Complete Graph Reconstruction from Partial Information

Gunjan S. Mahindre and Anura P. Jayasumana
gunjanm5@colostate.edu anura@engr.colostate.edu
Electrical and Computer Engineering, Colorado state University, Fort Colling, CO 80523

Research Question: If we only know the distances from a few nodes in a graph, how do we reconstruct the original graph?

Abstract

Networks, biological molecules, neural structures can be represented as graphs. Data processing and storage of such structures with millions of nodes is very bulky.

Thus, we derive important properties and synthesize a technique to regenerate a graph from partial information about the graph with minimum data and high fidelity.

This will impact the way we store and operate on network data and opens new possibilities in areas such as chemistry, social networks, neural networks and the ever evolving Internet.

Motivation

- Graphs with millions of nodes and links
- Social networks
- World Wide Web
- Neural networks in Brain
- Airline networks
- Generates Big Data

- Real world networks Distributed systems require compact data representation

Compact representation of large graphs with zero or minimal loss of Information

Graphs as Data

- Link information \& distance information
- Adjacency and distance matrices represent graphs

- Large graphs generate huge data: $[\mathbf{N} \times N]$
- Information in $[\boldsymbol{N} \times N] \sim$ Information in $[\boldsymbol{N} \times M] ; M \ll N$ How to select those M nodes to get [$N \times N$] information?

Prior Work

- Metric Dimension - $\beta(\boldsymbol{G})$: minimum number of anchor nodes that create unique distance vectors
- Resolution set - $\{\boldsymbol{R}\}$: collection of these anchor nodes

Challenge

Metric dimension is not always enough

Oigignal Graph $\geqslant\left[\begin{array}{lllll}0 & 1 & 2 & 2 & 1 \\ 1 & 0 & 1 & 2 & 2 \\ 2 & 1 & 0 & 1 & 2 \\ 2 & 2 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 & 0\end{array}\right] \gg$

Complete istance Matrix

Selected Distance vecter

Ambiguities in reconstruction
Our Goal: Unique and complete graph reconstruction

Contribution

Predict presence of a link

- Theorem 1: Cause of ambiguity - An edge between nodes i and j is invisible if and only if for each anchor \boldsymbol{A}_{k},

$$
\left\{\operatorname{Max}\left|h_{i A_{k}}-h_{j A_{k}}\right| \leq 1\right\}
$$

$\forall i, j \in \mathcal{N} ; \forall k ; \boldsymbol{A}_{k} \in \mathcal{A}, k=1: M$

- Eliminate ambiguity with additional well placed anchor nodes
- Theorem 2: The Link dimension, metric dimension, resolution set and reconstruction set can be related as: Lme bimension Cordianality of Reconssruction set

$$
\{\alpha(\boldsymbol{G}) \geq|\{\boldsymbol{C}\}| \geq|\{\boldsymbol{R}\}| \geq \beta(\boldsymbol{G})\}
$$

- Link Dimension - $\alpha(\boldsymbol{G})$: minimum number of nodes to predict all links without any ambiguity
- Reconstruction set - $\{\boldsymbol{R}\}$ collection of
 these nodes

Data compression ratio $=\mathbf{1 / 2}$ = Required data/ Actual data $=6 \times 12$ matrix $/ 12 \times 12$ matrix $=1 / 2$

Procedure

- Finding nodes in Reconstruction set:

INPUT: distance matrix, Resolution set $\{\boldsymbol{R}\}$ OUTPUT: $\{\boldsymbol{C}\}$ reconstruction set
starting from $\{\boldsymbol{R}\}$, where $|\{\boldsymbol{R}\}|=\boldsymbol{\beta}(\boldsymbol{G})$,
Let $\left|h_{i A_{k}}-h_{j A_{k}}\right|=\Delta$
DO
//record node pairs with ambiguity
pairs $=[]$
FOR $i=1$.
FOR $i=1: N=1: N$
OR $\boldsymbol{j}=1: \boldsymbol{N}$
IF $\Delta>1$
append (i, j) to pairs

END

END
FOR $n=1: N$
FOR each ambiguity pair (i, j)
IF $\left\{\mid\right.$ dist $_{k i}-$ dist $\left._{k j} \mid>1\right\} ; i, j$ and $k \in$ G(V)

Strength[n] ++ // number of ambiguities
resolved
END
Select k s.t. Strength $[k]=\max$ (Strength)
Remove the ambiguity pairs resolved by node k WHILE (ambiguity>0)

Other findings

- Reliability of a given Distance Vector
- Validity of given Distance matrix
- Compute bounds for missing distances

Challenges:

Optimum selection from a large pool of nodes

- Predicting anchor nodes
- Finding minimum solution

Future Work

- Web spam detection
- Integrate machine learning to recognize silent characteristics of a graph

- Community detection
- Performing distributed functions with lower computational cost
- An efficient algorithm for any graph to determine
- Number and location of minimum constructors
- Extend work for directed graphs

