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Abstract

This document provides a detailed discussion of the formulation and

development of a global model of linearized perturbations. Although the

model was originally designed for the purpose of studying tropical

easterly waves, it has been built in a way that allows more general

usage. The characteristics unique to this model and/or important for

applications include:

(a) The specification of an "arbitraryll mean zonal flow which can

depend on both latitude and height;

(b) Calculation of a mean meridional circulation which is dynamically

consistent with the mean zonal flow (i.e., satisfies conservation

of angular momentum, the balance approximation, the hydrostatic

approximation, conservation of mass and energy);

(c) Vertical transport of momentum by the deep convective clouds in the

tropics in both the mean and perturbation circulations;

(d) Spherical geometry;

(e) Coordinate stretching in both the vertical and latitudinal coor­

dinates, which is represented in the coupled differential equations

by finite differences;

(f) Very fine vertical grid resolution: experiments have been run with

31 points in the vertical; computer processing increases only

linearly with the number of grid points in the vertical;

(g) Horizontal resolution of 15 to 20 points (square matrices with

approximately five times the number of horizontal points must be

inverted) at each vertical level;

(h) Very economic computation: the global response in a single zonal

wavenumber is obtained with approximately 13 seconds of NCAR

CRAY time.
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1. Introduction

Recent observational studies have determined that vertical trans­

port of vorticity and momentum by deep cumulus clouds is an important

element in the dynamics of tropical weather systems with Doppler-shifted

time scales on the order of a day or longer (i.e., with Doppler-shifted

peri ods of at 1east six days). For example, Reed and Johnson (1974)

found a substantial residual in the large-scale vorticity budget of

western Pacific disturbances, which could be attributed to convective

transports. Vorticity budget residuals were also found! in the case of

African wave disturbances by Shapiro (1978) and synoptic scale distur-

bances over the GATE ship array by Stevens (1979). Even though the

moist convection had a much more complicated character over the Atlantic

region than over the Pacific, the vorticity residuals could still be

explained by cumulus transports (Shapiro, 1978, and Shapiro and Stevens,

1980). Shapiro and Stevens also found that the residuals in the momen­

tum budgets, although subject to greater observational uncertainty,

could also be ascribed to a large extent to cumulus transports.

Modeling studies have corroborated the importance of cumulus trans­

ports of momentum in tropical circulation system. Schneider and Lindzen

(1977) and Schneider (1977) incorporated cloud momentum transport in

calculations of the mean meridional circulations, or Hadley cell.

Stevens et ~' (1977) and Stevens and Li ndzen (1978) showed that both

the dynamic and the thermodynamic balances in tropical easterly waves

are dramatically altered when cloud momentum transport is included.

Mass (1979) found this process to be significant in his investigation of

African wave instability. A11 of these studi es used the Schnei der-

Lindzen (1976) parameterization for cumulus transport of momentum.
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Although Stevens et ~. (1977) demonstrated that the qual itative

structure of trap; cal easterly waves changed si gni fi cantly when cloud

momentum transport was included, their simplifying assumptions precluded

direct comparison with observed disturbances. In order to better under­

stand the structure and dynamics of these weather systems, a model with

a more realistic basic state is required. Thi s document provi des a

detailed discussion of the formulation and development of such a three­

dimensional model.

As in the earlier model, a zonally propagating heating function,

representing release of latent heat in the convectively active part of

the wave, is specified. The resulting circulation is calculated. For a

consistent moisture budget, the specified diabatic heating should be

approximately in phase with the cal cul ated moi sture convergence. A

comparison of the phase and horizontal structure of the computed mois­

ture convergence with the specified heating profile will provide a clue

to the ability of these systems to propagate westward as neutral (i.e.,

non-growing and non-decaying) entities. The role of radiative perturba­

tions in the waves, first considered by Albrecht and Cox (1975), can

also be addressed. The heating function is assumed to be zonally peri­

odic, of the form exp[i(s;>..*-at)], where s = zonal wavenumber, ;>..* =

longitude, and a = frequency. We consider the linear response to this

heating, since the observed disturbances propagate westward over the

oceans, especially the Pacific, for many wavelengths without significant

intensification or strong non-linear interactions.

The most important advance in model design is the explicit inclu­

sion of a zonal ITCl with associated vertical mass flux both on the

cloud scale (gM
c

) and in the large-scale cloud environment (pw). In the



Stevens et a 1 .- -

3

study, M was taken to be hori zontally uni form on the
c

midlatitude beta plane, and the large-scale vertical velocity was ne-

glected. These assumptions are only consistent with a basic state in

uniform rotation, with no horizontal or vertical shear of the mean zonal

wind. Since one of the goals of this investigation is to study the

ramifications of a basic state zonal wind with both horizontal and

vertical shear, the mass flux and associated transports of the meridi-

onal Hadley cell are necessary components of a consistent basic state

with an ITel. Such a consistent basic state was the goal of the Hadley

cell calculations by Schneider and Lindzen (1977) and Schneider (1977).

One of the goals of this research is to study the differences in

structure and dynami cs of tropi cal waves ; n the context of di fferent

mean wind profiles. Hence the well~documented waves in both the eastern

Atlantic (Thompson et ~., 1979) and the western Pacific (Reed and

Recker, 1971) can be considered. In spirit, the approach is similar to

the early study of Holton (1971); however, we expect the results to be

quite different because the dynamic effects of momentum transport by the

convect i ve elements in the ITCl were not rea 1i zed at the time, and

therefore not considered.

It might be noted here that the instability analysis of Mass (1979)

contained some elements of the present model, namely, zonal mean wind

shear and cumulus friction. However, he ignored the zonally averaged

mass flux ;n the clouds and consequently excluded any transports by the

mean meridional circulation. This may be satisfactory over Africa, but

certainly not over the oceans where the ITel is well-established. Also,

because of the linearization assumption, he was forced to allow "nega-

tive precipiation" in his model. This drawback is eliminated when the
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zonal mean cloud mass flux, and hence zonal mean precipitation, is

explicitly incorporated as in the present model.

Although the model was originally designed for the purpose of

studying tropical easterly waves, it has been built in a way that allows

more general usage. Spheri cal geometry is assumed. The hydrostatic

approximation is made from the beginning, so that a pressure-type inde­

pendent variable is the vertical coordinate. User-specified coordinate

stretching is included in the model design for both the latitudinal and

vertical dimensions, which are represented in finite difference form; by

specifying coordinate transformations through analytic functions and

their derivatives, a user can focus his attention on a particular region

of the globe. The earth's radius is assumed constant in the governing

equations, and the gravitational acceleration is assumed constant in

magnitude; for studying the lowest 100 km of the atmosphere, these

assumptions are not severe limitations.

The model, which is semi-spectral, uses second-order finite dif­

ference representations in the latitudinal and vertical dimensions,

while a single Fourier component is assumed in the zonal direction for

the linearized perturbations. A single frequency for the perturbation

is specified by the user in the time domain; this frequency may be real

for neutrally-propagating waves, complex for unstably amplifying or

stably decaying perturbations, or even zero for stationary waves. More

generally, a calculation with longitudinal wavenumber 5 and temporal

frequency a can be considered a single component of a Fourier series in

longitude and a Laplace transform in time.
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In the present configuration, the pressure velocity is assumed to

vanish at the lower boundary, assumed to be a surface of constant pres-

sure. This boundary condition could be modified to represent the linear

effect of flow over topography.

The model design requires vertical diffusion in the perturbation

equations for horizontal momentum and temperature change.

fusion terms can be relatively small.

These dif-

As one of the primary purposes is to study the role of a Hadley

cell as a basic state for. the linearized perturbations, we specify the

mean zonal wind and the mean cloud mass flux. Additionally, we use an

- -
empirically prescribed mean meridional circulation (~) from which v and

ware derived. As an alternative option, the user can "turn off ll the

mean meridional cell.

Finally, the model is designed for computational efficiency at very

high vertical resolution. The computer time required is to a good

approximation proportional to the number of vertical levels. At each

vertical level a matrix inversion must be performed in which the matrix

dimension is approximately five times the number of latitudinal grid

points. A model run with 21 horizontal grid points and 31 vertical

levels, uses approximately 13 seconds of CPU time on the NCAR CRAY-l

computer.



2. Full Primitive Equations and Model Parameters

For consistency all three components of the zonal mean circulation

in the advection terms of the 1i neari zed perturbation equations are

i ncl uded. It is possible that some of the advective terms by the mean

meridional cell (v, w) could be consistently scaled out for some prob-

lems, but in the interest of generality we have elected to leave them

in. Following Holton (1975, p. 29) with slightly different notation,

the (hydrostatic) primitive equations in log p coordinates on a sphere

are written as follows:

U-Momentum

au u au v au uv au 1 a~
+ ----- + - -- - tanS + w - fv +

at acos8 a~* a 08 a az acos8 a~*

(2.1)

= £ 2- [M (u-u ) + H1 au] a u
p az c c H az - R

V-Momentum

av u av v av av u2 1 a~
+ ----- + - -- + w + -- tanS + fu +

at acosS a~* a as az a a as
(2.2)

.9. a [M (v-v )
p az c c

Hydrostatic

a~ = RT
az

Continuity

(2.3)

1 au--- +
cose a~*

1 av
a as

v aw- tanS + - W = 0
a az

6

(2.4)
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Thermodynamic

aT u aT v aT aT ~
+ ----- ~~* + - + W + wKT =at acos8 un a ae az c

p

The vertical diffusion terms:

,g a l:!1 au ,g a l:!1 av and,g a Q1 aT
p az H oz' p az H az' p oZ H az

(2.5)

are required by the numerical integration scheme. As noted by Stevens

et al.-- -- (1977), vanishing of the mass flux M at the cloud-top level
c

gives singular solutions of the inviscid equations which can be avoided

by inclusion of small vertical diffusion terms. The independent vari-

ables for this system of equations are:

A* - longitude
e - latitude
t - time

p
z = In (--E.)

p

The dependent variables for this system of equations are:

dA*
u = acose _ horizontal velocity component in A*-direction

dt

de
v = a dt = horizontal velocity component in e-direction

dz
W = dt = vertical velocity component

T _ temperature

~ - geopotential height

Other specified variables and constants are:

f = 2nsine - coriolis parameter

-zp = Poe - pressure

M - cumulus mass fl uxc

Q = diabatic heat source
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RT .
H = -- = scale helght

9
-2

g - gravitational acceleration (9.81 ms )

R- gas constant for dry air (2.87 x 102 m2 s- Z
OK-

1 )

-2
p = surface pressure (10 5 N m )

o

o - angular speed of rotation of earth (7.292 x 10-5 s-l)

a - mean radius of earth (6.37 x 106 m)

z - height of cloud base
c

u = u(z ) - u-component of wind at cloud base
c c

v v(z) - v-component of wind at cloud basec c

- Rayleigh friction (20 x DISWIND), where OISWINO is the non­
dimensional dissipation coefficient of the horizontal wind

- Newtonian cooling (20 x DISTEMP), where DISTEMP is the non­
dimensional dissipation coefficient of temperature

-2 -1
c - specific heat of air at constant pressure (1004 m2 s oK )

p

K = Ric
p

~t - dynamic coefficient of viscosity

Pt - dynamic coefficient of thermal diffusion

Other constants used in this model but not explicitly appearing in

equations 2.1-2.5 are listed below for the readers convenience.

IT = Acos (-1.)

a - angular frequency (- O/PERIOD)

s - longitudinal wavenumber

c - phase speed (a-a-casSis)

T _ surface temperature (300 0 K)
o

U _ horizontal wind scale used in non-dimensionalization (10ms-
1

)
o

v
o

CD

-1
gustiness factor (8 ms )

surface drag coefficient ([1.0 + 0.07 x V ] x 1E-3)
o
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5T -- static stability (878 m)

f
l

= 9;5T (3D.DIO K)

IZ number of points in z-direction

IY number of points in a-direction

ZT z(IZ) ;;:: value of z at top of model

ZTRDP ;;:: value of z at tropopause



3. Li neari zed Eguat ions

Using the perturbation method all variables are expanded into two

parts, a basic state which is assumed to be independent of time and

longitude and a perturbation which is a local deviation of the field

from the basic state. This expansion is shown below.

4>(i\.*,e,z,t) =
i(sA* - at)x e

U'(8,z)

v'(8,z)

w' (8,Z)

<I>'(8,z)

T'(6,z)
W(8,z)

c
u'(8,z)

c
v'(8,z)

c
Q'(8,z)

<I>(6,z) +

= _TC8,z) +
M (8,z) +

c
= u (8,z) +

c
= v (6,z) +

c
Q(8,z) +

U(A*,8,Z,t) = u(8,Z) +

v(A*,8,z,t) = v(8,z) +

W(A*,8,z,t) = w(8,Z) +

T(A*,6,z,t)
M (A*,6,z,t)

c
u (A*,6,z,t)

c
v (A*,e,z,t)

c
Q(;\'*,8,z,t) =

where

( ) - basic state

(-) = ( )'ei(SA-at) _ perturbation from basic state

To illustrate how Eqs. 2.1-2.5 are linearized we have shown below

how this method works for the u-component of advection term in the

u-momentum equation. Upon expansion:

u ou
acos8 oA* = 1 (u ~ + U ou

acose oA* oA*
(3.1)

The assumption is made here that the basic state variables must them-

se1yes satis fy the governi ng equations so that the fi rst term on the

ri ght hand side of (3.1) wi 11 cance lout wi th the other terms of the

basic state equation. Secondly, we assume that terms which involve

10
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products of perturbation variables (e.g., last term on R.H.S. of (3.1))

can be neglected since ()'«(). In addition,

~=
OA.*

alld

oe) =
ot

so that

isC)

- iaC)

ou'
oA*

o ('(e ) i(5A.*-ot)) . ['(e ) i(5A.*-ot)]= OA.* u ,z e = 1S U ,z e = isCi

Therefore Eq. 3.1 can be simplied to:

u ou--- -- =
acosS OA.*

~ isu'
acosS

u' oU
+ ---

acosS OA.*

By using this method to linearize the other terms in Eqs. (2.1-2.5), our

system of equations now in their linearized perturbation form are given

as follows:

U-Momentum

isu v 0 - 0 v .9. 0 -
[-10 + + a + - -- + w -- - - tanS - - M

acosS R a oS oZ a p oZ C
.9. L !:rt L]u I

p az H oZ

+ [1: oU
a as

-
u tanS - f]v' + [ou]w 1

a oZ (3.2)

+ [is ]<p' =
acosS

.9. ~ [M u' + M' (u - u)]
p oZ C c C c
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V-Momentum

-
[2u tanS + fJu'

a
(3.3)

u v a
+ [-ia + is + a +

acosS R a as
- a

+ W - +
Bz

1 Bv
a as

.9 a M _ .9 ~ .tJ1. ~]v'
p az c p az H az

Hydrostatic Approximation

[~]~I + [-R]T' = 0az

Continuity

.9 a [M ' M'v +
p az c c c

(v - v)]
c

(3.4)

is 1 a tanS a
[---]u' + [- - - --]v' + [- - l]w'

acosS a as a az

Thermodynamic

o (3.5)

-
[1 aT]v'

a as

-
+ [aT + TK]w'

az

u is v a - a .9 a nt a
+ [-ia + - + + - + W + WK - ~ -JT'

a acosS aN a as az p az H az

!L.
c

p

(3.6)



4. Coordinate Stretching

To allow us the capability of stretching the coordinates in certain

regions of the model's domain, (e.g., to increase resolution in regions

of interesting phenomena) we transformed the vertical (z) and horizontal

(8) coordinates of the model into the independent variables A(z) and

~(y), respectively. By defining:

~ = ~(y) is the stretched 1atitudi na1 coordinate

y = a8 is the 1at itudi na1 distance from the equator

~' = s!!l
dy

0
a~'

0
=

08 o~

A = ACz)

A' = oA
oZ

o = A' 0
oZ oA

k = s
acos8

is the stretched vertical coordinate

H1 is the kinematic.coefficient of viscosity
p

V Q1 is the kinematic coefficient of thermal diffusion
p

- -
P pRT = pgH

Eqs. 3.2-3.6 can then be written as:

13
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U-MOMENTUM

[-ia+iku+a - ~ tanS + v~' £- + wA' a
R a a~ aA

n a-
..i:l. A' M
P aA C

(4.1)

-
au

+ [~'
a~

-
~ tanS - f]v' + [A' :~]W'

V-MOMENTUM

-
[2U tanS + f]u'

a

.9 A' a [M'(u - u)]
p oA C C

(4.2)

-
av a a+ [-ia+iku+a +~' -- + V~' + wA'

R a~ a~ aA

av 0 n 0+ [A' --]wl+[n'--]$'+ ..i:l. A' (M v') =
oA " a~ p aA C C

HYDROSTATIC APPROXIMATION

a[A' __]$' + [-R]T' = 0
aA

CONTINUITY

n a - n 0 nv a
..i:l. AI M..i:l. A' -- ~ A' ] I

P aA c- P oA gH2 aA v

.9 A' 0 [M'(~ - v)J
p aA C C

(4.3)

(4.4)

a[ik]u' + [~'
0'1

THERMODYNAMIC

tan8 Jv ' + [A' 0 - l]w' = 0
a aA

(4.5)

-
['1' oTJv ' + [A' oT + TK]W'

all oA

+ [-ia+ik~+a +~11' 0 + wA' a + WK - g A' ~ ~ A' ~]T'
N o~ oZ P oA gH2 oA

!L
C

P



5. Flux Form of Equations

To satisfy general conservation properties in finite difference

form and to place the vertical advection and cumulus friction terms in

the same form, we have chosen at this time to rewrite the equations in

flux form. The advection operator in the meridional plane becomes a

flux operator when combined with the continuity equation (15.4) for the

basic state:

3 3
Vll' + w.?\'

311 3A

Using this identity the equations in flux form become:

U-MOMENTUM (5.1)

v ~ ~ A' 3 gM
(-ia+iku+~ - tanO)u' + (vcosOu') + (pip) [(E- ~ - ~)u']

R a cose all 0 aA Po Po

- -AI 3 n V 3u' 3u u 3u
( ) - 1::.- - A' + (Ill - -tanO-f)v' + (A' ). + (ik)<I>'- pip 3A P H2 3A 311 a 3A w

o 0

A' 3 gMc
+ (pip) 3A (---)u' =

o Po c

V-MOMEUNTUM

... , '" gM
(f~ ) V [~(u - u)]
plpo 3A Po c

(5.2)

-
( 2u '( - 3V) I -!L.- ~ - I-atanS + f)u + -ia+iku+a

R
+Il' "'11 v + (vcosev )

o cose 311

A' 3 gMc
+ -- - (--)v' =

pip 3A P co 0

gM'
A' 3(----) [~(v - v)J

plpo 3A Po c

15
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HYDROSTATIC

o[A --J$' + [-RJT'
OA

CONTINUITY

~O A' 0
(ik)u' + -- (y'cos8) + (pip) (2- w')

cos8 o~ 0 OA Po

THERMODYNAMIC

oT aT
(~' --")y' + (A' + TK)w' + (-ia+iku + a )T'

or"] OA N

o

(5.3)

(5.4)

(5.5)



6. Non-Dimensional Form of Equations

It is now convenient to non-dimensionalize the equations so that

the solutions and the coefficients of the terms in the equations are

0(1). The following variables in our system of equations are non-

dimensionalized as follows:

f by 2Q

(J by U /L
0

t by L/U
0

1 for s = 0x,y by L = a/s I where s' = f s for s :I 0

z by 1

- -u , U I , V , v' by U
o

gM gM'
w, c c Wi

P , P ,
o 0

U
oby ­

L

<p' by 2QU L
o

T' by 2QU L/R
o

To simplify the form of the non-dimensional "equations we define the the

following quantities

R - U /2QL is the Rossby number
0 0

R. =
Rr1

is the Richardson number
1 U 2

0

U 2
Ri- 1

Fr
0 R0 2t; is the Froude number= =

Rr1

~ pip -z is non-dimensional- e pressure
0

E - \!/2QH2 E (ll,}..)
0 0

E - 0/2QH2 = E (ll,}..)
0 0

17
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U 2
= (2Ql)2 0

U
o

Rr
1

= R -2Fr
o

-2 -1= R R.
o 1

o = l/a = lis I

f* f/2Q

0* a
=

U Il
0

u* u'* v* v ' *
u u' V v'

= , , ,, , ,
U U U U

0 0 0 0

w* w'* w w'
=,

U Il' U Il
0 0

gM gM'
M* M'* c c

=c' c PoU Il' PoU Il
0 0

<P'*
<p'

= 2QlU
0

T'*
T'

2QLU IR
0

Q'*
L ~ where r

1
is typical stability= a

U
o

f
1

c
,

p

where the ()* represents a non-dimensional quantity. Using these defin-

itions and notation the linearized system of equations in flux form are

non-dimensionalized as follows. The u momentum equation is multiplied

by (1/2QU ), and thus can be written as
o

U -ia+i~+a
o ( acose R

2QL U IL
o

v/U
o u'

- all tanS) u
o

gM

P U ~L) ~ ]
000

u
+ --2......~ £...- V u'

2QL case o~ (u-cose u-)
a 0

~I ~ a(u'/u)
A. <.l V A' 0
~ oA ~2QH2 oA



U
o

+ ( Ln'2QL 'I

au/u
o--- -

0'1

19

U -
o L u-- - -tanS

2QL a U
o

U oU/U
f v' 0 0 W'
-) + - (i\' --)
2£1 U 2QL ai\ U /L

o 0

+ i
2QU L

s 0

acosS 2QU
o

-
Uo i\' gM u'<1>' ~ c c

2QU L + 2QL ~ ai\ (PU /L) U
o 0 0 0

Rewriting this equation in an alternate form yields

ia
Ro(-U /L

o

.s/s' -
+ ,-- u* +

cosS

(XR-- -
U /L
°

1 - Ln' 0 -v*tanS)u'* + R ~ -(v*cosSu'*)
s' 0 cosS 0'1

+ R
o

A' 0 [(J;w* - M*)u ' *]
oS oi\ c

i\' a ou ' *oS E i\'
.; oi\ 0 oi\

R u tanS - f*)v'* + R (i\' ou*)w'*
o s' 0 oi\

(6.1)

+ isis' <1>'* + R ~ £...- (M *)u'* =
cose 0'; oi\ c c

- R
o

i\' a
[M'*(u* - u*)]

.; oi\ c c

Similarly, by multiplying the v-momentum equation by (1/2QU ), we can
o

write

Uo L 2u f u'
(- tanS + 2"'.)2QL aU.. U

o 0

U -ia+i~+(X ov/U I

+ _0_ ( acosS R + L'1' o)y-
2QL U /L 0'1 U

o 0

u
+ --2-. .!:!::L-. £...- (Y- cosS ~)

2QL cose 0'1 U U
o 0

Uo i\' 0
+------

2QL J; ai\
w

[(~ U /L ­
o

i\' a 0 (~)
U av/u w'

J;
v

i\'
0

(i\'
0

2QH2 + -- ~)
oS oi\ ai\ U 2QL U /L

0 0

-
2QU L'1' a <1>' U

i\' a
gM v'

0 0 c c
+ ---- - --- + -- (p U /L)2QU oil 2QU L 2QL J; ai\ U

0 0 o 0 0
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~)J
U

o

Alternately

2~* -ia(R --- tanS + f*)u'* + R (
os' 0 U /L

o

isis' (1R
+ ---- u* + ---

cosS U /L
o

ov* Ln' _0' A' 0
+ L~' --)v'* + R ~ (v*cosev'*) + R

o~ 0 cose o~ 0 ~ oA

(6.2)

[(~W* M*)v'*J A' a
~E A' ov'* R (A' ov*) '*- - -- + oA Wc ~ oA 0 oA 0

0<1>'*
oM*

~L~' R
A' c v'* -R a

[M'*(~ * v*)J+ + --- = -
o~ 0 ~ oA c 0 ~ oA c c

The hydrostatic approximation is multiplied by (1/2QLU ) which yields
o

~ + }\'
0 <1>' a(2QLU ) =2QLU oA

0 0

Alternately,

-T'* + }\'
0<1>'*

0 (6.3)=o}\

The continuity equation is multiplied by (L/U )
o

is L
acos6 U

o

Alternately

L 'a A' a L
u' + - .Jl- - (v'cos8) + - -- a. Wi -LI) = a

U cose o~ ~ oA -
o 0

u·* + .!::rL.- ~ i\' a(v'*cos8) +
cosS o~ ~ all. (~w'*) o (6.4)

Finally the thermodynamic equation is multiplied by (L/Uof1)

L aT) v' L
(i\'

aT
KT)

w' L [. i su
01 )T'(11' + - -- -I- +-- -la + --- +

f
1 all u f

1
oA U U f' acosB N

0 0 0' 1



21

Alternately

-
- A' aT + KT a

a T aA -ia isis' N
[Ln' (_)JVI* + ( )Wl~ + R [( + ~ + )

" al1 11 11 ~ oe Uo/L cos6 u~ Uo/L

(6.5)

a -KZ - a KZ AI a aT I*
+ v*L~' + e w* AI e JT I* - e ~E A' Q'*

al1 aA ~ aA 0 3A



7. Equations Written with Coefficients

As one can readily note from the previous section, the equations in

their linearized non-dimensional flux form are rather iengthly and obvi-

ously would be cumbersome to work with. In view of this difficulty we

have chosen to rewrite Eqs. 6.1-6.5 with coefficients which operate upon

the non-dimensional dependent variables. With this strategy the appear-

ance of the equations is simplified, and the programming aspects of the

problem become more tractable.

follows:

These coefficients are defined as

ACIl,A) R C- io + isis' u*) =
o U IL cosS

o

Uo -io + isis' .!:!-)
2nL Cu /L cosS U

a a

-ia= +2n
iCs/s' )u =
2QLcose

-ia
-- +2Q

s u
case 2Qa

a R U a
R O!R

ARCIl,A) A + R A +
a

Cu /L) = A +
0 U /L 2nL 2Q

0 a

aN U O!N ()(N
ANCIl,A) A + R A +

a A += Cu /L) =
a U /L 2QL 2Q

0 0

v* U
Q9CIl,A) AR - R tane AR - a v

tanEl AR - v tane
a s' 2QL s'U 2naa

.!::!:L
U

.!::!:L
U

--!L..-P1CI1) R
0 0

= =
0 cosS 2QL cose 2Q cose

P2(I1,A) v* cose
v

easEl= U
0

-
U
~

gM
~

gM
C~;* M*) 0 c c

P3CI1,A) = R = Cu /L - p U /L) = - --
a c 2QL 2Q 2Qp

a a a 0

DCA)
A'=
~

22



E(ll,/\')

F(ll,/\.)

= £E /\.'o

= £E /\.'o

23

QI0(11,/\.)

Q3(rJ,/\.)

Q2(I1) =

= R LI1' ou* - R u* tane _ f* - ~ oU u__ tanS _ f
o all 0 s' - 20L all 211a 20

OU* /\.' ou
= R /\.' - = --

o O/\. 20L O/\.

sis'
cose

AL2(11,/\') /\.' 0 -= R - - M*
o ~ o/\. c

/\.' 0= -R - - [M'*(u * - u*)]
o £ o/\. c c

U gM'
= 0 0 c (~

o O/\. 20L [p U IL U
000

u
-.£) ]
U

o

gM' - u
= 0 0 [ c (~ c)]

O/\. 20p U - U
000

~!L
U gM' v

82(I1,/\.) -R [M'* (v * v*)] 0 !L ..2..- r c v c )]= - = (- --
0 ~ oA c c O/\. 20L -p U IL U U

o c 0 0

gM' - v
0

0 c v -.£)]= [20p (- -
a/\. U U

0 0 0

83(fl,/\.) =QI* __L_!L
- uorl cp

Qll(n ,/\.)
2u*= R - tanS + f*o S I

U -
o 2u=---

20L s'U
o

tanS f
+ - =

20

-
2utanS

20a
f+ ­
20

Q13(11,/\.) = AR + R LIl' ov* = AR + ~ ov
o Or] 20L Oil



Q5(I1,A) O~* A' o~= R AI - = --
a OA 2QL OA

24

=~
s'

isis'
case

=: !:!:L-C2(I1) case

case

C5(A) = ~

02(A) = A'

Q6(I1,A) =~ aT
11 all

Q7(I1,A) =1:- (A' aT
KT)- +

r
1

aA

C7(A) KZ
= e

C8 = e

C8D(A) C8-D

u
CC = R v*LI1' = ---2- ~ LI1' =~ LI1'

a 2QL U 2QL
a

U -
C6 = R e-

KZw*7\.' a -KZ wL A' =!L e-KZl\.'=- e
a 2QL U 2Q

0

C8AN(I1,A) = C8-AN
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C8CC(~,A) = C8·CC

C8C6(~,A) = C8·C6

By defining these coefficients, our systems of equations can now be

written as:

u-Momentum (7.1)

o 0 0 0
(Q9 + PI o~ pz + D OA P3 - 0 OA E OA)U'* + (QIO)w'* + (Q3)w'*

+ (Q2)¢'* + (AL2)U'* = (81)
c

v-Momentum (7.2)

(Qll)u'* + (Q13 + PI ~ P2 + 0 0 P3 - DOE ~)v'* + (Q5)w'*
o~ OA OA OA

O¢'*
+ (C1) + (AL2)v'* = (82)

o~ c

Continuity (7.3)

(Q22)u'* + (C2 ~ C3)v'* + (0 ~ C5)w'* = 0
o~ OA

Thermodynamic (7.4)

(Q6)v'* + (Q7)w'* + (C8AN + C8CC ~ + C8C6 0 C7 - C80 0 F ~)T'* = (83)
o~ OA OA OA

Hydrostatic Approximation

-T'* + (02) o¢'* = 0
OA

(7.5)



8. Discretized Equation

The equations 7.1-7.5 are finite differenced in the latitudinal and

vertical directions. To do this we define the following:

Il i = I1 s
+ (i 1) ~Il where -+ I, IY

A. = A + (j 1) M where j -+ I, IZ
J 1

where Il s - Il at southern boundary of model

IY - number of nodes in the latitudinal direction

Al - A at top of model atmosphere

IZ - number of 1evel in the vertical direction

For brevity we drop the ()* notation, but it must be realized that

dependent variables are still non-dimensional. The discretized equa-

tions are shown below:

u-Momentum (8.1)

+ r -JD~ I.(P31.i) ~I j+t - (r3 ~\,j-I
L 26~_

0" , fE- &.1 _ I .. J.
,JJ 4.\ _ ",1 t 2.

I

+Q'1 .. :r..
It toJ 1!"'J

I

T RLl ~j Uci.

26
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v-Momentum
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(8.2)

Ql1;i u./~j + Q13 "~j + P1~jlr{Pl,,"')~I)j- (PZJ).:-",jJ
261l

+D~~ [(P3Vh,j+,- (P3";)~,j-,~ - D~' ..1 fE·· v~·~,-v;; - E· . I ~'''~:-'l
".I 2A;\ J J A>' ~ ..,J-t1 b).. ",rE 6A _

+05,j W~j + C1 [i~..,tk!~-"jl + II L2,j vo'.. - 82,j
...J

Continuity

QZZ~j U/~j + C2tj [fC3J-)..,.j - (c3J-) L·'.il
2~1l -

+ D~j rl. ((5 w)~d~' - (cs w)c.)j·'l - 0
_ 2AA _

(8.3)

Thermodynamic (8.4)

Hydrostatic Approximation (8.5)



9. Matrix Form of Equation

To aid us in solving the system of equations given in 8.1-8.5, it

is conveni ent to conceptual i ze these equations at each poi nt in the

model's domain in the form of Eq. 9.1.

(9.1)

LLijXi,j_l + AK ijX;_l,j + BK;jX;j + CK;jX i +1 ,j + UU;jX;.j+l + Jijxc ; = B.•
lJ

where X..
lJ

= (~:) represents all
T' grid point
<p J ••

lJ

perturbation variables at the (i.j)

and LL;j' UU;j' J ij , B;j' AKij , BKij and CKij are defined as follows:

ll~j =

UUi.j '=

28

o
o
o
o
~Z·mol
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Al2i.~ 0 0 0

0 AlZ" 0 0
'"J~j ':: 0 0 0 0

0 0 0 0
0 0 0 0

Bli.j 182. tj
B~j ::. 0

83"j
"- 0

o
o
o
o
o

Pi. fP?'V1d) 0·,1' . 0 0 0 "I

" lAW\. -'1;.
D Pi. ( L-I'3) 0 0

If 2 All ~·rt

AK·· =. 0 •c.z." (,~V-l 0 0 0
"J 'lO6~ - CaCC"j 0

I 0 0 0 tAll.
I 0 0 0 0 0

IPi;. ( ~;~,i) 0 0 0 C~. l
0 Pi. ('2 \.~'J~ ) 0 0 iM\1" 2. 69\

CK~j= I 0 ~2;' ~'5 ;,.~, 0 0I o \
! 261\. t:ic.c· . o I0 0 0 . '1

'2.6~
I 0 0 0 0 o I



10. Boundary Conditions

Since our system of equations can be reduced to an eighth order

differential equation in the vertical, the continuous solution requires

eight boundary conditions at the top and bottom of the model. These

boundary conditions are given as follows:

at the upper boundary:

au
a7\.

3v
a7\.

aT
a7\. = a (due to large dissipation)

w = a (rigid upper lid)

at the lower boundary:

w = a (an

au
BCl·ua7\.

ov
BC2·v=a7\.

aT
BC3-T

oJ\.

where

approximation to vertical z-velocity vanishing)

bulk aerodynamic parameterization

BCI v -1
H ·CD·V 0

BC2 a a v -1
A' 0

BC3 va-1

RT- 0
H

a 9

v = v(z = 0)
0

va = v(z 0)

The constants To, CD, V are defined in section 2.
0

30
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To evaluate the A-derivatives on the top and bottom boundaries we

use a lower accuracy one-sided derivative. With the boundary conditions

discussed above the matrix form of the equations at the top and bottom

levels of the models are as follows.

Top: j = 1: LL = AK = CK = JJ = B = 0: BK .. + UUijIPi,j+l = 0
1.1

where BK .. and UU .. are as follows:
1.1 1.1

r-l 0 0 0 °l 1 0 0 () 0 l

! 0 -1 {) 0 0 0 1 0 0 0
~K,j:l ~ 0 1 0 0 UUi.j =: 0 0 a 0 0

0 0 -1 0 0 0 0 1 0
0 0 -1 -02.1 0 () 0

1>1'
AX 0 60).1

Bottom: j = IZ: UU = AK = CL = JJ = B = 0: LL i jIPi ,j-l + BKijIPij = 0

where BK .. and LL. . are as follows:
1.1 1.1

~l--~'SCU) 0 0 0 0 --1 0 0 0

i1o(1·A~·&tV) 0 0 0 0 -1 0 0
BK··: 0 0 1 0 () l L;'j"= 0 0 0 0

".' 0 0 o(1-6~"CT) 0 0 0 0 -.1-
~··ILO f) o -1 1>Zj -0 0 0 0A). 6). -

In the horizontal direction the system of equations is second

order, so that two boundary conditions are required on the sides of the

model. These boundary conditions were chosen as v=O which inhibits flow

-
through the side boundaries of the model. By setting v=O at i=l and

i=IY, the following coefficients: P2, Q5, B2, CC, and C8CC are zero on

the side boundaries with one-sided finite differences. By replacing the

v-momentum equation on the side with v=O, the matrix form of the equa-

tions on the sides is altered as shown below.
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AT i = 1:

LL .. == UU .. == J .. = B.. = AK .. = BK .. = CK .. == 0 for row 2
1J 1J 1J 1J 1J 1J 1J

BK .. (2,2) == 1
1J

AK .. = 0
1J

CK ..=2. x old CK .. [including changes above] so that each denominator is
1J 1J

L'l.11, not 2L'l.11

fa 0 0 0
~l0 0 0 0BK .. = old BK .. + -C'2.U.).''3(~) 01J 1J 0 M\ 0 0

0 0 0 0 ()

LO 0 0 0 oj

AT i == IY

LLIY,j=UUIY,j==JIY,j=BIY,j=AKIY,j=BKIY,j=CKIY,j=O for row 2 in metrices

BK1y .(2,2) = 1
,J

AK1y . = 2.x old AK1y . [including changes above] so that each denominator
,J is L'l.11, not 2~~

CK1y . = 0
,J

ro 0 0 0 0o C2(1l)~ '3 CIY) 0 0 0
BK1y . = old BK1y . + o OYl 0 0 0,J ,J

I 0 0 () 0 0
Lo 0 0 0 oj



11. Algorithm for Solving Problem

For a specific heating function (Q'), the response in the perturba-

tion fields of the three-dimensional wind (u' ,v' ,w'), geopotential ($'),

and temperature (T') are calculated from Eqs. 8.1-8.5. The algorithm

which solves for these perturbation fields can be divided into the

following three sections.

11.1) Filling of matrices

11.2) Gaussian elimination

11.3) Backsubstitution

Each of these sections will be discussed in the order that they appear

in our computer algorithm which is flowcharted in the Appendix.

11.1 Filling of matrices

By combining Eq. 9.1 for all the horizontal nodes on a level, we

can write an equation for each level in the model as follows:

(11.1)

where j = vertical level of model. The X. is a column vector which
J

consists of the IY grid point vectors X
ij

= CU'ij' v' .. , w' .. , T' .. ,
1J 1J 1J

, )T.
<P •• 1 n sequence.

1J
B. is a similar column vector

J

(x1j ) (B
1j

)

Cx2j ) CB2j )

x. - (X3j ) B. - (B~j)J J

CXjY,j) (Biy .),J

The L., U., and J. matrices are block diagonal, with the i
th

block
J J J

sub-matrix being LL .. , UU •. , JJ .. , repectively. From Section 9,
1J 1J. 1J

33
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LL .. , UU .. , and JJ .. are themselves diagonal 5 by 5 sub-matrices. For
lJ lJ lJ

example,

L. ­
J

(LL .. )
lJ

(LL
2j

)
.

• (LL
1y

.)
,J

u. and J. are similarly diagonal matrices.
J J

storage of 5 x IY elements on the diagonal.

L., U. and J. each involve
J J J

The D. matrix, which is a
J

combination of the AK. . BK. . and CK.. operators from Eq. 9.1, is a
1,J, 1,J, ',J

block tri-diagonal matrix, with each block a 5 by 5 submatrix. At some

vertical level j:

fBK...J CK..,j
O/S l. AK~j 8Kt ,; CKa'1

I AK3,j 6K,,; CK,,~

CK',i IAK.t~ 6~",iD·=. • • e

• • •J • •
AK\'fiJi 8Krf-)); CK'Y-l,j

CK,t-t.1
O'S

A~'f"2.,1 ~K,y-z.i
AK,"-1,j 5K,v""J1 C~rH.;

, A~'Y,i ~KI.'I,j _

Since D. is a block tri-diagonal matrix, in storing D. we have taken
J J

advantage of the fact that most of its elements are zero. In storage

the compressed matrix 0 at any vertical level appears as follows:

rBK1,j CK~j CKt,i C"-L.."j CK'V.l,i CKrt-z,j
..,·. . ~ I

DJ"l~~j l>K"l,j BKJ,~ . .. . S"'-,i ·.. 1.\ ~'Y-~11 ~ ~l'l-~/j tKlKil
R~),j R~,i .. - .. AKi.~',i · .. . AK.W-1,j A~,y ,j %~I.,,jJ
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When Dis needed for computat ion, it is reformed into its ori gi nal

sparse structure. The memory requi rements for stori ng the compressed

version of D over its sparse structure are reduced by a factor of

(IY/3). For example wi th typi ca1 values needed to resolve wave struc-

ture of IY = 21 and IZ = 31, the storage of the full matrix D for all

levels in the models would require ~ 106 words of memory. On the

other hand, the compressed D matrixes would require only ~ 1.3xI05 words

of memory or a factor of 8 less! By storing the matrices in Eq. 11.1 as

outlined above, the CRAY computer can easily contain in its memory these

matrices for all the levels in the model simultaneously.

Filling the matrices in Eq. 11.1 at a specific vertical level,

requires that the component sub-matrices: UU, LL, JJ, BV, AK, BK, and

CK be fi 11 ed fi rst at each hori zontal node on that 1evel . Once these

sub-matri ces are defi ned they are used to form the L, U, J, B, and D

matrices at one vertical level. By repeating this process at each level

in the model, our system of equations can now be represented in the form

of the linear matrix equation, AX = B* which is shown schematically

below.

I

l

X1lXl
X3 !

IX1-11
XJ
XQ+1
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We have assumed here that J.=O (i.e. no cloud mass flux) for j>£+l.
J

The parameter '£' as it appears here is defined as the level of cloud

base and is computed from Eq. 11.2

IFIX(A(IC)/DLAM + 0.5)

where DLAM = (All - A}/(II - 1)

(11.2)

Because the vertical differentiation is at most second-order in the

five variables, only vertical grid levels separated by M and 2M are

related in the finite difference scheme. Thus the matrix A is a block

tridiagonal matrix, with blocks of dimension 5xIY by 5xIY.

11.2 Gaussian elimination scheme

To reduce the linear matrix system AX = B* to an upper triangular

matrix, we employ a Gaussian elimination scheme, slightly modified for

the cumulus friction terms, from a version suggested by Lindzen and Kou

(1969). In thi s scheme, II matri ces (5xIY by 5x IY) must be inverted in

full-storage (non-sparse) mode. The procedure for using this scheme at

the various levels in the model is shown below.

j =1

Dj. x~ ... U:t.)(1.. -+ J~ XA. ::: Bi.
X1. -tt>;:IUiX? +1>~J1.X9. - 1)~ Bj.
Xl ... «-1-)(., + 1J1.. Xt - ((1..

A1. -: D~\

C4 ~ - ~~L. Us.
B1 -= t1.J:1.

I Os.:; &1 'B:t

j ::. 2 ~ '3 J ••• ) 1-z

{-Lj)·f Xj-l + ~j-1Xi -+ ~j-1X,(= 11-11 I Sr=(brLj&'lj-lf'
~--~~1 +Uj X i~-'-- -toMt~ ~. I~1::: ~1lq

(1'j- Lj e<J-i )Xj of' (Uj)Xj~l """ (J1-lj~j-l )Xt -= (B:i -lj C:.J-1.) IW· ~i(J.3-lj~.1)
X1 t (~j' U.j)x.j H .. ~j (Jj - Lj ~j-l ) Xl:= ~ {!j- Lj 'Xj-i)1 ~r;: ~ (~-L3~-I)
Xi +- ~j Xj+1 "''&1 XJ. - 1(j i
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j =.l-1-

(-l.t-J·{ X.l.-z. + CC..Q.-ZXJ.-1 + 8l-1..X.L ': ~..L-1.} ~H::(1)JH.-l..t~.Jr
_L.t-j.x.t-z. +DL=i. )(..1.-1+~J).t:1.&=-- ~.L-j. e(.t-i=St-1((Utj).H"~..hJ
( DM - L.t-1<.t-2.)X.t-1.+«( Ut J).l-1.-L.t-, ~l.z)X.i= (8.t-1-L.t-t1..z) ~t-l- S.t-l (6t-r~.lrt-J

X1.-1. ... «'1.-1. XL = 't'/'-1..

'=1j

(-lJ.)·f 'Xl-1'" ct.t-1X.t, :. t..t-1}
-lLX.t.-.1 ... (D +J l.t.~..t + U, 'x.t+1. =~..t

(COt:r),i.- L-eGC..t-i)X.,t -t LL.tx.tt1 = Bt -1.1. 1A.-1.
'f...t + t/...JL X.L+1. -::::. 1'1,

j :: ),+1

- (l+J).L<1:{ X.L + 01. A. X.t+1 "" 'tL } ~L~ [1k-(L+J~r
(L+l)t+1.X.t +D,t....:tx L+1. -+ LlJl.+.1 x.t+z= BA.....i. ~+1 = St~ U,tH.

[I>1:d-(l1'J).t ..1 til...] X.t,1'1. +U,t.+4. X.t+Z=81.H.- (L+J)t+1..t. r~+:t.=i.t~[\i{l"JUJ
X1.+j.. + ce. 1.n X .t+2. = r .L+j..

-(l-+ J)t+.1." { XL + ~1. X.L+i. = r1.}
(l-tJ)H1.XJ.. ... D1.ti.XL+1. :: BL+i.

[D1.+1.- (Li·r)l.+i."J XL~:' Bl +1 - ( L-tJ).L+.11.L

X..e.+.1- = '11.+-j..
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It 1+.1 <l.l. :

(-lI~)·{ Xn-1. + ~l:'l-1 XI~ -= 1u-t.}
LI1.~l.-1. + l)J:~ XI~ = f>z~

(D=t~- LaAl2-f) Xl1; := (f>I~- La rn -.1)
Xr~ := 1I-'&
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The following table summarizes the form of the operators that are used

in the Gaussian elimination scheme at the various levels (j) of the

model.

.

'
3 /;j ~..j 0(,-

j ~

1 D1-' ~Uj ~jj ~. ~.
j ~

[z•.e.z] {D; -l; ctj-!r' ~~ u· Ij (JJ "Lj~j-l) ~ (81- l.j1i-')1 1

-,
~~ [{ll+r~ -lj8;-J ~j lBj-lj ~j.l}1 ... 1 (~-lj~-..)

.,
Aj (Bj -l.j ~j-l).t [(D+J~ - Li c(j_~] &" U'l ,

~+tJ.l~
-I

~~[B1-(L1+Aj,lt1JtJ\J~i -(Lj+6j,ldr.t.Ll.q-J s· U·j j

-,
ii[Bj "(lj io~,.~1j'~1)i~.i.]11. [o~-{L1 +AjlM.J.wl,,~

oif 11..(+1

whe'C'e. Aj,!ti,.:: { 1 if j=J:tl
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In an elegant extension of the Lindzen-Kuo method, Professor Paul

Duchateau of the Mathematics Department of CSU developed a scheme to

solve the linear matrix equation AX = B* with a considerable reduction

in computer time. He observed that each of the five equations involves

a vertical derivative in a single variable, and this variable is dif-

ferent for each equation: specifically, u l
, Vi, w', T', 41 1 in that

order. These equations are not all second order in the vertical, so we

cannot directly use use the Lindzen-Kuo scheme. However, if we finite

difference them as they appear, without combining them, and retain all

five variables as unknowns, we find again a block tridiagonal structure;

but the off-diagonal blocks are themselves diagonal matrices!

precisely the matrix structure outlined above.

Thi sis

Duchateau noted that with non-vanishing viscosity and thermal

diffusivity, the off-diagnonal block matrices are guaranteed to be

trivially invertable. Consequent1y, the a 1gori thm can be modi fi ed so

that only a single 5xIY by 5xIY dense matrix need be inverted. In the

standard method, such a matrix inversion must be accomplished at each

vertical level. Thus Duchateaus's scheme reduces the matrix inversion

workload, which constitutes the primary computational burden, by a

factor of IZ which is typically a factor of 30 or more.

In testing this scheme, we determined that its usefulness is

limited to cases where viscosity is rather large (e.g.

throughout the model's domain. The restriction of this scheme results

-1
from using the L matrix, which is inversely related to viscosity and

diffusivity , to operate on a row of matrix A in reducing it to an upper

triangular system (refer to schematic of AX = B* of Section 11.1).

Apparently when the magnitude of L is small (due to a small value of
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viscosity; e.g. v ~ 50 m2 s- 1), the condition number of the matrix to be

inverted increases so that for all practical purposes the matrix is

uninvertible.

Heuristically, all the ill-behaved aspects with small dissipation

are collected into a single matrix inversion stage, which the algorithm

cannot properly handle. When the ill behavior is distributed over many

(time-consuming) matrix inversions, the algorithm works quite adequate-

ly. This result is apparently an application of the computer proverb,

"You don't get something for nothing". Note, however, that Duchateau's

scheme may be useful in second-order, dissipation-dominated problems.

Unfortunately, that is not our area of interest.

11.3 Backsubstitution

Once the system AX = B* has been reduced to upper triangular form

as shown below, it becomes a trival matter to solve for the solution

matrix X.

I <IC'1. /31 X1. r1.r 0(.'2, IJ1. Xz 'fz.
I £3 1J3 X3 1"!l

I aC. t-,1 Xl~1 - I t-1.-
I fl.! X.t 1"

I o(li1 X,hi fb l

I XU-i ltl
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In the backsubstitution, we compute

where ~. = 0 for j > Q - 2
J

Since the y, a, and ~ matrices are needed in the backsubstitution pro-

cess, they are temporari ly stored on a random access fi 1e and then

reca11 ed as needed. This was done because the size of these matrices

prohibited storing them for all levels simultaneously. For example, at

each level y and a consist of 50xIy2 words and ~ of lOxlY words. One

should note that in the back substitution process the perturbation v

field was explicitly set to be zero on the side boundaries.



12. Model Inputs

In order to compute the response of the atmosphere to a specified

heat input we must specify the following:

1) domain for model

2) zonal wavenumber, s

3) frequency a, relative to the ground

4) damping rate, D

5) viscosity profiles, Vel) and vel)

6) distribution of cumulus mass flux M (e,l), and M I (e,Z)
c c

7) basic state flow field u(e,Z), v(e,Z), and w(e,Z)

8) mean temperature distribution T(e,l)

9) perturbation heating pattern Q'(8,l)

10) coordinate stretching in vertical and latitudinal directions

43



13. Resul ts

In our initial experiment, we sought to duplicate Holton's (1971)

results by setting up our model with a motionless basic state and using

the parameters and grid resolution similar to Holton's. To accomplish

this we specified the following inputs.

1) The latitudinal domain for this experiment was from the

equator to -300 N with a resolution of approximately 2° in the tropics

(i.e. IY=ll). A rigid lid was placed at z=3 (-50mb) with a resolution

b.z=O.l (i.e. IZ=31). In addition, cloud base was placed at -950 mb

(z=O.l), whereas the tropopause was set at 135 mb (z=2.0).

2) The zonal wavenumber was set to s=10, corresponding to a zonal

wavelength of -4000 km.

3) The angular frequency was set to G = n/5days, corresponding to

a westward propagation with a period of 5 days relative to the ground.

4) The dissipation coefficients (DISWIND and DISTEMP) were set to

0.03, which corresponds to damping time scale of 2.65 days for Rayleigh

friction (a
r

) and Newtonian cooling (aN)' In Holton's model the linear

dampi ng terms a
r

and Ci
N

were necessary to prevent the occurrence of

singularities in the final diagnostic equation.

z<z
c

5) The viscosity profile was given by I
l02m2s - 1

v(z)=vCz)=

\ Im2 s-1 z > z
c

6) Cumulus mass flux was set to M (8,z) = M'(e z)
c c '

a

7) The components of the basic state flow field were set to

- -
U(8,z) = v(8,Z) = w(8,z) = O.
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8) In this experiment the mean temperature (T) distribution was

obtained from the vertical temperature structure (shown in Fig. 13.1) of

the mean annual atmosphere at 15°N (U.S. Standard Atmosphere Supplements,

1966) . At each vertical grid point, values of T were linearly inter-

polated from the sounding in Fig. 13.1. To be consistent with the

assumption of a motionless basic state, the latitudinal variation of

mean temperature (i.e., aT/ae) was set to zero.

9) The perturbation heating (Holton, 1971) was given by:

8-8
(ZD)Q' (8,Z) = 0Q oexp[-(----)]oexp

o 8
1

2

ZD/12 - exp
-ZD ZD 12 km<

x 7. -ZD/2. 12 < ZD < 14 km-o. ZD > 14 km

where ZO = z x SH
SH - scale height (8 km)

In the above equation ZO has the dimension of kilometers and Q is a
o

constant chosen so that the vertically integrated heating rate at lati-

tude e
o

-1
day

-1
is ~ 3.6°K day ,which corresponds to a rainfall rate of 1 em

In addition we have set 8 =8.63, which corresponds to the lati­
o

tude where the lateral heating distribution is a maximum, and 8
1
=3.0

(i.e. a half width of ~ 3° latitude). A meridional plane cross section

of the distribution of amplitude for the heat source is shown in Fig.

13.2. In Holton's paper, he states that the vertical distribution of

condensation heating above 900 mb represents the large-scale heating of

the atmosphere by deep cumulus convection, whereas the cooling near the

lower boundary is thought to be primarily due to descent of low equiva-

lent potential temperature air in downdrafts occurring in the rain

areas.
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20

10

Fig. 13.1 Vertical temperature structure of the mean annual
atmosphere at 15°N (U.S. Standard Atmosphere Supplement. 1966).
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Fig. 13.2 A meridional plane cross section of the distribution of
amplitude of the perturbation heat source.
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Fig. 13.3 shows the computed atmospheric response (as amplitude and

phase) in the u, v, w, T, and <I> perturbation fi e 1ds for the va 1ues of

the parameters specified above. In addition to presenting the amplitude

and phase of each field, we offer (Fig. 13.4) the reader a supplementary

view of these fields by presenting their amplitudes at phase = 0° (where

Q' is maximum) and at phase = 90° (one-quarter wavelength before maximum

Q'). For the sake of comparison, Figs. 13.5 - 13.7 are shown here from

Holton's (1971) paper depicting the atmospheric responses that were

computed when he set the mean flow equal to zero in his model. One can

readily verify that our results and Holton's are consistent for this

experiment, providing some confidence that our model was properly for­

mulated and coded.



Fig.
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13.3 Computed atmospheric reSponses (amplitude and phase) in the
u, v, w, T, and ¢ perturbation fields for Holton (1971) comparison
run (solid lines positive values, dashed lines negative values).
Phase is shown relative to heat source in Fig. 13.2.
(Fig. 13.3 on next page)
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Fig. 13.4 Computed atmospheric responses (amplitude at phase = 0° and
phase = 90°, where phase is relative to heat source in Fig. 13.3)
in the u, v, w, T, and ¢ perturbation fields for Holton (1971)
comparison run (solid lines positive values, dashed lines negative
values).
(Fig. 13.4 on next page)
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14. Optimization of Model on the CRAY-l Computer

Being reasonably convinced that we had formulated our model cor­

rectly, we then sought to reduce its cost by optimizing the model's code

(i.e., making the most efficient use of the architecture of the CRAY-l

system). This task was suggested by our need to increase the horizontal

resolution of the model beyond 11 grid points; small increases in the

number of poi nts in the model' s domai n cause 1arge increases in the

computer resources that are used in the matrix inversion stage. For

example, by increasing the number of horizontal nodes in the model from

11 to 15 points (see Table 1), the CRAY resources that are used increase

by approximately 150%. Computer time is approximately proportional to

IY3.

The first step taken in optimizing our model was to time various

sections of code. Through this process we determined that 95% of the

execution time used in running the model was spent in subroutine LEQ2C.

This library software routine written by IMSL was used to invert a full

non-Hermitian complex matrix at each vertical level of the mode. The

majority of the execution time spent within LEQ2C is used in obtaining a

high accuracy solution which results from an iterative improvement

scheme that uses double-precision arithmatic. With further testing as

noted in Table 1, we were able to show that the iterative scheme as well

as the dOUble-precision arithmetic it utilizes are necessary in order

for the solution produced by LEQ2C to converge. A1though a campi 1ed

version of the IMSL software has recently been appended to the CRAY-l

library, the CRAY compiler is not able to vectorize the two recursive

operations within the iterative improvement scheme which involves sum­

ming up a series of double precision numbers. With an optimized double-
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precision adder, as SSUM is for single-precision numbers, we could

envision a significant increase in the efficiency of LEQ2C and con­

sequently our model.

As an alternative to using the time-consuming, yet highly accurate

LEQ2C, we attempted the matrix inversions in our model with software

from the UNPACK library. This software library was written for speed

optimization on the CRAY-l by referencing CRAY Assembly Language Bi:lsic

Linear Algebra Subroutines (CAL BLAS). Surprisingly, use of the LINPACK

software in our model resulted in the correct solution, in spite of the

fact that only single precision arithmetic is used in the inversion

routines. In addition, the execution time for running our model was

reduced by 95% by using this efficient software! The computer runs

referenced in this section are summarized in the following Table.



TABLE 1

OESCRI PTI ON

Standard run with 31 vertical levels and 11
horizontal nodes using LEQ2C matrix inverter

Same as 1, except using LEQT1C matrix inverter
(i.e. no iterative improvement scheme)

Same as 1, except single precision arithmatic
used in iterative improvement scheme in LEQ2C.
This was accomplished by specifying OFF=P on
the CFT card which at compile time causes all
double-precision variables to be treated as
real single-precision variables.

Same as 1, except with 15 horizontal nodes

Standard run with 15 horizontal nodes using
LINPACK matrix inverter

Results of
RUN

Correct
results

Erroneous
results

Interative
improvement
failed to
converge.
Erroneous
results

Correct
results

Correct
results

CRAY-l
Resources USI

(in CRAY hou

.0396

.0018

.0074

.1002

.0047

_.1-- -+- -+- _



15. Computation of Basic State

As stated in the introduction of this paper, to better understand

the structure and dynamics of tropical easterly waves, a model must

incorporate a realistic basic state. In fact, the most important ad-

vance in our model design over previous attempts to simulate tlhese

weather systems is the explicit inclusion of a zonal rTel with associ-

ated vertical mass flux both on the cloud scale (gM ) and in the large­
c

scale cloud environment (pw). In the discussion that follows in this

section, we describe a method for obtaining a a consistent basic state,

given a specified u field.

15.1 Basic state equations

The equations for the basic state are given as follows:

Absolute Angular Momentum

v oAM - oAM -
+ w = acos8F

a 08 oZ u

where: AM = acos8(Qacos8 + u)

-
- 1 a - lit au]F = - -- [gM (u - u ) + g ~ - a u + eddy terms

u p oz c c H oz R

V-Momentum

u2 - 0$
tanS + fu + = 0

a a08

Hydrostatic

0$ = RT
az

58

(15.1)

(15.2)

(l!3.3)
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Continuity

a(vcoss) + 1 a (pw) = 0
acosSaS p az

Thermodynamic

(15.4)

- -
~ aT + ~(:Tz + KT)
a as u

- -
= !L + .9. a .!:IT aT

c p az H az
p

(15.5)

In Eq. (15.1), AM represents the mean absolute angular momentum, whereas

acosSF represents the sources of AM.
u

To arrive at the form of the

v-momentum equation gi ven here, we assumed that the di fference of the

mean v-component of forcing (F ) and advection of the mean meridional
v

wind

-
(~av - av

a as + w az)

is small relative to the other terms in equation (15.2), and therefore

can be negl ected.

balance.

Eq. (15.2) in this form represents gradient wind

15.2 Computation of the T and ~ fields

Differentiating Eq. (15.2) with respect to the vertical cooY'dinate

'z' and applying Eq. (15.3) we obtain

a ~2
( - tanS + fu) =

az a

-
R aT
a as

(15.6)

In this form Eq. (15.6) is the thermal wind equation which relates the

vertical wind shear to the horizontal temperature gradient. From this

equation and Eq. (15.2), one can note that at the equator (i.e., e = 0°)

tanS = f = 0, so that aT/aS = a~/as = O. Furthermore by writing



T(8,Z)
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(15.7)

~(9,z) ; ~O(z) + ~1(e,z) (15.8)

and defining TI(e;O,z) ; 0 which implies ~l(e;O,z) ; 0, it follows that

T(O,z) ; T (z)o

~(O,Z) ; ~O(z)

Using these definitions with the basic state equations, we are now

able to compute the T(e,z) and $(e,z) fields with the following pro-

cedure.

(1) Obtain TO(z) from a tropical sounding.

(2) Derive ~O(z) from TO(z) through the hydrostatic equation.

(3) Given u(S,z) as a prescribed input, compute ~(e,z) from the in-

tegral form of Eq. (15.2) shown below.

e ~2
~(S,z) ~O(z) - a f (- tanS + fu)d8 (15.9)

0
a

(4) Compute: ~I(8,z) ; ~(e,z) - <l>O(z)

(5) Compute: TI(e,z) ;

J Cl<l>I(8,Z)

R Clz

(6) Compute: T(e,z) ; TO(z) + T
1
(e,z)

15.3 Computation of the v and w fields

Our goal has been to calculate a mean meridional circulation (v,w)

which is consistent with a specified mean zonal flow u. In principal,

the meridional circulation can be obtained from the angular momE~ntum

equation (15.1) and the conservation of mass equation (15.4). If the

-
zonal flow u is specified as a function of latitude and height and if
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-
the source term for angular momentum, acosSF , is known and consistent,

u

then v and w can be obtained in the following manner. First, we define

a mean meridional streamfunction which satisfies (15.4):

-
apw =~ClIJ

PCOSS v = ~
ClZ

where I-! = sinS, dl-! = cosSda. Then conservation of angular momentum

(15.1) can be re-written:

J(~,AM) = F apcosS
u

(15.10)

where J(~,AM) _
-
~ ClAM
ClIJ ClZ

-
~ ClAM
ClZ Cll-!

is the Jacobian. If F
u

and AM are

known, we planned to calculate the mean meridional streamfunction ~ from

(15.10) and then v, w from the auxiliary relations. If the domai n is

closed, with no mass flux through the boundaries, we can set ~=o on all

boundaries. Since a steady state is assumed, there can be no net source

of angular domain: f F acosSad8Hdz = o.
u

Three di fferent but rel ated approaches have been used in our at-

tempt to determine a realistic mean meridional circulation. They are

outlined in the following subsections.

15.3.a First method

The source term F for mean zonal momentum was calculated from the
u

equation following (15.1), neglecting all eddy terms. Thus the M and u
c

fields were used in parameterizing the source. With finite differ-

enci ng. an inhomogeneous set of 1 i near equations for 4J at the gri d

points results. We attempted to solve this system of equations using

-
standard matrix routines, but never achieved a useable solution for ~.
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Part of the reason for this failure, we suspect, is that the prob-

lem is over-determined and a solution cannot be found. Specifically,

the Jacobian contains only a first-order derivative in the vertical

dimension, but two boundary conditions are prescribed (~=Oat top and

bottom) .

15.3.b Second method

This method is a modification of the first, in which we retain the

same approach using F but admit to some uncertainties in F near the
u u

upper and side boundaries. Specifically, v and ware obtained by in-

tegrating upward from the lower boundary and laterally between northern

and southern boundaries. v is modified gradually in the vicinity of the

side boundaries so that it vanishes at the side walls. pw is modified

smoothly above the tropopause so that the vertical mass flux vanishes at

the model top. In this way, conservation of mass is retained, while the

momentum balance is altered slightly, in a sense by sources of unknown

origin (e.g., eddy terms). These modi fi cat ions in v and w occur far

from the central region, so that the perturbation fields of interest are

not significantly affected.

We write the continuity equation in the form

Opw 0 (EY case) ,=oz olJ a

and the angular momentum equation in the form

F pacose -
- oAM

EY u
pw oZ

cose
a

oAM

olJ

(15.11)

(15.12)
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At the lower boundary w(z=O)=O. Since any horizontal shear of the mean

zonal flow at the equator is eliminated by inertial instability

(Stevens, 1983), we assume aAM/a~=o at the equator.

The algorithm follows these steps.

(1) Given a specified u field, compute Fu' AM, aAM/az, and aAM/a~ at

every point in the model's domain.

-(2) Assuming w(z=O) = 0, compute v at z = 0 using (15.12) .

(3) Calculate pw at the next higher 1evel I j' by vertically integrating

Eq. (15.11) between a lower level 'j+1' and level 'j'.

(4) Compute pv/a at level 'j' by using (15.12) unless calculation

occurs at equator. At the equator aAM/a~ = 0 so that instead of

using (15.12), pv/a is interpolated from values of pv/a on either

side of the equator. If a side boundary lies on the equator (i.e.,

i=l corresponds to 8=0) then pv/a at i=l is extrapolated from

values of pv/a at i=2,3, and 4.

(5) Repeat steps '3' and '4' for all vertical levels.

(6) Since we know that pw is "small" high enough in the atmosphere, we

alter the w field above z=ZTROP so that it trails off smoothly to

zero at the top of the model.

(7) Alter the v field to maintain mass continuity in regions where the

w field was altered in step '6'.
-

In addition, change v at the side

boundaries and adjacent points so that it trails off to zero on

these side borders.
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In order to compute the v and w fields given the procedure listed

above. u(~,z) and M (~,z) must be specified. To provide for conserva­
c

tion of angular momentum the following constraints were applied to the u

field: (1) au/az = 0 at the top of the model, and (2) the viscous flux

of angular momentum must be zero when averaged over the lower boundary

a
(i.e. f az (uacose)d~=O).

As an example, we show the mean meridional circulation obtained by

this method with a prescribed u flow consisting of easterlies in the

tropics and westerlies in the middle latitudes.

u(~,z) = (Easterly component) + (Westerly component)

where

Easterly component _ Ul x Fl x Gl

Ul = - 5 m s-1

(15.13)

F1(~) = ----'1:..;...·--2­
(1. + (H-) )

~1

~1 0.2

Gl(z) 1. - sin (n x ~)
6.

, z < 3

Westerly component _ U2 x F2 x G2

U2 = 15 m s-l

~ < ~2

!-l > 1-1 2
1-1 2 = 0.2, 1-1 3 = 0.3

G2(z) = 1. + cosine (n x (3.-Z)) z < 3
4. '

In our present calculation, the mean cumulus mass flux M profile is
c

given by:
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M = M x EXPON x ZFUNC

c co

where
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(15.14)

M = 5 mbars/hour (magnitude of deep cloud mass flux from Yanai
co

et. ~, 1973)

EXPON = exp [-(~~lP)]: ~o = 0.15, ~1 0.10

~ = sineS)

ZFUNC = (1 - exp CPT-PRES))
PORT

PT -ZTROP (. d" 1 )= e l.e. non- lmenslona pressure at tropopause

PORT = 0.10 (i.e. vertical decay scale used to simulate the

detrainment layer at cloud top)

PRES
-z= e

Once the M field is computed, a 7-point running average is applied to
c

this field in the vicinity of the tropopause in order to smooth out the

vertical discontinuity
-

of M in this region.
c

The di stri but ions of

- -
u(~,z) and M (~,z), as expressed in Eqs. (15.13) and (15.14), are shown

c

respectively in Figs. (15.1) and (15.2). The corresponding field of

AM is shown in Fig. 15.3, whereas the source field F , which is
u

- -
parameterized from u and M , is shown in Fig. 15.4.

c
- -Using these u and M fields, the resulting mean meridional cir­

c
- -

culation is shown in Figs. 15.5 (v) and 15.6 (w). We see that in the

ITCZ region of maximum cloud mass flux M , the mean vertical velocity w
c

is actually downward.
- -

Yanai et ~. (1973) demonstrated that pw and gMc

are both upward and of comparable magnitude in the Inter-Tropical

Convergence Zone (ITCZ); i.e., most of the vertical mass flux in the
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Fig. 15.1 Distribution of mean zonal wind (u) in m.sec- 1 (solid
lines westerly wind, dashed lines easterly wind).
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Fig. 15.3 _Qistribution of absolute angular momentum (AM) in m2 ·s-1
(x 10 ).
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Fig. 15.5 _~istr;bution of computed mean meridional velocity (v) in
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!Tel takes place within the clouds. Because the observed cloud mass

flux is slightly larger than pw, environmental subsidence between the

clouds often results.

The results presented in Figs. 15.5 and 15.6 differ startlin£l1y

from the observations, in that the mean vertical mass flux in the ITeZ

is downward and an order of magnitude smaller than the cloud mass flux.

In the angular momentum budget, it is the horizontal advection and not

the vertical advection that balances the cumulus source/sink term away

from the equator. To examine why this balance occurs let us take the

ratio of the vertical advection to the horizontal advection of angular

momentum:

- aAMw -­
az

v aAM
a ae

~ aAM
= aIJ az

_~ aAM
az afJ

Scaling the meridional flow as ~
az

liJo . ~the vertical flow as
~z' 3fJ

a2 (20sin8); we find:
-aAM au au. aAM

== acos8 ~ aaz az az' afJ

I Vertical Advection I ~z au/az
Horizontal Advection ~ ~fJ 20afJ

(15.15)

For the present calculation, we take ~fJ~fJ~!J =0.15, corresponding to the
o

central latitude of the cloud mass flux distribution, ~z ~ 1 scale

height,

au
az

~u -1
~ 5 m·s per scale height. Then the ratio of vertical to

~z

horizontal advection becomes

r Vertical Advection f
! Horizontal Advectionl

1 ~u
IJ 2 • 20a ~ 0.2

o

(15.16)
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Hence horizontal advection dominates at the latitude of the ITCZ, while

vertical advection must balance the source at the equator. For the same

vertical shear (Au), the farther the ITCZ is away from the equator, the

greater is the relative strength of the horizontal momentum advection.

With this dynamical balance, cloud mass flux and mean vertical motion

are not comparable in an ITCZ away from the equator. Furthermore, downward

mean motion generally occurs in the ITCZ to compensate the equatorial upward

motion and thereby close the meridional cell.

For completeness, let us consider the case where the central latitude of

the cloud mass flux is placed on the equator (see Fig. 15.7). The source of

momentum F , which corresponds to this distribution of M and the u field in
u c

Fig. 15.1, is shown in Fig. 15.8. Repeating the scaling argument given in

Eq. (15.15) for thi s conf; gerat; on of M , we see that ; nth; s case vert i ca1
c

advection dominates at the latitude of the nez. This is due to the fact

that the denominator in Eq. (15.15) goes to zero, since 1-/-1-/ =0 in this case.
o

The resulting mean meridional circulation shown in Figs. 15.9 (v) and 15.10

(w) is now consistent with Yanai I s observations that pw and gM are both
c

upward and of comparable magnitude in the ITCZ. For example, in the region

of maximum M nearly 85% of the mean meridional circulation is accomplished
c

by the cumulus mass flux.

This method represents a consistent dynamical framework for studying the

mean meridional circulation. However, with an off equatorial momentum source

this method fails to simulate the typical observations within the ncz.

15.3.c Third method

-In the third approach, we again specify u and M empirically. In addi­
c

tion, we use a mean meridional circulation ($) which is determined from

observations. A consistent angular momentum source must then consist of the

eddy telrms as well as the explicit zonal-average quantities. We do not inves-

tigate the nature of these eddy terms, but assume their existence.
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Fig. 15.7 Same as Fig. 15.2 except with IrCZ centered on equator.
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Fig. 15.8 Same as Fig. 15.4 except with IrCZ centered on equator.
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Fig. 15.9 Same as Fig. 15.5 except with ITCZ centered on equator.

MEAN W-VELOCITY (MBARS/HR)

3.0

- 2.5
0- 0.0 --- 100
~ 2.0 -0 .n
0- S'---' 200c.o 1.5 '---'
0

.....:l 300
II 1.0 400 0-

N 500
0.5 600

700
850

0.0 1000

lOS EQ. 10N 20N 30N

Latitude(degrees)

Fig. 15.10 Same as Fig. 15.6 except with ITCZ centered on equator.



16. Conclusions and Future Work

In summary, the characteristics unique to this model and/or impol~­

tant for applications include:

(a) The specifications of an "arbitrary" mean zonal flow which Ci:ln

depend on both latitude and height;

(b) Calculation of a mean meridional circulation which is dynamically

consistent with the mean zonal flow (i.e., satisfies conservation

of angular momentum, the balance approximation, the hydrostatic

approximation, conservation of mass and energy);

(c) Vertical transport of momentum by the deep convective clouds in the

tropics in both the mean and perturbation circulations;

Cd) Spherical geometry;

(e) Coordinate stretching in both the vertical and latitudinal coor­

dinates, which is represented in the coupled differential equations

by finite differences;

(f) Very fine vertical grid resolution: experiments have been run with

31 points in the vertical; computer processing increases only

linearly with the number of grid points in the vertical;

(g) Horizontal resolution of 15 to 20 points (square matrices with

approximately five times the number of horizontal points must be

inverted) at each vertical level;

(h) Very economic computation: the global response in a single zonal

wavenumber with IY=21 and IZ=31 is obtained with approximately 13

seconds of NCAR CRAY time.

This linear model assumes that a frequency cr (which may be rei:!.'.

complex, or even zero) and a zonal wavenumber s is specified. In this

way, response to a single Fourier component of forcing is studied. For

76
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more general forcings, a Laplace transform in time and a Fourier trans­

form in longitude is performed first; then this model calculates the

complex response to each component. Finally, the various components are

combined to obtain the actual response.

Now that the lengthy model development stage has come to a success­

ful conclusion, we plan to apply our model to specific situations. The

fa 11 owi ng di scuss i on out1i nes a number of problems whi ch we envi sian

using our model on in the near future.

16.1 Tropical wave modeling

One of the probl ems to be addressed is the rol e and adequacy of

Rayleigh friction as a parameterization of cumulus momentum transport in

the tropics. Much of the recent work on the dynamics of planetary-scale

tropical circulations have assumed this most simple parameterization of

mechanical dissipation (e.g., Gill, 1980, Chang, 1977, and Chang and

Lim, 1982). A comparison of such results with those with a more realis­

tic parameterization is needed and can be accomplished in our model

context.

It was hypothesized by Stevens et ~., (1977) that cumulus momentum

mixing is required to make temperature changes small in synoptic-scale,

1i near tropi ca1 waves. However, in our preliminary results shown by

Stevens and Ciesielski (1982), it appears that the temperature changes

are small (relative to diabatic heating and adiabatic cooling) with or

without the inclusion of this physical process. Further investigation,

at this point still preliminary, is indicating that another mechanism

may be playing a more significant role in keeping the temperature

changes small: namely, the existence of significant components of the

response in modes with negative equivalent depths when the Doppler-
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shifted period is on the order of days to weeks. These tentative con-

elusions will become more concrete as the research progresses.

The sensitivity study of westward-propagating tropical disturbances

to a zonal mean wind with realistic vertical and latitudinal shear is

al so pl anned. Specifically, wind regimes representative of the western

Pacific and the eastern Atlantic will be considered in order to compare

model wave structure and characteristics with the observed.

Finally, observational evidence from both GATE and MONEX is incji­

cating that significant precipitation in tropical systems occurs in the

mesoscale regime (Houze and Betts, 1981, and Johnson, 1982). This new

i nformat i on needs to be taken into account, for both mesoscale and

convective scale condensation and precipitation influence the param­

eterized diabatic heat source for the synoptic disturbance, whereas the

convective scale vertical transport of horizontal momentum very likely

dominates the mechanical forcing/dissipation of the synoptic scale by

smaller scale systems. We intend to pursue the ramifications of the

influence of these two smaller scales (not just the convective) on the

synoptic systems.

16.2 Quasi-steady tropical circulations

Geisler (1981) has applied a model very similar to ours to "the

quasi-steady tropical east-west circulation known as the Walker cir-

culation. However, the zonal mean flow was assumed to be negligible in

that study and the effect of the mean meridional circulation on the

di sturbance was negl ected. Although the latter may not have a signi-

ficant effect, we expect the former to be rather crucial to the lati­

tudinal extent of the circulation. In particular, the zero wind line is

expected to playa rather important role in the Walker circulation. We
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propose to investigate the Walker circulation in the context of this

more realistic basic state.

Several recent studies (e.g., Webster, 1981, Hoskins and Karoly,

1981) have considered the influence of tropical heat sources with sta-

tionary planetary-scale midlatitude perturbations in linear model, with

the purpose of explaining the interaction between tropics and midlati-

tudes on longer than synoptic time scales. This is a very exciting

field that promises to increase the skill of long-range forecasting. In

the linear wave theory, critical surfaces (U = c ::: 0) strongly affect

the propagation of energy from tropics to midlatitudes.

However, a paradoxical difference between the observations and the

theory is present which we intend to address. Namely, observations over

the past 25 years of synoptic-scale tropical systems have focussed on

westward movi ng di sturbances wi th typi ca 1 propagation speeds around 5

-1
ms If the modulation of these systems is giving the quasi-steady

heat sources assumed by the linear theories, then one would expect that

- -1
the U = -5 ms surface would be an important factor, perhaps even more

so than the zero wind surface, in the dynamics associated with the

critical surface. This should be investigated and we propose to do so.

Geisler and Stevens (1982) showed that very fine vertical resolution is

required to represent these propagating modes.

Finally, further work needs to be done on the relative roles of

heat sources and mechanical orographic forcing in the tropical! mid-

latitude interaction problem. The linear, spherical, primitive equation

model with high vertical resolution ;s a useful tool for this problem.

We plan to exploit this developed tool in studying this important

problem.
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Appendix

Flow Chart of the Fortran-coded Algorithms

This appendix provides flow charts of the computer code needed to

run the model described in this paper. The code for running this model

is di vi ded into the fo 11 owi ng programs: GENVAR, GENCOEF, and DESRUN.

GENVAR

This program sets up the basic state, specifies all constants

to be used in the model, and prescribes the perturbation heating

function.

"GENCOEF

Using the output from 'GENVAR' , this program generates the

coefficients (see Section 7) which operate upon the non-

dimensional dependent variables.

..,
DES RUN

Using coefficients generated in 'GENCOEF' , this program sets

up the system AX=B, where X represents the five perturbation

variables at all grid points. X is solved by using Lindzen
!

Kuo Gaussian El 1mi nat1on. I

A fourth program (PLOTSOL) provides contour plots of the solutions from

the output of DES RUN and of the basic state fields from GENVAR.
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A. Program GENVAR

This program sets up the basic state, specifies all constants used

in the model, and prescribes the perturbation heating function.

GENERATE HORIZONTAL AND VERTICAL COORDINATES

COMPUTE FIELDS OF NON-DIMENSIONAL PRESSURE AND

THE CORIOlIS PARAMETER

COMPUTE BASIC STATE VARIABLES I

SPECIFY PERTURBATION MASS FLUX AND PERTURBATION HEATING

COMPUTE WAVENUMBER AT EACH MODEL lATITUDE

WRITE OUT REVElANT DATA
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B. Program GENCOEF

Using the output from 'GENVAR', this program generates the

coefficients (see Section 7), which operate upon the non-dimensional

dependent variables.

READ IN DATA GENERATED BY 'GENVAR' FROM A FILE

TRANSFER REVELANT DATA NEEDED BY 'DESRUN' TO COMMON BLOCK

COMPUTE COEFFICIENTS

ESTABLISH BOUNDARY CONDITIONS FOR z=O

WRITE OUT COEFFICIENTS AND OTHER PERTINENT DATA TO A FILE
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C. Program DESRUN

Using coefficients generated in 'GENCOEF', this program sets up the

system AX=B, where X represents the five perturbation variables at all

grid points. X is solved by using Lindzen Kuo Gaussian Elimination.

READ IN COEFFICIENTS AND OTHER PERTINENT DATA

GENERATED BY I GENCOEF' FROM A FILE

FILL IN SUB-MATRICES

MANIPULATE THE VARIOUS MATRICES TO ACCOUNT

FOR SIDE BOUNDARY CONDITIONS

SUB-MATRICES ARE USED TO FILL LARGER MATRICES

WHICH COMPRISE COEFFICIENT MATRIX 'A' AND

RIGHT HAND SIDE MATRIX 'B'

REDUCE SYSTEM TO AN UPPER TRIANGULAR MATRIX

BACK-SUBSTITUTION FOR BOTTOM TWO LEVELS OF MODEL

LINDZEN-KUO BACKSUBSTITUTION FOR OTHER LEVELS

PRINT OUT SOLUTION AS AMPLITUDE AND PHASE

WRITE SOLUTION TO A FILE

e
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