, i=2  

corresponds to port number and i=3  corresponds to size of packet.  

 fij = Number of packets for which parameter i has the value j within a time window              (3.1) 

Note that the total number of packets is N= j
ijf . As an example, consider case of the source 

IP address (i=1), there are 1000 different IP addresses within the time window, then M=1000. 

For instance, suppose there are a total of 5000 packets and a particular IP address j occur 30 

times, then f1j=30 and N=5000. 

Cumulative Distribution Function (CDF): The CDF CX (x) measures the probability that the 

variable X takes on a value less than or equal to x.          

     Now consider the parameter i. Let Fi be defined as the random variable representing

}|{ jijf  , CDF of Fi is defined as follows: 

)()( xiFPxiFC                                                                                                                     (3.2) 
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For instance CF1 (10) demonstrates the probability that source IP address frequency is less 

than or equal to 10. We use these metrics and features for generating the IP address history, 

which is addressed next. 

3.3.3 History Creation 

Our goal is to define a good signature to make the IP address database accurate and robust, 

and to make it hard to be passed by an attacker. Our approach overcomes some of the 

deficiencies of existing approaches, such as use of only the IP address field as a feature useful for 

distinguishing attack and normal traffic. A key observation that can be used for defense against 

DDoS attack is that the DDOS attacks tend to use randomly spoofed IP addresses [8] and the 

other packet features, such as, port number and size of packet, are selected randomly as well. 

Moreover, the interaction of these features also exhibits some anomaly when compared to that of 

the normal traffic. Therefore, we make use of the individual features, and also the interactions 

and correlations, in defining the signature. The signature is based on the CDF of each 

parameter’s frequency during the training period. This signature assists us in selecting reliable IP 

addresses during the training period and later filters traffic based on those IP addresses. This 

signature for each feature determines which values occur more frequently during normal traffic 

conditions. The next step is assigning scores to IP addresses in the training period and generating 

the source IP address history. The score value for each IP address depends on the frequencies 

and the signatures of the selected features. Frequency threshold �l, which indicates the level of 

reliability in our model and the corresponding scores are presented in Table 3.1. For each 

selected feature value, if it is more than �l in the related signature, it is assigned a score bj 

indicating the confidence level. Here four levels are defined, b4> b3 > b2> b1, to assign different 

reliabilities to different IP addresses based on how frequently different feature values occur. In 
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our model, �l selected from 70%, 50%, and 30% indicates how the selected feature follows the 

signature of normal traffic condition. This method allocates highest weight to the top 30% of the 

IP addresses (i=1), port numbers (i=2) and sizes of packets (i=3) that occur most frequency. 

Note the value of frequency threshold �l can be adjusted dynamically for each victim node based 

on the frequency and the signatures of selected feature for that point. Our selection of particular 

values for �l is based on experience with different datasets, but it may be fine-tuned as necessary. 

According to our model, when the selected feature occurs more frequently in normal traffic, as 

indicated by the signature of normal traffic, we give it the higher weight for it by assigning score 

b4. In contrast, when �l  has value less than 30% assign the lowest confidence level factor b1 to it. 

Such a feature value is considered as something that is not a common occurrence in normal 

traffic and thus dropping such packets will have less of an effect on the normal traffic. Frequent 

occurrence of such a value during an attack therefore is also considered as a potential threat. 

Table. 3.1. The score manager 
Case Frequency Conclusion Score 

1 ≥�1 (=70%) High Confidence b4 =4 

2 ≥�2 (=50%) Medium  b3 =3 

3 ≥�3 (=30%) Low  b2 =2 

4 ≺�4 (=30%) Potential threat  b1=1 

 

For example, consider source IP address 129.1.1.1 with frequency 10000. When CF1 

(10000)≥70%, it means according to IP address signature in training window 70% of IP 

addresses occur at frequency less than 10000. i.e., this is based on top 30% of occurrence rates of 

IP addresses and we give a high score for this feature.  

To summarize, the above procedure has allocate weight from the set {b1,.., b4} to each IP 

address, each packet size, and each port number. Next we assign a net score Sβ for each IP 
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addresses β so that those IP addresses with high net scores can be included in the profile for 

normal traffic.  

)3.3(

/)))(3

)(*2((,)(*1(





addressIPwithpacketsdiffrentofsizeandnumberporttocorrespondkandjWhere

Nkpacketofsizeforballocatedkf

jnumberportforballocatedjfkjMaxIPaddressforballocatedfS




 

     Sβ is defined as the score value for each IP address β and is determined according to the 

frequency fij and confidence degree bj in Eq. 3.3.  Thus Sβ consists of three components. For the 

above example, the first component of S129.1.1.1 is computed for IP address 129.1.1.1 based on 

f1129.1.1.1 and b4 that is 4. The second and third components are selected by taking  the maximum 

value  of the sum of corresponding values for port number and size of packet over different 

packets with this IP address The IP addresses that have an overall score Sβ higher than a 

threshold ν are selected as legitimate IP addresses for our history. We will discuss about the 

impact of threshold value ν in Section 3.4.1.3. As noted, for TCP connections we consider one 

additional condition --only IP addresses with a successful TCP handshake are classified as valid. 

Therefore, for TCP connections, source IP addresses which have established a three-way 

handshake and have a score higher than ν are selected. This helps us create a signature-based IP 

address history and this history can be used through routers to perform filtering for the victim 

node.  

3.3.4 Bloom Filter Mechanism 

Since the filtering mechanism is to be applied closer to the victim point, and the network 

bandwidth may already be saturated during an attack, transferring the entire history and looking 
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it up in the upstream routers during the attack is expensive since upstream routers must process 

all packets targeted towards the victim node. This will impose an additional overhead on the 

routers. To overcome this problem, we propose a Bloom filter [40] based mechanism to represent 

efficiently the filtering mechanism for withholding the malicious packets. This way, the victim 

node need not transfer the full list of IP addresses in the history to the upstream routers, but 

instead needs to transfer only the Bloom filter that represents the contents of the IP address 

history as shown in Figure. 3.2. It causes a significant reduction of message traffic and 

introduces an efficient filtering mechanism that can be deployed closer to the attack sources 

during the attack. This approach reduces the overhead cost significantly in the ingress routers 

since every packet that comes to a victim node during attack must be checked.  

 
Figure. 3.2. Bloom filtering mechanism for history-based profile 

 
Bloom filter is a space efficient probabilistic data structure for presenting whether an element 

is a member of a set or not. We briefly review Bloom filter structure as we will discuss about 

Bloom filter in detail in Chapter 4. A Bloom filter for a set S = {s1,s2,...,sn} of n elements is 

described by an array of m bits, all initially set to 0. A Bloom filter uses k independent hash 
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functions h1,...,hk with range {1,...,m}. We make the natural assumption that these hash functions 

map each item in the set of interest to a random number uniform over the range {1,...,m} for 

mathematical convenience [41]. For each element s� S, the bits hi(s) are set to 1 for 1≤i≤ k. A 

location can be set to 1 multiple times, but only the first change has an effect. To check if an item 

x is in S, we check whether all hi(x) are set to 1. If at least one bit is not 1, then clearly x is not a 

member of S. If all hi(x) are set to 1, we assume that x is in S, although there is a probability of a 

false positive, where it suggests that an element x is in S even though it is not. For many 

applications, this is acceptable as long as the probability of a false positive is sufficiently small. 

The probability of a false positive for an element not in the set, or, the false positive rate, can be 

calculated in a straightforward fashion, given our assumption that hash functions are perfectly 

random [40]. After all the elements of S are hashed into the Bloom filter, the probability p that a 

specific bit is still 0 is:  

mkn
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kn

m
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1

1(                                                  (3.4)  

We let p = e−kn/m. The probability of a false positive f is then: 

kpkmknekn
m

f )1()/1())11(1(                                                       (3.5)                    

We use the asymptotic approximations p and f to represent respectively the probability a bit in 

the Bloom filter is 0 and the probability of a false positive from now on for convenience. 

It is clear that there are three fundamental performance metrics for Bloom filters: the 

probability of error (corresponding to the false positive rate f), size of the Bloom filter array 

(corresponding to the array size m) and the number of hash function k. Note that Bloom filters 
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are highly efficient even if m=cn for a small constant c, such as c=8. Although Bloom filters 

introduce false positive rates, their use is justified because of the reduction in the network traffic 

and overhead. In our analysis, we limit the false positive rate to 0.1. In order to achieve this false 

positive rate, we should set c to 5 in our mechanism. That means the Bloom filter array is 5 times 

the number of IP addresses kept in the history. Moreover, according to Eq.3.5, 4 hash functions 

are required to provide a Bloom filter from the IP address history. 

3.4 Model Validation 

The objective of this experiment is to evaluate the accuracy and robustness of our filtering 

model to protect against DDoS attacks. To illustrate the effect of signature to distinguish attack 

and normal traffic we examined three different datasets with extensive analysis and evaluation. 

We will start by the DARPA 1998 Intrusion Detection dataset [19] and then we will discuss the 

result based on traces collected from University of Auckland in New Zealand [6]. The last part of 

our evaluation shows the result based on network traffic dataset collected from Colorado State 

University. 

3.4.1 DARPA 1998 Intrusion Detection Dataset 

This set is selected as it is the comprehensive traffic trace that is available containing the full 

header information of packets. It contains 7 weeks of training datasets to generate signatures and 

establish an IP address history and 2 weeks of testing data set to evaluate our technique. 

Moreover, the training part of the dataset consists of normal traffic as well as labeled attacks. We 

selected this dataset for our evaluation as our goal is to evaluate how good the signature and 

scoring mechanism is in discriminating malicious and normal traffic without misclassifying them. 
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3.4.1.1 Experiment Setup 

The first step is to create the IP address history from the training dataset, according to the 

generated signatures and the overall score of selected features. The second step constructs the 

Bloom filter based on the results of the first step. In the first step, the signature of port number, 

the size of the packet and IP address’s frequency rate are created for each traffic type (ICMP, 

TCP, UDP) separately. Figure 3.3 shows the signature of port number, packet size and IP 

address’s frequency rate for TCP traffic in the DARPA 1998 dataset. As we note the signature 

contain CDF of each parameter’s frequency during the training period. According to Figure 3.3 

for TCP traffic, port number frequency around 100 can achieve the highest score as CF2 

(100)≥70%. Same condition exists for packet size and IP address with frequency around 1500 

and 5 respectively.     

In the next step, the IP address history is created based on the overall score and value of ν. In 

our experiment, ν is determined to be 0.36. This value means the signature of at least two 

selected features should have �j more than 50% and one should have it more than 30% in 

training time; however, this value can be set to a higher value for more protection. Determining 

the value of ν is a trade-off among history size, history accuracy, and protection rate. With 

increasing the value of ν, size of history and protection rate increases and accuracy of history to 

pass legitimate traffic decreases. In Section 3.4.1.3 we will show the impact of the score 

threshold ν on accuracy and robustness of the history mechanism as well.  
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(a) 

 
(b) 

 
(c) 

Figure. 3.3. Signatures of TCP traffic: (a) port number, (b) packet size, (c) IP address  
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3.4.1.2 Results 

Signature-based IP address history is evaluated on the basis of these parameters: (i) Attack 

traffic detection rate is the percentage of attack data set that cannot pass the Bloom filter and 

reach to the victim points during the attack time; (ii) Normal traffic detection rate is the 

percentage of normal tracing traffic that can pass the Bloom filter during the attack period; (iii) 

False positive rate is the percentage of normal traffic that is prohibited by the Bloom filter in 

training period, (iv) False negative rate is the percentage of attack traffic that passes the 

signature and is considered as legitimate traffic during training period, (v) Size of Bloom filter is 

based on the length of the Bloom filter array that is transferred to the upstream routers. 

Figure. 3.4 shows the effectiveness of using signature to distinguish attack and normal traffic 

for different types of traffic. It is interesting to see that the false negative rate is around 1% for 

TCP, UDP and ICMP when we consider all selected features in our model. We evaluate the 

effectiveness of each selected feature to create accurate and robustness filtering as well. As 

shown in Figure. 3.4, the false negative rate decreases as we use more features. In addition, the 

experimental results determine that IP address frequency is the most effective feature for all 

traffic types. For TCP traffic, port number and packet size are the next important ones; however, 

for UDP traffic, packet size is more effective compared to the port number. Note that, in the 

figures simple history refers to creating history just based on frequency of IP addresses and 

establishing a three-way handshake for TCP traffic that was presented in [38]. It shows how the 

signature and score mechanism could be more effective for determining an accurate filter. In 

addition, it is robust against DDoS attacks as less than 1% of the attack traffic can bypass the 

filtering mechanism during the normal traffic conditions. Based on our results, we believe that 

our mechanism can be deployed in real networks. 
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(a) 

 
(b) 

 
(c) 

Figure. 3.4. False negative rate: (a) TCP, (b) UDP, (c) ICMP 
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We have verified that the signature-based IP address history has good accuracy in terms of 

capturing legitimate and high confidence IP addresses. The next stage is to evaluate the 

efficiency of the Bloom filter that is calculated based on IP address history. As shown in Figure. 

3.5, the size of Bloom filter required is around 30KB for IP address history based on all selected 

features; however, the size of the Bloom filter required increases to 73 KB if the IP address 

history is created just using packet size. Note that, a Bloom filter with 0.1 false positive rates will 

have a length of Bloom filter that is 5 times the number of inserted elements n, which are IP 

address of history in our case and 5 hash functions are used. According to Bloom filter equations 

it is possible to set a lower false positive rate; however, it required increasing the size of Bloom 

filters. Note that, we select the false positive rate as 0.1 and the length of Bloom filter as 5n. 

Moreover, 5 hash functions require creating a Bloom filter with this condition.  

 
Figure. 3.5. Size of Bloom filter 

 
When the DDoS attack is detected, the pre-built Bloom filter is transferred to the upstream 

routers to filter out the attack traffic. The Bloom filter is evaluated with 2 weeks testing DARPA 

1998 dataset. As shown in Figure. 3.6, attack traffic detection rate is around 99.2% for TCP 
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traffic and 99.6% and 99.8% for UDP and ICMP traffic if we consider all selected features to 

create the history. Note that, the attack traffic detection rate decreases if we consider fewer 

features and it goes down to 88% for simple history condition. 
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(a) 

 
(b) 

 
(c) 

Figure. 3.6. Percentage of attack traffic that passes filter (a) TCP, (b) UDP, (c) ICMP 
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     The other important parameter to consider is how many normal packets can pass through the 

Bloom filter. As shown in Figure. 3.7, normal traffic detection rate is around 70% for TCP and 

UDP traffic and it is more than 82% for ICMP when the history is generated based on all the 

selected features. This demonstrates that the signature based IP address performance is highly 

reliable for aborting malicious packets, but withholds some legitimate traffic. Normal traffic 

detection rate increases to around 75% to 85% if fewer features are used to generate IP address 

history, but the Attack traffic detection rate decreases at the same time. Thus, there is a tradeoff 

between accuracy of the Attack traffic detection rate and normal traffic detection rate. 

     The evaluation part shows very good results in successful filtering of the bad traffic and 

permitting the good traffic during the attack time. The experiment result verifies that our 

signature mechanism can be deployed in real networks as it has addressed some critical 

drawbacks of the previous approaches.  
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(a) 

 
(b) 

 
(c) 

Figure. 3.7. Normal traffic detection rate (a) TCP, (b) UDP, (c) ICMP 
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3.4.1.3 Impact of Threshold ν 

Figure. 3.8 represents the effect of threshold � on creating accurate and robust filtering, when 

the plot shows false positive and negative rates of IP address history based on all selected 

features. When � increases, fewer malicious IP addresses are selected as legitimate ones during 

training period. Consequently, it reduces the false negative rate. On the other hand, increasing � 
causes a rise in the false positive rate. It means with higher �, more legitimate IP addresses are 

blocked by the Bloom filter. As a result, selecting � has trade-off among history's accuracy and 

protection rate. Note that, increasing the value of � provides higher protection rate and lower 

accuracy and impacts the size of the history as well. According to the results �=0.36 was selected 

in our simulation as a reasonable trade-off among false positive and negative rate. 

 
Figure. 3.8. False negative and false positive ratio with respect to different ν value 

 
3.4.2 University of Auckland Dataset  

In this section we demonstrate the implementation details of responsive defense mechanism 

based on traces collected from University of Auckland in New Zealand [6]. The packet trace is 
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one collected from the University of Auckland in New Zealand. The packet trace contains 6.5 

week IP header trace taken with 155 Mbps Internet links [6]. The total uncompressed data is 180 

GB and all IP addresses have been mapped into 10.*.*.* using one to one hash mapping for 

privacy. The Auckland traces record three type of IP traffic (TCP, UDP, ICMP).  

We use “The CAIDA attack dataset 2007” to create an attack scenario in this experiment as 

the Auckland trace did not contain any attack data. Attack dataset contains approximately one 

hour of anonymized traffic traces from a DDoS attack on August 4, 2007 that contains 

359,656,205 attack packets from 9,066 unique IP addresses [21]. 

3.4.2.1 Maintaining the IP Address History 

As we mentioned earlier, the first step is creating the IP address history according to normal 

traffic at the end node. There are two difference mechanisms to maintain the IP address history: 

sliding window, history without updating. In the first one the IP addresses keep in the history 

with specific window length. Every day expired IP addresses are removed from the history and 

new IP addresses are added to it. In this part of experiment we set the length of window to be 

two weeks. That means for each day we update the history according to the all legitimate IP 

addresses that come to Auckland University during the two weeks before that day. In the second 

approach the history creates with specific length and keeps it without updating for whole of the 

next two weeks. We will show the difference in accuracy of history profiles created by these two 

mechanisms. It provides insight into how frequently the filters need to be updated.   

3.4.2.2 Results 

Signature-based IP address history is evaluated on the basis of these five parameters: History 

Accuracy, Attack traffic detection rate, Normal traffic detection rate, False positive rate, Size of 
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Bloom filter. Our experiment was conducted as follows: 1) create IP address History based on 

entire IP address; and 2) create IP address History based on first three octets of IP address. The 

two approaches provide different accuracy and Bloom filter size tradeoffs.  

3.4.2.2.1 IP Address History Based on Entire IP Address 
 

As discussed, we use a sliding window to keep IP address in the history. We build the IP 

addresses history using data trace from March 12, 2001 to March 25, 2001 and compare trace 

taken from March 26 to April 9, 2001 with the previous two weeks trace. As shown in Figure. 

3.9 the history accuracy is about 82-92% for each day and this verifies that most IP addresses 

that appear in the network under normal conditions have previously appeared in the network and 

follow the signature of the end point. We also show in Figure. 3.10 effectiveness of using sliding 

window mechanism and updating history each day. It is interesting to see that the history 

accuracy drops when we consider the two week history without updating from 12 to 25 March 

2001. The accuracy decrease as shown in Figure. 3.10. For instance, the history accuracy drops 

from 92% to less than 78% in April 7th. 

 
Figure. 3.9. History accuracy with entire IP address 
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Figure. 3.10. History accuracy with sliding window technique and without updating technique 

 
As we have verified, IP address history has good accuracy in terms capturing legitimate and 

high confidence IP addresses. The next stage is to evaluate efficiency of the Bloom filter 

structure that is created based on signature-based IP address history for each day. As shown in 

Table 3.2, the size of history that is created for each day contained around 420,000 IP addresses. 

A Bloom filter with 0.1 false positive rate according to Eq. 3.5 will have a length of Bloom filter 

5 times the number of inserted elements, which are the number of IP addresses kept in the history. 

According to Bloom filter equations it is possible to set lower false positive rate; however, it is a 

tradeoff between size of Bloom filter and accepted false positive rate. We select the false positive 

rate as 0.1 and 5n for length of Bloom filter as reasonable error rate and Bloom filter size. 

Moreover, according to Eq. 3.5, 4 hash functions are required to provide a Bloom filter from the 

IP address history. 

Assume that a DDoS attack is detected at Auckland university point and we need to prevent 

DDoS attack overloading traffic at this stage now. The pre-built Bloom filter for that day is 

transferred and applies in appropriate locations to filter out the attack traffic. To evaluate our 

Bloom filter efficiency we add real DDoS attack dataset from CAIDA 2007 [21] to the normal 
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background traffic trace. This type of DDoS attack consumes computing resource on the server 

and all of the bandwidth of the network connecting the server to the Internet. As shown in Figure. 

3.11 attack traffic detection rate is around 95% for entire two week test. The other important 

parameter according to efficiency of our model is how many of the normal packets can pass the 

Bloom filter and do not block. As shown in Figure. 3.12 Normal traffic detection rate is more 

than 80% each day highlighting the Bloom filter performance and it is highly reliable responsive 

mechanism to abort the malicious packets and low damage to legitimate traffic. The other 

evaluation parameter is Size of Bloom filter. As shown in Table 3.2 size of Bloom filter is 

around 34KB that is an efficient size of message for transferring to the routers.  

Table. 3.2. Number of unique IP address in the history and size of Bloom filter 
  Entire IP addresses 

in history 
Size of 
Bloom filter 
(KB) 

First three octets of IP 
addresses in history 

Size of 
Bloom 
filter 
(KB) 

26-Mar 443,599 34.65 5,728 0.44 

27-Mar 442,822 34.59 5,748 0.44 

28-Mar 411,234 32.12 5,753 0.44 

29-Mar 429,822 33.57 5,867 0.45 

30-Mar 433,220 33.84 5,957 0.46 

31-Mar 425,230 33.22 6,030 0.47 

1-Apr 426,611 33.32 6,030 0.47 

2-Apr 423,819 33.11 6,029 0.47 

3-Apr 416,279 33.52 6,026 0.47 

4-Apr 425,376 33.22 6,026 0.47 

5-Apr 427,791 33.42 6,036 0.47 

6-Apr 423,920 33.11 6,032 0.47 

7-Apr 424,616 33.20 6,031 0.47 

8-Apr 426,994 33.22 6,026 0.47 

9-Apr 425,040 33.20 6,025 0.47 
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Figure. 3.11. Attack traffic detection rate  

  
The Bloom filter testing shows substantial success in filtering of the bad traffic and passing 

the good traffic during the attack time. The experiment result verifies that our approach could be 

applicable in real network as it has addressed some critical drawbacks of the pervious approaches. 

In addition, in the next experiment we will show how a more compressed and efficient Bloom 

filter structure can provide further significant improvement. 

 
Figure. 3.12. Normal traffic detection rate 
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3.4.2.2.2 IP address History Based on the First Three Octets of IP Address 
 

The main reason of this experiment is to provide smaller Bloom filters while maintaining the 

efficiency and accuracy of the IP address history. The idea to provide smaller but accurate 

Bloom filters by using first three octets of IP addresses. By applying this idea we achieve 

significant decrease of the number of unique IP addresses to keep in the history and consequently 

decrease the size of Bloom filter as shown in Table 3.2. The number of unique IP addresses that 

is kept in the history decreased to less than 0.01 of the previous IP address history. Furthermore 

the result has shown that at the same time the accuracy of the IP address history is increased by 

this change. That means the most of the normal traffic that comes to the specific node shared the 

first three octets of IP address. As shown in Figure. 3.13, the accuracy of IP address history 

improved to around 95% for most of the days during two weeks test traffic. Consequently 

Normal traffic detection rate increased and it is close to 90% as shown in Figure. 3.14. 

 
Figure 3.13. Normal traffic detection rate  
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Figure. 3.14. History accuracy 

 
The other important result of this experiment is shown in terms of attack traffic detection rate 

in Figure. 3.15. The result shows that the Bloom filter with first three octets can perform as well 

as the Bloom filter with complete IP addresses. In fact, in certain days it works better than the 

previous Bloom filter. According to Figure. 3.15 we observe almost 98% of attack traffic 

detection rate. Our experiment on the Auckland trace traffic shows that we can protect 95% of 

legitimate traffic with around 0.44KB of memory according to Figure. 3.13 and Table 3.2. It 

shows significant reduction in size of Bloom filter by using first three octets of IP address 

compare with using entire IP addresses. Moreover it can filter out about 98% of attack traffic for 

specific victim node.  

The last result shows in Figure. 3.16 the false positive rate of Bloom filter that resulted in  the 

first and second approaches. The acceptable false positive that we set was 0.1 and the results 

show the Bloom filter works correctly and in fact most of the time the false positive rate is less 

than maximum rate provided by to Eq. 3.5. 



48 
 

 
Figure. 3.15. Attack traffic detection rate   

 
Figure. 3.16. False positive rate of Bloom filter 

 
3.4.3 Colorado State University Dataset  

In this section we demonstrate the effectiveness of our algorithm to characterize network 

traffic based on the trace collected at Colorado State University (CSU). The packet trace contains 

4 week daily Argus files with flows on a 1Gb/s link from Feb 1st to Feb 28th 2015 where the 

total compressed data is about 20GB for each day [20].  
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3.4.3.1 Results 

As we mentioned earlier, the first step is creating the IP address history according to the 

normal traffic is collected at the end node. IP addresses are kept in the history with specific 

window length. In this part of the experiment we set the length of window to be one week. That 

means for each day we create signature-based IP address history according to all IP addresses 

come to CSU during the last seven day period. We built the IP address history using data trace 

from Feb 1st to Feb 21st and compared with the trace taken from Feb 8th to Feb 28th. We will 

discuss the effectiveness of history accuracy for different window size in Section 3.4.3.1.1 as 

well.   

 The total traffic volumes are given in Figure. 3.17 corresponding to the total numbers of 

packets have sent to the CSU including internal traffic shows for each day. For instance, we can 

observe CSU received around 210 million packets on Feb 10th 2015. We excluded internal 

traffic from the total traffic to analyze both conditions as shown in Figure. 3.17. For instance, the 

total amount of traffic is very close for both Feb 10th and 11th but by considering only external 

traffic we can see the high portion of traffic that came to CSU on Feb 10th was external traffic 

compare with Feb 11th. 
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Figure. 3.17. Traffic volume 

 
The first step is to create the signature-based IP address history from the daily traffic dataset 

according to generated signatures and overall score of selected features. The second step is to 

construct the Bloom filter based on the results from first step. In the first step, the signature of IP 

address’s frequency, port number and size of the packet are created. As we discussed, for TCP 

traffic, IP addresses with successful TCP handshake are considered as the valid IP addresses. 

Moreover, for UDP traffic we ignore those incoming packets that just send a single packet during 

the day. This helps us to create a more reliable signature-based IP address history. 

 Figure. 3.18 shows the signature of IP address’s frequency for the first week of CSU traffic. 

According to this figure, IP address with an occurrence rate above 500 can achieve the highest 

score as CF1 (500)≥70% and IP address with an occurrence rate below 20 get lowest score. From 

Figure. 3.18 we can also find that around 10% of IP addresses have a frequency above 2000 

during a week and maximum frequency was for a few IP addresses with around 12000. The same 

analysis exists for port number and packet size signature as well.  
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Figure. 3.18. Signatures of IP address frequency 

 
In the next step, IP address history is created based on method described in Section 3.3.2. Our 

experiment was conducted based on the entire 4-octet IP address and also with the first three 

octets of IP addressed. The main contribution of this analysis is to provide smaller Bloom filter 

while maintaining the reasonable accuracy of IP address history. We compare the result of these 

two cases in each step. 

As shown in Table 3.3 the number of unique IP addresses that were retained in the history is 

around 3,000,000 for each corresponding day. By accepting 10% false positive rate the size of 

Bloom filter would be between 1.4MB to 2.2MB for each day as it shows in Table 3.3 as well as 

in Figure. 3.19. According to the Bloom filter equations it is possible to set lower false positive 

rate; however, it is a tradeoff between the size of Bloom filter and accepted false positive rate. 

We accept the false positive rate as 0.1 and 5n for the length of Bloom filter as reasonable values 

for error rate and Bloom filter size, where n is the number of inserted element in Bloom filter, 

which are the number of IP addresses kept in the history. 
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Table. 3.3 Number of IP address in history 
  Unique IP addresses 

in history 
Size of Bloom 
filter (MB) 

Unique  first 
three-octets of IP 
addresses  in 
history 

Size of 
Bloom filter 
(MB) 

8-Feb 3567433 2.22 1549329 0.96 

9-Feb 2898726 1.81 1540879 0.96 

10-Feb 2993910 1.87 1533835 0.95 

11-Feb 3251485 2.03 1573583 0.98 

12-Feb 3253085 2.03 1542783 0.96 

13-Feb 3214944 2.0 1543112 0.96 

14-Feb 3367433 2.1 1506123 0.94 

15-Feb 3130830 1.95 1478050 0.92 

16-Feb 2986955 1.86 1488892 0.93 

17-Feb 3077742 1.92 1465505 0.91 

18-Feb 3181456 1.98 1493287 0.93 

19-Feb 3086945 1.92 1461922 0.91 

20-Feb 3131923 1.95 1486039 0.92 

21-Feb 3077169 1.92 1484376 0.92 

22-Feb 2957518 1.84 1450000 0.9 

23-Feb 3181719 1.98 1522926 0.95 

24-Feb 3095821 1.93 1562730 0.97 

25-Feb 3095821 1.93 1510018 0.94 

26-Feb 2940737 1.83 1541806 0.96 

27-Feb 2915739 1.82 1547367 0.96 

28-Feb 2303440 1.43 1440457 0.9 

 

As we mentioned, the idea is to provide a smaller Bloom filter while preserving the accuracy 

of the history. By creating the history with the first three octets of IP address we achieve 

significant reduction for the number of unique IP address to be kept in the history and 

consequently it decreases the size of Bloom filter as shown in Table 3.3 and Figure. 3.19. The 

number of unique addresses in history drop down to around 1,500,000 by using the first three 

octets of IP address and it shows around 50% reduction of total IP addresses need to keep in the 

history. As a result, the size of the Bloom filter reduces to around 0.9 MB for each corresponding 
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day as shown in Figure. 3.19. Furthermore, the result shows that at the same time the accuracy of 

IP address history increases due to this change. We will discuss about the history accuracy in the 

next step. 

In particular, it is important to minimize the size of filters such that storage and processing 

cost are minimizing as we address in this part of analysis. In Chapter 4 we derive a new structure 

which we refer to as the Compacted Bloom Filter (CmBF) that use less storage with the same 

functionality as the standard Bloom filter, by introducing the false negative in membership query. 

In short, we can tradeoff between false positive rate, false negative rate and memory reduction 

by using CmBF data structure. According to that structure the size of Bloom filter can be 

reduced between 20% to 60% with almost similar false positive values compared with those for 

standard Bloom filter, but accepting 2% to 20% false negative. As shown in Figure. 3.19, the 

size of CmBF when entire 4-octet IP address can be in the range of 0.8 MB to 1.8 MB. For the IP 

address history based on the first three octets of IP address the size of CmBF is between 0.4 MB 

to 0.8 MB as well. As the result show the size of Bloom filter for each day can vary based on the 

scheme selected. For instance the maximum size of Bloom filter for Feb 8th is 1800 KB by using 

the standard Bloom filter and the 4-octet IP address whereas the minimum size is 400 KB by 

using CmBF and first three octets of IP address.  
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Figure. 3.19. Size of Bloom filter 

 
The next stage is to evaluate the accuracy of the history, i.e., the percentage of traffic for each 

day that appeared in the history. As shown in Figure. 3.20 the history accuracy is about 60% to 

80% for each day and this verifies that most of the IP addresses that appear in the CSU network 

under normal conditions have previously visited and follow the signature of each day’s network 

traffic. We can see the highest history accuracy is for Feb 21st with 80% and the lowest one is 

for Feb 12th with 60%. Table 3.4 shows the number of unique IP address of packets visiting 

CSU and the number of IP address that match with history for each corresponding day. For 

instance, on Feb 8th the total number of unique IP addresses on packets coming to CSU is 

2,709,558 and 1,790,443 of those IP addresses match with the history as of Feb 8th. We also 

show the effectiveness of using the first three octets of IP address in Figure. 3.20. In this case the 

accuracy of IP address history improves to around 75% for most of the days while the size of 

Bloom filter reduces to 50% as we discussed with respect to Figure. 3.19.  
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Figure. 3.20. History accuracy 

 
Table. 3.4 Number of unique IP addresses of packets arriving to CSU and their match with 

history 
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The other important parameter to evaluate is how much of the traffic volumes can pass 

through the Bloom filter and reach the end nodes. As shown in Figure. 3.21 normal traffic 

detection rate is more than 68% up to 82%. This demonstrates that the performance of signature-

based IP address history is highly reliable for identify normal traffic and withholding only little 
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legitimate traffic. Normal traffic detection rate increase to around 80% to 90% if the first three 

octets of IP addresses is used to generate IP address history.  

In this part we investigate the effectiveness of history accuracy and measure how many of 

packet traffic can pass the Bloom filter. The results are shown in Figure. 3.22. The x-axis is the 

traffic volume based on number of packets. From this figure we observe the total number of 

traffic received is varying from 160 Million to 220 Million packets in each day. We denote the 

external traffic also increase suddenly on Feb 10th and Feb 16th where the portion of normal 

traffic can pass the history doesn’t change too much. It means for those days part of the incoming 

traffic to CSU doesn’t appear before and it was not include in the history. For almost all the other 

days the normal traffic that can pass the history has similar behavior. Furthermore, the result 

shows the signature-based IP address history with the first three octets can perform better than 

the history with entire IP address as expected. There is one clear deduction which is by using 

first three octet of IP address history the normal traffic detection rate increase; however, there is 

tradeoff between protection rate and normal traffic detection rate. When we are using the first 

three octet of IP address there is some possibility that malicious start the attack from the point 

with similar first three octets of IP address that exist in the history and the signature-based IP 

address history couldn’t filter them. Therefore the protection rate reduces by using three octets of 

IP address. In the other side by using first three octet of IP address the size of Bloom filter 

reduces and normal traffic detection rate increases. Therefore, selecting appropriate approach is 

based on accepted size of Bloom filter, history accuracy and protection rate. In general, using the 

first three octets of IP address gives the better history accuracy, normal detection rate and it 

reduces the size of Bloom filter where protection rate decrease at this point.  
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Figure. 3.21. Normal traffic detection rate 

 
Figure. 3.22. Traffic volume and number of packets can pass history 

 
3.4.3.1.1 Impact of Window Size 

     In the last part, we studied the effect of window size to determine accurate IP address history. 

We create history for four different window size and measure history accuracy according to them. 

The window size is set to 14, 7, 10 and 3 days respectively for creating the history and then we 
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calculate history accuracy for days from Feb 15th to Feb 28th as shown in Figure. 3.23. The 

number of unique IP addresses that appeared in the corresponding history also show in Table 3.5. 

Figure. 3.23 shows the history accuracy improves as long as we increase the length of window 

size from 3 to 14 days; however, the interesting observation is that history accuracy doesn’t 

change significantly after 10 days. It means most of the legitimate IP addresses have appeared in 

the history visited CSU less than 10 days ago and very few IP addresses have made more than 10 

days prior appearance. The other observation can be notice in Figure. 3.23 that the larger gap is 

between window size 3 and 7 days. The history accuracy is around 50% for 3 days window size 

while this value improves to 65% for 7 days. In fact this experience shows the 3 days window 

size is a short period to create a history with high accuracy. 

 
Figure. 3.23. History accuracy for different window sizes 
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Figure. 3.24. Size of the Bloom filter for different window size 

 
Table. 3.5 Number of unique IP addresses in history with different window size 
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6166982 6192012 6091122 6069075 6007085 5969252 
4735330 4714798 4717731 4785940 4775288 4628090 
3181719 3095821 3095821 2940737 2915739 2303440 
2239626 1874455 1865488 1944892 1911688 1917622 
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The other important parameter to evaluate history accuracy is size of Bloom filter. As shown 

in Table 3.5 and Figure. 3.24 as long as increasing the window size, size of history as well as 

history accuracy increase. This means that there is tradeoff between history accuracy and size of 

history. According to Figure. 3.24, size of history increase around 0.7MB in average from 10 

days to 14 days window size; however, as shown in Figure. 3.23 history accuracy is almost 

similar. Therefore between 10 days and 14 days window size, 10 days window size would be 

appropriate selection. Furthermore, from Figure. 3.24 we can also find that size of Bloom filter 

reduce around 1MB in average when the window size changes from 10 days to 7 days where, the 

history accuracy only improve less than 5% by considering 10 days window size. As the result, 7 

days window size can be the best choose where it can provide good history accuracy with 

appropriate size of Bloom filter.  

In our work, we show very good results in successful characterizing the network traffic and 

preserving good traffic with appropriate filtering’s size. The experiment results verify that our 

signature-based mechanism can be deployed in real networks as it has addressed some critical 

drawback of the previous approaches as well.  

3.5 Conclusion 

In this chapter we introduced a signature-based filtering mechanism that distinguishes attacks 

from normal traffic. We have demonstrated how to form a history based filter that takes into 

account a rich set of header fields of traffic and characterize network traffic. We then presented a 

filtering mechanism based on Bloom filter structure that can be rapidly distributed to responsive 

points closer to attack sources, Furthermore; we have shown the effectiveness of filtering 

structure with the DARPA dataset, University of Auckland and Colorado State University 
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dataset. Our experiment indicates that our filtering model can protect the victim node from ~95% 

attack traffic while allowing ~70% of legitimate traffic with appropriate size of Bloom filter. In 

addition, according to DARPA dataset, it shows that the filtering mechanism can detect 99% of 

attacks that want to bypass the filtering during the normal traffic. In contrast to existing DDoS 

attack detection techniques, our scheme is more reliable and accurate, and also has a lower 

overhead.  
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CHAPTER 4 
 

THE COMPACTED BLOOM FILTER 
 
 
 

4.1 Introduction 

This chapter focuses on designing an efficient data structure for filtering attack traffic. A 

Bloom filter is a space-efficient probabilistic data structure that is used in many domains 

including networking applications to test for set memberships. Such applications often require 

passing bloom filters using messages. Consequently, it is important to minimize the size of the 

filters such that storage and processing costs are minimized. In this chapter, we introduce a novel 

data structure, which we refer to as the Compacted Bloom Filter (CmBF) that improves 

performance, uses less storage, and provides the same functionality as a standard Bloom filter for 

applications, such as IP traceback, web caching, and peer-to-peer networks. Moreover, CmBF 

works well for endpoints with limited memory. However, unlike the standard Bloom filter, our 

data structure limits false positives significantly at the expense of some false negatives in 

membership queries. We derive expressions for the false positive and false negative rates. We 

conduct simulations that validate the derived expressions and explore the tradeoffs of this data 

structure.  

Standard Bloom filters [42] provide space-efficient storage of sets, at the cost of probable 

false positives to support membership queries [43]. Although a Bloom filter may yield false 

positives, which occurs when an external element is recognized as a member of the set, it 

provides a compact structure that can be configured for sufficient accuracy. In order to achieve a 

false positive probability of 1%, 10 bits of storage per element is required. Bloom filters have 

been used in many different distributed applications [44] such as IP traceback [45] [46], web 
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caching [47] and peer-to-peer networks [48] [49] [50]. Although a standard Bloom filter 

construct is space efficient for simple membership queries, they are inadequate when the 

applications need to meet a specific false positive rate and the endpoints have limited storage 

capacity. Our work is motivated by applications that must transmit Bloom filters over the 

network and/or endpoint machines have restriction on available memory to meet specific false 

positive rate. 

In recent years, the popularity of Bloom filters has grown and they are now being used in 

many different areas including peer-to-peer systems, web caches, database system, spell checkers 

[51] [52] and networking [53]. Consequently, in the past decades lots of research efforts focused 

on improving Bloom filters. Some variants of the Bloom filter include Counting Bloom         

filter [47] [54], d-left Counting Bloom filter [55], [56] Spectral Bloom filter [57], Generalized 

Bloom Filter (GBF) [53], L-priorities Bloom filter [58] and Compressed Bloom Filter (CBF) 

[41].  

The CBF [54] reduces the transmission size of the Bloom filter. However, the tradeoffs are:  

(1) the increased processing required for compression and decompression, and (2) the increased 

memory required at the end points. In this work, decompression must be done at the receiving 

end to achieve the functionality of the standard Bloom filter. The memory savings occur during 

transmission, but not at the end points. In our work, we achieve memory savings at the end 

points and also during transmission time. We present a new variant of the Bloom filter, which we 

refer to as the Compacted Bloom filter (CmBF), which has the same functionality as the standard 

Bloom filter but requires less memory. For the same fraction of false positives, the CmBF 

generally requires half the bits over the standard Bloom filter. This memory saving is achieved at 

the expense of increasing the number of false negatives when CmBFs are used instead of the 
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standard Bloom filter. A false negative occurs when an inserted element is not recognized by a 

membership query. Later we demonstrate how the false negative rate depends on the size of the 

memory and the false positive rates. CmBF is also very simple to implement, which makes it 

very useful in practice, much like the standard Bloom filter. 

The rest of this chapter is organized as follows. Section 4.2 summarizes background material 

on the Bloom filter. CmBF is described in section 4.3, along with a theoretical analysis. In 

section 4.4 we provide experimental results that corroborate with our theoretical analysis. In 

addition, we also present the tradeoffs between false positive rates, false negative rates and 

memory savings. Finally, section 4.5 concludes the chapter. 

4.2  Bloom Filters 

A Bloom filter is used to represent a set S of n elements, where S = {s1, s2, …, sn}. It is 

implemented by a single array of m bits and k independent hash functions h1, h2, …, hk. Each 

hash function uniformly maps an element of the set S to a value in the range {0, …, m-1}. The 

average number of bits used to represent a single element isnmk /0  . To construct the Bloom 

filter, first all m bits are initialized to zero. Then for each element x S, bit hi (x) is set to one for 

i=1 , 2, …, k. The same bit will be set to one several times if different hash functions map to the 

same element in the range {0, …, m-1}. Figure. 4.1 depicts how an element is inserted into a 

Bloom filter. In order to query whether an element y belongs to S, we check whether the bits of 

the array corresponding to the hash functions hi (y), where i=1, 2, …, k are 1 or not. If at least one 

bit is 0 then yS. Otherwise, yS with some probability. This test can result in a false positive. 

False positive occurs when the bits hi (y) i=1, 2, …, k are all previously set by other inserted 
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elements. The probability of a false positive for an element yS is calculated as follows [41]. 

The probability of a given bit is set to 1 in the array after inserting n elements is:  

m

n
k

ekn
m

p
 1)

1
1(1                                                                                                    (4.1) 

The false positive rate fp is the probability of finding a bit set to 1 for each of the k positions 

for non-member elements. It is given by the following equation: 

km
nk

ekppf )1()(
                                                                                                          (4.2) 

 
Figure. 4.1. An example of insertion of an element into a Bloom filter 

 
The interesting observation is that increasing the ratio m/n reduces the false positive rate. 

Additionally, there is an important tradeoff between the number of hash functions k and the false 

positive rate.  Increasing the number of hash functions k leads to higher false positive rates and at 

the same time the probability of finding every indicated bit is 1 decrease with higher values of k. 

The optimal value for k that minimizes fp is found by differentiating fp with respects to k. The 

only solution is p=1/2 which implies that the minimum false positive rate is achieved when 

approximately half of the bits equals 1. In this condition k=m/n ln2 and fp is nmk /)6185(.)5(.  . 

From this equation, the minimum number of bits to achieve a false positive rate fp is given by m 

= -0.208n log fp. 
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One problem with the Bloom filter is that its false positive rate strongly depends on the fill 

ratio, which is the number of bits that are set to 1 and on average is given by m.p. Fill ratio, thus, 

is a function of n, m, and k. In order to have the optimum number of k and fp, we must have a 

lower bound on the size of the memory. Thus it is not suitable for applications running on 

systems with limited memory. Towards this end, we propose a Compressed Bloom filter (CmBF) 

that requires less memory than the standard Bloom filter to achieve a certain false positive rate fp.  

4.3 The Compacted Bloom Filter  

CmBF requires less memory than a Bloom filter to achieve the same false positive rate. When 

used in a network application, it helps reduce the transmission cost and the storage cost at the 

endpoints. Moreover, unlike the CBF, compression and decompression techniques are not 

needed which makes CmBF more efficient.  

CmBF is a probabilistic data structure like the standard Bloom filter that is used to represent a 

set S= {s1, s2,…, sn} of n elements. Let the standard Bloom filter used to represent this set be an 

array of m bits. Let k be the number of independent hash functions used to construct the Bloom 

filter representation. The outputs of the hash functions are uniformly distributed over the discrete 

range {0,…, m-1}. We now describe how to construct the corresponding CmBF from this 

standard Bloom filter representation.  

The standard Bloom filter is first divided into k0 blocks, denoted by block_1, block_2, …, 

block_ k0. Each block has n bits, the positions of which are denoted by 1, 2,…,n as shown in 

Figure 4.3. A CmBF vector, denoted by CmBFV, is an array of n indices and each index contains 

m0 bits, where log2 k0 ≤ m0 < k0. Note that, for m0 bits, 2m0
 patterns exist in the CmBF vector and 

the lower bound for m0 is log2 k0 as it is the minimum number of bits required to cover k0 patterns. 
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Index i in CmBF vector, denoted by CmBFV[i], corresponds to the value of the i th bit positions in 

block_1, block_2, …, block_n in the standard Bloom filter. For example, the first index in CmBF 

vector, denoted as CmBFV[1], has information pertaining to the first bit of each block in the 

Bloom filter. We define some rules about how to populate each index based on the bit pattern in 

the standard Bloom filter. 

 
Figure. 4.2. An example for generating the Compacted Bloom filter 

 

 
Figure. 4.3. Compacted Bloom filter 

 
Consider the set of i th bits in all blocks in the Bloom filter, which we denote as Si. If there is 

no ‘1’ in Si,  the i th bit of any block, we set the corresponding bit in CmBF to 0, i.e.,  CmBFV[i] 
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= 0. If there is exactly one ‘1’ in Si, which appears in block_r, we set CmBFV[i] = r . If all the 

bits in Si. are ‘1’, we set CmBFV[i] = 2 m0 -1. If not all bits in Si. are ‘1’, but half or more than 

half of them are ‘1’s, we set CmBFV[i] = 2m0 – 1 as well. In this case, some of the i th bits having 

‘0’ may be interpreted as ‘1’, thereby introducing more false positives. If less than half of the bits 

in Si. are `1’, we randomly choose one such block containing `1’ in the i th bit position, say 

block_s, and we set CmBFV[i] = s. Thus, all the other blocks that contain a ‘1’ are interpreted as 

having a ‘0’, thereby increasing the false negative rate compared to the standard Bloom filter. To 

deal with this issue, as 2m0 – 1 different index values are available to assign bit patterns in CmBF, 

it is more efficient to use all available index values to cover more bit patterns. It reduces the 

number of bits interpreted as ‘1’ or ‘0’, which, in turn, decreases the false positive and negative 

rates. For this reason, one more rule is defined in this structure to cover unused index values. If 

bit pattern value is less than 2m0 – 1 and has more than one ‘1’, it means that the bit pattern value 

is in the range of unused index values. In this case, the index is assigned the bit pattern value. 

This case occurs in the fourth index value in Figure. 4.2. The following pseudo code in Figure 

4.4 describes how to assign values to the CmBFV.   

Figure. 4.2 illustrates how the CmBF is generated for p=0.1, n=5, k=4, k0=5, and m0=3. 

These parameters necessitate that the size of the standard Bloom filter be 25 bits and the size of 

CmBF be 15 bits. In this example, we achieve 40% reduction in size when with CmBF compared 

to that of the standard Bloom filter. Note that a false negative occurs when an inserted element is 

not recognized by membership queries, and it depends on how many of the bits assigned to ‘1’ in 

the standard Bloom filter are interpreted as ‘0’ in CmBF. Figure. 4.5 shows the Bloom filter 

generated from the CmBF described in Figure. 4.2. Note that, the generated Bloom filter, shown 

in Figure 4.5, differs from the original one shown in Figure. 4.2. In this CmBF example, three ‘0’ 
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invert to ‘1’ compared with original Bloom filter that increase bit ratio and introduce more false 

positive. Moreover, one ‘1’ inverted to ‘0’ that in this case generates false negative in CmBF 

structure. Note, false negative is generated when a bit that is ‘1’ in the standard Bloom filter is 

reset to ‘0’ by CmBF rules. The probabilities of false positives and negatives are calculated in 

the next section and the effect of false positive and negative are shown in the evaluation part.  

 
Figure. 4.4 pseudo code to generate CmBF 

 
Querying a given element for the set membership is based on the bit patterns that we defined 

in constructing the CmBF. The advantage of CmBF is that it reduces the number of bits required. 

Thus for a given size of memory lower false positives are achieved; however, this structure 

provides some false negative as well. We explore this tradeoff and provide an in-depth analysis 

of the CmBF later.  
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Figure. 4.5. Equivalent Bloom filter for k0=5 and m0=3. 

 
4.3.1 False Negatives  

False negative only occurs for inserting elements. A false negative occurs for an element if at 

least one of its marked bits is inverted, that is, a bit that is ‘1’ in the standard Bloom filter is reset 

to ‘0’ by CmBF rules. This condition happens when more than one but less than half of the bits is 

set to ‘1’ when the element is inserted in the standard Bloom filter. Thus, the false negative rate 

depends on the number of ‘1’s in the corresponding bits in the Bloom filter. The false negative 

rate is calculated from the probability of the number of 1’s that are less than half bits in the 

corresponding index. As we show in Eq. 4.1, the probability of a given bit set to ‘1’ in array after 

inserting n elements can be expressed by )1( m
nk

e
  and therefore, probability of a given bits   

set to ‘0’s is given by m
nk

e


. Thus f(i,k0,p)=P(X=i) is the probability of getting exactly i 

number of ‘1’s in k0 trials when X follows the binomial distribution as shown in Eq. 4.4. On 

average, q0 is the number of bits set to 0 when the bit is initially 1 and (i-1) in this equation 

shows the number of bits interpreted to ‘0’ when P(X=i) occurs.  
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A false negative occurs if at least one of the selected bits is an inverted bit, that is, a bit in ‘1’ 

is reset to ‘0’. Hence from the bit distribution, the average false negative probability fn is 

calculated as shown below in Eq. 4.5, where q1 is the number of bits on average set to 1 in the 

standard Bloom filter. According to Eq. 4.5, a false negative occurs if at least one of the selected 

bits is an inverted bit and the others have ‘1’.   
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    As the example consider the CmBF is generated in Figure. 4.5 for p=0.1, n=5, k=4, k0=5 and 

m0=3. To calculate false positive probability first step is finding the probability of having the 

number of 1’s that are more than one but less than half bits in each block. This condition means 

we should find the probability of getting 2 number of ‘1’ in block. Therefore, in this example 

P(X=2) is calculated from Eq. 4.4 where it goes to equal 0.275. In the next step, we should 

identify the number of bits change from ‘1’ to ‘0’. q0 in Eq. 4.3 is defined as the number of bits 

set to 0 when the bit is initially 1. According to this equation (i-1) is equal to 1. It means the 

number of bits interpreted to ‘0’ is 1 for X=2 in a block. In the other word, the number of bits 

needs to be converting when we getting 2 number of ‘1’ in a block is 1. So to determine on 

average number of bits change from ‘1’ to ‘’0’, P(X=2) is multiplied by 1*5 as shown in Eq. 4.3. 

q0 is calculated from Eq. 4.3 and is equal to 1. It means, on average the number of bits set to 0 

when it was initially 1 after creating CmBF is 1. In the next step, q1 is calculate from Eq. 4.6 as 
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the number of bits on average set to 1 in the standard Bloom filter. In this equation length of 

Bloom filter m multiply by )1( m
nk

e
 . As explained )1( m

nk
e
 is the probability of a given bit 

set to ‘1’ in array after inserting n elements. So by multiplying it to m we determine the number 

of bits set to 1 on average in the standard Bloom filter. According to this equation q1 is obtained 

13. In the last step the average false negative probability fn is calculated according to Eq. 4.5.  

4.3.2 False Positives  

To calculate the false positive probability of the CmBF, we first calculate the probability of a 

bit being set to 1 when the bit is initially 0. This condition happens when the numbers of 1’s are 

more than half bits in the corresponding index. On average, q2 bits is set to 1 when the bits are 

initially 0. q2 is expressed by: 
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From the bit distribution, the probability of a false positive is the probability that we find bit 

in ‘1’ for each of the k positions. Since on average q2 bits are set to 1 when the bit is initially 0 

and q0 bits are set to 0 when the bit is initially 1. Hence the number of 1 (i.e. fill ratio) in CmBF 

is: 

0213 qqqq                                                                                                                        (4.8) 

As a result, the probability of fp for the CmBF is calculated as:   

k
m

q
pf )3(                                                                                                                                 (4.9)  
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Consider the CmBF is generated in Figure. 4.5 for p=0.1, n=5, k=4, k0=5 and m0=3  as the 

example. To calculate the false positive, we first calculate the probability of a bit being set to 1 

when the bit is initially 0. This is equal to when the numbers of 1’s are more than half of bits in 

the blocked Bloom filter. This condition means we should find the probability of getting 3 or 4 

number of ‘1’ in block and it is equal to P(X=3) and P(X=4) in this example. From Eq. 4.4 these 

probability can be calculated and are equal to 0.337 and 0.2065 for P(X=3) and P(X=4) 

respectively. Therefore, in the next step we can obtain q2 as the average number of bits is set to 1 

when the bits are initially 0 from Eq. 4.7. That is equal to 4. This means on average 4 bits 

convert to 1 from 0 after creating CmBF in this example. Hence the total number of 1 in CmBF 

is equal to 16 from Eq. 4.8 where q1, q2 and q0 are equal to 13, 4 and 1 respectively. At the end, 

the average false positive probability fp is calculated according to Eq. 4.9. q3 /m in this equation 

identify fill ratio and fp as the probability of finding a bit set to 1 for each of the k positions is 

equal 0.162 accordingly.                                                                                               

4.4 Evaluation 

In order to analyze the behavior of the CmBF, we simulated it in Matlab with functions for 

inserting and checking elements in a bit array. For each simulation round, we selected the 

number of hash functions based on the desired false positive rate and inserted the elements into 

the Bloom filter. The next step involves compressing the Bloom filter. The CmBF algorithm is 

run and then the false positive rate is computed according to the number of bits that are inverted 

(i.e., a bit in 1 is reset or a bit in 0 is set). To estimate the false negative, we check whether 

CmBF recognizes the inserted elements or not. Each inserted element that is not recognized by 

the CmBF is reported as a false negative. We run 500 simulation rounds. For each simulation 

round, we select new hash functions and a new dataset to insert into Bloom filter. We used traffic 
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dataset collected from University of Auckland in New Zealand [6] and hash source IP addresses 

into the Bloom filter. Simulation results are very close to the analytical results as shown in 

Figure. 4.6, which serves to validate the analytical expressions derived in the previous section. In 

Figure. 4.6, we show the false positive probability of CmBF as a function of the number of hash 

functions for three different sizes of the Bloom filter for both the analytical and the empirical 

solutions. Thus, the rest of the graphs presented are based on theoretical assessment only.   

We test the theoretical framework above by examining a few specific examples of the 

performance improvements possible using CmBF. We consider cases where 10 bits are used in 

the Bloom filter for each element that is m/n= k0=10. Then, using the optimal number of hash 

functions k=7 yields the false positive rate of 0.0081. According to CmBF algorithm the number 

of bits per index in this case can be in the range of 4 to 9. Therefore the memory size is reduced 

from 60% to 10%. Our optimization is based on the assumption that we wish to minimize the 

memory requirement m as functions of k and p. The primary point of this theoretical analysis is 

to demonstrate that compression is a viable means of improving performance, in terms of 

reducing Bloom filter size for the desired false positive and negative rates. The other important 

parameter is false positive rate in CmBF structure. In membership queries, a false positive 

implies recognizing an element that does not belong to the set. As the false positive probability 

increases, more and more non-members are incorrectly identified as belonging to the set. 

Therefore, a low false positive probability is desired.  

First, we note that the false positive probability of CmBF reduces as the number of hash 

functions decrease for specific n and m. This assumption is reasonable since the false positive 

probability of a CmBF fp is a function of fill ratio )1( m
nk

e
 , according to Eq. 4.4. As the 
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number of hash functions decrease, the fill ratio of the Bloom filter also decreases. Note that, on 

average, the number of bits that are set to ‘1’, when the bits are initially ‘0’, decreases as we 

reduce the number of hash functions. Moreover, when the fill ratio decreases, it is easier to find 

the number of 1’s in the blocked Bloom filter that are less than half of the bits in the 

corresponding index, but harder to find number of 1’s that are more than half of the bits. When 

less than half of the bits are set, our CmBF algorithm randomly represents one block and resets 

the bits corresponding to the other blocks. Moreover, when half or more of the bits are set, it sets 

the bits corresponding to all blocks as ‘1’. Thus, when fill ratio decreases, the probability of bits 

being reset increases and the probability of bits being set decreases, contributing to a lower false 

positive rate. In Figure. 4.7, false positive probability of a CmBF fp as a function of k for m/n=10 

is shown. For all different number of bits per index m0, we have a similar behavior. The false 

positive probability of the standard Bloom filter always increases when the number of hash 

functions decreases, which is in accordance with Eq. 4.2. As Figure 4.7 depicts, for k=7 the false 

positive probability of standard Bloom filter and CmBF have a noticeable difference. However, 

for k=5 false positive rate for CmBF falls over 40% and CmBF and Standard Bloom filter false 

positive rates are very close to each other and for k=3 and 2 the CmBF have a lower false 

positive probability. Thus, the results demonstrate that the CmBF allows an equal or lower false 

positive rates for a given n and m compared with the standard Bloom filter. 
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Figure. 4.6. False positive probability of CmBF as a function of the number of hash functions for 

m/n=7, 10 and15.  

 
Figure. 4.7. The effect of increasing bits per index on the false positive probability of CmBF as a 

function of the number of hash functions for m/n=10.  
 

The advantage on CmBF comes at a cost. The cost in this case is the introduction of false 

negative probability in membership queries for CmBF. A false negative implies not detecting an 

inserted element. In Figure. 4.8 we show the false negative probability for different number of 

bits per index for m/n=10 and k=7, 5, 3 and 2. We notice that the false negative probability 

always equals zero for the standard Bloom filter, as expected. Since the standard Bloom filter 

never resets bits, it is impossible to have a false negative. For the CmBF, however, this behavior 

occurs because some of the bits marked as ‘1’ is inverted to ‘0’ during construction. In Figure 
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4.8 we see that the false negative rate increases as the number of hash functions decrease for a 

specific number of bits per index. This happens because with less hash functions it is more likely 

that less than half of the corresponding bits for each index will be ‘1’. As a consequence, the 

probability of an inversion of bit to ‘0’ is higher and false negative rate increases. From Figures 

4.7 and 4.8 we see that the number of hash functions used in the CmBF has a dual effect. On one 

hand, decreasing the number of hash functions reduce the false positive probability as shown in 

Figure. 4.7. On the other hand, it increases the false negative probability as shown in Figure. 4.8. 

Some applications, such as IP traceback [45] [46], require smaller false negative rate, but can 

tolerate higher false positive rate. However, for other applications such as P2P, the opposite can 

be true [48] [49] [50]. As a result, it is important to select appropriate parameters so that we can 

provide an ideal tradeoff.  

 
Figure. 4.8. The effect of decreasing the number of hash functions on the false negative 

probability of CmBF for m/n=10.  
 

To deal with adjusting desired properties, it is possible to degrade the false negative rate as a 

tradeoff cost with reduction of memory size. As seen in Section 4.3, the false negative in CmBF 

arise because bits set as ‘1’ are reset when the numbers of 1’s are less than half of the total 
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number of bits in the standard Bloom filter. Note that, this behavior can be somewhat mitigated 

by increasing the number of bits per index as more bit patterns can be used to cover more 

conditions, which, in turn, will reduce the false negative and false positive rates. These extra bits 

can represent more patterns that can be used when the number of 1’s is less than half bits in the 

standard Bloom filter. Note that, as stated in Section 4.3, when less than half of the bits are ‘1’ in 

corresponding index, the rule defined is one of the block numbers are randomly chosen and 

indicated as ‘1’ and others are reset to ‘0’. However, with the increased number of bits, it is 

possible that some pattern can be used to indicate accurately the exact blocks containing ‘1’, 

thereby reducing the false positive and false negative rates. The number of such patterns that can 

be covered depends on the number of bits per index. Increasing the number of bits per index 

requires more memory for CmBF but reduces the false negative rate. Depending on the 

application it may be important to reduce the probability of false negative at the expense of 

higher memory requirement. Figure. 4.9 and 4.10 depict the fn, fp and memory reduction size as a 

function of the number of bits per index for different values of k, for m/n=10. 

 
Figure. 4.9. The effect of decreasing the number of bits per index on the false positive and 

negative probability of CmBF for m/n=10.  
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Figure. 4.10. The effect of decreasing the number of hash functions on the false negative 

probability of CmBF for m/n=10.  
 

We see that the probability of false negatives reduces dramatically as we increase the number 

of bits per index and it reaches close to 0 (0.0012%) with increase in the number of bits per index. 

As an example, based on our result for m/n=10, h=5 and 5 bits per index, fp is 0.011(standard 

Bloom filter has fp = 0.0094 in this condition), fn is 0.03 and we have 50% memory reduction size. 

In the other worlds, in CmBF by accepting 0.03 false negative rates we can reduce 50% memory 

requirements with almost similar fp compared with the standard Bloom filter.  

In short, we can do tradeoffs between the false positive rate, false negative rates, and memory 

reduction using our CmBF data structure and use it for diverse kinds of applications. 

4.5 Conclusion 

In this chapter, we have introduced CmBF, a new data structure that uses less memory but 

provides the same functionality as the standard Bloom filter. CmBF reduces the memory 

requirements by introducing the false negatives in membership query. We derived expressions 

and provided tradeoffs between false positive, false negative and memory reductions. Such 

knowledge of tradeoffs can be used for different applications that require the functionality of 
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Bloom filters but aim to minimize the communication costs and have less memory at the 

receiving end.  
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CHAPTER 5 
 

A DISTRIBUTED MECHANISM TO PROTECT AGAINST DDOS ATTACKS 
 
 
 

5.1 Introduction 
  

In this chapter we propose one such mechanism that when deployed is able to filter out attack 

traffic and allow legitimate traffic in the event of an attack. Our goal is to place such filters that 

block attack traffic and allow legitimate traffic as close to the source node as possible so that 

network resources are not wasted in propagating the attack. Our scheme introduces an algorithm 

that identifies the most effective points where the filter can be placed so as to minimize attack 

traffic and maximize legitimate traffic for the victim node and the other end users during the 

attack period. We evaluate the effectiveness of our scheme using extensive simulation in 

OPNET© with real network topology. The experimental results demonstrates the efficacy of the 

proposed scheme in blocking attack traffic at the upstream routers close to the source of the 

attack and also shows the effectiveness of the scheme in allowing the legitimate traffic from 

reaching the victim node. The results prove that presented algorithm accurately selected 

desirable filtering points where all the filtering routers are selected at first three routers from 

attacker node and stop 95% of attack traffic while allowing 77% of legitimate traffic to reach to 

victim node for CAIDA attack dataset. 

Denial of Service (DoS) attacks, which are intended to make the service unavailable for 

legitimate users, have been known to the network research community since the early 1980s. 

DDoS attacks against commercial websites like Yahoo, Ebay and E*Trade have provided 

evidence of how legitimate user access may be blocked by DDoS attacks and cause financial loss 

[1] [2]. Moreover, emergency and essential services rely on the network infrastructure, and thus 
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DDoS attacks may have severe consequences to the public as well. Consequently, defense 

against DDoS attacks has become one of the most important research issues, with techniques for 

preventing, detecting, and surviving such attacks being developed [3]. Despite significant 

research into countermeasures, DDoS attacks still remain a major threat today [27]. Recent 

examples include a record 400 Gbit/s DDoS attack against CloudFlare, a rate about 100 Gbit/s 

more than the largest previously seen DDoS attack [7]. 

The frequencies and the impact of DDoS attacks have motivated researchers in the Internet 

security community to provide techniques for preventing, detecting, and surviving such attacks 

[3]. Most approaches have failed to provide service availability in the presence of DDoS attacks. 

In this chapter we address this issue and present a distributed responsive defense approach. We 

demonstrate how to distinguish attack traffic from legitimate traffic. Moreover, we aim to stop 

the attack traffic as near as possible to the source of the attack while allowing the legitimate 

traffic access to the victim node.  

In general, there are several factors that make defending against DDoS attacks hard. First, the 

traffic flow volume through the victim node can reach up to 400Gbps [7]. Second, the attack 

occurs in a highly distributed manner – this gives the illusion of legitimate traffic and makes 

detection difficult. In addition, a flooding attack can appear like a flash crowd, which occurs 

when a large number of legitimate users connect to a server simultaneously [8]. Differentiating 

the attack traffic from flash crowd traffic is one of the hardest steps in detecting and protecting 

against DDoS attacks. The presence of zombies that spoof the IP address of the source of the 

attack make it even more difficult to identify and trace the attacks back to their actual sources. 

DDoS attack countermeasures can be classified into three classes depending on when they are 

applied with respect to the attack. Some are preventive techniques that are applied in order to 
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stop the occurrences of attacks [2], [59], [60], [61]. Some are detection mechanisms that aim to 

identify attack traffic [62], [5]. Other techniques attempt to identify the sources of attack and 

respond to those [63], [5], [64], [65]. However, a comprehensive DDoS defense mechanism 

should include all three categories of defenses since there is no one-size-fit-all solution to the 

DDoS problems [66]. Attack source identification and responsive techniques actively try to 

mitigate DDoS attacks by filtering or limiting attack packets [27]. Such schemes have two 

components, namely, attack detection and packet filtering. The characteristics of attack packets, 

such as source IP address or marked IP header values [67], [59], [68], are often used to detect 

and identify attack traffic. These characteristics are used for packet filtering. Note that packet 

filtering can be applied either close to the attack node [62], [5], [69] or close to the victim node 

[67], [59], [68], [62], [70] where all the attack traffic aggregate. However, applying attack traffic 

filtering at the victim node limits the effectiveness of filtering as the victim may crash while 

dealing with an overwhelming volume of attack traffic. In addition, the high volume of attack 

traffic may still overwhelm upstream Internet resources when the filter is applied close to the 

victim node.  Thus, it is desirable to filter attack traffic as close as possible to the attack sources. 

However, it is difficult to anticipate and identify such nodes as the attack may originate at widely 

distributed nodes and spread through various routes [66]. Therefore, a distributed approach for 

filtering packets as close as possible to the source may be needed. Detection and response can be 

performed in different places on the path between the victim and the source of the attack as it is 

desirable for any DDoS defense mechanism to detect attacks quickly and stop them as close to 

the source as possible.  

Since attackers cooperate to perform successful attacks, defenders must also form and 

collaborate with each other to defeat the DDoS attack. Consequently, a lot of work appears in 
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distributed defense mechanisms for DDoS attacks [22], [23], [24], [25], [26]. Some schemes [22], 

[23], [24] detect attacks downstream close to the victim and this attack signature is propagated 

upstream to the routers doing filtering located close to the source of the attack. The drawback of 

these approaches is the difficulty of securely forwarding the attack signature to the upstream 

routers. Some schemes [23], [24] need a global key distribution infrastructure for authenticating 

and verifying the attack signature [27] which is used for differentiating the attack traffic from the 

legitimate one.  Note that, creating an accurate attack signature is difficult due to the presence of 

zombies who can spoof the IP address of the attack source. Firecol mechanism [25] also presents 

a distributed collaborative system to detect flooding DDoS attacks. This mechanism relies on an 

Intrusion Protection System (IPS) located in the Internet service providers. IPSs are effective in 

stopping attack traffic, but they have very large communications overhead and also significantly 

decrease the performance of the routers.  

An alarming trend associated with individual DDoS attacks has been the dramatic increase in 

traffic associated with attacks. Recent examples include a record 400 Gbit/s DDoS attack against 

CloudFlare, a rate about 100 Gbit/s more than the largest previously seen DDoS attack [7]. At 

these traffic intensities the network infrastructure upstream from the intended victim becomes 

severely affected, making it essential to filter traffic close to the sources. Yet, the defense scheme 

should not consume significant resources at the routers to identify packets to filter, especially at 

those routers not carrying significant volumes of attack traffic. In this chapter we propose a novel 

distributed DDoS defense mechanism for achieving these goals, which does not consume any 

router resources in the process of identifying routers for up-stream filtering. Moreover the 

approach tries to minimize the modifications required to the routers and the current protocols to 

combat DDoS attacks with a low complexity and scalability. The mechanism aims to maximize 
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the arrival rate for the legitimate traffic and minimize the attack flow during the attack time. 

According to our approach, the first part involves developing rules to create a history-based 

profile on the high confidence IP addresses that serve to differentiate the good traffic from the 

malicious ones during the attack time. The history is a collection of legitimate IP addresses that 

have appeared in the past. The second part is capture IP address history in the form of a Bloom 

filter for efficient transfer. The third part of our approach which is the main contribution of this 

chapter identifies how and where this history is used to prevent the attacks causing network 

congestion. Placing the filter in the upstream routers incurs storage and performance costs since 

the filter must be applied to multiple routers. Placing the filter closer to the victim causes the link 

capacity to become saturated and wastes network resources. Our scheme introduces an algorithm 

that identifies the routers where the filtering can be placed. We do this by monitoring the 

network traffic during the attack period. To the best of our knowledge, we do not know of any 

work that considers the optimal placement of the filters to detect DDoS attacks. The rest of this 

chapter is organized as follows. Section 5.2 enumerates some related work. Section 5.3 describes 

our responsive defense mechanism. Section 5.4 presents our simulation results. Section 5.5 

concludes the chapter.  

5.2 Related Work 

DDoS attacks were first recognized around 2000 and researchers have worked on providing 

countermeasures to these attacks since that time [28]. Some of them use a centralized approach 

[67], [59], [62], [60], [5], [71] while others are distributed mechanisms [22], [23], [24], [25], [22], 

[72], [60], [73], [64], [74]. Some research focused on developing cooperative mechanisms using 

a set of nodes to thwart DDoS attacks. Pushback [22] is one of the earlier efforts that mitigate 

DDoS attacks using a cooperative mechanism. The approach has several shortcomings. First, 
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legitimate traffic is severely penalized. Second, in this approach we need to install the 

mechanism in all the routers – this may be unacceptable to some routers because of the high 

computational and memory overheads. Other techniques, such as K-Max-in [75], Secure Overlay 

Services (SoS) [72], Hop Count Filtering (HCF) [60], ANTID [73] and Decom [64], have tried to 

detect attacks based on observing some of packet’s information such as TTL value and path 

fingerprints. However, a number of drawbacks exist in these techniques [72], [75], [60], [73], 

[64], [76], [77] including the cost associated with them and universal deployment required at the 

ISP level to be effective.  While those approaches are considered costly in terms of resource 

consumption, other proposed mechanisms using simple statistics are not distributed [62]. In [68] 

each router between the source and destination marks the path to detect spoofed addresses. H. 

Wang et al. in [78] also analyzed the correlation between the request and replies to detect 

flooding attacks. Detecting the DDoS attacks at the ISP level was studied in [79] and [80] as well. 

Francois et al. [25], [81] recently presented a method called Firecol that consists of collaboration 

mechanisms of Intrusion Protection System (IPS) organized in the form of a virtual ring at the 

ISP level. The IPS forms a virtual protection ring around the hosts that are being protected and 

the members in the ring collaborate by exchanging selected traffic information. The detection 

system protects its clients based on parameters such as IP traffic patterns, ports or protocols in 

use. The evaluation part demonstrates that this technique performs well with respect to protecting 

the hosts, but has a high overhead and performance cost for routers. In addition, updating the 

score list and ring communications increase the overhead cost, especially during the DDoS 

attacks, where lack of bandwidth may hinder the protocol communication. The other recent 

cooperative approach TDFA [26] also presents a distributed defense mechanism that consists of 

three main components: detection, traceback and traffic control. The scheme tries to identify 
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source of attack by traceback scheme and reduces the rate of forwarding the attack packets and 

therefore improves the throughput of the legitimate traffic. TDFA consumes a lot of resource 

during the attack time. One of the fundamental deployment and operational challenges is 

ensuring a sufficient number of routers to support traceback before it is effective. Moreover 

traceback mechanism has computational and network overhead specially during the attack time. 

Our proposed distributed approach tries to minimize resource consumption, detects DDoS 

attacks early, identifies the attack source, and finally stops the attack as close as possible to the 

attack source.  

5.3 Distributed Responsive Defense Approach 

This section presents our scheme to identify upstream routers, and blocking the DDoS attacks 

at these routers to minimize the impact both to the victim and to the upstream network during the 

attack time. Proposed DDoS mitigation mechanism consists of the following components: (1) 

identification model to discriminate attack traffic from legitimate traffic based on a history-based 

profile, (2) capture the history-based profile in the form of a Bloom filter for efficient transfer,  

(3) identify the responsive points (router/switch) which carry the attack traffic, and 4) activate 

packet filtering at selected points. First two items are addressed in detail in [82] and only briefly 

reviewed here. The main contribution of this chapter is the overall scheme and the last two 

components.  

5.3.1 Identification Model 

To continue to provide services under DDoS attacks, it is essential to distinguish attack traffic 

from legitimate traffic. History based profiles are effective in identifying significant fractions of 

legitimate traffic as well as attack traffic. We addressed this problem in [82] by investigating the 



88 
 

specific attack features as well as normal traffic characteristics to identify the attack traffic from 

legitimate traffic. Our parameter set for establishing the identification model are source IP 

address and port number, destination IP address, size of packet, packet type (ICMP, UDP, TCP), 

frequency of IP address and for TCP traffic, those IP addresses with a successful TCP handshake. 

Then accurate normal traffic signatures with a scoring mechanism based on these features 

developed. The effectiveness of this approach in blocking attack traffic and allowing the 

legitimate traffic at upstream routers has been demonstrated using DARPA data set in [82] as 

well. Our experiment indicates that our filtering model can protect the victim node from 95% of 

attack traffic while allowing 70% of legitimate traffic.  

5.3.2 Bloom Filter Mechanism 

Since the filtering mechanism need to be applied in upstream routers, and the network 

bandwidth may already be saturated during an attack, transferring the entire history and looking 

it up in the upstream routers is expensive where upstream routers must process all packets 

targeted towards the victim node. A Bloom filter based mechanism is used [82] to efficiently 

implement and disseminate the proposed identification model; it helps reduce the communication 

and computation costs and the storage requirements of the upstream routers that check for 

malicious traffic. In general, Bloom filter [40] is a space efficient probabilistic data structure at 

the cost of probable false positives for presenting whether an element is a member of a set or not 

since in our approach the Bloom filter represents the contents of the IP address history. There are 

three fundamental performance metrics for Bloom filters: false positive rate, size of the Bloom 

filter array and number of hash function. In our analysis, we limit the false positive rate to 0.1. In 

order to achieve this false positive rate, the Bloom filter array is 5 times the number of IP 
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addresses kept in the history. Moreover, 4 hash functions require providing a Bloom filter from 

the IP address history. 

5.3.3 Responsive Points’ Identification 

The third step build up the main contribution of this chapter and it is how and where to use 

this filtering to minimize the impact of the attack. Placing such filters at the upstream nodes may 

be expensive because all packets passing through such a node must be processed irrespective of 

whether a significant amount of attack traffic passes through it or not. Placing filters close to the 

victim nodes, in contrast, causes resource wastage as the attack traffic passes through the 

network before it is stopped. Our proposed solution addresses this problem by using a recently 

developed technology, typically implemented as Small Formfactor Probes (SFP) using FPGAs 

(Field Programmable Gate Array). Proposed approach monitor traffic by SFProbes to efficiently 

identify router/switch which carry the attack traffic and then apply packet filtering at selected 

routers as the responsive point of defense mechanism. An example of such hardware is JDSU 

SFProbes and Packet Portal [30]. Packet Portal is a new approach for gathering, distributing and 

analyzing information from distributed Ethernet ports [30]. SFProbes can plug into any SFP 

compatible elements such as switches and routers in such a way that it taps into the normal fiber 

without interfering with the traffic flow. It can be programmed, over the network using the same 

fiber, to do tasks such as counting the number of packets with certain values in header fields and 

forward information about link traffic to a remote base station. These packet portals have been 

deployed on operating networks for network monitoring functions. Our approach uses these 

probes, at a subset of ports in the network, to identify the upstream links, and thus nodes, which 

carry attack traffic. The probes connected to the router/switch ports, e.g., JDSU Packet Portals, 

communicate with a remote base station. It is this feature that we use, as described below, to 
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send the history-based profiles to identify the paths with high intensity of attack traffic. 

Moreover the portal base station (PBS) has knowledge about SFProbes attached to the routers 

throughout the network and can collect data from SFProbes and perform the computation needed 

for our scheme, obviating the need for routers performing such computations. The portals can be 

globally time synchronized to less than one millisecond, thus enabling synchronized 

measurements that were not previously possible [83]. 

When an attack is detected on the victim network, our algorithm starts to protect a victim 

node as illustrated in Figure. 5.1. At this point the victim network sends the Bloom filter that 

created in section (ii) to PBS. As we mentioned the Bloom filter represents the content of IP 

address history and it causes a significant reduction of message traffic and introduces an efficient 

IP address look up mechanism. The PBS sends Bloom filter to those SFProbes that have plugged 

into the routers as shown in Figure. 5.1. SFProbe starts monitoring the intensity of traffic 

directed toward the victim node in defining time slots.  

Suppose t1, t2,… tm be discrete time slots and X(tm, i) be the number of packets received by a 

router during time slot m at SFProbe i toward the victim node. Eq. 5.1 is defines the historical 

estimate of the average number of packets received by a router),( itX m , where α is a weighted 

value between 0 and 1.  

( , ) (1 ) ( , ) ( , )1X t i X t i X t im mm                                                                                       (5.1)   

Let Aj (tm, j) represent a Boolean variable which equals 1 if the packet Pj is received at router i 

at time slot tm and belong to the corresponding Bloom filter B(v) for victim point v and is 0 

otherwise. 
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Let ),( imtW  define the historical estimate of the average number of packets received by the 

router at SFProbes i during time slot m that match with the Bloom filter. In the other word, 

),( imtW shows the average number of packets that is considered as the legitimate traffic by the 

Bloom filter directed towards the victim and is given by the following equation where, n is the 

total number of packets follow toward the victim node at time slot tm : 
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During the attack time, if the number of IP addresses that do not match with the Bloom filter 

is high the router is likely to be carrying significant attack traffic. This makes it possible to 

inform the router to drop packets directed towards the victim node. We use the following 

parameter in Eq. 5.4 that is called Attack Estimation Rate (ASR) R(tm,i) to determine the average 

number of packets that do not match with Bloom filter.  
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When the attack starts, SFProbes start monitoring traffic going towards the victim node and 

sends R(tm,i) to the PBS. Next we decide the points at which the filters are to be placed. In order 

to save network resources, the best routers to apply the filtering mechanism must be as far away 

as possible from the victim node. For instance, if routers with 2 and 3 hop distances have the 

same attack detection rate, it is more efficient to place the filter on the router which is at hop 
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distance 3 from the victim node instead of the one which is at hop distance 2. We take this into 

account while considering the placement of the filtering mechanism in the routers. Moreover, we 

also take into account the volume of potential attack traffic passing through a router when 

considering the placement of routers. Thus, we use two factors to determine the best routers to 

place the SFProbes – one is the Attack Estimation Rate based on Eq. 5.4 and the hop distance 

Hi(v) that shows how far the SFProbe i is from the victim node v. For each SFProbe i computer 

the weighted attack estimation rate S(tm,i) is given by the following equation. 
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Figure. 5.1. Responsive defense mechanism 

 
     The routers with higher value of S(tm,i) will be selected as the more effective routers to apply 

the filtering mechanism. We evaluated this presented approach called as the Responsive Point’s 

Identification algorithm by considering Hop distance, and Attack estimation rate (RPI-HA). The 

results are shown in the next section. 
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     In addition to the hop distance and the volume of attack traffic factors, other issues must also 

be considered while placing the filters. One such additional factor is the number of routers on 

which filters are placed based on the distribution of the attack traffic. We present a new formula 

that adjusts the number of routers according to the attack traffic distribution that we refer to as 

the Responsive Point’s Identification algorithm by considering Hop distance, Transmission rate 

and Attack estimation rate (RPI-HTA). In this scheme, the transmission rate of traffic directed 

towards the victim node as well as hop distance is considered to determine the best filtering 

points. SFProbes collect the information of attack estimation rate R(tm,i) and traffic transmission 

rate T(tm,i) during m time slots and send this information to the PBS. 

To select the filtering points the attack estimation rate D(tm,i) computes as follows: 
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    In Eq. 5.6 we consider the distribution of traffic towards the victim node as an important factor 

that helps to determine how the attack has followed, where traffic transmission rate T(tm, i) and 

capacity of the victim node C(v) are considered. D(tm,i) in Eq. 5.6 determines if the attack is 

distributed or centralized. Note that, high value of D(tm,i) indicates that the attack is centralized 

whereas a low value of D(tm,i) denotes a distributed attack. If the attack is highly distributed we 

need to consider more filtering points to stop the attack whereas if the attack is more centralized 

we apply filters on few of the routers. The average attack estimation rate is given by )( mtD  in 

Eq. 5.7. We select only those routers whose attack estimation rate D(tm,i) is higher than average 
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attack estimation rate )( mtD as filtering points. Thus, in the RPI-HTA algorithm the number of 

filters to apply depends on traffic transmission rate as well as hop distance.  

      5.3.4 Packet Filtering 

The last step of proposed approach is activating packet filtering at selected points.  According 

to the previous section PBS identify those routes which carry the attack traffic to apply Bloom 

filtering. So PBS send created Bloom filter to those routers and the routers start to filter 

incoming traffic toward the victim node. This process continues during the attack event. Table 

5.1 summarizes our responsive defense approach by describing the various tasks and the order in 

which they must be performed from beginning to end. Moreover, the table represents which 

point is responsible for which task. 

In the next section we evaluate the efficiency and accuracy of the two approaches to 

determine a cooperative responsive mechanism to stop the attack traffic. 
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Table. 5.1 Tasks in the responsive defense approach 

Task# Responsible 
point 

Task description  

1 Campus Network Establish the identification model and create a history-
based profile during the normal traffic condition 

2 Campus Network Create Bloom filter according to task #1 

3 Victim Subnet Send the created Bloom filter to PBS when the attack is 
detected 

4 PBS Distributing the created Bloom filter to the SFProbes 

5 SFProbes Follow the network traffic and calculate X (tm, i), W (tm, i), 
and R(tm, i) 

6 SFProbes Send the calculated parameters from task #5 to PBS 

7 PBS 
Analyze the traffic follow toward the victim node based on 
D(tm, i), S(tm, i), T(tm, i), C(v)and hi(v) 

8 PBS Select the best routers to apply filtering 

9 Router Apply Bloom filter to stop the attack 

 

5.4 Evaluation 

In this section we demonstrate the performance of our approach using a real network topology 

from Oregon route-views between March 31 2001 and May 26 2001 [67] and set it up on 

OPNET© as shown in Figure. 5.2. We test the effectiveness of the responsive defense mechanism 

using the DARPA 1998 intrusion detection dataset [19] in this experiment. The dataset contains 

7 weeks of training datasets that we use to establish an IP address history and 2 weeks of testing 

dataset to evaluate our techniques. The training part of the DARPA dataset contains normal 

traffic as well as labeled attacks which helped validate our feature selection work [82] and 

imported to the OPNET© for our simulation. The first step is creating the IP address history from 
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the DARPA training dataset and then create corresponding Bloom filter, the details of which 

were part of our earlier work [82].The next step, which is part of this chapter, evaluates the 

responsive defense approach based on the created IP address history in OPNET©. We also have 

validated our model by real network traffic collected at University of Auckland [6] and CAIDA 

attack dataset [21] in section 5.4.4.   

5.4.1 Metrics 

Responsive defense mechanism is evaluated on the basis of three parameters, namely, (i) 

Attack Traffic Detection Rate (ii) Normal Traffic Detection Rate, and (iii) Link Utilization Rate. 

We now define each of these parameters. (i) Attack Detection Rate: Attack traffic detection rate 

is considered as the percentage of attack dataset that is correctly detected as the attack and cannot 

pass through the Bloom filter to reach the victim node during the attack time. In the other word, 

we count total number of packets Pj that belong to attack traffic dataset and cannot pass the 

Bloom filter and define as True Positive (TP). TPj shows if the packet number j is correctly 

detect as the attack or not. Then attack traffic detection rate is defined in Eq. 5.8 according to 

that where total of TPj is divided by total number of attack traffic comes to victim node (TP+FN). 

False Positive Rate, also defined in Eq. 5.9, is the percentage of normal traffic that incorrectly 

detected as attack and is prohibited from passing the Bloom filter.  

The True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) are 

defined below where k is the total number of incoming packet toward the victim point.  



97 
 



 





 





 





 



otherwise

trafficattack
j

PandvB
j

Pif

j
TN

otherwise

trafficattack
j

PandvB
j

Pif

j
FP

otherwise

trafficattack
j

PandvB
j

Pif

j
FN

otherwise

trafficattack
j

PandvB
j

Pif

j
TP

0

||)(1

0

||)(1

0

||)(1

0

||)(1

 




k

j j
FN

k

j j
TP

k

j j
TP

RateDetectionAttack

11

1

                                             (5.8) 




k

j j
TN

k

j j
FP

k

j j
FP

RatePositiveFalse

11

1
                                         (5.9) 

(ii) Normal Traffic Detection Rate: We use the same logic that was used to identify Attack 

Traffic Detection Rate to compute these parameters. Normal Traffic Detection Rate is defined as 

the percentage of normal traffic that can correctly pass through the Bloom filter during the attack 

period. False Negative Rate is defined as the percentage of attack traffic that is incorrectly 

marked as normal traffic and therefore can pass through the Bloom filter (iii) Link Utilization 

Rate: This is defined as the percentage of the network’s bandwidth that is currently being 

consumed by the network traffic. 
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Figure. 5.2. Simulation into OPNET© 

 
5.4.3 Percentage of Collaborative SFProbes 

The effectiveness of the responsive defense mechanism relies on the collaboration of 

SFProbes through the network. Increasing the number of SFProbes attached to the routers 

enables more close monitoring of the network traffic and providing more effective filtering 

mechanism. We look at four different scenarios to validate this. We assume a different 

percentage of routers (80% to 25%) have SFProbes attached to them to monitor network traffic. 

The number of filtering routers is either fixed according to the RPI-HA or variable based on RPI-

HTA algorithm. In the RPI-HA algorithm, the number of filtering routers considered 8, 5 and 3 

as 20%, 12.5% and 7.5% of the total routers through the network. We also looked at a fifth 

scenario where the filters are placed in random locations throughout the network without 

applying any algorithm to stop the attack traffic. Note that, we considered this scenario in order 
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to explore how the SFProbe can effectively stop attack traffic and also to evaluate the importance 

of placing the Bloom filter in the appropriate location. 

 Figure. 5.3 shows the average attack traffic detection rate of 5 runs and also their standard 

deviation. We use a time slot of 60 seconds. (The reason for this value is explained in Subsection 

5.4.6). The results demonstrate the effectiveness of using the RPI-HTA algorithm, which 

considers all the three features (hop distance, transformation rate and attack estimation rate) 

together. The RPI-HTA algorithm produces an attack traffic detection rate of 91% when 80% of 

routers use SFProbes. Note that, even with 25% probes in the network the RPI-HTA algorithm 

can stop up to 80% of the attack traffic. This value decreases due to a reduced number of 

participating SFProbes as expected. Moreover, by applying the random selection to determine 

placement of filters the attack traffic detection rate reduces by more than 14% and up to 23%. 

These results show how the location of filters plays an important role in protecting the victim 

node.  

 
Figure. 5.3. Attack detection rate 
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Recall that the number of filtering points for RPI-HTA algorithm is variable and depends on 

attack distribution, transmission rate, and hop distance. 7 filters for networks having 80% and   

60% probes and 6 filters for those having 40% and 25% probes are selected according to the 

RPI-HTA algorithm. As shown in Figure. 5.3 the attack traffic detection rate for RPI-HTA 

algorithm for 80% and 60% probes is equal or higher than when RPI-HA algorithm is applied by 

8 filtering routers through the network. This means that the RPI-HTA algorithm can provide 

comparable or better filtering mechanism by using lower number of filtering routers by placing 

the filters in the appropriate locations. 

The other important parameter to evaluate is how many normal packets can reach the victim 

node. As shown in Figure. 5.4, normal detection rate is around 72% for RPI-HTA algorithm with 

80% probes and it increases to around 80% if fewer filters are used to stop attack traffic. False 

negative also was around 3% in this part. Thus, there is a trade off between accuracy of the 

attack traffic detection rate and the normal detection rate. For instance, by applying RPI-HTA 

algorithm with 80% probes we have around 90% attack traffic detection rate and at the same 

time 72% of normal traffic can pass the Bloom filter and reach the victim node. In contrast, 

applying RPI-HA algorithm and 3 filtering routers with 25% probes can stop 69% of the attack 

and permit 90% of normal traffic.  
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Figure. 5.4. Normal detection rate 

 
5.4.4 Efficiency of Distributed Approach 

Figure. 5.5 depicts the fraction of attack traffic dropped at different hop distances from the 

victim, and thus the source. It shows that 60% of the attacks in total are detected and blocked in 

the first two routers from attacker, with 23% in the first and 37% in the second. Thus, it shows 

that RPI-HTA algorithm can effectively select routers further from the victim node and close to 

attacker. Furthermore, it shows that having more probes is more effective and we can select 

farther routers as well. For instance with 80% probes all the filtering points are selected at least 3 

hop distance away from victim node, while with 25% probes the filtering points must be within 1 

and 2 hop distances from victim node.   

In this experiment, the 25th, 50th (median), 75th percentiles, minimum and maximum value 

of attack traffic detection rate for all 3 scenarios are computed as well. The attack traffic 

detection rate is detailed for each approach. As shown in Figure. 5.6(a), the first layer of router 

from attacker (fifth hop distance from victim) has relatively good attack traffic detection rate 
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close to 20% for 50% of simulations in the RPI-HTA algorithm, whereas, this detection rate 

reduces to less than 10% for random selection scenario. This proves that RPI-HTA algorithm can 

accurately select desirable filtering points during the attack period and can stop the attack at 

upstream routers close to the attacker point.  

The attack traffic detection rate of 1 and 2 hop distances from victim node is low for RPI-

HTA algorithm. It is because the upstream routers have already detected and filtered most 

attacks. Thus, it can be observed that the core of detection and prevention mechanism is located 

at the router with hop distance 4, 3, and 5 from victim node in that order. In the other world, all 

the filtering routers are selected at first three routers from attacker node and the algorithm stop 

the attack before reach to the routers close to victim node. 

 
Figure. 5.5. Attack traffic detection rate and location of selected routes 
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(a) 
 

 
(b) 

 

 
(c) 
 

Figure. 5.6. Result of attack traffic detection rate (a) RPI-HTA algorithm. (b) RPI-HA algorithm. 
(c) random selection 
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5.4.5 End User’s Utilization 

 The other part of our evaluation is specifying utilization of the victim node and other end-

users before and after applying filtering mechanism. In Figure. 5.7, the last link utilization of 

victim node without applying filtering approach shows that it is fully utilized during the attack 

time. However, the link utilization reduces to around 60% after deploying Bloom filter through 

the network based on RPI-HTA Algorithm. The result shows that 80% probes through the 

network give 50% link utilization rate for the victim node – this is the least link utilization rate 

that we get in our experiments. Moreover, this result also shows that the attack is detected and is 

stopped before reaching the victim node.       

 
Figure. 5.7. Victim node’s utilization for RPI-HTA algorithm 

 
In Figure. 5.8., we compare the last link utilization of the RPI-HTA algorithm that selects 6 

points to apply the Bloom filter with that of the RPI-HA algorithm where 8 selected points are 

chosen to apply bloom filter. It shows similar utilization for both with 80% and 25% probes 
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through the network. This demonstrates that the RPI-HTA algorithm with lesser number of 

Bloom filters can determine the best routers to apply the filters and achieve the same result as the 

RPI-HA algorithm. In the last part of the results, we investigate the effect of the proposed 

scheme for the last link’s utilization of all end-users in the network during the attack time. It is 

important that the filtering approach can block the DDoS attacks at upstream routers to reduce 

network congestion during the attack time.  

 
Figure. 5.8. Victim node’s utilization comparison 

 
     Figure. 5.9 shows the last link’s utilization for other end-users increases with applying the 

Bloom filters. It means the other end-users can receive normal traffic during the attack time. This 

is good as it provides service availability in the presence of DDoS attacks and minimizes the 

attack impact during an attack time. Detecting the DDoS attacks at points closer to the source 

attack protects the victim and other end-users and also saves valuable network resources.  
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Figure. 5.9. Average of last link utilization of end-users 

 
5.4.6 Impact of Window Size 

    Figure. 5.10 reports the effect of time slots tm on attack traffic detection rate where each point 

represents attack traffic detection rate for a network with 40% probes. When tm becomes bigger, 

the SFProbe has longer time to collect and analyze the network traffic. As a result, the algorithm 

can select filtering point farther from victim node more accurately. For example, as shown in 

Figure. 5.10 when tm is 40 seconds, the attack traffic detection rate increases around 5% in 4 hop 

distance compared to when tm is 20 seconds.  

     As shown in Figure. 5.10, attack traffic detection rate is relatively similar when tm values are 

60 and 80 seconds. It means 60 seconds is enough time to evaluate network traffic and increasing 

the time slot longer will not affect the attack traffic detection rate significantly, which is the 

value we selected for the other simulation parts as well.   
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Figure. 5.10. Effect of time slot on attack detection rate 

 
5.4.7 Validation with Real Network Dataset  

In this experiment, the effectiveness of responsive defense approach is tested using real 

network trace from University of Auckland in New Zealand. The packet trace contains 6.5 weeks 

IP header trace taken with 155 Mbps Internet links [6]. The total uncompressed data is 180 GB 

and all IP addresses have been mapped into 10.*.*.* using one to one hash mapping for privacy. 

The Auckland traces record three type of IP traffic (TCP, UDP, ICMP). We use “The CAIDA 

attack dataset 2007” in the experiments as attack traffic. Attack dataset contains approximately 

one hour of anonymized traffic traces from a DDoS attack on August 4, 2007 that contains 

359,656,205 attack packets from 9,066 unique IP addresses [21]. The dataset is run with same 

topology that was used in previous part by distributing the dataset traffic over the network.  

   As we discussed earlier, our responsive defense model contains four steps. In the first, 

history-based profile according to normal traffic is coming to the victim node is created where 

collected trace from University of Auckland is used at this step. The corresponding Bloom filter 

will be created based on our scheme [82] in the second step and then responsive Points’ 
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identification approach applies during the attack time. Figure. 5.11 (a) shows the attack traffic 

detection rate against the CAIDA attack traffic. Attack traffic detection rate is around 95% with 

80% probes in the RPI-HTA algorithm where it was around 91% for DARPA dataset. False 

negative rate for this situation is around 3% as well. Overall the attack traffic detection rate 

increases slightly compared with DARPA dataset, which the Bloom filter accuracy played a role 

in this situation.  

 
(a) 

 
(b) 

Figure. 5.11. (a) attack traffic detection rate (b) location of selected routers 
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Figure. 5.11 (b) depicts the fraction of attack traffic dropped at different hop distances from 

the victim. Similar to DARPA dataset, it shows that RPI-HTA algorithm can effectively select 

routers further from the victim node and close to attacker where all the filtering routers with 80% 

probes are selected from first three routers from attacker.  

In Fig 5.12 The 25th, 50th (median), 75th percentiles, minimum and maximum value of attack 

traffic detection rate of RPI-HTA algorithm shown for CAIDA dataset traffic that can be 

compared with Fig 5.6 (a) for DARPA dataset as well. As shown for 75% of simulations the 

most portion of attack is detected and block at the first layer of routers from attacker (hop 

distance 5 from victim node) followed by the one in the second layer of routers from attacker (4 

hop distance for victim). Compared with DARPA dataset the router with fifth hop distance from 

victim has a better attack traffic detection rate close to 25% for 50% of simulations in the RPI-

HTA algorithm, where this detection rate was 20% for DARPA dataset. Moreover, it shows that 

router with hop distance 5, 4 and 3 in that order were the core of attack detection. It means the 

most of the attack stop before reach to victim node and effect through the network. This proves 

that RPI-HTA algorithm accurately selected desirable filtering points during the attack period for 

CAIDA attack traffic as well. 

As shown in Figure. 5.13, normal detection rate also is around 77% for the RPI-HTA 

algorithm when the percentage of participated SFProbes is 80%. It can be noticed that this value 

increases by 5% compared with DARPA dataset. As we discussed, this value increases as the 

number of filters or participated SFProbes decrease through the network.     
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Figure. 5.12. Attack traffic detection rate for CAIDA attack traffic 

 

 
Figure. 5.13. Normal detection rate 

 
5.4.8 Complexity and Processing Overhead 

In this section, we discuss the communication and computation overhead of network 

resources in our scheme. The communication overhead of our scheme involves: 

1. According to our algorithm, communication starts between the victim node and PBS when the 

attack is detected; therefore, there is no communication overhead for the network prior the 
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attack. When the attack is detected PBS sending the Bloom filter to the SFProbes and the 

traffic collected in the SFProbes is sent back to the PBS. The number of messages sent in this 

case depends on the number of participating SFProbes. In our simulation, the percentage of 

routers having SFProbes attached varies between 80% to 25% and the number of messages 

exchanged in this case is between 20 to 72.  

2. PBS sends the Bloom filter to appropriate routers for filtering. In this case, the number of 

messages depends on the number of selected routers. For example, the RPI-HTA algorithm 

selected at most 8 filtering routers – the communication overhead in this case is negligible 

compared to the traffic going through the network. 

     The computation overhead of our scheme is also minimal. The SFProbes collect data without 

disrupting the original traffic, so there is no extra processing overhead on network resources for 

data collection. Moreover, the PBS makes the filtering decision and so no computation overhead 

is imposed on the network resources. The following is the computation overhead of our scheme.  

     The Bloom filter is applied in selected routers during the attack time. The overhead of 

filtering on the upstream routers is as low as computing hash value of incoming IP address that 

checks whether IP address is a member of the filter or not (in our experiment a few millisecond). 

We used MD5 algorithm that is a widely used cryptographic hash function producing a 128-bit 

hash value. It contains addition, bitwise, shift, and rotation operation where the time complexity 

is O(n). Moreover, the other type of hash functions such as SHA-2 or SHA-3 can be applied for 

security and collision resistant purposes. In addition, the number of hash functions k in Bloom 

filter depends on false positive p given by following equation. 

    kpkmknef )1()/1(                                                                  (5.10) 

https://en.wikipedia.org/wiki/Bit
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     There are three fundamental performance metrics for Bloom filters: the probability of error 

(corresponding to the false positive rate f), size of the Bloom filter array (corresponding to the 

array size m) and the number of hash function k. Those parameters can justify based on accepted 

false positive. In analysis, the false positive rate is limited to 0.1. In order to achieve this false 

positive rate 4 hash functions require providing a Bloom filter from the IP address history. 

Moreover, the Bloom filter array is 5 times the number of IP addresses kept in the history. 

According to our algorithm the Bloom filter is created at victim node prior to the attack; 

therefore, there is no computation overhead at victim node during the attack time. The only 

computation overhead is applied on selected routers during the attack to computing hash value of 

incoming IP address where MD5 algorithm is used and takes a few millisecond to check whether 

IP address is a member of the filter or not. Note that, the Bloom filter is applied to only a select 

few of the upstream routers so processing overhead is also minimized. 

     Different cooperative techniques have been proposed to coordinate attack detection and 

respond to it [16], [23], [25], [26]. However, most have a large overhead of network 

communication and resources as briefly compare in Table 2. Moreover, communication during 

attack time must be minimized to the extent possible, as there is lack of bandwidth. Our scheme 

alleviates such problems. As a comparison, TDFA [26] using CAIDA attack dataset in 

evaluation and succeeds in lowering the attack traffic by 88% with traceback mechanism with 

more than 1000 to 4000 messages passing after detecting the attack to reduces the rate of attack 

packets whereas our scheme lowers the attack by 95% with very low overhead cost. The total 

number of message passing is less than 100 in our simulation setup as discussed above. 

Moreover, in general the traceback mechanism has high computational and network overhead 

regarding to mark the packets and collect sufficient number of packets to trace back up the 
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attacker where the number of ISP involvement to support traceback is important parameter and 

makes it difficult to be deployable. Compared with recent cooperative approaches, our scheme 

reduces processing overhead as discussed while maintaining the Quality of Service (QoS) for 

legitimate traffic during the attack period and making the scheme more deployable. 

Table 5.2. Comparison of distributed defense approach 

Technique Features Defense limitation Scalabil
ity  

Implem
entation 
complex
ity  

RPI_HTA Identifies the most 
effective points to place 
filters so as to minimize 
attack traffic and 
maximize legitimate 
traffic 

Plug in SFProbes into the 
routers to support 
approach 

High Low 

TDFA [26] A traceback based defense 
system to reduces the rate 
of forwarding the attack 
packets  

Support sufficient 
number of routers to be 
effective / High 
communication overhead  

Medium High 

D_WARD 
[16] 

Gathers two-way traffic 
statistics and applies a rate 
limiting 

Universal 
deployment/Performance 
degradation/high 
Collateral damage 

Low Medium 

FireCol 
[25] 

IPSs form virtual 
protection rings around 
the hosts and collaborate 
by exchanging traffic 
information  

Overhead and 
performance cost for 
routers and rings 
configuration 

Low High 

 

5.5 Conclusion 

In this chapter we proposed a responsive defense approach to defend against denial of service 

attacks. We introduce a cooperative mechanism that specifies best response points where filters 

can be placed so as to minimize attack traffic and maximize legitimate traffic during the attack. 
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Our approach has been validated on real-world data sets. Our experiments indicate that our 

responsive model can protect the victim node from 90% of attack traffic while allowing 70% of 

legitimate traffic with light computational as well as communication overhead. In addition, the 

results show how our model can preserve valuable network resource and increase link utilization 

of other end-users during the attack time to maximally preserve the service availability and 

minimizing the attack impact.   
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CHAPTER 6 
 

PACKET-PAIR DISPERSION SIGNATURES IN MULTIHOP NETWORKS 
 
 
 

6.1 Introduction 
  

In this chapter we consider packet-pair technique as a well-known mechanism for 

characterizing end-to-end network paths. An analytical model is presented for the packet-pair 

based signature of multi-hop network paths. The model does not require a single bottleneck link 

assumption, and it accurately describes the behavior of packet-pairs. The analytical relationship 

between the input and the output gaps of packet pairs is derived, and the corresponding 

distribution of end-to-end packet-pair dispersion is used to derive the path signature, which 

characterizes the path. The model is verified via OPNET based simulations. We also analyze 

how the signature is shaped by factors such as the number of the hubs, initial dispersion and 

cross traffic. The analytical model provides deeper insights to path signatures, thus enabling 

efficient and accurate network monitoring, problem diagnosis, and estimation of parameters such 

as end-to-end network bandwidths and link capacities.  

Network monitoring, tomography, and overlay based QoS provisioning are among network 

operations and applications that rely on the use of end-to-end path measurements to infer 

operational conditions of network paths. Dispersion of packet pairs or packet trains as they 

traverse is the basis of many inference tools used for characterization of network paths [84], [85],  

[86], [87], [88], [89], [90], [91]. Packet-pair technique is used to obtain crucial network 

properties such as bottleneck capacity, available bandwidth and common congestion links in a 

wide array of network monitoring tools [92], [93], [31], [94], [29], [95], [96], [97], [98], [99], 

[100], [101]. A packet-pair typically is two equal-length packets sent with an initial dispersion. 
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By the time the packet-pair reaches the destination, the final dispersion is changed due to link 

characteristics and cross traffic along the probing path. Cross traffic refers to all the traffic on the 

path except for that due to probing packets. Packet-pair technique essentially estimates the 

network parameters, e.g., the end-to-end network bandwidth and the bottleneck link capacity, 

from the relationship between the initial and final dispersions. 

Packet-pair dispersions can be used to generate path signatures. Dispersion fingerprint [102]  

uses the Cumulative Distribution Function (CDF) of packet-pair dispersion as the path signature. 

Internet path signatures are distinct, in general, and they persist over periods of time [102], [103], 

[104], [105]. Thus the signatures are used for distinguishing paths from one another, monitoring 

networks, diagnosing problems, developing deeper understanding of network behavior, testing 

protocols for realistic network conditions, and for determining if two paths share common links. 

An accurate model of the packet-pair technique is important not only for creating accurate path 

signatures for different scenarios, but also for enhancing the accuracy and efficiency of 

measurement techniques for parameter estimation. The main contribution of our scheme is the 

derivation of a model for the packet-pair technique for multihop paths with multiple tight links, 

thus more accurately capturing the stochastic nature of cross traffic and its interaction with 

packet-pairs. In contrast, the existing stochastic delay model, presented in [29], describes the 

analytical relationship between the input and output dispersions under the assumption of a single 

tight link. We validate the proposed model via OPNET simulations and discuss the accuracy of 

the proposed model. We investigate the effects due to initial dispersion, cross traffic and the 

number of the hops on end-to-end signatures using the analytical model. We also show how link 

properties such as available bandwidth, arrival rate of cross traffic can be estimated based on link 

signatures. In addition, our results are directly applicable for deriving the path signature when 
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measurements are done using packet-pair with variable packet gaps. This is the case with passive 

techniques that rely on existing network traffic, thus not consuming network resources for 

measurements [31]. 

Section 6.2 reviews the packet-pair technique and the packet-pair delay model for the single-

hop case. Section 6.3 presents the queuing model to generate path signatures for the multi-hop 

case and determine path characterization. This model is validated through OPNET® simulations, 

and the impact of network and traffic characteristics on signature is evaluated in Section 6.4. 

Finally, the conclusion follows in Section 6.5. 

6.2 Packet-Pair Delay Model  

In this section, the packet-pair technique is described and the single-hop stochastic model of 

packet-pair technique proposed in [29] is outlined. The packet-pair technique typically employs 

two equal sized packets that a source sends to a receiver as shown in Figure. 6.1. The initial 

dispersion Δin at the sender is defined as the interval between the departure of the first bit of the 

first probing packet P1 and the first bit of the second probing packet P2 from the sender [102]. 

The dispersion between these two packets changes according to the path characteristics such as 

link capacities and cross traffic. The final dispersion Δout at the receiver is defined as the interval 

between the arrivals of the first bits of the first and second packets. The main goal is to establish 

an analytical relationship between Δout and Δin. Figure. 6.1 shows how parameters such as 

network link capacities and cross traffic affect packet-pair dispersion. The dispersion may 

increase due to multiple causes. Case (b) shows the final dispersion increasing as the packets 

move from a high bandwidth link to a low bandwidth link, while in Case (c) the final dispersion 

increase is due to one or more cross traffic packets that come between the packet-pair. In Case 
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(d), one or more packets are queued before the first packet and the packet-pair experiences 

compression due to queuing in the busy link [92]. At the end of a typical path, the final 

dispersion is affected by a combination of these cases through the entire path. This example 

illustrates that the network can either increase or decrease the dispersion due to cross traffic rate 

and link capacity.  

 

(a) An example network with two routers 

 

(b) Packet-pair from moves from high to low bandwidth Δin < Δout 

 

(c) Cross traffic comes between packet-pair Δin < Δout 

 

(d) Cross traffic comes before the first packet Δin > Δout 

Figure. 6.1. Effect of traffic and network links on packet-pair dispersion 
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Next we outline the model in [29] that established a relationship between Δin and Δout for a 

packet-pair over a single hop. Let the capacity of this link be C and the length of each of the 

packets in the pair be Lp. Let t0 be the time at which the first packet of the pair arrives at the 

queue, q be the total of cross traffic already in the queue, and T indicates the interval between the 

arrival of the first packet and the departure of the second packet. Figure. 6.2 shows the packet-

pair in a single link for busy and idle server conditions [29]. In Figure. 6.2, X(t0, Δin) denotes the 

total of cross traffic that arrived during [t0, t0+ Δin]. In this figure instead of X(t0, Δin), X(Δin) is 

used as it is independent of t0 in fluid assumption. By considering a constant rate r, X(t0, Δin) 

generates rΔin amount of cross traffic, and Δin and Δout are related to each other according to 

following equation depending on whether  the link is being fully utilized or not [86]: 
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(a) The Server busy when the second packet arrives  

 

 

(b) The Server idle when the second packet arrives 
Figure. 6.2. Packet-pair behavior in a single link with fluid cross-traffic 
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The assumption of fluid cross traffic with constant rate introduces a considerable error in this 

model. In contrast, X (t0, Δin) is considered as a stochastic process in following, and our model 

depicts the relationship between Δin and Δout more accurately, even in the multi-hop case. 

However, first consider the rationale as to how the behavior of a packet-pair can be used in the 

transient queuing analysis with the M/D/1 model in [29] for the single hop case. 

The queuing model in [29] assumes Poisson cross traffic. When the first packet pair arrives at 

the queue at t0, there are q1 packets already in the queue and one in service with residual service 

time d. Assume similar way for the second packet pair that there are q2 packets already in the 

queue when the second packet pair enters in the queue. Consider W1 and W2 as the waiting time 

of the first and second packet pair when the service times of the both packet pairs equal to LP/C 

[14]:  

)2.6(1212 WW
C

pL
W

C

pL
Winout 



 



 

 

The logic is that the system can be considered as an M/D/1 queue model which starts to 

evolve at t = t0 with a total of N0 =q1+Lp/Lc+1 in the system, including possibility of service 

time where the first packet pair arrives at t = t0
+. Then, the waiting time W2 of the second packet 

pair entirely corresponds to a packet that arrives at the M/D/1 system at t = Δin [29]. In this 

model, to provide the waiting time distribution of the second packet pair, first πj (t) - the 

probability of the system holding j packets at time t indicate and then the state vector 

π(t) =: (π0(t), π1 (t), π2 (t),…) was obtained [29]. 
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The distribution of W(Δin) for any given value of Δin is found in Eq. 6.3. This equation 

corresponds to the waiting time distribution of the second packet pair in the queuing model. Then 

it is straightforward to obtain the relationship between final dispersion Δout and initial dispersion 

Δin from Eq. 6.2. The waiting time distribution P (W(Δin) < kD − v) for all k∈N and v ∈ (0, D], 

can be determined by considering the queuing position of the packet at t = Δin + D – v, and the 

random variable NΔin(t) was defined as the number of packets arriving before Δin that are still in 

the system at t. The cumulative distribution function (CDF) of the waiting time W(Δin) FΔin(x) =P 

{W(Δin)<x}  is as follows [14]:   
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   Here, y :=  Δin − D +  (x mod D), z :=  D − (x mod D), and   1
0 )(:)( m

i t
i

tmQ  . λ is the packet 

arrival rate of cross traffic and K (t) is the number of packets that have left the system by t. To 

compute )(tmQ  in our model we use above equation; however, the transition matrix P to 

determine )(t
i

  was corrected based on the proof results in [88] as follows. Here, function 

FΔin(x) provides a delay model for packet-pair in the single-hop case. The Cumulative 

Distribution Function (CDF) of the waiting time W(Δin), FΔin(x), corresponds to the waiting time 

distribution of the second packet in the pair that we will consider in our model. 
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6.3 Queuing Model for Multihop Case  

    In this section, derives the general delay model to determine relationship between dispersion 

of packet pair at all intermediate links in a multihop path. First, we give our rationale as to how 

the behavior of the packet pair dispersion can be described and the main challenge in handling 

packet-pairs with multihop queuing model. Then, we develop a stochastic delay model to 

describe the mathematical relationship between input and output dispersions of packet-pairs.  

     FΔin(x) provides a delay model to determine the dispersion of the packet-pair for a specific Δin 

in a single link or a path with a single tight link. In multihop case, the gap between the packet-

pairs entering a link is no longer a known constant value. The path signature in fact represents 

the net effect due to these variable packet dispersions at all the intermediate links. Therefore, a 

challenge in deriving a general multihop queuing model is to determine the initial dispersion of 

the pair entering link i, Δin(i). As in multihop model Δout from the link i is the Δin for link i+1 , the 

single link model FΔin(x)=P{W(Δin)<x}  can provide the distribution of dispersion only for a 

specific Δin. Simply chaining multiple instances of single link dispersions together does not work, 

as it requires that at the junction between two links, the packet gap be reset to a known fixed Δin. 

However, we have a different Δin as the input for each hop for each packet-pair. To determine a 

general multihop model, consider M links in an end-to-end path as in Figure. 6.3. Let Ci and λi 
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denote the link capacity and the packet arrival rate of cross traffic respectively of the i th link, 

1≤i<M. Furthermore, let Δin(i) denote the initial dispersion of a packet-pair at the i th link. The 

Cumulative Distribution Function (CDF) of the waiting time W(Δin(i)), for i th link, FΔin(x, 

i)=P{W(Δin(i))<x}  is as follows:  
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      (6.5) 

   Where, y: = Δin(i)−D + (x mod D), z: = D − (x mod D), and   1
0 ),(:),( m

n itnitmQ  . We can 

determine Δout(i) similar to the single hop case from Eq. 6.2, but with W2 and W1 replace by W2(i) 

and W1(i) for the given packet pair.   

 
Figure. 6.3. Multihop queuing system model 

    Let SΔin (r i, i) denote the signature of link i for a given δin:   

), 1(1)(   where
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SΔin is calculated for each given Δin(i) < r i-1, and r covers the range of values for Δout(i) in i th 

link where x determines the range of distribution values for W2(i) in  FΔin(x, i) and we need to 

obtain the range of values for Δout(i) according to Eq. 6.6. 
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As Δout(i), the dispersion at the output of link for a packet-pair is the inter-arrival time Δin(i+1) 

for the (i+1) th link, we can compute the probability of each inter-arrival time Δin(i+1)at link i+1  

by using CDF of the Δout(i) given by Eq. 6.6. CDF of Δout(i+1) can then be generated by 

multiplying SΔin(r i ,i) for a specific Δin by probability of separation Δin in the current link. 

Probability of a specific point can be found from CDF distribution function as we consider in Eq. 

6.7, where, PΔin(r i,i) is defined as the Cumulative Distribution Function (CDF) of the Δout(i) in 

the queuing model for a multihop case: 
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For example, consider a three hop path, i.e., M=2 in Figure. 6.3. First FΔin(x,0) and r0 are 

computed and  FΔin(x,0) is assigned to SΔin(r i, i | δin)  as well. At this step we have the CDF of 

Δout(0)  FΔin(x,0), which also corresponds to  CDF of Δin(1). To find the delay dispersion of next 

link the delay dispersion for all Δin(1) that is in the range of 0<Δin(1)< r0 will be computed. 

Finally, we can find the delay distribution of second packet-pair from Eq. 6.7 and then Δout(1) 

from Eq. 6.2.  

Therefore, by computing PΔin(r i,i) for link i we can determine the signature of link i, and use 

this signature to create the next link’s signature. In the other words, initially the packets are 

generated in the first link using the packet-pair delay model of Eq. 6.5 for specific Ci, λi, Δin. 

Then, as the output packets of one link become the arrival packets for the next link, we obtain the 

probability of each inter-arrival time Δin of packet pair by using the previous link’s delay 
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dispersion model. Therefore, in the next link we generate the packet-pair dispersion model 

SΔin(r i ,i) for each inter-arrival time Δin in the current link and compute the path signature 

according to SΔin(r i ,i) and probability of each inter-arrival time Δin at link i. 

6.3.1 Available Bandwidth Estimation 

By establishing a dispersion model for packet pair in a multi hop model we can find the other 

useful properties of the path. Here, we estimate the available bandwidth based on the proposed 

model. The available bandwidth of a path is the rate at which additional data can be sent through 

the path.  

For a given value of Δin (0), M, q1 and N0 =q1+Lp/Lc+1 the expected value of Δout (M) comes 

from Eq. 6.2 as follows:  
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]1|[ qMWE  in Eq. 6.8 can be found from distribution model PΔin(x,M) as it is shown in Eq. 

6.9 and )]0,
1

(
1

[ qWE  can be obtained from the steady state solution of queuing models [88].  

According to the result in [29], the relationship between first and the second packet-pair is as 

follows:  
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When Δin (0)  :        
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6.3.2 Path Characterization 

As discussed above, one of our contributions is the use of the multihop queuing model to 

characterize network paths. Now we show how our model can be used to determine link 

properties such as rate of cross traffic, utilization, and available bandwidth for each link. Initially 

we assume the path fingerprint is created at each point for a specific initial Δin . The signature at 

the end point refers to FΔin(x, M). According to Eq. 6.5,  λM can be obtained as follows since the 

other variables are known, and we have FΔin(x, i) for i=M . For y≤0 we have: 
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     Hence, the rate of cross traffic λM in link M can be obtained from Eq. 6.12. A similar process 

applies to find λM for y>0. The utilization and available bandwidth of link M can then be 

determined from A = Ci (1-ui) since the capacities of the links are assumed to be known. This 

procedure can be extended to find other link properties as well by using the corresponding path 

fingerprint for each link. 
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6.4 Model Validation 

    In this section we validate our stochastic model via OPNET® simulations and explore how the 

signature is shaped by factors such as the number of the hops, link capacity, initial dispersion and 

cross traffic arrival rate. 

    We perform simulation for two-hop, four-hop and eight-hop networks, connected via 100 

MB/s links. The cross traffic on each node is set at 20% and 60% of link utilization respectively 

for low and heavy Poisson cross traffic conditions. Non-persistent cross traffic [93] as shown in 

Figure. 6.4 is used in which packets exit one hop after entering the path. Each packet-pair source 

generates packets with 120µs initial dispersion, which correspond to the back-to-back 

transmission of the two 1500 byte packets. We normalized the dispersion at the receiver by the 

initial dispersion and report Δout/Δin as the normalized dispersion. 

 
Figure. 6.4. Multi-hop model in OPNET® simulation 

 
    Figure. 6.5 and 6.6 shows path signatures based on CDF of packet-pair dispersion obtained 

with OPNET® simulation and our model for low and heavy cross traffic. The simulation results 

agree very closely with the stochastic model in Eq. 6.7. In addition, we investigated the effect of 

number of hops in estimating the path signatures. When the number of hops is increased from 2 

to 8 the stochastic model continues to perform quite accurately for heavy cross traffic utilizations. 

The maximum error of CDF between OPNET® simulation and stochastic model in heavy cross 

Cross Traffic 
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traffic condition is 0.051 when path signature is generated for eight-hop paths indicating close 

agreement between stochastic model and simulation results. The other evaluation part for each 

signature is investigating tight link available bandwidth estimation based on our analysis. The 

available bandwidth estimation is computed from Eq. 6.12 and shown in Tables. 6.1 and 6.2 for 

the first scenario. The estimation error shows that our model is able to determine the available 

bandwidth for the tight link fairly closely; however, the result indicates that the error increases as 

the number of the hops grow. Moreover, it is clear that having heavy cross traffic affects the 

accuracy of signatures as well as available bandwidth estimation. Thus the error of estimation for 

heavy cross traffic is more than at low cross traffic.  

 
Figure. 6.5. Queuing model and OPNET® simulation results for low cross traffic and back-to-

back packet-pair 
 
 

Table. 6.1. Available bandwidths for low cross traffic 
 

 

 

Available 
Bandwidth 

Actual value 
(MB/s)  

Estimated value 
(MB/s) 

Estimation error 
(MB/s) 

Two hop model  80 79.7 0.3 

Four hop model  79.8 79 0.8 

Eight hop model  80.5 79.1 1.4 
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    Next part of the experiment evaluates our model by injecting packet-pairs with 240µs initial 

dispersion. In this case we investigate the effect of initial dispersion on path signature and the 

accuracy of analytical model. As in the previous experiments, we can see in Figure. 6.7 and 6.8 

that the model follows OPNET® simulations well in both low and heavy cross traffic conditions. 

The maximum errors in these results are 0.036 and 0.058 for low and high cross traffic 

respectively, when dispersion CDF generated for eight-hop model. Estimates for the available 

bandwidth for this scenario are shown in Tables 6.3 and 6.4. 

 
Figure. 6.6. Queuing model and OPNET® simulation results in heavy cross traffic 

 
 
 
 

Table 6.2. Available bandwidth for heavy cross  

 

 

 

Available 
Bandwidth 

Actual value 
(MB/s) 

Estimated value 
(MB/s) 

Estimation error 
(MB/s) 

Two hop model 40.1 39.5 0.6 

Four hop model 40.3 39 1.3 

Eight hop model 39.9 38.1 1.8 
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Figure. 6.7. Queuing model and OPNET® simulation results for low cross traffic and 240µs 

initial dispersion 
 

Table. 6.3. Available bandwidth for low cross traffic  
 

 

 

 

 

 

Figure. 6.8. Queuing model and OPNET® simulation results for heavy cross traffic and  
240 µs initial dispersion 

Available 
Bandwidth 

Actual value 
(MB/s) 

Estimated value 
(MB/s) 

Estimation error 
(MB/s) 

Two hop model 80 79.8 0.2 
 

Four hop model 79.8 
 

79.2 0.6 

Eight hop model 80.5 79.4 1.1 
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Table. 6.4. Available bandwidth for heavy cross  

 

 

 

Next we evaluate the impact of link capacity values on the shape of path signature. Figure. 6.9 

shows the path signatures based on different link capacities and low cross traffic.  In this case we 

perform simulations for paths with 2 and 4 hops. The capacities of links are 100, 80, 60 and 40 

MB/s in a sequence. For two-hop case links capacities are set to 100 and 80 MB/s respectively. 

The path signatures still have reasonable accuracy, with maximum errors of 0.040 and 0.049 for 

two and four hop cases respectively. The results presented above as well as additional 

simulations we performed show that the maximum errors are reasonable. In addition, the 

available bandwidth estimates are shown in Table 6.5. The estimation error is reasonable in this 

condition as well. Based on the results from different scenarios to estimate the available 

bandwidth, we can conclude that the heavy cross traffic can affect further in comparison with 

other parameters such as initial dispersion, different link capacity through the path. 

Available 
Bandwidth 

Actual value 
(MB/s) 

Estimated value 
(MB/s) 

Estimation error 
(MB/s) 

Two hop model 40.1 39.6 0.5 

Four hop model 40.3 39.1 1.2 

Eight hop model 39.9 38.3 1.6 
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Figure. 6.9 Queuing model and OPNET® simulation results for different link’s capacity in low 

cross traffic 
 

Table. 6.5. Available bandwidth for low cross traffic and different link’s capacity  

 
The dispersion CDFs are distinct and persistent for a given path and shape according to link 

characteristics such as cross traffic, initial dispersion and link capacity, and agrees with the 

observations in [102]. Therefore, finding an accurate model to generate path signatures for a 

multi hop model is important to facilitate estimation of other useful properties of the path, such 

as utilization, bandwidth and cross traffic rate as described in the previous section. We evaluate 

path characteristics, as described in the previous section, for different link capacities of the path. 

A path with 4 hops and the links of capacities as 100, 80, 60 and 40 MB/s in sequence. As 

described, in the first step, the arrival rate of cross traffic is determined from Eq. 6.11, and then 

the utilization and available bandwidth are computed for each link. The results in Table 6.6 and 

6.7 show the estimated utilization and available bandwidth. The worst estimation error for 

Available 
Bandwidth 

Actual value 
(MB/s) 

Estimated value  
(MB/s) 

Estimation error 
(MB/s) 

Two hop 
model 

32 31.7 0.3 

Four hop 
model 

32.3 31.6 0.7 
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utilization is not more than 2% and available bandwidth is not more than 1.9 MB/s, which occurs 

on the last link.  

Table. 6.6. Available bandwidth for different links in low crosses traffic  
 

 
 
 
 
 
 
 

Table. 6.7. Utilization for different links in low cross traffic  
 

 

From the overall results we can see that the proposed model can assist to determine the path 

and link properties in the network; however, we have made the assumption that packets arrive 

according to a Passion process with rate λ and provide for M/D/1 based queuing model. In the 

last part of our evaluation, we run experiments with another type of distribution for cross traffic 

on OPNET® and compare it with the path signature based on our queuing model. This result 

checks the sensitivity and accuracy of model when cross traffic does not follow a Poisson 

process. In this case we repeat the first scenario for two and four hops with Pareto arrival process. 

In general, the Pareto distribution is applied to model self-similar arrival in packet traffic for 

simulation tools. The results are shown in Figure. 6.10 and 6.11 for low and heavy utilizations. 

The maximum error between OPNET® simulation with Pareto distribution and stochastic model 

in low cross traffic condition is 0.09 when path signature generates for four-hop model, and for 

heavy cross traffic rate maximum error is 0.19. Practically, the shape of signature from our 

Available 
Bandwidth 

Actual value 
(MB/s) 

Estimated value 
(MB/s) 

Estimation error 
(MB/s) 

Link 1  31.52 31.72 .20 

Link 2  47.94 47.22 .28 

Link 3  64.08 63.52 .46 

Link 4  78.5 80.4 1.9 

Utilization Actual value % Estimated 
value % 

Estimation 
error % 

Link 1  21.2% 20.7% 0.9% 

Link 2  20.1% 21.3% 1.2% 

Link 3  19.9% 20.6% 1.7% 

Link 4  21.5% 19.6% 1.9% 
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model follows the OPNET® simulation in this case as well; however, the error increases from 

0.03 to 0.09 for low cross traffic rate and from 0.051 to 0.19 for heavy cross traffic. The 

estimation error in Tables 6.8 and 6.9 shows that our model has 2.9MB/s estimation error in the 

worst case for heavy cross traffic and four hop model. As the results demonstrate, it is clear that 

having the other type of arrival cross traffic model cause the reduction in accuracy to provide 

path properties; however, the estimation error is fairly acceptable in our experiment. Moreover, it 

is predictable that having more number of hops could affect the accuracy in this condition as well. 

 
Figure. 6.10. Queuing model and OPNET® simulation results for Pareto distribution and low 

cross traffic  
 

Table. 6.8. Available bandwidth for low cross traffic and Pareto distribution 
 

In summary, the proposed model can provide the path and link properties in the network 

based on Poisson model for cross traffic accurately and indicate that the our model can determine 

appropriate information of the path based on path signature.  

Available 
Bandwidth 

Actual value 
(MB/s) 

Estimated value 
(MB/s) 

Estimation error 
(MB/s) 

Two hop model 80.6 79.7 0.9 

Four hop model 80.6 79 1.6 
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Figure. 6.11. Queuing model and OPNET® simulation results for Pareto distribution and heavy 

traffic 
 

Table. 6.9. Available bandwidth for heavy cross traffic and Pareto distribution  
  
 
 
 
 

6.5 Conclusion 

In this chapter, we investigated the mathematical relationship between the input and the 

output packet-pair dispersion to generate accurate path signatures for multi-hop paths without a 

limitation of single tight links. A mathematical relationship was presented to generate accurate 

signatures for multihop paths. The analytical model was verified using simulations, and was used 

to evaluate the impact of factors such as the number of hops, initial dispersion, link capacities 

and cross traffic, that affect the shape of the signature. Results from the proposed model agree 

closely with OPNET® simulations. As the path signatures can provide other properties of a path, 

such as estimate available bandwidth, utilization, bottleneck capacity of the path, monitor and 

Available 
Bandwidth 

Actual value 
(MB/s) 

Estimated value 
(MB/s) 

Estimation error 
(MB/s) 

Two hop model 41.3 39.5 1.8 

Four hop model 41.9 39 2.9 
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diagnose network problems, the model can be used to determine useful path properties from the 

path signatures. Development of the multi hop model for general conditions and a G/G/1 based 

queuing model remains as future work. 
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CHAPTER 7 
 

CONCLUSIONS 
 
 
 

This dissertation is focused on characterizing and mitigating DDoS attacks by distributed 

defense mechanisms. We began with efficient attack traffic identification mechanism. An 

identification scheme is proposed, based on analysis of   multiple features of DDoS attacks and 

normal traffic, to distinguish between attack and normal traffic. Based on the identification 

model we propose a history-based profiling mechanism to discriminate against malicious traffic 

with minimal effect on the legitimate traffic. The approach is verified and evaluated using the 

DARPA dataset as well as by extensive analysis with data sets from Colorado State University 

and University of Auckland.  Then we focused our attention on a filtering mechanism. Look up 

the IP address in the upstream routers during the attack time is a costly task and creates extreme 

overhead on routers. However, dropping attack traffic requires such inspection. We approach this 

dilemma by identifying only those routers that carry a significant amount of attack traffic.  

Identification is carried out using the proposed history based profile. A novel Compacted Bloom 

filter is presented and a filter dissemination mechanism is proposed based this mechanism. The 

identification of the particular routers is done without interfering with the normal operation.  Our 

approach helps reduce the communication and computation costs and storage requirements of the 

upstream routers required to check for malicious traffic. The compacted Bloom filter is 

motivated by applications, including DDoS mitigation, that must transmit Bloom filters over the 

network and/or when endpoint machines have restrictions on memory available for this purpose. 

The scheme reduces the memory requirement, but at the cost of false positives in response to the 

queries. A corporative defense mechanism is presented to mitigate DDoS traffic. Our scheme 
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identifies and  places such filters to block attack traffic and allow legitimate traffic as close to the 

source node as possible, so that network resources are not wasted in propagating the attack. The 

solution benefits by using a recently developed packet probe technology, such as that from JDSU, 

typically implemented as Small Firmfactor Probes (SFP) using FPGAs. We evaluate the 

effectiveness of the proposed mechanisms using extensive simulation in OPNET® with a real 

network topology. Finally, an analytical model that provides deeper insights to packet-pair path 

signature in the presence of multiple tight links is presented, thus enabling efficient and accurate 

network monitoring, problem diagnosis and estimation of link and path parameters such as end-

to-end network bandwidths and link capacities. 

Learning about traffic features during the attack and normal conditions, and identifying clues 

which can separate attack flows from normal flows efficiently are some of the main challenges in 

attack mitigation. Deep Packet Inspection (DPI) [106] is a maturing technology capable of 

recognizing data relationships and communication patterns. Future work is needed to exploit 

emerging capabilities of DPI to improve the detection of attack traffic provide new solutions.   

DPI solution can also assist in detecting malware and normal patterns, and this can be added as a 

new feature in the identification model to discriminate between malicious or attack traffic and 

the normal traffic. Moreover, to reduce the monitoring and computation costs at the victim node 

when creating history-based profiles, packet sampling based methods can be investigated. Packet 

sampling involves selection of a subset of packets in the stream, such as a random selection or a 

systematic selection, e.g., count-based with the periodic selection of every kth packet or time-

based driven a packet is selected every constant time interval. Further analysis and evaluation is 

required in order to better understand how packet sampling can meet the accuracy and timing 
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requirements, and its effect on false alarms. This future work also may address the impact of 

packet sampling on different features.  

The evaluations presented were based on IPv4 traffic traces. In contrast to IPv4, IPv6 has a 

vastly enlarged address space (128 bits compared with 32 bits in IPv4) that makes it more 

difficult to address the specific characteristics related to identifying and filtering the attack traffic. 

As IPv6 traces become available, further evaluation of the proposed scheme may be carried out. 

IPv6 may present unique opportunities to sub-sample IP header field, e.g., without having to look 

at the entire address fields. The issue of having the same capabilities to defend against both IPv4 

and IPv6 attacks is critical and according to some literatures [107] [108] the current IPv6 DDoS 

attacks are most likely due to tests performed by malware writers who want to be prepared  for 

the case when large internet service providers switch their subscribers to IPv6. 
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APPENDIX A 
 

SOURCE CODES 
 
 
 

A.1 The code below creates Bloom filter from corresponding list of IP address  

% Read list of IP address in History  
 
fin=fopen('C:\Data\data\history\3part\tcp_udp_icmp_history1326_3partip.txt'); 
 
C=textscan(fin,'%s\n'); 
 
size_C = size(C{1}) 
 
for i=1:1:size_C 
 
% call 4 different HashFunction() for each IP address 
% 
% input,C{:}(i) is IP address 
 
D=HashFunction(char(C{1}(i))); 
 
set_bit= mod(D,28640)+1; 
 
A(set_bit,1)=1; 
 
D=HashFunction2(char(C{1}(i))); 
 
set_bit= mod(D,28640)+1; 
 
A(set_bit,1)=1; 
 
D=HashFunction3(char(C{1}(i))); 
 
set_bit= mod(D,28640)+1; 
 
A(set_bit,1)=1; 
 
D=HashFunction4(char(C{1}(i))); 
 
set_bit= mod(D,28640)+1; 
 
A(set_bit,1)=1; 
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D=HashFunction5(char(C{1}(i))); 
 
set_bit= mod(D,28640)+1; 
 
A(set_bit,1)=1; 
 
end  
  
filename = 'U:\Documents\Bloomfilter_1326_3partip.txt'; 
 
fid = fopen(filename, 'w'); 
  
for j=1:28640 
     
   fprintf(fid, '%d\n', A(j,1));  
 
end 
  
fclose(fin); 
 
function hash=string2hash(str,type) 
 
% This function generates a hash value from a text string 
% 
% hash=string2hash(str,type); 
% 
% inputs, 
%   str : The text string, or array with text strings. 
% outputs, 
%   hash : The hash value, integer value between 0 and 2^32-1 
%   type : Type of has 'djb2' (default) or 'sdbm' 
% 
% example, 
% 
%  hash=string2hash('hello world'); 
%  disp(hash); 
% 
% From string to double array 
 
str=double(str); 
 
if (nargin<2), type='djb2'; end 
 
switch(type) 
 
    case 'djb2' 
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        hash = 5381*ones(size(str,1),1);  
 
        for i=1:size(str,2),  
 
            hash = mod(hash * 90 + str(:,i), 2^64-1);  
 
        end 
 
    case 'sdbm' 
 
        hash = zeros(size(str,1),1); 
 
        for i=1:size(str,2),  
 
            hash = mod(hash * 65599 + str(:,i), 2^32-1); 
 
        end 
 
    otherwise 
 
        error('string_hash:inputs','unknown type'); 
 
end 
 
 

A.2 The code below check if corresponding IP address is a member of created Bloom filter 

or not  

% input, B and T: created Bloom filter and incoming traffic   
% 
% output, Match_ip: list of IP address match with Bloom filter  
 
Match_ip= cell(1,1); 
 
n=1; 
 
% Read created Bloom filter  
 
fin=fopen('U:\Documents\Bloomfilter_1225_3partip.txt'); 
 
B=textscan(fin,'%d\n'); 
 
size_B = size(B{1}); 
 
% Read incoming traffic that contains list of IP address  
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fin1=fopen('C:\Data\data\history\3part\history_2firstweek_3partip.txt'); 
 
T=textscan(fin1,'%s\n'); 
 
size_T = size(T{1}) 
 
% check if corresponding IP address is a member of created Bloom 
 
for i=1:1:size_T 
 
D1=HashFunction(char(T{1}(i))); 
 
set_bit1= mod(D1,28495)+1; 
 
D2=HashFunction2(char(T{1}(i))); 
 
set_bit2= mod(D2,28495)+1; 
 
D3=HashFunction3(char(T{1}(i))); 
 
set_bit3= mod(D3,28495)+1; 
 
D4=HashFunction4(char(T{1}(i))); 
 
set_bit4= mod(D4,28495)+1; 
 
D5=HashFunction5(char(T{1}(i))); 
 
set_bit5= mod(D5,28495)+1; 
 
    if (B{1}(set_bit1)==1 && B{1}(set_bit2)==1 && B{1}(set_bit3)==1 &&  
B{1}(set_bit4)==1 && B{1}(set_bit5)==1) 
 
            Match_ip{1}(n)= T{1}(i); 
 
            n=n+1; 
    end 
 
end  
 
fclose(fin); 
 
filename = 'C:\Data\data\attack_match\3part\326\Match_ip_326_3partip.txt'; 
 
fid2 = fopen(filename, 'w'); 
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for j=1:n-1 
 
    fprintf(fid2,'%s\n', char(Match_ip{1}(j)));  
 
end 
 
fclose(fin); 
 
fclose(fin1); 
 
function hash=string2hash(str,type) 
 
% This function generates a hash value from a text string 
% 
% hash=string2hash(str,type); 
% 
% inputs, 
%   str : The text string, or array with text strings. 
% outputs, 
%   hash : The hash value, integer value between 0 and 2^32-1 
%   type : Type of has 'djb2' (default) or 'sdbm' 
% 
 
str=double(str); 
 
if (nargin<2), type='djb2'; end 
 
switch(type) 
 
    case 'djb2' 
 
        hash = 5381*ones(size(str,1),1);  
 
        for i=1:size(str,2),  
 
            hash = mod(hash * 33 + str(:,i), 2^32-1);  
 
        end 
 
    case 'sdbm' 
 
        hash = zeros(size(str,1),1); 
 
        for i=1:size(str,2),  
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            hash = mod(hash * 65599 + str(:,i), 2^64-1); 
 
        end 
 
    otherwise 
 
        error('string_hash:inputs','unknown type'); 
 
end 

 

A.3 The code below check TCP connections and extract those IPs establish three way 

handshake connection  

  
% file names 
incFName='filterdata20010318-020000-0.txt'; 
 
ougFName='filterdata20010318-020000-1.txt'; 
 
m=1; 
 
% settings 
 
timeout=60; % 1min 
  
  
% load data  
fprintf('Loading data... '); 
 
tic 
 
incF=fopen(incFName); 
 
ougF=fopen(ougFName); 
 
incData=textscan(incF,'%f %s %s %d %d'); 
 
ougData=textscan(ougF,'%f %s %s %d %d'); 
 
fclose(incF); 
 
fclose(ougF); 
 
toc 
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fprintf('Building history... '); 
 
tic 
 
History={}; % {remote-IP, time-stamp} 
 
filename = 'History20010318_020000_0.txt'; 
 
fid = fopen(filename, 'w'); 
 
histInd=1; 
 
% incoming trace first timestamp 
 
incT1=incData{1}(1);    
  
% outgoing trace first timestamp 
 
ougT1=ougData{1}(1);  
 
% start time % time block indices    
 
stT=min(incT1,ougT1);    
 
% time block indices for incoming 
 
incTBlocks=floor((incData{1}(:)-stT)/60)+1;  
 
% time block indices for incoming 
   
ougTBlocks=floor((ougData{1}(:)-stT)/60)+1;    
 
% last time block index 
 
lastTBlock=max([incTBlocks;ougTBlocks]);   
 
count=0; 
 
for tblock=1:lastTBlock 
 
% for tblock=1 
 
    incBlockInds=find(incTBlocks==tblock | incTBlocks==tblock+1); 
 
    ougBlockInds=find(ougTBlocks==tblock); 
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    % timestamp info 
 
    incTSs=incData{1}(incBlockInds); 
     
    ougTSs=ougData{1}(ougBlockInds); 
 
    % ip info 
 
    incIPs=removePort_v01(incData{2}(incBlockInds)); 
     
    ougIPs=removePort_v01(ougData{3}(ougBlockInds)); 
 
    % sequence# info 
    incSEQs=incData{4}(incBlockInds); 
 
    ougSEQs=ougData{4}(ougBlockInds); 
 
    % ack# info 
    
    incACKs=incData{5}(incBlockInds); 
 
    ougACKs=ougData{5}(ougBlockInds); 
 
    for pktInd=1:length(ougBlockInds) 
 
    count=count+1; 
 
      if  count>300 
   
        return 
 
      end 
 
        % scan for each outgoing packet 
 
        candInd=find(strcmp(incIPs,ougIPs(pktInd)) & ... 
 
            incTSs>ougTSs(pktInd) & incSEQs==ougACKs(pktInd) & ... 
 
            incACKs==ougSEQs(pktInd)+1,1,'first'); 
 
        if  ~isempty(candInd) 
 
            History{histInd}={ougIPs(pktInd),ougTSs(pktInd)}; 
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            histInd=histInd+1; 
        end 
 
    end 
    
    [nrows,ncols]= size(History); 
 
    for i=m:1:ncols 
 
         fprintf(fid, '%s %f\n',  char(History{i}{1}),  History{i}{2});  
 
         m=ncols+1; 
    end 
 
end  
    
  fclose(fid); 
 
toc 
 
 

A.4 The code below checks DARPA dataset and create signature of extracted feature for 

TCP, UDP and ICMP packets 

 
% TCP traffic  
 
fin=fopen('N:\DARPA1998\TrainingDataset\week5\monday\TCP_Week5_Monday.txt'); 
 
C=textscan(fin,'%f %s %f %s %f %f %f %f %f'); 
 
size_C = size(C{1}); 
 
%get occurrence of port and size  
 
PortS=unique(C{3});  
 
P1= hist(C{3}, PortS); 
 
PortS(1:end,2)= P1(1:end); 
 
[m1, n1]=size(PortS); 
 
filename =  
'N:\DARPA1998\TrainingDataset\week5\monday\TCP_PortS_Week5_Monday.txt'; 
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fid1 = fopen(filename, 'w'); 
 
for j=1:1:m1 
 
    fprintf(fid1,'%d ', PortS(j,1:2)); 
 
    fprintf(fid1,'\n'); 
 
end 
 
fclose(fid1); 
  
%port destination  
 
PortD=unique(C{5});  
 
P2= hist(C{5}, PortD); 
 
PortD(1:end,2)= P2(1:end); 
  
[m1, n1]=size(PortD); 
 
filename =  
'N:\DARPA1998\TrainingDataset\week5\monday\TCP_PortD_Week5_Monday.txt'; 
 
fid1 = fopen(filename, 'w'); 
 
for j=1:1:m1 
 
    fprintf(fid1,'%d ', PortD(j,1:2)); 
 
    fprintf(fid1,'\n'); 
 
end 
 
fclose(fid1); 
  
%size of packet  
 
PacketS=unique(C{9});  
 
P3= hist(C{9}, PacketS); 
 
PacketS(1:end,2)= P3(1:end); 
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[m1, n1]=size(PacketS); 
 
filename =  
'N:\DARPA1998\TrainingDataset\week5\monday\TCP_PacketS_Week5_Monday.txt'; 
 
fid1 = fopen(filename, 'w'); 
 
for j=1:1:m1 
 
    fprintf(fid1,'%d ', PacketS(j,1:2)); 
 
    fprintf(fid1,'\n'); 
end 
 
fclose(fid1); 
 
 
%get unique source and destination pair  
 
for i=1: size_C 
 
    IP(i,1)= C{2}(i); 
 
    IP(i,2)= C{4}(i); 
end 
  
u = sortrows(IP); 
 
[u{end+1,:}] = deal(''); 
 
j = ~all(cellfun(@strcmp, u(1:end-1,:), u(2:end,:)),2); 
 
u=u(j,:); 
  
[m1, n1]=size(u); 
 
filename = 'N:\DARPA1998\TrainingDataset\week5\monday\TCP_IP_Week5_Monday.txt'; 
 
fid1 = fopen(filename, 'w'); 
 
for j=1:1:m1 
    fprintf(fid1,'%s %s', u{j,1:2}); 
 
    fprintf(fid1,'\n'); 
 
end 
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fclose(fid1); 
   
% compute frequency of each ip address   
 
 C2=unique(C{2});  
  
 size_C2 = size(C2); 
  
 for k=1:1:size_C2 
  
   C2{k,2}=0;  
 
 end  
  
 for i=1:1:size_C2 
 
     for j=1:1:size_C 
 
         if (strcmp(C2{i},C{2}(j))==1) 
 
             C2{i,2}= C2{i,2}+1; 
 
         end 
 
     end 
 
 end  
 
%UDP traffic 
  
fin=fopen('N:\DARPA1998\TrainingDataset\week5\monday\UDP_Week5_Monday.txt'); 
 
C2=textscan(fin,'%f %f %s %f %s %f %f'); 
 
size_C = size(C2{1}); 
 
%get occurance of port and size  
 
PortSU=unique(C2{4});  
 
P4= hist(C2{4}, PortSU); 
 
PortSU(1:end,2)= P4(1:end); 
  
[m1, n1]=size(PortSU); 
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filename =  
'N:\DARPA1998\TrainingDataset\week5\monday\UDP_PortS_Week5_Monday.txt'; 
 
fid1 = fopen(filename, 'w'); 
 
for j=1:1:m1 
 
    fprintf(fid1,'%d ', PortSU(j,1:2)); 
 
    fprintf(fid1,'\n'); 
 
end 
 
fclose(fid1); 
  
%port destination  
 
PortDU=unique(C2{6});  
 
P5= hist(C2{6}, PortDU); 
 
PortDU(1:end,2)= P5(1:end); 
  
[m1, n1]=size(PortDU); 
 
filename =  
'N:\DARPA1998\TrainingDataset\week5\monday\UDP_PortD_Week5_Monday.txt'; 
 
fid1 = fopen(filename, 'w'); 
 
for j=1:1:m1 
 
    fprintf(fid1,'%d ', PortDU(j,1:2)); 
 
    fprintf(fid1,'\n'); 
end 
 
fclose(fid1); 
 
%size of packet  
 
PacketSU=unique(C2{7});  
 
P6= hist(C2{7}, PacketSU); 
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PacketSU(1:end,2)= P6(1:end); 
  
[m1, n1]=size(PacketSU); 
 
filename = 
'N:\DARPA1998\TrainingDataset\week5\monday\UDP_PacketSU_Week5_Monday.txt'; 
 
fid1 = fopen(filename, 'w'); 
 
for j=1:1:m1 
 
    fprintf(fid1,'%d ', PacketSU(j,1:2)); 
 
    fprintf(fid1,'\n'); 
end 
fclose(fid1); 
 
%get unique source and destination pair  
 
for i=1: size_C 
 
    IP2(i,1)= C2{3}(i); 
 
    IP2(i,2)= C2{5}(i); 
 
End 
 
u2 = sortrows(IP2); 
 
[u2{end+1,:}] = deal(''); 
 
j = ~all(cellfun(@strcmp, u2(1:end-1,:), u2(2:end,:)),2); 
 
u2=u2(j,:); 
  
[m1, n1]=size(u2); 
 
filename =  
'N:\DARPA1998\TrainingDataset\week5\monday\UDP_IP_Week5_Monday.txt'; 
 
fid1 = fopen(filename, 'w'); 
 
for j=1:1:m1 
 
    fprintf(fid1,'%s %s', u2{j,1:2}); 
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    fprintf(fid1,'\n'); 
 
end 
 
fclose(fid1); 
 
%ICMP traffic 
  
fin=fopen('N:\DARPA1998\TrainingDataset\week5\monday\ICMP_Week5_Monday.txt'); 
 
C3=textscan(fin,'%f %f %f %s %s %f'); 
 
size_C = size(C3{1}); 
 
PacketSI=unique(C3{6});  
 
P7= hist(C3{6}, PacketSI); 
 
PacketSI(1:end,2)= P7(1:end); 
  
[m1, n1]=size(PacketSI); 
 
filename = 
'N:\DARPA1998\TrainingDataset\week5\monday\ICMP_PacketSI_Week5_Monday.txt'; 
fid1 = fopen(filename, 'w'); 
 
for j=1:1:m1 
 
    fprintf(fid1,'%d ', PacketSI(j,1:2)); 
 
    fprintf(fid1,'\n'); 
 
end 
 
fclose(fid1); 
 
%get unique source and destination pair  
 
for i=1: size_C 
 
    IP3(i,1)= C3{4}(i); 
 
    IP3(i,2)= C3{5}(i); 
 
end 
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u3 = sortrows(IP3); 
 
[u3{end+1,:}] = deal(''); 
 
j = ~all(cellfun(@strcmp, u3(1:end-1,:), u3(2:end,:)),2); 
 
u3=u3(j,:); 
  
[m1, n1]=size(u3); 
 
filename = 'N:\DARPA1998\TrainingDataset\week5\monday\ICMP_IP_Week5_Monday.txt'; 
 
fid1 = fopen(filename, 'w'); 
 
for j=1:1:m1 
 
    fprintf(fid1,'%s %s', u3{j,1:2}); 
 
    fprintf(fid1,'\n'); 
 
end 
 
fclose(fid1); 
 
%port frequency computation for udp traffic 
 
fin=fopen('N:\DARPA1998\TrainingDataset\DARPA98analyze\portSU\Combine_UDP_port_all
.txt'); 
 
C2=textscan(fin,'%f %f'); 
 
size_C2 = size(C2{1}); 
  
for i=1: size_C2(1) 
 
    P_U{i,1}= C2{1}(i); 
 
    P_U{i,2}= C2{2}(i); 
 
end 
 
sum_port=sum([P_U{:,2:2}]); 
  
for i=1: size_C2(1) 
 
    P_U{i,3}= (P_U{i,2}/sum_port); 
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end  
  
% read IP address frequency for udp traffic 
 
fin=fopen('N:\DARPA1998\TrainingDataset\DARPA98analyze\IPU\Combine_UDP_all.txt'); 
 
C1=textscan(fin,'%s %s %f'); 
 
size_C1 = size(C1{1}); 
  
for i=1: size_C1(1) 
 
    C_IP(i,1)= C1{1}(i); 
 
    C_IP(i,2)= C1{2}(i); 
 
    C_IP{i,3}= C1{3}(i); 
end 
  
sum_IP_oc=sum([C_IP{:,3:3}]); 
 
for i=1: size_C1(1) 
 
C_IP{i,4}= C_IP{i,3}/sum_IP_oc; 
 
end 
 
% read packet size frequency 
  
fin=fopen('N:\DARPA1998\TrainingDataset\DARPA98analyze\packetU_size\Combine_U 
DP_PacketSU_all.txt'); 
 
C3=textscan(fin,'%f %f'); 
 
size_C3 = size(C3{1}); 
  
for i=1: size_C3(1) 
 
    P_US{i,1}= C3{1}(i); 
 
    P_US{i,2}= C3{2}(i); 
end 
 
sum_psize=sum([P_US{:,2:2}]); 
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for i=1: size_C3(1) 
 
    P_US{i,3}= (P_US{i,2}/sum_psize); 
end  
  
% read IP address frequency for icmp traffic  
 
fin=fopen('N:\DARPA1998\TrainingDataset\DARPA98analyze\IPI\Combine_IP_ICMP_all.txt'); 
 
C1=textscan(fin,'%s %s %f'); 
 
size_C1 = size(C1{1}); 
  
for i=1: size_C1(1) 
 
    C_IP(i,1)= C1{1}(i); 
 
    C_IP(i,2)= C1{2}(i); 
 
    C_IP{i,3}= C1{3}(i); 
end 
  
sum_IP_oc=sum([C_IP{:,3:3}]); 
 
for i=1: size_C1(1) 
 
C_IP{i,4}= C_IP{i,3}/sum_IP_oc; 
 
end 
 
% packet size frequency for icmp traffic  
  
fin=fopen('N:\DARPA1998\TrainingDataset\DARPA98analyze\packetI_size\Combine_ICMP_al
l_Week.txt'); 
 
C3=textscan(fin,'%f %f'); 
 
size_C3 = size(C3{1}); 
  
for i=1: size_C3(1) 
 
    P_US{i,1}= C3{1}(i); 
 
    P_US{i,2}= C3{2}(i); 
end 
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sum_psize=sum([P_US{:,2:2}]); 
  
for i=1: size_C3(1) 
 
    P_US{i,3}= (P_US{i,2}/sum_psize); 
end  
  
% read frequency of each IP address and compute occurrence rate of it for TCP 
 
fin=fopen('N:\DARPA1998\TrainingDataset\DARPA98analyze\IP\Combine_IP_all.txt'); 
 
C1=textscan(fin,'%s %s %f'); 
 
size_C1 = size(C1{1}); 
  
for i=1: size_C1(1) 
 
    C_IP(i,1)= C1{1}(i); 
 
    C_IP(i,2)= C1{2}(i); 
 
    C_IP{i,3}= C1{3}(i); 
end 
  
sum_IP_oc=sum([C_IP{:,3:3}]); 
 
for i=1: size_C1(1) 
 
C_IP{i,4}= C_IP{i,3}/sum_IP_oc; 
 
end 
 
% read frequency of each port and compute occurrence rate of it for TCP  
 
fin=fopen('N:\DARPA1998\TrainingDataset\DARPA98analyze\portS\Combine_port_all.txt'); 
 
C2=textscan(fin,'%s %f'); 
 
size_C2 = size(C2{1}); 
  
for i=1: size_C2(1) 
 
    P_U{i,1}= C2{1}(i); 
 
    P_U{i,2}= C2{2}(i); 
end 
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sum_port=sum([P_U{:,2:2}]); 
  
for i=1: size_C2(1) 
 
    P_U{i,3}= (P_U{i,2}/sum_port); 
end  
 
% read frequency of each packet size and compute occurrence rate o fit for TCP  
 
fin=fopen('N:\DARPA1998\TrainingDataset\DARPA98analyze\packet_size\Combine_all.txt'); 
 
C3=textscan(fin,'%f %f'); 
 
size_C3 = size(C3{1}); 
  
for i=1: size_C3(1) 
 
    P_US{i,1}= C3{1}(i); 
 
    P_US{i,2}= C3{2}(i); 
 
end 
 
sum_psize=sum([P_US{:,2:2}]); 
  
for i=1: size_C3(1) 
 
    P_US{i,3}= (P_US{i,2}/sum_psize); 
 
end  

 

A.5 The code below applies score mechanism to create history for TCP traffic 

% read source/destination IP address, size of packet and port number for each  
day incoming traffic  
 
fin=fopen('N:\DARPA1998\TrainingDataset\DARPA98analyze\TCP_connection\Combine_TCP
_all_history.txt'); 
 
C=textscan(fin,'%s %s %s %s %f'); 
 
size_C = size(C{1}); 
  
for i=1: size_C 
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    Source_IP(i,1)= C{1}(i); 
 
    PortS(i,1)= C{2}(i); 
 
    Dest_IP(i,1)= C{3}(i); 
 
    PortD(i,1)= C{4}(i); 
 
    SizeU(i,1)= C{5}(i); 
   
end 
 
% read occurrence rate for each corresponding IP address  
 
fin=fopen('N:\DARPA1998\TrainingDataset\DARPA98analyze\IP\Combine_IP_all.txt'); 
 
C1=textscan(fin,'%s %s %f'); 
 
size_C1 = size(C1{1}); 
  
for i=1: size_C1(1) 
 
    C_IP(i,1)= C1{1}(i); 
 
    C_IP(i,2)= C1{2}(i); 
 
    C_IP{i,3}= C1{3}(i); 
end 
  
sum_IP_oc=sum([C_IP{:,3:3}]); 
 
for i=1: size_C1(1) 
 
C_IP{i,4}= C_IP{i,3}/sum_IP_oc; 
 
end 
 
% read occurrence rate for each corresponding port number  
 
 
fin=fopen('N:\DARPA1998\TrainingDataset\DARPA98analyze\portS\Combine_port_all.txt'); 
 
C2=textscan(fin,'%s %f'); 
 
size_C2 = size(C2{1}); 
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for i=1: size_C2(1) 
 
    P_U{i,1}= C2{1}(i); 
 
    P_U{i,2}= C2{2}(i ); 
 
end 
 
sum_port=sum([P_U{:,2:2}]); 
  
for i=1: size_C2(1) 
 
    P_U{i,3}= (P_U{i,2}/sum_port); 
 
end  
 
% read occurrence rate for each corresponding size of packet 
 
fin=fopen('N:\DARPA1998\TrainingDataset\DARPA98analyze\packet_size\Combine_all.txt'); 
 
C3=textscan(fin,'%f %f'); 
 
size_C3 = size(C3{1}); 
  
for i=1: size_C3(1) 
 
    P_US{i,1}= C3{1}(i); 
 
    P_US{i,2}= C3{2}(i); 
 
end 
 
sum_psize=sum([P_US{:,2:2}]); 
  
for i=1: size_C3(1) 
 
    P_US{i,3}= (P_US{i,2}/sum_psize); 
 
end  
  
% apply score mechanism for each corresponding IP address according to ip address C_IP{}, 
size of packet SizeU{}, and port number frequencies P_U{} 
 
for k=1:1:size_C 
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    j=1; 
 
    while ~(strcmp(Source_IP(k,1),C_IP(j,1)) &&  
 
strcmp(Dest_IP(k,1),C_IP(j,2))) 
 
        j=j+1; 
 
    end 
 
     if  (C_IP{j,3}> 500) 
 
         Score{k,1}=4*C_IP{j,4}; 
 
     else  
 
         if  (C_IP{j,3}> 100) 
 
             Score{k,1}=3*C_IP{j,4}; 
 
         else 
 
             if  (C_IP{j,3}> 20) 
 
                 Score{k,1}=2*C_IP{j,4}; 
 
             else  
 
                 Score{k,1}=1*C_IP{j,4}; 
 
             end 
 
         end 
 
     end 
     
    m=1; 
 
    while ~strcmp(PortS(k,1),P_U{m,1}) 
 
        m=m+1; 
    end 
   
        if  P_U{m,3}>.70 
       
          Score{k,2}=4*P_U{m,3}; 
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    else 
 
            if  P_U{m,3}> .50 
 
                Score{k,2}=3*P_U{m,3}; 
 
            else 
 
                if  P_U{m,3}> .30 
 
                    Score{k,2}=2*P_U{m,3}; 
 
                else 
 
                    Score{k,2}=1*P_U{m,3}; 
 
                end  
 
            end  
 
        end 
    
    n=1; 
 
    while ~(SizeU(k,1)==P_US{n,1}) 
 
        n=n+1; 
 
    end 
 
        if  P_US{n,3}> .70 
 
            Score{k,3}=4*P_US{n,3}; 
 
        else 
 
            if  P_US{n,3}> .50 
 
                Score{k,3}=3*P_US{n,3}; 
 
            else 
 
                if  P_US{n,3}> .30 
 
                    Score{k,3}=2*P_US{n,3}; 
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                else 
 
                    Score{k,3}=1*P_US{n,3}; 
 
 
                end  
 
            end  
 
        end 
 
end  
  
%compute overall score  
  
for i=1:1: size_C(1) 
 
    Score{i,4}= sum([Score{i,1:3}]); 
 
end  
 
t=0; 
 
for i=1:1:size_C(1) 
 
    if  Score{i,4}> .35 
 
        t=t+1; 
 
        history{1}(t)= Source_IP(i,1); 
 
        history{2}(t)= Dest_IP(i,1); 
         
    end  
 
end 
  
filename = 'N:\DARPA1998\TrainingDataset\DARPA98analyze\TCP_History_169.txt'; 
 
fid1 = fopen(filename, 'w'); 
 
for i=1:1:t 
    
   fprintf(fid1,'%s ',history{1}{i}); 
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   fprintf(fid1,'%s ',history{2}{i}); 
 
   fprintf(fid1,'\n'); 
 
end 
 
fclose(fid1); 
 

C.6 The code below checks if the attack can pass the created history  

%read created history C{}, and attack traffic C2{} 
%udp packets 
   
fin=fopen('N:\DARPA1998\TrainingDataset\DARPA98analyze\Udp_history\UDP_Histor 
y_size.txt'); 
 
C=textscan(fin,'%s %s'); 
 
size_C = size(C{1}); 
  
fin=fopen('N:\DARPA1998\TrainingDataset\DARPA98analyze\Testing_Trace\attack_i 
p.txt'); 
 
C2=textscan(fin,'%s %s'); 
 
size_C2 = size(C2{1}); 
 
k=0; 
  
for i=1:1:size_C(1) 
 
flag=0;  
 
j=0; 
 
    while (j<size_C2(1)) && (flag==0) 
 
        j=j+1; 
 
        if  strcmp(C{1}(i),C2{1}(j)) && strcmp(C{2}(i),C2{2}(j)) 
 
           k=k+1; 
   
           C3{1}(k)=C{1}(i); 
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           C3{2}(k)=C{2}(i); 
   
           flag=1; 
   
      end  
 
    end 
 
end  
 
%read created history C3{}, and attack traffic C2{} 
%tcp packets 
 
filename =  
'N:\DARPA1998\TrainingDataset\DARPA98analyze\Testing_Trace\Icmp\pass_history_trace_si
ze.txt'; 
 
fid1 = fopen(filename, 'w'); 
 
for j=1:1:k 
  
   fprintf(fid1,'%s ',C3{1}{j}); 
 
   fprintf(fid1,'%s ',C3{2}{j}); 
 
   fprintf(fid1,'\n'); 
 
end 
 
fclose(fid1); 
 
fin=fopen('TCP_all_week_f24.txt'); 
 
C=textscan(fin,'%s %s'); 
 
size_C = size(C{1}); 
  
fin=fopen('TCP_History_168.txt'); 
 
C2=textscan(fin,'%s %s'); 
 
size_C2 = size(C2{1}); 
 
k=0; 
  
for i=1:1:size_C(1) 
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flag=0;  
 
j=0; 
 
    while (j<size_C2(1)) && (flag==0) 
 
        j=j+1; 
 
        if  strcmp(C{1}(i),C2{1}(j)) && strcmp(C{2}(i),C2{2}(j)) 
 
           k=k+1; 
 
           C3{1}(k)=C{1}(i); 
 
           C3{2}(k)=C{2}(i); 
 
           flag=1; 
 
        end  
 
    end 
 
end  
 
filename = 'pass_Tcp_history_trace.txt'; 
 
fid1 = fopen(filename, 'w'); 
 
for j=1:1:k 
  
   fprintf(fid1,'%s ',C3{1}{j}); 
 
   fprintf(fid1,'%s ',C3{2}{j}); 
 
   fprintf(fid1,'\n'); 
 
end 
fclose(fid1); 
 
%read created history C{}, and attack traffic C2{} 
%icmp packets 
 
fin=fopen('N:\DARPA1998\TrainingDataset\DARPA98analyze\icmp_history\icmp_Histor 
y_size.txt'); 
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C=textscan(fin,'%s %s'); 
 
size_C = size(C{1}); 
  
fin=fopen('N:\DARPA1998\TrainingDataset\DARPA98analyze\Testing_Trace\attack_i 
p.txt'); 
 
C2=textscan(fin,'%s %s'); 
 
size_C2 = size(C2{1}); 
 
k=0; 
  
for i=1:1:size_C(1) 
 
flag=0;  
 
j=0; 
 
    while (j<size_C2(1)) && (flag==0) 
 
        j=j+1; 
 
        if  strcmp(C{1}(i),C2{1}(j)) && strcmp(C{2}(i),C2{2}(j)) 
 
           k=k+1; 
   
           C3{1}(k)=C{1}(i); 
   
           C3{2}(k)=C{2}(i); 
   
           flag=1; 
   
      end  
 
    end 
 
end  
 

A.7 The code below checks normal detection rate for CSU traffic including parallel 

programming  

 
parpool(8) 
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% reading incoming traffic file a{} 
 
load('C:\Users\negar\Documents\Data\History\3oct_history\02_27\ipslist.mat') 
 
% reading history file H{} 
 
fid=fopen('C:\Users\negar\Documents\Data\History\3oct_history\02_27\History_3 
oct-IP-data-2015-02-20_26.txt'); 
 
H = textscan(fid, '%s'); 
 
fclose(fid);  
  
% search for IP and collect IP address match with created history 
 
result=0; 
 
size_H = size(H{1}); 
 
size_C = size(c); 
 
count=0; 
 
C=zeros(size_H); 
 
parfor j=1:1:size_H 
 
   ixn = find(strcmp(a,H{1}(j))); 
 
   if  ~isempty(ixn) 
 
   C(j)=c(ixn); 
 
   count=count+1; 
 
   end 
 
end 
 
result=sum(C(:)); 
 
% write the result  
  
filename = 
'C:\Users\negar\Documents\Data\History\3oct_history\02_27\Match_History_27_1Copy.txt'; 
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fid3 = fopen(filename, 'w'); 
 
fprintf(fid3,'%f\n', result);  
  
fclose(fid3); 
  
filename = 
'C:\Users\negar\Documents\Data\History\3oct_history\02_27\Match_Uniq_IP_27_1Copy.txt'; 
 
fid4 = fopen(filename, 'w'); 
 
fprintf(fid4,'%f\n', count);  
  
fclose(fid4); 
 
 

A.8 The code below creates unique list of IP address from history and incoming traffic for 

CSU traffic. Then history accuracy check according to that 

% reading incoming traffic file a{} 
 
FID = fopen('C:\Users\negar\Documents\Data\History\3oct_history\3oct-IP-data- 
2015-02-28.0800.txt', 'r'); 
 
if  FID == -1, error('Cannot open file'), end 
 
Data = textscan(FID, '%s', 'delimiter', '\n', 'whitespace', ''); 
 
CStr = Data{1}; 
 
fclose(FID); 
 
size(CStr) 
 
% remove the repeated ips 
 
[a,~,c]=unique(CStr); 
 
clear CStr Data FID 
 
c=accumarray(c,1); 
 
% find match IP between created history H{} and incoming traffic AD{} 
 



181 
 

fid=fopen('C:\Users\negar\Documents\Data\History\Match_History\02_28\all-IP-2015-02-
28.txt'); 
 
AD = textscan(fid, '%s'); 
 
size(AD{1}) 
 
fid2=fopen('C:\Users\negar\Documents\Data\History\History_all-IP-data-2015-02-25_27.txt'); 
 
H = textscan(fid2, '%s'); 
 
fclose(fid2); 
 
size(H{1}) 
 
Result=intersect(AD{1},H{1}); 
  
filename =  
'C:\Users\negar\Documents\Data\History\3days_history\Match_Uniq_IP_02-28.txt'; 
 
fid3 = fopen(filename, 'w'); 
 
fprintf(fid3,'%s\n', Result{:});  
  
fclose(fid3); 
 

A.9 The code below creates and test Compacted Bloom Filter 

% number of elements 
 
n=100 ;  
 
x=15; 
 
% size of Bloom filter 
 
m=n*x ;  
 
Fill_ratio=0; 
 
Fill_ratio_new=0; 
 
Correct_counter=0; 
 
counter_1bit_change=0; 
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counter_2bit_change=0; 
 
counter_3bit_change=0; 
 
counter_4bit_change=0; 
 
 
counter_5bit_change=0; 
 
counter_6bit_change=0; 
  
% Create Bloom Filter A{} from created history of IP address C{} 
 
A(m,1)=0; 
 
set_bit=0; 
 
fin=fopen('C:\Users\negar\Documents\MATLAB\tcp_udp_icmp_history1901_3partip_100.txt'); 
  
C=textscan(fin,'%s\n'); 
 
size_C = size(C{1}); 
 
for i=1:1:size_C 
 
D=HashFunction(char(C{1}(i))); 
 
set_bit= mod(D,m)+1; 
 
A(set_bit,1)=1; 
 
D=HashFunction2(char(C{1}(i))); 
 
set_bit= mod(D,m)+1; 
 
A(set_bit,1)=1; 
 
D=HashFunction3(char(C{1}(i))); 
 
set_bit= mod(D,m)+1; 
 
A(set_bit,1)=1; 
 
D=HashFunction4(char(C{1}(i))); 
 
set_bit= mod(D,m)+1; 
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A(set_bit,1)=1; 
 
D=HashFunction5(char(C{1}(i))); 
 
set_bit= mod(D,m)+1; 
 
A(set_bit,1)=1; 
 
D=HashFunction6(char(C{1}(i))); 
 
set_bit= mod(D,m)+1; 
 
A(set_bit,1)=1; 
 
D=HashFunction7(char(C{1}(i))); 
 
set_bit= mod(D,m)+1; 
 
A(set_bit,1)=1; 
 
D=HashFunction8(char(C{1}(i))); 
 
set_bit= mod(D,m)+1; 
 
A(set_bit,1)=1; 
 
D=HashFunction9(char(C{1}(i))); 
 
set_bit= mod(D,m)+1; 
 
A(set_bit,1)=1; 
 
D=HashFunction10(char(C{1}(i))); 
 
set_bit= mod(D,m)+1; 
 
A(set_bit,1)=1; 
 
disp(hash) 
 
dec2bin(hash) 
 
end  
   
fclose(fin); 
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for i=1:m 
  
   if  A(i,1)==1 
 
        Fill_ratio=Fill_ratio+1; 
 
    end 
 
end 
  
  
% End Create Bloom Filter  
 
% Create Compressed Bloom Filter  
 
CBF(n,1)=0; 
 
% New Bloom Filter B{} 
 
B(m,1)=0;  
 
False_counter=0; 
 
keep_j=0; 
 
for i=1:n 
    
    j=i; 
    
    q=1; 
    
    counter_bit_set=0; 
    
    while q <= x 
    
      if  A(j,1)==1 
         
        counter_bit_set=1+counter_bit_set; 
         
        keep_j=q; 
        
      end 
       j=j+n; 
       q=q+1; 
    end  
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    if  counter_bit_set==x 
     
        CBF(i,1)=9; 
     
        Correct_counter=Correct_counter+1; 
     
    elseif counter_bit_set > floor(x/2)  
     
        CBF(i,1)=8; 
         
        p=i; 
        for k=1:x 
 
        B(p,1)=1; 
 
        p=p+n; 
 
        end 
 
    elseif (counter_bit_set <= floor(x/2)) 
 
        if  (counter_bit_set == floor(x/2)-5 || counter_bit_set == floor(x/2)-4 || counter_bit_set == 
floor(x/2)-3 || counter_bit_set == floor(x/2)-2 ||counter_bit_set == floor(x/2)-1 || counter_bit_set 
== floor(x/2)) 
 
        False_counter=False_counter+1; 
         
        %Count Number of bit change to 0  
 
            if  (counter_bit_set == floor(x/2)-5) 
 
                    counter_1bit_change=1+ counter_1bit_change; 
 
            end 
 
            if  (counter_bit_set == floor(x/2)-4) 
 
                    counter_2bit_change=1+ counter_2bit_change; 
 
            end 
 
            if  (counter_bit_set == floor(x/2)-3) 
 
                counter_3bit_change=1+ counter_3bit_change; 
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            end 
             
            if  (counter_bit_set == floor(x/2)-2) 
 
                counter_4bit_change=1+ counter_4bit_change; 
            end 
 
            if  (counter_bit_set == floor(x/2)-1) 
 
                counter_5bit_change=1+ counter_5bit_change; 
 
            end 
            if  (counter_bit_set == floor(x/2)) 
 
                counter_6bit_change=1+ counter_6bit_change; 
 
            end 
         
        end 
 
        %count number of bit change to 1  
         
        if  (counter_bit_set == 1) 
 
        Correct_counter=Correct_counter+1; 
 
        end 
 
        if  (counter_bit_set == 0) 
 
          p=i; 
 
          Correct_counter=Correct_counter+1; 
 
          for k=1:x 
 
             B(p,1)=0; 
 
             p=p+n; 
 
          end 
 
          else 
 
            CBF(i,1)=keep_j; 
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            p=i; 
 
            for k=1:x 
 
                if  k== keep_j 
 
                 B(p,1)=1; 
 
                else  
 
                 B(p,1)=0; 
 
                end 
 
            p=p+n; 
 
            end 
 
         end 
 
    end 
     
end 
  
for i=1:m 
 
    if  B(i,1)==1 
 
        Fill_ratio_new=Fill_ratio_new+1; 
 
    end 
 
end 
 
% compute false positive rate of compacted Bloom filter 
  
Fill_ratio_new_percent=Fill_ratio_new/m; 
 
Fill_ratio_percent=Fill_ratio/m; 
 
False_poitive_new= Fill_ratio_new_percent^2; 
 
False_poitive= Fill_ratio_percent^2; 
  
filename = 'C:\Users\negar\Documents\MATLAB\CompressBloomfilter.txt'; 
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fid = fopen(filename, 'w'); 
  
for j=1:m 
  
    fprintf(fid, '%d\n', B(j,1));  
  
end 
 
 

A.10 The code below is Linux scripts to read and extract corresponding features from CSU, 

DARPA CAIDA and university of Auckland dataset 

 
// Read Argus file and Extract incoming traffic to CSU (129.82.*.*) 
ra -r 2015-02-01.0800.hVwjYxK.lander4.argus.gz  -w - | ra dst net 129.82.00.00/* -s +1dur 
+tcprtt +bytes +spkts +dpkts > /raid6/negar/all-data-csu-feb15/all-data-2015-02-01.0800.txt 

// Extract Source IP, Destination, Port#, Size of packet for each day traffic 
cat  /raid6/negar/all-data-csu-feb/all-data-2015-02-01.0800.txt | cut -d' ' -f27 | cut -f1,2,3,4 -d'.' | 
sort | sed 's/[!Flgs]//'g |sed 's/[!Proto]//'g| sed '/^$/d;s/[[:blank:]]//g' > /raid6/negar/all-data-csu-
feb/27.txt 

cat 24.txt 25.txt 26.txt 27.txt | sed 's/[!-]//'g | sed 's/[!<->]//'g | sed 's/[!?]//'g |sed 
'/^$/d;s/[[:blank:]]//g'|sort > all-IP-data-2015-02-01.0800.txt 

// Combine all traffic based on window size. For example, combine 2 weeks incoming traffic  
cat all-IP-2014-01-30.txt all-IP-2014-01-18.txt all-IP-2014-01-18.txt all-IP-2014-01-19.txt all-
IP-2014-01-20.txt all-IP-2014-01-21.txt all-IP-2014-01-22.txt all-IP-2014-01-23.txt all-IP-2014-
01-24.txt all-IP-2014-01-25.txt all-IP-2014-01-26.txt all-IP-2014-01-27.txt all-IP-2014-01-28.txt  
all-IP-2014-01-29.txt > all_data-2014-01-18_31.txt 

// Count number of occurrence and create signature for each extracted features 
 awk '{for(w=1;w<=NF;w++) print $w}' comb_all-IP-data-2015-02-04.txt | sort | uniq -c | sort -
nr > freq_all-IP-data-2015-02-04.txt 

// Extract one type of traffic for example UDP traffic  
ra -r 2015-02-01.0800.hVwjYxK.lander4.argus.gz - udp -w - | ra dst net 129.82.00.00/240 -s 
+1dur +tcprtt +bytes +spkts +dpkts > /raid1/negar/all-data-csu-feb/udp-data-2015-02-01.0800.txt 

all-data-csu-feb]$ cat  /raid1/negar/all-data-csu-feb/udp-data-2015-02-01.0800.txt | cut -d' ' -f26 | 
cut -f5 -d'.' | sort | sed 's/[!Flgs]//'g |sed 's/[!Proto]//'g| sed '/^$/d;s/[[:blank:]]//g' > /raid1/negar/all-
data-csu-feb/26.txt 

// Reading CAIDA traffic and extract features such as Source IP, Destination, Port#, Size of 
packet as well as TCP SYN and ACK flags 
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tcpdump -vvnnS -r equinix-chicago.dirA.20110607-235000.UTC.anon.pcap 'tcp[13]=18' -tt | sed 
's/F.*q//'| sed 's/a.*k//'| sed 's/(.*h//' | sed 's/I.*P//'| sed 's/w.*h//' | sed 's/I.*P//' | sed 's/>//' | sed 
's/://' | sed 's/)//' | cut -d' ' -f1,4,5,7,9,11 | awk 'ORS=NR%2?" ":"\n"'  | sed "s/:.*, / /g" | sed 's/,//'| 
sed 's/,//' | sed 's/  //g' > dirA.20110607-235000_tcp18.txt  

// Reading University of Auckland dataset  
./tracesplit -f "tcp[13]=16" legacyatm:/mnt/c20311/wits/20010318-020000-0.gz 
pcapfile:/mnt/c20311/tmp2/convert20010318-020000-0.pcap.gz 

// Extract time, Source IP, Destination, Port#, Size of packet for each day as well as TCP SYN 
and ACK flags 
tcpdump -vvnnS -r convert20010314-020000-0.pcap.gz 'tcp[13]=16' -tt | sed 's/ t.*!//' | sed 
's/F.*q//' | sed 's/a.*k//' | sed 's/(.*)//' | sed 's/I.*)//' | sed 's/w.*h//' |sed 's/I.*P//' | sed 's/>//' | sed 
's/://' | cut -d' ' -f1,5,7,9,11 | awk 'ORS=NR%2?" ":"\n"' | sed "s/:.*, / /g" | sed 's/,//' | sed 's/,//' > 
/mnt/c20311/data/data20010314-020000-0.txt 

./tracesplit -f "tcp[13]=18" legacyatm:/mnt/c20311/wits/20010318-020000-1.gz 
pcapfile:/mnt/c20311/tmp2/convert20010318-020000-1.pcap.gz 

tcpdump -vvnnS -r convert20010314-020000-1.pcap.gz 'tcp[13]=18' -tt | sed 's/ t.*!//' | sed 
's/F.*q//' | sed 's/a.*k//' | sed 's/(.*)//' | sed 's/I.*)//' | sed 's/w.*h//' |sed 's/I.*P//' | sed 's/>//' | sed 
's/://' | cut -d' ' -f1,5,7,9,11 | awk 'ORS=NR%2?" ":"\n"' | sed "s/:.*, / /g" | sed 's/,//' | sed 's/,//' > 
/mnt/c20311/data/data20010314-020000-1.txt 

// Extract one type of traffic for example UDP traffic from University of Auckland dataset  
tcpdump -vvnnS -r udp20010315-020000-0.pcap.gz -tt | sed 's/ t.*!//'| sed 's/ I.*,//'| sed 's/ I.*)//' | 
sed 's/>>>.*//' | sed 's/WAR.*//' | sed 's/984622873.970670.*//' | sed 's/packetexc.*//'| sed 
's/Trn.*//' | sed 's/Data:.*//' | sed 's/OpCode.*//' | sed 's/Rcode.*//' | sed 's/NmFlag.*//' | sed 
's/Query.*//' | sed 's/Answer.*//' | sed 's/Author.*//' | sed 's/Address.*//' | sed 's/Addit.*//' | sed 
's/uns.*//'| sed 's/[[].*//' | sed 's/Root.*//'| sed 's/[>].*//' | sed '/^$/d;s/[[:blank:]]//g' | awk 
'ORS=NR%2?" ":"\n"' | cut -d' ' -f2 | cut -d'.' -f1,2,3,4 > /mnt/c20311/data/udp20010315-020000-
0.txt 

// Extract single feature as follows 
Time 
tcpdump -vvnnS -r convert.pcap.gz 'tcp[13]=16' -c 1200000 -tt | sed 's/ t.*!//' | sed 's/F.*q//' | sed 
's/a.*k//' | sed 's/(.*)//' | sed 's/I.*)//' | sed 's/w.*h//' |sed 's/I.*P//' | sed 's/>//' | sed 's/://' | cut -d' ' -
f1,5,7,9,11 | awk 'ORS=NR%2?" ":"\n"' |  cut -d' ' -f1 | sed "s/:.*, / /g" | sed 's/,//' | sed 's/,//' > 
/mnt/c20311/data/time20010315-020000-0.txt 

Source IP   
tcpdump -vvnnS -r  ddostrace.to-victim.20070804_134936.pcap 'tcp[13]=16' -tt | sed 's/ t.*!//' | 
sed 's/F.*q//' | sed 's/a.*k//' | sed 's/(.*)//' | sed 's/I.*)//' | sed 's/w.*h//' |sed 's/I.*P//' | sed 's/>//' | sed 
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's/://' | cut -d' ' -f1,5,7,9,11 | awk 'ORS=NR%2?" ":"\n"' |  cut -d' ' -f3 | sed "s/:.*, / /g" | sed 's/,//' | 
sed 's/,//' > tcp_attack20070804_134936 

Destination IP  
tcpdump -vvnnS -r convert20010314-020000-0.pcap.gz 'tcp[13]=16' -tt | sed 's/ t.*!//' | sed 
's/F.*q//' | sed 's/a.*k//' | sed 's/(.*)//' | sed 's/I.*)//' | sed 's/w.*h//' |sed 's/I.*P//' | sed 's/>//' | sed 
's/://' | cut -d' ' -f1,5,7,9,11 | awk 'ORS=NR%2?" ":"\n"' |  cut -d' ' -f4 | sed "s/:.*, / /g" | sed 's/,//' | 
sed 's/,//' > /mnt/c20311/data/dest20010314-020000-0.txt 

Sequence  
tcpdump -vvnnS -r convert.pcap.gz 'tcp[13]=16' -c 30 -tt | sed 's/ t.*!//' | sed 's/F.*q//' | sed 
's/a.*k//' | sed 's/(.*)//' | sed 's/I.*)//' | sed 's/w.*h//' |sed 's/I.*P//' | sed 's/>//' | sed 's/://' | cut -d' ' -
f1,5,7,9,11 | awk 'ORS=NR%2?" ":"\n"' |  cut -d' ' -f5 | sed "s/:.*, / /g" | sed 's/,//' | sed 's/,//' | cut -
d':' -f1  > /mnt/c20311/data/dest20010312-020000-0.txt 

Acknowledge  
tcpdump -vvnnS -r convert.pcap.gz 'tcp[13]=16' -tt | sed 's/ t.*!//' | sed 's/F.*q//' | sed 's/a.*k//' | 
sed 's/(.*)//' | sed 's/I.*)//' | sed 's/w.*h//' |sed 's/I.*P//' | sed 's/>//' | sed 's/://' | cut -d' ' -f1,5,7,9,11 | 
awk 'ORS=NR%2?" ":"\n"' |  cut -d' ' -f6 | sed "s/:.*, / /g" | sed 's/,//' | sed 's/,//' | cut -d':' -f1 > 
/mnt/c20311/data/ack20010312-020000-0.txt 

Length 
tcpdump -vvnnS -r convert20010314-020000-0.pcap.gz 'tcp[13]=16' -tt | sed 's/ t.*!//' | sed 
's/F.*q//' | sed 's/a.*k//' | sed 's/(.*)//' | sed 's/I.*)//' | sed 's/w.*h//' |sed 's/I.*P//' | sed 's/>//' | sed 
's/://' | cut -d' ' -f1,5,7,9,11,13 | awk 'ORS=NR%2?" ":"\n"' |  cut -d' ' -f7 | sed "s/:.*, / /g" | sed 
's/,//' | sed 's/,//' > /mnt/c20311/data/length20010314-020000-0.txt 

icmp 
./tracesplit -f "icmp" legacyatm:/mnt/c20311/wits/20010329-020000-0.gz 
pcapfile:/mnt/c20311/udp/icmp20010329-010000-0.pcap.gz  

tcpdump -vvnnS -r icmp20010329-010000-0.pcap.gz  -tt | sed 's/ t.*!//'| sed 's/ I.*,//'| sed 's/ I.*)//' 
| cut -d' ' -f1,5,7 | awk 'ORS=NR%2?" ":"\n"' | cut -d' ' -f3  | sed 's/://' > 
/mnt/c20311/data/icmp/icmp20010329-010000-0.txt 

// Combine all traffic based on window size. For example, combine 2 weeks incoming traffic  
cat filtercmp20010409-010000-0.txt filtercmp20010327-010000-0.txt  filtercmp20010328-
010000-0.txt icmp20010329-010000-0.txt filtercmp20010330-010000-0.txt filtercmp20010331-
010000-0.txt  filtercmp20010401-010000-0.txt filtercmp20010402-010000-0.txt 
filtercmp20010403-010000-0.txt filtercmp20010404-010000-0.txt filtercmp20010405-010000-
0.txt filtercmp20010406-010000-0.txt filtercmp20010407-010000-0.txt filtercmp20010408-
010000-0.txt | sort | uniq > icmp_history_2709.txt 

// Create list of unique IP addresses  
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cat tcp_history_2103.txt /mnt/c20311/data/udp/udp_history_2103.txt 
/mnt/c20311/data/icmp/icmp_history_2103.txt | sort | uniq > tcp_udp_icmp_history_2103.txt 

// Find list of IP addresses that are matched between two files. For instance between IP address 
history and corresponding day traffic 
grep -Fxv -f  history2608_09.txt /mnt/c20311/data/tcp_sip_2nextweek/tcp_udp_icmp_409.txt 

// Reading DARPA dataset  and extract time, Source IP, Destination, Port#, Size of packet for 
each day as well as TCP SYN and ACK flags 
tcpdump -vvnnS -r tcpdump.pcap.gz 'tcp[13]=16' -tt -c 1000 | sed 's/F.*q//' | sed 's/a.*k//' | sed 
's/(.*)//' | sed 's/I.*)//' | sed 's/w.*h//' | sed 's/I.*P//' | sed 's/>//' | sed 's/://' | cut -d' ' -f1,5,7,9,11 | 
awk 'ORS=NR%2?" ":"\n"' | sed "s/:.*, / /g" | sed 's/,//' | sed 's/,//' > 
/mnt/c20305Negar/DARPA1998/TrainingDataset/week1/monday/tcp16.txt 

tcpdump -vvnnS -r outside.tcpdump 'tcp[13]=18' -tt | sed 's/F.*q//' | sed 's/a.*k//' | sed 's/(.*)//' | 
sed 's/I.*)//' | sed 's/w.*h//' | sed 's/I.*P//' | sed 's/>//' | sed 's/://' | cut -d' ' -f1,5,7,9,11 | awk 
'ORS=NR%2?" ":"\n"' | sed "s/:.*, / /g" | sed 's/,//'| sed 's/,//' > 
/mnt/c20305Negar/DARPA1998/TrainingDataset/week1/monday/tcp18.txt 

 


