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ABSTRACT

The geostrophic adjustment process in a compressible atmosphere
with arbitrary vertical stratification is studied as an initial value
problem. The governing equations are the adiabatic quasi-static equa-
tions on an f-plane linearized about a motionless basic state. A
rigid 1id upper boundary condition is assumed which permits the use of
a discrete eigenfunction expansion in the vertical. Using Fourier
transforms ir the horizontal a general solution is obtained for both
the transient and final states.

The general solution is evaluated for several simple experiments
with axisymmetric initial conditions in the mass and vorticity fields
which have harizontal variations on the tropical cloud cluster scale.
These experiments assume a basic state characterized by constant static
stability in log-pressure coordinates and a Coriolis parameter corre-
sponding to 20°N latitude. Results are presented which illustrate the
nature of the transient adjustment process. Comparison of the initial
and final states indicates that the inclusion of vertical structure
does not alzer the basic conclusion from previous barotropic studies
that in the tropics the mass field tends to adjust to the wind field.
However, it is found that the extent of this adjustment depends strongly
on the vertical structure of the initial conditions. These results are
interpretec in terms of the projection of the initial conditions onto

the vertical modes.
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1. INTRODUCTION

A fundamental feature of the tropical atmosphere is that it is con-
tinually being perturbed away from a quasi-balanced state by sources
and sinks of energy and momentum such as radiation, the release of la-
tent heat in clouds and momentum mixing by convective scale motions.

The atmosphere responds to such perturbations by developing gravity-
inertia waves which carry away enefgy and momentum and leave behind a
state of approximate pressure-wind balance. In a linearized model
where the final balanced state is geostrophic this process is known as
geostrophic adjustment. The objective of this research is to study the
geoétrophic adjustment process as it occurs in a stratified atmosphere.

As indicated in the comprehensive review of the subject by Blumen
(1972), the geostrophic adjustment problem has been studied extensively.
Rossby (1938) first considered the relationship between the initial
unbalanced and final balanced states of a simple one-dimensional current
system in an incompressible fluid. His work was later refined by
Mihaljan (1963), who derived exact expressions for the solution and
energetics, and extended by Cahn (1945), who considered the linear
transient aspects of the problem. Obukhov (1949) first treated the
adjustment of two-dimensional barotropic flows, obtaining results for
both the transient and final adjusted states. Other investigations of
the adjustment problem since these initial studies have included con-
sideration of the effect of a variable Coriolis parameter (Geisler and
Dickinson, 1972; Silva Dias and Schubert, 1979), the effect of a
basic flow with horizontal shear (Blumen and Washington, 1969) and the
effects of transient forcing (Paegle, 1978). Recently, Schubert et

al. (1980) have considered the geostrophic adjustment of axisymmetric



vortices and have clarified how the horizontal scale of the initial
perturbation determines the nature and energetics of the adjustment
process.

The studies cited above are primarily barotropic; i.e., they
utilize simple models with Tittle or no vertical structure. In the
real atmosphere, however, initial perturbations may have various ver-
tical structures and gravity-inertia waves can propagate vertically.
Thus the effects of vertical stratification must be considered in
order to more fully understand the adjustment process. Several inves-
tigators have studied this problem. Some (e.g., Monin, 1958; Kibel,
1963) have obtained solutions for certain specified basic states in
terms of Green's functions in three dimensions. Although this approach
yields general solutions, the evaluation and interpretation of these
solutions is quite difficult due to their complexity and hence few
examples have been studied. Other investigations (e.g., Bolin, 1953;
Fjelsted, 1958; Fischer, 1963) have utilized spectral expansions in the
vertical. This spectral approach reduces the so]utiop to a super-
position of solutions of the corresponding barotropic problem (each for
a different depth of incompressible fluid) and thereby simplifies both
the evaluation and the interpretation of the solution. In the past
this approach has been used with basic states consisting of stratified
incompressible fluids and an isothermal compressible atmosphere, and
again only a few examples have been studied.

In this research we extend this spectral approach to study the
geostrophic adjustment of a general stratified atmosphere and present
results which illustrate the important features of the adjustment

process. In chapter 2 we derive a general solution to the problem;



in order to make it mathematically tractable we consider linear pertur-
bations about a basic state at rest. A general spectral expansion is
used in the vertical which allows the consideration of any basic state
stratification and vertical boundary conditions, subject only to the
restriction that the corresponding vertical structure problem be of the
Sturm-Liouville type. The initial value problem for the horizontal
structure is solved by the method of Fourier transforms to obtain
Obukhov's so"ution. 1In chapter 3 the general solution is evaluated for
several simple experiments with axisymmetric initial conditions, using
a basic state with constant static stability in log-pressure coordinates
as a reasonable first approximation to the real atmosphere. Initial
conditions in both the mass and wind fields are studied, concentrating
on the effects of the vertical structure of these initial conditions.
In chapter 4 we discuss the implications of the results of this study

for tropical dynamics and suggest topics for further investigation.



2. GENERAL SOLUTION

In this chapter we derive a formal solution to the problem of
the transient geostrophic adjustment of a compressible atmosphere on
an f-plane. We consider only the case where the vertical structure of
the basic state and the boundary conditions in the vertical give rise
to a countably infinite set of vertical modes with a discrete phase
speed spectrum. In section 2.1 the governing equations are linearized
about a motionless basic state and reduced to a single equation in the
geopotential tendency. The horizontal and vertical structure of the
problem are separated in section 2.2 using an eigenfunction expansion
in the vertical, and the transient solutions for the various field
variables are expressed as superpositions of the resulting horizontal
and vertical structure functions. In section 2.3 the horizontal
structure equation is solved using Fourier transforms. The final
adjusted state is obtained in section 2.4 by solving the potential
vorticity equation.

2.1 Governing equations

We consider the adiabatic motions of an inviscid, compressible
atmosphere in hydrostatic balance on an f-plane. The assumption of
hydrostatic balance, valid for large-scale motions (e.g., Charney,
1948), eliminates vertically propagating acoustic waves and allows the
convenient use of pressure as an independent variable. We choose as

the vertical coordinate the logarithm of pressure

P

% = in {—5"-} ; (2.1)

where p 1is pressure and Po is the constant surface pressure.

Neglecting the horizontal component of the earth's rotation vector
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(Phi11ips, 1966), the horizontal momentum, mass continuity, hydrostatic

and adiabatic thermodynamic equations may be written as

Dv ~
5% + fkxv + Vo = 0, (2.2a)
*
W Ty =0, (2.20)
90
3z% - RT =0, (2.2¢c)
D
cp 51— + RTw* = 0 . (2.2d)

Here t is time, yv=Dx/Dt 1is the horizontal velocity vector, where
X is the horizontal position vector, w*=Dz*/Dt is the "vertical
velocity" in log-pressure coordinates, ¢ 1is the geopotential, T is
the absolute temperature, k is the vertical unit vector, f is the
constant Coriolis parameter, R and cp are the gas constant and
specific heat at constant pressure, respectively, for dry air, V is
the del operator at constant z*, and

D .5

Dt ~ 5t

is the time derivative following the motion.
We now linearize the system (2.2) about a motionless, horizontally
homogeneous basic state. Denoting the basic state quantities by over-

bars we have

v=20,

Wt =0,

— (2.4)
Q_Q(Z*)s

=
1]
—|
—
N
*
~



where ®(z*) and T(z*) are assumed to be specified.

(2.4) satisfy the governing equations (2.2) leads to

which is the hydrostatic relation for the basic state.

turbations from the basic state (2.4) by primes, we write

vix,2*,t) = v'(x,2*,t) ,
w*(x,z*,t) = w*'(x,z%,t) ,
S{x,z*t) = dfz*) + ¢ (x.2t) ,

T{x,2*,t)

~

Substituting (2.6) into (2.2), making use of (2.3) and (2.5) and

T(z*) + T'(x,z*,t) .

\

Requiring that

(2.5)

Denoting per-

(2.6)

assuming that the perturbation amplitudes are small enough so that

products of perturbation quantities may be neglected, we obtain the

linearized system of governing equations

Vv

3t fkxy + Vo' =0 ,

*

39 v &
SwE-RT =0,

ar’; * =
3 + Tw 0

where

T(% LD
r(z*) = dt};; + kT(z*)

is the static stability parameter and k =R/c

dependent variable as follows. Applying the operators (v-

p*
The system (2.7) may be reduced to a single equation in one

(2.7a)

(2.7b)

(2.7¢)

(2.7d)



A

[k« (vx )] to (2.7a) we obtain the divergence and vorticity equations

36 2

at-fC+V<I>'=0 (2.9)
and
9
5% +f5 =0, (2.10)
where
GEV'! (2.-“)
and
z = ke (Vxy) (2.12)

are the horizontal divergence and the vertical component of relative
vorticity, respectively. Eliminating the vorticity z between (2.9)

and (2.10) results in

o+ e+ v |2 =0 . (2.13)
112 3

Eliminating T' between (2.7c) and (2.7d) yields

3 (a3’
3z% {a_t) REEE (2.14)

325 2 2 [ao']

Using this result to eliminate w* in (2.7b) we obtain

0 13 (232" -
[82* - 1] [PT = [at” -8§=0. (2.15)
We can ther use (2.15) to eliminate & in (2.13), obtaining

52 2|| 3 1 3 (50 2 (28

ol T h a—zf”[w a_z*'[?c—]]+v H{} =4 (2.16}

Finally, defining the geopotential tendency X =23%'/3t we can write
the tendency equation (2.16) in the form

32 2ll 2+ 3 [e¥ ax 2
—§+fJe +v% = 0 . (2.17)

9z* | R 9z*



In the following two sections we derive a general solution of (2.17);
the initial and boundary conditions on X(f, z*, t) which are neces-
sary to guarantee the uniqueness of the solution will be discussed as
they naturally arise.

2.2 Solution by eigenfunction expansion in the vertical

The tendency equation (2.17) may be solved by separating the
horizontal and vertical dependence of X(g, z*, t) as follows. First,

we look for solutions of the form
x(%,2*,t) = X(x,t) Z(z*) (2.18)

With this substitution (2.17) becomes

2 -z*
& i 2 P ARSI le &g~
Ltz‘“f]x ¢ dz*{RI‘ dz%| | FLV K X0, (2.19)
which may be written in the form
7%
2 2% 8 [e £ dZ}
V- X i dz% - ‘BT . dz* (2.20)
2
ii§ + f2 X 5
ot

Since the left-hand side of (2.20) is independent of z* while the
right-hand side depends only on z*, both sides must in fact equal
a constant, which we will denote by c'z. In this manner (2.20) yields

two equations: the horizontal structure equation

) ,
%+fzx-c2v2x=o (2.21)
3t

and the vertical structure equation

_Z* _Z*
d [e dz] PO S (2.22)

dz* RT dz* C2



Given the basic state stability profile T(z*) and any suitable
boundary conditions, the vertical structure equation (2.22) forms an
eigenvalue problem with eigenvalue c'2 and eigenfunction Z(z*).

We will refer to Z(z*) as a vertical structure function and ¢ as
the phase speed associated with it; the motivation for the term phase
speed will be clarified below. The set of phase speeds c¢ for which
(2.22) has non-trivial solutions Z(z*) will be referred to as the
phase speed spectrum. As discussed in Appendix A, this set may be
empty, finite, countably infinite or uncountably infinite, depending
on the boundary conditions in the vertical and the vertical structure
of the basic state as expressed by T(z*).

In this sfudy only the case where the phase speed spectrum is
countably infinite will be considered. As a particular example of
this case we consider the following boundary conditions. At the lower
boundary we require that w=0 , where w=Dz/Dt 1is the vertical
velocity in height coordinates and z=9/g is the geopotential height.
If the earth's surface is taken to be flat, this condition should be
applied at z=0 . This is difficult to do in log-pressure coordinates
because in general 2z=0 does not coincide with a z* surface.
Therefore, following Monin (1958) and Siebert (1961), we will apply
the approximate lower boundary condition

w=0 at z*=0 . (2.23)
The validity of the approximation involved in (2.23) was discussed in
some detail by Kibel (1963). An upper boundary condition which re-
flects vertically propagating waves is necessary to guarantee that the
phase speed spectrum be discrete. For concreteness, we choose the

"rigid 1id" condition
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w¥=0 at z*=zT* A (2.24)

where LF is finite. The significance of such an upper boundary con-
dition and its implications for the application of the results of this
study to the real atmosphere will be briefly discussed in chapter 4.
The bdundary conditions (2.23) and (2.24) can be expressed in
terms of yx and then applied to Z as follows. First, w is ex-
pressed in terms of & according to w=(1/g)(D®/Dt) wusing (2.3) and

the resulting expression is linearized to obtain

] da} (2.25)

- — R s
" g [x-+w dz*

Substituting for w* from (2.14) and using the hydrostatic relation
(2.5) reduces (2.25) to the form

1 T oax
SR PR R G CRAN 2.26
V- [x T ] ( )

Then using (2.26) the Tower boundary condition (2.23) may be written as

X

Az* x =0 at z*=20. (2.27)

I
'.l—.

Also, the upper boundary condition (2.24) may be expressed using (2.14)

as

-BZ_* =0 at z* = Z.F' . (2.28)

Finally, substituting from (2.18) for x in (2.27) and (2.28), we see

that Z must satisfy the boundary conditions

dZ

o Z7=0 at z* =0 (2.29)

=il |

and

ég% =0 at z* = LF : (2.30)
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With the static stability TI(z*) specified as a function which is
both positive and continuously differentiable for Oiz*iZT* , the
vertical structure equation (2.22) with the boundary conditions (2.29)
and (2.30) (or any other linear homogeneous boundary conditions) forms
a boundary value problem of the Sturm-Liouville type. This guarantees
(Morse and Fashbach, 1953) that the phase speed spectrum is countably
infinite and that the phase speeds Cp» Cqs +++5 Cps -.. are real and

n

can be ordered as Cp>Cy > e >C > > 0 . The corresponding vertical

structure functions Zn(z*) then satisfy (2.22) for each n ; that is,

d e-Z* dzn e-z*

dz* |RT dz* *cz z =0, n=0,1,2,... . (2.31)
n

In Appendix B it is shown that the Zn(z*) may be made to satisfy the

orthonormal-ty condition

*
z7 :
Z (z*) Z*.(z*) e % dz* = ¢ (2.32)
0 n m mn °’ ’

where the dagger (+) denotes complex conjugation and Smn is the
Kronecker delta. It can also be shown (Titchmarsh, 1962) that the
vertical structure functions form a complete set, in the sense that
any sufficiently smcoth function of z* which satisfies the boundary
conditions (2.29) and (2.30) may be represented as a unique series
combination of the Zn(z*) .

The properties of the vertical structure functions discussed above
allow the =endency equation (2.17) to be solved as follows. First, we

expand ¥x(x, z*, t) in terms of the Zn(z*) as

(z*) , (2.33)

n

x(x,z*,t) = ] X (x,t) Z_
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where the coefficients Xn(f’ t) in this series will be referred to

as horizontal structure functions. Substituting (2.33) into (2.17)

we obtain
© 2 -z* dZ
e 2* d |e n 2 5
) [atz +f ]xn e" T3 [ i dz*] +Z VX =0, (2.34)
=0

Using (2.31) we can write (2.34) in the form

® (32X
L fshp ey oe? xn] T v e (2,35
n=0 ot ) i
Then to show that the coefficient of Zn in this series vanishes
identically for each n , we multiply (2.35) by Zﬁf(z*)e'z* and

integrate from z*=0 to z*==zT? and use the orthonormality property
(2.32) of the Zn to obtain
2

a X
n 2 2 2 . N
:;;T + f Xn ok - v Xn 20, n=0, 152, .00 (2.36)

where we have replaced m by n as a final step. Thus the horizontal
structure functions Xn(f’ t) appearing in (2.33) are found by solving
the horizontal structure equation (2.36) for each n .

Equation (2.36) is identical to the one obtained for the problem
of geostrophic adjustment in the divergent barotropic model (i.e., the
shallow water equations) on an f-plane, with the phase speed of a pure
gravity wave in that model replaced by the "phase speed" c, - Thus
the constant <, corresponds to the phase speed of a pure gravity
wave (i.e., the short wavelength 1limit) with vertical structure Zn(z*)
in the stratified atmosphere. This is the motivation behind the choice
of the form and name for the separation constant in (2.20). 1In the

literature the phase speed <, is often expressed in terms of an



13

"equivalent depth" hn defined by cn2= ghn , following Taylor (1936)
who was the first to discuss the existence of these vertical modes in
a general context.

Once we have solved (2.31) and (2.36) for Zn(z*) and Xn(f’ £),
respectively, these solutions may be combined according to (2.33) to
obtain X(f, z*, t). The other physical fields of interegﬁ can then
be obtained by substituting (2.33) into (2.14) and (2.26) and making
use of (2.7b}), (2.7d), (2.10), (2.31) and the definition of X . In

this manner we obtain the following series representations:

o Xn(x,t)
% _ =
6(5’2 Qt) - 'nzo 7_ Zn(Z*) s (2.37)
n
(et = ¢ [ 22
C X,Z*9t L f —— z Z*) + C(X,Z*,O) ’
= nto Cr? n ~ (2.38)
o' (x,2*,t) = ZO Y (x,t) Z (z*) +3'(x,2*,0) , (2.39)
n= -
y = dZn(z*)
TH(x,2%,t) = & . Y (x:t) —z7— + T'(x,2%,0) , (2.40)
n:
1 © dZn(z*)
* * = -
w (5,2 ,t) WZ—*Y nZO Xn(-)f,t) dz* N (2 4])
o = dZ _(z*)
1 T(z* n
w(x,z*,t) = — X . Z (z*
(~ ) g nz_:_o n(f ) n(z ) T(z* dz* (2 42)

Here

(2.43)
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and we have introduced the additional horizontal structure functions
Yn(f’ t) defined by

t

et e | Lo w, nao 00 (2.44)

0
The horizontal velocity field !(5, z*, t) can be obtained from
6(5, z*, t) and C({. z*, t) using (2.11) and (2.12); the details cof
this calculation will depend on the horizontal coordinate system
chosen.

It can be seen from (2.38)-(2.40) that initial conditions are
needed on ¢z, ¢', and T', in addition to those on Xn and axn/at
required for the solution of (2.36). A1l of these initial conditions
can be easily obtained as follows. We assume that the initial wind
!(5, z*, 0) and perturbation temperature T'(§, z*, 0) are specified,
as is consistent with the original system of equations (2.7). Then
¢'(x, z*, 0) 1is obtained from T'(f, z*, 0) by integrating (2.43)
in z* , and c(§, z*, 0) is obtained from v(x, z*, 0) wusing (2.12).

~ o~

Also, from (2.11) and (2.9) we have

6(5’2*’0) =LY [!(5’2*30)] (245)

and

%% (x,2*,0) = f(x,2*,0) - v2[¢'(5,z*,0)] . (2.46)

To relate these expressions to the initial conditions which are needed

t -g¥

on X_ , we multiply (2.37) by Zm (z*)e and integrate from z*=0

n
to z*-= zT* to obtain
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Z *
-Z*.

1
X, (x5t) :-cn2 I 8(x,z*,t) Z: (2*) e © dz* , - (2.47)
0

where we have replaced m by n as a final step. Then evaluating
(2.47) and its time derivative at t=0 and substituting from (2.45)

and (2.46) we obtain

*
2 T t -z*
Xn(f,O) = [ Ve [v(x,z*,0)] Zn (z*) e dz* (2.48)
0
and
aX ' z2.X
2 (x,0) = -cf{ ) {fc(g,z*,m-v%'(5,z*,o>1}z,}“(z*)e'z*dz* (2.49)
0

The initial conditions (2.48) and (2.49) allow us to solve (2.36) for
Xn(f’ t) . In the next section we show how this solution may be
derived.

2.3 Solution of the horizontal structure equation by Fourier

transforms

A solution of the horizontal structure equation (2.36) was first
presented by Obukhov (1949). 1In that study the equations of motion
were averaged in the vertical, and as a result the coefficient of the
last term of (2.36) was defined differently than the phase speed <,
defined above. In this section we show how Obukhov's solution of the
horizontal structure equation may be obtained by the method of Fourier
transforms. This method of solution helps to clarify some aspects of
the adjustment process.

For this derivation it is convenient to use the rectangular

coordinates (x,y) 1in the horizontal, in which (2.36) becomes



16

2 2 2
) 2] 2 (9 9
“— + f| X (x,y,t) - ¢’ |25+ 5| X (x,y,t) =0 . (2.50)
(atZ ) n n [BXZ ayZ] n

Now for any function wy(x, y) we define the Fourier transform (denoted

by a tilde) as

;(k,l) = %} J J ¥Y(x,y) ei(kx-+ly) dxdy . (2.51)

-00 00
This transform exists, and satisfies the inversion theorem

0 o

vixy) = 3o [ [ He) e g (2.52)

-00 00

if Y¥(x, y) is piecewise continuously differentiable in both x and y
and absolutely integrable over all x and y (Sneddon, 1972). We as-
sume that Xn(x, y, t) satisfies these conditions. This is reasonable
because as a physical field it should be suitably smooth, and as a
perturbation quantity it must vanish outside a region of finite hori-
zontal extent at any finite time if the perturbation is of finite hori-
zontal extent initially and propagates outward at a finite speed. Then
transforming (2.50) according to (2.51) we obtain

2 ®© o

2 7 c 2 2 ’

2423 (k,2,t) =—— N I % (x,y,t) e1(kx'+1y)dxdy. (2.53)
2 n 2m 2 2("n

ot 9X ay

-00 =00

Splitting the last term of (2.53) into terms involving azxn/ax2 and
azxn/ayz and integrating these by parts twice in x and y as appro-

priate leads to
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2 2 [ee] (o o]
2 - c%k+2) :
P} 2 n i(kx+2
-——2+ f Xn(k,ﬂ,,t)*‘ T [ J Xn(x,y) e ( X 'y) dxdy
ot S g
¢ 2 = [(sx R & ik (2.58)
B N oskx lelkX RS
2m X n . y
2 0 F -y=+co
c X
n n_ . iy ikx
+ v~ J {—ay mxn]e _j ) e dx

-

The conditions already assumed on Xn(x’ v, t) are sufficient to force
the terms on the right-hand side of (2.54) to vanish; then using (2.51)

to simplify the last term on the left-hand side, (2.54) reduces to

?~

5 ;
7 (k,2,t) + [F24c® (KW +29)] X (K2,t) = 0 . (2.55)

at

The general solution of (2.55) may be written as

ivnt -ivnt
X (k,2,t) = A (k,2) e 7 +B (k,2) e ; (2.56)
where
1/2
v (k,2) = [ + cn2 s a5 (2.57)

Taking the inverse transform of (2.56) according to (2.52) we obtain

o 0

; -i(kx+£y-vnt)
Xn(x,y,t) ol = J { An(k,z) e dkde
(2.58)
Sl -i(kx+2y+v_t)
i J J b lka) & nt) dkde .
2T n
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In the form (2.58) the solution can be seen to consist of a super-
position of traveling waves, with wavenumbers k and 2 in the x
and y directions, frequencies vn(k, 2) and amplitudes An(k’ L)
and Bn(k, 2). These amplitudes may be related to the initial condi-

tions by evaluating (2.56) and its time derivative at t=0, obtaining

~

X (k,2,0) = A (k,8) + B (k,8) (2.59%)
and &
o
W (k,l,O) = 'I\)n [An(k,l) - Bn(k,l)] . (259b)
Solving (2.59) for A, and B yields
A(k2)=]—[;((k20)+]— ﬂ(k90)] (2.60a)
n ] 2 n b ] ’ .i\)n at t Ea s ] .
and
B(k£)=l[;((k20)-1— 8—X—“—(kJLO)] (2.60b)
n ] 2 n ’ ] i\)n at b ] ’ - .

Substituting from (2.60) in (2.58) we obtain, after some manipulation,

e 3 X -i(kx +2y)
Xn(x,y,t) ek = I I Xn(k,z,O) cos(vnt) e dkde
(2.61)
WPt T sin(v_t) .
. 20 (k,1,0) | —N " g ilkxtly) quqp
2 ot Ve

Since

5 sin(v_t) ?
3t [————:ﬁl—— = cos(vnt) A

we may write (2.61) as
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ol iy sin(v t) .
_ 93 )1 n -i(kx+2y)
X (xa.t) = 2 E;‘f f ty(k:2,0) —— e dkd
(2.62)
b sin(v.t) i,
+ _2] f J [ (k,2 0)] Zn mi(kxty) gy
™ ) v,

By a straightforward application of ordinary one-dimensional Fourier
transforms from tables such as Erdelyi et al. (1954) we can derive the

inverse transform

e~ T(kx+2y) 4y 4o

1 fo Ioo sin {[f2+C2 (k2+22)]]/2t}.

o 0 Dol Y s 2 (ku2)7'/2
2.2 2 2 1/2
sgn(t) COS[(f/C )(C -x"=y") ] > 2 2 2
c 7 2 oy 172 2 XN RC T (2.63)
n (cn =X =y)
0 B cnz 2

where

+41 , t>0
sgn(t) =
-1, t<0

Using (2.63) and the definition of v (2.51) we can apply the con-

volution theorem

© o

%F I f F(k.2) G(k,p) e (KXHY) qugq -
1 1 1 ) _l ) ]
—ZHJ JF(x ') G(x-x', y-y') dx'dy

to (2.62) to obtain



20

258

fle Je =t =x' -yt

9 )san(t) ' ' cos[( n"~''n ¥etis!
3t | 2mc ff Xp(x=x",y-y",0) 6 S 2 iy

2 2o B2

3X cosf{f/e ) (e &t -x'"=y*") .}
S n t n ] 1 n n 1 1
* Tomc gt (xx'sy-y's0) R D Qe

n (C t -x'"-y )
n (2.64)
where the region of integration in both terms is the disk x'2+y'2 <

2,2
€a | TR
defined by

It is convenient to introduce the polar coordinates (p, 8)

x' = -pcosB , y' = -psind

Then (2.64) may be written as

Xn(x,y,t) =
1
3 |san(t 2 leqt] COS[(f/cn)(cftZ-pz)zl
3t Z“Cn J J Xn(x+pC059,y+pS1n6,0) (Cz tz- pz)% odpd®
0 0 n
2m |c t] 2 ¥
aX cos[(f/c_)(c t"-p")7]
san(t) "[_ﬂ . ] n) (€ g
+ 2nc, 5t (x+pcosh,y+psing,0) (Cz tz-pz . 0dpd8.

)2
0 O n
(2.65)
This is the solution obtained by Obukhov (1949). As discussed in the
preceeding section the functions Xn(x, y, 0) and (aXn/at)(x, y, 0)
can be obtained from the initial conditions. Thus the formal solution

of the transient adjustment problem is complete.

2.4 Potential vorticity and the final adjusted state
The transient solution derived above allows us to examine the
state of the atmosphere at any finite time t during the adjustment

process. The state of the atmosphere after the adjustment process is
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complete is also of interest, and may be easily obtained without com-
puting any of the intermediate states. To accomplish this, we first
derive the potential vorticity equation by eliminating the divergence

§ between (2.10) and (2.15), obtaining

*
9 z* 3 (e 301] _
52—[c + fe [ z*]] =0 . (2.66)

This equation implies that the potential vorticity

*
Q(x,z*) = z(x,z*,t) + fe’

7%
9 [e TS

52 (x,z*,t)] (2.67)

RT oz* ‘L

is independent of time. Now if the final state (i.e., the state of
the atmosphere in the 1imit as t-« ) is assumed to be in geostrophic
balance we have

fr(x,z*,o) = V2®'(x,z*,w) : (2.68)

Then evaluazing (2.67) at t=0 and t=« and making use of (2.68)

and the fact that Q(x,z*) is constant in time we obtain

*
Voolesty »# o z* ) [e-z 2%’ " a)]
FUainzEe) ¢ P aR R Bz (P

(2.69)

-Z%
* 1
= tlxz*0) + fe s [eRr 7 (5’2*’0ﬂ

Given initial conditions on z and &' , (2.69) may be solved for the
geopotentizl field of the final adjusted state, and the corresponding
vorticity field may be obtained from (2.68). The assumption of geo-
strophic balance in the final state implies that the divergence and
vertical motion fields vanish as t->« . It should be noted from (2.69)
that the final adjusted state is independent of the initial divergence

and vertical motion, so that if only the divergent part of the wind is
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perturbed initially the atmosphere will eventually adjust back to a
state of rest. This is consistent with the results of Schubert et al.
(1980) for the divergent barotropic model.

To solve (2.69) we first eliminate the vertical structure by making
use of the eigenfunction expansions already developed. Substituting for

®'(§,z*,w) in (2.69) from (2.39) leads to

d [e-z* dZn(z*)}

T )12 & * TR
LTV n0m) 22+ Y (x0) € x| S

(2.70)
= ¢(x,z*,0) - % Vzé'(x,z*,O) .

Using the vertical structure equation (2.31) we can reduce (2.70) to
the form
2

721, (x2) - T ¥ (0] 7,02 = Felx,2%,0) - TPor(x,2%,0)
: X

~

n n (2.71)

Then replacing n by m in (2.71), multiplying by Zn+(z*)e'z* A

integrating from z*=0 to z*=2 and making use of the orthogo-

—%

nality relationship (2.32) results in

V¥ (%] - f—zv (x o) = -]—2 S TS R Y Bt P R

i L (2.72)
where the right-hand side is given by (2.49) and measures the initial
departure from geostrophy for mode n .

The method of Fourier transforms can now be used to solve (2.72);
the details of this approach are much the same as in section 2.3 and
therefore will not be repeated here. Taking the transform of (2.72)

yields
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i} 2 . 3X
2. 2
'(k +2 ) {n(k,g.,m) = _fz_ Yn(k,Z,w) = = Lz_ _5_?’1_ (k,Q,O) )
C C
n n

~

which may be solved for Yn(k,z,w) to obtain

1 X
202y777 20 (k2,0) . (2.73)

S -
Ylkazse) = [F24c? (k -

Then taking the inverse transform of (2.73) with the help of the con-

volution theorem and the inverse transform

oo -] -.
zl‘f f (£ + ¢ 2 (kBag?)] e (RxHY) gyqy
T n
O £l , 2 2.1/27
" Ko[—c (x"+y") ]
Cn n

where KO is the modified Bessel function of the second kind of order

zero, we obtain

Vo (x,y,=) = e (2.74)
oX f 1
12 J J [—” (X-X',y-y',O)] K [I— (X'2+y'2)2] dx'dy"
n -00 =00

Finally, defining the polar coordinates (p,8) by

x' = -pcos6 , y' = -psing ,
(2.74) may be written as

Yo (Xay,e) =
1 e Xy | flo
ey J J 5t (x+pcos8 ,y+psing ,0) K0 = odpdd . (2.75)
2ncn 0°0 n

This completes the formal solution for the final adjusted state. The
similarity which can be seen between (2.65) and (2.75) will be made use
of in the next section, in which we evaluate the general solution of

the adjustment problem obtained above.



3. EXPERIMENTS

This chapter describes a series of experiments in which the general
solution derived in section 2 is evaluated for different initial con-
ditions. The choice of the basic state is discussed in section 3.1,
where the vertical structure equation is solved for the phase speeds
and vertical structure functions. In section 3.2 we describe the
numerical evaluation of the general solution for axisymmetric initial
conditions. Results of simple experiments are presented in section
3.3 and discussed in section 3.4.

3.1 Basic state, phase speeds and vertical structure functions

The basic state chosen for this study is one with constant static
stability T . This basic state is simple enough to allow the vertical
structure equation to be solved analytically and yet is a reasonable
first approximation to the real atmosphere, as we shall see. By in-
tegrating (2.8) with T held constant we obtain the basic state tem-

perature profile

T(z%) = (T-T.) ™% + 1, (3.1)

e <]

where T0 is the basic state surface temperature and T _=T/k s the
limit of T(z*) as z*»« ., The corresponding basic state geopoten-
tial, obtained from (3.1) by integrating the hydrostatic equation
(2.5), is

I %
o(z*) = R [ OK (w0 E7 bt Twz*] , (3.2)

For the results reported here the value z{'= 2.313 was used, which
placed the rigid 1id at p=100 mb (assuming a surface pressure of

1010 mb). A least-squares procedure was used to determine appropriate

24
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values of T and To by minimizing the sum of the squares of the
deviations of the temperature profile (3.1) from an observational
sounding at discrete pressure levels. Using the data of Jordan (1958)
for the mean summertime (June-September) temperature sounding for the
West Indies area the values T'=23.79 K and T0= 302.53 K were
obtained. The observational sounding and the temperature profile (3.1)
evaluated with these values of T and T0 are shown for comparison
in Fig. 1.

With trke constant static stability basic state the vertical struc-

ture equaticn (2.31) reduces to

dz
d -z* n Rr  -z* B
E‘[e dz—*} +:?—e Zn-o. (3.3)
n

To solve this equation we first define wn(z*) by

Z (2%) = a2¥/2 W (z%) (3.4)

With this substitution (3.3) becomes

d2wn )
dz*2 - Wy wn =0, (3.5)
where
2 1R
n 4 an
and the boundary conditions (2.29) and (2.30) reduce to
dW
EE% tnW =0 at z* =0
and (3.6)
dwn 1
‘dz—*"f'é'wn =0 at Z*=Z.['.k ’



Figure 1.
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Tephigram comparing the model temperature profile with an observational sounding. The solid
curve is the constant static stability profile (3.1) with I'=23.79 K and To=302.53 K .
The dashed curve is the mean summertime (June-September) temperature sounding for the West
Indies area reported by Jordan (1958).
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where n=% - %L- We now investigate the solution of (3.5) with the
0
boundary conditions (3.6) for three cases distinguished by the sign of
2
Wy -

Case 1: uf:> 0. In this case the general solution of (3.5) may

be written in the form

wn(z*) = Asinh(unz*) + Bcosh(unz*) ; (3.7)
where
1/2
g 1L BD
Hp ~ {4 - 2] (3.8)
c, )

and A and B are constants. The boundary conditions (3.6) then
imply that
unA +nB =0 (3.9a)

and

: 1 .
un[Acosh(unz{)+Bs1nh(unzf)]'+§[As1nh(unlf)+Bcosh(unzf)]= 0 .(3.9b)

Writing (3.9) in matrix form as

- . - . _ -

L™ n A 0
14 * .
unCOSh‘”nzT) uns1nh(unz{)
1 . 1
L+ §-Slnh(unlf ) + §-cosh(unzf e B . " 0 N

and noting that for non-trivial solutions the determinant of the
coefficient matrix must vanish we find that in the case where uf >0

the phase speeds <, must satisfy the transcendental equation

RT |
L—% - 32-} sinh(u z#) = u cosh(y 2#) . (3.10)
n
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It can be shown that if zf’ > (z.r*")cm.t = 4P/(T0-2F) then (3.10) has
2 k 2
e 1 ; * *
precisely one root <y with C, >4RT', and that if z7 5_(2T )crit

then (3.10) has no roots with u:i> 0 . Thus (3.10), along with (3.8),

defines the one phase speed o in the case where z*> (z{ )

An approximate value for c_ , obtained by assuming that cf >> 4RT

crit °

o

and therefore setting Ho =% in (3.10), is given by
R —zf 1/2
G ® 1-e RTO : {3.11)
The vertical structure function corresponding to o is found

from (3.7) and (3.4) to be

z,(z%) = [Asinh(u z*) + Bcosh(y z*)] et'le (3.12)

The constants A and B may be determined by substituting (3.12) into
the normalization condition (2.32) and using the Tower boundary condi-

tion (3.9a). The end result, after much algebra, is

A *
Z,(z*) = Z,[u cosh(u z*) - nsinh(uOZ*)] R ; (3.13)
where 2
72 _ gy 0
el T (3.14)
x[( S 2)sinh( z.*)cosh(p_z*) -2 sinhz( 22X )% 3 2) z *]—]
Mo o HoT HolT Hol 3% Ho®T Hp =1 Mger

This vertical mode has an exponential behavior in the vertical; it is
referred to as the external mode and its existence depends on the fact
that w* 1is allowed to vary at the lower boundary.

Case 2: -u: <0 . In this case we Tet xf - uf it wriite “the

general solution of (3.5) in the form
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wn(z*) = Csin (Anz*)+-Dcos (Anz*) , (3.15)
where
1/2
- (R _1
kn = [CZ - 4] (3.16)
n
and C and D are constants. The boundary conditions (3.6) then imply
that
XnC +nD =0 (3.17a)
and

*)]= 0 . (3.17b)

3 1 4
An[Ccos(xnlf)-Ds1n(xnz{)]-ri[(s1n(xnzf)+0cos(AnzT

Writing (3.17) in matrix form as

Kn n C 0
* _ : * =
Ancos(xnzT ) Ans1n(xnzT)
- . 1 : D 0
|+ 5 sin (AnzT ) + 7 cos ()\nzT )_ 1 §

and again noting that for non-trivial solutions the determinant of the
coefficient matrix must vanish we find that in the case where uf <0

the phase speeds c, must satisfy

RT

W AT ] *) = *

[CZ 2] s1n(>\nzT ) A cos(xnzT ) P (3.18)
n

It can be shown that (3.18) has solutions < (n=1, 2, 3, ...) with

4Rr 2 4RT

< C < s

[2(n#1)n/z2 12 41 n (2nm/2¥ 12 41

and that iT z*<(z*)

= 28 S then (3.18) also has one solution C, with

ART 2
(2n/2* )2 41 0
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Thus (3.18), along with (3.16), defines a countably infinite set of

phase speeds C, - For large n , c, May be approximated by
172
Cn =~ (Rr) Ty (3.19)

The vertical structure functions which correspond to these phase

speeds are found from (3.15) and (3.4) to be

W
ez /2

Z (z*) = [Csin (Anz*) + Dcos (Anz*)] (3.20)

n

Evaluating the constants C and D by substituting (3.20) into the
normalization condition (2.32) and using the lower boundary condition

(3.17a) we obtain

o ; */2
Zn(z*) o [Ancos (xnz*)..n s1n(xnz*)] g . (3.21)
where 2
75 & oy ‘n_
n n RT (3.22)

2 B .k 3 & il % 2. 2 aae]
x[(xn-n )s1n(xnzT) cos(AnzT)- anns1n (AnzT )+(An-+n ))\nzT ]
These modes exhibit an oscillatory behavior in the vertical and are

referred to as internal modes. They correspond to waves which propa-

gate vertically, with xn as a type of vertical wavenumber.

Case 3: uf =0 . In this case the general solution of (3.5) is

simply
z L z* 23
W (z*) w_+ w.I s (3.23)

where w, and w, are constants. By applying the boundary conditions

(3.6) to (3.23) it can be easily shown that for a non-trivial solution

2 s : 2
* = %* = =
we must have zT (zT )crit . Now H, 0 implies that Ch 4RT

) c0==(4R]")l/2 is a phase speed of a vertical mode if and only if
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z *=(z1?) thus filling the gap between cases 1 and 2. The cor-

=
responding vertical structure function, found by substituting (3.23)

crit

into (3.4) and applying the normalization and lower boundary conditions,

is

where

This mode represents a transition of the Towest order mode from an

external type to an internal type as z* goes from greater than

.
w
(zT )crit to less than (z{ )crit .
For the particular basic state described earlier with z*= 2,313 ,

7

I =23.79K and To==302.53K we find that (z{ ) = 0.373 so the

crit
above results imply that this atmosphere has an external mode with

1
2

phase speed Cy > (4RT)* satisfying (3.10) and a countably infinite

set of internal modes with phase speeds ch (n=1, 2, 3, ...) satis-
fying (3.18) with (llR".‘)l/2 >Cy>Cy> ... . The values of the phase
speeds determined by solving (3.10) and (3.18) numerically are pre-
sented in the second column of Table 1 for the external mode and the
first ten internal modes. The corresponding approximate values deter-
mined from (3.11) and (3.19) appear in the third column of the same
Table. The vertical structure functions for the external mode and

the first four internal modes are shown in Fig. 2. These phase speeds

and vertical structure functions were used in the calculations described

in the following sections.
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Figure 2. Vertical structure functions for the
constant static stability atmosphere
for n=0, 1, 2, 3, 4 as labelled.
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-1
c (ms ')
n n
exact approximate

0 287.00 ¢79.70
1 56.28 60.84
2 29.79 30.42
3 20.09 20.28
4 15.13 15.21
5 12.13 12.17
6 10.12 10.14
7 8.68 8.69
8 7.59 7.60
9 6.75 6.76
10 6.08 6.08

Table 1. Exact and approximate values of the
phase speeds of the constant static
stability atmosphere.

3.2 Numerical evaluation of the solution for axisymmetric
perturbations

In the numerical evaluation of the solution derived in chapter 2
it is convenient to make certain assumptions about the initial condi-
tions. First, in section 2.4 it was shown that the final adjusted
state is independent of the initial divergence. Thus, at least in a
dry model where there can be no interaction between the vertical motion
field of propagating waves and a moisture field, the initial divergence
is not of such fundamental importance as the initial vorticity and
geopotential. Therefore, we shall consider here only initial condi-
tions with zero divergence. With this assumption (2.48) implies that
Xn(§,0)= 0 for all n so that the first term of (2.65) vanishes.

Second, since we are primarily interested in the effects of
vertical stratification on the adjustment process, we will assume that
the initial perturbations are axisymmetric. The invariance of the
f-plane model with respect to rotations in tnhe horizontal about the

origin then implies that all fields will remain axisymmetric at all
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times so we can use axisymmetric cylindrical coordinates .(r,z*) ,

2 1

where r= (x2+y )2 . In this coordinate system (2.11) and (2.12)

simplify to

_ 3(ru)
§ = ror
and (3.24)
_3(rv)
&= Yor "

where u(r,z*,t) and v(r,z*,t) are the radial and tangential compo-
nents of the horizontal wind !(r,z*,t) , respectively.

Finally, we will assume that the horizontal and vertical structure
of the initial conditions are separable; in particular, we assume that

v(r,z*,0) v(r)
= D(z*) (3.25)
o' (r,z*,0) a(r)

so that the initial v and @' fields have the same vertical struc-
ture. This assumption leads to a considerable simplification in the
evaluation of the solution, as will be shown below. In this study we
will investigate initial conditions in the vorticity and geopotential
fields separately, so the form of (3.25) will not be particularly
limiting.

With the above assumptions (2.49) easily reduces to

BXn 2
?ﬁ;-(r,O) =c, B p(r) , (3.26)
where ZT*
= t wg
D, = f D(z*) Z (z*) e dz* (3.27)

0
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is the projection of the vertical structure of the initial conditions

onto vertical mode n and

P(r) = d [r dgir)] N [rC(r)] (3.28)

rdr rdr
measures the departure of the initial conditions from geostrophic

balance. Substituting (3.26) into (2.65) and (2.75) and using (2.44)

we obtain
anr,t) = Dn Fn(r,t) ”
(3.29)
Yn\r,t) = Dn Gn(r,t) s
where, for t < o ,
c, r21T |cntl 5 172
F (rst) = sgn(t) ) P(r+p+2rpcos8) 1]
o0 12 (3.30)
cos[(f/c )(c2t2- pz)
n’‘"n
X ] pdod6 s
/2
212 3
n p
' (
e, 3.31)
6 (r.t) = J F(ro) do
0
and, for t = o ,
Flr) =0, - (3.32)
.
1 " L2 2 1/2 lflp
Gn(r,w) - E;'I J yl{r+p“+2rpcose ) ] Ko - pdpde . (3.33)
00 R

To put these results in a form more suitable for numerical calculation
we first eliminate the singularity in the integrand in (3.30) at

p = [cntl by the substitution

2 2 2.1/2

(Cn t -p )

S =
Colt]
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and then reverse the order of integration in (3.30) and (3.31), obtain-

ing
1 1/2
2
F (r.t) = c t f I[cn|t|(1-52) , r]cos(fts) ds (3.34)
0
and
| flo
G (re) = [ I{p,r) Ky | edo (3.35)
0 n
where, after appropriate manipulations,
K 172
1par) = T [ yL(rPapPszrpcose) T a0 . (3.36)
0

Finally, by substituting (2.37) and (2.38) into (3.24) and using (3.29)

we find that the horizontal wind components may be written in the form

[oe]

* - *
u(r,z*,t) L Dn Un(r,t) Zn(z ) R
(3:37)
v(r,z%,t) = § DV (r,t) Z (z*)+v(r) D(z*) ,
peg B A n
where Un and Vn are related to Fn and Gn by
F (r,t)
mr [rptrit)] = - A
and “n (3.38)
G.(r,t)
3 _ n\'o
ror [rvn(r,t)] - Gyl

The above results, along with (2.37)-(2.43), express the solution
of the geostrophic adjustment problem in terms of the four functions
Fn’ Gn’ Un and Vn , each of which depends on the phase speeds h
and the quantity ¥(r) defined by (3.28). In all but the most trivial
cases the calculation of these four functions will involve numerical

integrations, some of which will be quite time consuming. However,

the above form of the solution allows us to compute values of Fn’ Gn,
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Un and Vn once and store them, and then use these results to compute
the solution for any initial conditions which result in the same 1V .
In particular, the same values of these functions can be used for any
vertical structure of the initial conditions. This fact leads to a
considerable savings in the time required to compute the solution.

For the results presented in the next section the functions Fn’
Gn, Un and Vn were evaluated numerically for a finite number of
phase speeds Ch (n=0, 1, ... , N) as follows. Due to the large
range of values of <, each vertical mode was treated independently.

Discrete points r. (i=0,1, ..., I) and t, (k=0, 1, ..., K) in

k
space and time were chosen with O==r0< ry<...<rg and

0=t <t;<...< tK . At each t , Fn(ri’tk) was evaluated for all
i according to (3.34) using an adaptive quadrature routine employing
Gauss-type quadruture formulas; Gn(ri,w) was also evaluated in the
same way from (3.35). The inner integral (3.36) was evaluated using
32-point Gauss-Legendre quadrature in all cases. The asymptotic form
derived in Appendix C was used to check the calculation of Fn . To
obtain Gn(ri’tk) , (3.29) was evaluated as follows. First,
Gn(ri’to) = Gn(ri,O) was set to zero for all i . Then for each tk
in succession, Fn(ri’t) was integrated from tk-] to tk and the
result added to Gn(ri’tk-l) to yield Gn(ri’tk) . Simpson's rule
was used to perform this integration for modes which had phase speeds
small enough that it could give sufficient accuracy. For the faster-
moving modes values of F_ = at additional time points between t, ,
and tk had to be computed; in order to minimize the number of ad-

ditional evaluations of Fn and at the same time utilize the values

Fn(ri,tk_]) and Fn(ri’tk) already computed, these additional points
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were chosen according to the panel Lobatto quadrature rule (Abramowitz
and Stegun, 1964) with up to 10 points and as many panels as necessary
to achieve the desired accuracy. Finally, Un(ri,tk) and Vn(ri,tk)
were computed for all i at each k by integrating (3.38) using
Simpson's rule; for this reason the r; were chosen to be equally
spaced.

Having computed and stored Fn’ G., U and Vn as described

n’> “n
above, the vertical structure of the initial conditions was projected
onto the vertical modes by evaluating (3.27) using the adaptive quadra-
ture routine. The resulting coefficients Dn were then used in the
superposition of the various horizontal and vertical structure functions
according to (2.37)-(2.42) and (3.37), with the infinite series approx-
imated by finite sums from n=0 to n=N . The results of these
calculations for various initial conditions are presented in the next
section.
3.3 Results
In this section we present the results of eight simple experiments
with the solution to the geostrophic adjustment problem described above.
For these experiments we choose
wir) = v, [5; - 1] Tl (3.39)
a
with a=150 km , and set N=30 so that the external mode and 30 in-
ternal modes are considered. The value 4.988x10™°s™ is used for the
Coriolis parameter f , corresponding to a latitude of 20°N.
3.3.1 experiment 1: initial condition in the mass field

With no initial vorticity (i.e., Vv(r)=0 ), (3.39) corresponds to

an initial condition in the mass field with horizontal structure given
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by

“ 2, 2
B(r) = o e /a (3.40)

and wo =4 9 /a2 .

. With this interpretation of y(r) , a 1is the

horizontal e-folding width of the perturbation. We consider five ex-
periments with this initial condition, each having a different vertical
structure.

In experiment la the initial condition consists of a bubble of warm
air in the lower troposphere as shown in Fig. 3]. The initial pertur-
bation temperature field is shown in Fig. 3a and has a vertical struc-
ture defined so that the bubble is confined between pressure levels
PL = 900 mb and pu = 700 mb , with a maximum value (at r = 0 ) of
1.0°C at P. = 800 mb . The corresponding perturbation geopotential
field is defined so that it vanishes at p = p. > implying that an
initially unba]anced pressure gradient force exists throughout the
depth of the model as shown in Fig. 3b.

The time evolution of this initial condition is depicted in Figs.
4-9. In these figures the upper plot (a) shows the perturbation temper-
ature T' (solid contours, with dotted contours for negative values)
and the radial and vertical components rue?” and wre"?" of the
mass flux associated with the secondary circulation generated in the
r , z*-plane [vector representation); the lower plot (b) shows the
tangential wind v (solid contours) and the perturbation geopotential
®' (dashed contours). The initially unbalanced pressure gradient force
gives rise to a region of inflow below the bubble and a region of out-

flow above it, generating strong rising motion in the center of the

]In experiments where the upper portion of the atmosphere is essen-
tially unaffected by the adjustment process, for the sake of clarity
only the lower portion of the atmosphere is shown in the Figures.



Figure 3.

40

INITIAL CONDITIONS (a)
T T T T T T T T T 500
0.8 |
_ 4 800
0.4 4 700
s 1 800
1 900
0.0 — 1010
0 200 400 800
r (km)
(b)
T 500
OB L1 irivia )
| N O T T A O B ]
BRI 19000
S P B
RS AR 1 700
;Q—___’ a/’/—:zlﬁl,’,
0.2 ::ii_iff:f%%f‘é‘:" """" R 1o
BRALRAE W 4 900
TN
0.0 442 212 2.8 21 1 1 1 1 n 1010
0 200 400 800
r (km)

Initial conditions for experiment la.
T'(r,z*,0)

perturbation temperature
interval 0.1°C .
potential &'(r,z*,0)
The vertical coordinate is z*
pressure p

(mb)

%

(mb)

P

Part (a) is the
with contour
Part (b) is the perturbation geo-
with contour interval
with the corresponding
shown on the scale on the right.

2.0 mis % -,



Figure 4.

41
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Transient state of the atmosphere at t=1.0 hour for
experiment la. Part (a) is the perturbation temperature
T'(r,z*,t) , with contour interval 0.1°C and dotted
lines for negative values, and the secondary circulation
rue~Z* | w*e-Z* with the vertical component scaled by
5x10° . Part (b) is the tangential wind v(r,z*,t)
(solid Tines) with contour interval 0.1 ms=! and the
perturbation geopotential &'(r,z*,t) (dashed 1lines)
with contour interval 2.0 m?s~2.
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t = 3.0 hours
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Figure 5. Same as Figure 4 but for t=3.0 hours.
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t = 6.0 hours
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t = 24.0 hours
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Figure 9. Same as Figure 4 but for t=24.0 hours .
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FINAL ADJUSTED STATE
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Final adjusted state for experiment la. Part (a) is
the perturbation temperature T'(r,z*,») with contour
interval 0.1°C and dotted Tines for negative values.
Part (b) is the tangential wind v(r,z*,») (solid
lines) with contour interval 0.1 ms™' and the pertur-
bation geopotential &¢'(r,z*,») (dashed 1ines) with
contour interval 2.0 m2s~2
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bubble by mass continuity, as shown in Fig. 4. This rising motion
reaches a maximum value of we 2 * 2x107%" at t=1.5 hours :
corresponding to w=Dp/Dt = -7.5 mb/hr . As the secondary circulation
develops the Coriolis force acts on it to produce a broad region of
weak cyclonic flow below the bubble with anticyclonic flow above. This
tangential wind pattern has become better defined by t=3 hours as
shown in Fig. 5, with maximum cyclonic winds of about 0.2 m s'] at
900 mb and weaker anticyclonic winds above. By this time the adiabatic
cooling produced by the rising motion in the center has reduced the
amplitude of the warm bubble by 50% and has produced regions of cool
air above and below it. The accompanying decrease in horizontal pres-
sure gradients is reflected in the decrease in amplitude of the second-
ary circulation; at t=6.0 hours the rising motion in the center has
vanished as shown in Fig. 6. The tangential winds have developed con-
siderably by this time with the anticyclone now slightly stronger than
the cyclone. During the next six hours weak subsidence in the center
gradually warms the regions of negative perturbation temperatures above
and below what is left of the bubble; by t =12 hours the tangential
winds have increased to their maximum values ( ® 0.65 m s'] ) and have
become somewhat more confined vertically, as shown in Fig. 7. The next
twelve hours see a general reversal of these trends as the temperature
field warms slightly in the center and the winds decrease in strength,
-as shown in Figs. 8 and 9. The magnitudes of these changes are smaller
now, however, as the atmosphere has reached a quasi-balanced state.

The final adjusted state for experiment la is shown in Fig. 10.
We see that the initial bubble of 1.0°C amplitude has resulted in a

final perturbation temperature in the same location with a maximum of
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0.4°C and cool regions with perturbation temperatures of about -0.15°C
above and below. The final geostrophic wind pattern consists of a
cyclone centered at r = 130 km and p = 850 mb with an anticyclone
above it centered at p ® 750 mb . The maximum winds in this final
state ( = 0.40 m s! in the cyclone and = 0.43 m s™' in the anti-
cyclone ) are about 19% of the maximum geostrophic winds of the initial
state

The initial conditions for experiment 1b are identical to those
of experiment la, except the warm bubble has been moved to the middle
troposphere with pL==650 mb, Pe = 550 mb and Py =450 mb as shown
in Fig. 11. The transient adjustment in this case is qualitatively
similar to the previous case; the main difference is that the secondary
circulation developed in the early stages of the adjustment process is
somewhat stronger, with maximum rising motions « = -8.7 mb/hr . Con-
sequently, the initial temperature field weakens more, resulting in
less wind being developed. The final adjusted state, depicted in Fig.
12, has a maximum perturbation temperature of about 0.3°C; the final
winds in this case are about 12% of the maximum initial geostrophic
wind.

In experiment 1c we move the initial bubble to the upper tropo-
sphere, with pL.=400 mb, P. = 300 mb and Py =200 mb as shown in Fig.
13. The secondary circulation during the adjustment process in this
experiment is again slightly stronger, with the maximum rising motion
reaching o ® -%.4 mb/hr . The final state shown in Fig. 14 indicates
that the initial 1.0°C bubble has decreased in amplitude to about
0.16°C; the final winds in this case are about 5% of the maximum

initial geostrophic wind.
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Figure 13. Initial conditions for experiment 1c. Part (a) is
the perturbation temperature T'(r,z*,0) with con-
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In the final example of an initial condition in the temperature
field to be considered here, experiment 1d, the warm bubble is expanded
to fill most of the troposphere, with P = 900 mb, P. = 550 mb and
Py ® 200 mb as shown in Fig. 15. The transient adjustment for this
case is similar to that of the preceeding experiments in its general
features, but the secondary circulation generated is much stronger,
with the maximum rising motion reaching « = -25 mb/hr . The resulting
strong adiabatic cooling reduces the maximum perturbation temperature
to about 0.1°C in only three hours and the tangential wind consequently

reaches only about 0.25 m g1

The final adjusted state, shown in
Fig. 16, has a maximum perturbation temperature of only 0.08°C and a
tangential wind pattern with maximum winds of only about 1% of the
maximum initial geostrophic wind.

In the model considered here it is also possible to perturb the
mass field by setting &'(r,z*,0) constant in z* , so the initial
perturbation temperature vanishes, but allowing it to vary in the hor-
izontal. 1In experiment le we use this type of initial condition in the
mass field with 8(r) given by (3.40); with & =-100 n°s™® the
initial geopotential field is as shown in Fig. 17. This initial con-
dition can be interpreted as lowering the height of the 1010 mb surface
by about 10 m and corresponds to a surface pressure drop of about
1.15 mb in a corresponding model in actual height coordinates. The
transient adjustment of the mass field in this case occurs very quickly,
with the maximum perturbation geopotential decreasing by a factor of
100 within the first three hours and the maximum perturbation tempera-
ture adjusting to within 2% of its final value in only a half an hour.

In contrast, the tangential wind takes somewhat longer to develop and

undergoes a slow, damped oscillation toward the final state as in
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Figure 15. 1Initial conditions for experiment 1d. Part (a) is
the perturbation temperature T'(r,z*,0) with con-
tour interval 0.1°C . Part (b) is the perturbation
geopotential %'(r,z*,0) with contour interval 10.0 m?s™2.
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Figure 16. Final adjusted state for experiment 1d. Part (a) is
the perturbation temperature T'(r,z*,o) with contour
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experiment la. The final adjusted state is shown in Fig. 18, where it
can be seen that essentially all of the initial disturbance has been
carried away during the adjustment process, leaving behind a balanced
state with a maximum perturbation temperature of only 0.027°C. The
final winds, while concentrated at the surface as could be expected,
are only about 0.3% of their initial geostrophic values.

3.3.2 experiment 2: initial condition in the vorticity field

With no initial perturbation geopotential (i.e., &(r)=0 ), (3.39)
corresponds to an initial condition in the rotational part of the wind

field with the horizontal structure of the tangential wind given by

N . 2,2
v(r) = v, (g] e T /2 (3.41)

and w0==2 fvola . The maximum tangential wind occurs at r=a/vV2
(again we pick a=150 km ). The corresponding vorticity field has
horizontal structure

R v 2 2. 2

c(r)=—°{1-L] Sl LA

a a2

~No

so that with this interpretation of y(r) , a is the radius of
vanishing relative vorticity, with positive vorticity for r<a and
negative vorticity for r>a . We consider three experiments with this
initial condition, each having a different vertical structure.

In experiment 2a the initial vertical structure of the tangential
wind is defined so that the disturbance is confined to the layer 650-
450 mb in the vertical, with a maximum wind of 1m s'.I at r=106 km
and p=550mb . This initial tangential wind pattern is shown in
Fig. 19; the initial perturbation temperature and geopotential are zero.

The time evolution of this initial condition is depicted in Figs.

20-25. The initially unbalanced Coriolis force produces a region of



60

INITIAL CONDITIONS

L T T T T 1 T v v 300
1.0 +

4 400
0.5 — 41 600
: 1 700
4 800
A 4 900
0.0 — 1010

0 200 400 800

Figure 19. Initial condition in the tangential wind
v(r,z*,0) for experiment 2a. The contour
interval is 0.2 ms~!

(mb)

P



Figure 20.

61

t = 1.0 hour
(a)
i .' . '. ’. v ' ' ' ! ' ' ' 300
tofF: -
R 4 400
{ 500 E
{1 800
{ 70 =
{1 800
{1 900
1010
800
(b)
e et 300
1.0 | /
i e 1 400 =
05 b - \ * 4 600
: 5 rE—/ { 700 =
] \\\ ° : 4 800
A ! \ : 4 900
o.o rt 1 3 1 1 u n 1 2 4 3 i 1010
0 200 400 800

r (km)

Transient state of the atmosphere at t=1.0 hour for
experiment 2a. Part (a) is the perturbation temperature
T'(r,z*,t) with contour interval 0.05°C and dotted
lines for negative values, and the secondary circulation
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t = 3.0 hOLlPS (a)

Figure 21. Same as Figure 20 but for t=3.0 hours.
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t = 8.0 hours
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outflow in the region of the initial vortex by t=1.0 hour as shown in
Fig. 20. This outflow generates vertical convergence at r=0 at the
same level, as required by mass continuity, and the associated rising
and sinking motions begin to cool the atmosphere below p =550 mb in
the center and warm it above. By t=3.0 hours this secondary circula-
tion has already reached its maximum strength (about 1.0 mb/hr rising
motion and 0.86 mb/hr sinking motion) and has generated temperature
perturbations on the order of 0.1°C in the center as shown in Fig.
21. The horizontal component of the secondary circulation reaches a

2.2 x 104 mzs'] after four hours, corres-

0.23 m 5'1 at r * 180 km and p *

124

. _Z*
maximum strength of rue

124

ponding to a radial wind u
550 mb . As the Coriolis force acts on this radial flow it produces a
slight weakening of the initial vortex, so that by t=6.0 hours the
maximum tangential wind has been reduced by 23% as shown in Fig. 22.
The temperature perturbations in the center peak at about 0.2°C around
nine hours and the vortex reaches a minimum strength of about 0.7 m s']
an hour later. The secondary circulation then reverses itself so that
by t=12.0 hours the radial wind in the region of the vortex is directed
inward, as shown in Fig. 23. Figures 24 and 25 indicate that the
changes which occur during the next twelve hours are relatively small;
the atmosphere has reached a quasi-balanced state.

The final adjusted state for experiment 2a is shown in Fig. 26.
The initial vortex has been reduced in strength by about 20% and a
region of weak anticyclonic flow has been generated in the same layer
outside of r=300 km . The corresponding perturbation temperature

field shows a cool central region of amplitude -0.14°C at p=600 mb

with a similar warm region above it at p = 500 mb . The final
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geopotential depression at the center is approximately 70% of its
initial geostrophic value.

In experiment 2b we consider a different vertical structure for the
wind perturbation (3.41). As shown in Fig. 27 this wind pattern con-
sists of a Tow-level cyclone centered at 850 mb and an upper-level anti-
cyclone centered at 250 mb; the maximum winds are 1 m s'] at
r=106 km in both regions and the wind vanishes at the surface, p=
550 mb and the top of the atmosphere. The initial thermodynamic fields
are again taken to be zero. The secondary circulation generated in this
experiment is more complicated than that of the previous experiment,
with the largest vertical motions being about 1.7 mb/hr , occurring
in the Tower atmosphere. The final adjusted state shown in Fig. 28
indicates that the intensity of the low-level cyclone has decreased by
about 10% during the adjustment process while the upper-level anti-
cyclone has charged by only about 3%. A warm region has been generated
in the middle troposphere with cool regions above and below; the final
perturbation geopotential values at r=0 are roughly 95% and 85% of
the corresponding initial geostrophic values in the upper and Tower
atmosphere, respectively.

As a final example of a wind perturbation we consider an initial
wind field which is constant in the vertical; thus the initial condition
for experiment 2c consists of a tangertial wind field which is given by
(3.41) at all levels. No figures are presented for this experiment
because for all practical purposes the initial and final winds are
identical. The final perturbation gecpotential field is essentially
the same as the corresponding initial geostrophic geopotential; the

geopotential depression in the center of 8.7 mzs2 corresponds to
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Towering the central surface pressure by 0.1 mb 1in a model in height
coordinates.

3.4 Discussion

The manner in which the adjustment process depends on the vertical
structure of the initial conditions in the experiments described above
may be interpreted as follows. As is generally known (e.g. Schubert
et al., 1980), in a barotropic model with a single phase speed c the
mass field adjusts to the wind field when the horizontal scale a of
the initial disturbance is small compared to the Rossby radius of de-
formation c¢/f , and the wind field adjusts to the mass field when a
is large compared to c¢/f . In the stratified model considered here
there is a distinct radius of deformation cn/f associated with each
vertical mode n ; these radii range from 5754 km for the external mode
to 40.65 km for the thirtieth internal mode. Thus an initial distur-
bance with horizontal scale a=150 km "Tooks" quite small to the
external mode but much larger to the higher order internal modes. In
fact, the horizontal scale of such a disturbance is larger than the
radius of deformation cn/f for all n greater than 8. Therefore,
the relative contributions of the low and high order modes should be
important in determining the extent to which the mass field adjusts to
the wind field (or vice versa) in the stratified model.

Table 2 shows the coefficients of the projection of the initial
conditions onto the first sixteen vertical modes as determined from
(3.27) for the eight experiments described above. For each experiment
the coefficients have been normalized by the value of Dn which is
largest in absolute value for that experiment. The following general

trends can be observed. In experiments la, 1b, and 1c, as the initial



¢ D (normalized)
n fa n o
n (m 5'1) n exp. la exp. 1b exp. 1c exp. 1d exp. le exp. 2a exp. 2b exp. 2c
0 287.00 0.03 1.000 -0.140 0.531 -0.319 1.000 -0.919 -0.028 1.000
1 56.28 0.13 | -0.573 1.000 1.000 1.000 0.034 -0.456 0.897 0.034
2 29.79 0.25 | -0.601 0.712 -0.094 0.492 0.010 0.272 1.000 0.010
3 20.09 0.37 | -0.556 0.285 -0.285 0.079 0.005 0.915 0.053 0.005
4 15.13 0.49 | -0.485 -0.061 0.09? -0.045 0,003 1.000 -0.113 0.003
5 . 12.13 0.62 | -0.398 -0.222 0.126 -0.039 0.002 0.471 -0.137 0.002
6 10.12 0.74 | -0.306 -0.198 -0.059 -0.026 0.001 -0.307 -0.207 0.001
7 8.68 0.86 | -0.213 -0.071 -0.051 -0.017 0.001 -0.823 -0.178 0.001
8 7.59 0.99 | -0.126 0.054 0.034 -0.007 0.001 -0.778 -0.152 0.001
9 6.75 1.11 -0.051 0.108 0.021 -0.002 0.001 -0.266 -0.152 0.001
10 6.08 1.23 0.011 0.084 -0.013 0.000 0.000 0.331 -0.135 0.000
1 5.53 1.35 0.056 0.020 -0.008 0.001 0.000 0.631 -0.113 0.000
12 5.07 1.48 0.084 -0.035 0.003 0.001 0.000 0.503 -0.106 0.000
13 4.68 1.60 0.097 -0.052 0.005 0.000 0.000 0.106 -0.095 0.000
14 4,34 1.72 0.097 -0.034 0.001 0.000 0.000 -0.264 -0.079 0.000
15 4.05 1.85 0.087 -0.003 -0.003 0.000 0.000 -0.393 -0.070 0.000
.

Table 2.

Coefficients D, of the projection of the initial vertical structure onto the
first sixteen vertical modes for the eight experiments described in section
3.3. For each experiment the D, are normalized by the value of D, which
is largest in absolute value for that experiment. The second column gives the
phase speed and the third column compares the horizontal scale a=150 km to
the radius of deformation cn/f for each mode.

€L
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warm bubble is moved higher in the troposphere the relative contribu-
tions of the higher order modes become smaller. When the bubble is
expanded in experiment 1d to fill most of the troposphere, the relative
contribution of the higher order modes is even less. For experiment
2a the fact that the initial wind is confined vertically leads to
relatively large contributions form the higher order modes, while the
more slowly changing initial vertical structure of experiment 2b
projects more onto the Tower order modes. Finally, when the initial
geopotential or tangential wind is constant in the vertical as in
experiments le and 2c the only contribution of any real significance is
from the external mode. We note that these trends can be deduced from
a comparison of the initial conditions with the vertical structure
functions shown in Fig. 2.

Knowing the relative contributions of the various vertical modes
we can interpret the results of the previous section as follows. In
experiment la the contributions of the higher order modes are relatively
important and thus in a general sense the initial disturbance does not
"look" particularly small in the horizontal. Therefore, even though the
mass field does tend to adjust to the initial wind field (since the
initial wind is zero, this implies that the initial temperature distur-
bance tends to weaken considerably), a significant fraction of the
initial perturbation remains in the final balanced state. In contrast,
as a greater portiog of the initial condition is projected onto the
lower order modes in experiments 1b, 1c and 1d, the horizontal scale
of the disturbance "looks" smaller in a general sense and the adjustment
of the mass field to the wind field is more nearly complete. Finally,

in the extreme case of experiment le, where practically all of the
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initia] condition is projected onto the external mode, the disturbance
"Tooks" extremely small and the adjustment of the mass field to the

wind field is almost total. An analogous interpretation holds for the
initial wind experiments; here the adjustment of the mass field to the
wind field implies that the initial wind changes very little during the

adjustment process.



4. CONCLUSIONS

In this study we have derived a general solution to the problem of
geostrophic adjustment in a stratified atmosphere. The spectral expan-
sion employed in the vertical has proven useful in providing a simple
interpretation of the results in terms of the corresponding barotropic
problem. Simple experiments have been used to illustrate the adjust-
ment process and investigate its dependence on the vertical structure
of the initial conditons.

Schubert et al. (1980) concluded from an essentially barotropic
study that in the tropics the efficiency of cloud cluster scale heating
in producing balanced vortex flow is very low while the efficiency of
cloud cluster scale modification of the vorticity field is very high.

We conclude from the results of the present study that when the vertical
stratification of the atmosphere is taken into account these generaliza-
tions remain true but the efficiencies may be changed significantly.
This change is generally in the direction of moderating the above con-
clusions; i.e., with vertical structure heating perturbations on the
cloud cluster scale can be significantly more efficient and vorticity
perturbations on the cloud cluster scale significantly less efficient
than the simpler barotropic analysis might lead one to expect. The
extent to which these efficiencies are changed depends on how the
initial conditions project onto the various vertical modes. In par-
ticular, for initial conditions on the cloud cluster scale with signifi-
cant contributions from the higher-order vertical modes the mass field
adjusts less to the wind field than might be expected, thus increasing

the efficiency of heating and decreasing the efficiency of vorticity
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field modification in producing balanced vortex flow. Thus we conclude
that the vertical structure of the initial conditions can have important
effects on the geostrophic adjustment process.

In applying these results to the understanding of dynamical pro-
cesses in the tropical atmosphere certain limitations of the approach
taken here need to be recognized. First, this study assumes a constant
Coriolis parameter. Second, only linear perturbations are considered,
implying that the final state is in geostrophic rather than gradient
balance. Third, the basic state is assumed to be at rest, which
simplifies the mathematical treatment but implies that the results may
be applied directly only to situations in which the mean flow is rela-
tively weak. Fourth, the model is dry and thus the possibility of
feedback between a moisture field and the vertical motion field gener-
ated in the adjustment process has been eliminated. Fifth, the effects
of transient (rather than impulsive) forcing have not been included in
this study. Finally, this analysis assumes a rigid 1id at a finite
level in the atmosphere, an upper boundary condition which does not
allow for the vertical propagation of energy out of the model. This
assumption will be discussed furthsr below.

The results presented here may be extended in several ways. First,
the constant static stability profile of the basic state may be re-
placed by a suitable temperature profile determined from observations.
In this case the vertical structure equation must be solved numerically.
The results of Hack and Schubert (1980) for a similar problem suggest
that the effects of this change will be relatively minor. Second,
energetics may be computed using a form of the Parseval relation ap-

propriate to the spectral expansion. Third, the rigid 1id upper



78

boundary condition may be replaced by a condition which allows for the
vertical propagation of energy out of the model. As a result of such

a condition the phase speed spectrum for the internal modes becomes
continuous and the discrete spectral representation used here is re-
placed by an appropriate integral transform in the vertical. At this
point in time the physical validity of various upper boundary conditions
remains an open question, but a comparison of the geostrophic adjust-
ment process with and without a 1id may shed some light on this problem.
The author is currently investigating the above three topics. A final
topic for further study is the consideration of nonlinear effects and

a non-resting basic state. This is a difficult theoretical problem

and may not yield to solution by analytical methods.
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APPENDIX A: The nature of the
phase speed spectrum

The vertical boundary conditions (2.23) and (2.24) chosén for this
study reduce the vertical structure problem (i.e., the solution of the
vertical structure equation) to one of the Sturm-Liouville type. Con-
sequently, the phase speeds form a countably infinite and hence dis-
crete set. The nature of the phase speed spectrum with other vertical
boundary conditions and its dependence on T(z*) 1is the subject of
this Appendix.

Let us first discuss the Tower boundary condition. The condition
(2.23) permits parcels of air to cross the Tower boundary of the model
(i.e., z¥=0 ), thus allowing an oscillation of the atmosphere as a
whole in the vertical known as the external mode. It is well known
(e.g., Wiin-Nielsen, 1971) that this mode is eliminated if it is
required that w*=0 at the Tower boundary. It can be shown that
the effect of this more restrictive boundary condition on the internal
modes is small.

The question of the upper boundary condition is more complicated
and of greater consequence. The condition (2.24) is a perfect reflec-
tor; i.e., it does not allow vertically propagating waves to lTeave the
model and hence traps energy in the vertical. Conceptually, any other
Tinear homogeneous boundary condition applied at a finite level in the
atmosphere will have the same effect; mathematically this implies that
the corresponding phase speed spectrum is discrete. An upper boundary
condition which allows energy to propagate vertically out of the model
is conceptually different; this physical difference shows up in the
mathematical treatment in that the phase speed spectrum may have a

continuous part.
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Jacobs and Wiin-Nielsen (1966) show that when the requirement of
finite vertical flux of wave energy is used as an upper boundary con-
dition for an infinite isothermal atmosphere the resu]ting phase speed
spectrum has both a discrete and a continuous part. The discrete part
is associated with the external mode (or, with w*=0 at the lower
boundary, the nondivergent barotropic mode) and the continuous part is

0< c2

<4« RT , corresponding to the internal modes. In studies of
free atmospheric oscillations (i.e., when no forcing is considered) the
continuous part of the spectrum is often eliminated by applying more
restrictive upper boundary conditions, such as requiring the total
kinetic energy in a column of unit cross-sectional area to be finite
(Siebert, 1961). However, for initial value problems these internal
modes are crucial, being the components out of which the initial con-
ditions (minus the part projected onto the external mode, if any) are
formed. The mathematical effect of allowing such a continuous spectrum
is to turn the discrete eigenfunction expansion used in this study into
an appropriate integral transform in the vertical.

In general the effect of the vertical stratification of the basic
state as expressed by T(z*) 1is to modify the phase speeds and vertical
structure functions somewhat but not to change the fundamental nature
of the spectrum. Two important exceptions to this statement exist.
First, when T(z*) 1is such that p >~ 0 at a finite height, the spec-
trum becomes discrete even when the upper boundary condition is simply
that the solution remain bounded (Eckart, 1960). An atmosphere with
constant lapse rate in actual height 2z is an example of this case
(Siebert, 1961). The other case, discussed by Lindzen and Blake (1972),

occurs when a thermosphere of very high temperature is included in the



84

model. Here the external mode may have a phase speed, determined
primarily by the tropospheric temperature profile due to the density
factor e'z* which appears in the vertical structure equation, which
is small enough that it may have an oscillatory behavior in the upper
atmosphere where the temperatures are higher. Such a wave propagates
slowly in the vertical and thus an external wave in the strictest sense

does not exist.



APPENDIX B: Properties of the eigenvalues
and eigenfunctions

In this Appendix we show that the eigenvalues c: and eigen-
functions Zn(z*) satisfy the following properties:

(i) the eigenvalues cf are real

(ii) the eigenfunctions Zn(z*) form an orthonormal set
We note that these properties are a result of the fact that the vertical
structure problem is of the Sturm-Liouville type (Arfken, 1970).

The vertical structure equation is

-z* dZ -2*

d e”? n e B B1

dz*[Rl‘ dz*}+c22n_0' (51)
n

Replacing n by m in (B1) and taking the complex conjugate (denoted

by a dagger + ) results in
.i.

-7%*
]+ s too (B2)

R dz* o2yt “m

d e-z* dZm
dz* [

Then multiplying (B1) by ZJ' and (B2) by Zn and subtracting yields

+

7% -
-1 _d e ? dzn -7 d e 2* dZm
m dz* RT dz* n dz* RT dz*

o = 1 t e B3
[(c2)+ 2] I S
m n

The left-hancd side of (B3) may be rewritten to obtain
gk +
d e~? & + EEE -7 dZm }
dz¥ | RT "m dz* n dz*

Integrating (B4) from z*=0 to z*= z;’ we obtain

1 1 -72*
T 2 22t e . (B4)
Cm) Cn
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ey t |2*=2F
e Z {ZT fii o dZm ] T
* *
RT m dz n dz 2%
z} (B5)

Applying the boundary conditions (2.29) and (2.30) to (B5) we find that

the left-hand side vanishes so that

T *
[(c]z)+ - 12] Jo 2 () 27 (%) e dzr = 0 (86)

Now if we set m=n in (B6) the integral term is positive so we

must have (c: )+==cf . Thus cf is real, which establishes property
(i). Also, if m#n 1in (B6) and the eigenvalues qf and cf are
distinct we obtain
%*
T t -2*
J 7 (z%) 27 (2%) e % dzx = 0 . (87)
0 n m

Thus eigenfunctions which correspond to distinct eigenvalues are orthog-
onal in the sense of (B7). If any eigenvalue has two or more linearly
independent eigenfunctions .associated with it, they may also be made
orthogonal in the sense of (B7) by means of the Gram-Schmidt orthogonal-
ization procedure. Therefore the eigenfunctions form an orthogonal

set. Since the vertical structure equation is linear the eigenfunctions
are defined only to within an arbitrary multiplicative constant. We

choose that constant for each n so that
Z*
T 2 %
J |Zn[ e dz* = 1 (B8)
0
Then we may combine (B7) and (B8) as
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where

{1 m=n}
(S =
" 0 m#r

is the Kronecker delta. Therefore the eigenfunctions Zn form an

orthonormal set, establishing property (ii).



APPENDIX C: Asymptotic solution of the
horizontal structure equation

The exact solution (2.65) of the horizontal structure equation
(2.36) is expressed in terms of double integrals and is therefore some-
what complicated (and time consuming) to evaluate numerically. There-
fore, in this Appendix we derive an asymptotic solution by the method
of stationary phase (Whitham, 1974). This asymptotic form serves as
a check on the calculation of the exact solution and is useful in the
numerical evaluation of the solution at large times.

The starting point for this derivation is (2.58), which we write

in the form

x Goyat) = x (D ixyat) +x Bixy,t) (c1)
where
(1) 1 sl -i(kx+2y-v t)
Xn (x,y,t) = e J J An(k,Q) e N dkde
and
i -i(kx+2y+v_t)
Xn(z)(x,y,t) = 21—,”[ J B (k,2) e " dkde .

=00 =00

Treating X(1) first, we hold x, y, and t fixed and define

n
o, (k,2) = ﬁ‘—{-ﬂ - v, (k,2) (€2)
so that
i e -io_(k,2)t
x (D ixuy.t) = 5‘;[ J Alkg)e " dkdg . (c3)
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According to the method of stationary phase, if A(k,2) does not vary
rapidly and t 1is large enough, the major contributions to the integral
in (C3) will be obtained near the stationary points of cn(k,z); i.e.,

(k,2)

in (C2) from (2.57) we find that cn(k,l) has the unique stationary

near these points where acn/ak= aon/32= 0 . Substituting for LF:

point (kn,zn ) given by

| f
g 2,172 (c4)

(k' ,%') = sgn(t)
A n (cf tT-x -y

n

with corresponding frequency

c, |ftl

n n‘t'n ’>n (cf t2_x2_y2)1/4

(C5)

Then near this stationary point we approximate An(k,z) by An(kﬁ,zd )

and, using Taylor's theorem,

2
(k ~ (kl Q')-}.l 8on (k_k.)Z
% ) = Int¥n 2% 2 2 n
ak (k‘ 2|)
n ’n
320n 320n 2
+ 2 SKoL (k-k ") (Q-QH) + 322 | | (z-gn )
(k' 52! ) (k')
With these approximations, (C3) reduces to
—i(k'x+2 'y -v't)
(]) ~ 1 ' 1( n n n
Xy (x,y,t) = Ak e t)e E (x,y,t) (C6)
where o o ’
. BVn 2
_ 1 it '
E (xsy,t) = EE'J J expy > '515— (k-k ')
=00 w0 (k',P,')
n’>’n
2 2 \E7)
° n : )+ oo (2-2.1)2 | | dkds
* 2 505y, (k. 2.)(k'kn) (2-2,1) + 22 oy ,
n: n (k|’£|)
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having substituted for cn(k,z) from (C2).
The integral in (C7) has the form of an "error" integral in two
dimensions and may be evaluated as follows. First, we employ vector

notation to write (C7) as

1 it
pxort) = 25 [ [ exe [ 3 (] ke (c8)
where .
K azvn Bzvn ]
ak2 akdl
M = s
2 2
3 vn ) vn
_828'( 32,2-4“(',24')

[ k-k ']
k= o g
~ Q-Qn

and (u,v) represents the ordinary IR2 inner (dot) product wu-v .
Evaluating M wusing (2.57), (C4) and (C5) leads to

2 2

1/2
(cf t2-x2-y2) cit -X -Xy

M =

2
cnlftl t . cnz tz_yz

Now the key to simplifying (C8) is to diagonalize M . The eigenvalues

of M are found to be

2.2 2 23/2 2 2
o (cn tT-x"-y") _ f Ch
1 cnlft|t2 \)n'3
and 1/2 (C9)
2 -2 2 2
o (cn to-x-y°) Al
2 =y 1

| ft] n
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2)1/2> 0

If r's(x2-+y R and A, are distinct and correspond to

the unit eigenvectors

<
—
n
S|

and

respectively, and we can define the real, orthogonal transformation

matrix P by

vy X -y
- 1
P = = o
v, > "y X
~2
If r=0 then A=Ay = (cn/f)2 and we define P as the 2x2 identity

matrix. Then in both cases
PMP" = D =

a
so that if we define a==[a]] by a=Pk , the fact that P 1is real

= (Da,a)

2 2
A1a] + Xzaz
3((1-. saz)
Making this substitution in (C8) and noting that —ETt_ET— = det P =1

we obtain
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1 [32 (atene?)]
En(x,y,t) e J J exp | 5 (K]a]-+A2a2 ) da]da2 ; (c10)

The transformation

_ : T ItIA]
8] = exp [-1sgn(t) I]{ 5

exp [—isgn(t) %]{lfé;f% oy

then reduces (C10) to the real "error" integral

Ba

foe]

E ( t) ! 1 f f -(812 +822) dg, dg
X,¥,t) = = ———=75 e
n mt ()\])\2)]/2 ) ) 1 2

Using polar coordinates we easily obtain the value = for the double
integral in this expression; finally, substituting for M and Ao
from (C9) we obtain

i i|flt
En(x,y,t) R e e (c11)
cn t -x"-y

With the substitution (C11), (C6) becomes

ifflt A(k',2"') -i(k'x+2'y-v't)
X,y,t) = 3 2" 2" 5 L e D & d . (c12)
cn t -x -y

n

An argument similar to that above shows that

. 1 1 2 1 1 '
i|f|t Bn(-kn » =% ) e1(kn X+ y=v t)
2 2

3 B xpit) 5 -
Cn t -x"-y

n

(C13)

Noting from (2.60) that Bn(’kH R AJ‘(kH ,zd ), (C12) and (C13)

n
imb]y that Xiz)(x,y,t)= [Xﬁ])(x,y,t)]+. Thus (C1) reduces to
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Xn(x,y,t) ~ 2Re [Xé]) (x,y,t)] .

Substituting for Xé]) from (C12) and making use of (2.60a) we obtain

| f|t ~
Xn(x,y,t) S R [Xn(kn . Qn , 0) s1n(kn X‘H?,n y-\)n t)
= t -x"-y

g ol (kn ’Qn , 0) cos ;kn x+Qn Y-y, t)]

Finally, substituting for kH and Qﬁ from (C4) and vn' from (C5),

the asymptotic form of Xn may be written as

1/2
sin[(f/cn)(c2 tZ_XZ_yZ) / ]

X (x.y,t) ¥ -f[t] 5 X (k's 2", 0)
cn t -x"-y
(C14)
1/2 0
2,2 2 2
. Sgn(t) COS[(f/Cn)(Cn t -x -y ) ] BXn (k| o 0)

c 1/2 ot n’>"n’
n ;2.2 2 2

(¢, t7-x"-y")

With the axisymmetric, non-divergent initial conditions assumed
in section 3.2 the above results may be expressed as follows. First,
since Y¥(r) as defined by (3.28) is axisymmetric the Fourier transform

and zero-order Hankel transform of ¢(r) are equivalent, so that

[oe]

ﬁ) = f v(r) JO(Er) rdr

~ b
where k= (k2+22)2

and JO is the Bessel function of the first kind
of order zero. Then substituting (3.26) into (C14) and comparing the

result with (3.29) we find that the asymptotic form of Fn is
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1/2

(r6) il cos[(f/cn (c: t2-r2) ] A(A ) i
F (r,t) = c_ sgn(t pik') C15
n n (cj?tz-rz)]/z n
where, from (C4),

T )

k' = . . (C16)

n c, (Cf t2-r2)]/2
In order to use this result the initial conditions as expressed by
Y(r) must be transformed in the horizontal and evaluated at EH as
defined by (C16). Care should be exercised here because for some
initial conditions @(E) varies rapidly enough near ;H that the
above derivation breaks down. Finally, it should be noted that the

above solution is valid only for cf t2>> r2

so that if Gn(r,t) is
to be obtained by integrating (C15) in time, the integration must be
performed from t=« backwards to a finite time t , making use of

the final adjusted state calculation (3.33).



APPENDIX D: Principal Symbols

constants

Fourier amplitudes of gravity-inertia waves

vertical structure of initial tangential wind and
perturbation geopotential

projection of D onto vertical mode n
two-dimensional "error" integral in asymptotic solution
auxiliary horizontal structure functions

matrix of second partials of Vi in asymptotic solution
transformation matrix in asymptotic solution

gas constant for dry air

temperature (absolute): total, basic state, perturbation

constant static stability basic state temperature at
z*=0 and z*=o

horizontal structure functions for wind field
auxiliary vertical structure function

horizontal structure functions

vertical structure function

phase speed (eigenvalue of vertical structure equation)
specific heat at constant pressure for dry air

constant Coriolis parameter
acceleration due to gravity

equivalent depth

Fourier transform parameters (horizontal wavenumbers)
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E vertical unit vector; Hankel transform parameter
P pressure

Po fixed surface pressure

r horizontal coordinate in axisymmetric geometry
t time

u, v radial and tangential wind components

v horizontal wind vector

; horizontal structure of initial tangential wind
W vertical velocity in z-coordinate

w* vertical velocity in z*-coordinate

X horizontal position vector

Xs ¥ horizontal coordinates in Cartesian geometry

z geopotential height

z* = ln(pO/p): log-pressure vertical coordinate

T static stability in log-pressure coordinate

o, o, 0 geopotential: total, basic state, perturbation
3 horizontal structure of initial perturbation geopotential
¥ arbitrary function

Q potential vorticity

8 horizontal divergence

6mn Kronecker delta

C vertical component of relative vorticity

n =1/2- I‘/To

K = R/cp

A], Az eigenvalues of M in asymptotic solution



97

1l

(RF/cf - 1/4)]/2: vertical wavenumber (internal modes)

1

(174 - RP/cf )1/2: vertical wavenumber (external mode)

[f2+-cf (k2+£2)]]/2: frequency of mode n

(kx +2y)/t - v,

local time derivative of perturbation geopotential

horizontal structure of initial departure from geostrophy
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