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ABSTRACT

COOPERATIVE DEFENSE MECHANISM FOR DETECTION, IDENTIFICATION AND

FILTERING OF DDOS ATTACKS

Distributed Denial of Service (DDoS) attacks, which are intended to make the service
unavailable for legitimate users, originate in a highly distributed manner providing the illusion of
legitimate traffic. The number of attacks and the volume of traffic associated with attacks
continue to increase dramatically. At these traffic intensities, the network infrastructure upstream
from the intended victim also becomes severely affected necessitating that attack traffic be
filtered as close as possible to the attack sources. However, it is difficult to anticipate and
identify such nodes as the attacks originate at widely distributed nodes and spread through
various routes. To successfully respond by dropping traffic, the mitigating approach must
identify routers on traffic paths with significant attack traffic and respond with minimum effect
on legitimate traffic. We develop a suite of solutions to address this problem. Cooperative
Defense Mechanism (CDM), a distributed responsive defense mechanism for DDoS attacks is
presented. CDM allows the identification of network routers closer to the attack sources and
provides these routers a profile that facilitates discrimination between legitimate and malicious
packets during the attack and thus enables them to drop traffic perceived as malicious in a
distributed manner.

The cooperative defense model consists of three main components: (1) an attack traffic
identification mechanism, (2) a filtering mechanism, and (3) a cooperative mechanism to identify

the most effective points for filtering.



First, we investigate the features of attack and normal traffic to develop an identification
model for the attack traffic. The main challenge is to detect attack traffic without misclassifying
legitimate traffic thus avoiding the disruption of normal services. The parameters such as
source/destination IP address, port number, size of packet are employed to establish the
identification model and develop a scoring mechanism that provides the basis to create a history-
based profile. The effectiveness of this approach is in blocking attack traffic and allowing the
legitimate traffic at upstream routers. Experimental results, based on a recent traffic trace from
Colorado State University, indicate that the filtering model is able to protect the victim node on
average from ~95% of attack traffic while preserving ~75% of the normal legitimate traffic.

Second component, the filtering mechanism, is aimed at dropping attack traffic closer to the
sources while minimizing the impact on legitimate traffic. The filters are propagated to selected
upstream routers during the attack, keeping the communication and memory overhead associated
low. A Bloom filter based mechanism is proposed to efficiently implement and disseminate the
proposed history-based profile. Moreover, we introduce a novel data structure, which we refer to
as the Compacted Bloom Filter (CmBF) that further improves performance, uses less storage,
reduces the communication and computation costs, and provides the same functionality as a
standard Bloom filter. However, unlike the standard Bloom filter, CmBF limits false positives
significantly at the expense of false negatives in membership queries. Our work is motivated by a
class of applications that must transmit Bloom filters over a network and endpoint machines
having limitations on memory availability to meet specific false positive probability. We derive
expressions for the false positive and false negative rates. Simulation results are used to validate

the derived expressions and explore the tradeoffs when using the CmBF.



The third component identifies the most effective points where the Bloom filter based
mechanism can be placed to mitigate the attacks. We do this by monitoring the network traffic
during the attack period. The approach tries to minimize the modifications required to the routers
and the current protocols to combat DDoS attacks. Such modifications will have a low
complexity and will be scalable. Our solution benefits by using a recently developed technology,
typically implemented as Small Formfactor Probes (SFP) using FPGAs, which helps gather,
distribute, and analyze information from a distributed Ethernet network. SFProbes can plug into
any SFP compatible elements such as routers in a way that does not interfere with the traffic
flow. Our approach uses a subset of probes to identify the nodes that carry attack traffic.
Extensive simulation in OPNETwith CAIDA attack dataset shows that our solution is able to
place all the filtering routers in the vicinity of the attacker nodes (within the first three routers)
and stops 95% of attack traffic while allowing 77% of the legitimate traffic to reach the victim
node when the percentage of participating SFProbes in the network is 80%. Results also
demonstrate the effectiveness of the mechanism in preserving valuable network resources and
link utilizations for other end-users during the attack time, thereby preserving the service
availability and minimizing the attack impact.

An analytical model for packet-pair dispersion signature in multi-hop networks is presented
in the last part of our investigation. Path signature is an essential tool for numerous applications
that need to distinguish between different network paths, diagnose problems, test protocols for
realistic network conditions, and determine if two paths share common links. Our approach is a
passive technique that relies on existing network traffic and hence does not consume network
resources for measurements. The relationship between the input and the output gaps of packet-

pairs and the corresponding distribution of eémxdnd packet-pair dispersions are derived. This



derivation is then used to determine the signature characterizing the path where the path
signatures can provide other properties of a path, such as an available bandwidth estimate,
utilization, and bottleneck capacity of the path to monitor and diagnose network problems. The
analytical model was verified using OPNESimulations and was used to evaluate the impact of
factors such as the number of hops, initial dispersion, link capacities, and cross traffic that affect
the shape of the signature.

The proposed solutions are tested on either real world or realistic data to establish
performance and accuracy. Real network traffic and DDoS attack dataset from sources such as
Colorado State University (FRGP Continuous Flow Data), DARPA, CAIDA 2007 as well as

Auckland University dataset have been used to evaluate the presented techniques.
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CHAPTER 1

INTRODUCTION

Internet services and resources form an integral part of our daily life. It is, therefore,
important to protect such services and resources from Denial-of-Service (DoS) attacks. DoS
attacks, which are intended to make the service unavailable for legitimate users, have been
known to the network research community since the early 1980s. From past incidents of DDoS
attacks against commercial websites like Yahoo, E-bay and E*Trade, it is evident that all
computer systems connected to the Internet are vulnerable to DDoS attacks [1], [2]. As
emergency and essential services rely on their infrastructures, the consequences of DDoS attack
could result in serious financial losses for E-commerce. It is for this reason(s) that defense
against DDoS attacks has become one of the most important research issues in the Internet
security community [3]. During a three-week period in mid-2001, researchers from the
University of California, San Diego, detected approximately 128,000 DoS attacks against more
than 5,000 targets [4]. On February 9, 2000, Yahoo, eBay, Amazon.com, E*trade, ZDnet,
buy.com, the FBI, and several other websites fell victim to DDoS attacks, resulting in millions of
dollars in damages and inconveniences [$§]. Despite significant research into
countermeasures, DDoS attacks still remain a major threat today [4]. Recent examples include a
record 400 Gbit/s DDoS attack against CloudFlare, a rate about 100 Gbit/s more than the largest
previously seen DDoS attack [5]. The impact of DDoS attacks to legitimate users may vary from
minor inconvenience to disastrous consequences. The frequencies and the impact of DDoS
attacks have motivated researchers in the internet security community to provide techniques for

preventing, detecting, and surviving such attacks [3]. The majority of proposed approaches have



failed to provide service availability in the presence of DDoS attacks. Towards this end, we
investigate and develop a cooperative defense scheme based on an identification model for
DDoS attacks located at routers closer to the attack sources. It is important to somehow
distinguish attack traffic from legitimate traffic and allow legitimate traffic access to the victim
node when an attack occurs.

In general, there are several factors that make defending against DDoS attacks hard. First, the
traffic flow volume through the victim node can reach very high values, e.g., 400Ghbps [7]
Second, the attack occurs in a highly distributed manrtérs gives the illusion of legitimate
traffic and makes detection difficult. In addition, a flooding attack can appear like a flash crowd,
which occurs when a large number of legitimate users connect to a server simultaneously [8]
Differentiating the attack traffic from flash crowd traffic is one of the hardest steps in detecting
and protecting against DDoS attacks. The presence of zombies that spoof the IP address of the
source of the attack make it even more difficult to identify and trace the attacks back to their
actual sources. Researchers have worked on providing a mechanism that uses different features
of traffic to distinguish attack traffic from legitimate ones. However, these mechanisms are able
to detect only attacks having those specific features [9]. Moreover, once the attacker knows the
features that are of interest to the detection mechanism, he can develop strategies that bypass the
detection mechanisms. For example, consider the scheme based on the abrupt change of traffic
volume [10], [11], [12], [13]. In this approach, the attacker can bypass the detection mechanism
by sending out an attack flow to change the statistics of the traffic. For the scheme based on flow
dissymmetry [14], [5] [15], [16], [17], the attacker may use randomly spoofed source IP
addresses and send out the same amount of SYN packets and FIN/RST packets that can go

unnoticed when compared to legitimate traffic flows. An effective approach presented in [18] has



established a history of a legitimate IP address that has appeared before; however, the adversary
can bypass this mechanism by starting to send IP address frequently before beginning the attack.
Therefore, we need a more robust and efficient defense mechanism for effectively stopping
attack traffic while allowing legitimate traffic to the extent possible. The first step of our
proposed approach addresses this problem and establishes an identification model to detect
attack without misclassifying legitimate traffic. An unusually high traffic volume may not by
itself be a good indicator of a DDoS attack, as it can occur due to flash crowds as well. Thus,
other features that help distinguish attacks from normal traffic have to be incorporated. We look
into multiple features of DDoS attacks and normal traffic to extract characteristics that give
information to discriminate a DDoS attack. These features and their relationships are used to
establish high confidence IP address history and develop a normal traffic profile that can be used
to categorize normal and attack traffic more accurately. The parameter set for establishing the
identification model are source IP address and port number, destination IP address, size of
packet, packet type (ICMP, UDP, TCP), frequency of IP address and for TCP traffic, those IP
addresses with a successful TCP handshake. These features are used to develop a scoring
mechanism that provides the basis for normal traffic signatures. The effectiveness of this
approach in blocking attack traffic and allowing legitimate traffic at upstream routers has been
demonstrated using DARPA dataset [19], CSU dataset [20] as well as CAIDA attack dataset
[21]. The experiments indicate that the filtering model can protect the victim node from ~95% of
attack traffic while allowing ~75% of legitimate traffic.

The second challenge after determining an identification model is how to effectively use
history-based profile to prevent the attack in a cooperative defense model. During the attack

period, prebuilt filters must be propagated to the routers at responsive points, and filter attack



traffic while preserving legitimate traffic. Moreover, the routers must check all packets destined
for the victim node and this is a costly task for routers. Therefore, a well distributed, effective
and efficient filtering structure would be a significant contribution. A Bloom filter is a space-
efficient probabilistic data structure that is used to test for set memberships in many domains,
including networking applications. Although such a check can be done efficiently, false positives
are possible. A Bloom filter is used for representing the contents of the history-based profile,
which is used to distinguish between legitimate and attack traffic. Such a filter helps reduce
communication and computation costs and also storage requirements of the upstream routers that
check for malicious traffic. This mechanism requires passing Bloom filters as a part of the
message. Consequently, it is important to minimize the size of the filters, such that storage and
processing costs are minimized. We introduce a novel data structure, which we refer to as the
Compacted Bloom Filter (CmBF) that improves performance, uses less storage, and provides the
same functionality as a traditional Bloom filter for applications, such as IP traceback, web
caching, and pedo-peer networks. For the same fraction of false positives, the CmBF generally
offers memory saving two or more bits over the standard Bloom filter. This space saving is
determined by false negatives introduced in the CmBF structure, which does not exist in the
standard Bloom filter. The false negative rate has a tradeoff between false positive rate and
memory reduction size, which are all discussed in detail throughout Chapter 4. The other
advantage of the CmBF is that it is very simple and practical, much like the standard Bloom filter
construction and therefore, this construction is useful in practice.

The final challenge to provide a cooperative defense mechanism is to determine where to
apply the filtering mechanism. A victim node is a good point to discriminate a DDoS attack;

however, the victim node is not a good point to filter the attack and may even crash. This is



exactly the goal of the attack. In addition, it is a late reaction to the DDoS attack, as huge attack
traffic may strain Internet resources elsewhere. Since attackers cooperate to perform successful
attacks, defenders must also form and cooperate with each other to defeat the DDoS attack.
Therefore, a distributed approach that is able to effectively respond to DDoS attacks with
minimum damage to legitimate traffic with minimal overhead is investigated. Placing filters at
the upstream nodes may be expensive because all packets passing through such a node must be
processed irrespective of whether a significant amount of attack traffic passes through it or not.
Placing filters close to the victim nodes, in contrast, causes resource wastage, as the attack traffic
passes through the network before it is stopped. Our proposed solution addresses this problem by
using a recently developed technology, typically implemented as Small Formfactor Probes (SFP)
using Field Programmable Gate Arrays (FPGAs). Our approach uses SFProbes, at a subset of
ports in the network, to identify the upstream links, and thus, nodes which carry attack traffic and
close to source of the attack. The technique has been validated with two real-world data sets.
Compared with recent cooperative approaches, our scheme reduces processing overhead while
maintaining the Quality of Service (QoS) for legitimate traffic during the attack period and
making the scheme more deployal®eme works appear in distributed defense mechanisms for
DDoS attacks [22] [23] [24] [25] [26]. Such schemes [22] [23] [24] detect attacks downstream
close to the victim and this attack signature is propagated upstream to the routers doing filtering
located close to the source of the attack. The drawback of these approaches is the difficulty of
securely forwarding the attack signature to the upstream routers. Some schemes [23] [24] need a
global key distribution infrastructure for authenticating and verifying the attack signature [27]
which is used for differentiating attack traffic from the legitimate one. Note that creating an

accurate attack signature is difficult due to the presence of zombies, who can spoof the IP



address of the attack source. Firecol mechanism [25] also presents a distributed collaborative
system to detect flooding DDoS attacks. This mechanism relies on an Intrusion Protection
System (IPS) located in the internet service providers. IPSs are effective in stopping attack
traffic, but they have very large communications overhead and also significantly decrease the
performance of the routers. We present a responsive defense mechanism that has low complexity
and is scalable, named Cooperative Defense Mechanism (CDM), to combat DDoS attacks.
Moreover, the approach tries to minimize the modifications required to the routers and the
current protocols. Results for CAIDA attack set [21], for example, indicate that the responsive
mechanism protects the victim nodes from 95% of attack traffic close to the sources of attack,
while allowing 77% of legitimate traffic.

The last part of our investigation presents a new analytical model for the packet-pair based
signature that accurately describes the behavior of packet-pairs in multihop network paths with
multiple tight links. Packet-pair dispersions can be used to generate path signatures and the
signatures assist in distinguishing paths from one another, monitoring networks, diagnosing
problems, developing deeper understanding of network behavior, testing protocols for realistic
network conditions, and determining if two paths share common links. An accurate model of the
packet-pair technique is important not only for creating accurate path signatures for different
scenarios, but also for enhancing the accuracy and efficiency of measurement techniques for
parameter estimation, where our work mainly addresses this challenge.

The rest of the thesis is arranged as follows. Chapter 2 presents the precise problem statement
addressed in this work. Characteristics of network traffic against DDoS attacks are addressed in
Chapter 3. Compacted Bloom filter is presented in Chapter 4. Then, we proceed to the responsive

defense mechanism. Chapter 5 discusses the distributed mechanism to protect victim node



against attack. A packet pair dispersion signature in multihop network is researched in Chapter 6.

Conclusions are presented in Chapter 7. Finally, Appendix A lists key source codes.



CHAPTER 2

PROBLEM STATEMENT

Many works have tried to address DDoS in the past, but DDoS attacks remain a major
security problem; detection and protection is hard, especially when it comes to highly distributed
implementations. Most of the works deploy a single point (source-end, core-end and victim-end)
to apply the responsive mechanism against DDoS traffic. As opposed to this approach, a
distributed defense mechanism deploys different points for different tasks through the network to
protect the victim node/network. In general, discriminating a DDoS attack at the victim point is
straightforward compared to identifying it in a distributed manner; however, it is not a good
point to filter the attack packets, and even if you do, it does not reduce the network traffic due to
flooding attacks. On the other side, an efficient defense mechanism needs to drop attack packets
at routers close to the source and not just at the victim node. Therefore, deployment at different
points in the network is an important consideration for creating an accurate filter to separate
good traffic from attack traffic, and finding an efficient method to filter. At present, there is no
strong cooperation mechanism between routers and the victim node to identify and protect
against the attack in a distributed scheme. Hence, providing a cooperative defense mechanism
can be a significant improvement in this area.

Challenges that inspired this work and overall research goals and objectives are reviewed in

section 2.1. In section 2.2, the approach employed under this work is presented.

2.1 Research Goals and Objectives

On the Internet, the lack of authentication allows the attacks to create fake identities and send

malicious traffic with impunity. It is growing rapidly and is becoming harder to defend against;
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therefore, protecting resources from frequent and large DDoS attacks motivates this research
community. However, the existing security mechanisms have achieved only limited success in
providing service availability during the attacks, and we need an efficient defense method for
effectively stopping attack traffic while preserving legitimate traffic as much as possible. The
goal of our research is to develop distributed and responsive defense mechanisms to address this
problem in a network. As attack identification is an important procedure to direct any further
action, the first challenge is how to discriminate attack traffic without misclassifying traffic. It is
difficult to discover the identity of the attackers, because attacks make use of source addresses of
IP packets of innocent nodes by faking source addresses, for example, by randomly generating
them. Identifying clues which can be used as precursors for detecting such attacks are
proactively analyzed. For this, we seek the differentiating features between attacks and regular
traffic, and identify traffic variables which give information about the occurrence of DDoS
attacks. A history-based profile is a promising approach to create a high confidence IP address
history that serves to distinguish good traffic from the bad during the attack time. Such a profile
then may be used to create a filtering mechanism to ensure that the victim node can continue to
receive most of the normal traffic and remain operational. To prevent the network in the vicinity
of the victim getting overloaded, it is necessary to develop a filtering mechanism that could be
applied at different upstream router points. Thus an accurate and practical mechanism that
requires low computational and storage overhead at routers is necessary. Furthermore, it is
necessary to be able to deploy such a filter on demand with minimal overhead. Our research
therefore will investigate novel data structures which are efficient and effective in a distributed

network environment.



After creating an appropriate filtering mechanism, the challenge is where to filter the attack
traffic in an efficient way. As we discussed, victim point is hot a good point to filter the attack
packet, and even if you do, it does not reduce the network traffic due to flooding attacks. An
efficient defense mechanism needs to drop the attack packet at routers close to the source and not
just at the victim. The ultimate goal of this research is to develop a distributed model based on a
cooperative scheme that can filter attack traffic before it reaches and congests the victim network
as close as possible to source of attack.

Recently developed technology that uses Small Formfactor Probes (SFP) using Field
Programmable Gate Arrays (FPGAS) provide the potential for non-intrusive monitoring of traffic
at router interfaces. This research makes effective use of SPF probes to identify the responsive
points corresponding to routers which carry significant volumes of the attack traffic, and then
activate packet filtering at such routers. Our approach aims at minimizing the modifications
required to the routers with no changes to existing networking protocols, while maximizing the
arrival rate for legitimate traffic and minimize the attack flow during the attack time.

Also of interest are techniques that allow the characterization of links in networks, so that
network conditions can be non-intrusively monitored. Thus we investigate packet-pair based
signatures that can accurately describe the behavior of packet-pairs in multihop network paths
with multiple tight links. Accurate models of the packet-pair technique are important not only for
creating accurate path signatures for different scenarios, but also for enhancing the accuracy and

efficiency of measurement techniques for parameter estimation.

As discussed above, the potential damages caused by internet threats have become more
serious, the need for defending against these threats has increased significantly. Among all

network attacks, the DDoS attack is one of the most common, most harmful, hard to be traced
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and difficult to prevent, and therefore is very serious. As the DDoS attack makes use of many
different sources to send a lot of useless or harmful packets to the target in a distributed way, a
proper solution to taking on DDoS threats needs a cooperation mechanism from multiple points
of the network. However, this is difficult. Our research objective is to develop a cooperative
defense mechanism (CMD) to address this problem. The research objectives of this work are
organized around the following four aspects:

1- The identification of attacks is an important aspect of the defense of a DDoS attack, and
affects the overall performance and effectiveness of the defense mechanism. When the
attack is aborted or blocked by the defense mechanism, the victim should be able to
continue operating normally. A key problem to tackle when trying to continue services
under DDoS attacks is to distinguish attack traffic from legitimate traffic. Therefore, the
first challenge in our research is to establish an identification model to discriminate
between legitimate and attack traffic. It is important to maximize malicious traffic drops
while minimizing legitimate traffic drops, and it is an important step and procedure to
direct any further action. Selecting an effective set of parameters and defining a reliable
history-based profile that can distinguish between normal packets and malicious packets is
the main contribution of the first step.

2- The next objective, after generating an identification model, is how the provided profile
can be applied to stop attack traffic. The filtering mechanism is an appropriate technique
to reduce the effect of attack traffic; however, it has some challenges. Looking up the
entire profile in the routers during the attack time is a costly task, as upstream routers must
process all packets toward the victim-node. It will create an extreme overhead on the

routers and is the other challenge in this mechanism, therefore, an efficient method to
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conduct filtering is a significant contribution and will cause significant improvements in
this area. To overcome this problem, we investigate a novel idea.

The next objective, after generating a filtering model, is where this mechanism should be
deployed. According to the infrastructure of the internet, the responsive mechanism can be
applied at different points. Victim-end point is a good point to detect and discriminate
malicious traffic from legitimate traffic; however, the major problem with victim-end
defense technique is that the victim points are not a good point for filtering attack traffic
because the bandwidth might already be saturated. Moreover, it is too late to apply the
filter where the source-end defense point is the appropriate point to filtering malicious
traffic before the network congestion happens at the victim-end point [28]. Hence, a
technique with a cooperative mechanism between those points can be an efficient defense
technique against DDoS attacks. Our objective is to develop a novel structure as the
cooperative defense model, in which the victim-end point is considered to discriminate
DDoS traffic and generate a history-based profile, as described earlier, and the upstream
routers are considered response points to block malicious traffic. Our proposed approach
tries to minimize router resource consumption, identify heavy attack traffic flows, and,
finally, filter the attack as close as possible to the attack sources, thus reducing the impact
on the network.

The next objective derive a model for the packet-pair technique for multihop paths with
multiple tight links, thus more accurately capturing the stochastic nature of cross traffic
and its interaction with packet-pairs. In contrast, the existing stochastic delay model,
presented in [29], describes the analytical relationship between the input and output

dispersions under the assumption of a single tight link. Such a model can potentially lead
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to techniques that detect links with abnormal traffic increases correspond to DDoS type

attacks.

2.2 Approach

In this section, we establish the solution approaches to address the research objectives and
goals identified so far. The first step is how to identify attack traffic without misclassifying
traffic. Most of the existing solutions to detect attacks rely on monitoring the volume of traffic
received by the victim. These methods may mistake a natural sudden increase in traffic as an
attack. On the other hand, the attackers now tend to use spoofed IP addresses to perform DDoS
attacks, which make it difficult to distinguish between normal flows and attack flows. In our
research, we investigate the specific attack features as well as normal traffic characteristics to
identify the attack traffic. To establish an identification model, a normal traffic history-based
profile on some traffic properties, such as source IP, size of the packet, number of packets per IP,
port number, and protocol type is created. This profile can assess to classify normal and attack
traffic more accurately. To improve the identification quality, these features are used to develop
a scoring mechanism that provides the basis for normal traffic signatures, and we investigate
them in this section. According to our scheme, a collection of legitimate IPs creates a history that
can differentiate good traffic from bad traffic during the attack time. Peng et al. [18] have shown
that more reliable IP address are those that are used more frequently; therefore, to establish the
history-based profile, we consider the frequency of the IP address as one of the features to create
our identification model as well.

In general, there are two mechanisms to respond to DDoS attacks: rate-limiting and filtering.
In rate-limiting techniques, the attack traffic is not totally filtered, but the rate is limited and all

traffic towards the victim is subjected to a limited rate, whether the traffic is legitimate or
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malicious. In the filtering technique, the attack traffic is totally filtered according to an
identification model. Filtering is a promising technique and inflicts extremely low damage to
legitimate traffic while quickly detecting outgoing attacks. When an attack is blocked by a
filtering mechanism, the victim node can continue to operate normally, and filtering does not
harm legitimate traffic. This feature makes filtering an interesting solution to DDoS attacks,
although it has some challenges. As we explained, it is challenging to select an effective set of
parameters and define a reliable profile that can distinguish between normal packets and
malicious packets. Therefore, we investigated strategies for creating an accurate filter to
characterize normal and attack traffic in the first step and addressed those challenges in Chapter
3. We further investigated characteristics of network traffic against DDoS attacks by analysis of
network traffic collected from Colorado State University, Auckland University, and attack traffic
from CAIDA.

It is important to minimize the size of the filters such that storage and processing costs are
minimized. A Bloom filter may be used as the basis to solve this problem. A Bloom filter is a
space-efficient probabilistic data structure that checks whether an element is a member of a set.
In recent years, the popularity of Bloom filters has grown, and they are now being used in
different areas, including pe&r-peer systems, web caches, database systems, spell checkers -
[25] [26], and networking [27]. As a result, in the past decades, a lot of efforts have been put into
improving Bloom filters. We present a new variant of the Bloom filter with the same
functionality as the standard Bloom filter. We call it the Compacted Bloom filter (CmBF). Our
work is motivated by applications that must transmit Bloom filters over the network and/or
endpoint machines that have restrictions on available memory to meet specific false positive

probability. We intend to reduce the message traffic that is blocked and introduce an efficient IP
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address lookup mechanism during the attack. This approach degrades substantial overhead cost
in the upstream routers when the filtering must check for every packet that comes to a victim
node during attack time. Although a standard Bloom filter construct is space-efficient for simple
membership queries, they are rather inefficient when the applications need to meet a specific
false positive rate and the endpoints have limited storage capacity. Our work is motivated by
applications that must transmit Bloom filters over the network and endpoint machines have
restriction on memory availability to meet specific false positive probability. Our research
presents the Compacted Bloom Filter (CmBF) structure to use as a novel idea to address this
challenge, which improves performance in large networks and reduces memory compared to the
original Bloom filter structure. The key idea of the proposed CmBF is that the CmBF indicates
the location of 1’s that was set in the standard Bloom filter. This procedure reduces memory

requirements by introducing false negatives in membership query.

In order to combat such attacks, a distributed defense mechanism is needed that will thwart
the attack traffic in real-time. We proposed one such mechanism that identify filters that block
attack traffic and allow legitimate traffic as close to the source node as possible, so that network
resources are not wasted in propagating the attack. Our solution benefits by using a recently
developed technology, typically implemented as Small Formfactor Probes (SFP) using FPGAs
(Field Programmable Gate Array). An example of such hardware is JDSU SFProbes and Packet
Portal [30]. Packet Portal is a new approach to gathering, distributing and analyzing information
from a distributed Ethernet network. These packet portals have been deployed on operating
networks for network monitoring functions. Our approach uses these probes, at a subset of ports

in the network, to identify the upstream links, and thus nodes which carry attack traffic.
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Effectiveness of the scheme is evaluated using extensive simulation in GRMN&Ta real-

world network topology and is presented in Chapter 5 in detail.

In the last part of the research approach, the analytical model provides deeper insights to path
signatures in the presence of multiple tight links, thus enabling efficient and accurate network
monitoring, problem diagnosis, and estimation of link and path parameters, suchtasedd-
network bandwidths and link capacities. We investigate the effects due to initial dispersion, cross
traffic and the number of the hops on dngnd signatures using the analytical model. We also
show how link properties such as available bandwidth and arrival rate of cross traffic can be
estimated based on link signatures. This is the case with passive techniques that rely on existing

network traffic, thus not consuming network resources for measurements [31].

16



CHAPTER 3

ON THE CHARACTERISTICS OF NETWORK TRAFFIC AGAINST DDOS ATTACKS

3.1Introduction

Distributed Denials of Service (DDoS) attacks have become one of the most serious threats on
the Internet. With large-scale DDOS attacks, it is necessary to stop attack traffic closer to the
sources without disrupting legitimate traffic to the maximum extent possible. A responsive
defense model that filters potential attack traffic and prevents it from reaching the victim
network is developed. We investigate the features of network traffic that can be used for
discriminating attacks from normal traffic. We use these extracted features to develop an
accurate and robust signature-based filtering model that forms the basis of a detection and
defense mechanism. A Bloom filter based mechanism is proposed to efficiently implement and
disseminate the proposed signature-based model; it helps reduce the communication and
computation costs and the storage requirements of the upstream routers that check for malicious
traffic. The approach is verified and evaluated using the DARPA 1998 dataset [19] as well as
extensive analysis over Colorado State University [20] and University of Auckland dataset [6]
The experimental results show the effectiveness of our new scheme in blocking attack traffic and
allowing most of the legitimate traffic at upstream router points. We analyze the impact of

different packet features on the accuracy and efficacy of the filtering mechanism.

Distributed Denial-of-Service (DoS) attacks on Internet based systems and infrastructure have
become a common occurrence. Multiple machines, which typically are compromised, flood the
victim at fast rates. Detecting these machines and isolating them in a timely manner is non-trivial.
From the incidents of DDoS attacks against commercial websites like Yahoo, E-bay and
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E*Trade, it is evident that all the computer systems connected to the Internet are vulnerable to
DDoS attacks [1] [2], [32], [33], [34] A coordinated DDoS attack within a single day on them
and several other websites resulted in millions of dollars in damages and senacilability

[5] [6]. Latest instance include the biggest DDoS attacks against CloudFlare with 400 Gbit/s and

break the record of largest DDoS attack [7].

The effect of DDoS attacks can vary from minor disturbance to devastating outcomes. The
iteration and the impact of DDoS attacks have motivated researchers to provide techniques for
preventing, detecting, and responding [3] to them while most approaches have failed to provide
service availability during the attacks. Our approach address this issue and demonstrate an
effective method to distinguish attack traffic from legitimate traffic and allow legitimate traffic

access to the victim node in the event of an attack.

Researchers have worked on providing a mechanism that uses features that distinguish attack
traffic from legitimate ones. However, these mechanisms have weakness within detection where
they can only detect the attacks contain those specific features [9]. Moreover, the attacker is able
to develop mechanism to bypass once knows those features. For instance, the scheme based on
flow dissymmetry [14][5], [15], [16], [17] can bypass with attacker by use the random spoofing
source IP address and send out the same amount of SYN packet, and FIN/RST packets that can
go unnoticed when compared with legitimate traffic flows. Moreover, a major drawback of the
proposed approaches is that they cannot discriminate flash crowd traffic from DDoS attack
traffic. An efficient approach [2] called a History-based IP Filtering (HIF) was proposed to
discriminate good traffic from bad traffic. This approach is based on monitoring the number of
the new source IP addresses instead of the volume of the traffic. Jung [35] discovered that most

of the IP addresses in a flash crowd traffic appeared on the website before, while very few IP
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addresses have made a prior appearance in the case of DDoS attacks. HIF keeps a history of the
legitimate IP addresses that have appeared before and applies filters in the edge router based on
this history. However, an adversary can bypass this mechanism by starting to send packets with
its IP address before conducting the attack. Therefore, we need a more robust and efficient
defense mechanism for efficiently stopping attack traffic while allowing legitimate traffic to the

extent possible.

The goal of this chapter is to introduce and evaluate a responsive defense mechanism against
DDoS attacks. The first challenge is how to detect attack traffic without misclassifying legitimate
traffic. We look into multiple features of DDoS attacks and normal traffic to extract
characteristics that give information about the occurrence of the DDoS attack. These features and
their relationships are used to establish high confidence IP address history and to develop a
normal traffic profile that can be used to categorize normal and attack traffic more accurately.
The high confidence IP history will be used to create filters that differentiate the good traffic
from the bad ones during the attack. When the attack is blocked by an efficient filtering
mechanism, the victim node can continue to receive most of the normal traffic and remain
operational and filtering does not impact legitimate traffic. This feature makes filtering technique
a desirable solution; however, filtering has additional overheads. The effectiveness of our
approach is validated using the Colorado State University [20], University of Auckland [6] a
well as DARPA 1998 Intrusion Detection Dataset [19] as describe in Section 3.4.1 and 3.4.2.
During an attack, the filters must be propagated to the upstream routers, preferably as close to the
source of attack as possible. Moreover, these routers must check each packet to determine
whether it is legitimate or not. Towards this end, we propose an efficient approach based on

Bloom filter data structure, which facilitates a distributed response from routers closer to attack
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nodes and serves to prohibit attack packets from reaching the victim node while allowing the

legitimate traffic to pass through. We will address this challenge in Chapter 5.

The rest of this chapter is organized as follows. Section 3.2 reviews to the DDoS attack
characteristics. Section 3.3 describes the proposed method to discriminate DDoS attacks from
normal traffic in details. Section 3.4 validates our model using DARPA dataset, University of

Auckland as well as Colorado State University dataset. Section 3.5 concludes the chapter.

3.2 DDoS Attacks

In general DDoS attacks send large volumes of packets and consume critical resources in a
network that makes the service unavailable for legitimate use. The attacker usually uses spoofed
IP addresses in order to make a trace back more difficult, thereby thwarting the discovery of the
real source of the attack. Flooding attack is one of the well-known types of DDoS attacks (e.g.,
spoofed/non spoofed UDP flood, ICMP flood, TCP SYN flood, DNS flood, VolIP flood, etc. [36],
[8]) that focus on exhausting bandwidth of the victim’s network. Typically, DDoS attacks
involve two steps. In the first step, some vulnerable systems are compromised and attack tools
are installed omhese systems. These compromised machines are called “zombies”. In the second
step, the attacker requests the zombies to send a flood of packets to the victim(s) [37]. DDoS
flooding attacks can be divided into two types: direct attacks and reflector attacks. In a direct
attack, the attacker sends a flood of packets directed towards the victim through the zombies [28]
as shown in Figure. 3.1 (a). In the reflector attacks, there is one more layer between the attacker
and the victim. The attacker sends attack message to the reflector machine through the zombies
and uses the IP address of the victim as the source IP address. The reflector machine replies in

response to the victim, causing packet flooding as shown in Figure. 3.1 (b).
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Figure. 3.1. Flooding attacks. (a) direct attack (b) reflector attack

3.3 Identification Mechanism

In this section, we explain our approach for classifying normal and attack traffic. Our
responsive defense mechanism differentiates between legitimate and attack packets during the
attack and responds to it by causing traffic perceived as malicious to be dropped. To successfully
respond to attack the approach must accurately detect the attacks and respond by minimally

blocking legitimate traffic. It should also have low communication, computation, and storage

overheads.
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In order to continue to provide services under DDoS attacks, we need to distinguish attack
traffic from legitimate traffic. An unusually high traffic volume may not be a good indicator of a
DDoS attack, as it can occur due to flash crowds as well. We need to consider other features that
help distinguish DDoS attacks from normal traffic. Since many of the previous approaches
depend on monitoring the volume of the traffic, detecting distributed flooding attacks is hard.
During bandwidth attacks, most source IP addresses are new to the victim, whereas most IP
addresses in a flash crowd have appeared at the victim before. Specifically, Jung et al. [35]
mentions that around 82.9% of all IP addresses involved in flash crowd events have sent prior
requests. Peng et al. [38] advocate the use of network connection history to distinguish good
packets from bad ones. Many enterprises, e.g., universities, banks, etc., also have a group of
users that access their services regularly. Although the user base fluctuates with new additions,
deletions, etc., in general such a base changes at a much slower time scale compared to attacks
and disruptions. These observations often form the basis of mechanisms to filter out the attack
traffic at the victim. This provides a practical solution based on IP address history of previous
addresses that arrive at the victim node to distinguish bad and good packet. However, the
attacker can bypass the history-based IP filtering if attacker starts to send requests and

communicate with a victim node prior to conducting the attack.

We address this problem by using multiple features that help distinguish normal and attack
traffic and by developing accurate normal traffic signatures and a scoring mechanism based on
these features. The normal traffic signatures and the scoring mechanism help create a high
confidence IP history that serves to differentiate the good traffic from the bad traffic during the
attack time. Using this high confidence IP address history, we can defend against DDoS attacks

as explained below.
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3.3.1 Feature Selection

We investigate DDoS attacks in details in order to find the features that help distinguish
between attacks and normal traffic. Lee et al. [39] mention some parameters such as
source/destination IP address, port number, and packet type (ICMP, TCP, UDP) that have been
used to detect DDoS attacks. We will use them together with packet size to form the features in
our identification model. The other feature is the frequency of an IP address. Recall that, Jung et
al [35] determined that most source IP addresses are new to the victim during bandwidth attacks,
whereas with flash crowd traffic known source IP addresses are most common. Thus, the
frequency of an IP address is a feature that may help distinguish an attack from normal traffic.
Since our goal is in creating a history based only on legitimate and valid IP addresses, we only
consider those IP addresses with a successful TCP handshake. Note that, a spoofed IP address
will not have a complete three-way handshake [38]. The attackers are therefore forced to use
legitimate IPs and establish a three-way handshake. This limits the number of IP addresses that
an attacker can use and the attack can be identified by monitoring for abrupt change in the traffic
volume during the attack time. Our approach uses a much more comprehensive set of features
compared to existing identification approaches, and use them in an integrated manner to create

filters as described later in Section 3.3.2.

3.3.2 Metrics

Our parameter set, denoted Byfor establishing the identification model for historical IP

addresses are as follows:

— Source IP address

— port number
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— Size of packet

In our modelK=3 where we consider source IP address, size of packet and port number as the
parameters and the other features such as Packet type (ICMP, UDP, TCP) and establish three-
way handshake for TCP traffic can be added. For each of the set of parameters iRthiPslet

i=0,..K} our model maintains the frequency of occurrence within a certain time windbiv’san

Cumulative Distribution Function (CDF).

Frequency (f): For eachPi, we evaluate the frequency of occurrence of different values
fir,fiz..., fim within a time window. In our caserl corresponds to source IP addres2

corresponds to port number ar@ corresponds to size of packet.
fi = Number of packets for which parameter i has the value j within a time window (3.1)
Note that the total number of packetsNis% fij . As an example, consider case of the source
J
IP addressi€l), there are 1000 different IP addresses within the time window,M=i900.

For instance, suppose there are a total of 5000 packets and a particular IP jaddcess30

times, therf;j=30 andN=500Q

Cumulative Distribution FunctiofCDF): The CDFCx (x) measures the probability that the

variableX takes on a value less than or equa.to

Now consider the parameter Let Fi be defined as the random variable representing

{ fij | Vj}, CDF ofFiis defined as follows:

CR (0 =P(Fi <) (32)
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For instanceCr1 (10) demonstrates the probability that source IP address frequency is less
than or equal to 10. We use these metrics and features for generating the IP address history,

which is addressed next.

3.3.3 History Creation

Our goal is to define a good signature to make the IP address database accurate and robust,
and to make it hard to be passed by an attacker. Our approach overcomes some of the
deficiencies of existing approaches, such as use of only the IP address field as a feature useful for
distinguishing attack and normal traffic. A key observation that can be used for defense against
DDoS attack is that the DDOS attacks tend to use randomly spoofed IP addresses [8] and the
other packet features, such as, port number and size of packet, are selected randomly as well.
Moreover, the interaction of these features also exhibits some anomaly when compared to that of
the normal traffic. Therefore, we make use of the individual features, and also the interactions
and correlations, in defining the signature. The signature is based on the CDF of each
pammeter’s frequency during the training period. This signature assists us in selecting reliable IP
addresses during the training period and later filters traffic based on those IP addresses. This
signature for each feature determines which values occur more frequently during normal traffic
conditions. The next step is assigning scores to IP addresses in the training period and generating
the source IP address history. The score value for each IP address depends on the frequencies
and the signatures of the selected features. Frequency threshwliich indicates the level of
reliability in our model and the corresponding scores are presented in Table 3.1. For each
selected feature value, if it is more thanin the related signature, it is assigned a sdpre
indicating the confidence level. Here four levels are defibgdpz> b2> bi, to assign different
reliabilities to different IP addresses based on how frequently different feature values occur. In
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our model,a selected from 70%, 50%, and 30% indicates how the selected feature follows the
signature of normal traffic condition. This method allocates highest weight to the top 30% of the
IP addresses<1), port numbersi€2) and sizes of packet$=8) that occur most frequency.

Note the value of frequency thresheicttan be adjusted dynamically for each victim node based

on the frequency and the signatures of selected feature for that point. Our selection of particular
values foraiis based on experience with different datasets, but it may be fine-tuned as necessary.
According to our model, when the selected feature occurs more frequently in normal traffic, as
indicated by the signature of normal traffic, we give it the higher weight for it by assigning score
bs. In contrast, whewmr has value less than 30% assign the lowest confidence levelbatdot.

Such a feature value is considered as something that is not a common occurrence in normal
traffic and thus dropping such packets will have less of an effect on the normal traffic. Frequent

occurrence of such a value during an attack therefore is also considered as a potential threat.

Table. 3.1. The score manager

Case Frequency Conclusion Score
1 >a1 (=70%) High Confidence ba=4
2 >a2 (=50%) Medium bs=3
3 >a3 (=30%) Low b2=2
4 <aa (=30%) Potential threat bi=1

For example, consider source IP address 129.1.1.1 with frequency 10000. Gihen
(10000)>70%, it means according to IP address signature in training window 70% of IP
addresses occur at frequency less than 10000. i.e., this is based on top 30% of occurrence rates of

IP addresses and we give a high score for this feature.

To summarize, the above procedure has allocate weight from thbi1sethy} to each IP

address, each packet size, and each port number. Next we assign a n& swoeach IP
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addresseg so that those IP addresses with high net scores can be included in the profile for

normal traffic.

Sp = (f15* (allocated b for IPaddressp) + Max j | ((f 2] * (allocated b for port numberj)
+ fgi (allocated b for sizeof packetk)))/N

Wherejand k correspond to port numberand sizeof diffrent packetswith IPaddressg  (3.3)

$ is defined as the score value for each IP addfemsd is determined according to the
frequencyfij and confidence degrdgin Eqg. 3.3. Thu$ consists of three components. For the
above example, the first componentSafe.1.1.1is computed for IP address 129.1.1.1 based on
fi1z9.1.1.1andbs that is 4. The second and third components are selected by taking the maximum
value of the sum of corresponding values for port number and size of packet over different
packets with this IP address The IP addresses that have an overalSst¢ogber than a
thresholdv are selected as legitimate IP addresses for our history. We will discuss about the
impact of threshold value in Section 3.4.1.3. As noted, for TCP connections we consider one
additional conditior-only IP addresses with a successful TCP handshake are classified as valid.
Therefore, for TCP connections, source IP addresses which have established a three-way
handshake and have a score higher thare selected. This helps us create a signature-based IP
address history and this history can be used through routers to perform filtering for the victim

node.
3.3.4 Bloom Filter Mechanism
Since the filtering mechanism is to be applied closer to the victim point, and the network

bandwidth may already be saturated during an attack, transferring the entire history and looking
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it up in the upstream routers during the attack is expensive since upstream routers must process
all packets targeted towards the victim node. This will impose an additional overhead on the
routers. To overcome this problem, we propose a Bloom filter [40] based mechanism to represent
efficiently the filtering mechanism for withholding the malicious packets. This way, the victim
node need not transfer the full list of IP addresses in the history to the upstream routers, but
instead needs to transfer only the Bloom filter that represents the contents of the IP address
history as shown in Figure. 3.2. It causes a significant reduction of message traffic and
introduces an efficient filtering mechanism that can be deployed closer to the attack sources
during the attack. This approach reduces the overhead cost significantly in the ingress routers

since every packet that comes to a victim node during attack must be checked.

Bloom Filter corresponding to [P address
History
[eToTaToTaTJoeloJol ..T-.1] -~

1P History
192.82 43.2
192.82.57.2
192.82.10.2

Transferring Bloom Filter to the routers

Ingress Routers

”Figure. 3.2. Bloom filtering mechanism for history-based profile
Bloom filter is a space efficient probabilistic data structure for presenting whether an element
is @ member of a set or not. We briefly review Bloom filter structure as we will discuss about
Bloom filter in detail in Chapter 4. A Bloom filter for a st= {s1,%,...,$} of n elements is
described by an array of bits, all initially set to 0. A Bloom filter usds independent hash
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functionsh,...,hk with range {,...,n}. We make the natural assumption that these hash functions
map each item in the set of interest to a random number uniform over the fangs} {for
mathematical convenience [41]. For each elerser§ the bitshi(s) are set to 1 for<i<k. A
location can be set to 1 multiple times, but only the first change has an effect. To check if an item
xis in S we check whether dfti(x) are set to 1. If at least one bit is not 1, then clearynot a
member ofS. If all hi(x) are set to 1, we assume tkas in S although there is a probability of a

false positive, where it suggests that an elemerst in S even though it is not. For many
applications, this is acceptable as long as the probability of a false positive is sufficiently small.
The probability of a false positive for an element not in the set, or, the false positive rate, can be
calculated in a straightforward fashion, given our assumption that hash functions are perfectly
random [40]. After all the elements Bfare hashed into the Bloom filter, the probabiptthat a

specific bit is still O is:
1 _kn _k
p=QA——)~=e “m (3.4)
m
We letp = e k"™ The probability of a false positifés then:
1 _
f=0- -k~ @-eKVmk= @ pk (35)

We use the asymptotic approximatignandf to represent respectively the probability a bit in

the Bloom filter is O and the probability of a false positive from now on for convenience.

It is clear that there are three fundamental performance metrics for Bloom filters: the
probability of error (corresponding to the false positive fatesize of the Bloom filter array

(corresponding to the array sim® and the number of hash functienNote that Bloom filters
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are highly efficient even im=cn for a small constant, such ax=8. Although Bloom filters

introduce false positive rates, their use is justified because of the reduction in the network traffic
and overhead. In our analysis, we limit the false positive rate to 0.1. In order to achieve this false
positive rate, we should set c to 5 in our mechanism. That means the Bloom filter array is 5 times
the number of IP addresses kept in the history. Moreover, according to Eq.3.5, 4 hash functions

are required to provide a Bloom filter from the IP address history.

3.4 Model Validation

The objective of this experiment is to evaluate the accuracy and robustness of our filtering
model to protect against DDoS attacks. To illustrate the effect of signature to distinguish attack
and normal traffic we examined three different datasets with extensive analysis and evaluation.
We will start by the DARPA 1998 Intrusion Detection dataset [19] and then we will discuss the
result based on traces collected from University of Auckland in New Zealand [6]. The last part of
our evaluation shows the result based on network traffic dataset collected from Colorado State

University.

3.4.1 DARPA 1998 Intrusion Detection Dataset

This set is selected as it is the comprehensive traffic trace that is available containing the full
header information of packets. It contains 7 weeks of training datasets to generate signatures and
establish an IP address history and 2 weeks of testing data set to evaluate our technique.
Moreover, the training part of the dataset consists of normal traffic as well as labeled attacks. We
selected this dataset for our evaluation as our goal is to evaluate how good the signature and

scoring mechanism is in discriminating malicious and normal traffic without misclassifying them.
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3.4.1.1 Experiment Setup

The first step is to create the IP address history from the training dataset, according to the
generated signatures and the overall score of selected features. The second step constructs the
Bloom filter based on the results of the first step. In the first step, the signature of port number,
the size of the packet and IP address’s frequency rate are created for each traffic type (ICMP,

TCP, UDP) separately. Figure 3.3 shows the signature of port number, packet size and IP
address’s frequency rate for TCP traffic in the DARPA 1998 dataset. As we note the signature

contain CDF of each paraimr’s frequency during the training period. According to Figure 3.3

for TCP traffic, port number frequency around 100 can achieve the highest sc@Qwe as
(100)>70%. Same condition exists for packet size and IP address with frequency around 1500

and 5 respectively.

In the next step, the IP address history is created based on the overall score andvwé#tue of
our experimenty is determined to be 0.36. This value means the signature of at least two
selected features should hawe more than 50% and one should have it more than 30% in
training time; however, this value can be set to a higher value for more protection. Determining
the value ofv is a trade-off among history size, history accuracy, and protection rate. With
increasing the value of size of history and protection rate increases and accuracy of history to
pass legitimate traffic decreases. In Section 3.4wle3will show the impact of the score

thresholdv on accuracy and robustness of the history mechanism as well.
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3.4.1.2 Results

Signature-based IP address history is evaluated on the basis of these paramatémsk (i)
traffic detection rates the percentage of attack data set that cannot pass the Bloom filter and
reach to the victim points during the attack time; (igrmal traffic detection ratas the
percentage of normal tracing traffic that can pass the Bloom filter during the attack period; (iii)
False positive ratas the percentage of normal traffic that is prohibited by the Bloom filter in
training period, (iv)False negative ratas the percentage of attack traffic that passes the
signature and is considered as legitimate traffic during training perio8jZ@)of Bloom filters

based on the length of the Bloom filter array that is transferred to the upstream routers.

Figure. 3.4 shows the effectiveness of using signature to distinguish attack and normal traffic
for different types of traffic. It is interesting to see that the false negative rate is around 1% for
TCP, UDP and ICMP when we consider all selected features in our model. We evaluate the
effectiveness of each selected feature to create accurate and robustness filtering as well. As
shown in Figure. 3.4, the false negative rate decreases as we use more features. In addition, the
experimental results determine that IP address frequency is the most effective feature for all
traffic types. For TCP traffic, port number and packet size are the next important ones; however,
for UDP traffic, packet size is more effective compared to the port number. Note that, in the
figures simple history refers to creating history just based on frequency of IP addresses and
establishing a three-way handshake for TCP traffic that was presented in [38]. It shows how the
signature and score mechanism could be more effective for determining an accurate filter. In
addition, it is robust against DDoS attacks as less than 1% of the attack traffic can bypass the
filtering mechanism during the normal traffic conditions. Based on our results, we believe that

our mechanism can be deployed in real networks.
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We have verified that the signature-based IP address history has good accuracy in terms of
capturing legitimate and high confidence IP addresses. The next stage is to evaluate the
efficiency of the Bloom filter that is calculated based on IP address history. As shown in Figure.
3.5, the size of Bloom filter required is around 30KB for IP address history based on all selected
features; however, the size of the Bloom filter required increases to 73 KB if the IP address
history is created just using packet size. Note that, a Bloom filter with 0.1 false positive rates will
have a length of Bloom filter that is 5 times the number of inserted elemewtsich are IP
address of history in our case and 5 hash functions are used. According to Bloom filter equations
it is possible to set a lower false positive rate; however, it required increasing the size of Bloom
filters. Note that, we select the false positive rate as 0.1 and the length of Bloom fbter as

Moreover, 5 hash functions require creating a Bloom filter with this condition.
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Figure. 3.5. Size of Bloom filter
When the DDoS attack is detected, the pre-built Bloom filter is transferred to the upstream
routers to filter out the attack traffic. The Bloom filter is evaluated with 2 weeks testing DARPA

1998 dataset. As shown in Figure. 3.6, attack traffic detection rate is around 99.2% for TCP
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traffic and 99.6% and 99.8% for UDP and ICMP traffic if we consider all selected features to
create the history. Note that, the attack traffic detection rate decreases if we consider fewer

features and it goes down to 88% for simple history condition.
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The other important parameter to consider is how many normal packets can pass through the
Bloom filter. As shown in Figure. 3.7, normal traffic detection rate is around 70% for TCP and
UDP traffic and it is more than 82% for ICMP when the history is generated based on all the
selected features. This demonstrates that the signature based IP address performance is highly
reliable for aborting malicious packets, but withholds some legitimate traffic. Normal traffic
detection rate increases to around 75% to 85% if fewer features are used to generate IP address
history, but the Attack traffic detection rate decreases at the same time. Thus, there is a tradeoff

between accuracy of the Attack traffic detection rate and normal traffic detection rate.

The evaluation part shows very good results in successful filtering of the bad trdffic an
permitting the good traffic during the attack time. The experiment result verifies that our
signature mechanism can be deployed in real networks as it has addressed some critical

drawbacks of the previous approaches.
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3.4.1.3Impact of Threshold v

Figure. 3.8 represents the effect of threshotth creating accurate and robust filtering, when
the plot shows false positive and negative rates of IP address history based on all selected
features. Wher increases, fewer malicious IP addresses are selected as legitimate ones during
training period. Consequently, it reduces the false negative rate. On the other hand, inereasing
causes a rise in the false positive rate. It means with highraore legitimate IP addresses are
blocked by the Bloom filter. As a result, selectindpas trade-off among history's accuracy and
protection rate. Note that, increasing the valuer girovides higher protection rate and lower
accuracy and impacts the size of the history as well. According to the nesu@é was selected

in our simulation as a reasonable trade-off among false positive and negative rate.
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Figure. 3.8. False negative and false positive ratio with respect to differalte

3.4.2 University of Auckland Dataset

In this section we demonstrate the implementation details of responsive defense mechanism
based on traces collected from University of Auckland in New Zealand [6]. The packet trace is
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one collected from the University of Auckland in New Zealand. The packet trace contains 6.5
week IP header trace taken with 155 Mbps Internet links [6]. The total uncompressed data is 180
GB and all IP addresses have been mapped into 10.*.*.* using one to one hash mapping for

privacy. The Auckland traces record three type of IP traffic (TCP, UDP, ICMP).

We use “The CAIDA attack dataset 2007 to create an attack scenario in this experiment as
the Auckland trace did not contain any attack data. Attack dataset contains approximately one
hour of anonymized traffic traces from a DDoS attack on August 4, 2007 that contains

359,656,205 attack packets from 9,066 unique IP addresses [21].

3.4.2.1 Maintaining the IP Address History

As we mentioned earlier, the first step is creating the IP address history according to normal
traffic at the end node. There are two difference mechanisms to maintain the IP address history:
sliding window, history without updating. In the first one the IP addresses keep in the history
with specific window length. Every day expired IP addresses are removed from the history and
new IP addresses are added to it. In this part of experiment we set the length of window to be
two weeks. That means for each day we update the history according to the all legitimate IP
addresses that come to Auckland University during the two weeks before that day. In the second
approach the history creates with specific length and keeps it without updating for whole of the
next two weeks. We will show the difference in accuracy of history profiles created by these two

mechanisms. It provides insight into how frequently the filters need to be updated.

3.4.2.2 Results

Signature-based IP address history is evaluated on the basis of these five parbim&igeys:
Accuracy Attack traffic detection rateNormal traffic detection rate-alse positive rateSize of
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Bloom filter. Our experiment was conducted as follows: 1) create IP address History based on
ertire IP address; and 2) create IP address History based on first three octets of IP address. The

two approaches provide different accuracy and Bloom filter size tradeoffs.

3.4.2.2.1 IP Address History Based on Entire IP Address

As discussed, we use a sliding window to keep IP address in the history. We build the IP
addresses history using data trace from March 12, 2001 to March 25, 2001 and compare trace
taken from March 26 to April 9, 2001 with the previous two weeks trace. As shown in Figure.
3.9 the history accuracy is about 82-92% for each day and this verifies that most IP addresses
that appear in the network under normal conditions have previously appeared in the network and
follow the signature of the end point. We also show in Figure. 3.10 effectiveness of using sliding
window mechanism and updating history each day. It is interesting to see that the history
accuracy drops when we consider the two week history without updating from 12 to 25 March

2001. The accuracy decrease as shown in Figure. 3.10. For instance, the history accuracy drops

from 92% to less than 78% in April 7th.
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Figure. 3.10. History accuracy with sliding window technique and without updating technique

As we have verified, IP address history has good accuracy in terms capturing legitimate and
high confidence IP addresses. The next stage is to evaluate efficiency of the Bloom filter
structure that is created based on signature-based IP address history for each day. As shown in
Table 3.2, the size of history that is created for each day contained around 420,000 IP addresses.
A Bloom filter with 0.1 false positive rate according to Eq. 3.5 will have a length of Bloom filter
5 times the number of inserted elements, which are the number of IP addresses kept in the history.
According to Bloom filter equations it is possible to set lower false positive rate; however, it is a
tradeoff between size of Bloom filter and accepted false positive rate. We select the false positive
rate as 0.1 anén for length of Bloom filter as reasonable error rate and Bloom filter size.

Moreover, according to Eq. 3.5, 4 hash functions are required to provide a Bloom filter from the

IP address history.

Assume that a DDoS attack is detected at Auckland university point and we need to prevent
DDoS attack overloading traffic at this stage now. The pre-built Bloom filter for that day is
transferred and applies in appropriate locations to filter out the attack traffic. To evaluate our

Bloom filter efficiency we add real DDoS attack dataset from CAIDA 2007 [21] to the normal

43



background traffic trace. This type of DDoS attack consumes computing resource on the server
and all of the bandwidth of the network connecting the server to the Internet. As shown in Figure.
3.11 attack traffic detection rate is around 95% for entire two week test. The other important
parameter according to efficiency of our model is how many of the normal packets can pass the
Bloom filter and do not block. As shown in Figure. 3.12 Normal traffic detection rate is more
than 80% each day highlighting the Bloom filter performance and it is highly reliable responsive
mechanism to abort the malicious packets and low damage to legitimate traffic. The other
evaluation parameter is Size of Bloom filter. As shown in Table 3.2 size of Bloom filter is

around 34KB that is an efficient size of message for transferring to the routers.

Table. 3.2. Number of unique IP address in the history and size of Bloom filter

Entire IP addresses | Size of First three octets of IP Size of
in history Bloom filter | addresses in history Bloom

(KB) filter

(KB)
26-Mar 443,599 34.65 5,728 0.44
27-Mar 442,822 34.59 5,748 0.44
28-Mar 411,234 32.12 5,753 0.44
29-Mar 429,822 33.57 5,867 0.45
30-Mar 433,220 33.84 5,957 0.46
31-Mar 425,230 33.22 6,030 0.47
1-Apr 426,611 33.32 6,030 0.47
2-Apr 423,819 33.11 6,029 0.47
3-Apr 416,279 33.52 6,026 0.47
4-Apr 425,376 33.22 6,026 0.47
5-Apr 427,791 33.42 6,036 0.47
6-Apr 423,920 33.11 6,032 0.47
7-Apr 424,616 33.20 6,031 0.47
8-Apr 426,994 33.22 6,026 0.47
9-Apr 425,040 33.20 6,025 0.47
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The Bloom filter testing shows substantial success in filtering of the bad traffic and passing
the good traffic during the attack time. The experiment result verifies that our approach could be

applicable in real network as it has addressed some critical drawbacks of the pervious approaches.

In addition,

filter structu

Figure. 3.11. Attack traffic detection rate

in the next experiment we will show how a more compressed and efficient Bloom

re can provide further significant improvement.
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3.4.2.2.2 IP address History Based on the First Three Octets of IP Address

The main reason of this experiment is to provide smaller Bloom filters while maintaining the
efficiency and accuracy of the IP address history. The idea to provide smaller but accurate
Bloom filters by using first three octets of IP addresses. By applying this idea we achieve
significant decrease of the number of unique IP addresses to keep in the history and consequently
decrease the size of Bloom filter as shown in Table 3.2. The number of unique IP addresses that
is kept in the history decreased to less than 0.01 of the previous IP address history. Furthermore
the result has shown that at the same time the accuracy of the IP address history is increased by
this change. That means the most of the normal traffic that comes to the specific node shared the
first three octets of IP address. As shown in Figure. 3.13, the accuracy of IP address history
improved to around 95% for most of the days during two weeks test traffic. Consequently

Normal traffic detection rate increased and it is close to 90% as shown in Figure. 3.14.
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Figure. 3.14. History accuracy

The other important result of this experiment is shown in terms of attack traffic detection rate
in Figure. 3.15. The result shows that the Bloom filter with first three octets can perform as well
as the Bloom filter with complete IP addresses. In fact, in certain days it works better than the
previous Bloom filter. According to Figure. 3.15 we observe almost 98% of attack traffic
detection rate. Our experiment on the Auckland trace traffic shows that we can protect 95% of
legitimate traffic with around 0.44KB of memory according to Figure. 3.13 and Table 3.2. It
shows significant reduction in size of Bloom filter by using first three octets of IP address
compare with using entire IP addresses. Moreover it can filter out about 98% of attack traffic for

specific victim node.

The last result shows in Figure. 3.16 the false positive rate of Bloom filter that resulted in the
first and second approaches. The acceptable false positive that we set was 0.1 and the results
show the Bloom filter works correctly and in fact most of the time the false positive rate is less

than maximum rate provided by to Eq. 3.5.
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Figure. 3.16. False positive rate of Bloom filter

3.4.3 Colorado State University Dataset

In this section we demonstrate the effectiveness of our algorithm to characterize network
traffic based on the trace collected at Colorado State University (CSU). The packet trace contains
4 week daily Argus files with flows on a 1Gb/s link from Feb 1st to Feb 28th 2015 where the

total compressed data is about 20GB for each day [20].
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3.4.3.1 Results

As we mentioned earlier, the first step is creating the IP address history according to the
normal traffic is collected at the end node. IP addresses are kept in the history with specific
window length. In this part of the experiment we set the length of window to be one week. That
means for each day we create signature-based IP address history according to all IP addresses
come to CSU during the last seven day period. We built the IP address history using data trace
from Feb 1st to Feb 21st and compared with the trace taken from Feb 8th to Feb 28th. We will
discuss the effectiveness of history accuracy for different window size in Section 3.4.3.1.1 as

well.

The total traffic volumes are given in Figure. 3.17 corresponding to the total numbers of
packets have sent to the CSU including internal traffic shows for each day. For instance, we can
observe CSU received around 210 million packets on Feb 10th 2015. We excluded internal
traffic from the total traffic to analyze both conditions as shown in Figure. 3.17. For instance, the
total amount of traffic is very close for both Feb 10th and 11th but by considering only external
traffic we can see the high portion of traffic that came to CSU on Feb 10th was external traffic

compare with Feb 11th.
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Figure. 3.17. Traffic volume
The first step is to create the signature-based IP address history from the daily traffic dataset
acording to generated signatures and overall score of selected features. The second step is to
construct the Bloom filter based on the results from first step. In the first step, the signature of IP
address’s frequency, port number and size of the packet are created. As we discussed, for TCP
traffic, IP addresses with successful TCP handshake are considered as the valid IP addresses.
Moreover, for UDP traffic we ignore those incoming packets that just send a single packet during

the day. This helps us to create a more reliable signature-based IP address history.

Figure. 3.18 shows the signature of IP address’s frequency for the first week of CSU traffic.
According to this figure, IP address with an occurrence rate above 500 can achieve the highest
score as € (500)>70% and IP address with an occurrence rate below 20 get lowest score. From
Figure. 3.18 we can also find that around 10% of IP addresses have a frequency above 2000
during a week and maximum frequency was for a few IP addresses with around 12000. The same

analysis exists for port number and packet size signature as well.
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Figure. 3.18. Signatures of IP address frequency
In the next step, IP address history is created based on method described in Section 3.3.2. Our
experiment was conducted based on the entire 4-octet IP address and also with the first three
octets of IP addressed. The main contribution of this analysis is to provide smaller Bloom filter
while maintaining the reasonable accuracy of IP address history. We compare the resudt of thes

two cases in each step.

As shown in Table 3.3 the number of unique IP addresses that were retained in the history is
around 3,000,000 for each corresponding day. By accepting 10% false positive rate the size of
Bloom filter would be between 1.4MB to 2.2MB for each day as it shows in Table 3.3 as well as
in Figure. 3.19. According to the Bloom filter equations it is possible to set lower false positive
rate; however, it is a tradeoff between the size of Bloom filter and accepted false positive rate.
We accept the false positive rate as 0.1 anfbbthe length of Bloom filter as reasonable values
for error rate and Bloom filter size, whemas the number of inserted element in Bloom filter,

which are the number of IP addresses kept in the history.
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Table. 3.3 Number of IP address in history

Unique IP addresses | Size of Bloom Unique first Size of
in history filter (MB) three-octets of IP | Bloom filter
addresses in (MB)
history
8-Feb | 3567433 2.22 1549329 0.96
9-Feb | 2898726 1.81 1540879 0.96
10-Feb [ 2993910 1.87 1533835 0.95
11-Feb | 3251485 2.03 1573583 0.98
12-Feb | 3253085 2.03 1542783 0.96
13-Feb | 3214944 2.0 1543112 0.96
14-Feb | 3367433 2.1 1506123 0.94
15-Feb | 3130830 1.95 1478050 0.92
16-Feb | 2986955 1.86 1488892 0.93
17-Feb | 3077742 1.92 1465505 0.91
18-Feb [ 3181456 1.98 1493287 0.93
19-Feb | 3086945 1.92 1461922 0.91
20-Feb | 3131923 1.95 1486039 0.92
21-Feb | 3077169 1.92 1484376 0.92
22-Feb | 2957518 1.84 1450000 0.9
23-Feb | 3181719 1.98 1522926 0.95
24-Feb | 3095821 1.93 1562730 0.97
25-Feb | 3095821 1.93 1510018 0.94
26-Feb | 2940737 1.83 1541806 0.96
27-Feb | 2915739 1.82 1547367 0.96
28-Feb | 2303440 1.43 1440457 0.9

As we mentioned, the idea is to provide a smaller Bloom filter while preserving the accuracy
of the history. By creating the history with the first three octets of IP address we achieve
significant reduction for the number of unique IP address to be kept in the history and
consequently it decreases the size of Bloom filter as shown in Table 3.3 and Figure. 3.19. The
number of unique addresses in history drop down to around 1,500,000 by using the first three
octets of IP address and it shows around 50% reduction of total IP addresses need to keep in the

history. As a result, the size of the Bloom filter reduces to around 0.9 MB for each corresponding
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day as shown in Figure. 3.19. Furthermore, the result shows that at the same time the accuracy of
IP address history increases due to this change. We will discuss about the history accuracy in the
next step.

In particular, it is important to minimize the size of filters such that storage and processing
cost are minimizing as we address in this part of analysis. In Chapter 4 we derive a new structure
which we refer to as the Compacted Bloom Filter (CmBF) that use less storage with the same
functionality as the standard Bloom filter, by introducing the false negative in membership query.
In short, we can tradeoff between false positive rate, false negative rate and memory reduction
by using CmBF data structure. According to that structure the size of Bloom filter can be
reduced between 20% to 60% with almost similar false positive values compared with those for
standard Bloom filter, but accepting 2% to 20% false negative. As shown in Figure. 3.19, the
size of CmBF when entire 4-octet IP address can be in the range of 0.8 MB to 1.8 MB. For the IP
address history based on the first three octets of IP address the size of CmBF is between 0.4 MB
to 0.8 MB as well. As the result show the size of Bloom filter for each day can vary based on the
scheme selected. For instance the maximum size of Bloom filter for Feb 8th is 1800 KB by using
the standard Bloom filter and the 4-octet IP address whereas the minimum size is 400 KB by

using CmBF and first three octets of IP address.
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Figure. 3.19. Size of Bloom filter

The next stage is to evaluate the accuracy of the history, i.e., the percentage of traffic for each
day that appeared in the history. As shown in Figure. 3.20 the history accuracy is about 60% to
80% for each day and this verifies that most of the IP addresses that appear in the CSU network
under normal conditions have previously visited and follow the signature of each day’s network
traffic. We can see the highest history accuracy is for Feb 21st with 80% and the lowest one is
for Feb 12th with 60%. Table 3.4 shows the number of unique IP address of packets visiting
CSU and the number of IP address that match with history for each corresponding day. For
instance, on Feb 8th the total number of unique IP addresses on packets coming to CSU is
2,709,558 and 1,790,443 of those IP addresses match with the history as of Feb 8th. We also
show the effectiveness of using the first three octets of IP address in Figure. 3.20. In this case the
accuracy of IP address history improves to around 75% for most of the days while the size of

Bloom filter reduces to 50% as we discussed with respect to Figure. 3.19.
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Figure. 3.20. History accuracy

Table. 3.4 Number of unique IP addresses of packets arriving to CSU and their match with
history

8-Feb | 9-Feb | 10- 11- 12- 13- 14- 15- 16- 17-

Feb |Feb |Feb Feb |Feb |Feb |Feb |Feb

IP 17904| 16273| 18986 | 19814 | 19577| 19848 19951| 17509| 17751 | 19980

Matc | 43 96 79 43 57 88 27 64 44 38

Total | 27095| 23094 | 30092| 31295| 33165| 32011| 31916| 24407 | 25980| 32062
IPin | 58 66 46 33 82 60 04 58 16 85
Histo

ry

18- | 19- 20- 21- 22- 23- 24- 25- 26- 27- 28-
Feb | Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb
1989 18087 | 18048 | 16846 | 13355 | 13623 | 14247 | 16541 | 14124 | 16522 | 13955
359 |70 41 04 60 94 31 67 83 58 30
3309 | 28645 | 29005 | 23700 | 17676 | 16984 | 19573 | 24596 | 21157 | 21976 | 19224
144 |80 03 58 86 66 84 54 52 52 79

The other important parameter to evaluate is how much of the traffic volumes can pass
through the Bloom filter and reach the end nodes. As shown in Figure. 3.21 normal traffic
detection rate is more than 68% up to 82%. This demonstrates that the performance of signature-

based IP address history is highly reliable for identify normal traffic and withholding only little
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legitimate traffic. Normal traffic detection rate increase to around 80% to 90% if the first three

octets of IP addresses is used to generate IP address history.

In this part we investigate the effectiveness of history accuracy and measure how many of
packet traffic can pass the Bloom filter. The results are shown in Figure. 3.22. The x-axis is the
traffic volume based on number of packets. From this figure we observe the total number of
traffic received is varying from 160 Million to 220 Million packets in each day. We denote the
external traffic also increase suddenly on Feb 10th and Feb 16th where the portion of normal
traffic can pass the history doesn’t change too much. It means for those days part of the incoming
traffic to CSU doesn’t appear before and it was not include in the history. For almost all the other
days the normal traffic that can pass the history has similar behavior. Furthermore, the result
shows the signature-based IP address history with the first three octets can perform better than
the history with entire IP address as expected. There is one clear deduction which is by using
first three octet of IP address history the normal traffic detection rate increase; however, there is
tradeoff between protection rate and normal traffic detection rate. When we are using the first
three octet of IP address there is some possibility that malicious start the attack from the point
with similar first three octets of IP address that exist in the history and the signature-based IP
address history couldn’t filter them. Therefore the protection rate reduces by using three octets of
IP address. In the other side by using first three octet of IP address the size of Bloom filter
reduces and normal traffic detection rate increases. Therefore, selecting appropriate approach is
based on accepted size of Bloom filter, history accuracy and protection rate. In general, using the
first three octets of IP address gives the better history accuracy, normal detection rate and it

reduces the size of Bloom filter where protection rate decrease at this point.
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Figure. 3.22. Traffic volume and number of packets can pass history

3.4.3.1.1 Impact of Window Size

In the last part, we studied the effect of window size to determine accurate IP address history.
We create history for four different window size and measure history accuracy according to them.
The window size is set to 14, 7, 10 and 3 days respectively for creating the history and then we
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calculate history accuracy for days from Feb 15th to Feb 28th as shown in Figure. 3.23. The
number of unique IP addresses that appeared in the corresponding history also show in Table 3.5.
Figure. 3.23 shows the history accuracy improves as long as we increase the length of window
size from 3 to 14 days; however, the interesting observation is that history accuracy doesn’t

change significantly after 10 days. It means most of the legitimate IP addresses have appeared in
the history visited CSU less than 10 days ago and very few IP addresses have made more than 10
days prior appearance. The other observation can be notice in Figure. 3.23 that the larger gap is
between window size 3 and 7 days. The history accuracy is around 50% for 3 days window size
while this value improves to 65% for 7 days. In fact this experience shows the 3 days window

size is a short period to create a history with high accuracy.

= 7 days window size

=n=3 days window size

——10 days window size

=== 14 days window size

T T T T T T T T T T T T T 1
15-Feb 16-Feb 17-Feb 18-Feb 19-Feb 20-Feb 21-Feb 22-Feb 23-Feb 24-Feb 25-Feb 26-Feb 27-Feb 28-Feb

Figure. 3.23. History accuracy for different window sizes
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Table. 3.5 Number of unique IP addresses in history with different window size

15-Feb | 16-Feb | 17-Feb | 18-Feb | 19-Feb | 20-Feb | 21-Feb | 22-Feb

14 days| 693082 | 601986 | 608019 | 620642 | 619863 | 622428 | 624468 | 617867
windo |6 8 3 4 0 6 6 7
w size
10 days| 488910 | 485809 | 480353 | 485300 | 491065 | 491156 | 488728 | 483235
windo |3 6 2 5 5 9 6 7
W Size
7 days | 313083 | 298695 | 307774 | 318145 | 308694 | 313192 | 307716 | 295751
windo |0 5 2 6 5 3 9 8
W Size
3 days | 218964 | 204712 | 198720 | 214148 | 228989 | 230840 | 225978 | 211802
windo |3 6 7 0 6 3 4 9
W Size

23-Feb | 24-Feb | 25-Feb | 26-Feb | 27-Feb | 28-Feb

6166982| 6192012| 6091122| 6069075 6007085 5969252

4735330| 4714798| 4717731 4785940| 4775288[ 4628090

3181719| 3095821| 3095821 2940737| 2915739| 2303440

2239626| 1874455| 1865488( 1944892 1911688| 1917622
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The other important parameter to evaluate history accuracy is size of Bloom filter. As shown
in Table 3.5 and Figure. 3.24 as long as increasing the window size, size of history as well as
history accuracy increase. This means that there is tradeoff between history accuracy and size of
history. According to Figure. 3.24, size of history increase around 0.7MB in average from 10
days to 14 days window size; however, as shown in Figure. 3.23 history accuracy is almost
similar. Therefore between 10 days and 14 days window size, 10 days window size would be
appropriate selection. Furthermore, from Figure. 3.24 we can also find that size of Bloom filter
reduce around 1MB in average when the window size changes from 10 days to 7 days where, the
history accuracy only improve less than 5% by considering 10 days window size. As the result, 7
days window size can be the best choose where it can provide good history accuracy with

appropriate size of Bloom filter.

In our work, we show very good results in successful characterizing the network traffic and
preserving good traffic with appropriate filtering’s size. The experiment results verify that our
signature-based mechanism can be deployed in real networks as it has addressed some critical

drawback of the previous approaches as well.

3.5 Conclusion

In this chapter we introduced a signature-based filtering mechanism that distinguishes attacks
from normal traffic. We have demonstrated how to form a history based filter that takes into
account a rich set of header fields of traffic and characterize network traffic. We then presented a
filtering mechanism based on Bloom filter structure that can be rapidly distributed to responsive
points closer to attack sources, Furthermore; we have shown the effectiveness of filtering

structure with the DARPA dataset, University of Auckland and Colorado State University
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dataset. Our experiment indicates that our filtering model can protect the victim node from ~95%
attack traffic while allowing ~70% of legitimate traffic with appropriate size of Bloom filter. In
addition, according to DARPA dataset, it shows that the filtering mechanism can detect 99% of
attacks that want to bypass the filtering during the normal traffic. In contrast to existing DDoS
attack detection techniques, our scheme is more reliable and accurate, and also has a lower

overhead.
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CHAPTER 4

THE COMPACTED BLOOM FILTER

4.1 Introduction

This chapter focuses on designing an efficient data structure for filtering attack traffic. A
Bloom filter is a space-efficient probabilistic data structure that is used in many domains
including networking applications to test for set memberships. Such applications often require
passing bloom filters using messages. Consequently, it is important to minimize the size of the
filters such that storage and processing costs are minimized. In this chapter, we introduce a novel
data structure, which we refer to as the Compacted Bloom Filter (CmBF) that improves
performance, uses less storage, and provides the same functionality as a standard Bloom filter for
applications, such as IP traceback, web caching, andt@eeer networks. Moreover, CmBF
works well for endpoints with limited memory. However, unlike the standard Bloom filter, our
data structure limits false positives significantly at the expense of some false negatives in
membership queries. We derive expressions for the false positive and false negative rates. We
conduct simulations that validate the derived expressions and explore the tradeoffs of this data

structure.

Standard Bloom filters [42] provide space-efficient storage of sets, at the cost of probable
false positives to support membership queries [43]. Although a Bloom filter may yield false
positives, which occurs when an external element is recognized as a member of the set, it
provides a compact structure that can be configured for sufficient accuracy. In order to achieve a
false positive probability of 1%, 10 bits of storage per element is required. Bloom filters have

been used in many different distributed applications [44] such as IP traceback [45] [46], web
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caching [47] and pedo-peer networks [48] [49] [50]. Although a standard Bloom filter
construct is space efficient for simple membership queries, they are inadequate when the
applications need to meet a specific false positive rate and the endpoints have limited storage
capacity. Our work is motivated by applications that must transmit Bloom filters over the
network and/or endpoint machines have restriction on available memory to meet specific false

positive rate.

In recent years, the popularity of Bloom filters has grown and they are now being used in
many different areas including peerpeer systems, web caches, database system, spell checkers
[51] [52] and networking [53]. Consequently, in the past decades lots of research efforts focused
on improving Bloom filters. Some variants of the Bloom filter include Counting Bloom
filter [47] [54], d-left Counting Bloom filter [55], [56] Spectral Bloom filter [57], Generalized
Bloom Filter (GBF) [53], L-priorities Bloom filter [58] and Compressed Bloom Filter (CBF)

[41].

The CBF [54] reduces the transmission size of the Bloom filter. However, the tradeoffs are:
(1) the increased processing required for compression and decompression, and (2) the increased
memory required at the end points. In this work, decompression must be done at the receiving
end to achieve the functionality of the standard Bloom filter. The memory savings occur during
transmission, but not at the end points. In our work, we achieve memory savings at the end
points and also during transmission time. We present a new variant of the Bloom filter, which we
refer to as the Compacted Bloom filter (CmBF), which has the same functionality as the standard
Bloom filter but requires less memory. For the same fraction of false positives, the CmBF
generally requires half the bits over the standard Bloom filter. This memory saving is achieved at

the expense of increasing the number of false negatives when CmBFs are used instead of the
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standard Bloom filter. A false negative occurs when an inserted element is not recognized by a
membership query. Later we demonstrate how the false negative rate depends on the size of the
memory and the false positive rates. CmBF is also very simple to implement, which makes it

very useful in practice, much like the standard Bloom filter.

The rest of this chapter is organized as follows. Section 4.2 summarizes background material
on the Bloom filter. CmBF is described in section 4.3, along with a theoretical analysis. In
section 4.4 we provide experimental results that corroborate with our theoretical analysis. In
addition, we also present the tradeoffs between false positive rates, false negative rates and

memory savings. Finally, section 4.5 concludes the chapter.
4.2 Bloom Filters

A Bloom filter is used to represent a sebf n elements, wher& = {s, 9 ..., sn}. It is
implemented by a single array of bits andk independent hash functiohs, te, ..., ik. Each
hash function uniformly maps an element of theSet a value in the rangg, ..., m1}. The

average number of bits used to represent a single elenh%natriﬁtn. To construct the Bloom

filter, first all m bits are initialized to zero. Then for eachneatx € S bit hi (X) is set to one for

i=1, 2, ..., k. The same bit will be set to one several times if different hash functions map to the
same element in the range ..., m-1}. Figure. 4.1 depicts how an element is inserted into a
Bloom filter. In order to query whether an elemgiielongs toS we check whether the bits of

the array corresponding to the hash functiar(g), wherei=1, 2, ..., k are 1 or not. If at least one

bit is 0 thenyg S Otherwise, ¥ S with some probability. This test can result in a false positive.

False positive occurs when the bitgy) i=1, 2, ..., k are all previously set by other inserted
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elements. The probability of a false positive for an elerges$ is calculated as follows [41].
The probability of a given bit is set to 1 in the array after insertieigments is:

k"

p=1-(-1)kNt1 e M (4.1)
m
The false positive ratg is the probability of finding a bit set to 1 for each of khgositions

for non-member elements. It is given by the following equation:

_kh
fp=(p)f~a-e MK (4.2)
X
ha(z)) ... ] hi(x)
1 1 1
N m bits -

Figure. 4.1. An example of insertion of an element into a Bloom filter
The interesting observation is that increasing the natio reduces the false positive rate.
Additionally, there is an important tradeoff between the number of hash funktanisthe false
positive rate. Increasing the number of hash functkdaeads to higher false positive rates and at
the same time the probability of finding every indicated bit is 1 decrease with higher vakues of
The optimal value fok that minimizedp is found by differentiatindp with respects t&. The

only solution isp=1/2 which implies that the minimum false positive rate is achieved when
approximately half of the bits equals 1. In this condikem/n In2andfp is (.5)" ~(.6189H m/n

From this equation, the minimum number of bits to achieve a false positivig iatgven bym

=-0.20& log fp.
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Onre problem with the Bloom filter is that its false positive rate strongly depends on the fill
ratio, which is the number of bits that are set to 1 and on average is giwep I6yll ratio, thus,
is a function ofn, m,andk. In order to have the optimum numberkoandf,, we must have a
lower bound on the size of the memory. Thus it is not suitable for applications running on
systems with limited memory. Towards this end, we propose a Compressed Bloom filter (CmBF)

that requires less memory than the standard Bloom filter to achieve a certain false postive rate

4.3 The Compacted Bloom Filter

CmBF requires less memory than a Bloom filter to achieve the same false positive rate. When
used in a network application, it helps reduce the transmission cost and the storage cost at the
endpoints. Moreover, unlike the CBF, compression and decompression techniques are not
needed which makes CmBF more efficient.

CmBF is a probabilistic data structure like the standard Bloom filter that is used to represent a
setS={s, & ..., sn} of n elements. Let the standard Bloom filter used to represent this set be an
array ofm bits. Letk be the number of independent hash functions used to construct the Bloom
filter representation. The outputs of the hash functions are uniformly distributed over the discrete
range {0,..., m-1}. We now describe how to construct the corresponding CmBF from this

standard Bloom filter representation.

The standard Bloom filter is first divided int@ blocks, denoted bylock I, block 2, ...,
block_ k. Each block has bits, the positions of which are denoted by2,...,n as shown in
Figure 4.3. A CmBF vector, denoted by CmBFV, is an arrayidices and each index contains
mo bits, wherdogz ko < mo< ko. Note that, fom bits 2™ patterns exist in the CmBF vector and

the lower bound fomois logzkoas it is the minimum number of bits required to cdegratterns.
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Indexi in CmBF vector, denoted mBFV[i], corresponds to the value of ti{ebit positions in
block 1, block 2, ..., block _n in the standard Bloom filter. For example, the first index in CmBF
vector, denoted a€mBFV[1], has information pertaining to the first bit of each block in the
Bloom filter. We define some rules about how to populate each index based on the bit pattern in

the standard Bloom filter.

Bloom filter (p=0.1, k=4, n=5,k¢=5)

Bit Pattern Index Value
00000 000
10000 001
01000 010
00100 011
00010 100
; 00001 101
\ : i / N4 i 00110 110
" -
\.\ !Com}m ; H, ”_...-"‘ __,....-"'". Anypattfer{lwith 111
h'h.J.“'_-.'-:nhH'-'l-"—'-.— 3:4701'51
Ay pattem with [Randomlychoose|
111 111 | 011 110 | 001 lessthan3 “1°  Jonesuchblock
contain ‘1’
CmBFY (m0=3)
Figure. 4.2. An example for generating the Compacted Bloom filter
Bloom Filter
block_1 ;  block 2 ;  block 3 : ; block_ko
0 1 2 " : : L m-1
0 S . | 111 ]
A b A A A
1 ) - . ; P T R R R . ]
. n bits R . ,' _
! _.r .- - L= Corespond_ec.i_b_ig_s. ______
e Tt T e T T T T e T T
1 2 .. n
Y CmBFV
mo bits

Figure. 4.3. Compacted Bloom filter
Consider the set af" bits in all blocks in the Bloom filter, which we denoteSadf there is

no ‘1’ in S, thei™ bit of any block, we set the corresponding bit in CmBF to 0, CenBFV[i]
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= 0. If there is exactly one ‘1’ in S, which appears iblock_r, we setCmBFV[i] = r. If all the

bits in S. are ‘1°, we set CnBFV[i] = 2™M° -1. If not all bits inS. are ‘1°, but half or more than

half of them are ‘1’s, we set CmBFV[i] = 2™ — 1 as well. In this case, some of tiffebits having

‘0’ may be interpreted as ‘1°, thereby introducing more false positives. If less than half of the bits

in S. are '1°, we randomly choose one such block containing ‘1’ in the i bit position, say
block_s and we se€EmBFVI[i] = s. Thus, all the other blocks that contain a ‘1’ are interpreted as

having a ‘0’, thereby increasing the false negative rate compared to the standard Bloom filter. To
deal with this issue, a$"2- 1 different index values are available to assign bit patterns in CmBF,

it is more efficient to use all available index values to cover more bit patterns. It reduces the
number of bits interpreted as ‘1’ or ‘0°, which, in turn, decreases the false positive and negative

rates. For this reason, one more rule is defined in this structure to cover unused index values. If
bit pattern value is less thafl2- 1 and has more tham®‘1°, it means that the bit pattern value

is in the range of unused index values. In this case, the index is assigned the bit pattern value.
This case occurs in the fourth index value in Figure. 4.2. The following pseudo code in Figure

4.4 describes how to assign values to the CmBFV.

Figure. 4.2 illustrates how the CmBF is generatedpfed.l, n=5, k=4, ko=5, and mo=3.
These parameters necessitate that the size of the standard Bloom filter be 25 bits and the size of
CmBF be 15 bits. In this example, we achieve 40% reduction in size when with CmBF compared
to that of the standard Bloom filter. Note that a false negative occurs when an inserted element is
not recognized by membership queries, and it depends on how many of the bits assigned to ‘1’ in
the stindard Bloom filter are interpreted as ‘0’ in CmBF. Figure. 4.5 shows the Bloom filter
generated from the CmBF described in Figure. 4.2. Note that, the generated Bloom filter, shown

in Figure 4.5, differs from the original one shown in Figure. 4.2. InGhiBF example, three ‘0’
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invert to ‘1’ compared with original Bloom filter that increase bit ratio and introduce more false
positive. Moreover, one ‘1’ inverted to ‘0’ that in this case generates false negative in CmBF
structure. Note, false negative isngeited when a bit that is ‘1’ in the standard Bloom filter is
reset to ‘0’ by CmBF rules. The probabilities of false positives and negatives are calculated in

the next section and the effect of false positive and negative are shown in the evaluation part.

Algorithm1: Generate CmBFV

INPUT': Bloom filter (n, m, ko, mo)

OUTPUT: CmBFV

1:fori <« 1,ndo

2: if |#1'in Bit pattern[i]] = 0 % Bit pattern[i] is i bit of block (1...ko)
CmBFV][i] < Binary value (0)

(%]

4: elseif |#'1'in Bit pattern[i]| =1 % ’1" appears in block r

5: CmBFV]i] « Binary value (r)

6: else if (Bit pattern[i]) < Binary_value(2™ —1)

7: CmBFV[i] « Binary value (Bit pattern[i])

8: else if |#'1'in Bit pattern][i]| < kq/2

9: CmBFV[i] « randomly select one of the blocks contains ‘1’
10: else % that means |#'1'in Bit pattern[i]| = k, /2

11: CmBFV[i] < Binary value (2™ — 1)

12: end if

13: end for

Figure. 4.4 pseudo code to generate CmBF
Querying a given element for the set membership is based on the bit patterns that we defined
in constructing the CmBF. The advantage of CmBF is that it reduces the number of bits required.
Thus for a given size of memory lower false positives are achieved; however, this structure
provides some false negative as well. We explore this tradeoff and provide an in-depth analysis

of the CmBF later.
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Figure. 4.5. Equivalent Bloom filter fork5 and n=3.

4.3.1 False Negatives

False negative only occurs for inserting elements. A false negative occurs for an element if at
least one of its marked bits is inverted, that is, a bit that is ‘1’ in the standard Bloom filter is reset
to ‘0’ by CmBF rules. This condition happens when more than one but less than half of the bits is
set to ‘1° when the element is inserted in the standard Bloom filter. Thus, the false negative rate
depends on the number of ‘1’s in the corresponding bits in the Bloom filter. The false negative
rate is calculated from the probability of the number of 1’s that are less than half bits in the

corresponding index. As we show in Eq. 4.1, the probability of a given bit set to ‘1’ in array after

—kn
insertingn elements can be expressed(ye ™M) and therefore, probability of a given bits

n
set to ‘0’s is given by e_km . Thus f(i,ko,p)=P(X=i) is the probability of getting exactly
number of ‘1’s in ko trials whenX follows the binomial distribution as shown in Eq. £h

average o is the number of bits set to O when the bit is initially 1 antl) (n this equation
shows the number of bits interpreted to ‘0’ when P(X=i) occurs.

[kq/2]
Q= L PX=i)i-dio (4.3)

Where,
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n n
A L O o B e
P(X=i)=( Dd-e M)i(e ™M) (4.4)
[
A false negtive occurs if at least one of the selected bits is an inverted bit, that is, a bit in ‘1’
is reset to ‘0’. Hence from the bit distribution, the average false negative probability fn is
calculated as shown below in Eq. 4.5, whagrés the number of bits on average set to 1 in the

standard Bloom filter. According to Eg. 4.5, a false negative occurs if at least one of the selected

bits is an inverted bit and the others have ‘1°.

k Qn : —kﬂ .
fh=2 (-9) a-e Mk (4.5)
=1 ql
Ll
q=m@-e M (4.6)

As the example consider the CmBF is generated in Figure. 4p5@ot, n=5, k=4, ko=5 and
mo=3. To calculate false positive probability first step is finding the probability of having the
number of 1’s that are more than one but less than half bits in each block. This condition means
we should find the praibility of getting 2 number of ‘1’ in block. Therefore, in this example
P(X=2) is calculated from Eq. 4.4 where it goes to equal 0.275. In the next step, we should
identify the number of bits change from ‘1’ to ‘0’. qo in EqQ. 4.3 is defined as the number of bits
set to 0 when the bit is initially 1. According to this equatiof)(is equal to 1. It means the
number of bits interpreted to ‘0’ is 1 for X=2 in a block In the other word, the number of bits
needs to be converting when we getting 2 number of ‘1’ in a block is 1. So to determine on
average number of bits change from ‘1’ to ’0’, P(X=2) is multiplied by1*5 as shown in Eq. 4.3.
Qois calculated from Eq. 4.3 and is equal to 1. It means, on average the number of bits set to 0

when it was initially 1 after creating CmBF is 1. In the next sgfs calculate from Eq. 4.6 as
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the number of bits on average set to 1 in the standard Bloom filter. In this equation length of

—kn —kh
Bloom filter m multiply by(l—e ™). As explaineddl—e ™M)is the probability of a given bit

set to ‘1’ in array after inserting n elements. So by multiplying it tm we determine the number
of bits set to 1 on average in the standard Bloom filter. According to this eqqgaisoobtained

13. In the last step the average false negative probdbibtgalculated according to Eq. 4.5.

4.3.2 False Positives
To calculate the false positive probability of the CmBF, we first calculate the probability of a
bit being set to 1 when the bit is initially 0. This caidi happens when the numbers of 1’s are
more than half bits in the corresponding index. On aveiggdeiis is set to 1 when the bits are

initially 0. gzis expressed by:

[EEY

Q= kozlzo P(X = i)(ko—)ko (4.7)
i:M

From the bit distribution, the probability of a false positive is the probability that we find bit
in ‘1 for each of the k positions. Since on averagebits are set to 1 when the bit is initially O
andqobits are set to 0 when the bit is initially 1. Hence the number of 1 (i.e. fill ratio) in CmBF

is:
q3 :ql+q2 _qo (4.8)
As a result, the probability &f for the CmBF is calculated as:

fp= (Q_nij)k (4.9)
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Consider the CmBF is generated in Figure. 4.5pfa0.1, n=5, k=4, ko=5 andnpv=3 as the
example. To calculate the false positive, we first calculate the probability of a bit being set to 1
when the bit is initially 0. This is equal to when the numbers of 1’s are more than half of bits in

the blocked Bloom filter. This condition means we should find the probability of getting 3 or 4
number of ‘1’ in block and it is equal to P(X=3) andP(X=4) in this example. From Eq. 4.4 these
probability can be calculated and are equal to 0.337 and 0.206B(¥zt3) and P(X=4)
respectively. Therefore, in the next step we can ologaas the average number of bits is set to 1
when the bits are initially O from Eqg. 4.7. That is equal to 4. This means on average 4 bits
convert to 1 from O after creating CmBF in this example. Hence the total number of 1 in CmBF
is equal to 16 from EqQ. 4.8 whege gz andqgo areequal to 13, 4 and 1 respectively. At the end,
the average false positive probabilifys calculated according to Eq. 4@./m in this equation
identify fill ratio andfpas the probability of finding a bit set to 1 for each of kh@ositions is

equal 0.162 accordingly.

4.4 Evaluation

In order to analyze the behavior of the CmBF, we simulated it in Matlab with functions for
inserting and checking elements in a bit array. For each simulation round, we selected the
number of hash functions based on the desired false positive rate and inserted the elements into
the Bloom filter. The next step involves compressing the Bloom filter. The CmBF algorithm is
run and then the false positive rate is computed according to the number of bits that are inverted
(i,e., a bitin 1 is reset or a bit in 0 is set). To estimate the false negative, we check whether
CmBF recognizes the inserted elements or not. Each inserted element that is not recognized by
the CmBF is reported as a false negative. We run 500 simulation rounds. For each simulation

round, we select new hash functions and a new dataset to insert into Bloom filter. We used traffic
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dataset collected from University of Auckland in New Zealand [6] and hash source IP addresses
into the Bloom filter. Simulation results are very close to the analytical results as shown in
Figure. 4.6, which serves to validate the analytical expressions derived in the previous section. In
Figure. 4.6, we show the false positive probability of CmBF as a function of the number of hash
functions for three different sizes of the Bloom filter for both the analytical and the empirical

solutions. Thus, the rest of the graphs presented are based on theoretical assessment only.

We test the theoretical framework above by examining a few specific examples of the
performance improvements possible using CmBF. We consider cases where 10 bits are used in
the Bloom filter for each element thatrign= k=10. Then, using the optimaumber of hash
functionsk=7 yields the false positive rate of 0.0081. According to CmBF algorithm the number
of bits per index in this case can be in the range of 4 to 9. Therefore the memory size is reduced
from 60% to 10%. Our optimization is based on the assumption that we wish to minimize the
memory requiremenn as functions ok andp. The primary point of this theoretical analysis is
to demonstrate that compression is a viable means of improving performance, in terms of
reducing Bloom filter size for the desired false positive and negative rates. The other important
parameter is false positive rate in CmBF structure. In membership queries, a false positive
implies recognizing an element that does not belong to the set. As the false positive probability
increases, more and more non-members are incorrectly identified as belonging to the set.

Therefore, a low false positive probability is desired.

First, we note that the false positive probability of CmBF reduces as the number of hash

functions decrease for specificandm. This assumption is reasonable since the false positive

—kn
probability of a CmBFfp is a function of fill ratiqgl—e ™M), according to Eq. 4.4. As the
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number of hash functions decrease, the fill ratio of the Bloom filter also decreases. Note that, on
average, the number of bits that are set to ‘1°, when the bits are initially ‘0’, decreases as we

reduce the number of hash functions. Moreover, when the fill ratio decreases, it is easier to find
the number of 1’s in the blocked Bloom filter that are less than half of the bits in the
corresponding index, but haidto find number of 1’s that are more than half of the bits. When

less than half of the bits are set, our CmBF algorithm randomly represents one block and resets
the bits corresponding to the other blocks. Moreover, when half or more of the bits are set, it sets
the bits corresponding to all blocks as ‘1°. Thus, when fill ratio decreases, the probability of bits

being reset increases and the probability of bits being set decreases, contributing to a lower false
positive rate. In Figure. 4.7, false positive probability of a Crfpgfs a function ok for m/r=10

is shown. For all different number of bits per indax we have a similar behavior. The false
positive probability of the standard Bloom filter always increases when the number of hash
functions decreases, which is in accordance with Eq. 4.2. As Figure 4.7 depiktg, tbe false

positive probability of standard Bloom filter and CmBF have a noticeable difference. However,
for k=5 false positive rate for CmBF falls over 40% and CmBF and Standard Bloom filter false
positive rates are very close to each other anck#8r and 2 the CmBF have a lower false
positive probability. Thus, the results demonstrate that the CmBF allows an equal or lower false

positive rates for a givemandm compared with the standard Bloom filter.
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Figure. 4.6. False positive probability of CmBF as a function of the number of hash functions for
m/n=7, 10 and15.
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Figure. 4.7. The effect of increasing bits per index on the false positive probability of CmBF as a
function of the number of hash functions for m/n=10.

The advantage on CmBF comes at a cost. The cost in this case is the introduction of false
negative probability in membership queries for CmBF. A false negative implies not detecting an
inserted element. In Figure. 4.8 we show the false negative probability for different number of
bits per index form/n=10 andk=7, 5, 3 and 2. We notice that the false negative probability
always equals zero for the standard Bloom filter, as expected. Since the standard Bloom filter
never resets bits, it is impossible to have a false negative. For the CmBF, however, this behavior

occurs because some of the bits marked as ‘1’ is inverted to ‘0’ during construction. In Figure
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4.8 we see that the false negative rate increases as the number of hash functions decrease for a
specific number of bits per index. This happens because with less hash functions it is more likely
that less than half of the corresponding bits for each index will be ‘1’. As a consequence, the

probability of an inversio of bit to ‘0’ is higher and false negative rate increases. From Figures

4.7 and 4.8 we see that the number of hash functions used in the CmBF has a dual effect. On one
hand, decreasing the number of hash functions reduce the false positive probability as shown in
Figure. 4.7. On the other hand, it increases the false negative probability as shown in Figure. 4.8.
Some applications, such as IP traceback [45] [46], require smaller false negative rate, but can
tolerate higher false positive rate. However, for other applications such as P2P, the opposite can
be true [48] [49] [50]. As a result, it is important to select appropriate parameters so that we can

provide an ideal tradeoff.
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Figure. 4.8. The effect of decreasing the number of hash functions on the false negative
probability of CmBF for m/n=10.

To deal with adjusting desired properties, it is possible to degrade the false negative rate as a
tradeoff cost with reduction of memory size. As seen in Section 4.3, the false negative in CmBF

arise because bits set as ‘1’ are reset when the numbers of 1’s are less than half of the total
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number of bits in the standard Bloom filter. Note that, this behavior can be somewhat mitigated
by increasing the number of bits per index as more bit patterns can be used to cover more
conditions, which, in turn, will reduce the false negative and false positive rates. These extra bits
can represent more patterns that can be used when the number of 1°s is less than half bits in the

standard Bloom filter. Note that, as stated in Section 4.3, when less than half of the bits are ‘1’ in
corresponding index, the rule defined is one of the block numbers are randomly chosen and
indicated as ‘1’ and others are reset to ‘0’. However, with the increased number of bits, it is

possible that some pattern can be used to indicate accurately the exact blocks containing ‘1°,

thereby reducing the false positive and false negative rates. The number of such patterns that can
be covered depends on the number of bits per index. Increasing the number of bits per index
requires more memory for CmBF but reduces the false negative rate. Depending on the
application it may be important to reduce the probability of false negative at the expense of
higher memory requirement. Figure. 4.9 and 4.10 depidhtfggand memory reduction size as a

function of the number of bits per index for different valuek, dor mVyn=10.
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Figure. 4.9. The effect of decreasing the number of bits per index on the false positive and
negative probability of CmBF for m/n=10.
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Figure. 4.10. The effect of decreasing the number of hash functions on the false negative
probability of CmBF for m/n=10.

We see that the probability of false negatives reduces dramatically as we increase the number
of bits per index and it reaches close to 0 (0.0012%) with increase in the number of bits per index.
As an example, based on our result for=10, h=5 and 5 bits per indeX,is 0.011(standard
Bloom filter hasfp= 0.0094 in this conditionfais 0.03 and we have 50% memory reduction size.

In the other worlds, in CmBF by accepting 0.03 false negative rates we can reduce 50% memory

requirements with almost similrcompared with the standard Bloom filter.

In short, we can do tradeoffs between the false positive rate, false negative rates, and memory

reduction using our CmBF data structure and use it for diverse kinds of applications.

4.5 Conclusion

In this chapter, we have introduced CmBF, a new data structure that uses less memory but
provides the same functionality as the standard Bloom filter. CmBF reduces the memory
requirements by introducing the false negatives in membership query. We derived expressions
and provided tradeoffs between false positive, false negative and memory reductions. Such

knowledge of tradeoffs can be used for different applications that require the functionality of
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Bloom filters but aim to minimize the communication costs and have less memory at the

receiving end.
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CHAPTER 5

A DISTRIBUTED MECHANISM TO PROTECT AGAINST DDOS ATTACKS

5.1 Introduction

In this chapter we propose one such mechanism that when deployed is able to filter out attack
traffic and allow legitimate traffic in the event of an attack. Our goal is to place such filters that
block attack traffic and allow legitimate traffic as close to the source node as possible so that
network resources are not wasted in propagating the attack. Our scheme introduces an algorithm
that identifies the most effective points where the filter can be placed so as to minimize attack
traffic and maximize legitimate traffic for the victim node and the other end users during the
attack period. We evaluate the effectiveness of our scheme using extensive simulation in
OPNET® with real network topology. The experimental results demonstrates the efficacy of the
proposed scheme in blocking attack traffic at the upstream routers close to the source of the
attack and also shows the effectiveness of the scheme in allowing the legitimate traffic from
reaching the victim node. The results prove that presented algorithm accurately selected
desirable filtering points where all the filtering routers are selected at first three routers from
attacker node and stop 95% of attack traffic while allowing 77% of legitimate traffic to reach to
victim node for CAIDA attack dataset.

Denial of Service (DoS) attacks, which are intended to make the service unavailable for
legitimate users, have been known to the network research community since the early 1980s.
DDoS attacks against commercial websites like Yahoo, Ebay and E*Trade have provided
evidence of how legitimate user access may be blocked by DDoS attacks and cause financial loss

[1] [2]. Moreover, emergency and essential services rely on the network infrastructure, and thus
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DDoS attacks may have severe consequences to the public as well. Consequently, defense
against DDoS attacks has become one of the most important research issues, with techniques for
preventing, detecting, and surviving such attacks being developed [3]. Despite significant
research into countermeasures, DDoS attacks still remain a major threat today [27]. Recent
examples include a record 400 Gbit/s DDoS attack against CloudFlare, a rate about 100 Gbit/s
more than the largest previously seen DDoS attack [7].

The frequencies and the impact of DDoS attacks have motivated researchers in the Internet
security community to provide techniques for preventing, detecting, and surviving such attacks
[3]. Most approaches have failed to provide service availability in the presence of DDoS attacks.
In this chapter we address this issue and present a distributed responsive defense approach. We
demonstrate how to distinguish attack traffic from legitimate traffic. Moreover, we aim to stop
the attack traffic as near as possible to the source of the attack while allowing the legitimate
traffic access to the victim node.

In general, there are several factors that make defending against DDoS attacks hard. First, the
traffic flow volume through the victim node can reach up to 400Gbps [7]. Second, the attack
occurs in a highly distributed mannerthis gives the illusion of legitimate traffic and makes
detection difficult. In addition, a flooding attack can appear like a flash crowd, which occurs
when a large number of legitimate users connect to a server simultaneously [8]. Differentiating
the attack traffic from flash crowd traffic is one of the hardest steps in detecting and protecting
against DDoS attacks. The presence of zombies that spoof the IP address of the source of the
attack make it even more difficult to identify and trace the attacks back to their actual sources.

DDoS attack countermeasures can be classified into three classes depending on when they are

applied with respect to the attack. Some are preventive techniques that are applied in order to
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stop the occurrences of attacks [2], [98P], [61]. Some are detection mechanisms that aim to
identify attack traffic [62], [5]. Other techniques attempt to identify the sources of attack and
respond to those [63], [5], [64], [65]. However, a comprehensive DDoS defense mechanism
should include all three categories of defenses since there is no one-size-fit-all solution to the
DDoS problems [66]. Attack source identification and responsive techniques actively try to
mitigate DDoS attacks by filtering or limiting attack packets [27]. Such schemes have two
components, namely, attack detection and packet filtering. The characteristics of attack packets,
such as source IP address or marked IP header values [67], [59], [68], are often used to detect
and identify attack traffic. These characteristics are used for packet filtering. Note that packet
filtering can be applied either close to the attack node [62], [5], [69] or close to the victim node
[67], [59], [68], [62], [70] where all the attack traffic aggregate. However, applying attack traffic
filtering at the victim node limits the effectiveness of filtering as the victim may crash while
dealing with an overwhelming volume of attack traffic. In addition, the high volume of attack
traffic may still overwhelm upstream Internet resources when the filter is applied close to the
victim node. Thus, it is desirable to filter attack traffic as close as possible to the attack sources.
However, it is difficult to anticipate and identify such nodes as the attack may originate at widely
distributed nodes and spread through various routes [66]. Therefore, a distributed approach for
filtering packets as close as possible to the source may be needed. Detection and response can be
performed in different places on the path between the victim and the source of the attack as it is
desirable for any DDoS defense mechanism to detect attacks quickly and stop them as close to
the source as possible.

Since attackers cooperate to perform successful attacks, defenders must also form and

collaborate with each other to defeat the DDoS attack. Consequently, a lot of work appears in
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distributed defense mechanisms for DDoS attacks [22], [23], [24], [25], [26]. Some schemes [22]
[23], [24] detect attacks downstream close to the victim and this attack signature is propagated
upstream to the routers doing filtering located close to the source of the attack. The drawback of
these approaches is the difficulty of securely forwarding the attack signature to the upstream
routers. Some schemes [23], [24] need a global key distribution infrastructure for authenticating
and verifying the attack signature [27] which is used for differentiating the attack traffic from the
legitimate one. Note that, creating an accurate attack signature is difficult due to the presence of
zombies who can spoof the IP address of the attack source. Firecol mechanism [25] also presents
a distributed collaborative system to detect flooding DDoS attacks. This mechanism relies on an
Intrusion Protection System (IPS) located in the Internet service providers. IPSs are effective in
stopping attack traffic, but they have very large communications overhead and also significantly
decreas¢he performance of the routers.

An alarming trend associated with individual DDoS attacks has been the dramatic increase in
traffic associated with attacks. Recent examples include a record 400 Gbit/s DDoS attack against
CloudFlare, a rate about 100 Gbit/s more than the largest previously seen DDoS attack [7]. At
these traffic intensities the network infrastructure upstream from the intended victim becomes
severely affected, making it essential to filter traffic close to the sources. Yet, the defense scheme
should not consume significant resources at the routers to identify packets to filter, especially at
those routers not carrying significant volumes of attack traffic. In this chapter we propose a novel
distributed DDoS defense mechanism for achieving these goals, which does not consume any
router resources in the process of identifying routers for up-stream filtering. Moreover the
approach tries to minimize the modifications required to the routers and the current protocols to

combat DDoS attacks with a low complexity and scalability. The mechanism aims to maximize
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the arrival rate for the legitimate traffic and minimize the attack flow during the attack time.
According to our approach, the first part involves developing rules to create a histaty-base
profile on the high confidence IP addresses that serve to differentiate the good traffic from the
malicious ones during the attack time. The history is a collection of legitimate IP addresses that
have appeared in the past. The second part is capture IP address history in the form of a Bloom
filter for efficient transfer. The third part of our approach which is the main contribution of this
chapter identifies how and where this history is used to prevent the attacks causing network
congestion. Placing the filter in the upstream routers incurs storage and performance costs since
the filter must be applied to multiple routers. Placing the filter closer to the victim causes the link
capacity to become saturated and wastes network resources. Our scheme introduces an algorithm
that identifies the routers where the filtering can be placed. We do this by monitoring the
network traffic during the attack period. To the best of our knowledge, we do not know of any
work that considers the optimal placement of the filters to detect DDoS attacks. The rest of this
chapter is organized as follows. Section 5.2 enumerates some related work. Section 5.3 describes
our responsive defense mechanism. Section 5.4 presents our simulation results. Section 5.5

concludes the chapter.

5.2 Related Work

DDoS attacks were first recognized around 2000 and researchers have worked on providing
countermeasures to these attacks since that time [28]. Some of them use a centralized approach
[67], [59], [62], [60], [5], [71] while others are distributed mechanisms [22], [23], [24], [25], [22],
[72], [60], [73], [64], [74]. Some research focused on developing cooperative mechanisms using
a set of nodes to thwart DDoS attacks. Pushback [22] is one of the earlier efforts that mitigate

DDoS attacks using a cooperative mechanism. The approach has several shortcomings. First,
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legitimate traffic is severely penalized. Second, in this approach we need to install the
mechanism in all the routersthis may be unacceptable to some routers because of the high
computational and memory overheads. Other techniques, sucMasg-i-[75], Secure Overlay
Services (SoS) [72], Hop Count Filtering (HCF) [60], ANTID [73] and Decom [64], have tried to
detect attacks based on observing some of packet’s information such as TTL value and path
fingerprints. However, a number of drawbacks exist in these techniqueg7/5R][60], [73],

[64], [76], [77] including the cost associated with them and universal deployment required at the
ISP level to be effective. While those approaches are considered costly in terms of resource
consumption, other proposed mechanisms using simple statistics are not distributed [62]. In [68]
each router between the source and destination marks the path to detect spoofed addresses. H.
Wang et al. in [78] also analyzed the correlation between the request and replies to detect
flooding attacks. Detecting the DDoS attacks at the ISP level was studied in [79] and [80] as well.
Francois et al. [25], [81] recently presented a method called Firecol that consists of collaboration
mechanisms of Intrusion Protection System (IPS) organized in the form of a virtual ring at the
ISP level. The IPS forms a virtual protection ring around the hosts that are being protected and
the members in the ring collaborate by exchanging selected traffic information. The detection
system protects its clients based on parameters such as IP traffic patterns, ports or protocols in
use. The evaluation part demonstrates that this technique performs well with respect to protecting
the hosts, but has a high overhead and performance cost for routers. In addition, updating the
score list and ring communications increase the overhead cost, especially during the DDoS
attacks, where lack of bandwidth may hinder the protocol communication. The other recent
cooperative approach TDFA [26] also presents a distributed defense mechanism that consists of

three main components: detection, traceback and traffic control. The scheme tries to identify
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source of attack by traceback scheme and reduces the rate of forwarding the attack packets and
therefore improves the throughput of the legitimate traffic. TDFA consumes a lot of resource
during the attack time. One of the fundamental deployment and operational challenges is
ensuring a sufficient number of routers to support traceback before it is effective. Moreover
traceback mechanism has computational and network overhead specially during the attack time.
Our proposed distributed approach tries to minimize resource consumption, detects DDoS
attacks early, identifies the attack source, and finally stops the attack as close as possible to the

attack source.

5.3 Distributed Responsive Defense Approach

This section presents our scheme to identify upstream routers, and blocking the DDoS attacks
at these routers to minimize the impact both to the victim and to the upstream network during the
attack time. Proposed DDoS mitigation mechanism consists of the following compqadgnts:
identification model to discriminate attack traffic from legitimate traffic based on a history-based
profile, (2) capture the history-based profile in the form of a Bloom filter for efficient transfer,

(3) identify the responsive points (router/switch) which carry the attack traffic, and 4) activate
packet filtering at selected points. First two items are addressed in detail in [82] and only briefly
reviewed here. The main contribution of this chapter is the overall scheme and the last two

components.

5.3.1 Identification Model
To continue to provide services under DDoS attacks, it is essential to distinguish attack traffic
from legitimate traffic. History based profiles are effective in identifying significant fractions of

legitimate traffic as well as attack traffic. We addressed this problem in [82] by investigating the
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specific attack features as well as normal traffic characteristics to identify the attack traffic from
legitimate traffic. Our parameter set for establishing the identification model are source IP
address and port number, destination IP address, size of packet, packet type (ICMP, UDP, TCP),
frequency of IP address and for TCP traffic, those IP addresses with a successful TCP handshake.
Then accurate normal traffic signatures with a scoring mechanism based on these features
developed. The effectiveness of this approach in blocking attack traffic and allowing the
legitimate traffic at upstream routers has been demonstrated using DARPA data setas [82]
well. Our experiment indicates that our filtering model can protect the victim node from 95% of

attack traffic while allowing 70% of legitimate traffic.

5.3.2 Bloom Filter Mechanism

Since the filtering mechanism need to be applied in upstream routers, and the network
bandwidth may already be saturated during an attack, transferring the entire history and looking
it up in the upstream routers is expensive where upstream routers must process all packets
targeted towards the victim node. A Bloom filter based mechanism is used [82] to efficiently
implement and disseminate the proposed identification model; it helps reduce the communication
and computation costs and the storage requirements of the upstream routers that check for
malicious traffic. In general, Bloom filter [40] is a space efficient probabilistic data structure at
the cost of probable false positives for presenting whether an element is a member of a set or not
since in our approach the Bloom filter represents the contents of the IP address history. There are
three fundamental performance metrics for Bloom filters: false positive rate, size of the Bloom
filter array and number of hash function. In our analysis, we limit the false positive rate to 0.1. In

order to achieve this false positive rate, the Bloom filter array is 5 times the number of IP
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addresses kept in the history. Moreover, 4 hash functions require providing a Bloom filter from

the IP address history.

5.3.3 Responsive Points’ Identification

The third step build up the main contribution of this chapter and it is how and where to use
this filtering to minimize the impact of the attack. Placing such filters at the upstream nodes may
be expensive because all packets passing through such a node must be processed irrespective of
whether a significant amount of attack traffic passes through it or not. Placing filters close to the
victim nodes, in contrast, causes resource wastage as the attack traffic passes through the
network before it is stopped. Our proposed solution addresses this problem by using a recently
developed technology, typically implemented as Small Formfactor Probes (SFP) using FPGAs
(Field Programmable Gate Array). Proposed approach monitor traffic by SFProbes to efficiently
identify router/switch which carry the attack traffic and then apply packet filtering at selected
routers as the responsive point of defense mechanism. An example of such hardware is JDSU
SFProbes and Packet Portal [30]. Packet Portal is a new approach for gathering, distributing and
analyzing information from distributed Ethernet ports [30]. SFProbes can plug into any SFP
compatible elements such as switches and routers in such a way that it taps into the normal fiber
without interfering with the traffic flow. It can be programmed, over the network using the same
fiber, to do tasks such as counting the number of packets with certain values in header fields and
forward information about link traffic to a remote base station. These packet portals have been
deployed on operating networks for network monitoring functions. Our approach uses these
probes, at a subset of ports in the network, to identify the upstream links, and thus nodes, which
carry attack traffic. The probes connected to the router/switch ports, e.g., JDSU Packet Portals,

communicate with a remote base station. It is this feature that we use, as described below, to
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send the history-based profiles to identify the paths with high intensity of attack traffic.
Moreover the portal base station (PBS) has knowledge about SFProbes attached to the routers
throughout the network and can collect data from SFProbes and perform the computation needed
for our scheme, obviating the need for routers performing such computations. The portals can be
globally time synchronized to less than one millisecond, thus enabling synchronized

measurements that were not previously possible [83].

When an attack is detected on the victim network, our algorithm starts to protect a victim
node as illustrated in Figure. 5.1. At this point the victim network sends the Bloom filter that
created in section (ii) to PBS. As we mentioned the Bloom filter represents the content of IP
address history and it causes a significant reduction of message traffic and introduces an efficient
IP address look up mechanism. The PBS sends Bloom filter to those SFProbes that have plugged
into the routers as shown in Figure. 5.1. SFProbe starts monitoring the intensity of traffic

directed toward the victim node in defining time slots.

Supposds, t,... tm be discrete time slots and{tm, i) be the number of packets received by a

router during time sloin at SFProbe toward the victim node. Eq. 5.1 is defines the historical
estimate of the average number of packets received by a Xdtifer), wherea is a weighted

value between 0 and 1.
X (ty, i) = - )X (t 1)+ aX tmii) (5.1)

Let A (tm, j) represent a Boolean variable which equals 1 if the p&jketreceived at router
at time slottm and belong to the corresponding Bloom fil&¢v) for victim pointv and is O

otherwise.
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Lt P (tm.1)<B(Y)

A (t_,i)= (5.2)
J-m 0 Otherwise

Let W(t,y,,i) define the historical estimate of the average number of packets received by the

router at SFProbesduring time slotm that match with the Bloom filter. In the other word,

W (ty,,i) shows the average number of packets that is considered as the legitimate traffic by the

Bloom filter directed towards the victim and is given by the following equation whasethe

total number of packets follow toward the victim node at timetslot

_ _ n
W D)=0-a) W i)+a T ——— (5.3)

During the attack time, if the number of IP addresses that do not match with the Bloom filter
is high the router is likely to be carrying significant attack traffic. This makes it possible to
inform the router to drop packets directed towards the victim node. We use the following
parameter in Eg. 5.4 that is called Attack Estimation Rate (A&R)) to determine the average
number of packets that do not match with Bloom filter.

mt,D:Xﬁmﬂ—Wﬁmﬂ

. e (5.4)

When the attack starts, SFProbes start monitoring traffic going towards the victim node and
sendsR(in,i) to the PBS. Next we decide the points at which the filters are to be placed. In order
to save network resources, the best routers to apply the filtering mechanism must be as far away
as possible from the victim node. For instance, if routers with 2 and 3 hop distances have the

same attack detection rate, it is more efficient to place the filter on the router which is at hop
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distance 3 from the victim node instead of the one which is at hop distance 2. We take this into
account while considering the placement of the filtering mechanism in the routers. Moreover, we
also take into account the volume of potential attack traffic passing through a router when
considering the placement of routers. Thus, we use two factors to determine the best routers to
place the SFProbesone is the Attack Estimation Rate based on Eq. 5.4 and the hop distance
Hi(v) that shows how far the SFProbes from the victim node. For each SFProldecomputer

the weighted attack estimation r&€n,i) is given by the following equation.

X (tpry,i) =W (t . i)

Sty i) == S () (5.5)
X(tm,1)
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Figure. 5.1. Responsive defense mechanism
The routers with higher value 8{tn,i) will be selected as the more effective routers to apply
the filtering mechanism. We evaluated this presented approach called as the Responsive Point’s
Identification algorithm by considering Hop distance, and Attack estimation rate (RPI-HA). The

results are shown in the next section.
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In addition to the hop distance and the volume of attack traffic factors, other issues must also
be considered while placing the filters. One such additional factor is the number of routers on
which filters are placed based on the distribution of the attack traffic. We present a new formula
that adjusts the number of routers according to the attack traffic distribution that we refer to as
the Responsive Point’s Identification algorithm by considering Hop distance, Transmission rate
and Attack estimation rate (RPI-HTA). In this scheme, the transmission rate of traffic directed
towards the victim node as well as hop distance is considered to determine the best filtering
points. SFProbes collect the information of attack estimatiorR@tg) and traffic transmission

rateT(tm,i) duringm time slots and send this information to the PBS.

To select the filtering points the attack estimation Exte,i) computes as follows:

* H. (V) (56)

Pltm.1)= X (trpy.i) C(v) i

D(ty) =@-a)D(ty) + i ng (5.7)

In Eq. 5.6 we consider_ the distribution of traffic towards the victim node as an important factor
that helps to determine how the attack has followed, where traffic transmissidr{trai¢ and
capacity of the victim nod€(v) are considered(tm,i) in Eg. 5.6 determines if the attack is
distributed or centralized. Note that, high valueDgtin,i) indicates that the attack is centralized
whereas a low value @(tm,i) denotes a distributed attack. If the attack is highly distributed we

need to consider more filtering points to stop the attack whereas if the attack is more centralized

we apply filters on few of the routers. The average attack estimation rate is gi&( Ry in

Eq. 5.7. We select only those routers whose attack estimatioD(tatg is higher than average
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attack estimation raﬁ(tm) as filtering points. Thus, in the RPI-HTA algorithm the number of

filters to apply depends on traffic transmission rate as well as hop distance.

5.3.4 Packet Filtering

The last step of proposed approach is activating packet filtering at selected points. According
to the previous section PBS identify those routes which carry the attack traffic to apply Bloom
filtering. So PBS send created Bloom filter to those routers and the routers startrto filte
incoming traffic toward the victim node. This process continues during the attack event. Table
5.1 summarizes our responsive defense approach by describing the various tasks and the order in
which they must be performed from beginning to end. Moreover, the table represents which

point is responsible for which task.

In the next section we evaluate the efficiency and accuracy of the two approaches to

determine a cooperative responsive mechanism to stop the attack traffic.
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Table. 5.1 Tasks in the responsive defense approach

Task# Re_sponS|bIe Task description
point

1 Campus Network Establish the identification model and create a hist
based profile during the normal traffic condition

2 Campus Network Create Bloom filter according to task #1

3 Victim Subnet | Send the created Bloom filter to PBS when the attac
detected

4 PBS Distributing the created Bloom filter to the SFProbes

5 SEProbes Follow th_e network traffic and calculad€ (tm, i), W (i, 1),
andR(t, 1)

6 SFProbes Send the calculated parameters from task #5 to PBS

- PBS Analyze the traffic follow toward the victim node based
D(tm, i), S(tn, 1), T(tm, i), C(Viandhi(v)

8 PBS Select the best routers to apply filtering

9 Router Apply Bloom filter to stop the attack

5.4 Evaluation

In this section we demonstrate the performance of our approach using a real network topology
from Oregon route-views between March 31 2001 and May 26 2001 [67] and set it up on
OPNET® as shown in Figure. 5.2. We test the effectiveness of the responsive defense mechanism
using the DARPA 1998 intrusion detection dataset [19] in this experiment. The dataset contains
7 weeks of training datasets that we use to establish an IP address history and 2 weeks of testing
dataset to evaluate our techniques. The training part of the DARPA dataset contains normal
traffic as well as labeled attacks which helped validate our feature selection work [82] and

imported to the OPNESfor our simulation. The first step is creating the IP address history from
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the DARPA training dataset and then create corresponding Bloom filter, the details of which
were part of our earlier work [82].The next step, which is part of this chapter, evaluates the
responsive defense approach based on the created IP address history irff ORBIERO0 have
validated our model by real network traffic collected at University of Auckland [6] and CAIDA

attack dataset [21] in section 5.4.4.
5.4.1 Metrics

Responsive defense mechanism is evaluated on the basis of three parameters, namely, (i)
Attack Traffic Detection Rat@) Normal Traffic Detection Rateand (iii) Link Utilization Rate
We now define each of these parametersAtfick Detection RateAttack traffic detection rate
is considered as the percentage of attack dataset that is correctly detected as the attack and cannot
pass through the Bloom filter to reach the victim node during the attack time. In the other word,
we count total number of packe® that belong to attack traffic dataset and cannot pass the
Bloom filter and define as True Positive (TP).; BRows if the packet numberis correctly
detect as the attack or not. Then attack traffic detection rate is defined in Eq. 5.8 according to
that where total of TjRs divided by total number of attack traffic comes to victim node (TP+FN).
False Positive Rate, also defined in Eq. 5.9, is the percentage of normal traffic that incorrectly

detected as attack and is prohibited from passing the Bloom filter.

The True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) are

defined below wherk is the total number of incoming packet toward the victim point.
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Attack Detection Rate=

False PositiveRate=

if Pj z B(v) and Pj e | attacktraffic |
otherwise

it Pj = B(v) and Pj =| attacktraffic |
otherwise

if Pj z B(v) and Pj | attacktraffic |
otherwise

if Pj = B(v) and Pj | attacktraffic |

otherwise

K
> TP
j=1 !

K
> TP, + > FN.

=1 1 j=1 (5.8)
SIS 5.9
=, FR (5.9)

Kk

> FP. + > TN

i=1 i=1

(i) Normal Traffic DetectiorRate We use the same logic that was used to identify Attack

Traffic Detection Rate to compute these parameters. Normal Traffic Detection Rate is defined as
the percentage of normal traffic that can correctly pass through the Bloom filter during the attack
period. False Negative Rate is defined as the percentage of attack traffic that is incorrectly
marked as normal traffic and therefore can pass through the Bloom filtdrirki)Utilization
Rate This is defined as the percentage of the network’s bandwidth that is currently being

consumed by the network traffic.
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i, 13

Figure. 5.2. Simulation into OPNET

5.4.3 Percentage of Collaborative SFProbes

The effectiveness of the responsive defense mechanism relies on the collaboration of
SFProbes through the network. Increasing the number of SFProbes attached to the routers
erables more close monitoring of the network traffic and providing more effective filtering
mechanism. We look at four different scenarios to validate this. We assume a different
percentage of routers (80% to 25%) have SFProbes attached to them to monitor network traffic.
The number of filtering routers is either fixed according to the RPI-HA or variable based on RPI-
HTA algorithm. In the RPI-HA algorithm, the number of filtering routers considered 8, 5 and 3
as 20%, 12.5% and 7.5% of the total routers through the network. We also looked at a fifth
scenario where the filters are placed in random locations throughout the network without

applying any algorithm to stop the attack traffic. Note that, we considered this scenario in order
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to explore how the SFProbe can effectively stop attack traffic and also to evaluate the importance

of placing the Bloom filter in the appropriate location.

Figure. 5.3 shows the average attack traffic detection rate of 5 runs and also their standard
deviation. We use a time slot of 60 seconds. (The reason for this value is explained in Subsection
5.4.6). The results demonstrate the effectiveness of using the RPI-HTA algorithm, which
considers all the three features (hop distance, transformation rate and attack estimation rate)
together. The RPI-HTA algorithm produces an attack traffic detection rate of 91% when 80% of
routers use SFProbes. Note that, even with 25% probes in the network the RPI-HTA algorithm
can stop up to 80% of the attack traffic. This value decreases due to a reduced number of
participating SFProbes as expected. Moreover, by applying the random selection to determine
placement of filters the attack traffic detection rate reduces by more than 14% and up to 23%.

These results show how the location of filters plays an important role in protecting the victim

node.
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Figure. 5.3. Attack detection rate
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Recall that the number of filtering points for RPI-HTA algorithm is variable and depends on
attack distribution, transmission rate, and hop distance. 7 filters for networks having 80% and
60% probes and 6 filters for those having 40% and 25% probes are selected according to the
RPI-HTA algorithm. As shown in Figure. 5.3 the attack traffic detection rate for RPI-HTA
algorithm for 80% and 60% probes is equal or higher than when RPI-HA algorithm is applied by
8 filtering routers through the network. This means that the RPI-HTA algorithm can provide
comparable or better filtering mechanism by using lower number of filtering routers by placing

the filters in the appropriate locations.

The other important parameter to evaluate is how many normal packets can reach the victim
node. As shown in Figure. 5.4, normal detection rate is around 72% for RPI-HTA algorithm with
80% probes and it increases to around 80% if fewer filters are used to stop attack traffic. False
negative also was around 3% in this part. Thus, there is a trade off between accuracy of the
attack traffic detection rate and the normal detection rate. For instance, by applying RPI-HTA
algorithm with 80% probes we have around 90% attack traffic detection rate and at the same
time 72% of normal traffic can pass the Bloom filter and reach the victim node. In contrast,
applying RPI-HA algorithm and 3 filtering routers with 25% probes can stop 69% of the attack

and permit 90% of normal traffic.
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Figure. 5.4. Normal detection rate

5.4.4 Efficiency of Distributed Approach

Figure. 5.5 depicts the fraction of attack traffic dropped at different hop distances from the
victim, and thus the source. It shows that 60% of the attacks in total are detected and blocked in
the first two routers from attacker, with 23% in the first and 37% in the second. Thus, it shows
that RPI-HTA algorithm can effectively select routers further from the victim node and close to
attacker. Furthermore, it shows that having more probes is more effective and we can select
farther routers as well. For instance with 80% probes all the filtering points are selected at least 3
hop distance away from victim node, while with 25% probes the filtering points must be within 1

and 2 hop distances from victim node.

In this experiment, the 25th, 50th (median), 75th percentiles, minimum and maximum value
of attack traffic detection rate for all 3 scenarios are computed as well. The attack traffic
detection rate is detailed for each approach. As shown in Figure. 5.6(a), the first layer of router

from attacker (fifth hop distance from victim) has relatively good attack traffic detection rate
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close to 20% for 50% of simulations in the RPI-HTA algorithm, whereas, this detection rate
reduces to less than 10% for random selection scenario. This proves that RPI-HTA algorithm can
accurately select desirable filtering points during the attack period and can stop the attack at

upstream routers close to the attacker point.

The attack traffic detection rate of 1 and 2 hop distances from victim node is low for RPI-
HTA algorithm. It is because the upstream routers have already detected and filtered most
attacks. Thus, it can be observed that the core of detection and prevention mechanism is located
at the router with hop distance 4, 3, and 5 from victim node in that order. In the other world, all
the filtering routers are selected at first three routers from attacker node and the algorithm stop

the attack before reach to the routers close to victim node.
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Figure. 5.5. Attack traffic detection rate and location of selected routes

102



Attack detection rate %

100
90
80
70
60
50
40
30
20
10

ol

—

1 Hop
Distance

2 Hop
Distance

3 Hop
Distance

4 Hop
Distance

5 Hop
Distance

All

(@)

Attack detection rate %

100
90
80
70
60
50
40
30
20
10

T

i
T

’_l_‘

L

1 Hop
Distance

2 Hop
Distance

3 Hop
Distance

4 Hop
Distance

5 Hop
Distance

All

(b)

Attack detection rate %

90

80

70
60

50

40

30

20

10

%

==

1 Hop
Distance

2 Hop

Distance

3 Hop

Distance

4 Hop

Distance

5 Hop

Distance

All

(€)

Figure. 5.6. Result of attack traffic detection rate (a) RPI-HTA algorithm. (b) RPI-HA algorithm.
(c) random selection

103



5.4.5 End User’s Utilization

The other part of our evaluation is specifying utilization of the victim node and other end-
users before and after applying filtering mechanism. In Figure. 5.7, the last link utilization of
victim node without applying filtering approach shows that it is fully utilized during the attack
time. However, the link utilization reduces to around 60% after deploying Bloom filter through
the network based on RPI-HTA Algorithm. The result shows that 80% probes through the
network give 50% link utilization rate for the victim nodehis is the least link utilization rate
that we get in our experiments. Moreover, this result also shows that the attack is detected and is

stopped before reaching the victim node.
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Figure. 5.7 Victim node’s utilization for RPI-HTA algorithm
In Figure. 5.8., we compare the last link utilization of the RPI-HTA algorithm that selects 6
points to apply the Bloom filter with that of the RPI-HA algorithm where 8 selected points are

chosen to apply bloom filter. It shows similar utilization for both with 80% and 25% probes
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through the network. This demonstrates that the RPI-HTA algorithm with lesser number of
Bloom filters can determine the best routers to apply the filters and achieve the same result as the
RPI-HA algorithm. In the last part of the results, we investigate the effect of the proposed
scheme for the last link’s utilization of all end-users in the network during the attack time. It is
important that the filtering approach can block the DDoS attacks at upstream routers to reduce

network congestion during the attack time.

Utilization(%)
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Simulation Time (minute)

B RPI-HA algorithm and 80% Probes ® Without Filtering
RPI-HA algorithm and 25% Probes RPI-HTA algorithm and 25% Probes
RPI-HTA algorithm and 80% Probes

Figure. 5.8 Victim node’s utilization comparison
Figure.5.9 shows the last link’s utilization for other end-users increases with applying the
Bloom filters. It means the other end-users can receive normal traffic during the attack time. This
is good as it provides service availability in the presence of DDoS attacks and minimizes the
attack impact during an attack time. Detecting the DDoS attacks at points closer to the source

attack protects the victim and other end-users and also saves valuable network resources.

105



Utilization(%)

Smin 10min 15min 20min 25min 30min 35min 40min 45min 50min 55min 60min
Simulation Time (minute)

® RPI-HA algorithm and 80% Probes ® Bloom Filtering with Random selection
RPI-HA algorithm and 40% Probes RPI-HA algorithm and 60% Probes
® Without Filtering “ RPI-HA algorithm and 25% Probes

Figure. 5.9. Average of last link utilization of end-users

5.4.6 Impact of Window Size

Figure. 5.10 reports the effect of time slat®n attack traffic detection rathere each point
represents attack traffic detection rate for a network with 40% probes. Mhetomes bigger,
the SFProbe has longer time to collect and analyze the network traffic. As a result, the algorithm
can select filtering point farther from victim node more accurately. For example, as shown in
Figure. 5.10 whetmis 40 seconds, the attack traffic detection rate increases around 5% in 4 hop

distance compared to whenis 20 seconds.

As shown in Figure. 5.10, attack traffic detection rate is relatively similar tmvafues are
60 and 80 seconds. It means 60 seconds is enough time to evaluate network traffic and increasing
the time slot longer will not affect the attack traffic detection rate significantly, which is the

value we selected for the other simulation parts as well.

106



30
/ —
25 -
-l
/ _-—__-_— ———aa
20 Pl —_—
[ v -
E -"" . — -
= - > ._‘ =i~ 5 Hop distance
g ¢ -
215 | - =
2 I = =4 Hop distance
3 ]
é 10 [ === 3 Hop distance
j: Ty
< ® .
~ =m - 2 Hop distance
5 * [ .
T~ ., .. =o= | Hop distance
— . — ., .o
0 T T T
20 40 60 80
Time Slot (Second)

Figure. 5.10. Effect of time slot on attack detection rate

5.4.7 Validation with Real Network Dataset

In this experiment, the effectiveness of responsive defense approach is tested using real
network trace from University of Auckland in New Zealand. The packet trace contains 6.5 weeks
IP header trace taken with 155 Mbps Internet links [6]. The total uncompressed data is 180 GB
and all IP addresses have been mapped into 10.*.*.* using one to one hash mapping for privacy.
The Auckland traces record three type of IP traffic (TCP, UDP, ICMP). We use “The CAIDA
attack dataset 2007 in the experiments as attack traffic. Attack dataset contains approximately
one hour of anonymized traffic traces from a DDoS attack on August 4, 2007 that contains
359,656,205 attack packets from 9,066 unique IP addresses [21]. The dataset is run with same

topology that was used in previous part by distributing the dataset traffic over the network.

As we discussed earlier, our responsive defense model contains four steps. In the first,
history-based profile according to normal traffic is coming to the victim node is created where
collected trace from University of Auckland is used at this step. The corresponding Bloom filter

will be created based on our scheme [@2]the second step and then responsive Points’
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identification approach applies during the attack time. Figure. 5.11 (a) shows the attack traffic
detection rate against the CAIDA attack traffic. Attack traffic detection rate is around 95% with

80% probes in the RPI-HTA algorithm where it was around 91% for DARPA dataset. False
negative rate for this situation is around 3% as well. Overall the attack traffic detection rate
increases slightly compared with DARPA dataset, which the Bloom filter accuracy played a role

in this situation.
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Figure. 5.11 (b) depicts the fraction of attack traffic dropped at different hop distances from
the victim. Similar to DARPA dataset, it shows that RPI-HTA algorithm can effectively select
routers further from the victim node and close to attacker where all the filtering routers with 80%

probes are selected from first three routers from attacker.

In Fig 5.12 The 28, 50" (median), 7% percentiles, minimum and maximum value of attack
traffic detection rate of RPI-HTA algorithm shown for CAIDA dataset traffic that can be
compared with Fig 5.6 (a) for DARPA dataset as well. As shown for 75% of simulations the
most portion of attack is detected and block at the first layer of routers from attacker (hop
distance 5 from victim node) followed by the one in the second layer of routers from attacker (4
hop distance for victim). Compared with DARPA dataset the router with fifth hop distance from
victim has a better attack traffic detection rate close to 25% for 50% of simulations in the RPI-
HTA algorithm, where this detection rate was 20% for DARPA dataset. Moreover, it shows that
router with hop distance 5, 4 and 3 in that order were the core of attack detection. It means the
most of the attack stop before reach to victim node and effect through the network. This proves
that RPI-HTA algorithm accurately selected desirable filtering points during the attack period for

CAIDA attack traffic as well.

As shown in Figure. 5.13, normal detection rate also is around 77% for the RPI-HTA
algorithm when the percentage of participated SFProbes is 80%. It can be noticed that this value
increases by 5% compared with DARPA dataset. As we discussed, this value increases as the

number of filters or participated SFProbes decrease through the network.
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5.4.8 Complexity and Processing Overhead

In this section, we discuss the communication and computation overhead of network

resources in our scheme. The communication overhead of our scheme involves:

1. According to our algorithm, communication starts between the victim node and PBS when the
attack is detected; therefore, there is no communication overhead for the network prior the
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attack. When the attack is detected PBS sending the Bloom filter to the SFProbes and the
traffic collected in the SFProbes is sent back to the PBS. The number of messages sent in this
case depends on the number of participating SFProbes. In our simulation, the percentage of
routers having SFProbes attached varies between 80% to 25% and the number of messages

exchanged in this case is between 20 to 72.

2. PBS sends the Bloom filter to appropriate routers for filtering. In this case, the number of
messages depends on the number of selected routers. For example, the RPI-HTA algorithm
selected at most 8 filtering routersthe communication overhead in this case is negligible

compared to the traffic going through the network.

The computation overhead of our scheme is also minimal. The SFProbes collect data without
disrupting the original traffic, so there is no extra processing overhead on network resources for
data collection. Moreover, the PBS makes the filtering decision and so no computation overhead

is imposed on the network resources. The following is the computation overhead of our scheme.

The Bloom filter is applied in selected routers during the attack time. The overhead of
filtering on the upstream routers is as low as computing hash value of incoming IP address that
checks whether IP address is a member of the filter or not (in our experiment a few millisecond).
We used MD5 algorithm that is a widely used cryptographic hash function producing a 128-bit
hash value. It contains addition, bitwise, shift, and rotation operation where the time complexity
is O(n). Moreover, the other type of hash functions such as SHA-2 or SHA-3 can be applied for
security and collision resistant purposes. In addition, the number of hash functions k in Bloom

filter depends on false positive p given by following equation.

f=@-eKMmMK_q_pk (5.10)
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There are three fundamental performance metrics for Bloom filters: the probability of error
(corresponding to the false positive rétesize of the Bloom filter array (corresponding to the
array sizam) and the number of hash functiknThose parameters can justify based on accepted
false positive. In analysis, the false positive rate is limited to 0.1. In order to achieve this false
positive rate 4 hash functions require providing a Bloom filter from the IP address history.
Moreover, the Bloom filter array is 5 times the number of IP addresses kept in the history.
According to our algorithm the Bloom filter is created at victim node prior to the attack;
therefore, there is no computation overhead at victim node during the attack time. The only
computation overhead is applied on selected routers during the attack to computing hash value of
incoming IP address where MD5 algorithm is used and takes a few millisecond to check whether
IP address is a member of the filter or not. Note that, the Bloom filter is applied to only a select

few of the upstream routers so processing overhead is also minimized.

Different cooperative techniques have been proposed to coordinate attack detection and
respond to it [16], [23], [25], [26]. However, most have a large overhead of network
communication and resources as briefly compare in Table 2. Moreover, communication during
attack time must be minimized to the extent possible, as there is lack of bandwidth. Our scheme
alleviates such problems. As a comparison, TDFA [26] using CAIDA attack dataset in
evaluation and succeeds in lowering the attack traffic by 88% with traceback mechanism with
more than 1000 to 4000 messages passing after detecting the attack to reduces the rate of attack
packets whereas our scheme lowers the attack by 95% with very low overhead cost. The total
number of message passing is less than 100 in our simulation setup as discussed above.
Moreover, in general the traceback mechanism has high computational and network overhead

regarding to mark the packets and collect sufficient number of packets to trace back up the
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attacker where the number of ISP involvement to support traceback is important parameter and
makes it difficult to be deployable. Compared with recent cooperative approaches, our scheme
reduces processing overhead as discussed while maintaining the Quality of Service (QoS) for

legitimate traffic during the attack period and making the scheme more deployable.

Table 5.2. Comparison of distributed defense approach

Technique | Features Defense limitation Scalabil | Implem
ity entation
complex
ity

RPI_HTA | Identifies the mos| Plug in SFProbes into th) High Low
effective points to plac( routers to support
filters so as to minimiz¢ approach

attack traffic and

maximize legitimate
traffic
TDFA [26] | A traceback based defen| Support sufficient Medium | High

system to reduces the rg number of routers to be
of forwarding the attacl effective / High

packets communication overheay
D_WARD | Gathers two-way traffi¢ Universal Low Medium
[16] statistics and applies a rg deployment/Performanct
limiting degradation/high
Collateral damage
FireCol IPSs form virtual Overhead and Low High
[25] protection rings aroun( performance cost for

the hosts and collaboes| routers and rings
by exchanging traffi¢ configuration
information

5.5 Conclusion

In this chapter we proposed a responsive defense approach to defend against denial of service
attacks. We introduce a cooperative mechanism that specifies best response points where filters

can be placed so as to minimize attack traffic and maximize legitimate traffic during the attack.

113



Our approach has been validated on real-world data sets. Our experiments indicate that our
responsive model can protect the victim node from 90% of attack traffic while allowing 70% of
legitimate traffic with light computational as well as communication overhead. In addition, the
results show how our model can preserve valuable network resource and increase link utilization
of other end-users during the attack time to maximally preserve the service availability and

minimizing the attack impact.
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CHAPTER 6

PACKET-PAIR DISPERSION SIGNATURES IN MULTIHOP NETWORKS

6.1 Introduction

In this chapter we consider packet-pair technique as a well-known mechanism for
characterizing entb-end network paths. An analytical model is presented for the packet-pair
based signature of multi-hop network paths. The model does not require a single bottleneck link
assumption, and it accurately describes the behavior of packet-pairs. The analytical relationship
between the input and the output gaps of packet pairs is derived, and the corresponding
distribution of endo-end packet-pair dispersion is used to derive the path signature, which
characterizes the path. The model is verified via OPNBEdsed simulations. We also analyze
how the signature is shaped by factors such as the number of the hubs, initial dispersion and
cross traffic. The analytical model provides deeper insights to path signatures, thus enabling
efficient and accurate network monitoring, problem diagnosis, and estimation of parameters such
as endio-end network bandwidths and link capacities.

Network monitoring, tomography, and overlay based QoS provisioning are among network
operations and applications that rely on the use oftesmdid path measurements to infer
operational conditions of network paths. Dispersion of packet pairs or packet trains as they
traverse is the basis of many inference tools used for characterization of network paths [84], [85],
[86], [87], [88], [89], [90], [91]. Packet-pair technique is used to obtain crucial network
properties such as bottleneck capacity, available bandwidth and common congestion links in a
wide array of network monitoring tools [92], [93], [31], [94], [29], [95], [96], [97], [9®P],

[100], [101]. A packet-pair typically is two equal-length packets sent with an initial dispersion.
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By the time the packet-pair reaches the destination, the final dispersion is changed due to link
characteristics and cross traffic along the probing path. Cross traffic refers to all the traffic on the

path except for that due to probing packets. Packet-pair technique essentially estimates the
network parameters, e.g., the dneend network bandwidth and the bottleneck link capacity,

from the relationship between the initial and final dispersions.

Packet-pair dispersions can be used to generate path signatures. Dispersion fingerprint [102]
uses the Cumulative Distribution Function (CDF) of packet-pair dispersion as the path signature.
Internet path signatures are distinct, in general, and they persist over periods of time [102], [103]
[104], [105]. Thus the signatures are used for distinguishing paths from one another, monitoring
networks, diagnosing problems, developing deeper understanding of network behavior, testing
protocols for realistic network conditions, and for determining if two paths share common links.
An accurate model of the packet-pair technique is important not only for creating accurate path
signatures for different scenarios, but also for enhancing the accuracy and efficiency of
measurement techniques for parameter estimation. The main contribution of our scheme is the
derivation of a model for the packet-pair technique for multihop paths with multiple tight links,
thus more accurately capturing the stochastic nature of cross traffic and its interaction with
packet-pairs. In contrast, the existing stochastic delay model, presented in [29], describes the
analytical relationship between the input and output dispersions under the assumption of a single
tight link. We validate the proposed model via OPREImulations and discuss the accuracy of
the proposed model. We investigate the effects due to initial dispersion, cross traffic and the
number of the hops on end-end signatures using the analytical model. We also show how link
properties such as available bandwidth, arrival rate of cross traffic can be estimated based on link

signatures. In addition, our results are directly applicable for deriving the path signature when
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measurements are done using packet-pair with variable packet gaps. This is the case with passive
techniques that rely on existing network traffic, thus not consuming network resources for

measurements [31].

Section 6.2 reviews the packet-pair technique and the packet-pair delay model for the single-
hop case. Section 6.3 presents the queuing model to generate path signatures for the multi-hop
case and determine path characterization. This model is validated through ©8higE&tions,
and the impact of network and traffic characteristics on signature is evaluated in Section 6.4.

Finally, the conclusion follows in Section 6.5.

6.2 Packet-Pair Delay Model

In this section, the packet-pair technique is described and the single-hop stochastic model of
packet-pair technique proposed in [29] is outlined. The packet-pair technique typically employs
two equal sized packets that a source sends to a receiver as shown in Figure. 6.1. The initial
dispersiondin at the sender is defined as the interval between the departure of the first bit of the
first probing packeP:1 and the first bit of the second probing padRetfrom the sender [102]

The dispersion between these two packets changes according to the path characteristics such as
link capacities and cross traffic. The final dispersion at the receiver is defined as the interval
between the arrivals of the first bits of the first and second packets. The main goal is to establish
an analytical relationship betweefsut and 4in. Figure. 6.1 shows how parameters such as
network link capacities and cross traffic affect packet-pair dispersion. The dispersion may
increase due to multiple causes. Case (b) shows the final dispersion increasing as the packets
move from a high bandwidth link to a low bandwidth link, while in Case (c) the final dispersion

increase is due to one or more cross traffic packets that come between the packet-pair. In Case
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(d), one or more packets are queued before the first packet and the packet-pair experiences
compression due to queuing in the busy link [92]. At the end of a typical path, the final

dispersion is affected by a combination of these cases through the entire path. This example
illustrates that the network can either increase or decrease the dispersion due to cross traffic rate

and link capacity.
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(a) An example network with two routers
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(d) Cross traffic comes before the first packiet> Aout
Figure. 6.1. Effect of traffic and network links on packet-pair dispersion
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Next we outline the model in [29] that established a relationship betdie@md Aou: for a
packet-pair over a single hop. Let the capacity of this linkCkend the length of each of the
packets in the pair blep. Let to be the time at which the first packet of the pair arrives at the
gueue( be the total of cross traffic already in the queue, Taimdlicates the interval between the
arrival of the first packet and the departure of the second packet. Figure. 6.2 shows the packet-
pair in a single link for busy and idle server conditions [29]. In Figu& X(to, 4in) denotes the
total of cross traffic that arrived during,[to+ 4in]. In this figure instead oX(to, 4in), X(4in) is
used as it is independent afih fluid assumption. By considering a constant rat¥(to, Ain)
generatesin amount of cross traffic, andin and 4out are related to each other according to

following equation depending on whether the link is being fully utilized or not [86]:
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(b) The Server idle when the second packet arrives
Figure. 6.2. Packet-pair behavior in a single link with fluid cross-traffic
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The assumption of fluid cross traffic with constant rate introduces a considerable error in this
model. In contrastX (b, 4in) is considered as a stochastic process in following, and our model
depicts the relationship betweetn and 4ou more accurately, even in the multi-hop case.
However, first consider the rationale as to how the behavior of a packet-pair can be used in the

transient queuing analysis with the M/D/1 model in [29] for the single hop case.

The queuing model in [29] assumes Poisson cross traffic. When the first packet pair arrives at
the queue ab, there arep packets already in the queue and one in service with residual service
time d. Assume similar way for the second packet pair that therezgrackets already in the
gueue when the second packet pair enters in the queue. Colfsidied\W- as the waiting time
of the first and second packet pair when the service times of the both packet pairs kgf@al to

[14]:
A a =|w P [ 2P o w 62)
out “in 772" ¢ 1" c | "2 "1 '

The logic is that the system can be considered as an M/D/1 queue model which starts to
evolve att = to with a total ofNo =qi1+Lp/Lc+1 in the system, including possibility of service
time where the first packet pair arriveg atto". Then, the waiting tim&\. of the second packet
pair entirely corresponds to a packet that arrives at the M/D/1 system 4din [29]. In this
model, to provide the waiting time distribution of the second packet pair,zfirfg) - the
probability of the system holding packets at time indicate and then the state vector

z(t) =: (wo(t), m1 (t), 72 (t),...) was obtained [29].
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The distribution ofW(4in) for any given value offin is found in Eqg. 6.3. This equation
corresponds to the waiting time distribution of the second packet pair in the queuing model. Then
it is straightforward to obtain the relationship between final dispersi@and initial dispersion
Ain from Eq. 6.2. The waiting time distributidd (W(4in) < kD — v) for all keN andv € (0, D],
can be determined by considering the queuing position of the padket4t + D — v, and the
random variabld\sin(t) was defined as the number of packets arriving befarthat are still in
the system at The cumulative distribution function (CDF) of the waiting tithetin) Fin(X) =P

{W(4in)<x} is as follows [14]:

AV aea
ZLE()J)—NO+K(y+D) (4 Aj!m) ) o
J:
Fain (= 63
Z%J Q{ X J_. (V)L*Iz)e_(;t* 2 otherwise
j=0 D '

Here,y:= 4in— D + (x modD), z:= D — (x modD), and Qq,(t) = zirg?)lﬂi (t). 1 is the packet

arrival rate of cross traffic and (t) is the number of packets that have left the systerh by

computeQ,(t) in our model we use above equation; however, the transition nftto

determine;;i (t) was corrected based on the proof results in [88] as follows. Here, function

Fain(x) provides a delay model for patkpair in the single-hop case. The Cumulative
Distribution Function (CDF) of the waiting tim&(4in), F4in(X), corresponds to the waiting time

distribution of the second packet in the pair that we will consider in our model.
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6.3 Queuing Model for Multihop Case

In this section, derives the general delay model to determine relationship between dispersion
of packet pair at all intermediate links in a multihop path. First, we give our rationale as to how
the behavior of the packet pair dispersion can be described and the main challenge in handling
packet-pairs with multihop queuing model. Then, we develop a stochastic delay model to

describe the mathematical relationship between input and output dispersions of packet-pairs.

F4in(X) provides a delay model to determine the dispersion of the packet-pair for a specific
in a single link or a path with a single tight link. In multihop case, the gap between the packet-
pairs entering a link is no longer a known constant value. The path signature in fact represents
the net effect due to these variable packet dispersions at all the intermediate links. Therefore, a
challenge in deriving a general multihop queuing model is to determine the initial dispersion of
the pair entering link, 4in(i). As in multihop modelou: from the linki is the4in for link i+1, the
single link modelFsi(X)=P{W(4in)<x} can provide the distribution of dispersion only for a
specific4in. Simply chaining multiple instances of single link dispersions together does not work,
as it requires that at the junction between two links, the packet gap be reset to a knowi. fixed
However, we have a differert, as the input for each hop for each packet-pair. To determine a

general multihop model, consider M links in an ¢éodnd path as in Figure. 6.3. LEétand i
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denote the link capacity and the packet arrival rate of cross traffic respectively it lihie,
1<i<M. Furthermore, letlin(i) denote the initial dispersion of a packet-pair atithénk. The
Cumulative Distribution Function (CDF) of the waiting tile(in(i)), for i link, Fuin(X,

1)=P{W(4in(i))<x} is as follows:

Z{SJ—N&K(W ) (4 * 8in(1) L () y< 0
j=0 :
Fp (D)= (6.5)
" ZH;J ) ym e—(ﬂi*z) otherwise
j:ﬁDJ‘J i

Wherey: = 4in(i)—D + (x mod D),z: = D — (x modD), andQu(t,i) = an:&ﬂn(t,i). We can

determinedou(i) similar to the single hop case from Eq. 6.2, but WthandW replace bywa(i)

andWi(i) for the given packet pair.

An(0) | —4deut(0) —  dw(l) | Fdoutl) == (M) | = dow(M)

Co. Ao Ci. i Car, AM

Figure. 6.3. Multihop queuing system model
LetSuin (ri, 1) denote the signature of limkor a givendin:
SAjn (i 16in) = Fsipy (X.1) (6.6)

where 1 = 5in(i)+x+W1(q1,i)

Siin is calculated for each givemn(i) < ri-1, andr covers the range of values fasufi) in i™
link wherex determines the range of distribution valuesWa(i) in Fix(X, i) and we need to

obtain the range of values fasu{i) according to Eq. 6.6.
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As 4oufi), the dispersion at the output of link for a packet-pair is the inter-arrivalthfnel)
for the (i+1)™ link, we can compute the probability of each inter-arrival tifta@+1)at link i+1
by using CDF of thedou(i) given by Eq. 6.6. CDF offoufi+1) can then be generated by
multiplying Su(ri ,i) for a specific4in by probability of separatiodlin in the current link.
Probability of a specific point can be found from CDF distribution function as we consider in Eq.
6.7, where Pi(ri,i) is defined as the Cumulative Distribution Function (CDF) ofAhgi) in

the queuing model for a multihop case:

PAm (rl !i |5|n < ri—l) =

zSAin(ri’ ) * (Pajy (i ~D) — Pag, (i -D)dr 121

Sip, (1 1) i=0

6.7)

For example, consider a three hop path, M=2 in Figure. 6.3. FirsE.ix(x,0) andro are
computed andF.ix(x,0) is assigned t&:(ri, i | on) as well. At this step we have the CDF of
Aou0) Fuin(X,0), which also corresponds to CDFAf(1). To find the delay dispersion of next
link the delay dispersion for alfin(1) that is in the range of Ok (1)< ro will be computed.
Finally, we can find the delay distribution of second packet-pair from Eq. 6.7 andidh@n

from Eq. 6.2.

Therefore, by computing.ix(ri,i) for link i we can determine the signature of linkand use
this signature to create the next link’s signature. In the other words, initially the packets are
generated in the first link using the packet-pair delay model of Eq. 6.5 for sp@cifi¢c Jin.
Then, as the output packets of one link become the arrival packets for the next link, we obtain the

probability of each inter-arrival timelin of packet pair by using the previous link’s delay
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dispersion model. Therefore, in the next link we generate the packet-pair dispersion model
Sun(ri i) for each inter-arrival timefin in the current link and compute the path signature

according tdSsi(ri ,i) and probability of each inter-arrival tirae at linki.

6.3.1 Available Bandwidth Estimation
By establishing a dispersion model for packet pair in a multi hop model we can find the other
useful properties of the path. Here, we estimate the available bandwidth based on the proposed
model. The available bandwidth of a path is the rate at which additional data can be sent through

the path.

For a given value offin (0), M, g1 andNo =qa+Lp/Lc+1 the expected value afout(M) comes

from EqQ. 6.2 as follows:

E[A ot (M)] = Ay, ©)+ ELEIW, , 0,11 — EIW, (0, O] (68)
where,
EW) 16,1 = EW, (A, 01,1 =15 1- (P, (x M))dx (69)

EW,, g in EqQ. 6.8 can be found from distribution moéel.(x,M) as it is shown in Eq.

6.9 andE[\Nl(ql,O)] can be obtained from the steady state solution of queuing models [88].

According to the result in [29], the relationship between first and the second packet-pair is as

follows:

When4in(0) < 1/2:

ElBout(M)1g] -4, 0= DA (0)+L DIL +O(A, (0) (6.10

out
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Whenin (0) —>o0:

ElAqM)Ia]=A ©)

6.3.2 Path Characterization
As discussed above, one of our contributions is the use of the multihop queuing model to
characterize network paths. Now we show how our model can be used to determine link
properties such as rate of cross traffic, utilization, and available bandwidth for each link. Initially
we assume the path fingerprint is created at each point for a specificdnitidlhe signature at
the end point refers tBix(X, M). According to Eqg. 6.54Am can be obtained as follows since the
other variables are known, and we h&ve(x, i) for i=M. Fory<0 we have:

5 A @) _(h*A (i
Fain (Xj)zz[jﬁoDJ—NMK(yWLD) i j|!n e (4*Ajp (1)

which simp lifies to :

Frin (xj)=e i Ain() (Lt (2% A )+ (4% A ()7 +..0) (613)

Sincg (4 * A, ) K1, this is approximated by

Fain (X’i):e_(ﬂi*Ain(i» *1—(1i *1Ain (i) (612

Hence, the rate of cross traffig in link M can be obtained from Eq. 6.12. A similar process
applies to findim for y>0. The utilization and available bandwidth of link M can then be
determined fromA = Ci (1-ui) since the capacities of the links are assumed to be known. This
procedure can be extended to find other link properties as well by using the corresponding path

fingerprint for each link.
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6.4 Model Validation

In this section we validate our stochastic model via OPNdifiulations and explore how the
signature is shaped by factors such as the number of the hops, link capacity, initial dispersion and

cross traffic arrival rate.

We perform simulation for two-hop, four-hop and eight-hop networks, connected via 100
MB/s links. The cross traffic on each node is set at 20% and 60% of link utilization respectively
for low and heavy Poisson cross traffic conditions. Non-persistent cross traffic [93] as shown in
Figure. 6.4 is used in which packets exit one hop after entering the path. Each packet-pair source
generates packets with 120us initial dispersion, which correspond to thetohmauti
transmission of the two 1500 byte packets. We normalized the dispersion at the receiver by the

initial dispersion and repotourin as the normalized dispersion.

l.ggggg%%%
% g ﬁf %ﬁfﬁf@f ¥
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Figure. 6.4. Multi-hop model in OPNETsimulation

Figure. 6.5 and 6.6 shows path signatures based on CDF of packet-pair dispersion obtained
with OPNET® simulation and our model for low and heavy cross traffic. The simulation results
agree very closely with the stochastic model in Eq. 6.7. In addition, we investigated the effect of
number of hops in estimating the path signatures. When the number of hops is increased from 2
to 8 the stochastic model continues to perform quite accurately for heavy cross traffic utilizations.
The maximum error of CDF between OPNESimulation and stochastic model in heavy cross
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traffic condition is 0.051 when path signature is generated for eight-hop paths indicating close

agreement between stochastic model and simulation results. The other evaluation part for each
signature is investigating tight link available bandwidth estimation based on our analysis. The

available bandwidth estimation is computed from Eg. 6.12 and shown in Tables. 6.1 and 6.2 for
the first scenario. The estimation error shows that our model is able to determine the available
bandwidth for the tight link fairly closely; however, the result indicates that the error increases as
the number of the hops grow. Moreover, it is clear that having heavy cross traffic affects the

accuracy of signatures as well as available bandwidth estimation. Thus the error of estimation for

heavy cross traffic is more than at low cross traffic.
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Figure. 6.5. Queuing model and OPNESimulation results for low cross traffic and baok-
back packet-pair

Table. 6.1. Available bandwidths for low cross traffic

Available Actual value Estimated value | Estimation error
Bandwidth (MB/s) (MB/s) (MB/s)

Two hop model 80 79.7 0.3

Four hop model | 79.8 79 0.8

Eight hop model | 80.5 79.1 1.4
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Next part of the experiment evaluates our model by injecting packet-pairs with 240us initial
dispersion. In this case we investigate the effect of initial dispersion on path signature and the
accuracy of analytical model. As in the previous experiments, we can see in Figure. 6.7 and 6.8
that the model follows OPNETsimulations well in both low and heavy cross traffic conditions.
The maximum errors in these results are 0.036 and 0.058 for low and high cross traffic
respectively, when dispersion CDF generated for eight-hop model. Estimates for the available

bandwidth for this scenario are shown in Tables 6.3 and 6.4.
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Figure. 6.6. Queuing model and OPNESimulation results in heavy cross traffic

Table 6.2. Available bandwidth for heavy cross

Available Actual value Estimated value | Estimation error
Bandwidth (MB/s) (MB/s) (MB/s)

Two hop model 40.1 39.5 0.6

Four hop model 40.3 39 1.3

Eight hop model | 39.9 38.1 1.8
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Figure. 6.7. Queuing model and OPNESimulation results for low cross traffic and 240us
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Table. 6.3. Available bandwidth for low cross traffic

Available Actual value Estimated value | Estimation error
Bandwidth (MB/s) (MB/s) (MB/s)

Two hop model 80 79.8 0.2

Four hop model 79.8 79.2 0.6

Eight hop model | 80.5 79.4 1.1
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Figure. 6.8. Queuing model and OPNEdimulation results for heavy cross traffic and
240 ps initial dispersion
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Table. 6.4. Available bandwidth for heavy cross

Available Actual value Estimated value | Estimation error
Bandwidth (MB/s) (MB/s) (MB/s)

Two hop model 40.1 39.6 0.5

Four hop model 40.3 39.1 1.2

Eight hop model | 39.9 38.3 1.6

Next we evaluate the impact of link capacity values on the shape of path signature. Figure. 6.9
shows the path signatures based on different link capacities and low cross traffic. In this case we
perform simulations for paths with 2 and 4 hops. The capacities of links are 100, 80, 60 and 40
MB/s in a sequence. For two-hop case links capacities are set to 100 and 80 MB/s respectively.
The path signatures still have reasonable accuracy, with maximum errors of 0.040 and 0.049 for
two and four hop cases respectively. The results presented above as well as additional
simulations we performed show that the maximum errors are reasonable. In addition, the
available bandwidth estimates are shown in Table 6.5. The estimation error is reasonable in this
condition as well. Based on the results from different scenarios to estimate the available
bandwidth, we can conclude that the heavy cross traffic can affect further in comparison with

other parameters such as initial dispersion, different link capacity through the path.
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Figure. 6.9 Queuing model and OPNETImulation results for different link’s capacity in low

cross traffic

Table.6.5. Available bandwidth for low cross traffic and different link’s capacity

Available Actual value Estimated value| Estimation error
Bandwidth (MB/s) (MB/s) (MB/s)

Two hop| 32 31.7 0.3

model

Four hop| 32.3 31.6 0.7

model

The dispersion CDFs are distinct and persistent for a given path and shape according to link

characteristics such as cross traffic, initial dispersion and link capacity, and agrees with the

observations in [102]. Therefore, finding an accurate model to generate path signatures for a

multi hop model is important to facilitate estimation of other useful properties of the path, such

as utilization, bandwidth and cross traffic rate as described in the previous section. We evaluate

path characteristics, as described in the previous section, for different link capacities of the path.

A path with 4 hops and the links of capacities as 100, 80, 60 and 40 MB/s in sequence. As

described, in the first step, the arrival rate of cross traffic is determined from Eq. 6.11, and then

the utilization and available bandwidth are computed for each link. The results in Table 6.6 and

6.7 show the estimated utilization and available bandwidth. The worst estimation error for
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utilization is not more than 2% and available bandwidth is not more than 1.9 MB/s, which occurs

on the last link.

Table. 6.6. Available bandwidth for different links in low crosses traffic

Available Actual value Estimated value | Estimation error
Bandwidth (MB/s) (MB/s) (MB/s)

Link 1 31.52 31.72 .20

Link 2 47.94 47.22 .28

Link 3 64.08 63.52 .46

Link 4 78.5 80.4 1.9

Table. 6.7. Utilization for different links in low cross traffic

Utilization Actual value % | Estimated Estimation
value % error %

Link 1 21.2% 20.7% 0.9%

Link 2 20.1% 21.3% 1.2%

Link 3 19.9% 20.6% 1.7%

Link 4 21.5% 19.6% 1.9%

From the overall results we can see that the proposed model can assist to determine the path
and link properties in the network; however, we have made the assumption that packets arrive
according to a Passion prasevith rate A and provide for M/D/1 based queuing model. In the
last part of our evaluation, we run experiments with another type of distribution for cross traffic
on OPNET and compare it with the path signature based on our queuing model. This result
checks the sensitivity and accuracy of model when cross traffic does not follow a Poisson
process. In this case we repeat the first scenario for two and four hops with Pareto arrival process.
In general, the Pareto distribution is applied to model self-similar arrival in packet traffic for
simulation tools. The results are shown in Figure. 6.10 and 6.11 for low and heavy utilizations.
The maximum error between OPNESimulation with Pareto distribution and stochastic model
in low cross traffic condition is 0.09 when path signature generates for four-hop model, and for

heavy cross traffic rate maximum error is 0.19. Practically, the shape of signature from our

133



model follows the OPNET simulation in this case as well; however, the error increases from
0.03 to 0.09 for low cross traffic rate and from 0.051 to 0.19 for heavy cross traffic. The
estimation error in Tables 6.8 and 6.9 shows that our model has 2.9MB/s estimation error in the
worst case for heavy cross traffic and four hop model. As the results demonstrate, it is clear that
having the other type of arrival cross traffic model cause the reduction in accuracy to provide
path properties; however, the estimation error is fairly acceptable in our experiment. Moreover, it

is predictable that having more number of hops could affect the accuracy in this condition as well.

R

U — gueuing model for two hops
_______ gqueuing model for four hops
—— OPNET simulation for two hops
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Normalized dispersion
Figure. 6.10. Queuing model and OPNESimulation results for Pareto distribution and low
cross traffic

Table. 6.8. Available bandwidth for low cross traffic and Pareto distribution

Available Actual value Estimated value | Estimation error
Bandwidth (MB/s) (MB/s) (MB/s)

Two hop model 80.6 79.7 0.9

Four hop model 80.6 79 1.6

In summary, the proposed model can provide the path and link properties in the network
based on Poisson model for cross traffic accurately and indicate that the our model can determine

appropriate information of the path based on path signature.
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Available Actual value Estimated value | Estimation error
Bandwidth (MB/s) (MB/s) (MB/s)
Two hop model 41.3 39.5 1.8
Four hop model 41.9 39 2.9

6.5 Conclusion

In this chapter, we investigated the mathematical relationship between the input and the

135

output packet-pair dispersion to generate accurate path signatures for multi-hop paths without a
limitation of single tight links. A mathematical relationship was presented to generate accurate
signatures for multihop paths. The analytical model was verified using simulations, and was used
to evaluate the impact of factors such as the number of hops, initial dispersion, link capacities
and cross traffic, that affect the shape of the signature. Results from the proposed model agree
closely with OPNET simulations. As the path signatures can provide other properties of a path,

such as estimate available bandwidth, utilization, bottleneck capacity of the path, monitor and




diagnose network problems, the rebdan be used to determine useful path properties from the
path signatures. Development of the multi hop model for general conditions and a G/G/1 based

gueuing model remains as future work.
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CHAPTER 7

CONCLUSIONS

This dissertation is focused on characterizing and mitigating DDoS attacks by distributed
defense mechanisms. We began with efficient attack traffic identification mechanism. An
identification scheme is proposed, based on analysis of multiple features of DDoS attacks and
normal traffic, to distinguish between attack and normal traffic. Based on the identification
model we propose a history-based profiling mechanism to discriminate against malicious traffic
with minimal effect on the legitimate traffic. The approach is verified and evaluated using the
DARPA dataset as well as by extensive analysis with data sets from Colorado State University
and University of Auckland. Then we focused our attention on a filtering mechanism. Look up
the IP address in the upstream routers during the attack time is a costly task and creates extreme
overhead on routers. However, dropping attack traffic requires such inspection. We approach this
dilemma by identifying only those routers that carry a significant amount of attack traffic.
Identification is carried out using the proposed history based profile. A novel Compacted Bloom
filter is presented and a filter dissemination mechanism is proposed based this mechanism. The
identification of the particular routers is done without interfering with the normal operation. Our
approach helps reduce the communication and computation costs and storage requirements of the
upstream routers required to check for malicious traffic. The compacted Bloom filter is
motivated by applications, including DDoS mitigation, that must transmit Bloom filters over the
network and/or when endpoint machines have restrictions on memory available for this purpose.
The scheme reduces the memory requirement, but at the cost of false positives in response to the

gueries. A corporative defense mechanism is presented to mitigate DDoS traffic. Our scheme
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identifies and places such filters to block attack traffic and allow legitimate traffic as close to the
source node as possible, so that network resources are not wasted in propagating the attack. The
solution benefits by using a recently developed packet probe technology, such as that from JDSU,
typically implemented as Small Firmfactor Probes (SFP) using FPGAs. We evaluate the
effectiveness of the proposed mechanisms using extensive simulation in ORNETa real

network topology. Finally, an analytical model that provides deeper insights to packet-pair path
signature in the presence of multiple tight links is presented, thus enabling efficient and accurate
network monitoring, problem diagnosis and estimation of link and path parameters such as end-
to-end network bandwidths and link capacities.

Learning about traffic features during the attack and normal conditions, and identifying clues
which can separate attack flows from normal flows efficiently are some of the main challenges in
attack mitigation. Deep Packet Inspection (DPI) [106] is a maturing technology capable of
recognizing data relationships and communication patterns. Future work is needed to exploit
emerging capabilities of DPI to improve the detection of attack traffic provide new solutions.
DPI solution can also assist in detecting malware and normal patterns, and this can be added as a
new feature in the identification model to discriminate between malicious or attack traffic and
the normal traffic. Moreover, to reduce the monitoring and computation costs at the victim node
when creating history-based profiles, packet sampling based methods can be investigated. Packet
sampling involves selection of a subset of packets in the stream, such as a random selection or a
systematic selection, e.g., count-based with the periodic selection of kvepacket or time-
based driven a packet is selected every constant time interval. Further analysis and evaluation is

required in order to better understand how packet sampling can meet the accuracy and timing
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requirements, and its effect on false alarms. This future work also may address the impact of

packet sampling on different features.

The evaluations presented were based on IPv4 traffic traces. In contrast to IPv4, IPv6 has a
vastly enlarged address space (128 bits compared with 32 bits in IPv4) that makes it more
difficult to address the specific characteristics related to identifying and filtering the attack traffic.
As IPv6 traces become available, further evaluation of the proposed scheme may be carried out.
IPv6 may present unique opportunities to sub-sample IP header field, e.g., without having to look
at the entire address fields. The issue of having the same capabilities to defend against both IPv4
and IPv6 attacks is critical and according to some literatures [107] [108] the current IPv6 DDoS
attacks are most likely due to tests performed by malware writers who want to be prepared for

the case when large internet service providers switch their subscribers to IPv6.
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APPENDIX A

SOURCE CODES

A.1 The code below creates Bloom filter from corresponding list of IP address
% Read list of IP address in History
fin=fopen(C:\Data\data\history\3part\tcp_udp_icmp_history1326_3partip.txt'
C=textscan(fin%s\n);
size_C =size(C{1})
fori=1:1:size C
% call 4 different HashFunction() for each IP address
0
(ﬁ; input,C{:}(i) is IP address
D=HashFunction(char(C{1}(1)));
set_bit= mod(D,28640)+1;
A(set_bit,1)=1;
D=HashFunction2(char(C{1}(1)));
set_bit= mod(D,28640)+1;
A(set_bit,1)=1;
D=HashFunction3(char(C{1}())));
set_bit= mod(D,28640)+1;
A(set_bit,1)=1;
D=HashFunction4(char(C{1}())));
set_bit= mod(D,28640)+1;

A(set_bit,1)=1;
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D=HashFunction5(char(C{1}(i)));
set_bit= mod(D,28640)+1;
A(set_bit,1)=1;
end
filename ='U:\Documents\Bloomfilter_1326_3partip.txt'
fid = fopen(filenamew’);
for j=1:28640
fprintf(fid, '%d\n; A(},1));
end
fclose(fin);
function hash=string2hash(str,type)
% This function generates a hash value from a text string
%
% hash=string2hash(str,type);
%
% inputs,
% str: The text string, or array with text strings.
% outputs,
% hash : The hash value, integer value between 0 and 2732-1
% type : Type of has 'djb2' (default) or 'sdbm'’
%
% example,
%
% hash=string2hash('hello world");
% disp(hash);
%
% From string to double array
str=double(str);
if (nargin<2), type=ljb2; end
switch(type)

casedjb2’
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hash = 5381*ones(size(str,1),1);
for i=1:size(str,2),
hash = mod(hash * 90 + str(:,i), 2°64-1);
end
casesdbm’
hash = zeros(size(str,1),1);
for i=1:size(str,2),
hash = mod(hash * 65599 + str(:,i), 2*32-1);
end
otherwise
error@ring_hash:inputsunknown type;

end

A.2 The code below check if corresponding IP address is a member of created Bloom filter
or not
% input, B and T: created Bloom filter and incoming traffic
0,
0;2 output, Match_ip: list of IP address match with Bloom filter
Match_ip= cell(1,1);
n=1,
% Read created Bloom filter
fin=fopen(U:\Documents\Bloomfilter 1225 3partip.dxt’
B=textscan(fin%d\n);
size_B = size(B{1});

% Read incoming traffic that contains list of IP address
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finl=fopen(C:\Datadaa\history\3part\history 2firstweek_3partip.)xt’
T=textscan(fin1%s\n);

size T = size(T{1})

% check if corresponding IP address is a member of created Bloom
fori=1:1:size T

D1=HashFunction(char(T{1}(i)));

set_bitl= mod(D1,28495)+1,

D2=HashFunction2(char(T{1}(i)));

set_bit2= mod(D2,28495)+1,

D3=HashFunction3(char(T{1}(i)));

set_bit3= mod(D3,28495)+1,

D4=HashFunction4(char(T{1}(i)));

set_bit4= mod(D4,28495)+1,

D5=HashFunction5(char(T{1}(i)));

set_bit5= mod(D5,28495)+1;

if (B{1}(set_bit1)==1 && B{1}(set_bit2)==1 && B{1}(set_bit3)==1 &&
B{1}(set_bit4)==1 && B{1}(set_bit5)==1)

Match_ip{1}(n)= T{1}(i);

n=n+1;
end

end
fclose(fin);
filename ='C:\Data\data\attack_match\3part\326\Match_ip_326_3partjp.txt’

fid2 = fopen(filenamew";
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for j=1:n-1
fprintf(fid2,%s\n, char(Match_ip{1}())));
end
fclose(fin);
fclose(finl);
function hash=string2hash(str,type)
% This function generates a hash value from a text string
%
% hash=string2hash(str,type);
%
% inputs,
% str : The text string, or array with text strings.
% outputs,
% hash : The hash value, integer value between 0 and 2"32-1
% type : Type of has 'djb2' (default) or 'sdbm'’
%
str=double(str);
if(nargin<2), type=ljb2; end
switch(type)
casedjb2'
hash = 5381*ones(size(str,1),1);
for i=1:size(str,2),
hash = mod(hash * 33 + str(:,i), 2*32-1);
end
cas€sdbm’

hash = zeros(size(str,1),1);

for i=1:size(str,2),
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hash = mod(hash * 65599 + str(:,i), 2"64-1);
end
otherwise
errortring_hash:inputdinknown type;

end

A.3 The code below check TCP connections and extract those IPs establish three way
handshake connection
% file names
incFName=filterdata20010318-020000-0.txt'
ougFName4ilterdata20010318-020000-1.xt'
m=1,
% settings
timeout=60;% 1min
% load data
fprintf('Loading data..);
tic
incF=fopen(incFName);
ougF=fopen(ougFName);
incData=textscan(incBpf %s %s %d %’
ougData=textscan(oug®f %s %s %d %)
fclose(incF);
fclose(ougF);

toc
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fprintf('Building history...);

tic

History={}; % {remote-IP, time-stamp}

filename ='History20010318 020000 0.txt'

fid = fopen(filenamew);

histind=1;

% incoming trace first timestamp

incT1=incData{1}(1);

% outgoing trace first timestamp

ougT1l=ougData{1}(1);

% start timeo time block indices

stT=min(incT1,0ugTl);

% time block indices for incoming

incTBlocks=floor((incData{1}(:)-stT)/60)+1;

% time block indices for incoming

ougTBlocks=floor((ougData{1}(:)-stT)/60)+1,;

% last time block index

lastTBlock=max([incTBlocks;ougTBlocks]);

count=0;

for tblock=1:lastTBlock

% for tblock=1
incBlockinds=find(incTBlocks==tblock | incTBlocks==tblock+1);

ougBlockinds=find(ougTBlocks==tblock);
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% timestamp info

incTSs=incData{1}(incBlockinds);
ougTSs=ougData{1}(ougBlockinds);

% ip info
inclPs=removePort_v01(incData{2}(incBlockinds));
ouglPs=removePort_v01(ougData{3}(ougBlockinds));

% sequence# info
incSEQs=incData{4}(incBlockinds);

ougSEQs=ougData{4}(ougBlockinds);
% ack# info
incACKs=incData{5}(incBlockInds);
ougACKs=ougData{5}(ougBlockinds);
for pktind=1:length(ougBlockinds)
count=count+1,
if count>300
return
end
% scan for each outgoing packet
candind=find(strcmp(inclPs,ouglPs(pktind)).&
incTSs>ougTSs(pktind) & incSEQs==0ugACKs(pktind).&
inCACKs==0ugSEQs(pktind)+1fikst);
if ~isempty(candind)

History{histind}={ouglIPs(pktind),ougTSs(pktind)};
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histind=histind+1;
end

end
[nrows,ncols]= size(History);
for i=m:1:ncols
fprintf(fid, '%s %f\n, char(History{i}{1}), History{i{2});

m=ncols+1;
end

end
fclose(fid);

toc

A.4 The code below checks DARPA dataset and create signature of extracted feature for

TCP, UDP and ICMP packets

% TCP traffic
fin=fopen(N:\DARPA1998\TrainingDataset\week5\monday\TCP_Week5_ Mondgy.txt'
C=textscan(fin%f %s %f %s %f %f %f %f %,

size C = size(C{1)});

%get occurrence of port and size

PortS=unique(C{3});

P1= hist(C{3}, PortS);

PortS(1:end,2)= P1(1:end);

[m1, nl]=size(PortS);

filename =
'‘N:\DARPA1998\TrainingDataset\week5\monday\TCP_PortS_Week5 Monday.txt'
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fidl = fopen(filenamew");
for j=1.1:m1
fprintf(fid1,%d |, PortS(j,1:2));
fprintf(fid1,\n";
end
fclose(fidl);
%port destination
PortD=unique(C{5));
P2= hist(C{5}, PortD);
PortD(1:end,2)= P2(1:end);
[m1, nl]=size(PortD);

filename =
'N:\DARPA1998\TrainingDataset\week5\monday\TCP_PortD_Week5 Monday.txt'

fidl = fopen(filenamew’);

for j=1:1:m1
fprintf(fid1,%d |, PortD(},1:2));
fprintf(fid1,\n’);

end

fclose(fidl);

%sze of packet

PacketS=unique(C{9});

P3= hist(C{9}, PacketS);

PacketS(1:end,2)= P3(1:end);
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[m1, n1]=size(PacketS);

filename =
'‘N:\DARPA1998\TrainingDataset\week5\monday\TCP_PacketS_Week5 Monday.txt'

fidl = fopen(filenamew);
forj=1.1:m1
fprintf(fidl,%d |, PacketS(j,1:2));

fprintf(fid1,\n?;
end

fclose(fidl);

%get unique source and destination pair
fori=1: size C
IP(i,1)= C{2}(i);

IP(i,2)= C{4}(i);
end

u = sortrows(IP);

[u{end+1,:}] = deal();

| = ~all(cellfun(@strcmp, u(l:end-1,:), u(2:end,:)),2);

u=u(j,:);

[m1, nl]=size(u);

filename ='N:\DARPA1998\TrainingDataset\week5\monday\TCP_IP_Week5 Monday.txt'
fidl = fopen(filenamew");

for j=1:1:m1
fprintf(fidl,%s %s' u{j,1:2});

fprintf(fid1,\n?;

end
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fclose(fidl);
% compute frequency of each ip address
C2=unique(C{2});
size_C2 = size(C2);
for k=1:1:size_C2
C2{k,2}=0;

end
fori=1:1:size_C2

forj=1:1:size_C

if (stremp(C2{i},C{2}(j))==1)
C2{i,2}= C2{i,2}+1;
end

end
end
%UDP traffic
fin=fopen(N:\DARPA1998\TrainingDataset\week5\monday\UDP_Week5 Mond3gy.txt'
C2=textscan(fin%of %f %s %f %s %f %y;
size_C = size(C2{1});
%get occurance of port and size
PortSU=unique(C2{4});
P4= hist(C2{4}, PortSU);
PortSU(1:end,2)= P4(1:end);

[m1, nl]=size(PortSU);
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filename =
'N:\DARPA1998\TrainingDataset\week5\monday\UDP_PortS_Week5_ Monday.txt'

fidl = fopen(filenamew");
for j=1:1:m1
fprintf(fid1,%d |, PortSU(j,1:2));
fprintf(fid1,\n’);
end
fclose(fidl);
%port destination
PortDU=unique(C2{6});
P5= hist(C2{6}, PortDU);
PortDU(1:end,2)= P5(1:end);
[m1, nl]=size(PortDU);

filename =
'‘N:\DARPA1998\TrainingDataset\week5\monday\UDP_PortD_Week5 Monday.txt'

fidl = fopen(filenamew’);
for j=1:1:m1
fprintf(fid1,%d , PortDU(j,1:2));

fprintf(fid1,\n?;
end

fclose(fidl);
%sze of packet
PacketSU=unique(C2{7});

P6= hist(C2{7}, PacketSU);
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PacketSU(1:end,2)= P6(1:end);
[m1, nl]=size(PacketSU);

filename =
'N:\DARPA1998\TrainingDataset\week5\monday\UDP_PacketSU_Week5 Monday.txt'

fidl = fopen(filenamew";
for j=1:1:m1
fprintf(fid1,%d |, PacketSU(j,1:2));
fprintf(fid1,\n’);
end
fclose(fidl);
%get unique source and destination pair
fori=1: size C
IP2(i,1)= C2{3}(i);
IP2(i,2)= C2{5}(i);
End
u2 = sortrows(IP2);
[u2{end+1,:}] = deal();
j = ~all(cellfun(@strcmp, u2(1:end-1,:), u2(2:end,:)),2);
u2=u2(j,’);
[m1, nl]=size(u2);

filename =
'N:\DARPA1998\TrainingDataset\week5\monday\UDP_IP_Week5 Monday.txt'

fidl = fopen(filenamew’);
for j=1:1:m1

fprintf(fidl,%s %s'u2{j,1:2});
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fprintf(fid1,\n");
end
fclose(fidl);
%ICMP traffic
fin=fopen(N:\DARPA1998\TrainingDataset\week5\monday\ICMP_Week5_Monday.txt'
C3=textscan(fin%f %f %f %s %s %},
size_C = size(C3{1});
PacketSI=unique(C3{6});
P7= hist(C3{6}, PacketSl);
PacketSI(1:end,2)= P7(1:end);
[m1, nl]=size(PacketSl);
filename =
'‘N:\DARPA1998\TrainingDataset\week5\monday\ICMP_PacketSI|_Week5_ Monday.txt'
fidl = fopen(filenamew");
for j=1:1:m1
fprintf(fid1,%d | PacketSI(j,1:2));
fprintf(fid1,\n’);
end
fclose(fidl);
%get unique source and destination pair
for i=1: size C
IP3(i,1)= C3{4}(i);
IP3(i,2)= C3{5}(i);

end
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u3 = sortrows(IP3);
[u3{end+1,:}] = deal();
| = ~all(cellfun(@strcmp, u3(1l.end-1,:), u3(2:end,:)),2);
u3=u3(j,:);
[m1, nl]=size(u3);
filename =N:\DARPA1998\TrainingDataset\weekbbonday\ICMP_IP_Week5_ Monday.txt'
fidl = fopen(filenamew");
for j=1:1:m1
fprintf(fidl,%s %s'u3{j,1:2});
fprintf(fid1,\n?;
end
fclose(fidl);
%port frequency computation for udp traffic

fin=fopen(N:\DARPA1998\TrainingDataset\DARPA98analyze\portSU\Combine_UDP_port_all
xt);

C2=textscan(finf %f);

size_C2 = size(C2{1));

for i=1: size_C2(1)
P_U{i,1}= C2{1(i);
P_U{i,2)= C2{2)(i);

end

sum_port=sum([P_U{:,2:2}]);

for i=1: size_C2(1)

P_U{i,3}= (P_U{i,2}/sum_port);
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end
% read IP address frequency for udp traffic
fin=fopen(N:\DARPA1998\TrainingDataset\DARPA98analyze\IPU\Combine_UDP_a)|.txt'
Cl=textscan(fin%s %s %j;
size_C1 = size(C1{1});
fori=1: size_C1(1)

C_IP(i,1)= C1{1}(i);

C_IP(i,2)= C1{2}(i);

C_IP{i,3}= C1{3}(i);
end

sum_IP_oc=sum([C_IP{:,3:3}]);
for i=1: size_C1(1)

C_IP{i,4}= C_IP{i,3}/sum_IP_oc;
end

% read packet size frequency

fin=fopen(N:\DARPA1998\TrainingDataset\DARPA98analyze\packetU_size\Combine U
DP_PacketSU_all.tt'

C3=textscan(fir%of %f);

size_C3 = size(C3{1});

fori=1: size_C3(1)
P_US{i,1}= C3{1}();

P_US{i,2}= C3{2}(i);
end

sum_psize=sum([P_US{:,2:2}]);
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for i=1: size_C3(1)

P_US{i,3}= (P_US{i,2}/sum_psize);
end

% read IP address frequency fomp traffic
fin=fopen(N:\DARPA1998\TrainingDataset\DARPA98analyze\IP\Combine_IP_ICMP_a)|.txt'
Cl=textscan(fin%s %s %j;
size_C1 = size(C1{1});
fori=1: size_C1(1)

C_IP(i,1)= C1{1}(i);

C_IP(i,2)= C1{2}(i);

C_IP{i,3}= C1{3}(i);
end

sum_IP_oc=sum([C_IP{:,3:3}]);

for i=1: size_C1(1)

C_IP{i,4}= C_IP{i,3}/sum_IP_oc;

end

% packet size frequency for icmp traffic

fin=fopen(N:\DARPA1998\TrainingDataset\DARPA98analyze\packetl_size\Combine ICMP_al
|_Week.txt);

C3=textscan(fir%f %f;

size_C3 = size(C3{1});

fori=1: size_C3(1)
P_US{i,1}= C3{1}(i);

P_US{i,2}= C3{2}(i);
end
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sum_psize=sum([P_US{:,2:2}]);
for i=1: size_C3(1)

P_US{i,3}= (P_US{i,2}/sum_psize);
end

% read frequency of each IP address and compute occurrence rate of it for TCP
fin=fopen(N:\DARPA1998\TrainingDataset\DARPA98analyt®dCombine_IP_all.tx};
Cl=textscan(firn%s %s %j;
size_C1 = size(C1{1});
fori=1: size_C1(1)

C_IP(i,1)= C1{1}(i);

C_IP(i,2)= C1{2}(i);

C_IP{i,3}= C1{3}(i);
end

sum_IP_oc=sum([C_IP{:,3:3}]);
for i=1: size_C1(1)
C_IP{i,4}= C_IP{i,3}/sum_IP_oc;
end
% read frequency of each port and compute occurrence rate of it for TCP
fin=fopen(N:\DARPA1998\TrainingDataset\DARPA98analyze\portS\Combine_port_all.txt'
C2=textscan(fir%s %f);
size_C2 = size(C2{1});
for i=1: size_C2(1)
P_U{i,1}= C2{1}(i);

P_U{i,2}= C2{2}(i);
end
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sum_port=sum([P_U{:,2:2}]);
fori=1: size_C2(1)

P_U{i,3}= (P_U{i,2}/sum_port);
end

% read frequency of each packet size and compute occurrence rate o fit for TCP
fin=fopen(N:\DARPA1998\TrainingDataset\DARPA98analyze\packet_size\Combine_#ll.txt'
C3=textscan(fin%f %f";
size_C3 = size(C3{1});
for i=1: size_C3(1)
P_US{i,1}= C3{1}(i);
P_US{i,2}= C3{2}(i);
end
sum_psize=sum([P_US{:,2:2}]);
for i=1: size_C3(1)
P_US{i,3}= (P_US{i,2}/sum_psize);

end

A.5 The code below applies score mechanism to create history for TCP traffic

% read source/destination IP address, size of packet and port number for each
day incoming traffic

fin=fopen(N:\DARPA1998\TrainingDataset\DARPA98analyze\TCP_connection\Combine_TCP
_all_history.tx);

C=textscan(fin%s %s %s %s Nf'
size_C = size(C{1});

fori=1: size C
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Source_IP(i,1)= C{1}(i);

PortS(i,1)= C{2}(i);

Dest_IP(i,1)= C{3}(i);

PortD(i,1)= C{4}(i);

SizeU(i,1)= C{5}(i);
end
% read occurrence rate for each corresponding IP address
fin=fopen(N:\DARPA1998\TrainingDataset\DARPA98analyt®8Combine_IP_all.tx};
Cl=textscan(fin%s %s %j;
size_C1 = size(C1{1});
fori=1: size_C1(1)

C_IP(i,1)= C1{1}(i);

C_IP(i,2)= C1{2}(i);

C_IP{i,3}= C1{3}(i);
end

sum_IP_oc=sum([C_IP{:,3:3}]);
for i=1: size_C1(1)

C_IP{i,4}= C_IP{i,3}/sum_IP_oc;
end

% read occurrence rate for each corresponding port number

fin=fopen(N:\DARPA1998\TrainingDataset\DARPA98analyze\portS\Combine_port_3ll.txt'
C2=textscan(fir%s %f);

size_C2 = size(C2{1));
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for i=1: size_C2(1)
P_U{i,1}= C2{1}(i);
P_U{i,2}= C2{2}(i);
end
sum_port=sum([P_U{:,2:2}]);
fori=1: size_C2(1)
P_U{i,3}= (P_U{i,2}/sum_port);
end
% read occurrence rate for each corresponding size of packet
fin=fopen(N:\DARPA1998\TrainingDataset\DARPA98analyze\packet_size\Combine_#ll.txt'
C3=textscan(fir%of %f);
size_C3 = size(C3{1});
fori=1: size_C3(1)
P_US{i,1}= C3{1}();
P_US{i,2}= C3{2}(i);
end
sum_psize=sum([P_US{:,2:2}]);
for i=1: size_C3(1)
P_US{i,3}= (P_US{i,2}/sum_psize);
end

% apply score mechanism for each corresponding IP address according to ip address C_IP{},
size of packet SizeU{}, and port number frequencies P_U{}

for k=1:1:size_C
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=1
while ~(strcmp(Source_I1P(k,1),C_IP(},1)) &&
strcmp(Dest_IP(k,1),C_1P(j,2)))
=i+
end
if (C_IP{j,3}> 500)
Score{k,1}=4*C_IP{j,4};
else
if (C_IP{j,3}> 100)
Score{k,1}=3*C_IP{j,4};
else
if (C_IP{j,3}> 20)
Score{k,1}=2*C_IP{j,4};
else
Score{k,1}=1*C_IP{j,4};
end
end
end
m=1,
while ~strcmp(PortS(k,1),P_U{m,1})

m:m+1;
end

if P_U{m,3}>.70

Score{k,2}=4*P_U{m,3};
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else
if P_U{m,3}> .50
Score{k,2}=3*P_U{m,3};
else
if P_U{m,3}> .30
Score{k,2}=2*P_U{m,3};
else
Score{k,2}=1*P_U{m,3};
end
end
end
n=1,
while ~(SizeU(k,1)==P_US{n,1})
n=n+1;
end
if P_US{n,3}>.70
Score{k,3}=4*P_US{n,3};
else
if P_US{n,3}> .50
Score{k,3}=3*P_US{n,3};
else
if P_US{n,3}> .30

Score{k,3}=2*P_US{n,3};
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else

Score{k,3}=1*P_US{n,3};

end
end
end
end
%compute overall score
fori=1:1: size_C(1)
Score{i,4}= sum([Score{i,1:3}]);
end
t=0;
fori=1:1:size_C(1)
if Score{i,4}> .35
t=t+1;
history{1}(t)= Source_IP(i,1);
history{2}(t)= Dest_IP(i,1);
end
end
filename ='N:\DARPA1998\TrainingDataset\DARPA98analyze\TCP_History 169.txt'
fidl = fopen(filenamew");
for i=1:1:t

fprintf(fid1, %s ;history{1Ki});
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fprintf(fid1,%s ;history{2}i});
fprintf(fid1,\n’);
end

fclose(fidl);

C.6 The code below checks if the attack can pass the created history

%read created history C{}, and attack traffic C2{}
%udp packets

fin=fopen(N:\DARPA1998\TrainingDataset\DARPA98analyze\Udp_history\UDP_Histor
y_size.txt);

C=textscan(fin%s %9);
size_C = size(C{1});

fin=fopen(N:\DARPA1998\TrainingDatsetDARPA98analyze\Testing_Trace\attack i
p.txt);

C2=textscan(fif%os %9);
size_C2 = size(C2{1});
k=0;
for i=1:1:size_C(1)
flag=0;
j=0;
while (j<size_C2(1)) && (flag==0)
=ity
it stremp(C{1}(1), C2{1}()) && stremp(C{2}(i), C2{2}()))
k=k+1;

C3{1}(K)=C{1X();
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C3{2}(k)=C{2}(i);
flag=1;
end
end
end

%read created history C3{}, and attack traffic C2{}
%tcp packets

TII\IIG:}\nI:?,LnRePTAl998\TrainingDataseD\ARPA98anaIyze\Testing_Trace\Icmp\pass_history_trace_si
ze.txt,
fidl = fopen(filenamew";
for j=1:1:k
fprintf(fid1, %s ;C3{1}{j});
fprintf(fid1, %s ;C3{2}{});
fprintf(fid1,\n";
end
fclose(fidl);
fin=fopen(TCP_all_week_f24.t);
C=textscan(fin%s %s);
size_C = size(C{1});
fin=fopen(TCP_History 168.tx);
C2=textscan(fin%s %s);
size_C2 = size(C2{1});
k=0;

fori=1:1:size_C(1)
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flag=0;
=0;
while (j<size_C2(1)) && (flag==0)
=i+l
if stremp(C{1}(i),C2{1}(j)) && stremp(C{2}(i),C2{2}(j))
k=k+1;
C3{LHK)=C{1}(i);
C3{2}(K)=C{2}(i);
flag=1;
end
end
end
filename =pass_Tcp_history_trace.xt’
fidl = fopen(filenameyw);
for j=1:1:k
fprintf(fid1, %s |C3{1}{j});
fprintf(fid1,%s ;C3{2Hj});
fprintf(fid1,\n);

end
fclose(fidl);

%read created history C{}, and attack traffic C2{}
%icmp packets

fin=fopen(N:\DARPA1998\TrainingDataset\DARPA98analyze\icmp_history\icmp_Histor
y_size.txt);
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C=textscan(fin%s %g;
size_C = size(C{1});

fin=fopen(N:\DARPA1998\TrainingDataset\DARPA98analyze\Testing_Trace\attack i
p.txt);

C2=textscan(firf%s %s);
size_C2 = size(C2{1});
k=0;
for i=1:1:size_C(1)
flag=0;
j=0;
while (j<size_C2(1)) && (flag==0)
=it
if stremp(C{1}(i), C2{1}(j)) && stremp(C{2}(i),C2{2}(}))
k=k+1;
C3{1}(K)=C{1X(i);
C3{2}(k)=C{2}(i);
flag=1;
end
end

end

A.7 The code below checks normal detection rate for CSU traffic including parallel

programming

parpool(8)
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% reading incoming traffic file a{}
load(C:\Users\negar\Documents\Data\History\3oct_history\02_27\ipslist.mat'
% reading history file H{}

fid=fopen(C:\Users\negar\Documents\Data\History\3oct_history\02_27\History 3
oct4P-data-2015-02-20_26.t)t'

H = textscan(fid,%s);
fclose(fid);
% search for IP and collect IP address match with created history
result=0;
size_H = size(H{1});
size_C = size(c);
count=0;
C=zeros(size_H);
parforj=1:1:size H
ixn = find(strcmp(a,H{1}()));
if ~isempty(ixn)
C(j)=c(ixn);
count=count+1,
end
end
result=sum(C(:));
% write the result

filename =
'C:\Users\negar\Documents\Data\History\3oct_history\02_27\Match_History 27 1Copy.txt'
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fid3 = fopen(filenamew);
fprintf(fid3,'%f\n’, result);
fclose(fid3);

filename =
'C:\Users\negar\Documents\Data\History\3oct_history\02_27\Match_Uniq_IP_27_ 1Cppy.txt'

fid4 = fopen(filenamew’);
fprintf(fid4, %f\n’, count);

fclose(fid4);

A.8 The code below creates unique list of IP address from history and incoming traffic for
CSU traffic. Then history accuracy check according to that
% reading incoming traffic file a{}

FID = fopen(C:\Users\negar\Documents\Data\History\3oct_history\Beatata-
2015-02-28.0800.txt'r");

if FID == -1, errorCannot open fil¢, end

Data = textscan(FID%s, 'delimiter, \n', 'whitespacg");
CStr = Data{1};

fclose(FID);

size(CStr)

% remove the repeateplsi

[a,~,c]=unique(CStr);

clearCStrDataFID

c=accumarray(c,l1);

% find match IP between created history H{} and incoming traffic AD{}
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fid=fopen(C:\Users\negar\Documents\Data\History\Match_History\02_2B8a#015-02-
28.txt);

AD = textscan(fid,%s);

size(AD{1})

fid2=fopen(C:\Users\negar\Documents\Data\History\History IBidata-2015-02-25 27.txt'
H = textscan(fid2,%0s);

fclose(fid2);

size(H{1})

Result=intersect(AD{1},H{1});

filename =
'C:\Users\negar\Documents\Data\History\3days_history\Match_Uniq_IP_02-28.txt'

fid3 = fopen(filenamew);
fprintf(fid3,'%s\n, Result{:});
fclose(fid3);

A.9 The code below creates and test Compacted Bloom Filter
% number of elements
n=100 ;
x=15;
% size of Bloom filter
m=n*x ;
Fill_ratio=0;
Fill_ratio_new=0;
Correct_counter=0;

counter_1bit_change=0;
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counter_2bit_change=0;
counter_3bit_change=0;

counter_4bit_change=0;

counter_5bit_change=0;

counter_6bit_change=0;

% Create Bloom Filter A{} from created history of IP address C{}
A(m,1)=0;

set_bit=0;
fin=fopen(C:\Users\negar\Documents\MATLAB\tcp_udp_icmp_history1901 3partip_100.txt'
C=textscan(fin%s\n);

size_C = size(C{1});

fori=1:1:size C

D=HashFunction(char(C{1}(1)));

set_bit= mod(D,m)+1;

A(set_bit,1)=1;

D=HashFunction2(char(C{1}(1)));

set_bit= mod(D,m)+1;

A(set_bit,1)=1;

D=HashFunction3(char(C{1}(1)));

set_bit= mod(D,m)+1;

A(set_bit,1)=1;

D=HashFunction4(char(C{1}(1)));

set_bit= mod(D,m)+1;
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A(set_bit,1)=1;
D=HashFunction5(char(C{1}()));
set_bit= mod(D,m)+1;
A(set_bit,1)=1;
D=HashFunction6(char(C{1}()));
set_bit= mod(D,m)+1;
A(set_bit,1)=1;
D=HashFunction7(char(C{1}()));
set_bit= mod(D,m)+1;
A(set_bit,1)=1;
D=HashFunction8(char(C{1}()));
set_bit= mod(D,m)+1;
A(set_bit,1)=1;
D=HashFunction9(char(C{1}(1)));
set_bit= mod(D,m)+1;
A(set_bit,1)=1;
D=HashFunction10(char(C{1}(i)));
set_bit= mod(D,m)+1;
A(set_bit,1)=1;

disp(hash)

dec2bin(hash)

end

fclose(fin);
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for i=1:m
if A(i,1)==1
Fill_ratio=Fill_ratio+1,;
end

end

% End Create Bloom Filter
% Create Compressed Bloom Filter
CBF(n,1)=0;
% New Bloom Filter B{}
B(m,1)=0;
False_counter=0;
keep_j=0;
for i=1:n
j=i;
q=1;
counter_bit_set=0;
while g <= x
if A(j,1)==1
counter_bit_set=1+counter_bit_set;
keep_j=0;
e_nql
1=+

g=q+1;
end
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if counter_bit_set==x
CBF(i,1)=9;
Correct_counter=Correct_counter+1,
elseifcounter_bit_set > floor(x/2)
CBF(i,1)=8;

p=i;
for k=1:x

B(p.1)=1;
p=p+n;
end
elseif (counter_bit_set <= floor(x/2))
if (counter_bit_set == floor(x/2)-5 || counter_bit_set == floor(x/2)-4 || counter_bit_set ==
floor(x/2)-3 || counter_bit_set == floor(x/2)-2 ||counter_bit_set == floor(x/2)-1 || counter_bit_set
== floor(x/2))
False_counter=False_counter+1;
%Count Number of bit change to 0
if (counter_bit_set == floor(x/%))
counter_1bit _change=1+ counter_1bit_change;
end
if (counter_bit_set == floor(x/2})
counter_2bit_change=1+ counter_2bit_change;
end
if (counter_bit_set == floor(x/23)

counter_3bit_change=1+ counter_3bit_change;
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end
if (counter_bit_set == floor(x/2))

counter_4bit_change=1+ counter_4bit_change,;
end

if (counter_bit_set == floor(x/2})
counter_5bit_change=1+ counter_5bit_change;

end
if (counter_bit_set == floor(x/2))

counter_6bit_change=1+ counter_6bit_change;
end
end
%count number of bit change to 1
if (counter_bit_set ==1)
Correct_counter=Correct_counter+1,
end
if (counter_bit_set == 0)
p=i;
Correct_counter=Correct_counter+1,
for k=1:x
B(p,1)=0;
p=p+n;
end
else

CBF(i,1)=keep_j;
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p=i;
for k=1:x
if k==keep_j
B(p,1)=1;
else
B(p,1)=0;
end
p=p+n;
end
end
end
end
fori=1:m
if B(i,1)==1
Fill_ratio_new=Fill_ratio_new+1;
end
end
% compute false positive rate of compacted Bloom filter
Fill_ratio_new_percent=Fill_ratio_new/m;
Fill_ratio_percent=Fill_ratio/m;
False_poitive_new= Fill_ratio_new_percent"2;
False_poitive= Fill_ratio_percent"2;

filename ='C:\Users\negar\Documents\MATLAB\CompressBloomfilter, txt'
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fid = fopen(filenamew’);
for j=1:m
fprintf(fid, '%d\n; B(j,1));

end

A.10 The code below is Linux scripts to read and extract corresponding features from CSU,

DARPA CAIDA and university of Auckland dataset

/l Read Argus file and Extract incoming traffic to CSU (129.82.*.%)
ra -r 201502-01.0800.hVwjYxK.lander4.argus.gav- | ra dst net 129.82.00.00/* -s +1dur

+tcprtt +bytes +spkts +dpkts > /raid6/negar/all-dagafeb15/all-data-2015-02-01.0800.txt

/I Extract Source IP, Destination, Port#, Size of packet for each day traffic
cat /raid6/negar/all-datesufeb/all-data-201%2-01.0800.txt | cut -d' ' -f27 | cut -f1,2,3,4 -d"." |

sort | sed 's/[!Flgs]//'g |sed 's/[!Proto]//'g| sed '/"$/d;s/[[:blank:]}//g' > /raid6/negar/altsiata-
feb/27 .txt

cat 24.txt 25.txt 26.txt 27.txt | sed 's/[!-]//'g | sed 's/[!<->]/I'g | sed 's/[!?]//'g |sed
'1"$/d;s/[[:blank:]])//g'|sort > allP-data-2015-02-01.0800.txt

/I Combine all traffic based on window size. For example, combine 2 weeks incoming traffic
cat alliP-2014-01-30.txt all?-2014-01-18.txt allP-201401-18.txt all4P-2014-01-19.txt all-

IP-2014-01-20.txt alHP-2014-01-21.txt allP-2014-01-22.txt allP-2014-01-23.txt allP-2014-
01-24.txt alliP-2014-01-25.txt allP-2014-01-26.txt allP-2014-01-27.txt allP-2014-01-28.txt
all-IP-2014-01-29.txt > all_data-2014-01-18_31.txt

/I Count number of occurrence and create signature for each extracted features
awk ‘{for(w=1;w<=NF;w++) print $w}' comb_allP-data-2015-02-04.txt | sort | uniq -c | sort -
nr > freq_alliP-data-2015-02-04.txt

/I Extract one type of traffic for example UDP traffic
ra -r 201502-01.0800.hVwjYxK.lander4.argus.gz - udp - | ra dst net 129.82.00.00/249 -

+1dur +tcprtt +bytes +spkts +dpkts > /raid1/negar/all-data-csu-feb/udp-data-2015-02-01.0800.txt

all-datacsufeb]$ cat /raidl/negar/all-datsufeb/udp-data-2015-02-01.0800.txt | cut -d' ' -f26 |
cut -f5 -d." | sort | sed 's/[!FIgs]//'g |sed 's/[!Proto]//'g| sed '/*$/d;s/[[:blank:])//g" > /raid1l/negar/all-
dataesufeb/26.txt

/I Reading CAIDA traffic and extract features such as Source IP, Destination, Port#, Size of
packet as well as TCP SYN and ACK flags
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tcpdump -vvnnS -r equinix-chicago.dirA.20110607-235000.UTC.anon.pcap 'tcp[13]=18' -tt | sed
's/F.*g//'| sed 's/a.*k//'| sed 's/(.*h/I' | sed 's/I.*P/I'| sed 's/w.*h/I" | sed 's/l.*P/I' | sed 's/>/I' | sed
'sl:/' | sed 's/)/' | cut -d' ' -f1,4,5,7,9,11 | awk 'ORS=NR%2?" ":"\n"™ | sed "s/..*, / /g" | sed 's/,//'|
sed 's/,/I'| sed 's/ //g' > dirA.20110607-235000_tcpl8.txt

/I Reading University of Auckland dataset
Jtracesplit -f "tcp[13]=16" legacyatm:/mnt/c20311/wits/20010318-020000-0.9z

pcapfile:/mnt/c20311/tmp2/convert20010318-020000-0.pcap.gz

/I Extract time, Source IP, Destination, Port#, Size of packet for each day as well as TCP SYN
and ACK flags
tcpdump -vvnnS -r convert20010314-020000-0.pcap.gz 'tcp[13]=16" -tt | sed 's/ t.*!/[' | sed

's/IF.*g/l' | sed 's/a.*k//' | sed 's/(.*)/I' | sed 's/1.*)/' | sed 's/w.*h/I' |sed 's/I.*P/[' | sed 's/>/I' | sed
'sl:/'| cut-d' ' -f1,5,7,9,11 | awk 'ORS=NR%2?" ":"\n"" | sed "s/..*, / /9" | sed 's/,/I' | sed 's/,/I' >
/mnt/c20311/data/data20010314-020000-0.txt

Jtracesplit -f "tcp[13]=18" legacyatm:/mnt/c20311/wits/20010318-020000-1.9z
pcapfile:/mnt/c20311/tmp2/convert20010318-020000-1.pcap.gz

tcpdump -vvnnS -r convert20010314-020000-1.pcap.gz 'tcp[13]=18" -tt | sed 's/ t.*!/[' | sed
's/IF.*g/l' | sed 's/a.*k//' | sed 's/(.*)/I' | sed 's/1.*)/' | sed 's/w.*h/' |sed 's/I.*P/[' | sed 's/>/I' | sed
'sl:/I'| cut-d' ' -f1,5,7,9,11 | awk 'ORS=NR%2?" ":"\n"" | sed "s/..*, / /9" | sed 's/,/' | sed 's/,/I' >
/mnt/c20311/data/data20010314-020000-1.txt

/I Extract one type of traffic for example UDP traffic from University of Auckland dataset
tcpdump -vwvnnS -r udp20010315-020000-0.pcap.gz -tt | sed 's/ t.*!//'| sed 's/ I.*,/I'| sed 's/ 1.*)II" |
sed 's/>>>*/[' | sed 'sIWAR.*/[' | sed 's/984622873.970670.*//' | sed 's/packetexc.*/'| sed
's/Trn.*/I' | sed 's/Data:.*/[' | sed 's/OpCode.*/' | sed 's/Rcode.*/[' | sed 'sINmFlag.*//' | sed
's/Query.*/' | sed 's/Answer.*/[' | sed 's/Author.*//' | sed 's/Address.*/' | sed 's/Addit.*/I' | sed
's/uns.*/['| sed 's/[[].*/I' | sed 's/Root.*//'| sed 's/[>].*/I' | sed '"$/d;s/[[:blank:])//g" | awk
'ORS=NR%2?" ":"\n"™" | cut -d' ' -f2 | cut -d"." -f1,2,3,4 > /mnt/c20311/data/udp20010315-020000-
0.txt

/I Extract single feature as follows

Time

tcpdump -vvnnS -r convert.pcap.gz 'tcp[13]=16" -c 1200000 -tt | sed 's/ t.*!/I' | sed 's/F.*q/I' | sed
's/a.*k/l' | sed 's/(.¥)/I' | sed 's/1.*)/I' | sed 's/w.*h/[' |sed 's/I.*P//' | sed 's/>/I' | sed 's/:/' | cut -d" " -
f1,5,7,9,11 | awk 'ORS=NR%2?" ":"\n™ | cut-d"'-f1 | sed "s/:..*, / Ig" | sed 's/,/I' | sed 's/,/I' >
/mnt/c20311/data/time20010315-020000-0.txt

Source IP
tcpdump -vwnnS -r ddostrace.to-victim.20070804 _134936.pcap 'tcp[13]=16" -tt | sed 's/ t.*!//" |

sed 's/F.*g/I' | sed 's/a.*k/I' | sed 's/(.*)/I' | sed 's/1.*)/I' | sed 's/w.*h/[' |sed 's/I.*P/I' | sed 's/>/I' | sed
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's/:/I'| cut-d' ' -f1,5,7,9,11 | awk 'ORS=NR%2?" ":"\n"" | cut-d''-f3 | sed "s/:.*, //g" | sed 's/,/I' |
sed 's/,/[' > tcp_attack20070804_134936

Destination IP
tcpdump -vvnnS -r convert20010314-020000-0.pcap.gz 'tcp[13]=16" -tt | sed 's/ t.*!//' | sed

's/IF.*q/l' | sed 's/la.*k//' | sed 's/(.*)/I' | sed 's/I.*)/' | sed 's/w.*h/I' |sed 's/I.*P/I' | sed 's/>/I' | sed
'sl:/I'| cut-d' ' -f1,5,7,9,11 | awk 'ORS=NR%2?" ":"\n"™" | cut-d''-f4 | sed "s/..*, / /9" | sed 's/,/I' |
sed 's/,/I' > Imnt/c20311/data/dest20010314-020000-0.txt

Sequence

tcpdump -vvnnS -r convert.pcap.gz 'tcp[13]=16" -c 30 -tt | sed 's/ t.*!//' | sed 's/F.*q//' | sed
'sla.*k/l' | sed 's/(.¥)/I' | sed 's/1.*)/I' | sed 's/w.*h/[' |sed 's/I.*P//' | sed 's/>/I' | sed 's/://' | cut -d" " -
f1,5,7,9,11 | awk 'ORS=NR%2?" ":"\n™ | cut-d"'-f5 | sed "s/..*, / /g" | sed 's/,/I' | sed 's/,/' | cut -
d:' -f1 >/mnt/c20311/data/dest20010312-020000-0.txt

Acknowledge

tcpdump -vvnnS -r convert.pcap.gz 'tcp[13]=16" -tt | sed 's/ t.*!//' | sed 's/F.*q//' | sed 's/a.*k//" |
sed 's/(.*)/I' | sed 's/1.®)/I' | sed 's/w.*h//' |sed 's/I.*P/I' | sed 's/>/I" | sed 's/:/I' | cut -d' ' -f1,5,7,9,11 |
awk 'ORS=NR%2?" ":"\n"™ | cut-d''-f6 | sed "s/..*,//g" | sed 's/,/I' | sed 's/,/I' | cut -d":" -f1 >
/mnt/c20311/data/ack20010312-020000-0.txt

Length
tcpdump -vvnnS -r convert20010314-020000-0.pcap.gz 'tcp[13]=16" -tt | sed 's/ t.*!//' | sed

's/F.*q/l' | sed 's/la.*k/I' | sed 's/(.¥)/I' | sed 's/.*)/' | sed 's/w.*h//' |sed 's/I.*P/I' | sed 's/>/I' | sed
's/:/I'| cut -d' ' -f1,5,7,9,11,13 | awk 'ORS=NR%2?" ":"\n"" | cut-d''-f7 | sed "s/:..*, //g" | sed
's/,II' | sed 's/,/I' > Imnt/c20311/data/length20010314-020000-0.txt

icmp
Jtracesplit -f "icmp" legacyatm:/mnt/c20311/wits/20010329-020000-0.gz
pcapfile:/mnt/c20311/udp/icmp20010329-010000-0.pcap.gz

tcpdump -vwvnnS -r icmp20010329-010000-0.pcap.gz -tt | sed 's/ t.*!//'| sed 's/ 1.*,/['| sed 's/ |.¥)/I'
| cut-d''-f1,5,7 | awk 'ORS=NR%2?" ":"\n" | cut -d' ' -f3 | sed 's/:/I' >
/mnt/c20311/data/icmp/icmp20010329-010000-0.txt

/l Combine all traffic based on window size. For example, combine 2 weeks incoming traffic
cat filtercmp20010409-010000-0.txt filtercmp20010327-010000-0.txt filtercmp20010328-

010000-0.txt icmp20010329-010000-0.txt filtercmp20010330-010000-0.txt filtercmp20010331-
010000-0.txt filtercmp20010401-010000-0.txt filtercmp20010402-010000-0.txt
filtercmp20010403-010000-0.txt filtercmp20010404-010000-0.txt filtercmp20010405-010000-
0.txt filtercmp20010406-010000-0.txt filtercmp20010407-010000-0.txt filtercmp20010408-
010000-0.txt | sort | unig > icmp_history _2709.txt

/I Create list of unique IP addresses

190



cat tcp_history 2103.txt /mnt/c20311/data/udp/udp_history 2103.txt
/mnt/c20311/data/icmp/icmp_history 2103.txt | sort | uniq > tcp_udp_icmp_history 2103.txt

/I Find list of IP addresses that are matched between two files. For instance between IP address
history and corresponding day traffic
grep -Fxv -f history2608_09.txt /mnt/c20311/data/tcp_sip_2nextweek/tcp_udp_icmp_409.txt

/l Reading DARPA dataset and extract time, Source IP, Destination, Port#, Size of packet for
each day as well as TCP SYN and ACK flags

tcpdump -vvnnS -r tcpdump.pcap.gz 'tcp[13]=16'c 1000 | sed 's/F.*q/l' | sed 's/a.*k/I' | sed
's/(9)II' | sed 's/L.*)/I' | sed 's/w.*h//' | sed 's/I.*P//' | sed 's/>/I" | sed 's/:/I'| cut -d' ' -f1,5,7,9,11 |
awk 'ORS=NR%2?" ":"\n"™" | sed "s/..*, / /g" | sed 's/,/I' | sed 's/,/I' >
/mnt/c20305Negar/DARPA1998/TrainingDataset/weekl/monday/tcp16.txt

tcpdump -vvnnS -r outside.tcpdump 'tcp[13]=18" -tt | sed 's/F.*q//' | sed 's/a.*k/I' | sed 's/(.*)/I' |
sed 's/l.*)/' | sed 's/w.*h/I' | sed 's/l.*P/I' | sed 's/>/I' | sed 's/:/' | cut -d" " -f1,5,7,9,11 | awk
'ORS=NR%27?" ":"\n" | sed "s/..*, / /g" | sed 's/,/I'| sed 's/,/I' >
/mnt/c20305Negar/DARPA1998/TrainingDataset/weekl/monday/tcp18.txt
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