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ABSTRACT OF DISSERTATION

A FIDUCIAL APPROACH TO EXTREMES AND MULTIPLE COMPARISONS

Generalized fiducial inference is a powerful tool for many difficult problems. Based
on an extension of R. A. Fisher’s work, we used generalized fiducial inference for two
extreme value problems and a multiple comparison procedure.

The first extreme value problem is dealing with the generalized Pareto distri-
bution. The generalized Pareto distribution is relevant to many situations when
modeling extremes of random variables. We use a fiducial framework to perform in-
ference on the parameters and the extreme quantiles of the generalized Pareto. This
inference technique is demonstrated in both cases when the threshold is a known
and unknown parameter. Simulation results suggest good empirical properties and
compared favorably to similar Bayesian and frequentist methods.

The second extreme value problem pertains to the largest mean of a multivariate
normal distribution. Difficulties arise when two or more of the means are simulta-
neously the largest mean. Our solution uses a generalized fiducial distribution and
allows for equal largest means to alleviate the overestimation that commonly occurs.
Theoretical calculations, simulation results, and application suggest our solution pos-
sesses promising asymptotic and empirical properties.

Our solution to the largest mean problem arose from our ability to identify the
correct largest mean(s). This essentially became a model selection problem. As a
result, we applied a similar model selection approach to the multiple comparison
problem. We allowed for all possible groupings (of equality) of the means of k in-

dependent normal distributions. Our resulting fiducial probability for the groupings

il



of the means demonstrates the effectiveness of our method by selecting the correct

grouping at a high rate.
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Chapter 1

INTRODUCTION TO EXTREMES AND MULTIPLE COMPARISONS

Throughout this dissertation we will investigate two extreme value problems and
a multiple comparison problem. The first extreme value problem performs inference
on the parameters and extreme quantiles of the generalized Pareto distribution. This
is a classic extreme value problem that has been investigated using various approaches.
The second extreme value problem deals with inference on the largest mean of a
correlated multivariate normal distribution. The largest mean is easily recognized
as an extreme parameter. Estimating and calculating confidence intervals for the
largest mean pose numerous overestimation problems when there are multiple means
that are the equal largest means. Grouping several means together as the largest
mean will help to alleviate such problems. Grouping the means together becomes a
model selection problem as there are different combinations of possible groupings of
the largest means.

A natural extension to the model selection of the largest mean problem is the
development of a solution to multiple comparison problems. The multiple comparison
problem will estimate which means of independent normal data are equal and unequal.

Again, this will involve a model selection technique amongst the potential groupings.

1.1 Introduction to the generalized Pareto

The generalized Pareto distribution (GPD) was introduced by Pickands (1975).
It was used in situations that an exponential distribution may be appropriate but

robustness may be required with heavy or light tailed alternatives. In particular,



it is known that data of the peaks over a high threshold variety are appropriately
modeled by the generalized Pareto distribution. These situations arise in economics,
hydrology, environmental science, insurance, etc.

As defined by Pickands (1975), if X ~ F' then the limiting distribution of X —
a conditional on X > a as a — wp where wp is the right-hand endpoint of the
distribution follows a generalized Pareto distribution. The density for the GPD is

defined as: o
(14+2=2) 7 20
exp{—(z—a)jo} =0

Here v is the shape parameter, o is the scale parameter, and a is the threshold

fa) =17

parameter. The generalized Pareto distribution poses numerous interesting problems.
Estimating 7, o, a, and the high quantile (return level) can produce many difficulties.

In many cases the threshold, a, is considered a known value and estimators for ~,
o, and the g-quantile are calculated under this assumption. This is the case in Smith
(1984, 1985), Davison (1984), Monfort and Witter (1985),Davison (1984), Hosking
and Wallis (1987), and Castellanos and Cabras (2005). Estimators have included
the use of maximum likelihood, method of moments, L-moments, and Bayesian tech-
niques. The maximum likelihood estimators were found to be asymptotically normal
and consistent when v > —1/2 in Smith (1984). L-moments were found to be equiv-
alent to probability weighted moments and have good qualities in Hosking (1990).
Castellanos and Cabras (2005) used a Bayesian technique with Jeffereys prior to cal-
culate estimators.

Work has also been done when the threshold, a, is an unknown parameter. When
the threshold is unknown the interest lies in the estimation and confidence intervals
for the B-quantile. In the past, a threshold value was fixed and inference was done
using the fixed threshold. When the threshold is not set as a fixed value additional
inference problems arise. Some methods test how well the generalized Pareto fits a

data set for different threshold values (Choulakian and Stephens (2001) and Dupuis



(1999)). Another approach, seen in Guillou and Hall (2001), is to model a fixed
number of the largest order statistics with the GPD. Weighting schemes have been
incorporated with a mixture of a Weibull and GPD in Frigessi et al. (2002). Cabras
and Castellanos (2009) and Tancredi et al. (2006) used a Bayesian approach with
a mixture model to incorporate the variability of the unknown threshold. Using a
mixture model allows the data to select likely threshold values and build confidence
intervals for the -quantile with this added uncertainty.

The use of a mixture model as done in Cabras and Castellanos (2009) and Tan-
credi et al. (2006) is a novel idea. The majority of the distribution can be modeled by
some distribution and the tail can be modeled using the GPD. However, as the un-
derlying distribution of the data can be anything the appropriate distribution needs
to be fit below the threshold to have any sort success in estimating the high quantile

in the upper tail of the data.

1.2 Introduction to the largest mean of a multivariate normal distribution

The largest mean is defined by 6 = max;pu; when X ~ N(w, %), p =

(i1, )7, and

m pi2y/Mmne - Pk
p12+/MN2 12
P/ MK Mk
Inference on 6 is a wide reaching and difficult problem. There are applications to
this problem in pollution studies, drug trials, studies measuring the QT interval,
investments, etc.

As the parameter of interest is the largest mean there is a very difficult aspect
to this problem. If some or all of the means are equal or close to being equal the
largest mean, 6, is oftentimes overestimated. As a result, some of the current inference

techniques have very conservative upper tailed confidence intervals.
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There are very few potential solutions to this problem. The most common,
the intersection-union method, constructs an upper tailed t-interval for all of the k
dimensions. The largest upper bound is the upper tailed confidence interval for 6.
Another proposed technique is seen in Eaton et al. (2006). This solution approximates
the maximum with a smooth function which allows for the delta method to make a
normal approximation and a bias adjustment. Boose et al. (2007) uses a linear model
to estimate the bias and variation of the estimated largest mean. This technique
allows for intervals to be calculated with and without a bias adjustment using a
normal approximation. All of these methods create upper-tailed intervals but do not
propose a solution for a lower-tailed or two tailed interval.

A model selection technique that would allow for equal largest means would
help to offset the overestimation and the need for a bias adjustment. Furthermore,

allowing for equal largest means will provide good asymptotic properties.

1.3 Introduction to multiple comparisons

Multiple comparisons allow for judgements to be made about the means of in-
dependent normal distributions. Namely, X; = (X;1,...X;p,) foralli = 1,... k
are observed from independent normal distributions with mean p = (puy, ..., ux)?
and variance 1. The interesting problem is to perform inference on the groupings of
the individual means within . For example, it may be of interest to determine if
1 = pg = - -+ = p from the observations Xy, X, ..., X;.

Some of the multiple comparison problems have been addressed using frequen-
tist solutions. In the previous example, analysis of variance (ANOVA) would be
used to test for a treatment affect. Likewise, to test for differences among the in-
dividual means some of the frequentist solutions consist of Fisher’s least significant
difference (LSD), Tukey’s honest significant difference (HSD), Sheffe’s pairwise differ-

ences, Duncan’s multiple range test, etc. While these methods can detect differences



while controlling for the comparisonwise or experimentwise error rate they do not
necessarily lead to a conclusion of the likely groupings of the means within .

A Bayesian procedure for the multiple comparison problem has been developed
in Gopalan and Berry (1998). The Bayesian procedure will produce a posterior prob-
ability for the likely groupings within g. This method assigns prior and hyperprior
distributions to the parameters of p and n. Furthermore, a Dirichlet process prior
is used to decide between competing groupings of p. Using this method posterior
probabilities are compared to the prior probabilities to decide amongst competing
groupings for different priors.

The Bayesian method does address some of the shortcomings in the frequentist
solutions. However, the posterior probabilities can be dramatically affected by the

prior distributions.



Chapter 2

GENERALIZED FIDUCIAL CONFIDENCE INTERVALS FOR
EXTREMES

2.1 Introduction

Extreme value theory is of practical interest in a variety of different fields (e.g.
economics, hydrology, environmental science, insurance, etc.). It is well known that
modeling data over a high threshold with the generalized Pareto distribution (GPD)
is appropriate, Davison and Smith (1990). As stated by Hosking and Wallis (1987)
the applications of the GPD include analysis in extreme events like the modeling of
large insurance claims and in situations that an exponential distribution might be
used but robustness is required with heavy or light tailed alternatives.

The generalized Pareto was first introduced by Pickands (1975). Later Smith
(1984, 1985), Davison (1984), and Monfort and Witter (1985) all showed interest in
its application and theoretical properties. If X ~ F| Pickands (1975) showed that
the limiting distribution of (X — a) conditional on X > a as a — wp where wp is
the right-hand endpoint of the distribution follows a generalized Pareto distribution.

The density for the GPD is defined as:

—1/y—1
(14 s 0
I e
Lexp{~(v—a)/o} =0
Estimators of the parameters using maximum likelihood, method of moments,
and L-moments have been explored in Davison (1984), Hosking and Wallis (1987),

and Smith (1984). Smith (1984) found the maximum likelihood estimators to be
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asymptotically normal and consistent when v > —1/2. Hosking (1990) showed that
procedures using L-moments and probability weighted moments are equivalent. Fur-
thermore, L-moments are more robust than method of moments and are often times
more efficient than maximum likelihood estimates. A Bayesian solution to this prob-
lem has been explored in Castellanos and Cabras (2005).

We propose new confidence intervals for v, o, and the -quantiles for the cases
when the threshold, a, is a known and unknown parameter. The proposed solution is
based on generalized fiducial intervals of Hannig (2009b). Simulation results suggest
that this inference technique performs well with small sample sizes, and, when a is
known, the confidence intervals have asymptotically correct coverage. This fiducial
method for calculating intervals for the extreme quantiles (return levels) of the GPD
also compare favorably to the profile log-likelihood method described in Coles (2001)
and the Bayesian method described in Castellanos and Cabras (2005). That is to say
that the fiducial intervals have good empirical coverage and are often times shorter
than the comparable profile log-likelihood and Bayesian intervals. Furthermore, the
point estimates for v and ¢ using this fiducial approach have smaller bias when
compared with estimators calculated using maximum likelihood, L.-moments, and the
aforementioned Bayesian methods. The bias for the estimate of the [-quantile is
smaller than the estimates based on maximum likelihood and L-moments but slightly
larger than those calculated by the Bayesian method.

We also developed fiducial methods when the threshold is unknown. As seen in
Coles (2001), the threshold is generally chosen by some ad hoc procedure of looking
at plots and fixing the threshold for all subsequent calculations. Other methods
will test whether the generalized Pareto fits the data for various different thresholds
as seen in Choulakian and Stephens (2001) and Dupuis (1999). Guillou and Hall
(2001) investigate this problem of choosing a threshold by using a fixed number of
the largest order statistics and Frigessi et al. (2002) used a weighting scheme with a

mixture of a Weibull distribution and the GPD to model the data. These methods do



not account for fact that the threshold is unknown in all practical applications. The
unknown threshold will add variability to the estimates of the extreme quantiles. Our
method, like the Bayesian methods developed in Cabras and Castellanos (2009) and
Tancredi et al. (2006), assumes the threshold is another parameter that is unknown.
As a result, the fiducial method will select likely values for the threshold based on
the data. Using this method we performed a simulation study for data that was
generated from various distributions that could be seen in real life settings. Based on
the simulations the fiducial framework produced intervals for the -quantile that had
reasonable frequentist coverage for all of the distributions and compared favorably to
the approach described in Cabras and Castellanos (2009).

This fiducial approach was also used to analyze a popular data set in both cases
when the threshold is assumed to be known and unknown. The data set that was
analyzed was the log-weekly losses of the Nasdaq 100 index. Our analysis produced
fiducial intervals for the 0.99-quantile that were generally shorter than the intervals

from the appropriate profile log-likelihood and Bayesian methods.
2.2 Generalized Fiducial Inference
2.2.1 Overview

The original idea for fiducial inference was developed by Fisher (1930) in an
attempt to overcome what he perceived as a deficiency in the Bayesian framework.
Namely, he was opposed to assuming a prior distribution when there was little or no
information about the parameters available. Opposition to the fiducial framework
arose when it was later discovered that some of the properties that Fisher had origi-
nally claimed were not actually true, (Lindley, 1958; Zabell, 1992). In the more recent
past fiducial inference has begun to gain more acceptance in the statistics community
following the introduction of generalized inference by Weeranhandi (1993) and the

work of Hannig et al. (2006) where a relationship between fiducial and generalized



inference was established. A further background of fiducial inference and discussion
of the asymptotic and empirical properties can be found in Hannig (2009b).

The underlying principle of generalized fiducial inference uses the model and the
observed data, X, to define a probability measure on the parameter space, =Z. The
result produces a similar distribution to that of a Bayesian posterior distribution. To
formally describe fiducial inference we assume that a relationship between X and &

exists in the form of),

X = G(&,U). (2.1)

This relationship is called the structural equation where U is a random vector with
a completely known distribution and independent of any parameters. After X is
observed we use the known distribution of U and the functional relationship from
the structural equation to infer a distribution on &. The distribution of £ is established
by taking the inverse of the structural equations with respect to &.

From the structural equation the generalized fiducial density is calculated as
proposed in Hannig (2009b) and justified theoretically in Hannig (2009a). Let G =
(g1,---,9n) such that X; = ¢;(§,U) fori =1,...,n. £is a p x 1 vector and denote
X; = Goi(&, U;) where X; = (X;,,...,X;,) and U; = (Uy,,...,U;,) for all possible
combinations of the indexes i = (iy,...,4,). Assume that the functions Gg; are one-
to-one and differentiable. Under some technical assumptions in Hannig (2009a) this

will produce the generalized fiducial density of

o x©)I(x,€)
fg fX(X|§,)‘](X7 §l>d§,

fre(€) (2.2)

where
det (£Gy(x:,€))
i=(i1,..ip) | A€t (d%iG(Iil(Xif))

Jx&) =) (2.3)

is the mean of all subsets where 1 <i; < --- <, < n and the determinants in (4.5)

are the appropriate Jacobians.
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2.3 Main Results
2.3.1 Structural equation
Known threshold

If X1, X,,...,X, are independent and identically distributed random variables
from the GPD with parameters v and ¢ then a structural equation when «a is known
can be defined as:

Xi =a+ (Ui_’y — ].)z
Y

where U; for i = 1,...,n are independent random variables from the U(0, 1) distri-
bution.
Following the recipe from (4.4) we were able to calculate the fiducial density for

€ = (v,0). The generalized fiducial density when a is known is:

7" i g *(n)—a
8 (Z) _1% > |(@i—a) (1 + (xjg_ a)) log (1 TS B (xja_ a))
—(z;—a) (1 SR (a:;— a)) log <1 A (xi;_ a)) '(2_4>

where R¢ = (R, R,) is the fiducial random variable for (v, o).
To find the fiducial density for the B-quantile (return level) a transformation is

needed to be made on (2.4). Namely, we need to find the distribution of:

Ry=a+ % ((1 B R 1) Be(0,1) (2.5)

where R, is the fiducial random variable associated with the S-quantile. The fiducial

density for the S-quantile is:

fr,(q) o / SRy (7,0) dy (2.6)

where fr_. (7,q) is the joint density of (R, R,) using the transformation in (2.5).
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Unknown threshold

In most practical applications the threshold is unknown and the GPD does not
fit the tail of the distribution exactly. As a result, we consider the following model

as an approximation:

_ o
Xi = Lo (U) @) + T () (a4 (7,7 = )7 @)
where U; and W; for i = 1,...,n are independent random variables from the U(0, 1)

distribution. Furthermore, p is chosen so the density based on (2.7) is continuous at
a.

As we are only interested in the data above the threshold the model below the
threshold serves as a way of introducing a penalty. The penalty helps to ensure
that the threshold is not forced far into the tail of the distribution. The uniform
distribution, while not the correct distribution of the data below the threshold, seems
to introduce the correct penalty for selecting the threshold as demonstrated by our
simulation studies.

Using this structural equation, the recipe described earlier produces the general-
ized fiducial density as:

B

I a)J Xit1:n n Tin — a 7%71
£(9) O(Z (z(i)’m(i-‘rl))( ) Kisin: §) H (1_{_7( (4) )) (2.8)

n
i=1 (a+0) j=i+1

where

T (i1 €)= (”_?f_l)li )

2
7"

o (14209 g (1= )

o

oy (12 ) g (20 )

o o

(o =) (14 T2 g (M=)

o o

Y
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Xjm = (x(j)7x(j+1), e ,x(n)), and B < n. Note that B forces a certain number of
values in the tail to be fit with a GPD. Again, the (a + o) " portion is a product of
using the U(0, a) distribution below the threshold and down-weights the generalized

fiducial density for large threshold values.
2.3.2 Confidence intervals, coverage, and point estimates when a is known
Confidence intervals and coverage

Based on the fiducial densities in equations (2.4) and (2.6) we defined point
estimates and confidence intervals for the parameters. The point estimates are defined
as the median of the marginal distributions of (2.4) and (2.6). We constructed the
equal tailed confidence region for the true parameters (7o, o) and one and two sided
intervals for the true high quantile, gg,. First, one sided lower and upper tailed
intervals for g, are defined as (¢;,00) and (0, c2) respectively. The values ¢; and
¢y are the a and 1 — « quantiles of (2.6). Two tailed intervals were calculated in
two different ways. A symmetric (1 — ) 100% interval is obtained by combining two

1 —a/2 one tailed intervals to get (1, c2). The second two tailed interval is defined as:
do

{(dl, d) : arg min {(d2 —dy),

d1,d2

fro(@)dg=1— Oz}} : (2.9)

dy
The interval (c;,cz) will be referred to as the “fiducial symmetric interval” and the
interval in (2.9) will be referred to as the “fiducial shortest interval”. Likewise, we
define the equal tailed joint confidence region for the true parameters (7o, 0g) as:

CX) = {na)s = [ [ o

—a

*(n)—a

ds 0o [e'e) 0o
Ay — / / fre (7, 0)dydo, As = / fr(7,0)dndo,
0 -9 0 ds

T(n)—a

Ay = / / fre(v,0)dydo, where dy,d,, d3, dy satisfy
d4 _—o

T(n)—a

dy ds
A1 :A2:A3:A4,/ ng(’Y,U)d’}/dO‘:]_—OZ}. (210)
do dy
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Figure 2.1: Equal tailed confidence region for (7o, o¢)

See Figure 2.1 for illustration.

The traditional way to assess the coverage of confidence intervals is to choose a
desired confidence level (e.g. 95%), simulate data, then check the frequency in which
the true parameter(s) is/are captured by the constructed interval(s). Alternatively,
we use a graphic device demonstrated in Hannig (2009b) which allows us to check
the coverage at all confidence levels simultaneously. To accomplish this for the one
tailed intervals for the S-quantile set Q3(X, ¢g,) = P(R, < ¢3,|X). This is essentially
the smallest coverage level of an upper tailed confidence interval that will contain
the true quantile, gg,. If the confidence interval for gg, were exact at all confidence
levels then Qp(X, gg,) (which can be thought of as a p-value) would follow the U(0, 1)
distribution.

We generated 1000 data sets from a generalized Pareto distribution with the
parameter values seen in table 2.1. An MCMC algorithm was used to draw a sample
from (2.4). Each generated data set produced one Q3(X, ¢g,) value which we used
to construct U(0,1) QQ-plots. To assess the coverage look at the nominal p-value
(desired coverage) and then note the corresponding actual p-value (actual coverage)

that coincides with the simulated line. For example, following the dotted line in the
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Table 2.1: Simulation values when a is known.
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Figure 2.2: QQ-plots when vy = —0.2, 09 = 1, and n = 50

first plot of Figure 2.2 reflects that the 0.95 upper tailed interval has actual coverage
of 0.962. The dotted line in the second plot demonstrates that our method has 0.052
probability in the lower tail or, equivalently, the 0.95 lower tailed interval has an
actual coverage rate of 0.948. Figures 2.3 and 2.4 are additional QQ-plots for specified
parameter values. In general, intervals with exact coverage would follow the diagonal
line in the plots. Because there is variation due to simulation we provide confidence
bands (dashed lines). If the p-values (simulated line) stay within the dashed lines
(95% confidence bands) then they cannot be distinguished from a sample of the
U(0,1) distribution and we claim good coverage properties.

A similar calculation can be done with the two tailed interval (cy, ¢3), the interval
in (2.9), and the joint confidence region in (2.10). The coverage for the intervals of
the 0.99-quantile and the joint confidence region are seen in Figures 2.2, 2.3, and 2.4.
The figures with the titles “Upper tailed”, “Lower tailed”, and “Symmetric” coincide
with the previously described intervals of (0,cz), (c1,00), and (¢, ¢2) respectively.
The figures titled “Shortest” and “C'(X)” coincide with the intervals defined in (2.9)
and (2.10) respectively. As the plots illustrate all of the intervals are very close to
achieving the nominal coverage rate. This behavior was also seen for different values

of 79 and sample sizes.
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Figure 2.3: QQ-plots when vy = 0 and 09 = 1, and n = 50
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Figure 2.4: QQ-plots when vy = 0.4 and o9 = 1, and n = 50
Asymptotic properties

In this case, with a known threshold, we were able to prove that the intervals
described previously have asymptotically correct coverage.

Using theorem 5.1 from Hannig (2009a) we could easily verify the conditions and
show that the confidence region in (2.10) has asymptotically correct coverage. Simi-
larly, because the B-quantile is a differentiable function of v and o it follows directly
from the delta method that the intervals for the -quantile are also asymptotically

correct.
Interval comparisons

Our assessment of the confidence intervals for the [-quantile also involved a
comparison to intervals constructed using the profile log-likelihood described in Coles
(2001) and the Bayesian approach using Jefferys prior described in Castellanos and

Cabras (2005). The coverage for two tailed 95 and 99% intervals for the 0.99-quantile
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Figure 2.6: Length of the two tailed fiducial, Bayesian, and profile log-likelihood
intervals for the 0.99-quantile when ~y > 0.

are seen in Figure 2.5. Due to convergence problems the profile log-likelihood could
not always be calculated for the small sample sizes. As the plots illustrate, the fiducial
intervals are very close to the desired coverage rate while the Bayesian and profile
log-likelihood methods tend to be slightly liberal. Figures 2.6 and 2.7 demonstrate
the lengths of the intervals when vy > 0 and 7y < 0 respectively. When ~y > 0
the mean (denoted by the triangle) and the median length of the fiducial shortest
interval described in (2.9) is less than its competitors for all sample sizes. When
Yo < 0 the mean and median length of the fiducial intervals are slightly longer than
the competitors when n = 20 and 50. The fiducial shortest interval is shorter than

its competitors when n = 200.
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Figure 2.7: Length of the two tailed fiducial, Bayesian, and profile log-likelihood
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Figure 2.8: Absolute bias and standard deviation of the point estimates.

Point estimates comparisons

Comparisons of the point estimates of our method, the Bayesian estimates, the
MLE estimates, and estimates based on L-moments were also performed. The results
were similar for all v, values so, to save space, we report these comparisons in Figure

2.8. Again, the MLE estimates at small sample sizes occasionally had convergence
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Exp(1) t(5)+10
Exp(5) t(10)+10
Gamma(5,1) | N(10,100)

Table 2.2: Distributions of the simulated data

issues so we limit the MLE comparisons to the sample sizes of n = 50 and 200. The
fiducial estimates for vy and oy have smaller bias than all of the competitors. The
Bayesian estimate for the 0.99-quantile is slightly less biased. All of the methods have

similar variability amongst the estimates.
2.3.3 Confidence intervals and coverage when a is unknown
Confidence intervals and coverage

A similar analysis can be done when the threshold, a, is unknown. We have
derived the generalized fiducial density when a is treated as an unknown parameter in
(2.8). We assume the data came from a mixture of the U(0, a) and the GPD beyond a.
As a result, all computations were done on the transformed data set of X' = X — X (1)
where X(j) is the minimum and then back transformed to the original scale. Using
the transformation in (2.5) we can calculate the generalized fiducial density for the
[-quantile of the X  data set. A Metropolis-Hastings algorithm allowed us to draw
a sample from (2.8) and calculate intervals for the parameters in the same manner
that was discussed earlier.

To assess the usefulness of our method we applied it to general data sets. We
generated 1000 data sets from the distributions listed in table 2.2 with a sample size
of 1000 and assessed the confidence intervals for the [-quantile. Figures 2.9,2.10,
and 2.11 reflect the coverage for the 0.99 and 0.999 quantiles when the underlying
distributions of the data are Fxp(1), t(5)+ 10, and N(10,100). Our intervals are very
close to achieving the nominal coverage rate in those scenarios with the exception of

the two tailed intervals for the 0.99-quantile in Figure 2.10. Those intervals are
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slightly liberal. Similar results were seen when the data was generated from the other

distributions.
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Figure 2.9: QQ-plots for the 0.99 and 0.999 quantile when X ~ Ezp(1) using the
fiducial method.
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QQ-plots for the 0.99 and 0.999 quantile when X ~ ¢(5) + 10 using the

fiducial method.
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Figure 2.11: QQ-plots for the 0.99 and 0.999 quantile when X ~ N(10,100) using
the fiducial method.

Comparisons

In addition to checking the coverage we also compared our method to a similar
Bayesian method described in Cabras and Castellanos (2009). This method used a
mixture of a normal, Weibull, or nonparametric model below the threshold and a
GPD above the threshold. Obviously, this method depends on which central model
is chosen. We found that the nonparametric model, often times, chose a threshold far
into the tail and estimated the extreme quantiles using the prescribed nonparametric
distribution. As a result, there was very little variation in the MCMC chain which
caused very liberal confidence intervals that rarely contained the true quantile. When
the data came from a ¢(5)+10 the nonparametric method does a better job but is
still rather liberal in its two tailed intervals, seen in Figure 2.12. Using a normal
central model worked well when the data was normal and when it was very different
from a normal distribution, seen in Figures 2.13 and 2.14. When the data came from
a t distribution the normal central model attempted to fit the bulk of the data and
forced the threshold into the tail. This caused an underestimation of the quantiles

and produced very liberal upper tailed and symmetric intervals, seen in Figure 2.15.
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The Weibull central model produced reasonable coverage when the data came from an

exponential distribution. The other cases were not appropriate for a Weibull central

model.
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Figure 2.12: QQ-plots for the 0.99 and 0.999 quantile when X ~ ¢(5) + 10 using the
Bayesian method with a nonparametric central model.
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Figure 2.13: QQ-plots for the 0.99 and 0.999 quantile when X ~ FExp(1) using the

Bayesian method with a normal central model.
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Figure 2.14: QQ-plots for the 0.99 and 0.999 quantile when X ~ N(10,100) using
the Bayesian method with a normal central model.
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Figure 2.15: QQ-plots for the 0.99 and 0.999 quantile when X ~ ¢(10) + 10 using the
Bayesian method with a normal central model.
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Figure 2.16: Length of the two tailed fiducial and Bayesian intervals for the 0.99-
quantile when the data was generated from Exp(1), Normal(10,100), and ¢(5) + 10
respectively.

Figure 2.16 illustrates the lengths of the two tailed intervals when the methods
had reasonable coverage rates. The first plot reflects the Bayesian approach with a
Weibull central model is the shortest. The fiducial shortest interval is only slightly
longer in this case when the data came from an Fzp(1). In the second plot the
data was generated from a N(10,100) and, as expected, the Bayesian method that
fits a normal model is shorter than both of our fiducial methods. In the third plot
the data came from a #(5) + 10 and our fiducial shortest interval was the best. The
fiducial symmetric interval was only slightly longer than the Bayesian method using

a nonparametric central model.

2.4 Nasdaq 100 data set

In the extreme value literature a popular data set is the log-weekly losses of the
Nasdaq 100 index. The data consists of 1222 weeks from October 1985 to March
20009.

Using the ad hoc approaches suggested in Coles (2001) a fixed threshold ranging
from 0.03 to 0.05 would be appropriate. The estimates and confidence intervals for the
0.99-quantile can be seen in table 2.3. The estimates for the 0.99-quantile are all very
similar and the fiducial shortest interval is equivalent or shorter than the Bayesian

interval and the profile log-likelihood interval. Considering that the Bayesian and
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Method a (fixed) Jo.99 €stimate | ¢gq9 95% CI

0.03 0.109 (0.096,0.128)

Fiducial symmetric interval 0.04 0.109 (0.097,0.128)
0.05 0.107 (0.095,0.125)

0.03 0.109 (0.095,0.126)

Fiducial shortest interval 0.04 0.109 (0.096, 0.125)
0.05 0.107 (0.094, 0.123)

0.03 0.109 (0.097,0.128)

Bayesian interval 0.04 0.110 (0.097,0.129)

0.05 0.108 (0.095,0.125)

0.03 0.108 (0.096, 0.126)

Profile log-likelihood interval 0.04 0.109 (0.097,0.126)
0.05 0.106 (0.094,0.124)

Method a (estimate) | qpo9 estimate | gog9 95% CI

Fiducial symmetric interval 0.038 0.110 (0.096, 0.129)
Fiducial shortest interval 0.038 0.110 (0.095,0.126)
Bayesian normal central model 0.016 0.110 (0.099, 0.129)
Bayesian nonpar central model 0.029 0.109 (0.096,0.127)

Table 2.3: Estimates and confidence intervals for the 0.99-quantile of the Nasdaq 100
data set.

profile log-likelihood methods were both slightly liberal the fiducial intervals are much
more attractive.

When the threshold is unknown the Bayesian method using the normal central
model was slightly shorter than the fiducial intervals. As demonstrated in the sim-
ulations, when the data came from a normal distribution the Bayesian method with
a normal central model produced the shortest intervals. However, as normal QQ-
plots would suggest, it is not likely that this data came from a normal distribution.
As a result, the coverage of the Bayesian interval with a normal central model may

be called into question. The fiducial shortest interval was equal in length to the
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Bayesian method that used a nonparametric central model and the symmetric inter-
val was slightly longer. When the threshold was unknown the fiducial method still
produced confidence intervals for the S-quantile with good coverage. Thus, we can

be confident that the reported intervals have good empirical properties.

2.5 Conclusion

There has been substantial interest in peaks over threshold modeling. Various
estimation techniques have been developed and methods continue to improve. The
challenge in modeling peaks over threshold data come from estimating the extreme
quantiles and also estimating the threshold. We developed a fiducial approach to
both problems.

When the threshold is assumed to be known our fiducial approach constructs
intervals and point estimates for the true parameters (7o, 0¢) and the S-quantile that
have good small sample properties. Furthermore, all of the proposed intervals have
asymptotically correct coverage. Comparisons with a Bayesian method and the profile
log-likelihood approach suggest that the fiducial intervals were closer to achieving
the nominal coverage rate for the 0.99-quantile and one of the fiducial intervals was
shortest. Likewise, the point estimates for the shape and scale parameters using the
fiducial method had the smallest bias. The point estimate for the 0.99-quantile was
slightly better using the Bayesian approach.

When the threshold is unknown the proposed fiducial intervals for the S-quantile
had good frequentist coverage. Our method worked well on all different data types
that could be seen in real life. The competing Bayesian method did not universally
work well for all data types. First, a central model had to be chosen from either
a Weibull, normal, or nonparametric distribution. Even after choosing an adequate
central model it was not assured that the coverage for the [(-quantiles would be
reasonably close to exact. When the Bayesian intervals had a reasonable coverage rate

the recommended fiducial intervals were either close to the same length or shorter.
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We analyzed a data set from the log-weekly losses of the Nasdaq 100 index.
Our analysis demonstrated that the intervals for the fiducial method were often times
shorter than the competing methods in both cases where the threshold was known and
unknown. Because we demonstrated that the coverage for the fiducial intervals were
reasonably close to exact for any data type we can be confident that these intervals
have adequate coverage.

Based on our findings the fiducial approach to the generalized Pareto distribu-
tion is a very viable alternative to modeling peaks over threshold data sets. The
good small sample properties and the asymptotic results make this an attractive
solution to a difficult problem. R code for our procedure can be downloaded at

http://www.unc.edu/ hannig/.



Chapter 3

FIDUCIAL INFERENCE ON THE LARGEST MEAN OF A
MULTIVARIATE NORMAL DISTRIBUTION

3.1 Introduction

Many applications attempt to find the best or worst treatment when dealing with
data from a correlated multivariate normal distribution (e.g. pollution studies, drug
trials, studies measuring the QT interval, investments, etc.). This is equivalent to
finding the largest mean(s) of the normal distribution. Namely, if X ~ N(u, ¥) where
= (p1,..., )T and ¥ is an unstructured covariance matrix we are attempting
inference on the largest mean, = max; ;.

While most inference problems for the general multivariate normal distribution
are well studied, interval estimation for the largest mean is still relatively unexplored.
Obvious solutions tend to grossly overestimate the largest mean when several of the
individual means are equal or close to the largest mean. We propose a new method
using fiducial inference and demonstrate the empirical coverage of the intervals using
a novel approach seen in Hannig (2009b) and Hannig and Lee (2009). In addition
to using the general fiducial approach we use a model selection technique to allow
multiple means to be the equal largest mean. By allowing for some or all of the means
to be the largest mean our method will asymptotically select the correct model. This
model selection will help to alleviate the common overestimation problem and allows
our confidence intervals for the largest mean to have asymptotically correct coverage.

A naive upper tailed confidence interval, seen in the literature, is based on the

intersection-union method that constructs t-intervals for each of the & dimensions
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then uses the maximum upper bound as the upper tailed confidence interval for the
largest mean. Another technique, seen in Eaton et al. (2006), approximates the
maximum with a smooth function and uses the delta method with a bias adjustment
to create a one sided upper-tailed interval. Additionally, Boose et al. (2007) uses
a linear model to account for the variation and the bias of the largest mean. This
method produced two intervals using a normal approximation and intervals using a
parametric and nonparametric bias adjusted bootstrap technique. We compared our
method to those of the intersections-union, Eaton et al. (2006), and the bias adjusted
method using a normal approximation from Boose et al. (2007). All of the methods
from Boose et al. (2007) had similar coverage rates and the one discussed here created
the shortest upper tailed interval. It seems reasonable that a Bayesian solution could
also provide a viable method. However, we were not able to find a Bayesian solution
in the literature.

The most common method in practice, the intersection-union, has a major down-
fall when some or all of the k£ means are equal or close to being equal. When there
are multiple equal largest means or means that are very close to being equal the con-
struction of the t-intervals will systematically overestimate the largest mean. This
produces very conservative upper tailed confidence intervals. When two or more
means are equal the intersection-union method produces confidence intervals that do
not have asymptotically correct coverage, c.f., Dawid (1994). The other two methods
attempt to account for the bias of the largest mean but have other shortcomings.
Simulations suggest that our upper tailed fiducial interval tends to be shorter than
the interval created by Eaton et al. (2006) and, when the sample size is small, slightly
longer than the interval from Boose et al. (2007). When the sample size is large the
fiducial interval is shorter than all the competing methods. Furthermore, our method
is the only method that also produces a lower tailed or two-tailed interval.

The fiducial approach was also applied to an interesting data set from the Envi-

ronmental Protection Agency (EPA). This data set measured the air quality for each
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of the cities of Baltimore, Boston, New York, and Philadelphia. We attempt to find
out if the cities experience adequate average air quality. This is analogous to finding
out if the city with the worst air quality (largest average value) still has adequate
air. In addition to finding out if they all have adequate air quality we would also like
information as to which city or cities have the worst average air quality. The fiducial
approach will accomplish both and we will compare our results for this example to the
competing intervals stated previously. The analysis shows that the fiducial interval
is shortest and Baltimore, New York, and Philadelphia are likely to have equally bad

air quality, though all of the cities have adequate air quality.

3.2 Generalized Fiducial Inference

Fiducial inference was first introduced by Fisher (1930). He proposed the idea
in an effort to overcome what he perceived as a deficiency in the Bayesian approach.
Fisher opposed the Bayesian approach of assuming a prior distribution when there
was not substantial information available about the parameters.

Opposition to fiducial inference arose when researchers discovered that this in-
ference technique did not possess some of the properties that Fisher had originally
claimed (Lindley, 1958; Zabell, 1992). Recently, there has been somewhat of a resur-
gence in fiducial inference following the introduction of generalized inference by Weer-
anhandi (1993) and the establishment of a link between fiducial and generalized in-
ference in Hannig et al. (2006). Further information on the asymptotic and empirical
properties and a thorough survey of the fiducial literature can be found in Hannig
(2009b).

The basis of generalized fiducial inference, similar to the likelihood function,
“switches” the role of the data, X, and the parameter(s) . Fiducial inference uses the
model and the observed data, X, to define a probability measure on the parameter

space, =. This is understood as a summary of the known information about the
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parameters similar to a Bayesian posterior distribution. In the rest of this section we
will formally introduce this approach.

First, we assume that a relationship between the X and ¢ exists in the form of,
X =G U) (3.1)

where U is a random vector with a completely known distribution and independent of
any parameters. With this relationship, called the structural equation, the parameter
¢ and the random vector U will determine the distribution of X. After observing X
we can use the relationship in (4.1) and what we know of the distribution of U to
infer a distribution on &.

We define the inverse of the structural equation as the set valued function

Qx,u) ={§: x =G u)} (3.2)

We know that our observed data was generated using some unknown &y and uy. Thus,
we know the distribution of U and that Q(x,ug) # (). Using these two facts we can

compute the generalized fiducial distribution from:

V(Q(x,U") [{Q(x, U") # 0} (3:3)

where U* is an independent copy of U and V(S) is a random element for any mea-
surable set, S, with support on the closure of S, S. Essentially, V(-) is a (possibly
random) rule for discerning among the values of the inverse Q(x, U*). We will refer to
a random element with the distribution given by (4.3) as R¢. For a detailed discussion
of the derivation of the generalized fiducial distribution see Hannig (2009b).

We calculate the generalized fiducial density as proposed in Hannig (2009b)
and justified theoretically in Hannig (2009a). Let G = (¢1,...,¢,) be such that
X; =¢;(&,U)fori =1,...,n. Notethat { is a px 1 vector and denote X; = G;(§, Uj)
where X; = (X;,,...,X;,) and U; = (U;

1s---,Us,) for all possible combinations of
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the indices i = (41, ...,4,). Assume that the functions Gg; are one-to-one and differ-
entiable. Under some technical assumptions in Hannig (2009a) this will produce the

generalized fiducial density of

(9T
T2 Fx (<€)7 (x.€)d€

fre(€)

where

n) det (&G} (x,,6))

J(x.6) = (
P i=(i1,...ip) | d€T (d;&Ga,il(Xif))

is the mean of all subsets where 1 <i4; < --- <1, < n and the determinants in (4.5)
are the appropriate Jacobians. For illustrative examples of this fiducial recipe see

Hannig (2009b).
3.3 Main Results
3.3.1 Two dimensional case

Before tackling the largest mean problem in full generality, we first consider the
two dimensional case. Assume Xji,..., X, is an independent random sample from

the N(u,>) distribution where g = (p1, 12)” and

Y o m P2/t |- (3.6)
P12+/T7]2 "2

The structural equation in (4.1) is given by

where U; ~ N(0,I;) and independent for all ¢, V is the lower triangle Cholesky
decomposition of ¥, and & = (uy, iz, N1, M2, p12)T . The inverted structural equations

are:

X2j — M2 — V21U1j
Voo

le—,ul
L11 o 2

Ulj
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po\n | 30 | 100 | 1000
(5,5)7 1 99.6 | 99.9 | 99.8
(1,5)7 [ 923 [ 94.9 | 95.3

Table 3.1: Coverage for a 95% upper tailed interval when ¥ = I for the naive method.

for any individual j = 1,...,n. Since there are five parameters we need the same
number of equations to define each of the terms in (4.5). When we differentiate the
function Uy = Gy ' (Xo, &) we could, for example, use the following five equations

from the first three individuals,

Un Uxn
Ua Uz
Uas.

As it would be arbitrary to choose those five equations we average over all possible

selections. These computations will result in the generalized fiducial density of:

f1(§) %n/z(det x) eXp{—%Z(xi ) = (x —u)}

(2m) =

1
n l9(xi)]
. (3.7)
<2’ Lin— 3) Z 2277i/2772/2(1 - P%2)

i

where ¢(x;) is a function of the data and will be explained later. From (3.7) we
could draw a fiducial random sample of # = max(uy, 2) by generating a sample of
p and taking the maximum. We calculate a 95% upper tailed interval by taking
the estimated 0.95 quantile from this sample. This would be a naive solution and
would overestimate the true largest mean, 6y, when the true means, ugl) and ,u((f),
are equal or relatively close to equal. For example, Table 3.1 shows the coverage for
a 95% upper tailed interval of 6,. When ,uél) and u((f) are different the coverage is
reasonable.

On the other hand, if ;1; = ps we can proceed in a similar fashion. If Xy,... X,
is an independent random sample from a N (u,Y) distribution where g = (i, )T our

inverted structural equations change to:

le—,U/
L11 o 2

X2j — K= V21U1j

Ui Vs
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o\n | 30 | 100 | 1000
(5,5)T [ 94.4 | 94.4 | 94.9
(1,51 ] 0.8 | 0 0

Table 3.2: Coverage for a 95% upper tailed interval when ¥ = I when the u; = s is
assumed.

We now have four parameters so only four equations are necessary to define each of

the terms in (4.5). The generalized fiducial density for this case is then computed as:

fa(§) m(detZ e {—% ; M)Tz_l(xz‘—ﬂ)}

—1
n |g(x;
17 (3.8)
<2’ n= 2> Z 22771/ 772/ (1 - P12)

Comparing (3.7) and (3.8) we can see that the difference comes in the Jacobian

calculation and the p vector. The Jacobian in (3.8) depends on pu, the equal mean,
and (3.7) is only dependant on the data. This behavior is common to all fiducial
densities that have an equal mean. Table 3.2 shows that the coverage is much better
when the true means are actually equal and much worse in the other case.

Clearly we would like to use (3.7) when the means are different and (3.8) when
the means are equal. We will achieve this by incorporating a model selection step into
our problem. The model selection step is the important factor in reducing the overes-
timation that is occurring when the true means are equal and drives the asymptotic
correctness of the intervals.

The largest mean could come from gy or us by themselves, or py = o in which
case they would both be the largest mean. As we have seen, naively assuming that
11 # po will overestimate the true largest mean when uél) = ugf) and the intervals are

not asymptotically correct. In order to fix this deficiency we propose an alternative

that allows for p; = uo. The structural equation for this scenario is:

X = <( H ) +V1U) Inomy + (( i ) +V2U) o) (3.9)
2 H2
W
+ <( “ > —f-VlU) I{M:M:M}
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where V7 is the lower triangle Cholesky decomposition of ¥ and V5 is obtained by
permuting the ¥ matrix in (3.6) so that X = (X, X;)7, taking the lower triangular
Cholesky decomposition and re-permuted the resulting matrix back to the original
order. This permutation is done because the formulas simplify if the largest mean
is in the first position. Notice that, when generating the data, X, only one of the
three terms in (3.9) is in effect at any given time. As a result, there is a model
selection aspect to this problem. To simplify subsequent notation, let J be the indexes
corresponding to the largest mean, i.e., J = {1} if py > po, J = {2} if po > p4, and
J={1,2} if ju = po.

In this two dimensional case we calculate the generalized fiducial distribution
by taking p (4 or 5) equations from our structural equation and condition on the
fact that the remaining equations occurred (2n — p). As a result, when there are
more parameters there are less equations that will be part of the conditioning or,
equivalently, less conditions have to be satisfied. For example, when py # ps there are
2n—5 equations to condition on and if p; = uo there are 2n —4 equations to condition
on. The conditional distribution will favor the model with less conditions or with
more parameters. We can combat this problem by introducing additional structural
equations that are independent of our original structural equations as proposed in
Hannig and Lee (2009). These additional structural equations will balance out the
number of conditions that need to be met for each selected set of equal means.

Adding additional structural equations will also allow us to introduce a weight
function. The weight function will serve two purposes. First, the weight function will
down-weight the models with more free means to increase the likelihood of grouping
several means together as the largest mean. Secondly, our procedure was not scale
invariant so we used the weight function to make it more scale invariant. Attempting
to make the method scale invariant in this fashion is rather ad hoc but seemed to

work well in simulations. The actual values that were incorporated into the weight
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function were obtained when we observed the asymptotic behavior of the probability
of selecting a particular model.

The additional structural equations are:

1 22
2! — B4 P ifi
2 Og((MSX1+MSX2—2MX1X2)n> gi+bF ified

1 22
o - P tics (3.1
58 ((MSX1 T MSX, — 2MX,X) n> 1 ifie o (3.10)

where MSX,; and M XX, are the maximum likelihood estimates of the variance
and covariance respectively and P, are independent Exp(1l) random variables for
all 7. Because of the independence these structural equations will not affect the
distribution of X but they will affect the conditional distribution in (4.3). When
inverting the structural equations in (3.10), if ¢ € J we can choose a 3; for any
P; so that the equation is satisfied. Therefore, conditioning on this equation does
not effect the conditional distribution. On the other hand, when ¢ € J¢ then P, =
27 log (22 [(MSX, + MSX, — 2M X, X,)n] ') which creates an additional condition
to be met. Combining the additional condition and the conditions that need to be
met from (3.9) there will now always be 2n — 4 conditions regardless of number of
equal means.

Adding the model selection component, we compute the generalized fiducial den-
sity as:

f(&) o< fr1y (&) + fi23 (&) + 2 (€)

where

Fuy(©) = wx) f1(E) sy F23(8) = () Fi(E) sy Fri23(©) = F2() T nmpia

with f1(€) given by (3.7), f1(£) by (3.7) with ny and 7, switched, f,(€) by (3.8), and
the weight function

2
(MSX, + MSX, —2M X, X,)* /n

Again, the weight function is a result of having the additional structural equations

w(X) =

and its value is chosen by us.
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3.3.2 General case

The same derivation can be applied to a £ dimensional problem. Keeping with
the same notation J C {1,...,k} = J; as the index of the equal means, u (u > 1) is
the number of elements in J, and v (v > 0) is the number of elements in J¢ (note,
u+v = k). In general, for a k dimensional problem the structural equation is:

M1
X = > | VIU | Tmgagenpspgengny  (3:11)
JC{1,...k} m

where U ~ N(0,1I) is a k x 1 vector. To calculate V ;, permute the matrix

m P12r/MTth2 - Pik/TTk
P12~/ 117]2 2

L1/ MMk Mk

such that the X;’s with equal means are the first v variables, take the lower triangle
Cholesky decomposition of > then re-permute V; back to the original order.
Just as before we introduce the additional structural equations akin to (3.10)

obtaining the weight function

det (M) M ke
wJ(X) - H f('PL) - k('ufl)/g *1{/2 ,U/2
H det (M) M

where J C {1,...,k} = J, and M and M* are defined in appendix I. This defines

the generalized fiducial density as:

. ngg ,,,,, k} fJ(f)
J= > gcq,.p J1(&)dg
where £ is a vector of the g and X variables. For each particular J C {1,...,k} the

f (&) (3.12)

-----

generalized fiducial density with the weight function, w;(X), is:

wy(X n 1 < _
PO x i ety exp{—ij(xi WX —m}
i=1
-1
Iy~ Iz
, Z k—1 det >y - (g >pd€JIE Ty H{pi=p;:i,j€}
<C]7n> 11 ..... Zk det E szl Tl

wy(X)J, (det $) 77 1 B
(2n)" T[T e exp _5” (s=7)

Jj=1 n;

X]{Nj>Nl1jejal¢=]}]{ﬂi:ﬂj:7i7jeJ} (3.13)
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where

| % o\l
MXZX - : y Jr = Xi7 )
) - () X laximl

and the rest of the terms are defined in appendix I.
After we calculate the generalized fiducial density we can also compute the fidu-
cial probability that any J is the index corresponding to the true largest means. This

is done by calculating,

by

P(J]) = —=——————
ng{l,...,k} b

(3.14)

where p; = fa fs(§)d¢. This added information can help to determine the mean or
means that are most likely to be the largest. We would like this value to be large
when J correctly indexes the largest mean(s). A later asymptotic discussion will show
that this model selection technique results in P(J) — 1 as n — oo when J is the
correct index. After proving that we will asymptotically select the correct model we
can apply previous results to prove that the confidence intervals for the largest mean

are asymptotically correct.
3.3.3 Confidence intervals and coverage

Using the fiducial density in (3.13) we propose confidence intervals for the largest
mean, 0y = max;<;<j u(()i). The intervals constructed using fiducial inference are anal-
ogous to the construction of Bayesian credible intervals. We define one dimensional
one tailed intervals as (c1,00) and (—o0, ¢y) for the lower and upper tailed intervals
respectively, where ¢; and ¢y are the a/2 and (1 — «/2) quantiles of the generalized
fiducial distribution. A two tailed (1 — «)100% confidence interval is obtained by

combining the two one tailed intervals as (¢, cz). When calculating the confidence
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intervals for the largest mean we do not select the model that is most likely and then
get the confidence interval based on that. Instead we average the fiducial distribu-
tion for the largest mean according to the fiducial probability (P(.J)) of each of the
models.

As is often the case, we cannot integrate equation (3.13) explicitly so we use a
Monte Carlo approach to generate a sample from the generalized fiducial density and
calculate the estimated quantiles from that sample. We used the importance sampling
algorithm in appendix III to draw a sample {6, ...,05} from (3.12) where F is the
number of samples needed in order achieve some pre-specified effective sample size.

Classically, the way to check the coverage of confidence intervals is to choose
a desired confidence level (e.g. 95%), simulate data, and check the frequency in
which the true parameter is captured by the constructed interval. By preference, we
check the coverage rate at all confidence levels simultaneously using a graphic device
demonstrated in Hannig (2009b). To achieve this, set C(X,60y) = P(Ry < 00|X).
C(X, 6p) (which can be thought of as a p-value) is the lowest coverage level necessary
for an upper tailed confidence interval to contain true value, 6.

If the confidence interval for , were exact at all confidence levels then C(X, )
would follow the U(0,1) distribution. Using QQ-plots we can evaluate how closely
C(X, 6p) follows the U(0,1) distribution. We plot the nominal p-values (desired cov-
erage probability) vs. actual p-values (actual coverage probability). Figure 3.1 is an
example of the QQ-plots. If the coverage is exact for all confidence levels the p-values
(C(X,00)) would follow the diagonal line. Due to randomness of the simulation we
also provided 95% confidence bands (dashed lines). The p-values (simulated line)
cannot be distinguished from a sample of the U(0, 1) distribution if they stay within
the 95% confidence bands. When this occurs we claim good coverage properties.

To check the coverage of our intervals look at the QQ-plots at the nominal p-
value and note the corresponding actual p-value that coincides with the simulated

line. For example, the dotted line in the first plot in Figure 3.1 shows that a 0.95
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Figure 3.1: QQ-plots when n = 30, p, = (5,5,5)%, ¥y = I and 251 for the top and
bottom rows respectively.

upper tailed interval has actual coverage of 0.987. The dotted line in second plot
shows our method has 0.129 probability in the lower tail or, equivalently, the 0.95
lower tailed interval has an actual coverage rate of 0.871.

Our simulation used 1000 data sets and an effective sample size of 10000. We
will highlight a few difficult and interesting cases before discussing the full simulation
study. Figure 3.1 illustrates the generated QQ-plots when n = 30, u, = (5,5,5)7,
Yo = I and 251 for the top and bottom rows respectively. The fiducial method tends
to overestimate the largest mean when the true means are equal. This overestimation
is common to all solutions and our method tends to have a smaller overestimation
problem than the competitors. The overestimation leads to conservative upper tailed
and liberal lower tailed intervals, as seen in Figure 3.1. When the correlation is
positive the upper and lower tailed intervals are closer to exact. As the correlation
becomes negative the upper and lower tailed intervals become even more conservative
and liberal respectively. These plots also illustrate that changing the magnitude of
the variance does not seem to affect the coverage. This behavior was seen in the other

Ky and X configurations as well.
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Figure 3.2: QQ-plots when n = 30, yo = (3,4,5)7, and ¥y = 251.
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Figure 3.3: QQ-plots when n = 30, po = (1,3,5)%, and ¥y = 1.

When the true means are close but not equal our method will tend to select the
model where the means are equal. This results in underestimating the largest mean
producing liberal upper tailed and conservative lower tailed intervals. This is seen in
Figure 3.2 when n = 30, p, = (3,4,5)7, and ¥ = 251.

Cases where the largest mean is much different than the other means results in
confidence intervals that are, expectantly, close to exact. This is reflected in Figure

3.3 when n = 30, uo = (1,3,5)7, and 3y = I.
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Figure 3.4: QQ-plots when n = 10000, 1o = (3,4,5)", and X = 251.
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Ho (27 5)T (47 5)T ‘ (5? 5>T

(1,1) | (25,25)
A0 +04 | +0.9
n 30 100

Table 3.3: Simulation combinations in two dimensions

When the sample size is dramatically increased to n = 10000 in the case where
o = (3,4,5)T and 3y = 251 the QQ-plots in Figure 3.4 reflect close to exact coverage.

This motivates our later discussion on the asymptotics of our intervals.
3.3.4 Simulation results and discussion

In addition to the select configurations that were previously highlighted, we also
performed an extensive simulation study for two and three dimensional data. We
looked at all combinations of the parameter values listed in Tables 3.3 and 3.4. Each
p(()ij ) in the last configurations were randomly generated values from the U(0,1) dis-
tribution where the resulting ¥y matrix was positive definite.

The coverage and length of the upper tailed fiducial interval was compared to
the upper tailed intervals produced by the intersection-union method (t), Eaton et al.
(2006) (Eaton), and the bias adjusted interval based on a normal approximation from
Boose et al. (2007) (Boos). As previously noted, Boose et al. (2007) also introduced an
interval without a bias adjustment and two bias adjusted intervals using a bootstrap
approach. The code for the bootstrap methods was proprietary so we attempted to
recreate the intervals described by the authors. Based on our attempt, the interval
we compared with performed the best in terms of length and coverage. This agrees
with results reported in Boose et al. (2007).

The coverage for the 95 and 99% intervals when the data is two dimensional
can be seen in Figures 3.5 and 3.7. The coverage when the covariance matrix was
randomly generated is seen in Figure 3.9. When the correlation is positive, as is
the likely case in practice, the upper tailed fiducial interval is close to the nominal

coverage level. At the larger sample size, the median coverage appears to be very
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Ho (17 ’ )T (3747 5)T ‘ (17575)T
(4,5,5)" (5,5,5)°
Mo ( ) 17 ) (257 25a 25)
pUd) 0 +0.4 0.9
0(}51 1 0A1104 1 70A1133 1
—0.392  0.754 1 —0.528 —0.710 1 0.844  —0.154 1
n 30 100

Table 3.4: Simulation combinations in three dimensions
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Figure 3.8: Length of the upper tailed intervals relative to the fiducial interval when
data is two dimensional and p(1? < 0.
close to the nominal coverage rate for the fiducial method. The very liberal outliers,
seen in Figure 3.7, occurs when the true means are relatively close together and there
is negative correlation. For instance, when n=100, p, = (4,5), m, = (25,25), and
p12) = —0.9 the 0.95 upper tailed interval has an actual coverage rate of 0.60. As the
sample size increases these intervals will converge to the exact coverage level but they
seem to converge slower than the cases with positive correlation. Similar behavior
also occurred with the three dimensional data. Additional plots are available from
the authors.

Figures 3.6, 3.8, and 3.10 compare the length of the upper tailed fiducial interval
to its competitors. The median fiducial interval is shorter than the intervals created

by the intersection-union (t) and Eaton. At the small sample size our method is

slightly longer than the Boos interval. At the larger sample size our interval is the
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Figure 3.10: Length of the upper tailed intervals relative to the fiducial interval when
data is three dimensional and p(»7) is random.

shortest. Additionally, the Boos interval assumes that the data is equicorrelated and

equivariant where we allow for a totally unstructured covariance matrix.

3.4 Asymptotic Results

In this section we will prove that the coverage rate for this method is asymptot-
ically correct. We prove that the fiducial probability of the correct model goes to 1
and, therefore, for large n the inference will be almost entirely based on the unknown

correct model. We assume the following:

Assumption 1. X; is an independent random  wvariable  from  the
N(( () “”)T Z) distributi
Ho s ey Ho , 2o | distribution.

Assumption 2. n((]i) is in a compact set of the positive values of R for all i.

Assumption 3. p((fj) is in a compact set of the interval (—1,1) for alli,j.
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The probability that the means from a particular J are equal to the largest mean
is given in (4.8). If J is the index corresponding to the true largest means and P(J)
is large then the method is selecting the correct model at a high rate. The following
proof will show that this method will asymptotically select the correct model. This

result does not follow from previous theory on generalized fiducial inference.

Theorem 1. If p, is the true mean and J correctly identifies the equal largest means

then P(J) — 1 in probability.

We could not integrate (3.13) so we bound it from above and below using the
last two assumptions to show pj/p; — 0 for any J # J. If J incorrectly identified
the largest means then pj/p; converged to zero exponentially. On the other hand,
if J was a valid model but had too many free means then p 7/ps converged to zero
polynomially as n — oo. This was proved without the use of the weight function.

The details of the proof are relegated to appendix II.

Theorem 2. The confidence intervals for §; = max;<;<g uéi) are asymptotically cor-

rect.

Proof. Using Theorem 1 we will asymptotically select the correct model. By asymp-
totically selecting the correct model it follows from the standard methods in Hannig

(2009b) to prove that the confidence intervals are asymptotically correct. O]

3.5 Air quality example

The EPA measures the air quality to help inform people of the daily air condi-
tions. This measurement is called the air quality index (AQI) and is calculated from
the five major air pollutants regulated by the Clean Air Act. The AQI ranges from 0
to 500 where the higher the value the greater the level of pollution and the greater the
health risk. Table 3.5 breaks down the air quality for different AQI values. Overall,
an AQI value of 100 or less is the standard in which the EPA has determined as

satisfactory.
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AQl Air Quality

0 to 50 Good

51 to 100 Moderate
Unhealthy for

101 to 150 Sensitive Groups

151 to 200 Unhealthy

201 to 300 \Very Unhealthy

301 to 500 Hazardous

Table 3.5: AQI range of health effects

We obtained monthly AQI measurements from January 1, 1998 to October 1,
2008 from the EPA (2009) to perform inference on the largest mean AQI for the
cities of Baltimore, Boston, New York, and Philadelphia. The data set is available
upon request from the authors. Because of the proximity of these cities there is clearly
spatial correlation.

Monthly data was used to eliminate the temporal correlation between successive
data points. It was determined from auto correlation plots that data points that were
a month apart were reasonably uncorrelated. Using normal QQ-plots we determined
that the transformed data of X’ = log(X) where X is the original data and X' is the
transformed data appeared to be reasonably normal. Thus, all analysis was done on

the transformed data. The sample mean and covariance for X’ is:

3.959 0.251 0.123 0.161 0.194

L, | 3845 -, | 0123 0161 0.132 0.137
= 3908 | X =1 0961 0132 0193 0.172 (3.15)

3.963 0.194 0.137 0.172 0.230

If we were to assume that those were the true values for p, and ¥, the coverage for
6y is shown in Figure 3.11. Our method appears to be slightly liberal for the upper
tailed interval and slightly conservative for the lower tailed interval. The equal tailed
interval appears to have exact coverage. The coverage of the competing methods can
be seen in Figure 3.12. Because the means are relatively close together two of the

methods tend to overestimate the maximum and produce conservative intervals.
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Figure 3.11: Fiducial method QQ-plots using g, and 3¢ from (3.15).
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Figure 3.12: Competing methods QQ-plots using p, and ¥, from (3.15).

At the 99% level the fiducial method has an approximate coverage rate of
98.3% (based on the Figure 3.11) and a back transformed upper limit of 56.8. The
intersection-union (t) interval has a coverage rate and upper limit of 99.9% and 58.1,
the Eaton interval has a coverage rate and upper limit of 99.5% and 58.0, and the
Boos interval has coverage rate and upper limit of 99.3% and 57.5. Even though all
the methods produce intervals with upper tails in the moderate range our method’s
interval is the shortest and allows for a two tailed interval when needed.

The fiducial method also provides added information as to which city or cities
are likely to have the largest average AQI. Table 3.6 illustrates these fiducial proba-

bilities for any J when P(J) > 0 (note, 1=Baltimore, 2=Boston, 3=New York, and

a(] {1y | {3} {4} {1, 3}

P(J) [ 0.009 | 0.002 | 0.012 0.014
J [ {L 4 [ {3, 4} [{1,3, 4 [{L,2 3,4}
P(J) | 0.271 | 0.095 | 0.59 0.001

Table 3.6: Largest mean probabilities for each model, J.
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4=Philadelphia). The probability that J = {1,3,4} is 0.595 which reflects the likeli-
hood that Baltimore, New York, and Philadelphia are the equal largest mean. This

information could be used in an effort to clean up the worst polluting cities.

3.6 Conclusion

The application of inference on the largest mean of a multivariate normal distri-
bution is wide reaching. There are applications in drug trials, stock returns, agricul-
ture, pollution (as seen in this paper), etc. Clearly, a viable inference technique for
the largest mean is necessary.

We proposed a method based on fiducial inference that possesses many nice
qualities. First, from simulation results, the empirical coverage for the one and two
tailed intervals is close to exact in small sample sizes when the correlation is positive.
Second, the upper tailed interval is shorter than two of the competitors when the
sample size is small and shorter than all of them when the sample size is large. Unlike
the other methods we have proven our intervals are asymptotically correct. Lastly,
this method also provides information as to how likely any of the means are to be the
equal largest mean. This could serve as valuable resource management information
when any sort of action is taken with the group(s) that have the largest mean.

Our illustrative example examined the air quality of the four largest northeastern
cities in the United States. The fiducial approach produced a shorter 99% upper tailed
interval than the competitors and it provided information as to which cities had the
worst air quality. If a reclamation project were to take place it would be reasonable

to focus the efforts on Baltimore, New York, and Philadelphia.

Appendix 1

We derived the generalized fiducial density to be:

wy(X)J, (det £) 777 1 B
(&) o (2m)7 [T 2= exp | 51" (5271 ¢ Lwy>psienignliu=ny ey

Jj=1  n
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We will now define all of the components of the equation. First, ¥, ; is the upper left

J % j minor of ¥ and nj = Hi_l 1. As noted before J, = ("

u’rL 7777

where g(Xi7 H) = QLIC det<X2 U+1 }X* f+i+2 |XJ|7 i= (ilv cee 72k+1)7
I Xia - Xija 1 K T H
Xj _ ]_ Xi271 NN Xi%j—l 7 X; _ 1 Xi1,1 e Xiz,j—l ’
I Xiq 0 Xy 1 Xi, i Xi, -1

2,1,....ln—k—1 u=1
Comn = 2,2,1,...,0,n—k—1 u=2,....,k—1,

J P

2,1,...,1,n—k u==k
and u is the number of elements in J or the number of equal means (u > 1). This
method was not scale invariant so we attempted to reduce the scale dependence
through our weight function. In order to add a weight function the additional struc-

tural equations

1 det (M )"~V Mok

— log et ( J’“) ) = G;+PF ifielJ

2v det (M)~ Mj:n”

1 det (M)~ Mok

L [ detd n)' . - P if i € Je (3.16)
2v det (M) M on®

were used, where P; are independent random variables from the Exp(1) distribution.
Thus, the weight function is,

det (M) M3k

wJ (X> = v—1 *U
det (M)~ M, *net

where v is the number elements in J¢ or the number of unequal means (u+v = k), J C
{1, ey ]{?} = Jk, J = {j17j27 c. ,ju}, MJ = [MXin]i,jeJ’ and M} = det (1 + MJ) —
det (MJ)

Appendix II
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Preliminary work for the proof of theorem 1

To find the fiducial probability that we select a particular model we will be

-1
calculating the probabilities P(J) = p, (Z Jcf..m P j> . Since we cannot integrate
f7 upper and lower bounds were used to observe the asymptotic behavior of P(-).

With the addition of assumptions 2 and 3 the upper and lower bounds are:

ﬂ(cl) —n/2—1 1 -1 A
O < ey @) o { g (52 L= 120 @D

and

fJ(g) Z f}(g)l{,uj>,ul:jEJ,l%J}[{—TSpij§7”:Vi,j}]{w1§m§w2:Vi} = va(g) (318)

where f1(€) = b(2m)~""/2 (det X) 77"  exp {—3tr (S} Ipicp,ijesy- Additionally,
) (ij) (0)
Po

§T<1and0<w1§770i
bound for Hf;ll det X; (77;7)_1, and b > 0 is a lower bound for J,. When proving

< wy < oo for all 7 and j, b, > 0 is a lower

the asymptotic consistency we will assume, without loss of generality, that F(X) =
(f1y fhs - - - fy 1, - - - » ) T. That is saying that X, 1, ... X} share the common mean,
1.

If we notice that ¥~! and p; follow a Wishart and ¢ distribution for all 7 the

resulting integration for the upper bound is:

o= | e
1 Qk(k+3)/2 k(k—2n—1)/4 Hf:l T (n+k‘;—4—i)

bp nk(n+k+3)/2S(1n+k+3)/28(2n+k+2)/2 o S’(l)n+k+4—v)/2

72T (n+l2c+2) r (n+l2f+1) T (%*(k*“)) :g.) d
r (”+’2€+3) r (n+]2€+2) 2L (W) /]R (02 — CE)(n+k+37v)/2 H

X

where J{ is the appropriate Jacobian, which will be discussed later. From this point
we will break the integration into 3 cases. When v = 1, v > 1 and even, and u > 1

and odd. The first case, when v = 1 (all means are different denoted J;) results in:

J(O) QR (k+3)/2 L k(k=2n—1)/4 _k/2 Hk . T (n+k+3—i) 1
T = 2

A
Pn = (ntk+2)/2 (02 (52 _ ;2\ t3)f2”
b 9 /...s,C 2 (o — G)

(n+k+3)/2
p nfOtE2g /g
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When v > 1 and odd,

k(k+3)/2, _k(k—2n—1)/a TTK nt+k+4—i (v+1)/2 TV n+k+3—i
ph = 1 2 m [T, I (=) T [T, T (=5%)
Ju T h (n+k+3)2 (n+k+2)/2 (n+k+4-v)/3 (n+u+3)/2 v ntk+4—i
b, prrtk+)/2g / sy / s / N / [T, T (T)
(ut1)/2 1) nt2id1
L (=5)

X Z CQ (n+1+21))/2 T (n+221+2)

When u > 1 and even,

k(k+3)/2 _k(k—2n—1)/4 k n+k+4—i (v+1)/9 v n+k+3—1
P, = 1 2" 2 P T (55) G VR o)
J. = - - (n+k+3)/2 (n+k+2)/o (n+k+4—v)/2 (n+u+3)/o v n+k+4—1
b k9 g / Sy 2o s /258 / [[-, T (25=)
u/a41 (2) n+2i
J L (%5*)

X B _ TR
— (53 _ Cg)(n+21))/2 r ( +22 +1)
Integrating the lower bound f)(§) will result in a very similar calculation. First

notice that from equation (3.18),

Py = / £1(€)de

= /H f} <£>I{uj>,ul:j€J,l¢J}[{—rgpij Sr:Vi,j}[{wl Smngzw}df

- / Fi€)de + L,

Ly = — | 36 (1 = Iyyspejengny) d — / IO (1= ICocpy<rvigy) d€

— [ 1) (1 = Ty <m<unviy) d€

+ | O (U= Tysgenigny) (1= Licocpy<rvigy) d€

+ f}(é) (1 - I{uj>m:jeJ,l¢J}) (1 - I{w1Sm§w2:Vi}) d£

[m

+ [ ) (1= Tmrzpy<oviy) (1= Tunn<wsviy) d€ (3.19)

1

- f}.(f) (1 - [{,u]'>,ul:j€J,I¢J}) (1 - [{—rgpijST:Vi,j}) (1 - [{wlgmng;W}) d§

We do not need explicitly integrate L, because this term will converge to 0. Using

the transformation,

Vi (Re — &) = (3.20)
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where R is a vector of the fiducial random variables for &, &, is a vector of the values
of up and Xy, and p is a vector of the transformed variables. Observing the indicators
from (3.19) with the transformation in (3.20) we can see that they converge to 1 in
probability. Therefore as n — oo the convergence of L,, — 0 in probability follows

by comparison with the Wishart and ¢ densities. Thus,

p} = /fJ ( f~ff )

k(k+3)/2, _k(k—2n—1)/4 ntk+4—i /2 v+1 n+k+3 i

. 2 /7 / Hi:l I ( 2 ) / | ( )
- E(ntkt3 (n+k+3)/2 (n+k+2)/2 (n+k+4—v)/2 ~(n+k+3—v)/2 v+1 n+k+4—i
n(++>/231 /32 / ... Sy /Su / Hi:lF(T>

X L (1 + _Ln >
Gr—cr e\ e

-1
where (1 + L, < J= f}(é’)dé‘) ) — 1 in probability. For future reference we use the

notation /; = (1 + L, (fz f}(f)d{“)l)'

To define the Jacobian term, J$) a lower bound can be J, > b for some b > 0.
If w = 1, all of the means are different, then J, is independent of y and we can
explicitly write J, = J where an upper bound is unnecessary. For all other cases

we will bound J, from above as follows. First,

J:J: = |Jx1:uu*1 + Jzz:uu*2 +-+ un‘

< ‘Jm‘ ‘NU71| + ’JO«"z’ ‘NUiZ‘ +eeet ‘qul

We can bound |uf| < ' +1 when ¢ is odd. If u is odd the equation above is bounded
by

oo S oo | 07 A | (7 1) oo [ |
s NG s N )2
Jé?((u—cu) +a—3—<5> + ) ((u—qu) +&2—<5)

N2 A\ .
el Tl ((u ~G) +3- ci) (= Gu)
2

IN

(u—4)/2
R (0 I ) P S L
Tutl o H v Tu w H v Tu H v

2
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<\ 2
Note that (,u—(u> +52 — gzgthen,

(u+1)/2 C (u—2i-1)/o (u+1)/2 02 9\ (u—2i)/2
1 v Sv e
e L0(EE) e xa, (B59) w-w
i=1 v
= J<1>.

T

Using the exact same logic when u is even we can show that,

u/2+1 Cz (u—2i— 2)/2 “/2 C2 (u— 22)/2
(2) v Vv Su _
AER ( ) DI ( - ) (h- &)

= Jgg?)

where ¢, and 62 — (2 are the mean and a scale factor of . They are functions of
(Xv+1> X ) and the values from M . Likewise J,. is an average of some combina-
tions of X. Thus, JJE, and Jy ) are combinations of Cu, 52, and J,. and will converge
to some value by the strong law of large numbers.

Now we will introduce some notation for this scenario:

S = - - - - S 5 - o \T
Xivw = (Xv—i-l - Xv—i—?a Xv—i-l - Xv—i—?n s aXv—i-l - Xka Xv+2 - Xv+37 oo X1 — Xk)

)

is the difference in the sample mean of the variables that share a common mean, pu.
S S \T < S o > > T
Next, Xp, = (X, ... X5) » X = (Xn, Xns1 — tong1, Xnoo — fngz - X — p)

My for J={j,... k}

Mj,k = . s :k‘ = det (1 + Mv+17k) det ( v+1, k)
1 otherwise ’
det (M) for j =1 N My et (Mo k) d6t<M“";> foru < k
Sj = det(MjJrl,k)det(Mj,lyk) for i — 9 L > and Su = det(Mv+1,k) .
det(M;,1,)” J= % My, for u ==k

The next two terms o7 — ¢? and (;, can be thought of as a scale and mean of yy,

conditional on pp1, ... pk, . They are defined as:

o2 — (2 = det (Mp 1) ] XZ,hDth,h and ¢, = }_(f;hDhlo
b det (M) det (Myy11) |’
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for h =1,...,v where 1o = (1,0,...,0)". Likewise, 62 — (2 and (, can be thought of

as a scale and mean of u, the equal mean.

o — _
~5 _ det (Mv+17k) 14 Xd,vDXd,v 7 and é_vu _ XUT+1D1
Mgy My, Mg

where 1 = (1,..., l)T. The matrix D), is the 1°* adjugate matrix of M), and D is
the 27¢ adjugate matrix or Myi1 k-

First and second adjugate matrix

Constructing a first order adjugate matrix will be done in a similar manner as
laid out in Bruijn (1956). C'(A) with elements cgjl-) is the first adjugate of A, an
m X m matrix. 02(]1-) is calculated by removing row ¢ and column j from A, taking
a determinant of the resulting minor, and multiplying it by (—1)""/. Specifically,
cl(-Jl-) = (—1)" det(A_; ;) where A_; _; is the (m — 1) X (m — 1) minor of A with row
7 and column j removed.

(2)

The second order adjugate matrix of A, denoted C*(A) with elements ¢;7’, is

calculated in a similar fashion. First, let a®, a®, ... a be the (’;L) pairs of the series

(2)

1,...,m in lexicographic order. Now to calculate ¢;;" we will remove rows a® and

columns a¥) from A, take the determinant of the resulting minor, and multiply it by
(—1)Zi=s a +a” Specifically, cg) = (1) aj+a” det(A_ o) o) where A_ o) _,0)
is the (m — 2) x (m — 2) minor of A with rows a and columns @) removed and
212:1 al(i) + al(j ) is the sum of the rows and columns that were removed from A.
Proof of theorem 1

After integrating the bounding equations we can now look at the asymptotic
behavior of P(-). We will break this into 2 cases: first, when the correct model has only
one largest mean, when J ={i:i=1,...,k} = Jj or equivalently u = 1. The second
case is when there are multiple largest means, J C {1,...,k} and u > 2. We will show

-1
that if J correctly indexes the largest mean(s) then P(J) = p, (ng{l,...,k} pj> — 1

or equivalent to pj/p; — 0 for any J £ J.
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Before completing the proof we need to observe the following. Using Stirling’s

formula:

r (nTJrB) 2(k+1—v)/2

eventually a.s.,
Also, because the matrix D is the 2" adjugate matrix or M1 and we know that
M,+1 1 1s positive definite then D is also a positive definite matrix. This comes from a
result obtained by Rados (1896) which states that the eigenvalues of D are a product
of the k — 2 eigenvalues of M, 4, with different indices (e.g. The first eigenvalue of
D is AP = X3, \y, ..., \, where )\; is the i'" eigenvalue of Myi1 )

When J correctly indexes the largest means note that X, — 0. As a result,

using the fact that D is positive definite along with the law of iterated logarithms

then we can write:

n+u+2 X? DXy,
——log 14+ ——

5 M, ) < cloglogn for some ¢ > 0.

(ntu+2)/2

This means that, (1 + X7, DXy, (M) _1> < (logn) eventually a.s. For any
J that incorrectly indexes the largest mean(s) then (1 + XdT’vDXd,U (M;k) 71> (ntut2)/2
grows exponentially.

Now we have the tools to show that p;/p; < p%/p} — 0 in probability when J

indexes the largest means and J # J. For example, if J, is the correct index for the

largest means then

p_51 _ 3(60) T (nTJr:),) y 7Tk/2§£:+k+4*(v+1))/2(6_12‘ . 55)(n+k+37(u+1))/2
23 L3,bpb T (PAELEZ0) 0 rosnyjag i EHommfzg niemfe gt
(0) n+3 ST = (n+2+u)/2
_ Jz I (T) W(ufl)/zM*lh 14+ Xd,uDXd,v
- n —v u,k *
I0.bbT (FE20) ML
J(O) ) L, QU2

< B (uljpgpelzd c

< [Jubpbﬂ- M, ;. T (logn) eventually a.s.

oo

We can see that this converges polynomially. A similar calculation when J; correctly

indexes the largest mean shows exponential convergence when w is odd,
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(ut1)/2

I8 det (M)

M*(u+272i)/2 1 XTDX, (n+1+2i) /2
u,k + M

pj, o _1 4"
Py, I5,bb, 7t~V

eventually a.s.

1=

20

In a similar fashion, we have shown that pj /p} — 0 in probability when u is even
and p}ul / p}u2 — 0 in probability for some J,,, that correctly indexes the largest means
and uq, ug > 2.

These calculations have shown that for any J # J then p i/ps < p} /pY — 0 in
probability when J correctly indexes largest mean(s). Specifically, we have shown,
P(J)=py (ngu .... K pJ~> - — 1 in probability. This completes the proof of theorem
1.

Appendix 111
Importance Sampling Algorithm

The following steps were implemented in order to obtain a fiducial sample for &.
1. Start by generating g = C, + 1/ %Tu where T, ~ t(n +u + 2).

0.272
2. Generate (pp|tnitys .-y fos pt) = Cp + \/%Th where Tj, ~ t(n+k+3 — h)
forallh=1,...,v.

3. Generate (X7 ) = W where W ~ Wishart(n + k + 3,571)

4. Calculate weights of each generated sample with,

1)
g(p) (TTizy 9i(pas)) R(X71)

where f;(£) is the generalized fiducial density for the model with index J and

wy =

g(), gi(pi), and h(X71) are the densities from distributions described in steps

1, 2, and 3 respectively.
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5. This process was repeated until we achieved the effective sample size calculated
by ESS; =ny (1+ (s2,)) u‘;f)_l where n is the sample size for model J, 3,

is the sample variance of the weights, and w; is the sample mean of the weights.

6. Lastly the weights were divided by the E£SS; and all samples that did not meet

the condition of ¢ > max;<, i; were eliminated.

7. This process was repeated for all possible models J C {1,... k}.



Chapter 4

FIDUCIAL APPROACH TO MULTIPLE COMPARISONS

4.1 Introduction

Treatment means are commonly compared to each other to determine their rela-
tionship. A variety of problems compare treatment means. For example, comparing
the the effectiveness of multiple drugs in a pharmaceutical setting is a common prac-
tice. Other examples of application areas where comparisons of multiple treatment
means is needed include agriculture, finance, production industries, etc.

Specifically, this is a scenario where there are observations X; = (X1, ... Xj,,) for
populations ¢ = 1, ..., k. The k populations follow independent normal distributions
with means g = (u1,...,ux)? and variance ;. This multiple comparison problem
(MCP) attempts to perform inference on the groupings of the individual means within
p from the observations X, Xo, ..., X;.

There are several frequentist solutions for multiple comparison problems. Us-
ing frequentist methods, analysis of variance (ANOVA) is used to test for significant
treatment effect. There are several tests for differences among treatments. Some
are Fisher’s least significant difference (LSD), Tukey’s honest significant difference
(HSD), Sheffe’s pairwise differences, Duncan’s multiple range test, etc. These solu-
tions control the comparisonwise or experimentwise error rate for some «. However,
these solutions do not determine any likelihood that particular means are equal or
unequal.

A Bayesian procedure for MCP has been developed in Gopalan and Berry (1998).

This method uses a Dirichlet process prior to decide between competing groupings
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of p. The final posterior probabilities are used to discern amongst the groupings for
different priors.

We have developed methodology for this scenario using an extension of R. A.
Fisher’s fiducial inference. We use generalized fiducial inference as developed in
Hannig (2009b) to illustrate the likelihood of grouping particular means as equal
or unequal. We used a model selection technique to determine, based on the data,
the likely model(s). This is developed for n = (n,...,n) (constant variance) and
n = (m,n2,...,n) (non-constant variance). Simulation results suggest that our
method selects the correct grouping at a high rate for small sample sizes. We have
also proven that our method will asymptotically select the correct grouping of means.

In addition to simulation results and theoretical calculations, we analyzed a sim-
ulated data set and data set measuring nitrogen levels of red clover plants that were
inoculated with different treatments. The analyses were conducted assuming both
constant and non-constant variance, and the results from the red clover data set were
compared with those of the Bayesian method (which assumes constant variance).
Both the fiducial and Bayesian methods produce something of a posterior probability

for each possible grouping.
4.2 Generalized Fiducial Inference
4.2.1 Overview

Fisher (1930) did not support the Bayesian idea of assuming a prior distribution
on the parameters when there is limited information available. As a result, he devel-
oped fiducial inference to offset this perceived shortcoming. Fiducial inference did not
garner approval when some of Fisher’s claims were found to be untrue in (Lindley,
1958; Zabell, 1992). More recently, Weeranhandi (1993) has developed generalized
inference and the work of Hannig et al. (2006) established a link between fiducial
and generalized inference. Hannig (2009b) and references within provide a thorough

background on fiducial inference and its properties.
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To formally introduce fiducial inference we assume that a relationship, called the

structural equation, between the data, X, and the parameters, &, exists in the form
X = G(&,U) (4.1)

where U is a random vector with a completely known distribution and independent
of any parameters. After observing the data, X, we use the known distribution of U
and the relationship from the structural equation to infer a distribution on £. This
allows us to to define a probability measure on the parameter space, =.

An inverse of the structural equation with respect to £ is defined by the set valued

function
Qx,u) ={{:x=G(u)}. (4.2)

The generalized fiducial distribution is calculated by:

V(Q(x,U")) [{Q(x,U") # 0} (4.3)

where U* is an independent copy of U and V(5) is a random element for any mea-
surable set, S, with support on the closure of S, S. Essentially, V(-) is a (possibly
random) rule for discerning among the values when Q(x, U*) has multiple solutions.

From the structural equation the generalized fiducial density is calculated as
proposed in Hannig (2009b) and justified theoretically in Hannig (2009a). Let G =
(g1, ---,9n) such that X; = ¢;(§,U) fori =1,...,n. £is a p x 1 vector and denote
¢

X = Goi(€,U;) where X; = (X; i,) and Uy = (Uy,, ..., U;,) for all possible

L
combinations of the indexes i = (iy,...,4,). Assume that the functions Gg; are one-
to-one and differentiable. Under some technical assumptions in Hannig (2009a) this

will produce the generalized fiducial density of

__ xEIE
Jo x(xI€) I (x,€)d¢’

fre(€) (4.4)

where
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is the average of all subsets where 1 < ¢; < --- < 7, < n and the determinants in

(4.5) are the appropriate Jacobians.

4.3 Main Results
4.3.1 Structural equation with constant variance

In a multiple comparison problem we have k populations with means p =
(1, ..., pg). Data, which follows an independent normal distribution, is of the form
X; = (Xi1,...Xp,) forall i = 1,..., k where X; is independent of X; for all 7 and j.
We are interested in the k treatment means. We would like to make some judgement
on the equality or inequality of the means within competing models.

For example if X; = (Xj1,... Xin,) is an independent random sample from a
N(pi,n) distribution for ¢ = 1,2 then the appropriate models would either assume

[1 = g or pi; # po. The structural equations in this case could be:

Xoj = (p2 +1Z2j) L=z + (12 + /1 Z2j) Ly 41>

From these structural equations the generalized fiducial density from (4.4) can be
calculated for each model (p; = po and pg # o).

To simplify notation we will use J = U;|Us|...|U; where U; is a collection of
indexes of the means that are equal. The means indexed by U; and U; separated by

a vertical bar

“” are unequal. For example when k= 3,if J =123 then U; =123
signifies 1 = ps = pg = pi. If J = 12|3 then U; = 12 and Uy = 3 signify

= po = pi and pg = ps where pj # pi. Note that there are u; equal means in

group Uj;, t total groupings in J, and the unique means are (ui, ub, ..., u1y).
In general, if Xji,..., X, is an independent random sample from a N(u;,n)
distribution for ¢ = 1, ...,k then a structural equation is:

Xij = Z (i +/nZi;) 1y

Je{J1,..., Ju}
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where the equality of p; = p; follow the grouping in J for all possible groupings
Ji,...,Ju and Z;; are independent random variables from the N (0, 1) distribution.
Following the recipe in (4.5) the generalized fiducial density for a grouping, J,

1s:

V. 1 1
£r(e) o Less) T exp{—%Zm—m?}

n (2 ) j=1
1 1 & )
: S ) }
(271-) k/2 nnk/Q { 2’)’] =
_N/2_1 1 z]{: g )
= ‘/xv‘] N p T 5 (wzj /"Ll)
(2m)™"? Rl e
_N/2_1 t 9 t
J— 77 _i / ES _ _/ o /
Vi, (27r)N/2 exp { 2 an (ul xl> } exp { Z n,MSX }4 6)
i=1 =1
where
I (x,6) = Cy L
T N NI S Zj1<,j2|xl,j171'l,j2| P
2n -
Ve
/’7 b
N — . 7= ZleUi E;lel Lij
leU; ni
n _\2 k
/ . l, x ‘_’ﬁi
MSX, = Licv 23*1,( b ) . N = Zni,
n.
L i=1

C,s is the number Jacobian terms to average over, and w;(x) is a weight function
that will be derived in the next paragraph. Using (4.6) the fiducial density can be

calculated as:

Je{J1,....Ju}

From equation (4.3) we can see that the generalized fiducial distribution is cal-
culated by taking p (number of parameters) structural equations and conditioning on
the fact that the remaining equations occurred. As a result, when there are more pa-

rameters there are less equations that will be part of the conditioning or, equivalently,
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less conditions have to be satisfied. In this case we have N structural equations. If
all of the means are different (J = 1|2|3|...|k) then p =k + 1 (£ = (11, -+, g, 7))
and we condition on N — (k+1) events. If all of the means are equal (J =12 3...k)
then p = 2 (£ = (i,n)) and we condition on N — 2 events. Clearly as more means
are grouped together there are more conditions that need to be satisfied. In order to
offset this unbalanced conditioning we will introduce additional structural equations
that are independent of our original structural equations as proposed in Hannig and
Lee (2009). These additional structural equations will balance out the number of
conditions that need to be met for each selected J.

Adding structural equations will also allow us to introduce a weight function. The
weight function will allow us to down-weight the models with less groupings to increase
the likelihood of grouping several means together. Additionally, this procedure was
not scale invariant so we used the weight function to make it more scale invariant.
Attempting to make the method scale invariant in this fashion is rather ad hoc but
seemed to work well in simulations and we can show that our method is asymptotically
scale invariant.

The additional structural equations are:

1 1

21 - = G;+P ifi>t

2 Og(MSXN> & s

1 1

2 %% (MSXN) n (4.7)

where MSX = k! Zle MSX;, MSX; is the maximum likelihood estimate of the
variance for group i, and P; is an independent Exp(1) random variable for all i.
Because of the independence these structural equations will not affect the distribution
of X but they will affect the conditional distribution in (4.3). When inverting the
structural equations in (4.7), if @ > t we can choose a (3; for any P; so that the

equation is satisfied. Thus, conditioning on this equation will not effect the conditional

distribution. If i < ¢ then P, = 2 'log ([M SXN }_1) which creates an additional
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condition to be met. Combining the additional condition with the original structural
equations there will now always be N — 2 conditions regardless of the grouping of the
means. This will define the weight function as:
1 (t-1)/2
i) = T 107 = (5755w )
If we recognize that p|n follows a normal distribution for all i and 7 follows an

inverse gamma distribution then we can integrate f;(£) over the space =,

by = / 15(6)de
Vo gwy(x)2"2a' T (B2E)
2m)™ (S msx) ™ T, Vi

Thus, we can find the probability that each J is correctly grouping the means by:

bJ

>iPj

Clearly, when J is correctly grouping the means we would like P(.J) to be large.

P(J) (4.8)

4.3.2 Structural equation with non-constant variance

Similar to the previous setup, if Xj;,..., X, is an independent random sample
from a N (u;,n;) distribution for i = 1,..., k then a structural equation is:
Xy = Z (i +/miZij) 1,
Je{J1,....Jmq }
for groupings Ji, . .., Jy where Z;; are independent random variables from the NV (0, 1)
distribution.
Following the recipe in (4.5) the generalized fiducial density is:

fi(§) o Vagiy (x) 1 eXp{_QLmZ(ivlj—Hl)z}

=1 m
M e
1 1 & )
& W@XP{—TWZ%—M }
k

j=1

V:c,JwJ(X)
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where
k
J ( ) _ C—l ZZ:I zjl,z<j2,z§nz Z(llylt) Zj:(jl,zyj%z) ‘T|
J X, - YN,J k k
2 Hi:1 i
o Vx,J
— k ,
H¢:1 1
i = {i1,...,dy—1} C U istheset of 1 < iy < idg < -+ < idy—1 < 1y, Cyy is the

number Jacobian terms to average over,

t
T = [H (@ij — MT)] (T 12 = Tin go2)

1=1 Liej,

n; n; —\2
1 L4 .\ — Xy
_i Zj_l 1] : MSXl Z]_l ( lj Z)

n; n;

and wy(x) is the weight function. As an example of the Jacobian, if J = 1|2|3 then

we average over

‘(mlajl,l - x1=j2,1) ($27j1,2 - x27j2,2) (x37j1,3 - x37j2,3>’
2k H?:l Un

for all j; . < j2, < n, combinations (z = 1,2,3). If J =1 2|3 then we average over

*
\(xl,jl,l - /h) (x2,j1,2 - 1?2,12,2) (373,j1,3 — 353712,3)‘
2k Hf:l i
*
‘('rl’jl,l - Il:jZ,l) (1‘273'1,2 - :U’l) (‘T3,j1,3 - x37j2,3)‘

k
2k H’i:l i

for all of the appropriate j; , and js , combinations.

_|_

This weight function is derived akin to the previous explanation. Again, the
weight function needed to be incorporated to offset the lack of scale invariance and to
down weight the models with many free means. The additional structural equations

for each J are:

' o 2/(t—1)
1 <Hi:1 ZieU]- MSin>

2 log koo YD = Gith izt
<Zi:1 m> N
2/(t-1)
t by
1 <Hi:1 Zier MSXZ->

—log = B ifi<t

2 & b 1/(¢-1)
<Zi=1 MSX1> N
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and the weight function is:

ITici \/ Ziev, mrex
wy(x) =[] f(P) =

b t—1

: P 1
i<t Zi:l —MS}XZN 2

where b; = n;/ max;(n;). We can find P(J) using (4.8) where

pJ:/EfJ<f)df-

In this case p; can not be calculated in closed form.
4.3.3 Simulations

Ideally we would like this inference method to identify the correct model at a
high rate. When we assume constant variance for all of the k groups we can calculate
the probabilities directly. When the variance is not assumed to be constant we used
a Monte Carlo approach to generate a sample from the generalized fiducial density.
We used the importance sampling algorithm in appendix I to sample from (4.9) and
calculate P(J) for all possible groupings. Our simulation used 1000 data sets and an

effective sample size of 5000 when the variance was not assumed to be constant.

Constant Variance

Looking at a few interesting cases will help us assess the validity of the method.
Figure 4.1 illustrates that the correct grouping, J =1 2 3, is selected at a high rate.
Also, the magnitude of the variance does not effect the selection probability.

Difficulties arise when the true means are relatively close together. For instance,
when p, = (1,1.5,1.5) or p, = (1,1.5,2) the correct model is selected at a higher
rate as the sample size increases. As expected, at small samples sizes our method
attempts to incorrectly group means as equal. Figures 4.2 and 4.3 reflect this.

The easiest case occurs when the means are very different. Figure 4.4 demon-

strates P(J) when p, = (1,3,5) and ny = 1.
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Similar analysis can be done at higher dimensions. Again, when k£ = 4, p, =
(1,1,2,2), and 1y = 1 our method is selecting the correct model at a high rate as
the sample size increases. Figure 4.5 reflects this. The omitted groupings, .J, in the

figures had median probability, P(.J), of less than 0.02.
Non-constant variance

When variance is not assumed to be constant similar results follow. Highlighting
a few we can see that the variance does not effect the probability of selecting the
correct model. This is reflected in Figure 4.6.

Again the easy case is when the means are very different from each other. Figure

4.7 is reflective of this.
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In the four dimensional simulation we can see that the correct model is being
selected at a relatively high rate for all of the sample sizes. This is illustrated in

Figure 4.8 for all J where the median probability is greater than 0.02.

4.4 Asymptotic results

As defined in equation (4.8) we can calculate the probability that each J is the
correct grouping. In this section we will prove that our method will asymptotically

select the correct model.

Assumption 4. X;; is an independent random variable from a N(p;,n;) distribution.
Assumption 5. There exists 0 < b; < oo such that n; = b;n for alli =1,... k.
Theorem 3. If J correctly groups the means then P(J) — 1 almost surely.

To prove this we will show that pj/p;, — 0 for any J # J. There are two cases
that will be observed. First, when .J incorrectly groups means as equal. In this case
pj/ps will converge to zero exponentially as n — oco. The second case is when J does
not incorrectly group the means but there are too many groups. This will result in
pj/ps converging to zero polynomially as n — oco. The proof was done assuming both

constant and non-constant variance. The details are relegated to appendix II.

4.5 Examples
Simulated data

To demonstrate the ability of our method we analyzed a simulated data set. This
allows us to know what the true treatment means are. The sample mean and variance
of the the data is:

% = (0.69, 1.65, 1.80, 1.84)

and

s* = (1.56,1.35,1.61,2.13) .
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Constant Variance Non-Constant Variance

J P(J) J P(J)
1234 0049 12 3[4 0.061
1243 0051  1]24]3 0.058
11234 0062  1]2/3 4 0.065
1234 0044 1234 0.041
11234 0663 1234 0.604
1234 0060 1234 0.071

Table 4.1: Multiple comparison P(J) for the simulated example.

This data set was generated from independent normal distributions with p, =
(1,2,2,2), n, = (2,2,2,2), and a simple size of n = 20 for each treatment. Table
4.1 reflects grouping probabilities when P(J) > 0.03. Both the constant and non-
constant variance methods select the correct grouping at a high rate (P(J) = 0.663
and P(J) = 0.604 for J =1|2 3 4 when the variance is assumed to be constant and
non-constant respectively).

In addition to finding the probability for each grouping the fiducial method can
also find the fiducial probability of any number of means being equal. For instance,

we can find the fiducial probability that any two means are equal (y; = p;) or the

probability that any sequential means are equal (y; = pir1 = -+ = fys,). This is
done by adding up probabilities for the models that p; = p; or p; = iz = -+ = Hir,
Plui=p) = > PN gy (4.10)
JE{J1 ..... JH}
and
P(:ul = i1 = = NiJrT) = Z P(J)[{JZM=M+1='"=/M+T}' (411)
JE{Jl ..... JH}

Figure 4.9 pictorially represent these probabilities for the simulated example. As the
pictures show it is very reasonable that pq # o = g = pg.

In comparison to a common frequentist method, Tukey’s HSD test could not find
significant differences in the means (1, 2) and (2, 3, 4) controlling the experimentwise

error rate at @ = 0.05. Tukey’s HSD is commonly known to be rather conservative
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Figure 4.9: P(u; = p;) and P(p; = piy1 = -+ = pitr) with constant and non-
constant variance for the simulated example.

which makes it difficult to detect differences. A method described in Abdel-Karim
(2005) uses a similar Tukey approach but allows for unequal variance across the

treatments. This method could not find significant differences between the means (1,

2), (2, 3, 4), and (1, 4).

Clover plant data

A data set from Steele and Torrie (1980) measured the nitrogen content (in mg)
of red clover plants inoculated with cultures of Rhizobium trifolli and the addition
of Rhizobium meliloti strains. As discussed in Gopalan and Berry (1998), the R.
trifolli was tested with a composite of five alpha strains (3DOk1, 3DOk4, 3DOKkS5,
3DOKk7, 3DOk13), R. meliloti, and a composite of the alpha strains. There were six
treatments in all. The goal of the experiment was to measure the nitrogen levels for
the different treatments. The data can be seen in Table 4.2.

We analyzed this data set using both the constant and non-constant variance
methods. The grouping probabilities are seen in Table 4.3 when P(J) > 0.03. If we
assume that the variance is constant J = 1 2|3 4/5|6 is the most likely scenario. If we
do not assume that the variance is constant the most likely grouping is J = 1 2|3 4|5 6.
Looking at the sample means and standard deviations both of these results seem very

reasonable.
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Treatments
1 2 3 4 5 6
3DOk13 3DOk4 Composite 3DOk7 3DOk5 3DOkl1
14.3 17.0 17.3 20.7 17.7 194
14.4 19.4 19.4 21.0 24.8 32.6
11.8 9.1 19.1 20.5 27.9 27.0
11.6 11.9 16.9 18.8 25.2 32.1
14.2 15.8 20.8 18.6 24.3 33.0
mean 13.26 14.64 18.70 19.92 23.98 28.82
SD 1.43 4.12 1.60 1.13 3.78 5.80

Table 4.2: Rhizobium Data

Constant Variance  Non-Constant Variance
J P(J) J P(J)
1]2]3]4]5/6  0.037  1|2|3|4|5|6 0.041
1 2[3]4]5/6 0.100 1 2|3|4[5/6 0.097
12|13 456  0.052  1]2]3 4/5/6 0.052
12|13|14 5/6  0.030  1]2]3|4|5 6 0.050
12|34/5/6 0.196 1 2|34[5|6 0.115
12314 5[6 0.063 12|3|45[6 0.049
1231456 0.043 12|3|4/56 0.102
112|34]56 0.036  1]2]3 4]5 6 0.058
12[34/56 0.078 12|34/56 0.139
12[345/6 0.0561 12|345|6 0.042

Table 4.3: Multiple comparison P(J) for the red clover example.

The Bayesian method described in Gopalan and Berry (1998) analyzed this data
set with the constant variance assumption. Prior distributions were selected for the
parameters using various distributions and the groupings using a Dirichlet process
prior. Table 4.4 illustrates a few highlighted posterior probabilities. They claim, if
the posterior probabilities are large in comparison to the prior probabilities for all
values of M (Dirichlet process prior parameter) then these are likely groupings of the
means. The resulting groupings in Table 4.4 are their recommended groupings.

Similarities between our analysis and theirs exist. J =1 2|3 4/5|6 and 1 2|3 4|5
6 are common to all of the methods as likely groupings of the means.

Figure 4.10 pictorially represent the probabilities in equations (4.10) and (4.11)

for the red clover plant example. As the pictures show it is very reasonable that
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M
0.334 0.733 1.373 1.956 2.605 3.462 4.909 9.13 19.88
J postertor probabilities

1234[5/6 0.032 0.059 0.057 0.046 0.041 0.034 0.026 0.013 0.005
12[345/6 0.186 0.211 0.202 0.189 0.171 0.148 0.112 0.061 0.020
12|34/56 0.144 0.178 0.167 0.149 0.137 0.116 0.094 0.049 0.016
12]34]5/6 0.037 0.086 0.152 0.199 0.229 0.257 0.276 0.281 0.199

Table 4.4: Posterior probabilities of select J for the red clover example.

Constant variance Non-constant variance

0.95

0.9

0.75

0.5

Figure 4.10: P(p; = p;) and P(p; = piq1 = -+ = fliy,) With constant and non-
constant variance for the red clover example.

1 = 2, 3 = [ig, and possibly us = pg. Tukey’s HSD test could not find significant
differences in the means (1, 2, 3, 4), (3, 4, 5), or (5, 6) and the method in Abdel-Karim
(2005) could not detect differences in (1, 2) or (2, 3, 4, 5, 6) using an experimentwise

error rate of a = 0.05.

4.6 Conclusion

Frequentist solutions for multiple comparison problems can test for a treatment
effect or find differences among treatments. However, they can not make a deter-
mination as to how reasonable it is that particular means are grouped together as
equal.

Using a fiducial inference approach we have developed a method to determine
the likelihood of grouping means together. Based on simulation results, our method

selects the correct grouping at a relatively high rate for small sample sizes.



7

We analyzed a simulated data set and a data set that measured the nitrogen
levels of red clover plants that were inoculated with six different treatments. The
analysis of the simulated data set yielded a high probability for the correct model
(11 # p2 = pg = pg) regardless of the variance assumptions. Analyzing the red clover
example under the assumption of constant variance we found that J =1 2|3 4/5/6 was
the most likely grouping of the means (P(J) = 0.196). The Bayesian solution also
found that grouping to be reasonable, however, no discernible probability could be
assigned to it. Additionally, our method found that J=1 2|3 4|5 6 was the most likely
grouping if the variance was not assumed to be constant (P(J) = 0.139)).

The fiducial method is an interesting solution to the multiple comparison prob-
lem. The intuitive feel of the fiducial probability for each model makes the inter-
pretation very straight forward and the asymptotic properties and simulation results

assure high confidence in the analysis.
Appendix I
Importance Sampling Algorithm

The following steps were implemented in order to obtain a fiducial sample for &.

1. For a particular J, start by generating u = Z; + 1/ wﬂlf where Ty ~
t(fll — 1), QZTZ = U,L-_l (Z;Z:l i’j), and n; = Ui_l <Z;h:1 7’Lj> for all 7 = 1, N ,t.

2. Note, that J = Uy|Us|...|U; where U; = 141749 ... T4, are the indexes of equal

means

r = (Mruv"'”rmpﬂ“rma'":umuzv"'7”%17"'”@%)

= | W, T e ey
—_——— — AR

uy replictes wg replictes ut replictes

9

Generate (1;|) = W where W ~ Inv — Gamma (’” nl((‘”*fl; +MSXZ)) for
l=1,... k.
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3. Calculate weights of each generated sample with,

f5(§)
(H§:1 gi(Mf)hi(Ui))

where f;(§) is the generalized fiducial density for the model with groupings J

wy =

and g¢;(p;) and h;(n;) are the densities from distributions described in steps 1,
and 2.

4. This process was repeated until we achieved the effective sample size calculated
by ESS; =ny (1 + (sfw) w;2)’1 where n; is the sample size for model J, S?UJ

is the sample variance of the weights, and w; is the sample mean of the weights.
5. Lastly the weights were divided by the ESS; .
6. This process was repeated for all J.

Appendix 11

Proof of theorem 3 with constant variance

This proof will be done with the assumption of constant variance (i.e. n; = 7,
for all ¢ and j) and without using the weight function, w;(X). To prove theorem 3
we will show that pj/p; — 0 for any J % J. We will observe two cases. First, when
J incorrectly groups means as equal. Second, when .J does not incorrectly group the
means but there are too many groups.

For the first case let J; incorrectly group the means and J; is the correct grouping.
Thus, there are t; groups in J; and t5 groups in J5. At least one of the means in J; is

incorrectly grouped. The subscript in the following calculations note the association



79
with J; or Js.

—to (N—t1)/2 1 7
Pr I (NTt) (Zz 1"11MSX11) HZ:1 "
b r (%) (Zz 1 anMSX2z) e H?:l n;z
using Stirling’s formula

(2e) 7" NR T i (i MSXG)

< to 7 to , 1\ (N—t2)/2
[TiZ, vna (Zi=1 ”2iMSX2i)
WLOG assume U; € Jy is an incorrect grouping
_ (N—t1)/2
(tg—t1) ’ 1+0(1
_ (26)(7&2*751)/2 N(t1—t2)/2 H?:l /nlli 7702 /2 (Z:lzl nliW>
- 12, V/ni ,, L4000 o maroan )T
=1 7 <n2 e Z T)
where n* > 1 because of the incorrect grouping
2 (tg— t1)/2 \/_77 (ta— t1)/2< (ﬁ B 1>>(Nt1)/2
0
< (2¢) - - ol - =y Eventually a.s.
TV (e -1)]9
— 0 a.s.

for

1+(1+r("— 1))
2<1+r(——1>>

N -1
and 0 <7 <) . bi/ <Zi:1 bi> < 1.

The second case when J; is a valid model with too many groups and J; is the

correct grouping. Thus, there are t; groups in Jy, to groups in J, and t5 > t;. Let

J1 = U11|U12| e |U1t1

Jo = Unl|Usyp|...|Us,

where

U Usy,

and K; C {1,...,to} for at least one Uy;.
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@ x r (%) (Zz 1 nlz‘]\f‘sy)(lz)(]\Ltn/2 H:lzl nllz

i T (N5 (S, MSXG) T T VG,
B (2€>(t2—t1)/2 N t2)/2 HZ1:1 n/h (Z SSXM)(N t1)/2
= Hfil n,gl (Zi_l SSXQi)(N—tZ)/Q
—N/2

a H?:l n/2z N77

eventuall a.s. using the law of iterated logarithms
_ (26)(t2—t1)/2 (277)(—t1+t2)/2 Hflzl n/h (1 - RlOg lOgN> —N/2
a H?:l n/2'z N

WLOG assume that Uy, = Us(y,—1) U Usy, and Uy; = Us; for all other ¢
< (2¢) "2 (2p) T (1 Rloglog N) h
< , N

\/ thQ

— 0 a.s.

for some R > 1 and b > 0.

Therefore we have shown that p;/p; — 0 for any J # J where J is the correct
grouping. This completes the proof.
Proof of theorem 3 with non-constant variance

This proof will not assume constant variance. Additionally, the proof will be
done without the use of the weight function. The generalized fiducial density for any

J without the weight function is:

Ve 1 1 2
fJ(f) X H’-c_l i (271')"1/2 77’111/2 exp {_2_771 Z (.le - :u1> }

j=1
y 1 { 1 "Z’“ ( )2}
X R XPY T Tkj — Mk

(2m) o mkh 21k j=1

k —n;/2—1

Yo >+ MSX;
-V JH:177—N/2 _Z Z nz )

(2m) N

If we could integrate this function we could calculate the probabilities, P(.J), directly.

However, we cannot fully integrate it so we will apply different techniques. Note, that
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J = Up|Us|...|Uy where U; = 11 742 .. . 14, are the indexes of equal means
T (N T T TS TR T

_ * * ok * * *
- gy oo o oy fhoy e oo oy ovoy My oo sy
—_——— —— ——
uq replictes w2 replictes ut replictes

*

Without loss of generality we will assume p = (p1, ..., %) = (f,..., 1) = p*.

Notice that

p; = /:fj(ﬁ)dﬁ

_ W—N/2ﬁ[n;"i/2r (5)] / t MH = 3)? + MSX) " dp

Because V, ; is dependent on i we will bound this value. It is clear that V, ; > ¢;

for some ¢; > 0. We could re-write V, ; as:

t t
(H *(ul ) ‘/11 +Z < (u;—2) H Mz(uzfl ) ‘/—2J 4 ‘/z,l
J

i=1 i=1,i#j

Ve =

)

where V; ; are averages over a function of the data. If u; is even then |,

*(ui—l)) <

'+ 1 and if u; is odd then

s(ug—1 *(u;—1
)‘ — ),

i Regardless of the u; the same

’L

technique will be used. Thus, without loss of generality we will assume that u; is odd

for all .

t

t
vaJ < (H *(u;—1) > |‘/11| + Z (( (u;— + 1> H ,u;k(uz—l)) |‘/2,j| 4+ -4 |‘/;;71|

= i=1,ij
- (ui—1)/
u;—1)/2
= (H ((Hz — ii)Q + MSXi) > ‘V(l)‘ + |V(2)|
i=1
where V) and V® are averages over the data, z;, and MSX;. Thus V(! and V®

will converge to some constant almost surely by the strong law of large numbers.

A lower bound for p; is:

ps > Dy
k

= an ] [ ()] /Rf[ (i — 7)> + MSX,) " dp*.
=1

=1
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An upper bound for p; is:

- ()] / (T (G = 20 + m8x) ™77 ) [V 4 [V
Rt

T | | — dp
E ’ Hf:1 (i — 7;)" + MSX;) o/
< w T o (2)] [ o)
=1 270 e T8, (e — 2)? + MSx) ™"
V] ;
+ "
[T, (G — 2)% + M5X,)™
k

. . V(l)‘
< g N~ [n;nl/q‘ (ﬂ)} / Cs | .
H : R Hf:l ((Mz - fi)Q + MSXi)( i—ui—1)/2

for some ¢y > 0.

Because we cannot integrate with respect to pu* we observe

k
91(17) = H ((Mz - ffi)z + MSXz‘)iW2

=1

and the substitutions of

and

Zi .
MSX;, = T}io—i-\/niiforz—l,...,k

where ;0 and 719 are the true mean and variance for treatment ¢ and (Z;1, Z;) ~

N (0,%). Thus,

b m Z, 2 Z, s
£\ _ o —t/2 H ) ‘ i2
gJ(m ) n — <(\/ﬁ + 4 \/TL_Z) + 10 + \/TL_Z>

where m and m* follows the same structure as g and p* above and A; = pj, — pio

for i € U;. We will see that m; converges point-wise to a normal distribution.
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Taylor expanding log(g;(m*)) we will get:

Zi1 Zio
binlog ( 7710 + AQ) biv/n (2Ai (mZ — \/E> + \/_E)

log(g;(m*)) = —5 log )+ Z 2 (nio + A?2)

2 2
. , . Za Zia , _ Za

erZ <2AZ (mZ W) + \/’7> B bi (mz \/F> +0 (n'?)
4 (n + A2)? (2mi0 + AF)

Clearly if J is correctly grouping the means then A; = 0. Otherwise we will select

o such that

bi; 0
2 ot A7
forall j =1,...,t. Thus,
t binlog (nio + A7) bin (2A;Zi1 — Zss)
1 * — ——l _ ?
onlgs(m)) = —log( + 3 | HHEGE R  AEEA
2 2
) ) _ Za Zi2 ) _ Za
la(m-g) i) n(m-f) L
2 2
4 (nio + A2) (2mi0 + A7)
Or

(") 1 Xk: Vo ( 2A iZin — Zin)
m =
o W (o + A2 %)

X exp {_ Z 0_12 (m: — Cz}i)2 +Cz+0 (nl/z)} (4.12)

i=1 2 Zsi
where (z; and 0'%’1- are the appropriate mean and variance of m; dependent on the
Z;; values and Cyz is the constant used in completing the square. Clearly g;(m*)C,

converges to a normal density for the appropriate normalizing constant, C,.

Lemma 4. Let

hy,(m*) = C,g,;(m")

for the previously described C,,, then h;,(m*) < k;(m*) where k is integrable.
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Proof. First, square the function, g, without the n power:

k 2 —b;
H m; Zin Zin
A'L - 1 .
i=1 <(\/ﬁ+ Vni) e Vni)

For each U; we are looking at a function in m} that has at most u; peaks (local

maximum) and at most u; — 1 valleys (local minimum). For instance, for U; we are

looking at the function

2 —bi
mik Zin ) Zio
+A———=] +mo+ :
(s Z) ome 22)

For large enough n this function has a unique global maximum with probability

1. Our y, is close to this maximum (within cjon 1% where the c¢;o depends on the
Z’s). Next, we re-scale the function so that the global maximum is 1.

The other local maximums will be ¢;n'/?

away where [ = 1,..., (u; — 1). Here
c;1 depends on the distances between maximums.

The fraction between the value of the function’s local and global maximums is
either a constant (< 1if n, # n, for all s,7 € U;) or 1 — ¢;;n~Y/2 if n, # 7, for all
s, € Uj, in which case the difference comes from the Z’s.

Finally, if we raise the function to the power n. The global maximum goes to 1.
At the local maximum we have a height of exp {—cﬂnl/Q}, i.e., the local maximum is
located at the point (cjon'/?, exp {—c;n'/?}) which is well below the Cauchy density
of (cjonl/z, c(l+ c?ln)_l) for some constant c.

Finally, notice that if there was a point for which our function was larger than

a bounding Cauchy it would be at the local maximum. This is because the function

decays from its local and global maxima faster than the Cauchy distribution. O

From equation (4.12) we can see m; converges point-wise to a normal distribution

and lemma 4 allows us to bound g;(m?*) for all n. Therefore, we can calculate the
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asymptotic behavior of p4 and pY. Observe,

. N2 Hz . [ ;"1/2 ("2’)} 1 zk: Vbin (28;Z;1 — Zss)
n'/? (nio + A7) 2 2o+ 47)

2 2

Z“ Zig Zil

X / exp " <2Ai (mi _ \/F> ' TF) - " <mi _ TF) +0 (n71/2) dm*
Rt 4 (7710 + A2)2 (27]10 + AZZ)

and a similar calculation produces

. WﬂLl[f”(;ﬂ@V“@m{fjbm@Azu&ﬂ}
_ )

i (g + A2) D72 2 (0 + A7

2: 2

Zi1 Zio Zia

y / exp bz <2Az (mz - \/_E> + \/E) B bz <mz - \/E) 40 (n_1/2) Jm
Rt 4 (mio + A2)? (2mi0 + AF)

T 1[ JT (5)}@2‘/(” kB (202 — Ziy)
n'’? (nio + A?) (bin—u;=1)/2 b {Z ) } Ban

where B,;,, is the constant that comes from integration of the normal density and
B;, — B; by lemma 4.

To prove that P(J) — 1 as n — oo we will observe pz/p; < p%/py — 0 for any
J # J. Like the previous proof there are two cases. First, when J incorrectly groups
means as equal. Second, when J does not incorrectly group the means but there are
too many groups.

For the first case let .J5 incorrectly group the means and .J; is the correct grouping.
Thus, there are t; groups in J; and ¢y groups in Jy. At least one of the means in J,

is incorrectly grouped and at least one of the A; # 0. Equivalently A; = 0 for the

grouping in Jj.

k Vbin(2AiZi1—Zi2) B
p_}Q _ C2V(1) (ﬁio)bin/z exXp {Zl:l 2(7]¢0+A$) } 2n
prﬁ C1 (7710 + Alz)(bin_Ui_l)/Q exp {Z?:l __\/I;TZOZQ } Bl,n

— 0 a.s.
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The second case when J; is a valid model with too many groups and J; is the

correct grouping. Thus, there are ¢; groups in Ji, t5 groups in J, and ty > ;.

nt1/202v(1) (nio)bm/2 exp {Zle —%} Bgyn

A
Pp o _
Py, n'?/?c; (Th‘o)(bm_ui_l)/z exp {Zle ——‘/1’27;;_?2 } B,

eV O (1) By,
a n(t2—t1)/261 (n,o)(bin—ui—l)/z Bl,n

7

— 0 a.s.

Thus we have shown that P(J) — 1.

The same convergence results for both constant an non-constant variance hold if

the weight function is included.



Chapter 5

CONCLUSION AND FUTURE WORK

This dissertation has used the fiducial framework to propose solutions to some
very interesting problems. We used fiducial interference on the parameters and ex-
treme quantiles of the generalized Pareto distribution, the largest mean of a correlated
multivariate normal distribution, and the model selection of some multiple compari-
son problems. These solutions proved to have advantages over the current methods
and have good asymptotic properties.

All of these problems have natural extensions that future work can address.

5.1 Conclusion and future work for the generalized Pareto

We have demonstrated the fiducial solution to the generalized Pareto as a viable
method in extreme value problems. We compared our method to some competing
methods when the threshold is assumed to be known and unknown.

When the threshold is assumed to be known our method compared favorable to its
competitors. Namely, the bias for the parameter estimates are less than the maximum
likelihood, L.-moment, and Bayesian estimates. The estimate for the high quantile is
slightly less biased using the Bayesian solution from Castellanos and Cabras (2005).
Also, the fiducial approach produced confidence intervals for the high quantile that
are shorter than those calculated by the Bayesian and profile log-likelihood methods
when 7 > 0 for all sample sizes and when vy < 0 for large sample sizes.

A fiducial approach was also developed to handle the situation when the threshold

is assumed to be an unknown parameter. There are very few competing methods in
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this case. Our method produced intervals with good empirical coverage regardless of
the underlying distribution of the data. Likewise, the confidence intervals were very
similar in length to the Bayesian intervals created in Cabras and Castellanos (2009)
that had a reasonable coverage rate.

There is a variety of future open questions surrounding this problem. First,
further investigation into the asymptotic properties when the threshold is unknown
would be of interest. It could also be interesting to attempt to use fiducial inference
when there are additional covariates that can be incorporated into the model. For
example, as described in Coles (2001) if there are daily observations X, X, ... and
let s(t) denote the season that observation ¢ falls in then different thresholds can exist
for each season. The seasonal component means that (Xt — g | Xy > as(t)) follows
a generalized Pareto with seasonal parameters v, and ogy). Another extension is
attempting to use fiducial inference with a point process approach as stated in Smith
(1989) and Coles (2001). Using a point process approach takes into account the
probability of crossing the threshold.

5.2 Conclusion and future work for the largest mean of a multivariate
normal distribution

The largest mean of correlated multivariate normal data posed numerous infer-
ence challenges. Our solution approached the problem assuming that there was an
unstructured covariance matrix. We were able to develop confidence intervals that
had good empirical properties when the correlation was positive. We also proved that
our intervals were asymptotically correct. In comparison to other methods, the fidu-
cial method produced upper tailed intervals that were generally shorter with better

coverage rates.
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This methodology was developed for a single sample when X ~ N(pu, ), p =

(/’le B 7:uk)T7 and

m P12/MM2 - Pik/TNk
P12+/117)2 T2

P1kA/T Tk Nk

It could be of practical interest to extend this problem to two samples. Namely, if
X ~ N(p, %) and Y ~ N(7,%) the parameter of interest would be § = max; yu; — 7;.
This should be a relatively straight forward extension but would have implications in
drug trials where a treatment is compared to a placebo.

Another interesting extension would be when ¥ was assumed to be a structured

covariance matrix. Boose et al. (2007) assumed that the covariance matrix was struc-

tured as
n o o
» = |7 "
: o
0' ) O' 77

This assumption should help us to get even better empirical properties at small sample

sizes.

5.3 Conclusion and future work for multiple comparisons

Many solutions to multiple comparison problems allow for a test of the treatment
affect or to test differences among individual means. Our fiducial solution to the
multiple comparison problem allows us to calculate the fiducial probability of any
grouping of the means. Using the data, we can come up with a very intuitive fiducial
probability of the equalities and inequalities of the means. This information could be
used to test specific hypotheses or to test equality of any number of means.

This method has been developed when the variance is assumed to be both con-
stant and non-constant across the treatments. We have demonstrated, through sim-
ulation, that the method can select the correct grouping at a relatively high rate at

all sample sizes and asymptotically selects the correct grouping with probability 1.
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A similar Bayesian method developed in Gopalan and Berry (1998) needs fur-
ther assumptions about the parameters and produces posterior probabilities for the
groupings that are very dependent on the prior distributions.

Additional work with different covariance structures would be very beneficial to
this problem. As stated, we have developed the method for independent data. It
could be of interest to further development to situations where there is correlation in

the data. For example, if X ~ N(p, ), o = (p1, ..., ux)?, and

n o o
» = |7 "

: o

o o n

Other covariance structures may also be of interest to this problem (e.g. unstructured
covariance).

Further improvement to the computational methods also need to be investigated.
The number of models increase at an extremely fast rate as k increases. As a result,
the computation time increases dramatically. Using a different Monte Carlo approach

may prove to be more efficient and a better option.
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