
THESIS

CODE GENERATION IN ALPHAZ

Submitted by

Pradeep Srinivasa

Department of Computer Science

In partial ful�llment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2011

Master's Committee:

Advisor: Sanjay Rajopadhye

A. P. Willem Bohm
Brad Reisfeld

ABSTRACT

CODE GENERATION IN ALPHAZ

Computer architecture technology is evolving rapidly. Many of the programs

written for a speci�c architecture are not very useful when a new architecture

evolves. They have to be either modi�ed or rewritten to suit the new architectures.

Instead one can write a high level program and feed this to a tool which can

produce code for di�erent architectures. AlphaZ is such a tool which takes a high

level program and helps us to analyze, transform and generate code for di�erent

architectures.

In this thesis, we develop a code generation framework in AlphaZ, which takes

equations as programs called alphabets program. Alphabets is a high level abstrac-

tion language which allows us to write equational programs. Equational programs

consists of a set of equations along with their associated domains. We describe

how code is generated in our code generation framework by taking an Alphabets

program and the necessary target mapping speci�cation. We illustrate how dif-

ferent code generators can be developed by extending the existing modules in our

code generation framework.

ii

TABLE OF CONTENTS

1 Introduction 1

2 Background 4

2.1 The Polyhedral Model . 4

2.1.1 Schedule . 5

2.1.2 Processor allocation . 5

2.1.3 Memory allocation . 6

2.2 ClooG . 6

2.3 OpenMP . 6

2.4 Related Work . 7

2.4.1 MMAlpha . 7

2.4.2 Pluto . 8

2.4.3 Graphite . 8

2.4.4 Polyhedral Compiler Collections . 9

3 AlphaZ System 10

3.1 Transformation Engine . 11

3.2 Target Mapping (TM) . 13

3.3 GeneralizedCoB . 14

4 Code Generator 15

4.1 An example : Forward Substitution . 15

4.1.1 Preamble . 17

iii

4.1.2 Memory Macros & Global Variables 18

4.1.3 Function Signature and Assignment to Globals 19

4.1.4 Parameter checking . 19

4.1.5 Memory allocation for locals . 19

4.1.6 De�ne statements . 20

4.1.7 Computations . 20

4.1.8 Epilog . 21

4.2 Framework . 22

4.2.1 Statement & Domain Collector . 23

4.2.2 Loop Generator . 24

4.2.3 Statement Pretty-Printer . 25

4.2.4 Memory Access Generator . 25

4.3 Scheduled code generator . 27

4.4 Shared Memory Parallel code generator 28

4.4.1 Handling synchronization . 29

4.4.2 Post-processing . 29

5 Handling Reductions 31

5.1 An example . 31

5.2 Reductions . 33

5.3 Constraints on input programs . 34

5.4 Pre-Processing to handle reductions . 34

5.5 Code generation for Reductions . 35

5.6 Nested Reductions . 37

6 Conclusion and Future work 40

6.1 Future work . 41

iv

6.1.1 Initialization of the reduction . 41

6.1.2 Handling Multiple Reductions . 42

6.1.3 Migrating to MDSE . 43

v

LIST OF FIGURES

2.1 A simple doubly nested loop and its iteration space, together with a

possible wavefront parallelization (diagonal lines). 5

3.1 Matrix-Matrix Multiplication. 12

4.1 Forward-Substitution alphabets program 16

4.2 Blocks in the output program . 17

4.3 Code generator framework. 23

5.1 Matrix-Matrix Multiplication with reduction. 31

5.2 Matrix-Matrix Multiplication after pre-processing. 32

5.3 Computation for Matrix-Matrix Multiplication. 33

5.4 Nested Reductions example. 38

5.5 Nested Reductions after Normalization. 38

vi

Chapter 1

Introduction

Currently, most of the Multi-core architectures are based on the shared memory

model. To exploit parallelism from these architectures one needs to write an e�-

cient parallel program, and this is not an easy task. Even if someone writes code

for a given architecture, the same code cannot be used for other architectures and

it has to be rewritten to suit the new architecture. Instead of this, if we have a

tool which generates code for any architecture by taking a high level program (as

abstract as equations) and some additional speci�cation of the architecture, one

will opt for writing those high level programs. These high level programs need

not be changed to produce di�erent code to suit di�erent architectures, only the

speci�cation has to be modi�ed to suit the architectures. Therefore, we need code

generators which can generate code for di�erent architectures, without much e�ort

from the user. In this thesis, we have developed a code generator framework and

a number of di�erent code generators as a part of our research tool called AlphaZ.

AlphaZ is a system, which is based on a mathematical framework called poly-

hedral model. By working within this formal model, we can bene�t from its mathe-

matical properties. In this model, we represent computations as a set of equations

along with their associated domains. These equations along with their domain

forms the input called the Alphabets program for our system. AlphaZ transforms

1

the alphabets program to a intermediate representation (IR). This representation

allows us to analyze, transform and generate code as per the speci�cation. The

transformations can be speci�ed as a�ne functions and these transformations can

represent either a schedule, a processor allocation and/or a memory allocation

speci�cation. These can be given by the user and there is a distinction between

all these speci�cations, this allows us to keep one speci�cation constant and ex-

periment with the other speci�cations. This provides us a platform where we can

experiment and generate code that is speci�c to the architecture and will allow us

to eventually develop a tool which automatically tunes or parallelizes an applica-

tion for the given architecture.

In order to experiment with the various architectures we need to have various

code generators that produces e�cient code, so we provide in this thesis, a code

generator framework and a number of di�erent code generators. In this frame-

work, one can easily implement various code generators by extending the existing

modules. Using this code generator framework, we have developed two code gen-

erators: a scheduled code generator and a shared memory parallel code generator.

The scheduled code generator takes a sequential schedule and produces C code

according to the given schedule. The shared memory parallel code generator is an

extension of the scheduled code generator and it takes a parallel schedule that may

be interleaved (parallel and time loops can be in any order) and produces OpenMP

parallel C code.

The remaining chapters of this thesis are organized in the following way. Chap-

ter 2 describes the necessary background on polyhedral model, the architecture

mapping speci�cation and the related work. Chapter 3 describes the AlphaZ sys-

tem, the transformation engine, the representation of schedule, processor allocation

and memory allocation in AlphaZ, and some of the transformations that are used

2

in this work. Chapter 4 describes with an example the generated code, the code

generator framework and the code generators that are developed in this framework.

Chapter 5 describes the handling of reductions in the code generators. Chapter 6

concludes this work and explains the future work.

3

Chapter 2

Background

In this chapter, we describe the necessary background about polyhedral model,

scheduling, and the various tools that we use. We also give a brief description of

the language directives used to produce parallel code. Then we describe the work

that has been done by similar tools elsewhere.

2.1 The Polyhedral Model

Many scienti�c applications spend most of their time in nested loops. In order

to extract parallelism or improve performance one needs to optimize or transform

these loops. The polyhedral model is a mathematical framework for such nested

loop optimizations and transformations. For example, composing a number of

optimizations is easy if the optimizing transformations satisfy closure properties.

In the polyhedral model, we represent each instance of each statement in a loop

program as an iteration point, in a space called iteration domain of the statement.

The iteration domain is described with a set of linear inequalities forming a convex

polyhedron. The dependencies in the program are expressed as a�ne functions.

Loop nests that are called A�ne Control Loops (ACLs), also called SCoPs (Static

Control Parts) [3] can be represented in this model.

As an example, consider the code in 2.1 (left). This program has a 2D iteration

4

for(i=1;i<5;i++) {

for(j=1;j<5;j++) {

A[i][j] = A[i-1][j] +

A[i][j-1];

}

}

Figure 2.1: A simple doubly nested loop and its iteration space, together with a
possible wavefront parallelization (diagonal lines).

space bounded by four inequalities represented as {i, j | 1 ≤ i < 5 ∧ 1 ≤ j < 5}.

The two dependencies are functions (i, j → i − 1, j) and (i, j → i, j − 1). The

iteration space of this loop nest is illustrated in 2.1. Note that these iteration

points are enough to describe what is computed in the program. However they are

not enough to reproduce the loop nest shown in 2.1 and let alone to generate code

which can be run in parallel. We need to have some more information to generate

code which can be run in parallel or in sequential.

2.1.1 Schedule

A schedule is an a�ne function θ, which determines precisely a logical time stamp

for the execution of each instance of the statement. In our example a simple

scheduling function θ = (i, j → i, j) represents the sequential lexicographical exe-

cution of the original loop nest. Many loop transformations can be expressed as

schedules. For example, loop permutation to permute i and j loops in the original

program, corresponds to a di�erent schedule θ = (i, j → j, i).

2.1.2 Processor allocation

Processor allocation is also an a�ne function λ, which speci�es which processor

executes an instance of a statement. In our example λ = (i, j → j) is a valid

5

processor allocation if the schedule is given by θ = (i, j → i + j) as shown in the

2.1 (right).

2.1.3 Memory allocation

This speci�es where the result of each instance of the statement is stored in mem-

ory. This allows us to �nd a memory allocation which is e�cient and optimal. In

our example, the simple memory allocation can be given as (i, j → i, j) for the

variable A.

2.2 ClooG

ClooG [Chunky Loop Generator] [1] is a loop generator that produces loops in

our code generators. ClooG is an open software and library to generate loops by

scanning the polyhedra. The input to ClooG is a set of domains given by a set of

a�ne constraints, the context and scattering functions. The context consists of the

language used and the constraints on the parameters in the program. ClooG takes

the set of domains and produces code that scans each integral point in the union

of the domains. The scanning order can be speci�ed through scattering functions

and therefore schedule in itself can be a scattering function.

2.3 OpenMP

OpenMP [Open Multi-Processing http://openmp.org] is an application program-

ming interface (API) to support shared memory parallel programming in C/C++

and Fortran on various architectures including Linux and Windows platform. It

is a simple, portable and scalable model which provides simple API's to develop

parallel programs. It consists of set of compiler directives, library routines and

some environment variables or run-time support which help in the execution of the

6

program.

OpenMP achieves parallelism by the use of Multi-threading using the fork-join

protocol, where a master thread forks a number of slave threads and the given

task is divided among the threads. These threads run concurrently, and once the

execution is done the threads join back to the master thread. The task that has

to be parallelized is annotated by a set of compiler directives. OpenMP gives a

platform where we can write code which can range from �ne grained parallel code

to coarse grained parallel code.

2.4 Related Work

There are many tools existing which uses the polyhedral model. In this section

we describe the various tools like MMAlpha, Pluto, Graphite and PoCC available

which is based on the polyhedral model.

2.4.1 MMAlpha

MMAlpha [6] is a programming environment which is based on the polyhedral

model with similar goals to the AlphaZ system. It is used to design parallel archi-

tectures like systolic array architecture from a set of recurrence equations speci�ed

as an Alpha program.

Alpha is a functional language which involves equations along with the variables

with their domains. There are two signi�cant di�erences between MMAlpha and

the AlphaZ system. MMAlpha emphasizes on hardware synthesis, and does not

target other platforms and it is based on Mathematica which has a high learning

curve, especially for developers.

7

2.4.2 Pluto

Pluto [2] is an automatic parallelization tool that is based on the polyhedral model.

It is a fully automatic polyhedral source-to-source program optimizer tool that

takes C loop nests and generate tiled and parallelized code. It uses the polyhedral

model to explicitly model tiling to �nd good ways of extracting coarse grained

parallelism and locality. Because it is automatic, it follows a speci�c strategy

in choosing transformations. It �rst chooses a set of tiling hyperplanes. Then

it transforms the code so that in the transformed space, these hyperplanes are

re�ected in a new set of fully permutable indices. In addition, it seeks if possible, a

set of schedule hyperplanes that lead to synchronization-free parallelism. Finally,

it generates sequential and OpenMP parallel code.

Pluto is based on partitioning-based approaches, where they identify a set of

sequential and parallel loops which can be run with minimum synchronization

where as our framework is based on schedule/allocation-based approach. The focus

of our AlphaZ system is to provide an environment to try many di�erent ways of

transforming a program. We provide a code generation framework where the user

can play with the di�erent types of schedules and target di�erent architectures.

One could use AlphaZ to �nd a good sequence of transformations, that could be

turned into an automatic optimizer, and write code generators by extending the

existing code generators.

2.4.3 Graphite

Graphite [10] is an optimization framework for high-level loop nest optimizations

that is being developed as a branch of GCC. Its emphasis is to extract ACLs from

programs that GCC encounters, which is signi�cantly more complex than what

research tools are expected to handle, and perform loop optimizations that are

8

known to be bene�cial. Graphite takes C programs as input whereas we take

equational programs and it helps us in utilizing the power of polyhedral model.

2.4.4 Polyhedral Compiler Collections

Polyhedral Compiler Collections [11] (PoCC) is a framework for source-to-source

program optimizations, designed to combine multiple tools that utilize the poly-

hedral model. Like AlphaZ, they also seek to provide a framework for developing

tools like Pluto, and other automatic parallelizers. Our framework starts from

equational representation so that we have a larger space to explore.

9

Chapter 3

AlphaZ System

In this chapter we explain the AlphaZ system. AlphaZ is a system, which is based

on a mathematical framework called polyhedral model. The input to this system

is an alphabets program. Alphabets is an equational language based on Alpha [9].

AlphaZ system consists of three main components: a program transformation

engine, a data-structure called the TM (Target Mapping) and a code generator

framework. The latter two are closely linked by a module called the Veri�er, that

checks the legality of the speci�ed schedule, and memory and processor allocations.

In addition, AlphaZ also provides a shell based interactive interface designed for

users of the system. Such an environment where users can incrementally apply

transformations and see the transformed equations is important for manual explo-

ration of the space of valid transformations.

Section 3.1 describes the transformation engine, the representation of the IR

and the back-end engine which provides the basic polyhedral operations/transformations.

Section 3.2 describes the data-structure for the time, processor, tiling and memory

speci�cation. Section 3.3 describes the generalized change of basis transformation

that is used in the code generator framework.

10

3.1 Transformation Engine

The transformation engine consists of a back-end engine called COREquaitons [5],

a set of transformations and a state handling mechanism. The basic unit in the

system is a domain quali�ed statement, namely an equation, associated with a

polyhedral iteration space called its domain. A program is a collection of such

equations. Each statement has an expression (the right hand side, rhs of the

assignment). Data reordering is a �rst-class entity in our system, therefore there

is no left-hand side (lhs) to the domain quali�ed statements, and the expressions

on the rhs also do not refer to memory location but rather to instances of other

domain-quali�ed statements. These recurrences can be obtained from an a�ne

control loop through an exact data-�ow analysis [4].

The Intermediate-Representation (IR) is essentially a list of polyhedral equa-

tions and an equational language called Alphabets is used at the core of the system.

This separates computation from schedules and memory allocation. It is derived

from an earlier language called Alpha [9] and it includes non-a�ne dependence

functions, and iterative (e.g., while) computations. An informative description of

Alpha is given by Wilde [12]. Reductions were added to the Alpha language by Le

Verge in 1992 [8].

A simple alphabets program consists of the following.

1. A system name

2. A list of parameters

3. A list of input variable declarations

4. A list of local variable declarations

5. A list of output variable declarations

6. A list of equations de�ning the output and local variables

Let us consider the matrix-matrix multiplication (MMM) as shown in 3.1(left).

11

for(i=0;i<N;i++){

for(j=0;j<N;j++){

c[i][j] = 0;

for(k=0;k<N;k++){

C[i][j] += A[i][k] *

B[k][j];

}

}

}

\\Alphabets program.

affine MMM {N|N>0}

given int A,B {i,j | 0<=i<N && 0<=j<N};

returns int C {i,j | 0<=i<N && 0<=j<N};

through

C = reduce(+, [k], A[i,k] * B[k,j]));

.

Figure 3.1: Matrix-Matrix Multiplication.

The alphabets program consists of a system name MMM along with the parameter

N with a constraint N > 0. A list of input variables A, B and an output variable

C. MMM is a classic example which explains the reduction along the kth index.

Therefore the equation for variable C can be expressed using a reduction as shown

in 3.1(right).

The alphabets program is parsed by the back-end engine to construct an AST

with domain and equation information. An external back-end engine called CORE-

quations [5] is used to perform basic polyhedral operations, such as change of basis,

substitute by de�nition, cut, image/preimage of domains, a�ne function manipu-

lation and so on.

Because the system depends on the back-end engine for basic polyhedral op-

erations, the program is frequently transformed at the back-end engine, and then

reloaded to the front end system. A state handling mechanism keeps this transpar-

ent to the user so that the user will always see a consistent version of the program.

To reduce the network load, some of the information is cached on the system side,

and the number of transfers are minimized.

Code generator apply a series of transformations to the program during code

generation, if an exception occurs while applying the transformation the state

handling mechanism reverts back to the state before the transformation is applied.

12

And it also makes sure that the user will not see the transformations that were

applied by the code generator in the process of generating code by reverting to the

state when the code generator was called.

3.2 Target Mapping (TM)

Target mapping is a data structure to store the information about time-processor

speci�cation, tiling speci�cation and memory allocation. It consists a list of a�ne

functions for each variable for time-processor speci�cation, tiling speci�cation and

a�ne functions with mod factors (optional) for memory allocation.

In order to generate code, some code generators need some additional infor-

mation apart from the time-processor speci�cation and memory allocation. Some

code generators need statement orderings if they want the program to follow a

speci�c execution order inside the loop body. These statement orderings are par-

tial orders between two variables in the program and these are stored in a data

structure which is associated with TM. Currently, the tiling speci�cation is also

implemented as a similar auxiliary annotation.

The user can also specify the loop types of the resulting code. Typical code

generators in the Polyhedral model that use CLooG [1] produce loop nests where

each dimension corresponds to a dimension in the schedule, if it is a fully sequential

program. When some dimensions of the iteration space can be executed in parallel,

the user could specify them as the parallel loops in the loop types of the TM. The

default assumption is that all parallel loops are innermost. However, the user can

specify loop types to specify outer parallel programs, or even interleaved sequential

and parallel loops.

13

3.3 GeneralizedCoB

GeneralizedCoB performs a change of basis transformation even if the given trans-

formation τ is not square. Change of basis transformation also called space-time

mapping transformation provides one-to-one mapping between a time-processor

dimension and the loop index and, it also aligns each time and processor dimen-

sion to a distinct axis. Since the change of basis transformation in the back-end

engine is currently not able to �nd the inverse of a function and also it requires

inverse when there is a non-square transformation, the GeneralizedCoB tries to

�nd the left inverse in context for the transformation τ and if found it applies the

change of basis transformation along with the inverse of the transformation τ−1.

This is a useful transformation since most of the times the variables in the program

have non-square transformations and the user is spared of �nding the inverse of

the transformation that they want to apply.

14

Chapter 4

Code Generator

In this chapter we �rst illustrate the code generation with an example. Later,

we describe the framework and how the core code generator is implemented, and

explain how various extensions are constructed.

4.1 An example : Forward Substitution

Let us consider the alphabets program shown in Figure 4.1. It describes the equa-

tions to solve a lower triangular system of equations using the well known forward

substitution algorithm. Let us say that we want to generate fully sequential C

code from this program. We must specify to the generator, a fully sequential

schedule for each variable. For this example, we choose the sequential schedule for

the variable x to be (i → i, i) indicating that the i − th value of x is computed

at the (2-dimensional) time instant (i, i) . Similarly, we choose the schedule for

the variable S to be (i, k → k, i). In addition, the code generator must be given

a �memory spec�, namely the memory address to which the local variables in the

program are allocated. For our example, let us assume that this choice for the

variable S is (i, k → i) which implies that a single dimensional array will be used

to store the 2-dimensional set of values that will be computed in the program.

The output of our code generator is shown in 4.2, each of whose components

15

are explained below.

affine FS_serialized {n | n>1} // Size Parameters

given

float L {i,k| 0<i<n && 0<=k<i}; // Input Matrix

float b {i| 0<=i<n}; // Input Vector

returns

float x {i| 0<=i<n}; // Output Vector

using

float S {i,k| 0<=i<n && -1<=k<i}; // Local variable for summation

through

// List of equations

x[i] = case

{| i==0} : b[i];

{| i>0} : S[i,i-1];

esac;

S[i,k] = case

{|k==-1} : b[i];

{|k>-1} : S[i,k-1] - L[i,k]*x[k];

esac;

. // Period terminated

Figure 4.1: Forward-Substitution alphabets program

16

//INCLUDE Section
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <limits.h>
#include <float.h>
#include<omp.h>

#define bool int
#define true 1
#define false 0

// MACRO section
#define MAX(x,y) ((x)>(y) ? (x) : (y))
#define max(x,y) ((x)>(y) ? (x) : (y))
#define MIN(x,y) ((x)>(y) ? (y) : (x))
#define min(x,y) ((x)>(y) ? (y) : (x))
#define CEILD(n,d) (int)ceil(((double)(n))/((double)(d)))
#define ceild(n,d) (int)ceil(((double)(n))/((double)(d)))
#define FLOORD(n,d) (int)floor(((double)(n))/((double)(d)))
#define floord(n,d) (int)floor(((double)(n))/((double)(d)))
#define CDIV(x,y) CEILD((x),(y))
#define FDIV(x,y) FLOORD((x),(y))
#define LB_SHIFT(b,s) ((int)ceild(b,s) * s)
#define MOD(i,j) ((i)>=0 ? (i)%(j) : (j-1)-((-(i))%(j)))
#define RADD(x,y) ((x)+=(y))
#define RMUL(x,y) ((x)*=(y))
#define RMAX(x,y) ((x)=MAX((x),(y)))
#define RMIN(x,y) ((x)=MIN((x),(y)))

 // Parameter checking
 if (!(((n)>=2))) {
 printf("The value of parameters are not vaild.\n");
 exit(-1);
 } Parameter Checking

// Memory macros
#define _v_L(i,k) _mem__v_L((i),(k))
#define _mem__v_L(i,k) _ary_L[((i)*(((n-2)+1))+(k))]
#define _v_b(i) _mem__v_b((i))
#define _mem__v_b(i) _ary_b[((i))]
#define _v_x(i,newVar__0) _mem__v_x((i))
#define _mem__v_x(i) _ary_x[((i))]
#define _v_S(i,k) _mem__v_S((k))
#define _mem__v_S(i) _ary_S[((i-(0)))]

// Global Variables
static float *_ary_L;
static float *_ary_b;
static float *_ary_x;
static float *_ary_S;

Memory Macros
&

Global Variables

Preamble

void FS_serialized(int n, float *L, float *b, float *x)
{
 // Assign input/output to global variables.
 _ary_x = x;
 _ary_L = L;
 _ary_b = b;

Function Signature
and

Assignment to Globals

 // Memory allocation for locals.
 _ary_S = (float *)malloc((((n-1)-(0)+1)*((n-2)-(-1)+1))*sizeof(float));
 if (_ary_S == NULL) {
 printf("Fail to allocate memory for _ary_S. size:%d\n",
 (((n-1)-(0)+1)*((n-2)-(-1)+1))*sizeof(float));
 exit(-1);
 }

Memory Allocation for locals

// Define statements
 #define S1(z1,z2) _v_S(z1,z2) = _v_b((z2))
 #define S2(z1,z2) _v_S(z1,z2) = (_v_S((z1)-1,(z2)))-((_v_L((z2),(z1)))*(_v_x((z1),(z1))))
 #define S3(z1,z2) _v_x(z1,z2) = _v_b((z1))
 #define S4(z1,z2) _v_x(z1,z2) = _v_S((z1)-1,(z1))

Define Statements

 #undef S4
 #undef S3
 #undef S2
 #undef S1

 // Memory free for locals.
 free(_ary_S);
}
// Memory unmacros
#undef _v_L
#undef _mem__v_L
#undef _v_b
#undef _mem__v_b
#undef _v_x
#undef _mem__v_x
#undef _v_S
#undef _mem__v_S

 int z1, z2;

 for(z1=-1;z1 <= -1;z1+=1){
 for(z2=0;z2 <= n-1;z2+=1){
 S1(z1,z2);
 }
 }
 for(z1=0;z1 <= 0;z1+=1){
 for(z2=0;z2 <= 0;z2+=1){
 S3(z1,z2);
 }
 for(z2=1;z2 <= n-1;z2+=1){
 S2(z1,z2);
 }
 }
 for(z1=1;z1 <= n-2;z1+=1){
 for(z2=z1;z2 <= z1;z2+=1){
 S4(z1,z2);
 }
 for(z2=z1+1;z2 <= n-1;z2+=1){
 S2(z1,z2);
 }
 }
 for(z1=n-1;z1 <= n-1;z1+=1){
 for(z2=n-1;z2 <= n-1;z2+=1){
 S4(z1,z2);
 }
 }

Computations

Epilog

Figure 4.2: Blocks in the output program

4.1.1 Preamble

The preamble consists of the necessary include statements and some common

macro de�nitions. Of these, most are pretty standard. The special ones are �accu-

mulation� macros for reduction operators in Alpha, and are de�ned as follows.

#define RADD(a,b) (a) += (b)

17

#define RMUL(a,b) (a) *= (b)

#define RMIN(a,b) (a) = MIN((a),(b))

#define RMAX(a,b) (a) = MAX((a),(b))

4.1.2 Memory Macros & Global Variables

Memory macros are de�ned to access the physical memory allocated for the Al-

phabets variables. For each variable in AlphaZ, two macros are de�ned. The �rst

macro maps the iteration domain of the variable to its memory domain. The sec-

ond macro maps points in the memory domain to a physical memory address. The

macros produced for the FS example program are as follows.

// Memory macros

#define _v_L(i,k) _mem__v_L((i),(k))

#define _mem__v_L(i,k) _ary_L[((i)*(((n-2)+1))+(k))]

#define _v_b(i) _mem__v_b((i))

#define _mem__v_b(i) _ary_b[((i))]

#define _v_x(i,newVar__0) _mem__v_x((i))

#define _mem__v_x(i) _ary_x[((i))]

#define _v_S(i,k) _mem__v_S((k))

#define _mem__v_S(i) _ary_S[((i-(0)))]

In addition to these macros, and for compatibility with the code generators,

that produce the default, demand driven code, a list of static global declarations

for all the variables in the program is also produced. These act as the global

pointers for the input and output variables. The local variables will be allocated

memory using these declarations.

18

4.1.3 Function Signature and Assignment to Globals

The function name is the same as the system name of the alphabets program. The

signature consists of all the parameters, input variables and the output variables.

The signature for the FS example program is as follows.

void FS_serialized(int n, float *L, float *b, float *x)

The input and output variables have to be assigned to the previously declared

static global pointers.

4.1.4 Parameter checking

An Alphabets program has a parameter declaration and hence generated C func-

tion is called must verify that the value of the size parameters passed as arguments

are legal, i.e., satisfy the constraints of this parameter domain declared in the Al-

phabets program. For our example, the following code is generated for parameter

checking.

// Parameter checking

if (!(((n)>=2))) {

printf("The value of parameters are not vaild.\n");

exit(-1);

}

4.1.5 Memory allocation for locals

Memory for the local variables are allocated using the malloc system call. It allo-

cates a 1-dimensional array for all variables and the previously generated memory

macros ensure that the references in the later code are correct. In our example,

the variable S is a local variable. The code produced will be the following.

19

// Memory allocation for locals.

_ary_S = (float *)malloc((((n-1)-(0)+1))*sizeof(float));

if (_ary_S == NULL) {

printf("Fail to allocate memory for _ary_S. size:%d\n",

(((n-1)-(0)+1))*sizeof(float));

exit(-1);

}

4.1.6 De�ne statements

An Alphabets program consists of a set of normalized equations, where each equa-

tion has a set of clauses, each of which can be viewed as a �domain-guarded�

expression. The next part of the generated C code is a set of statements, one

for each clause of each equations. For our FS example, the following statement

de�nition macros are produced.

// Define statements

#define S1(z1,z2) _v_S(z1,z2) = _v_b((z2))

#define S2(z1,z2) _v_S(z1,z2) =

(_v_S((z1)-1,(z2)))-((_v_L((z2),(z1)))*(_v_x((z1),(z1))))

#define S3(z1,z2) _v_x(z1,z2) = _v_b((z1))

#define S4(z1,z2) _v_x(z1,z2) = _v_S((z1)-1,(z1))

In the produced code we can notice that for every case expression of the vari-

ables x and S in the alphabets program, we have a corresponding statement macro.

4.1.7 Computations

This part of the code produced consists of a set of loops in which the statements are

executed and constitutes the actual computation of the program. The generated

20

loops for our FS example program is the following.

int z1, z2;

for(z1=-1;z1 <= -1;z1+=1){

for(z2=0;z2 <= n-1;z2+=1){

S1(z1,z2);

}

}

for(z1=0;z1 <= 0;z1+=1){

for(z2=0;z2 <= 0;z2+=1){

S3(z1,z2);

}

for(z2=1;z2 <= n-1;z2+=1){

S2(z1,z2);

}

}

for(z1=1;z1 <= n-2;z1+=1){

for(z2=z1;z2 <= z1;z2+=1){

S4(z1,z2);

}

for(z2=z1+1;z2 <= n-1;z2+=1){

S2(z1,z2);

}

}

for(z1=n-1;z1 <= n-1;z1+=1){

for(z2=n-1;z2 <= n-1;z2+=1){

S4(z1,z2);

}

}

4.1.8 Epilog

This block of the code produced consists of unde�ne statements, memory free for

locals and memory unmacros. The unde�ne statements consists of a list of unde�ne

macros for the statement macros generated earlier. This keeps the macros local

to this function and will not have any con�icts if some macros with same name

are de�ned in the application in which this program is plugged into. The memory

free for locals contains a list of free statements for all the local variables declared.

The memory unmacros contains the unde�ne macros for all the memory macros

declared earlier.

21

4.2 Framework

4.3 shows the code generator framework in our AlphaZ system. Now we will

describe how each of the code fragments described above is produced by our core

code generator. Many of the sections are straightforward, and obvious to generate,

so we will focus on Statement & Domain Collector, Loop Generator, Statement

Pretty Printer and Memory Access Generator.

22

Statement
Pretty Printer

Memory Access
Generator

Code Generator
Framework

Statement & Domain
Collector

Loop
Generator

Pre-Processing

Generated Code

Preamble

Alphabets Program Target Mapping specification

Figure 4.3: Code generator framework.

4.2.1 Statement & Domain Collector

Statement & Domain Collector is a visitor that visits all the equations in the

program and collects the statements and the corresponding context domains. The

23

algorithm it uses is as follows.

Algorithm 1

Input : A list of equations.
Output: Two separate list of statements and domains.
For each branch of each expression in the program,
1. let var be the variable on the lhs of the equation, and expr be the sub-expression
corresponding to this branch (either a child sub-expression of the restrict expression
or the sub-expression itself)
2. Construct a statement of the form,

var(z) = expr;

where z is a point in the domain of the expression.
3. Store the above constructed statement in a list.
4. Find the context domain of the expr node and store it in a second list.

4.2.2 Loop Generator

The Loop Generator produces a set of loops that constitutes the computation

in the program. The loops are generated using a tool called ClooG [1]. The

Algorithm 2 explains how the loops are produced using ClooG. ClooG allows us to

specify a scanning order to follow using scattering functions. In our code generator

framework, we provide identity as the scattering function. The Loop Generator

takes a list of domains and a full order list as input. The full order list speci�es a

total ordering between the variables.

24

Algorithm 2

Input : A list of domains and the full order list.
Output: A set of loops.
1. Construct the ClooG input, for every variable var in the full order list,
1.1. Add the context domain information for each statement of the variable var
to the input.
1.2. Construct an identity scattering function for each context domain added and
add the scattering function to the input.
1.3. Include the necessary information about the language used, index names,
parameters etc in the input.
2. Call ClooG with the input to generate a set of loops which corresponds to the
computations.

4.2.3 Statement Pretty-Printer

The Statement Pretty-Printer constructs a set of macros which map a statement

to a statement number and set of macros which unde�nes the same.

Algorithm 3

Input : A list of statements and the full order list.
Output: Two set of macros to map statement to a statement number and unmap
the same.
For every variable var in the full order list,
1. Construct a macro of the form,

#define Sn(z) var(z) = expr;

where, Sn denotes the statement number.
2. Construct one more macro of the form,

#undef Sn

4.2.4 Memory Access Generator

Memory Access Generator constructs memory macros that de�ne access to the

physical memory allocated for the Alphabets variables. For each variable in the

alphabets program, two macros are de�ned. The �rst macro maps the iteration

25

domain of the variable to its memory domain. The second macro maps points in

the memory domain to a physical memory address.

If a schedule is speci�ed for the alphabets variable and the schedule is applied as

a transformation. The transformation transforms all the output and local variables

to a common space-time co-ordinate iteration space, the domain of the memory

access function has the same number of dimensions as the number of space and

time coordinates. This index point must be transformed to derive the index point

in the original variable declaration. In order to do that, We take the inverse of the

transformation applied to the variable and then compose it with its memory map

function.

In our example for the variable S, the transformation applied is (i, k → k, i)

whose inverse is (k, i→ i, k), and the given memory map function is also identity

(i, k → i). Therefore the macro is

_var_S(i,k) mem_v_S((k))

The input variables are not transformed to a common co-ordinate space and

the memory map function for input variables is always identity.

The physical memory for every n-dimensional array variable is allocated as a 1-

dimensional array. Therefore the memory access functions for all variables should

now be a memory access function to this allocated memory, using a standard

doping vector as given by the second memory macro.

For our example, the variable S, the macro is given below, and requires the

code generator to determine the bounding box of the image of the variable domain

by the �rst memory macro.

#define mem_v_S(i) _ary_S[((i-(0)))]

26

4.3 Scheduled code generator

The input for this code generator module is an equational program, a target map-

ping (TM) and a full order list. The output of this code generated is a C code

which follows the given schedule and the memory allocation. The TM speci�es the

time-processor transformation, memory speci�cation, tiling speci�cation and full

order list. If the TM is given, the code generator module �rst invokes the Veri-

�er which checks for the legality of the schedule, processor and memory allocation

maps. The veri�er is a module which is independent of the code generator, and

outside the scope of this thesis.

The time-processor (TP) component of the TM is used to transform the do-

mains of all the variables in the program so as to align them into a single, common

coordinate space. In this new space, all variables have the same number of dimen-

sions, equal to the number of dimensions of the combined schedule and processor

allocation, thus providing a one-to-one mapping between a T-P dimension and the

eventually generated loop index. This transformation also aligns each time and

processor dimension to a distinct axis. This corresponds to the Pre-Processing

module of the code generator framework. The alignment step is independent of

the Veri�er, and the subsequent code generator modules are easily implemented

as sophisticated �pretty-printer�. The variables with reductions are handled di�er-

ently, as explained in the Chapter 5.

This code-generator produces loop programs which execute the computations

in the order speci�ed by the schedule component of the TM. It is used as the

base engine for other code generators that produce parallel codes for di�erent

target architectures. This code generator reuses a number of modules from the

demand driven code generator [7]. The demand driven code generator is a code

generator that produces executable code for any legal Alphabets program without

27

any additional information like TM and full order list etc. The Statement &

Domain Collector module which eventually produces drastically di�erent code,

has an almost identical visitor structure with that of the demand driven code

generator. One di�erence between the two is in handling reductions, where the

scheduled code generator allows the TM to specify the speci�c order of individual

accumulations in a reduction, whereas, the demand driven code considers reduction

as atomic, and implements it with a loop. Because of this, a minor modi�cation

is required in Statement & Domain Collector and the Statement Pretty Printer to

handle reductions. These modi�cations are explained in the Chapter 5.

4.4 Shared Memory Parallel code generator

The next code generator that we have developed using the same framework is

the shared memory parallel code generator which is an extension of the scheduled

code generator. This code generator generates parallel programs using OpenMP

and is therefore limited to shared memory architectures. The inputs for this code

generator are a TM with a parallel schedule, synchronizations (speci�ed as special

�synchronization domains� which are eventually treated as special local variables)

and the loop types for every index. The loop types specify whether the loop

corresponding to an index is a parallel or a time loop. This code generator is a

simple extension of the scheduled code generator and the extensions are adding

OpenMP pragmas for specifying parallel loops and synchronizations. The output

from the Loop Generator module is post processed to add parallel pragmas, and

the Statement Pretty Printer is modi�ed to support synchronizations.

It generates parallel code corresponding to the given parallel schedule. The

user can specify a schedule where parallel and time loops are interleaved by giving

the order of parallel and time loops in the loop types. The necessary changes to

28

support this code generator are divided into two parts, Handling synchronization

and Post-processing.

4.4.1 Handling synchronization

In an OpenMP program, we may need to insert barrier synchronizations at certain

points to ensure legality. These synchronizations can be deduced automatically

by the veri�er and it is given to the code generator as a list of synchronization

domains which are eventually added as special local variables in the program.

These variables will have a domain in which they are to be executed and are also

given a TM of their own to place them in the transformed iteration domain of the

program (after applying CoB transformation). The equations for these variables

are de�ned to be dummy that has a dependency on themselves.

The process of generating the statements for these synchronization variables is

same as for any other variable in the program. The only place where it is di�erent is

while pretty printing the statements in the Statement Pretty Printer module of the

code generator framework. The statements corresponding to the synchronization

variables are changed to the following

#define Sn(z) #pragma omp barrier

where Sn is the statement number and z is any point in the domain.

4.4.2 Post-processing

The loop type for each index is speci�ed as an input for the code generator. This

loop type tells us whether a loop corresponding to an index is a time loop or

a parallel loop. This information is needed to modify the ClooG output. The

ClooG AST which is called CLAST is modi�ed by inserting the necessary OpenMP

29

pragmas using a simple visitor which prints the CLAST. This is done in the Post-

Processing module of the code generator framework. The algorithm to insert the

necessary pragma is given in Algorithm 4.

Algorithm 4 Inserting OpenMP pragmas
Input : A set of loops and loop type.
Output : A set of loops with necessary annotations.
Insert #pragma omp parallel default(private) for the entire computation.
For every for-loop,
1. Find the index name i.
2. If i is speci�ed to be parallel in loop type then,
3. Insert #pragma omp for before the for statement.
4. And also insert #pragma omp parallel shared ψ after the for statement for
the entire section of code inside the for-loop
where ψ is the set of all index variable names of the for-loops encountered before
this for-loop and the set of program parameters.
end

30

Chapter 5

Handling Reductions

In this chapter, �rst we illustrate how reductions are handled with an example.

Later we describe what is a reduction, constraints on the reductions that the

code generator can handle (all of which can be satis�ed by appropriately pre-

processing the input program), the details of this pre-processing, and how the

code is generated for the reductions in the scheduled code generators and how to

handle the nested reductions in a program.

5.1 An example

affine MMM {N|N>0}

given int A,B {i,j | 0<=i<N && 0<=j<N};

returns int C {i,j | 0<=i<N && 0<=j<N};

through

C = reduce(+, (i,j,k->i,j), (i,j,k->i,k)@(A)*(i,j,k->k,j)@(B));

.

Figure 5.1: Matrix-Matrix Multiplication with reduction.

31

affine MMM {N|N>0}

given int A,B {i,j | 0<=i<N && 0<=j<N};

returns int C {i,j | 0<=i<N && 0<=j<N};

using int tempC {i,j,k | 0<=(i,j,k)<N};

through

tempC[i,j,k] = A[i,k] * B[k,j];

C = reduce(+, (i,j,k->i,j),

tempC[i,j,k]));

.

Figure 5.2: Matrix-Matrix Multiplication after pre-processing.

Consider the example in 5.1 with a schedule (i, j, k → k, i, j) for the expression

body inside the reduction of the variable C. The pre-processing introduces a tempo-

rary variable tempC. The right hand side of the equation for the variable tempC is

the expression inside the reduction. The expression inside the reduction is replaced

by an access to the variable tempC. The program after pre-processing is shown in

5.2 (left). The domain of the temporary variable is the cube in 5.2 (right). The

tempC variable has the TPSpec of the variable C, since the TPSpec for the vari-

able corresponds to the expression body inside the reduction. The �nal statement

for the variable C when the code is generated is

RSUM(C[i,j], A[i,k]*B[k,j]);

where RSUM(a,b) is a += b;

The code generated for the computation in our example is shown in 5.3.

32

// Define statements

#define S1(z1,z2,z3) RADD(_v_C((z2),(z3)),(_v_A((z2),(z1)))*(_v_B((z1),(z3))))

int z1, z2, z3;

for(z1=0;z1 <= N-1;z1+=1){

for(z2=0;z2 <= N-1;z2+=1){

for(z3=0;z3 <= N-1;z3+=1){

S1(z1,z2,z3);

}

}

}

#undef S1

Figure 5.3: Computation for Matrix-Matrix Multiplication.

5.2 Reductions

Reduction in the Alpha language is an accumulation of values along a projection

based on the associative and commutative binary operator over the domain of the

expression body. It consists of a operator which is both associative and commuta-

tive, a projection function and an expression. The syntax of reduce expression in

alphabets is:

reduce(⊕, (z → f(z)) , Expr)

where⊕ is a commutative and associative operator, z is any point in the domain

of the expression body, f is the projection function, Expr is the expression body

of the reduction.

The value of the reduction at any point z, is obtained by applying the asso-

ciative and commutative operator ⊕ to the values of Expr at all the points in the

domain of Expr along the projection f .

Reductions are important since it is very easy to write a program with reduction

expressions instead of a serialized program. In most of the languages which support

reductions, the high level reduction abstraction is removed during the compilation

process and most compilers do it pretty soon. In our system, we delay it as much

33

as possible, and the user never has to do the serialization but instead our code

generators do it by taking a schedule for the reduction.

In the example 5.1 the associative and commutative operator is addition (+),(i, j, k →

i, j) is the projection function and A[i, k] ∗ B[k, j] is the expression inside the re-

duction.

5.3 Constraints on input programs

Our code generator imposes the following constraints on the input program with

respect to reductions.

1. If there is a reduction, the reduction expression should be the only expression

on the right hand side of an equation.

2. Every reduction thus de�ned should have a time-processor speci�cation

(TPSpec) for the expression body inside the reduction. This TPSpec describes the

time and processor allocation for the body of the reduction, not for the result.

3. The answer variables into which the reductions are �nally accumulated, are

assumed to be appropriately initialized elsewhere in the generated code.

In our example, we cannot produce code as shown in 5.3 without specifying

a schedule for the expression body inside the reduction and therefore, the second

constraint is important. We specify a schedule for the expression body inside the

reduction by specifying a schedule for the variable C.

5.4 Pre-Processing to handle reductions

In order to generate code from an alphabets program with reductions, some pre-

processing is done to the program. This pre-processing is not seen by the user in

the produced code.

1. For every reduction, the expression inside each reduction is replaced by a

34

temporary variable. The domain of the temporary variable is the context domain

of the original reduction body expression.

2. The TPSpec for the temporary variable is the TPSpec of the reduction body

expression.

3. Collect the information about the variables with reductions. Information

like the temporary variables added to replace the expression inside the reduction,

the projection function, the reduction operator etc are needed when modifying

the statements for the variables with reductions without going through the visitor

framework again.

Since the TPSpec is given to the expression body inside the reduction, the

expression body has to be transformed to the common iteration domain based on

the TPSpec. We cannot apply the transformation on the expression body of a

reduction, therefore we separate the expression body of reduction and introduce a

temporary variable. Then, we assign the TPSpec of the original expression body

to the temporary variable. Now this temporary variable can be treated as any

other variable and the transformation is applied and the statements are generated

for the same temporary variable.

In our example, the temporary variable introduced is tempC and the TPSpec

for this variable is same as the TPSpec of the expression body inside the reduction

which is (i, j, k → k, i, j).

5.5 Code generation for Reductions

Once the pre-processing is done to the program. The change of basis transforma-

tion (CoB) constructed by taking the time-processor speci�cation (TPSpec) of the

TM is applied to all the variables except the variables which have reduction. Since

the variables with reduction have a TPSpec associated to the expression body

35

inside the reduction and the CoB transformation is applied to the temporary vari-

able introduced, there is no need to apply the CoB transformation to the variable

with the reduction. The CoB transformation is not applied to the variable which

has reduction because the transformation is given only to the expression inside

the reduction. While collecting the statements, the statements for the variables

with reductions are neglected. Now, before generating the actual statements from

the collected statements, we modify the statements for the temporary variables

which are introduced to replace the expression inside the reductions. Algorithm 5

explains how the statements that are generated for the temporary variables are

modi�ed to generate the new statements for the variables with reduction.

36

Algorithm 5

Input : A list of statements for the temporary variables temp, introduced to replace
the expression body of the reductions.

temp[τ(z)] = expr;

where τ is the change of basis transformation.
Output: A list of statements for the variables with reductions.

op(var[γ(z)], expr);

For every variable var with reduction,
1. Find the left inverse in context of the change of basis transformation (τ) for the
expression body inside the reduction.
2. Compose τ−1 with the projection function f to form a function γ = f ◦ τ−1.
3. Construct the variable expression var[γ(z)] with γ as the access function on the
domain of the expression body of the reduction.
4. Now, construct a statement

op(var[γ(z)], expr);

where z is any point in the domain of the expression body of the reduction, op
corresponds to any of the commutative and associative operator RSUM , RMUL,
RMIN , RMAX. etc as given in the reduction operator of a reduction and the
expr is the right hand side of the statement of the temporary variable temp.
Remove the list of statements for the temporary variable from the list of statements
and insert the list of above constructed statements for the variables with reduction.

5.6 Nested Reductions

If a program has reductions, as explained earlier we require a time-processor speci-

�cation (TPSpec) for the expression body inside the reduction given as the TPSpec

of the result variable. We then separate the expression body by introducing a tem-

porary variable. This temporary variable is transformed based on the TPSpec of

the expression body inside the reduction. Then we store the result of this tem-

porary variable in the variable with reduction. If we have a program with nested

reductions or reduction combined with another expression in an equation, the cur-

37

rent AlphaZ system does not provide support for giving the TM for a reduction

itself. Therefore, the scheduled code generators in AlphaZ cannot handle these

type of programs. Consider the program in 5.4. Since we can give TPSpec for only

one expression body of a reduction, we have to write the program such that the

program meets the constraints with respect to reductions. In order to do the same,

we have a simple pre-processing step called NormalizeReductions. The example

program after NormalizeReductions is shown in 5.5.

affine product {N | (N)>0} // Parameters

given // Input Matrices

float A, B, C {i, k | 0<=i<N && 0<=k<N};

returns // Output Matrix

float D {i, j| 0<=i<N && 0<=j<N};

through // List of equations

D[i,j] = reduce(+, [k], reduce(+, [], B[i,k] * C[k,j]) * A[k,j]);

.

Figure 5.4: Nested Reductions example.

affine product {N | (N)>0} // Parameters

given // Input Matrices

float A, B, C {i, k | 0<=i<N && 0<=k<N};

returns // Output Matrix

float D {i, j| 0<=i<N && 0<=j<N};

Using // Local Variables

float AlphaZTempRed {i, j | 0<=i<N && 0<=j<N};

through // List of equations

AlphaZTempRed[i,j] = reduce(+, [k], B[i,k] * C[k,j]);

D[i,j] = reduce(+, [k], AlphaZTempRed[i,k] * A[k,j]);

.

Figure 5.5: Nested Reductions after Normalization.

NormalizeReductions replaces reductions within another reduction with a ref-

erence to a new local variable. The transformation will �atten nested reductions to

a single nest of reductions per each equation. This transformation is useful when

there are nested reductions or when a reduction occurs in an expression along with

38

other expressions. It replaces the reduction in such cases by declaring a local vari-

able. Now the local variable has reduction as the only expression for its equation.

It follows the following steps.

1. For every reduction in the program, it checks if this is the only expression

on the right hand side of an equation of a variable. If so, do nothing.

2. If it is not the only expression on the right hand side of an equation, then

introduce a local variable in the program. The domain of the local variable is the

context domain of the reduction expression.

3. The equation for the local variable is the reduction expression and therefore

it is the only expression in the equation of the local variable.

4. Replace the occurrence of the reduction with the local variable.

39

Chapter 6

Conclusion and Future work

We have described the design and implementation of code generator framework in

the AlphaZ system. We have developed two code generators in this framework,

the scheduled code generator and the shared memory parallel code generator. We

have also described its modularity by showing how other code generators can be

easily implemented in this framework by extending the current ones.

Our code generators takes an Alphabets program and produce a sequential or

OpenMP parallel C code which can be plugged into the application and executed

without any changes. The code generators that have been developed supports

a schedule for the expression inside the reduction, which now need not follow a

sequential schedule all the time.

The shared memory parallel code generator takes a schedule and processor

allocation where both the sequential and parallel loops are interleaved. Most of the

parallel codes that are written are outer time/sequential loops and inner parallel

loops which are �ne grained parallel code. Since our shared memory parallel code

generator can handle a time-processor speci�cation where the time and parallel

loops are not necessarily inner time and outer parallel, it can be used to experiment

with any combination of time and parallel loops to see which of them produce

e�cient parallel code. The parallel code can be either coarse grained or �ne grained

40

parallel code depending upon the schedule and processor allocation. This helps

us in understanding the architecture that the code is produced for and we can

automate the process of �nding a good schedule which eventually produces e�cient

code.

6.1 Future work

6.1.1 Initialization of the reduction

Our code generators currently assume that the initialization of the variable with

reduction is done prior to the call to the code generators. In order to get rid of

this assumption, we need to initialize the initial values in the code generator itself.

The initialization should occur when the memory is accessed for the �rst time in

the program. The algorithm to �nd the �rst point where it is written is given in

the Algorithm 6. Here z′ represents any point in the domain of the variable v.

Algorithm 6 Initializing a reduction variable.
For every variable v with reduction,
Construct a polyhedron with the parameters P & z′ and with the context domain
of the expression (domexpr) of the reduction as the domain of the polyhedron.
where z′ = f ◦ τ−1(z) where f is the projection function, τ is the CoB transfor-
mation applied and z is any point in the domain of the reduction expression.
With this polyhedron, take the loop types given by the user as the cost function
and make a call to the PIP library to �nd a set of points which are lexicographically
minimum in the given polyhedron.
These set of points are the points where the initialization should be done.
For these points and construct a initialization statement,

v[f ◦ τ−1(z)] = expr;

Now, take the domain of these set of points and subtract it with the domexpr to
get the domain of the remaining accumulation.
Construct a statement for this new domain as explained in handling reductions,

op(v[f ◦ τ−1(z)], expr);

41

6.1.2 Handling Multiple Reductions

If there exists a equation for a variable which has a binary expression with two

reductions with the same binary operator between the reductions as the operators

inside the reductions, We can optimize the memory such that they can use the same

physical memory. Currently, because of the �rst constraint in the reduction that

is, If a reduction occurs in the program, reduction expression should be the only

expression in the equation; this optimization cannot be performed. We can allow

such equations and handle them as explained in the Algorithm 7. The initialization

should be done on only one of the reduction based on the schedule. The reduction

with the schedule which is earlier than the other will be chosen to initialize.

Algorithm 7 Handling multiple reductions.
For every variable X with multiple reductions,

X = reduce(op, f1, expr1) op reduce(op, f2, expr2)

introduce temporary variables temp1X and temp2X , where

temp1X [τ1(z1)] = expr1;

temp2X [τ2(z2)] = expr2;

after applying the CoB transformation, replace the above statements with

op(X[f1 ◦ τ−11 (z1)], expr1);

op(X[f2 ◦ τ−12 (z2)], expr2);

where z1& z2 are any point in the domain of the expr1 and expr2, op corresponds
to any of the commutative and associative operator SUM , MUL, MIN , MAX.
etc as given in the reduction operator of a reduction, f1& f2 are the projection
functions and τ1& τ2 are the change of basis transformation that is applied (time-
processor speci�cation of the variable).

42

6.1.3 Migrating to MDSE

Model-driven software engineering (MDSE) is a software development methodology

which focuses on creating models, or abstractions, more close to some particular

domain concepts rather than computing (or algorithmic) concepts. It increases

productivity by maximizing compatibility between systems, simplifying the process

of design, and promoting communication between individuals and teams working

on the system. Hence, we are adopting MDSE methodology in our development of

the AlphaZ system. Currently, tiled code generators are written using MDSE and

the code generators described in this thesis will also be migrated soon.

43

REFERENCES

[1] C. Bastoul. Code generation in the polyhedral model is easier than you think.
pages 7�16, 2004.

[2] U. Bondhugula, J. Ramanujam, and P. Sadayappan. Pluto: A practical and
fully automatic polyhedral parallelizer and locality optimizer. Technical Re-
port OSU-CISRC-10/07-TR70, The Ohio State University, October 2007.

[3] A. Cohen, S. Girbal, and O. Temam. A polyhedral approach to ease the
composition of program transformations. pages 292�303, 2004.

[4] P. Feautrier. Data�ow analysis of array and scalar references. International

Journal of Parallel Programming, 20, 1991.

[5] G. Gupta. Corequations. http://www.corequations.com/.

[6] C. IRISA. The MMAlpha environment.

[7] D. Kim. Code generation from polyhedra, 2005.

[8] H. Le Verge. Reduction operators in alpha. In PARLE '92: Proceedings of the

4th International PARLE Conference on Parallel Architectures and Languages

Europe, pages 397�411, London, UK, 1992. Springer-Verlag.

[9] C. Mauras. Alpha: un langage équationnel pour la conception et la program-
mation d'architectures parallèles synchrones. 1989.

[10] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G. Silber, and N. Vasilache. Graphite:
Polyhedral analyses and optimizations for gcc. page 2006, 2006.

[11] L. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, and P. Sa-
dayappan. Hybrid iterative and model-driven optimization in the polyhedral
model. Technical Report 6962, INRIA Research Report, June 2009.

[12] D. K. Wilde. The alpha language. Technical report.

44

