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Abstract

This document provides a detajled discussion of the formulation and
development of a giobal model of linearized perturbaticns. Although the
model was originally designed for the purpose of studying tropical
easterly waves, it has been built in a way that allows more general
usage. The characteristics unique to this model and/or important for
applications include:

(a) The specification of an "arbitrary" mean zonal flow which can
depend on both Tatitude and height;

(b) Calculation of a mean meridional circulation which is dynamically
consistent with the mean zonal flow (i.e., satisfies conservation
cf angular momentum, the balance approximation, the hydrostatic
approximation, conservation of mass and energy);

(c) Vertical transport of momentum by the deep convective clouds in the
tropics in both the mean and perturbation circulations;

(d) Spherical geometry;

(e) Coordinate stretching in both the vertiéa? and latitudinal coor-
dinates, which is represented in the coupled differential equations
by finite differences;

(f) Very fine vertical grid resolution: experiments have been run with
31 points in the verfica1; computer processing increases only
linearly with the number of grid points in the vertical;

(g) Horizontal resolution of 15 to 20 points (square matrices with
approximately five times the number of horizontal points must be
inverted) at each vertical level;

(h) Very economic computation: the global response in a single zonal
wavenumber s obtained with approximately 13 seconds of NCAR

CRAY time.
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1. Introduction

Recent observational studies have determined that vertical trans-
port of vorticity and momentum by deep cumulus clouds 1is an important
element in the dynamics of tropical weather systems with Doppler-shifted
time scales on the order of a day or longer (i.e., with Doppler-shifted
periods of at least six days). For example, Reed and Johnson (1974)
found a substantial residual in the large-scale vorticity budget of
western Pacific disturbances, which could be attributed to convective
transports. Vorticity budget residuals were also found in the case of
African wave disturbances by Shapiro (1978) and synoptic scale distur-
bances over the GATE ship array by Stevens (1979). Even though the
moist convection had a much more complicated character over the Atlantic
region than over the Pacific, the vorticity residuals could still be
explained by cumulus transports (Shapiro, 1978, and Shapiro and Stevens,
1980). Shapiro and Stevens also found that the residuals in the momen-
tum budgets, although subject to greater observational uncertainty,
could also be ascribed to a large extent to cumulus transports.

Modeling studies have corroborated the importance of cumulus trans-
ports of momentum in tropical cifcu1ation system. Schneider and Lindzen
(1977) and Schneider (1977) idincorporated cloud momentum transport in
calculations of the mean meridional circulations, or Hadley cell.
Stevens et al. (1977) and Stevens and Lindzen (1978) showed that both
the dynamic and the thermodynamic balances in tropical easterly waves
are dramatically altered when cloud momentum transport 1is included.
Mass (1979) found this process to be significant in his investigation of
African wave instability. Al1l of these studies used the Schneider-

Lindzen (1976) parameterization for cumulus transport of momentum.



Although Stevens et al. (1977) demonstrated that the qualitative
structure of tropical easterly waves changed significantiy when cloud
momentum transport was included, their simplifying assumptions precluded
direct comparison with observed disturbances. 1In order to better under-
stand the structure and dynamics of these weather systems, a model with
a more realistic basic state is required. This document provides a
detailed discussion of the formulation and development of such a three-
dimensional model.

As in the earlier model, a zonally propagating heating function,
representing release of iatent heat in the convectively active part of
the wave, is specified. The resulting circulation is calculated. For a
consistent moisture budget, the specified diabatic heating should be
approximately 1in phase with the calculated moisture convergence. A
comparison of the phase and horizontal structure of the computed mois-
ture convergence with the specified heating profile will provide a clue
to the ability of these systems to propagate westward as neutral (i.e.,
non-growing and non-decaying) entities. The role of radiative perturba-
tions 1in the waves, first considered by Albrecht and Cox (1975), can
also be addressed. The heating function is assumed to be zonally peri-
odic, of the form exp[i(sA*-ot)], where s = zonal wavenumber, A* =
longitude, and o = frequency. We consider the linear response to this
heating, since the observed disturbances propagate westward over the
oceans, especially the Pacific, for many wavelengths without significant
intensification or strong non-linear interactions.

The most important advance in model design is the explicit inciu-
sion of a zonal ITCZ with associated vertical mass flux both on the

cloud scale (gﬁc) and in the large-scale cloud environment (p@). In the



Stevens et al. study, ﬁc was taken to be horizontally uniform on the
midlatitude beta plane, and the large-scale vertical velocity was ne-
glected. These assumptions are only consistent with a basic state in
uniform rotation, with no horizontal or vertical shear of the mean zonal
wind. Since one of the goals of this investigation is to study the
ramifications of a basic state zonal wind with both horizontal and
vertical shear, the mass flux and associated transports of the meridi-
onal Hadley cell are necessary components of a consistent basic state
with an ITCZ. Such a consistent basic state was the goal of the Hadley
cell calculations by Schneider and Lindzen (1977) and Schneider (1977).

One of the goals of this research is to study the differences in
structure and dynamics of tropical waves in the context of different
mean wind profiles. Hence the well-documented waves in both the eastern
Atlantic (Thompson et al., 1979) and the western Pacific (Reed and
Recker, 1971) can be considered. In spirit, the approach is similar to
the early study of Holton (1971); however, we expect the results to be
quite different because the dynamic effects of momentum transport by the
convective elements in the ITCZ were not realized at the time, and
therefore not considered.

It might be noted here that the instability analysis of Mass (1979)
contained some elements of the present model, namely, zonal mean wind
shear and cumulus friction. However, he ignored the zonally averaged
mass Tlux in the clouds and consequently excluded any transports by the
mean meridional circulation. This may be satisfactory over Africa, but
certainly not over the oceans where the ITCZ is well-established. Also,
because of the linearization assumption, he was forced to allow ”nega—

tive precipiation” in his model. This drawback is eliminated when the



zonal mean cloud mass flux, and hence zonal mean precipitation, is
explicitly incorporated as in the present model.

Although the model was originally designed for the purpose of
studying tropical easterly waves, it has been built in a way that allows
more general usage. Spherical geometry is assumed. The hydrostatic
approximaticn is made from the beginning, so that a pressure-type inde-
pendent variable is the vertical coordinate. User-specified coordinate
stretching is included in the model design for bdth the latitudinal and
vertical dimensions, which are represented in finite difference form; by
specifying coordinate transformations through analytic functions and
their derivatives, a user can focus his attention on a particular region
of the globe. The earth's radius is assumed constant in the governing
equations, and the gravitational acceleration 1is assumed constant in
magnitude; for studying the Jlowest 100 km of the atmosphere, these
assumptions are not severe limitations.

The model, which is semi-spectral, uses second-order finite dif-
ference representations in the Tatitudinal and vertical dimensions,
while a single Fourier component is assumed in the zonal direction for
the Tlinearized perturbations. A single frequency for the perturbation
js specified by the user in the time domain; this frequency may be real
for neutrally-propagating waves, complex for unstably amplifying or
stably decaying perturbations, or even zero for stationary waves. More
generally, a calculation with TJongitudinal wavenumber s and temporal
frequency o can be considered a single component of a Fourier series in

longitude and a Laplace transform in time.



In the present configuration, the pressure veiocity is assumed to
vanish at the lower boundary, assumed to be a surface of constant pres-
sure. This boundary condition could be modified to represent the iinear
effect of Tlow over topography.

The model design requires vertical diffusion in the perturbation
equations for horizontal momentum and temperature change. These dif-
fusion terms can be relatively small.

) As one of the primary purposes is to study the role of a Hadley
cell as a basic state for the linearized perturbations, we specify the
mean zonal wind and the mean cloud mass flux. Additionally, we use an
empirically prescribed mean mefidiona] circulation (@) from which v and
w are derived. As an alternative option, the user can "turn off" the
mean meridional cell.

Finally, the model is designed for computational efficiency at very
high vertical resolution. The computer time required 1is to a good
approximation proportional to the number of vertical levels. At each
vertical level a matrix inversion must be performed in which the matrix
dimension 1is approximately five times the number of latitudinal grid
points. A model run with 21 horizontal grid points and 31 vertical
levels, uses approximately 13 seconds of CPU time on the NCAR CRAY-1

computer.



2. Full Primitive Egquations and Mcdel Parameters

For consistency all three components of the zonal mean circulation
in the advection terms of the 1linearized perturbation equations are
included. It is possible that some of the advective terms by the mean
meridional cell (;, Q) could be consistently scaled out for some prob-
lems, but 1in the i;terest of generality we have elected to leave them
in. Following Holton (1975, p. 29) with slightly different notation,
the (hydrostatic) primitive equations in log p coordinates on a sphere

are written as follows:

U-Momentum

au u u v du uv au 1 9P
a3t acos® SAX a 96 a tan6 W oz fv =+ acos® aA*
(2.1)
- 93 - Bt du, _
p 9z M Cu=u ) H az] 0tRu
V-Momentum
v u v vV 9V av u? 1 9
— ¢t —— — + = — + — 4 — + + = =—
ot acos9 dA* a 99 Y oz a tand fu a 96
(2.2)
=923 - s ME3v. _
p 8z [Mc(v vc) H az] 0!Rv
Hydrostatic
3¢ _ ot (2.3)
oz
Continuity
1_du ,lav vy tane + ¥ -y = 0 (2.4)

cosH A% a 9o a oz



Thermodynamic

aT u aT
ol , Y

v 3T aT Q_ e}
— = —— — + = +
a9t acosB aAX a w wT c p

o6 9z
P

TR
02,09
N =

- o T (2.5)
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N

The vertical diffusion terms:

92 piou g2 ptav _ g3 pfar
po9z H 98z’ p &8z H a8z’ p 8z H 23z

are required by the numerical integration scheme. As noted by Stevens
et al. (1877), vanishing of the mass flux MC at the cloud-top level
gives singular solutions of the inviscid equations which can be avoided
by inclusion of small vertical diffdsion terms. The independent vari-

ables for this system of equations are:

A* = Tongitude
@ = latitude
t = time
p
0
z = 1In (—
(p )

The dependent variables for this system of equations are:

x

u = acosé g%— = horizontal velocity component in A*-direction

o . . . .
vV = a gE = horizontal velocity component in 6-direction

w = g% = vertical velocity component
T = temperature
¢ = geopotential height

Other specified variables and constants are:

f

20sin® = coriolis parameter

z
p,e = = pressure

]

P

MC = cumulus mass flux

Q = diabatic heat source



H= 5— = scale height

g = gravitational acceleration (9.81 ms—z)

R = gas constant for dry air (2.87 x 102 m25_2°K-1)

p, = surface pressure (105 N m_z)

Q = angular speed of rotation of earth (7.292 x 10_5 s—l)

a = mean radius of earth (6.37 x 10% m)

z_ = height of cloud base

uC = u(zc) = u~-component of wind at cloud base

vC = V(Zc) = v-~component of wind at cloud base

ap = Rayleigh friction (2Q x DISWIND), where DISWIND is the non-
dimensional dissipation coefficient of the horizontal wind

o = Newtonian cooling (2@ x DISTEMP), where DISTEMP is the non-
dimensional dissipation coefficient of temperature

cp = specific heat of air at constant pressure (1004 m25_2°K-1)

K = R/cp

pt = dynamic coefficient of viscosity

it = dynamic coefficient of thermal diffusion

Other constants used in this model but not explicitly appearing in

equations 2.1-2.5 are listed below for the readers convenience.

n = Acos (-1.)

o = angular frequency (- Q/PERIOD)

s = longitudinal wavenumber

¢ = phase speed (0-a<cos8/s)

To = surface temperature (300°K)

U0 = horizontal wind scale used in non-dimensionalization (10ms—1)
V0 > gustiness factor (8 ms—l)

CD = surface drag coefficient ([1.0 + 0.07 X VO] x 1E-3)



ST = static stability (878 m)
r.o= 23T (30.01°K)

1 R

1Z = number of points in z-direction
IY = number of points in 6-direction
ZT = z(1Z) = value of z at top of model

ZTROP = value of z at tropopause



3. Linearized Equations

Using the perturbation method all variables are expanded into two
parts, a basic state which is assumed to be independent of time and
longitude and a perturbation which is a local deviation of the field

from the basic state. This expansion is shown below.

u(A*,8,z,t) = a(e,z) + (u'(e,z) \
v(AX,8,z,t) = v(8,z) + vi(8e,z)
w(A%,8,z,t) = w(e,z) + | w'(6,z)
®(A*,0,z,t) = &(0,z) + < ®'(0,2)

T(A*,8,z,t) = _T(6,z) + | T'(8,2) >
MC(A*,e,z,t) = Mc(e,z) + Mé(e,z)

x
uc(A ,0,z,t)

s -
x e1(sx ot)

gc(e,z) + | ul(s,2)

vc(e,z) + vé(e,z)

v (A* t
C( ,0,z,1)

Q(A*%,8,z,t) = Q(8,2) + \Q'(6,2) /
where
(') = basic state
(7)) = ( ),ei(sx-ct) = perturbation from basic state

To illustrate how Egs. 2.1-2.5 are linearized we have shown below
how this method works for the u-component of advection term in the

u-momentum equation. Upon expansion:

(Dlm
> ?
*

oo
Qalm
> I
*

o2
0:‘09
> 14

u du 1 D au G
— ( +

acos6 3AX ~ acosé AAX

) (3.1

The assumption is made here that the basic state variables must them-
selves satisfy the governing equations so that the first term on the
right hand side of (3.1) will cancel out with the other terms of the

basic state equation. Secondly, we assume that terms which involve
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products of perturbation variables (e.g., last term on R.H.S. of (3.1))

can be neglected since ()'<<(_). In addition,

3(")

AAX

it

is(™)
and
22 = - io(™)
so that
au' 3 ei(sk*-ct)

ok = oax (U'(0,2)

3 *
i(sA cﬂ:):I = isi

) = isfu'(e,z)e
Therefore Eq. 3.1 can be simplied to:

U du_ _ u isu' u' ou
acosd 9AX acosf acoso 9A%

By using this method to linearize the other terms in Egs. (2.1-2.5), our
system of equations now in their linearized perturbation form are given

as follows:

U-Momentum

isu

+
W<
+
b3
]
i<t

- ~g92 g .92 pid
[-io + acose  “R 20 9z tan® p 3z Mc p oz H az]u
130 _ 0 o ey s Rige
+ [a 50 5 cane flv' + [azjw (3.2)
is g9 - =
+ o . p-A— T M -
Eacose] p 9z t e Mc (uc ul



V-Momentum

[gg tand + flu'

+ [-ig + is

acoso

av 1
i et L A Ky

Hydrostatic Approximation

8 ¢ - 1
[3-1e' + [-RIT

Continuity

is
acoso

L

Thermodynamic

18Ty, , I

[a 20 az

. u is
+ [~ioc + =
a

-
c
P

Ju' + [i oy

=0

+ o
acosH N

[V

d

<+
99

12

mlm
N

=
mlm
N

!

(3.4)

(3.5)

(3.6)



4. Coordinate Stretching

To allow us the capability of stretching the coordinates in certain
regions of the model's domain, (e.g., to increase resolution in regions
of interesting phenomena) we transformed the vertical (z) and horizontal
(6) coordinates of the model into the independent variables A(z) and

n(y), respectively. By defining:

n = n{y) is the stretched latitudinal coordinate
y = ab is the latitudinal distance from the equator
P
n dy
3 _ o 2
96 M 35
A= A(Z) is the stretched vertical coordinate
3A
I:_
A 9z
S _ 4 9
oz A oA
K = s
acosé

v o= %i is the kinematic.coefficient of viscosity

he]

<
|

Egs. 3.2-3.6 can then be written as:

13
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U-MOMENTUM
S b - i co 9 S0 2 _ 9,0 2§
L 10+1ku+aR a tang + vn on + WA .y b A o Mc
,3u _u L ey . du.
+ [n n a tané flv' + [A BAJW
9 = d - -
+ I3 (RS g, 2 ' = - g, 2 [ -
[ik]e 5 A YN (Mcuc) D A Y [Mc(uc u)]
V-MOMENTUM

[gﬂ tang + flu'

=
c
P

(4.2)

+ [-io+ikﬁ+aR+n‘ gﬁ + vn' gﬁ + WA’ ZX - g Al gx ﬁc- g Al gi gﬁ% Al ngv'
+ A 2%]w’+{n'§;1¢'+ Gar vy = - da S, - 03
HYDROSTATIC APPROXIMATION (4.3)
(Ar 236 + [-RIT' =0

oA
CONTINUITY (4.4)
[iklu' + [n' 5= - ey v L - 1w = 0
THERMODYNAMIC (4.5)
in' §ZJV' + [A! %} + TeIw!
+ [—1o+ikﬁ+aN+§n' gﬁ + WA 2 4wk - g Al gx 3%; Al gX]T'



5. Flux Form of Equations

Te satisfy general conservation properties in finite difference
form and to place the vertical advection and cumulus friction terms in
the same form, we have chosen at this time to rewrite the equations in
flux form. The advection operator in the meridional plane becomes a
flux operator when combined with the continuity equation (15.4) for the
basic state:

T 2 v 2. n'_ 3 - _A 3 p -
vn' an WA 8A ~ cose 3n veose + (p/po) ax p

Using this identity the equations in flux form become:

U-MOMENTUM (5.1)
- aM

(-iotikuta - ~ tang)u' + n_2 (vcosbu') + ( A ), 2. [ w - E—E)u'l
R a cos8 3n p/p0 O P, Py
LA B p v L o8ul L Bu U DB L L ive
(p/po) on by Wz axn + (n on atane v + (A a}\)w + (ik)®

A L8 gM QM -
(p/p on (p—) (p/p a)\ [S—' (u - w]
V-MOMEUNTUM (5.2)

2u . e av n' 3
._..._t e + f LS - +1 -+, +n ! = ! 4 —
(a an Ju (-io+iku o n an)v cos6 an (vcosev )

' gM_ ) y
A p oo M 2 DV, A, . Bv
" p/p_ A LG P, W P, ' - (p/p A p_ H? Ao T 5o
P ! ﬁ gM'
o0 A B _ 3 -
o e B GO (p/p )3 s G =
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HYDROSTATIC A 5.3)

9 .., o
[A Sxde' + [-RIT

CONTINUITY 5.0
Giku' + z_%; ZE (v'cose) + (P>;’o) g_): (,E,; w') =0

THERMODYNAMIC (5.5)
(n’ gz)"' (A ’2—:2 + Tkow' + (=io+iku + )T’



6. Non-Dimensional Form of Equations

It

the solutions and the coefficients of the terms

0(1). The following variables

dimensionalized as follows:

f by 2Q
o by UO/L

t by L/Uo

x,y by L = a/s' where s'

z by 1
N Vo ol
u,u',v,v' by U0
M M1
- gMc gMc , Uo
w, —™, —=, w' by [—
po po
¢' by ZQUOL
T' by ZQUOL/R

is now convenient to non-dimensionalize the equations so that

in the eguations are

in our system of equations are non-

To simplify the form of the non-dimensional ‘equations we define the the

following quantities

is the Froude number

is non-dimensional pressure

R0 = UO/ZQL is the Rossby number
er :
Ri =0z is the Richardson number
)
Use -
Fr = §9~ = RoZe = Ri
1
- _ "z
£ =p/p = e
= 2:
B, = V/20H Eo(n,A)
= 2:
E0 = v/2QH Eo(n,A)

17
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U

40212 L2 40232 2Q0L. 2 o% -2 -2 -1
& T Rr. T a rr. - W ) R TR, FTERR
1 1 o] 1

& = L/a= 1/s'

f* = £/20

*x = 9
TV
X Tk L% 1% = g_ u' i_ XL

u b u 2 V b v U b U b U s U

= % ix = W w'
W5 W U/l U /L
0
- gM gM!
MX, Mix = —S—  —C
c c poUo/L poUo/L
q)l
[ " J—
® 2000
o
Tx = L
2QLU /R
o
1
Q'* = ULF 8— , where T
o1l p

where the ()* represents a non

by (1/ZQU0), and thus can be w

1 is a typical stability

-dimensional quantity. Using these defin-

itions and notation the Tinearized system of equations in flux form are

non-dimensionalized as follows. The u momentum equation is multiplied

ritten as

Y, (_1c+1acose+aR ) v/U0 cane) ', U 1o 3 (i—cose El)

2QL UO/L a/L U 2QL cos® an U u

Lloate oaw o M ug are v 50 )
20L 8x TCU /L p U /LT U £ OA T20H2 A
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U au/Uu_ U’ - .U su/u ,
PP E °o_ o Lu. .o fy v o ., y M
2QL an 2QL a Uo 20 Uo 2QL oA UO/L
by 1
' ZQUOL o . Uo A8 . gMC , SE
acose 2QU 2QU L 20L £ d2A p U /LT U
o] o] 00 (o]
1 o -
__ooata (Mo M u
20L £ oA "pU /L ‘U U
0 O o] s}

Rewriting this equation in an alternate form yields

R ( io + .S/s' =y + R N S ' % Ln' 3 -y ' %
) Uo/L Ycose Uo/L stV tandju’* + Ro cosf an(v cosou’)

+ROA S raw - ourl - B T Ear 2

+ (RoLn' g%f - Ro %T tane - f*)v'* + RO(A' g%ﬁ)w'* (6.1)

Similarly, by multiplying the v-momentum equation by (1/ZQUO), we can

write
(Uo L g: cang + f_) u Uo (-1c+1acose+aR . L av/u )XL
20L a U 20’ U T 2aL v /L T T5n U
o o o o
Yo o v ovt oo ate b T v
2QL cos® an U U 2QL £ dA Uu /L p U /LU
o 0 o oo 0
- A_,.. ?.._ g v A' 3_ (l'_) + ..._o_ ()\l aV/Uo) _._\i:__
£ BA 2QH2 oA UO 2QL A UO/L
! M ;
ZQUoLn 5 o . U0 A D . gMC , ZE
20U an 20U L 20L £ @A ‘p U /L’ U
o) o oo )
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1 -
__ b oas E_ETE__ L Yoy
2QL £ oA "p U /L U U
oo o o
Alternately
- o

- 3 LI
io |, is/s' =4

(Ro U /L cose = * U /L
o o

2%_ tang + f*)u'* + R (
s : o

ov* ln' & - A' D
+ A ML AS * [ CATI <A
tn an v Ro cos8 3n (v¥cosbv'™) + Ro £ oA
_ (6.2)
- - - A" B ov'* av*
K - b 1% - — e . S 1 X 1%
L(Ew Mc)V 1 £ oA gEoA 3A - RO(A A w
aM*
o' * Al C A D - -
+ v 2 4 = 1K = a4_ o 1% X o yX
Ln an * Ro £ BA Ve Ro £ oA [Mc (Vc vl

The hydrostatic approximation is multiplied by (1/ZQLU0) which yields

RT' . ,, 2 @'

20LU an Gatv ) T
o] o]
Alternately,
a¢|*
Tk ' =
T + A oY 0 (6.3)

The continuity equation is multiplied by (L/Uo)

is L . L n' 3 A3 , L _
- + — — ' + — T w' —) =20
acosb UO Y U0 cos8 3n (vicos®) £ oA € u )
Alternately
is/s' %« , Ln' 2 - LA 3 N
——3 u' — T =0 6.4
(cose ) u N cos6 3an (v'*cos0) £ oA (gw ) ( )

Finally the thermodynamic equation is multiplied by (L/Uorl)

5T. v' L 9T . =, w' L . isu
(n' 55) Tt Atk Tt +
(o

+ T
r 3A U ur acoss T N

1 o o 1
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- aTI ~“KZ — d KZ L Al b3 L "L aTI
+vn' =+ e T WA T (e TD] - —— = a2
on oA U, p/p_ 3\ p_ H oA
= L '
Uor1 cp
Alternately
T A S kT o
O T SR -2, SR -ig is/s' -4 N
thn® on G r W RELGL * Cose W Y T /D)
1 1 o o
(6.5)

P Urnt D &R Gear & K2yix L o AL B g s 2T

—_— | e S %



7. Equations Written with Coefficients

As one can readily note from the previous section, the equations in
their linearized non-dimensional flux form are rather lengthly and obvi-
ously would be cumbersome to work with. In view of this difficulty we
have chosen to rewrite Eqs. 6.1-6.5 with coefficients which operate upon
the non-dimensional dependent variables. With this strategy the appear-

ance of the equations is simplified, and the programming aspects of the

problem become more tractable. These coefficients are defined as
follows:
A(n.A) = R (-ic , ds/s! a;) - Y (-io , As/s! g_)
s o U /L cos® 2QL U /L cose U
o o o
- —lo . i(s/s‘)a _ -ig 5 =S u
2Q 2QLlcosH 2Q cpse 2Qa
o U o o
R o R R
= = —_— - 4+ —
AR(,A) = A+ R, u_/t A ZaL (UO/L) At 2
o U o o
_ N _ o N = N
AN(n,A) = A * R, /L A L (UO/L) Ao
e a0V Cap L LV
Q9(n,A) = AR R0 o tang = AR 2oL S,Uo tan® AR 208 tan®d
PI(n) = R L ERCIT _ 2o
n o cosB 2QL. cos® 2Q cos®
P2(n,A) = v* cos@ = %— cos®
o)
U - gﬁ - gﬁ
- “x _ mxy = ° Ew C - Ew _ C
P3(n,A) = R (&w* - M) = oor (UL "pu /0 T 20 20p
o] oo o
A.‘
D(A) = —
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§EOA

F(n,A)
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EEOA

* * - -
Q10(n,A) = R Ln' 2= _ p U

e Spxolntou o u o
o sn o s' tané f 20L an 2na tand 20
o .. U* _ A" au
Q3(n,A) = R A" = = 50T
_ . S/s'
Q2(n) = 1 Coce
U gM oM,
— AL é— M* = é— 2 S
ALZ(H,A) = RO g SA MC D aa 20L poUO/L ZQP
Bl(n,A) = -R, AL2 [M'*(u x - w1 =0p 2 Uo [gMC (:— ) -—)]
, 0o £ A oA 20L Py /L
L -
=p & [gMC G- - 25)3
oA "20p U U
Al Y M v e
- . A 1 % X . X = u U
B2(n,A) = R ¢ o ML (- vor =0 & 2ol Ut L, 7o,
o T §

(o]
=
o

U -
*
Q1i(n,A) =R %?— tang + f% = -2 24 N
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e
[
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<
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Q5(n,A) = RA" 557 = 200 o

]
O
o]
»
D

C3(n)

C5(™)

]
yre

D2(A)

I
.

E

Q6(n,A)

!

Ilf-'
~
%

Q7(n,A) =

C7(A) = e

_ 40212
RT

C8D(A) €8-b

«
<1

R VAn' = o - Ln'

ce 2QL U
o

i

-KZ—

C6 R e wiA! =
o)

I

C8AN(n,A) = C8-AN
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]

C8CC(n,A) c8-CC

C8-C6

C8C6(n,A)

By defining these coefficients, our systems of equations can now be

written as:
u-Momentum (7.1
Coq 2 I - S - o
(Q9 + PL 5= Pz + D 2 P3 - D o3 E S0u'™ + (QLOW'* + (Q3)w
+ (Q2)d'* + (AL2)U': = (B1)

v-Momentum (7.2)

] - ] [
(Q1l1)u'* + (Q13 + P1 on P2 + D o P3 - D ey E gx)v * + (Q5)w

1%

+ (C1) g%—— + (AL2)V'X = (B2)

Continuity (7.3)

'k 2_ 1k 3 'k —
(Q22)u + (C2 an C3)v + (D oA C5)w 0

Thermodynamic (7.4)

2] 2] ) 2l
sk 1% —_— _— - ——— —_— LI Y
(Q6)v + (Q7)w'* + (C8AN + C8CC on + C8C6 oA c7 csb on F SA)T (B3)

Hydrostatic Approximation (7.5)

' *
3A

-T'* + (D2) =0



8. Discretized Eguation

The equations 7.1-7.5 are finite differenced in the latitudinal and

vertical directions. To do this we define the following:

n. =n_+ (i - 1) An where i » 1, 1Y

A, = A, +(j - 1) AN where j » 1, 1IZ

£
o
®
3
o
3
i

n at southern boundary of model

number of nodes in the latitudinal direction

—
=<
flt

>
It

A at top of model atmosphere

I1Z = number of level in the vertical direction

For brevity we drop the ()* notation, but it must be realized that
dependent variables are still non-dimensional. The discretized equa-
tions are shown below:

u-Mocmentum (8.1)

(?Z“)“"'J (PZ“I)L-I,i + D (PTSu ujﬂ (73“') 3ot

& + Pl
0?‘4 “ Zon 2a) d

( u»+ D !
..D.,J A)‘!E%n _._J'T“*J Evj'—gﬂ-Tu‘L + QlO;j\Qj + QS;J'W

+Q2:; §:;' + ALY ug = Bly
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v-Momentum (8.2)

Q11;; ul.:j + Q13 v + Pi;;{‘m")“'lizzr(lpz“:)i-"'jj

P}V’ v P3‘J: Y- - D:: L .. v!'r‘v'" - . V“,,'—V"".
+D { ): Jﬂzag ) Jl} D, = [E'-'J*i c!‘n“\ Y Ei,j-i QMEI]

BZ:{

+05wi; o C1[Bni=Bod] o aLzgv

Continuity (8.3)

s (€3 - (€3 i3]
Q2 + €233 iy (390

Thermodynamic (8.4)

Qb vi; + QTywi + C8ANG T

+C8CC; l-TUHz:n w,,] + C8Ch,; [(cv-T)g;;)(\cv.T)%,J

o Tojn-Tuj P
-804 5 [W sl L’ald = B3y

-

Hydrostatic Approximation (8.5)

¢ y

- ;;- + Dz;'j !b§o:,j+;2;k§%j‘l! = 0




9. Matrix Form of Equation

To aid us in solving the system of equations given in 8.1-8.5, it
is convenient to conceptualize these equations at each point in the

model's domain in the form of Eqg. 9.1.

(9.1)
LhyiXg g-1 % ARyi%o1, * B%5%a5 %,y T WaisXa, ge T digXer T By
U'
Vl
where X5 s = w' represents all perturbation variables at the (i,j)
J T grid point
¢! . s
1]
and LL,., UU,., - .., AK.., BK,.. and CK.. are defined as follows:
1] 1) 1 13 1] 1] 1]
o . I‘ P3L-:I'l - E"r‘]'
!% i 268 an A 0 0 0 0 ]
0 D;(Tqi"' "”i") (C)S ' 0 0
LLy; = 0 (<25 0 0
“ %2 C%.\ C8b;
0 0 0 {CBCG;J Za\ aN E,‘% 32‘
- 0 0 Q 0 ‘ijd

3 P3tier - Elde q
b ("7ﬁ3X_ aﬁuizs t{ £ 0 0 0
o o(BR-Eano 0 0
Uus; = 0 0 g 2‘”‘} cmo ¢8p 0
0 0 0 feacei;(o4) SR Fiod 9.
: 0 0 0 =Y
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L2y 0 0 0 0 |
0 AL2y 0 0 0
Iy = 0 0 0 0 0
0 0 0 0 0
L 0 0 0 0 0 _
Bl
By
B, = 0
B3y
3 0 |
e (TaRd) 0 0 0 |
0 Pl (-'—zz%.’*‘) 0 0 =i
HKL - O -Czycswi o O
J 0 0" 0 e 0
L 0 0 0 0 0
W arlgaobiy) Q10 Q3; 0 o
Qg omg*(E R ) QS;J 0 0
BX;= M‘Zg 0 0 0
] g qu Q!,'-J [(}M 4 A!)* wﬁ:* m—%ﬁ g_,
pr(Bad) 00 0 0 |
{ 0 ?11(%"3) 0 0 Ty
CKy= | 0 Aclin () c@gcu 0
¢ QM 0 T 28n, 0
.0 0 0 o -
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10. Boundary Conditions

Since our system of equations can be reduced to an eighth order
differential equation in the vertical, the continuous solution requires
eight boundary conditions at the top and bottom of the model. These

boundary conditions are given as follows:

at the upper boundary:

- = -7 =77 = 0 (due to large dissipation)

w = 0 (rigid upper 1id)

at the Jower boundary:

w = 0 (an approximation to vertical z-velocity vanishing)

5)—\ = BCli-u
g% = BC2-v bulk aerocdynamic parameterization
aT
—_— = c3-
.y BC3-T
where
BC1 _ v -1
H -CD-V °
BC2 = 0 _©o v -1
)\1 0O
BC3 vo-l
B R*‘ro
H = —
o g
v o= =0
o v(z )
go = Q(Z = 0)

The constants To, CD, V0 are defined in section 2.
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To evaluate the A-derivatives on the top and bottom boundaries we
use a lower accuracy one-sided derivative. With the boundary conditions
discussed above the matrix form of the equations at the top and bottom

levels of the models are as follows.
Top: j=1: LL=AK=CK=JJ =B = 0: BK1.j + UUijwi,j+1 =0
where BK.. and UU. . are as follows:
13 17
4 0 0 0 O
o 41 0 0 O

4

0

BK;=0 0o 1 0 0} WUy o
0

0

M

.)
0 0 0 10 0
..0 0 0 -1 vg—As__ = AN
Bottom: j = IZ: UU=AK=CL=Jd =8B = 0: Lijwi,j—l + Kijwij =0
where BK, ., and LL,, are as follows:
1] 1]

(1-ec%ct)0 0 O
0{d-axBtvio 0
BK;=10 o 1 O
0 0 O0(radkT)o 0
0 06 0 -1 3% L0

In the horizontal direction the system of equations 1is second

OO
<
'

order, so that two boundary conditions are required on the sides of the
model. These boundary conditions were chosen as v=0 which inhibits flow
through the side boundaries of the model. By setting v=0 at i=1 and
i=1Y, the following coefficients: P2, Q5, B2, CC, and C8CC are zero on
the side boundaries with one-sided finite differences. By replacing the
v-momentum equation on the side with v=0, the matrix form of the equa-

tions on the sides is altered as shown below.
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LL..=UWW..=J..=B., =AK,. =BK..=CK,. =0 for row 2
BKij(Z’Z) = 1

CKij=2'x old CKi‘ [including changes above] so that each denominator is

An, not 2An

- —_
0 0 0 0 0
0 Y 0
BK.. = old BK, . + -¢c2(1)-¢3(1) 0 0 0
ij ij 0 N 0 0
0 0 0 0 O
_0 0 0 0O 0._
AT i = 1Y
LLIY,j=UUIY,j=JIY,szIY,jzAKIY,j=BKIY,j=CKIY,j=0 for row 2 in metrices
BKIY,j(Z’z) =1
AK .= 2.x old AK . [including changes above] so that each denominator
IY,3 X IZ
is An, not 2A

CKiy,3 50
0 0.0 0 0]
c2(m)- ¢3(1Y) |
BK,, . = old BK,, .+ 0 an 0 0 0
Y,J IY,] 0 0 0 0 0o
0 0 0 0 ¢
0 0 0 0 0




11. Algorithm for Solving Problem

For a specific heating function (Q'), the response in the perturba-
tion fields of the three-dimensional wind (u',v',w'), geopotential (¢'),
and temperature (T') are calculated from Eqs. 8.1-8.5. The algorithm
which solves for these perturbation fields can be divided into the

following three sections.

11.1) Filling of matrices
11.2) Gaussian elimination

11.3) Backsubstitution

Each of these sections will be discussed in the order that they appear

in our computer algorithm which is flowcharted in the Appendix.
11.1 Filling of matrices

By combining Eq. 9.1 for all the horizontal nodes on a level, we

can write an equation for each level in the model as follows:

LX., . +D.X, + U_.X, + J.X =B, (11.1)
JJj-1 J3J Jj i+l Jc J

where j = vertical level of model. The Xj is a column vector which

consists of the IY grid point vectors x.. = (u'. ., v'_ _, w' _ ., T'.._,
1] 1] L 1] 1]
¢lij)T in sequence. Bj is a similar column vector
(xlj) (Blj)
B...
(x5 (B,.)
X, = A B. = B..)
J (X§J) J ¢ 33
Xy, ) CHV

The Lj’ Uj’ and Jj matrices are block diagonal, with the iED block

sub-matrix being LLij’ UUij’ JJij’ repectively. From Section 9,
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LLij’ Uuij’ and JJij are themselves diagonal 5 by 5 sub-matrices. For

example,
v’
(LLij>
Lj = *
(LLIY,j)
Uj and Jj are similarly diagonal matrices. Lj’ Uj and Jj each involve

storage of 5 x IY elements on the diagonal. The Dj matrix, which is a

combination of the AKi i BKi j and CKi i operators from Eq. 9.1, is a

block tri-diagonal matrix, with each block a 5 by 5 submatrix. At some

vertical level j:

E;k;1J (:&416 , ]
RK?ﬂ BKz,i CKz,é O S
BKs,i BK3,5 4 SW}
AKyy Bay CKyy

RKwsj BKwsyy  CKypa s
, A,y BKyz,; €Ky
Os AKw43 B K\Y-t,:g C Kw-s,j
L A¥w, BK”MZ _

Since Dj is a block tri-diagonal matrix, 1in storing Di we have taken

~

advantage of the fact that most of its elements are zero. In storage

the compressed matrix D at any vertical level appears as follows:

-J

[BKay CKaj CKaj -+ CKinyy o+ - Clivaj CKyj O |
Dj=| Ay BKy BY) - -- BRij - o BRienj BKie) Ciyj)
RKs; Aley -« - AKie - ¢ AKya; AKy,; Byl
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When D is needed for computation, it is reformed into its original
sparse structure. The memory requirements for storing the compressed
version of D over its sparse structure are reduced by a factor of
(1Y/3). For example with typical values needed to resolve wave struc-
ture of 1IY = 21 and IZ = 31, the stofage of the full matrix D for all
levels in the models would require ~ 10% words of memory. On the
other hand, the compressed D matrixes would require only ~ 1.3x10% words
of memory or a factor of 8 less! By storing the matrices in Eq. 11.1 as

outlined above, the CRAY computer can easily contain in its memory these
matrices for all the levels in the model simultaneously.

Filling the matrices 1in Eq. 11.1 at a specific vertical level,
requires that the component sub-matrices: UU, LL, JJ, BV, AK, BK, and
CK be filled first at each horizontal node on that level. Once these
sub-matrices afe defined they are used to form the L, U, J, B, and D
matrices at one vertical Tevel. By repeating this process at each Tevel
in the model, our system of equations can now be represented in the form
of the Tlinear matrix equation, AX = B* which is shown schematically

below.

D, U, B X,! [&
L. D, U, . I X2 B.

>
g

i
A=
A1

Ly Dy (U},
ML?(D*J)ALUJ, %
(L*3)gn D Ug,e Xew| B

- 0 iz ng X = B
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We have assumed here that Jj=0 (i.e. no cloud mass flux) for j>g+1.
The parameter '2' as it appears here is defined as the level of cloud

base and is computed from Eg. 11.2

2 = IFIX{(A(ZC)/DLAM + 0.5) (11.2)

where DLAM =O‘Iz - A?/(IZ - 1)

Because the vertical differentiation is at most second-order in the
five variables, only vertical grid levels separated by AA and 2AA are
related in the finite difference scheme. Thus the matrix A is a block

tridiagonal matrix, with blocks of dimension 5xIY by 5xIY.
11.2 Gaussian elimination scheme

To reduce the 1inear matrix system AX = B* to an upper triangular
matrix, we employ a Gaussian elimination scheme, slightly modified for
the cumulus friction terms, from a version suggested by Lindzen and Kou
(1S869). In this scheme, IZ matrices (5xIY by 5xIY) must be inverted in
full-storage (non-sparse) mode. The procedure for using this scheme at

the various levels in the model is shown below.
j:
| =
,Dixd. + ‘AA_XQ,'* J;,Xx B&. gl.z:ipl
Xa +D£'uix2 +b;.|leQ = D;_l Bg. S R g:Lus.
Xl. + °"1.xz + ﬁg__ ) ¥} = X‘.L Bg_-: &11.1
| ; Y= 5@. B,

i

5223, ..., £-2

| -1
(“Ljﬁ ){ Xj-oF otjmg Xy + ﬁj-i X,= Xﬁ‘i} gﬁ“(%‘l‘jaﬂ)
L%x:,j_i-i- D; X{}*L(_f? Xéﬂ‘!’%}ﬂf‘ﬁ% : “4= xiu‘j
(Dj—s.j;djpi}ﬁﬁ Q&Ag)xjfdj(?g-iéﬁé-ﬁxf( Bi-L; %) \ £i= 5.5(35;-3.31 )
X+ (850l + 85 (3501 B3 = & (8- LW %= & (B-1%)
Xy * o3 Xjt + ,ﬁé X2 = 'Xi
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YLt
-1
(- Ll—a,) { Xg-2 + &ppXe-1 4 BpaX, = Xl-z} bt (DM‘LM"G,z)
Ly gXep #Dg Xe-g 4 (UrT) Xy = By o8, (09}, B
(Deslos e Ixpes + ((UeT) 0t~ Lt Boz)kam (Bo-1~Les To2) =81 Brclnlin)
Xe-1 + #p-4XKg = Yr-a
=4
| -1
('Lﬂ)'{ gy ¥ K1 X, T Xl-i} 3 8A=[(D'J),[Lx“ﬁ-1]
LaXgg #(D*T) X+ Up Xy =B, we= §o Uy

( (D7)~ L, “‘1-1) X, +Up o = By -be Toer |60 ba(By- Lp,'fu)
Xg * dpXee =Y

j= et
IF 244 <12
-
) (L*J)J.*i’{ Xo ¥ &pXgas T (A } SJ; [Dm' (L*J)ﬁ‘z]
(L47), X * DgpaX oo+ Ugwa Xeez™ Byys got = Ogaa Upns

ol

[Diﬂ-(LfJ )1’.4-1 "LL] X et t u 1 Xe2= Bﬁ.ﬁ." ( L"'J ’ﬂ,-hi'a;- ’xﬂ-ﬂzgﬂl&ﬂ (L*J)‘g I3

Xpeg + ippX ez = Taea
1§ Q+4=1%:

‘(L“‘J)’_ﬂ_"{ Kg ¥ g Xgpa = _3’,_} l
(Lr3)paXe * DouaXpn = Bows
Epﬁ-ﬂ-' (L+T)ges “.e} Xera = Boos = ( LT) 0 %

Xesr =™ ’x,uri

81"?1: @Hi’ (UJ)M“J
Vrea= bpra (Brer (147 }M@
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4042, 443, ... 271
1§ £4+41<1%

(L5) {"11”‘11"3 Xd } Sj (v;- H 3-1)

L + D «j= §;U

jlj_L 9

(b5 - Ljses x3+u5x3ﬂ—§ 5—1?%-1 'gj & (@3 Li%- )
Xj +ag X =

j-‘- 17

I§ £+2<1Z:

LIE {xn o b Kreey Xgz T Yee- }
LIEXIZ—l + DI?_ sz = BI% S
(sz Lndzz.i)xxz = (b::z" LIE XIZ“ )

X1z = 1z

(D5 - Ljeges )
53 (ﬂl Lj 'Kj-i)

L

X
i
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The following table summarizes the form of the operators that are used

in the Gaussian elimination scheme at the various Tlevels (j) of the

0
w here Aj’iﬂ-:{ 1

if =201

/| & ) A L

1 b G4 | &3 b B
ad | 5tie) MU G-y | 8- L)

21| (-bega) [GIWTGET] —— | &85t

¢ |on-td | sy | — | 5%
[t 124] [Dj*(LﬁAg,g.,TmL;j § Uj — B ‘(L§+Aj.1~13ia)534]
i 1z [D,:-&g AN ,.,j' — | B e Tpen) ]

if 444
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In an elegant extension of the Lindzen-Kuo method, Professor Paul
Duchateau of the Mathematics Department of CSU developed a scheme to
solve the linear matrix equation AX = B* with a considerable reduction
in computer time. He observed that each of the five equations involves
a vertical derivative in a single variable, and this variable is dif-

ferent for each equation: specifically, u', v', w', T'

, , s , ® 1in that
order. These equations are not all second order in the vertical, so we
cannot directly use use the Lindzen-Kuo scheme. However, if we finite
difference them as they appear, without combining them, and retain all
five variables as unknowns, we find again a block tridiagonal structure;
but the off-diagonal blocks are themselves diagonal matrices! This is
precisely the matrix structure ocutlined above.

Duchateau noted that with non-vanishing viscosity and thermal
diffusivity, the off-diagnonal block matrices are guaranteed to be
trivially invertable. Consequently, the algorithm can be modified so
that only a single SXIY by 5%xIY dense matrix need be inverted. In the
standard method, such a matrix 1inversion must be accomplished at each
vertical Tlevel. Thus Duchateaus's scheme reduces the matrix inversion
workload, which constitutes the primary computational burden, by a
factor of IZ which is typically a factor of 30 or more.

In testing this scheme, we determined that its usefulness is
Timited to cases where Viscosity is rather 1large (e.g. 100 mzs—l)
throughout the model's domain. The restriction of this scheme results
from using the L_l matrix, which is inversely related to viscosity and
diffusivity , to operate on a row of matrix A in reducing it to an upper

triangular system (refer to schematic of AX = B* of Section 11.1).

Apparently when the magnitude of L is small (due to a small vaiue of
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viscosity; e.g. v < 50 m?s 1), the condition number of the matrix to be
inverted increases so that for all practical purposes the matrix is
uninvertible.

Heuristically, all the ill-behaved aspects with small dissipation
are collected into a single matrix inversion stage, which the algorithm
cannot properly handie. When the i1l behavior is distributed over many
(time-consuming) matrix inversions, the algorithm works quite adequate-
ly. This result is apparently an épplication of the computer proverb,
"You don't get something for nothing". Note, however, that Duchateau's
scheme may be useful in second-order, dissipation-dominated problems.

Unfortunately, that is not our area of interest.

11.3 Backsubstitution

Once the system AX = B* has been reduced to upper triangular form
as shown below, it becomes a trival matter to solve for the solution

matrix X.

tI o [31 ) r)(i'. r.zl-
:[ - &} 132 )(2 @&
I & Bs X3 %

I oL g-1 xm
I o f) X

4
I -4 £4 xlh‘i gjyl

i T Rl (%

]
m:&
[£-8
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In the backsubstitution, we compute

and X, = -
i Y

. a.x, .-B.X for j = 1ZM1, ...1
J J i+l 5J 2 J

where ﬁj =0 for j>2 -~ 2

Since the y, a, and B matrices are needed in the backsubstitution pro-
cess, they are temporarily stored on a random access file and then
recalled as needed. This was done because the size of these matrices
prohibited storing them for all levels simultaneously. For example, at
each level y and a consist of 50xIYZ words and B of 10xIY words. One
should note that in the back substitution process the perturbation v

field was explicitly set to be zero on the side boundaries.



12. Model Inputs

In order to compute the response of the atmosphere to a specified

heat input we must specify the following:

i) domain for model

2) zonal wavenumber, s

3) frequency o, relative to the ground

4) damping rate, D

5) viscosity profiles, V(Z) and.G(Z)

6) distribution of cumulus mass Tlux Mc (6,7), and MC' (0,2)
7) basic state flow field G(B,Z), ;(B,Z), and ;(6,2)

8) mean temperature distribution ?(B,Z)

) perturbation heating pattern Q'(6,Z)

10) coordinate stretching in vertical and latitudinal directions
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13. Results

In our initial experiment, we sought to duplicate Holton's (1971)
results by setting up our model with a motionless basic state and using
the parameters and grid resclution similar to Holton's. To accomplish
this we specified the following inputs.

1 The latjtudinal domain for this experiment was from the
equator to ~30°N with a resolution of approximately 2° in the tropics
(i.e. IY=11). A rigid 1id was placed at z=3 (~50mb) with a resolution
Az=0.1 (i.e. 1IZ=31). In addition, cloud base was placed at ~950 mb
(z=0.1), whereas the tropopause was set at 135 mb (z=2.0).

2) The zonal wavenumber was set to s=10, corresponding to a zonal
wavelength of ~4000 km.

3) The angular frequency was set to o = Q/5days, corresponding to
a westward propagation with a period of 5 days relative to the ground.

4) The dissipation coefficients (DISWIND and DISTEMP) were set to
0.03, which corresponds to damping time scale of 2.65 days for Rayleigh
friction (ur) and Newtonian ceoling (aN). In Holton's model the linear
damping terms ar and aN were necessary to prevent the occurrence of
singularities in the final diagnostic equation.

102m25_1 <z
c
5) The viscosity profile was given by V(z)=v(z)=
{ 1mzs"1 z> z
- ¢
6) Cumulus mass flux was set to ﬁc(e,z) = Mé(e,z) =0

7) The components cof the basic state flow field were set to

u(e,z) = v(6,z) = w(e,z) = O.
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8) In this experiment the mean temperature (?) distribution was
obtained from the vertical temperature structure (shown in Fig. 13.1) of
the mean annual atmosphere at 15°N (U.S. Standard Atmosphere Supplements,
1966). At each vertical grid point, values of T were Tineariy inter-
polated from the sounding in Fig. 13.1. To be consistent with the
assumption of a motionless basic state, the latitudinal variation of
mean temperature (i.e., a?/ae) was set to zero.

9) The perturbation heating (Holton, 1971) was given by:

6-80 D
Q'(e,2) = Qo-exp[-(—g-—)]-exp (5—)
1

D

ZD/12 - exp ' ZD < 12 km
x {7.-2D/2. 12 < ZD < 14 km
0. ZD > 14 km
where ZD = z x SH
SH = scale height (8 km)

In the above equation ZD has the dimension of kilometers and Qo is a
constant chosen so that the vertically integrated heating rate at lati-
tude eo is ~ 3.6°K day-l, which corresponds to a rainfall rate of 1 cm
day_l. In addition we have set 6028.63, which corresponds to the lati-
tude where the 1lateral heating distribution is a maximum, and 61=3.0
(i.e. a half width of ~ 3° latitude). A meridional ﬁ]ane cross section
of the distribution of amplitude for the heat source is shown in Fig.
13.2. In Holton's paper, he states that the vertical distributien of
condensation heating above 900 mb represents the large-scale heating of
the atmosphere by deep cumulus convection, whereas the cooling near the
Tower boundary is thought to be primarily due to descent of low equiva-

Tent potential temperature air in downdrafts occurring in the rain

areas.
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Fig. 13.1 Vertical temperature structure of the mean annual
atmosphere at 15°N (U.S. Standard Atmosphere Supplement, 1966).
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Fig. 13.2 A meridional plane cross section of the distribution of
amplitude of the perturbation heat source.
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Fig. 13.3 shows the computed atmospheric response (as amplitude and
phase) 1in the u, v, w, T, and ¢ perturbation fields for the values of
the parameters specified above. In addition to presenting the amplitude
and phase of each field, we offer (Fig. 13.4) the reader a supplementary
view of these fieids by presenting their amplitudes at phase = 0° (where
Q' is maximum) and at phase = 90° (one-quarter wavelength before maximum
Q'). For the sake of comparison, Figs. 13.5 - 13.7 are shown here from
Holton's (1971) paper depicting the atmospheric responses that were
computed when he set the mean flow equal to zero in his model. One can
readily verify that our results and Holton's are consistent for this
experiment, providing some confidence that our model was properly for-

mulated and coded.
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Fig. 13.3 Com?uted atmospheric responses (amplitude and phase) in the
u, v, w, T, and ¢ perturbation fields for Holton (1971) comparison

run (solid lines positive values, dashed 1ines negative values).
Phase is shown relative to heat source in Fig. 13.2.
(Fig. 13.3 on next page)
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Fig. 13.4 Computed atmospheric responses (amplitude at phase = 0° and
phase = 90°, where phase is relative to heat source in Fig. 13.3)
in the u, v, w, T, and ¢ perturbation fields for Holton (1971)
comparison run (solid lines positive values, dashed Tines negative
values).

(Fig. 13.4 on next page)
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13.5 Amplitude (non-dimensional) of the diabatic heating Q, geo-
potential perturbation ¢, and meridional velocity v vs latitude
at a height of 13 km for case with no meap flow. Unit amplitude
corresponds tg a heating rate of 4°C day__, a geopotential height
of 10 m® sec ~, and a velocity of 10 m s (from Holton, 1971).
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Holton, 1971).
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14. Optimization of Model on the CRAY-1l Computer

Being reasonably convinced that we had formulated our model cor-
rectly, we then sought to reduce its cost by optimizing the model's code
(i.e., making the most efficient use of the architecture of the CRAY-1
system). This task was suggested by our need to increase the horizontal
resolution of the model beyond 11 grid points; small increases in the
number of points in the model's domain cause large fincreases in the
computer resources that are used in the matrix inversion stage. For
example, by increasing the number of horizontal nodes in the model from
11 to 15 points (see Table 1), the CRAY resources that are used increase
by approximately 150%. Computer time 1is approximately proportional to
Y3,

The first step taken in optimizing our model was to time various
sections of code. Through this process we determined that 95% of the
execution time used in running the model was spent in subroutine LEQ2C.
This library software routine written by IMSL was used to invert a full
non-Hermitian complex matrix at each vertical level of the mode. The
majority of the execution time spent within LEQ2C is used in obtaining a
high accuracy solution which results from an iterative improvement
scheme that uses double-precision arithmatic. With further testing as
noted in Table 1, we were able to show that the iterative scheme as well
as the double-precision arithmetic it utilizes are necessary in order
for the solution produced by LEQ2C to converge. Although a compiled
version of the IMSL software has recently been appended to the CRAY-1
library, the CRAY compiler is not able to vectorize the two recursive
operations within the iterative improvement scheme which involves sum-

ming up a series of double precision numbers. With an optimized double-
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precision adder, as SSUM is for single-precision numbers, we could
envision a significant increase in the efficiency of LEQ2C and con-
sequently our model.

As an alternative to using the time-consuming, yet highly accurate
LEQ2C, we attempted the matrix inversions in our model with software
from the LINPACK library. This software library was written for speed
optimization on the CRAY-1 by referencing CRAY Assembly Language Basic
Lfnear Algebra Subroutines (CAL BLAS). Surprisingly, use of the LINPACK
software in our model resulted in the correct solution, in spite of the
fact that only single precision arithmetic is used 1in the inversion
routines. In additijon, the execution time for running our model was
reduced by 95% by using this efficient software! The computer runs

referenced in this section are summarized in the following Table.



TABLE 1

CRAY-~1
DESCRIPTION Resu s of Resources Us
(in CRAY hou
Standard run with 31 vertical levels and 11 Correct .0396
horizontal nodes using LEQ2C matrix inverter results
Same as 1, except using LEQTIC matrix inverter Erroneous .0018
(i.e. no iterative improvement scheme) results
Same as 1, except single precision arithmatic Interative .0074
used in iterative improvement scheme in LEQ2C. improvement
This was accomplished by specifying OFF=P on failed to
the CFT card which at compile time causes all converge.
double-precision variables to be treated as Erroneous
real single-precision variables. results
Same as 1, except with 15 horizontal nodes Correct . 1002
results
Standard run with 15 horizontal nodes using Correct .0047
LINPACK matrix inverter results




15. Computation of Basic State

As stated in the introduction‘of this paper, to better understand
the structure and dynamics of tropical easterly waves, a model must
incorporate a realistic basic state. In fact, the most important ad-
vance in our model design over previous attempts to simulate these
weather systems is the explicit inclusion of a zonal ITCZ with associ-
ated vertical mass flux both on the cloud scale (gﬁc) and in the large-
scale cloud environment (p&). In the discussion that follows 1in this
section, we describe a method for obtaining a a consistent basic state,

given a specified u field.
15.1 Basic state equations

The equations for the basic state are given as follows:

Absolute Angular Momentum

v 9AM - 9AM _
vy oalt 9AM _ . ‘
2 90 Y52 acoseFu (15.1)
where: AM = acos6(Qacosé + u)
Fo_18 = - _ = pt du. -
FU - p az EQMC (u uc) -+ g H 82] (XRU <+ eddy terms
V-Momentum
-, ) B
Y2 iane + fu+ 2= ¢ (15.2)
a ase
Hydrostatic
il (15.3)
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Continuity
8g3cose) 13 -, _ 15.4
acosese | p az (P¥) =0 (15.4)

Thermodynamic

+ Q(gg + kT) = %— + g
p

il
a6

wi<i
Iﬁ’
le(vl
N |-

- o T (15.5)

Q?IQ?
N

In Eq. (15.1), AM represents the mean absolute angular momentum, whereas
acosﬂ?u represents the sources of Kﬁ. To arrive at the form of the
v-momentum equation given here, we assumed that the difference of the
mean v-component of forcing (FV) and advection of the mean meridional

wind

228 " Y3z

is small relative to the other terms in equation (15.2), and therefore
can be neglected. Eg. (15.2) in this form represents gradient wind

balance.
15.2 Computation of the T and ¢ fields

Differentiating Eq. (15.2) with respect to the vertical coordinate

z' and applying Eq. (15.3) we obtain

U2 -
2. (§~ tang + fu) =

52 (15.6)

o |
Q?IOJ
D =it

In this form Eqg. (15.6) is the thermal wind equation which relates the
vertical wind shear to the horizontal temperature gradient. From this
equation and Eq. (15.2), one can note that at the equator (i.e., 6 = 0°)

tang = f = 0, so that 59T/96 = 96/96 = 0. Furthermore by writing
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T(8,2) = T (2) + T,(8,2) (15.7)
®(6,2z) = ®o(2) + ® (6,2) (15.8)
and definihg T1(6=0,z) = 0 which implies ¢1(6=0,z) = 0, it follows that

?(O,Z)

TO(Z)

&(0,2) ,(2)

Using these definitions with the basic state equations, we are now
able to compute the ?(e,z) and 5(8,2) fields with the following pro-

cedure.

(1) Obtain To(z) from a tropical sounding.

(2) Derive ¢0(z)‘from To(z) through the hydrostatic equation.

{(3) Given a(e,z) as a prescribed input, compute 5(e,z) from the in-
tegral form of Eg. (15.2) shown below.
- e u2 -
®(06,z) = ¢O(z) -a [ (g" tane + fu)de (15.9)

0
(4) Compute: @,(8,z) = ®(0,2) - @ (2)

8471(6 »Z)

i

) 1
(5) Compute: Tl(e,z) R

oz

(6) Compute: ?(e,z) = To(z) + Tl(B,Z)

15.3 Computation of the v and w fields

Our goal has been to calculate a mean meridional circulation (;,Q)
which is consistent with a specified mean zonal flow u. In principal,
the meridional circulation can be obtained from the angular momentum
equation (15.1) and the conservation of mass equation (15.4). If the

zonal flow u is specified as a function of latitude and height and if
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the source term for angular momentum, acoseﬁu, is known and consistent,
then v and w can be obtained in the following manner. First, we define

a mean meridional streamfunction which satisfies (15.4):

—=3_lk
apw "
pcoso v = - o

where p = sinB, duy = cos6d6. Then conservation of angular momentum

(15.1) can be re-written:

J(gs,AM) = Fuapcose , (15.10)

™ oY dAM 3512 9AM . .
h A = _& pd. BN, —_— . f F
wnere J({b, M) ) is the Jacobian I and AM are

known, we planned to calculate the mean meridional streamfunction @ from
(15.10) and then ;, w from the auxiliary relations. If the domain is
closed, with no mass flux through the boundaries, we can set @=0 on all
boundaries. Since a steady state is assumed, there can be no net source
of angular domain: [ EuacoseadeHdz = 0.

Three different but related approaches have been used in our at-
tempt to determine a realistic mean meridional circulation. They are

outlined in the following subsections.
15.3.a First method

The source term Eu for mean zonal momentum was calculated from the
equation following (15.1), neglecting all eddy terms. Thus the ﬁc and u
fields were used 1in parameterizing the source. With finite differ-
encing, an 1inhomogenecus set of Jinear equations for @ at the grid
points results. We attempted to solve this system of equations using

standard matrix routines, but never achieved a useable solution for &.
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Part of the reason for this failure, we suspect, is that the prob-
Tem is over-determined and a solution cannot be found. Specifically,
the Jacobian contains only a firsi-ordeﬁ derivative in the vertical
dimension, but two boundary conditions are prescribed ($=0Aat top and

bottom).
15.3.b Second method

This method is a modification of the first, in which we retain the
same approach using Eu but admit t§ some uncertainties in Eu near the
upper and side boundaries. Specifically, v and w are obtained by in-
tegrating upward from the lower boundary and laterally between northern
and southern boundaries. v is modified gradually in the vicinity of the
side boundaries so that it vanishes at the side walls. pQ is modified
smoothly above the tropopause so that the vertical mass flux vanishes at
the model top. In this way, conservaﬁion of mass is retained, while the
momentum balance is altered slightly, in a sense by sources of unknown
origin (e.g., eddy terms). These modifications 1in v and w occur far
from the central region, so that the perturbation fields of interest are

not significantly affected.

We write the continuity equation in the form

opw _ _ 2 (BY . 4¢0), (15.11)
oz M oa

and the angular momentum equation in the form

P - 3AM
Ei Fupacose - PW o
5 Cos6 = — (15.12)
2AM
3
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At the 1lower boundary Q(z=0)=0. Since any horizontal shear of the mean

zonal flow at the equator is eliminated by inertial instability

(Stevens, 1983), we assume 8Kﬁ/8p=0 at the equator.

(L

(2)

(3)

(4

(3)

(6

(7

The algorithm follows these steps.

Given a specified u field, compute Eu’ Kﬁ, aﬁﬁ/az, and axﬁ/aﬁ at
every point in the model's domain.

Assuming Q(z=0) = 0, compute vatz=0 using (15.12).

Calculate p; at the next higher level 'j' by vertically integrating
Eg. (15.11) between a lower level 'j+1' and Tlevel 'j'.

Compute po/a at level 'j' by using (15.12) unless calculation
occurs at equator. At the equafor aKﬁ/ap = 0 so that instead of
using (15.12), p;/a is interpolated from values of p;/a on either
side of the equator. If a side boundary lies on the equator (i.e.,
i=1 corresponds to 6=0) thenb pc/a at i=1 is extrapolated from
values of p;/a at i=2,3, and 4.

Repeat steps '3' and '4' for all vertical Jevels.

Since we know that p@ is "small" high enough in the atmosphere, we
alter the w field above z=ZTROP so that it trails off smoothly to
zero at the top of the model.

Alter the v field to maintain mass continuity in regions where the
w field was altered in step '6'. In addition, change v at the side
boundaries and adjacent points so that it trails off to zero on

these side borders.
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In order to compute the v and w fields given the procedure listed
above, a(u,z) and ﬁc(p,z) must be specified. To provide for conserva-
tion of angular momentum the following constraints were applied to the u
field: (L aa/az = 0 at the top of the model, and (2) the viscous flux
of angular momentum must be zero when averaged over the Tower boundary

(i.e. | g; (aacose)dp=0).

As an example, we show the mean meridional circulation obtained by
this method with a prescribed u flow consisting of easterlies in the
tropics and westerlies in the middie latitudes.

a(p,z) = (Easterly component) + (Westerly component) (15.13)

where

Easterly component = Ul X F1 x Gl

Ul =~-5m s_1
F1(u) = 1. b, = 0.2
1. + &
Hq
Gl(z) = 1. - sin (nt x é) , 2 <3

Westerly component = U2 X F2 x G2

U2=15ms *

0]
HoH, 2 H o<W,
F2(p) = (—;;") b My, = 0.2, py = 0.3

G2(z) = 1. + cosine (m X £§2:El) , 2 < 3

In our present calculation, the mean cumulus mass flux Mc profile is

given by:
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M =M x EXPON x ZFUNC (15.14)
C coO

where

Mco = 5 mbars/hour (magnitude of deep cloud mass flux from Yanai

et. al, 1973)

- 2
EXPON = exp [‘(E;§9)3= u, = 0.15, p, = 0.10

p = sin(6)

PT-PRES

ZFUNC = (1 - exp ( PDRT

»

~-ZTROP
e

PT = (i.e. non-dimensional pressure at tropopause)

PDRT = 0.10 (i.e. vertical decay scale used to simulate the
detrainment layer at cloud top)

PRES = e

Once the ﬁc field is computed, a 7-point running average is applied to
this field in the vicinity of the tropopause in order to smooth out the
vertical discontinuity of Mc in this region. The distributions of
L(p,z) and ﬁc(p,z), as expressed in Egs. (15.13) and (15.14), are shown
respectively in Figs. (15.1) and (15.2). The corresponding field of
AM is shown in Fig. 15.3, whereas the source field Eu’ which is
parameterized from u and ﬁc’ is shown in Fig. 15.4.

Using these u and ﬁc fields, the resulting mean meridional cir-
culation 1is shown in Figs. 15.5 (;) and 15.6 (Q). We see that in the
ITCZ region of maximum cloud mass flux ﬁc’ the mean vertical velocity w
is actually downward. Yanai et al. (1973) demecnstrated that p@ and gﬁc
are both upward and of comparable magnitude in the Inter-Tropical

Convergence Zone (ITCZ); i.e., most of the vertical mass flux in the
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Fig. 15.1 Distribution of mean zonal wind (G) in m-sec-1 (solid
Tines westerly wind, dashed 1ines easteriy wind).
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MEAN CUMULUS MASS FLUX (MB/HR)
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ABSOLUTE ANGULAR MOMENTUM (M?/S) * 10°®
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Fig. 15.3 _gistribution of absolute angular momentum (AM) in mz-s_1

(x 10 7).
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Fig. 15.4 Distribution of angular momentum source (Fu) in m2~s"2 with
off-equatorial ITCZ (solid lines source region, negative lines
sink region).
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Fig. 15.5 _Ristribution of computed mean meridional velocity (;) in
m-sec with off equatorial ITCZ (soliid lines southerly wind,
negative lines northerly wind).
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Fig. 15.6 _Ristribution of computed mean vertical velocity (Q) in
mb+-hr = with off equatorial ITCZ (solid lines upward motion,
negative lines downward motion).
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ITCZ takes place within the clouds. Because the observed cloud mass
flux is slightly larger than p&, environmental subsidence between the
clouds often results. |

The results presented in Figs. 15.5 and 15.6 differ startlingly
from the observations, in that the mean vertical mass flux in the ITCZ
is downward and an order of magnitude smaller than the cloud mass flux.
In the angular momentum budget, it is the horizontal advection and not
the vertical advection that balances the cumulus source/sink term away
from the equator. To examine why this balance occurs let us take the

ratio of the vertical advection to the horizontal advection of angular

momentum:

9AM 3y 9AM
92 oM BDZ

£

v 9AM 3y 9AM
a 20 9z apu
. op Yo ou Yo
Scaling the meridional flow as ~ —; the vertical flow as ~ -
9z Az qp  Ap
OAM _ au su_ 9AM . .
5z = acose 52 a 52’ 5;— a“(2Qsing); we find:
Vertical Advection | Az 3u/3z (15.15)

Horizontal Advection{ Ap 2Qau

For the present calculation, we téke Au~u~yo=0.15, corresponding to the
central latitude of the cloud mass flux distribution, Az ~ 1 scale
height,
Su  Au

52 ~ Az 5 m-s~1 per scale height. Then the ratic of vertical to

horizontal advection becomes

Vertical Advection .1, Au
Horizontal Advection Moz 2Qa

~ 0.2 (15.16)
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Hence horizontal advection dominates at the latitude of the ITCZ, while
vertical advection must balance the source at the equator. For the same
vertical shear (Aa), the farther the ITCZ is away from the eqguator, the
greater is the relative strength of the horizontal momentum advection.

With this dynamical balance, cloud mass flux and mean vertical motion
are not comparable in an ITCZ away from the equator. Furthermore, downward
mean motion generally occurs in the ITCZ to compensate the equatorial upward
motion and thereby close the meridional cell.

For completeness, let us consider the case where the central latitude of
the cloud mass flux is placed on the equator (see Fig. 15.7). The source of
momentum Fu’ which corresponds to this distribution of Mc and the u field in
Fig. 15.1, 1is shown in Fig. 15.8. 'Repeating the scaling argument given in
Eq. (15.15) for this configeration of ﬁc’ we see that in this case vertical
advection dominates at the latitude of the ITCZ. This is due to the fact
that the denominator in Eq. (15.15) goes to zero, since p~po=0 in this case.
The resulting mean meridional circulation shown in Figs. 15.9 (v) and 15.10
(w) is now consistent with Yanai's observations that p; and gﬁc are both
upward and of comparable magnitude in the ITCZ. For example, in the region
of maximum ﬁc nearly 85% of the mean meridional circulation is accomplished
by the cumulus mass flux.

This method represents a consistent dynamical framework for studying the
mean meridional circulation. However, with an off equatorial momentum source
this method fails to simulate the typical observations within the ITCZ.
15.3.c¢ Third method

In the third approach, we again specify u and Mc empirically. In addi-
tion, we use a mean meridional circulation (@) which is determined from
observations. A consistent angular momentum source must then consist of the
eddy terms as well as the explicit zonal-average quantities. We do not inves-

tigate the nature of these eddy terms, but assume their existence.
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Fig. 15.7 Same as Fig. 15.2 except with ITCZ centered on equator.
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Fig. 15.8 Same as Fig. 15.4 except with ITCZ centered on equator.
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Fig. 15.9 Same as Fig. 15.5 except with ITCZ centered on equator.
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Fig. 15.10 Same as Fig. 15.6 except with ITCZ centered on equator.
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Conclusions and Future Work

In summary, the characteristics unique to this model and/or impor-
for applications include:

The specifications of an "arbitrary" mean 2zonal flow which can
depend on both Tatitude and height;

Calculation of a mean meridional circulation which is dynamically
consistent with the mean zonal flow (i.e., satisfies conservation
of angular momentum, the balance approximation, the hydrostatic
approximation, conservation of mass and energy);

Vertical transport of momentum by the deep convective clouds in the
tropics in both the mean and perturbation circulations;

Spherical geometry;

Coordinate stretching in both the vertical and latitudinal coor-
dinates, which is represented in the coupled differential equations
by finite differences;

Very fine vertical grid resolution: experiments have been run with
31 points 1in the vertical; computer processing increases only
linearly with the number of grid points in the vertical;

Horizontal resolution of 15 to 20 points (square matrices with
approximately five times the number of horizontal points must be
inverted) at each vertical level;

Very ecoﬁomic computation: the global response in a single zonail
wavenumber with 1Y=21 and IZ=31 is obtained with approximately 13
seconds of NCAR CRAY time.

This lirnear mocdel assumes that a frequency o (which may be real,

complex, or even zero) and a zonal wavenumber s is specified. 1In this

way,

response to a single Fourier component of forcing is studied. For
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more general forcings, a Laplace transform in time and a Fourier trans-
form in longitude is performed first; then this model calculates the
complex response to each component. Finally, the various components are
combined to obtain the actual response.

Now that the lengthy model development stage has come to a success-
ful conclusion, we plan to apply our model to specific situations. The
following discussion outlines a number of problems which we envision

using our model on in the near future.

16.1 Tropical wave modeling

One of the problems to be addregsed is the role and adequacy of
Rayleigh friction as a parameterization of cumulus momentum transport in
the tropics. Much of the recent work on the dynamics of planetary-scale
tropical circulations have assumed this most simple parameterization of
mechanical dissipation (e.g., Gill, 1980, Chang, 1977, and Chang and
Lim, 1982). A comparison of such results with those with a more realis-
tic parameterization is needed and can be accomplished in our model
context.

It was hypothesized by Stevens et al., (1977) that cumulus momentum
mixing is required to make temperature changes small in synoptic-scale,
Tinear tropical waves. However, in our preliminary results shown by
Stevens and Ciesielski (1982), it appears that the temperature changes
are small (relative to diabatic heating and adiabatic coocling) with or
without the inclusion of this physical process. Further investigation,
at this point still preliminary, is indicating that another mechanism
may be playing a more significant role in keeping the temperature
changes small: namely, the existence of significant components of the

response in modes with negative equivalent depths when the Doppler-
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shifted period is on the order of days to weeks. These tentative con-
clusions will become more concrete as the research progresses.

The sensitivity study of westward-propagating tropical disturbances
to a zonal mean wind with realistic vertical and latitudinal shear is
also planned. Specifically, wind regimes representative of the western
Pacific and the eastern Atlantic will be considered in order to compare
model wave structure and characteristics with the observed.

Finally, observational evidence from both GATE and MONEX is indi-
cating that significant precipitation in tropical systems occurs in the
mesoscale regime (Houze and Betts, 1981, and Johnscn, 1982). This new
information needs to be taken into account, for both mesoscale and
convective scale condensation and precipitation influence the param-
eterized diabatic heat source for the synoptic disturbance, whereas the
convective scale vertical transport of horizontal momentum very tikely
dominates the mechanical forcing/dissipation of the synoptic scale by
smaller scale systems. We intend to pursue the ramifications of the
influence of these two smaller scales (not just the convective) on the

synoptic systems.

16.2 Quasi—steadyvtropica1 circulations

Geisler (1981) has applied a model very similar to ours to the
quasi~steady tropical east-west circulation known as the Walker cir-
culation. However, the zonal mean flow was assumed to be negliigibie 1in
that study and the effect of the mean meridional circulation on the
disturbance was neglected. Although the latter may not have a signi-
ficant effect, we expect the former to be rather crucial to the lati-
tudinal extent of the circulation. In particular, the zero wind line is

expected to play a rather important roie in the Walker circulation. We
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propose to investigate the Walker circulation in the context of this
more realistic basic state.

Several recent studies (e.g., Webster, 1981, Hoskins and Karoly,
1981) have considered the influence of tropical heat sources with sta-
tionary planetary-scale midlatitude perturbations in linear model, with
the purpose of explaining the interaction between tropics and midlati-
tudes on longer than synoptic time scales. This is a very exciting
field that promises to increase the skill of long-range forecasting. In
the 1linear wave theory, critical surfaces (ﬁ = ¢ = 0) strongly affect
the propagation of energy from tropics to midlatitudes.

However, a paradoxical difference between the observations and the
theory is present which we intend to address. Namely, observations over
the past 25 years of synoptic-scale tropical systems have focussed on
westward moving disturbances with typical propagation speeds around 5
ms-l. If the modulation of these systems is giving the quasi-steady
heat sources assumed by the linear theories, then one would expect that
the U = -5 ms-1 surface would be an important factor, perhaps even more
so than the zero wind surface, in the dynamics associated with the
critical surface. This should be investigated and we propose to do so.
Geisler and Stevens (1982) showed that very fine vertical resolution is
required to represent these propagating modes.

Finally, further work needs to be done on the relative roles of
heat sources and mechanical corographic forcing in the tropical/ mid-
latitude interaction problem. The linear, spherical, primitive equation
model with high vertical resolution is a useful tool for this problem.
We plan to exploit this developed tool in studying this important

problem.
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Appendix

Flow Chart of the Fortran-coded Algorithms

This appendix provides flow charts of the computer code needed to
run the model described in this paper. The code for running this model

is divided into the following programs: GENVAR, GENCOEF, and DESRUN.

GENVAR
This program sets up the basic state, specifies all constants

to be used in the model, and prescribes the perturbation heating

I

GENCOEF

function.

Using the output from 'GENVAR', this program generates the

coefficients (see Section 7) which operate upon the non-

dimensional dependent variables.

DESRUN

Using coefficients generated in 'GENCOEF', this program sets
up the system AX=B, where X represents the five perturbation
variabies at all grid points. X is solved by using Lindzen

Kuo Gaussian Elimination.

A fourth program (PLOTSOL) provides contour plots of the solutions from

the output of DESRUN and of the basic state fields frcm GENVAR.
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A. Program GENVAR
This program sets up the basic state, specifies all constants used

in the model, and prescribes the perturbation heating function.

SPECIFY CONSTANTS

)
GENERATE HORIZONTAL AND VERTICAL COORDINATES l

v
COMPUTE FIELDS OF NON-DIMENSIONAL PRESSURE AND

THE CORIOLIS PARAMETER

v
COMPUTE BASIC STATE VARIABLES

L 4 , .
ESPECIFY PERTURBATION MASS FLUX AND PERTURBATION HEATINEJ

¥

ICOMPUTE WAVENUMBER AT EACH MODEL LATITUDE]

V
WRITE OUT REVELANT DATA |
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B. Program GENCOEF
Using the output from 'GENVAR', this program generates the
coefficients (see Section 7), which .operate upon the non-dimensional

dependent variables.

FREAD IN DATA GENERATED BY 'GENVAR' FROM A FILE]

. v
{ TRANSFER REVELANT DATA NEEDED BY 'DESRUN' TO COMMON BLOCKAJ

i
| compuTE COEFFICIENTS |

i

[ ESTABLISH BOUNDARY CONDITIONS FOR z=0

4
[ WRITE OUT COEFFICIENTS AND OTHER PERTINENT DATA TO A FILE l
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C. Program DESRUN
Using coefficients generated in 'GENCOEF', this program sets up the
system AX=B, where X represents the five perturbation variables at all

grid points. X is solved by using Lindzen Kuo Gaussian Elimination.

READ IN COEFFICIENTS AND OTHER PERTINENT DATA
GENERATED BY ' GENCOEF' FROM A FILE

'

 FILL IN SUB-MATRICES

:

MANIPULATE THE VARIOUS MATRICES TO ACCOUNT
FOR SIDE BOUNDARY CONDITIONS

J,

SUB-MATRICES ARE USED TO FILL LARGER MATRICES

WHICH COMPRISE COEFFICIENT MATRIX 'A' AND
RIGHT HAND SIDE MATRIX 'B'

X 4
{7REDUCE SYSTEM TO AN UPPER TRIANGULAR MATRIX

:

lBACK-SUBSTITUTION FOR BOTTOM TWO LEVELS OF MODEL l

I

{ LINDZEN-KUO BACKSUBSTITUTION FOR OTHER LEVELS

'

[ PRINT OUT SOLUTION AS AMPLITUDE AND PHASE |

I

["WRITE SOLUTION TO A FILE |

¢

o)
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