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ABSTRACT

AUTONOMOUS UAV CONTROL AND TESTING METHODS UTILIZING PARTIALLY

OBSERVABLE MARKOV DECISION PROCESSES

The explosion of Unmanned Aerial Vehicles (UAVs) and the rapid development of algorithms

to support autonomous flight operations of UAVs has resulted in a diverse and complex set of re-

quirements and capabilities. This dissertation provides an approach to effectively manage these

autonomous UAVs, effectively and efficiently command these vehicles through their mission, and

to verify and validate that the system meets requirements. A high level system architecture is

proposed for implementation on any UAV. A Partially Observable Markov Decision Process al-

gorithm for tracking moving targets is developed for fixed field of view sensors while providing

an approach for more fuel efficient operations. Finally, an approach for testing autonomous al-

gorithms and systems is proposed to enable efficient and effective test and evaluation to support

verification and validation of autonomous system requirements.
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CHAPTER 1

INTRODUCTION

The use of unmanned aerial systems (UASs) in both the public and military environments is

predicted to grow significantly. As the demand for UASs grows, the availability of more robust and

capable vehicles that can perform multiple mission types will be needed. In the public sector, the

demand will grow for UASs to be used for agriculture, forestry, and search and rescue missions.

Militaries continue to demand more UAS capabilities for diverse operations around the world.

Significant research has been performed and continues to progress in the areas of autonomous UAS

control. A majority of the work focuses on subsets of UAS control: path planning, autonomy,

small UAS controls, and sensors. Minimal work exists on a system-level problem of multiple-

scenario UAS control for integrated systems. This paper provides a high-level modular system

architecture definition that is modifiable across platform types and mission requirements. A review

of the current research and employment of UAS capabilities is provided to evaluate the state of the

capabilities required to enable the proposed architecture.

Significant development in path planning algorithms for unmanned aerial vehicles (UAVs)

has been performed using numerous different methods. One such method, Partially Observable

Markov Decision Processes (POMDP), has been used effectively for tracking fixed and moving

targets. One limitation of those efforts has been the assumption that the UAVs could always see

the targets, with a few unique exceptions, e.g., building obscuration. In reality, there will be times

when a vehicle will not be able to observe a target due to constraints such as turn requirements or

tracking multiple targets that are not within a single field of view (FOV). The POMDP formulation

proposed in this paper is robust enough to handle those missed observations. Monte Carlo runs of

1000 iterations per configuration are run to provide statistical confidence in the performance of the

algorithm. UAV altitude and sensor configuration are varied to show robustness across multiple

configurations. A sensor with a limited FOV is assumed and changes in fixed look angle are eval-

uated. Changes in altitude provide results equivalent to changes in sensor window or focal length.
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Results show that the POMDP algorithm is capable of tracking single and multiple moving targets

successfully with limited FOV sensors across a range of conditions.

The ability to effectively track moving targets is a critical capability for future autonomous

aircraft. While many methods have been developed for performing target tracking, minimal work

has focused on fuel-efficient options to extend mission duration. The ability to tightly track a

target is critical for certain missions; however, increased tracking errors can be accepted in certain

scenarios to extend endurance. Partially Observable Markov Decision Processes (POMDPs) have

been shown to be effective for tracking fixed and moving targets. This paper provides a fuel-

efficient option that shows a 10% endurance increase with adequate target tracking. The algorithm

provides tracking with a limited field of view fixed sensor that will have limited observations

depending on mission requirements. The POMDP formulation proposed in this paper is robust

enough to handle observations while also providing options for improved fuel efficiency. We

perform 500 Monte Carlo simulations per configuration to provide statistical confidence in the

performance of the algorithm.

The test and evaluation (T&E) of autonomous systems, that adequately supports the verifica-

tion and validation (V&V) process, is a significant challenge facing the test community. The abil-

ity to quickly and reliably test autonomy is necessary to provide a consistent T&E, V&V (TEVV)

capability. A safe, efficient, and cost effective test capability, regardless of autonomy or sensor

capability, is required. Autonomy and sensor capabilities, referred to as services, can be integrated

easily into small Unmanned Aircraft Systems (sUAS) of differing capabilities and complexities.

An integrated open-source architecture, for both software and hardware, implemented on multiple

sUAS of varying capabilities can provide a robust test capability for emerging autonomous behav-

iors. The inclusion of a run time assurance (RTA) common safety watchdog and a Live-Virtual-

Constructive (LVC) capability provides a consistent, robust, and safe test capability/environment.

The use of an open software and hardware architecture ensures cross-platform viability. These

features will allow test teams to focus on the newly incorporated autonomy and sensor services,

not on other ancillary capabilities and systems on the test vehicle. Testing of the services in this

2



manner will enable a common TEVV approach, regardless of final platform integration while de-

creasing risk and accelerating the availability of autonomy services. Services-Based Testing of

Autonomy (SBTA) provides a cost-effective and focused capability to test autonomous services,

whether software, hardware, or both.
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CHAPTER 2

MULTIPLE-SCENARIO UNMANNED AERIAL

SYSTEM CONTROL: A SYSTEMS

ENGINEERING APPROACH AND REVIEW OF

EXISTING CONTROL METHODS

2.1 INTRODUCTION

In July 2014, the Teal group predicted that worldwide Unmanned Aerial Systems (UASs) ex-

penditures will grow to over $11 Billion per year with a total investment of over $91 Billion by

2024. It is expected that 86% of the market will be military and 14% will be in the civil mar-

ket [1, 2]. As the growth continues, challenges and expectations will continue to rise as users will

expect more robust and capable vehicles. The military market continues to expand and develop

new capabilities and requirements. The growth in the civil market is expected to significantly ex-

pand as the rules on civil use of UASs in the US and around the world become better defined.

As these markets expand, the need to have systems that can adapt to new missions, sensors, and

environments will drive requirements.

The Defense Advanced Research Projects Agency (DARPA) released a Broad Agency An-

nouncement (BAA) for the Collaborative Operations in a Denied Environment (CODE) Program

in 2014 [3]. This BAA defines numerous requirements and expectations for future system capabil-

ity of unmanned and autonomous vehicles working as single systems and multiple vehicle teams.

Many of the requirements defined in the CODE BAA can be utilized to define system architec-

ture and capabilities for both military and civilian systems. These requirements will provide a

significant portion of the requirements for the system defined herein. In early 2014, DARPA also

released a BAA for Distributed Battlespace Management (DBM) that proposes a series of auto-
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mated and autonomous decision aids to assist battle managers and pilots [4]. The DBM envisions,

amongst other needs, the ability to enable improved command and control of autonomous opera-

tions of UASs, including in manned-unmanned teams. There are multiple thrusts within the DBM

program, but one of the primary ones is for improved distributed adaptive planning and control.

Additionally, requirements that can be applied globally across UASs from the Federal Aviation

Administration (FAA) and other federal, state, and local laws are considered.

There are a significant number of current and future uses for UASs throughout the military and

civilian world. The military is currently using, and continues to anticipate increased usage of, these

systems in numerous areas including intelligence, surveillance, and reconnaissance (ISR) [5, 6],

data and communication interfaces [7], electronic warfare [8, 9], and limited attack roles [10]. Fu-

ture cargo and transport capabilities [11] along with search and rescue operations [12] have been

envisioned. In the commercial world, there are almost limitless possibilities of uses. Currently,

applications exist for agriculture, firefighting, police, sciences, and forestry [2]. Significant ef-

forts in cargo delivery, data capabilities, search and rescue, and traffic information are underway.

Evaluating all of these capabilities and needs result in four primary mission types: ISR, persistent

loiter, delivery, and attack. These four mission types will define the needs and requirements of the

majority of the future UASs across the industry.

An early systems engineering analysis to evaluating the requirements, needs, and capabilities

must be performed in an attempt to define a system that can be robust and adaptive to current

and future needs. Utilizing requirements defined in the CODE BAA and other resources, a set of

requirements can be defined and utilized to develop a system architecture to meet the users’ needs.

Section 2.2 provides a high-level problem definition that is addressed by this system architecture

design. Section 2.3 will provide this systems engineering review and architecture definition.

Future multiple-scenario capability will require the system to operate dynamically across one

or more of the four mission types and numerous subsets of those missions. Multiple-scenario

control algorithms and architectures will enable a single platform to perform multiple mission
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roles with minimal reconfiguration. A dynamic architecture that enables recognition of sensors,

system capabilities, and requirements will ensure the platform enables multiple-scenario support.

Significant work in UAS control and autonomous processes have been performed. The system

defined in this paper requires numerous capabilities to be matured, some that already exist and

some that need significant development work. Section 2.4 provides a detailed review of the current

state of existing methods and capabilities in UAS autonomous path planning and safety controls.

Some of the work that has been completed needs some significant improvement to enable the

transition of the capabilities from theory and lab environments to practical applications. Section 2.5

provides some recommended improvement areas and provides a focus for future planned work by

the authors. Final conclusions are provided in Section 2.6.

2.2 PROBLEM DEFINITION

As the need for future autonomous flight grows and systems mature, a high-level framework

of how to design and integrate autonomous systems into existing and new vehicles is needed.

Work continues to be performed in developing control capabilities and algorithms required to en-

able autonomous flight. However, in order for a framework to work, it must provide an architecture

that is open and easily modifiable across a diverse type of vehicles and sensor capabilities. The sys-

tem must enable the autonomous system algorithms to run in a framework that enables maximum

flexibility while understanding vehicle capabilities.

2.3 SYSTEM DESIGN

In order to ensure the ability of autonomous systems to function and be effective across multi-

ple vehicle types, a framework needs to be defined that enables flexibility in design and function-

ality. A high-level systems engineering review of requirements has been performed based upon

the CODE BAA [3] and DBM BAA [4] in Section 2.3.1. A system architecture has been defined

that enables the flexibility of design and functionality for autonomous vehicles in Section 2.3.2.

Current and future research needs are briefly discussed in Section 2.3.3.
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2.3.1 SYSTEM REQUIREMENTS

The CODE BAA [3] identified four top-level goals for any system proposed and developed:

1. develop and demonstrate the value of collaborative autonomy in a tactical context;

2. rapidly transition the capability to the warfighter;

3. develop an enduring framework to expand the range of missions, platforms, and capabilities

that can leverage collaborative autonomy; and

4. develop an open architecture that enables all members of the rich community of unmanned

systems and autonomy researchers to contribute to current and future capabilities.

Similarly, the DBM BAA [4] identified a goal of adaptive planning and control that could be

distributed across systems to aid a variety of vehicles, weapons, and sensors. The goal is to en-

able UASs to satisfy the commander’s intent while operating in normal or limited communication

environments. The ability to have an adaptive decision process across mission types is critical. Hi-

erarchical task processing under limited communication will be an important enabler of autonomy.

The autonomous capabilities should be vehicle agnostic. The UASs should be able to negotiate

both high-level battle manager tasks and low-level tactical tasks. The capability will need to exist

to execute cooperative tasks with other UASs and manned vehicles.

Seven key performance objectives were identified in the CODE BAA where significant im-

provements are sought and would be critical for any system also developed for the DBM BAA

or any other project. Six of the objectives are discussed below. The seventh objective, transition-

ability is not considered in this review.

1. Mission Efficiency:

Mission efficiency is an important requirement for both military and civilian operations.

The cost of completing the mission needs to be considered. The expense of flying the vehicle

along with the duration required to complete the mission are critical concerns for all parties

involved. Additionally, the ability to quickly react to changes in mission requirements or

7



system functionality is critical for robust systems of the future. The bulk of the review

of current capabilities in existing systems will relate to mission efficiency and control of

the system. Mission efficiency can be considered in countless manners, including time to

complete the mission (time efficiency), fuel used to complete the mission (fuel efficiency),

endurance of mission (endurance), and total number of tasks completed (task efficiency).

2. Communication requirements:

Limited communication frequencies will be available in the future. Limited bandwidth and

minimization of communication will be required in future operations and will be a feature for

more autonomous vehicles. Additionally, communication in a denied electronic environment

will necessitate limited communications. The ability to have communications in unique

environments with cognitive capabilities will be required in the future [13].

3. Manning:

Currently, the ratio of operators to vehicles is many-to-one but in the future the desire is to

flip the ratio to be one-to-many. To support this change in operational manning, a significant

increase in system autonomy must be created. A system must be able to automate its mission

path and plan with minimal operator inputs. Hierarchical logic for decision making must be

implemented to ensure the most effective completion of the mission and rapid response to

mission or system changes. The system must be able to react to both external inputs (opera-

tor) and internal inputs (system and sensor data). Additionally, unique challenges of training

and educating future operators will be critical [14]. The review of current capabilities of

algorithms and autonomous features as it relates to mission efficiency will incorporate the

considerations of reduction in manning of operations.

4. Command Station:

Future command stations must be robust and provide significant situational awareness for

the operator. Being able to command vehicles from a mobile or fixed-based control station

will be necessary to ensure flexibility in capabilities. Interfaces that enable the operator
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to quickly upload new tasks and parameters will be necessary. Limited command station

requirements and current capabilities will be addressed in this paper.

5. Openness of the architecture:

Open system architecture is a key of any current and future system viability. To provide

a system architecture that can be utilized across multiple system sizes and types it must

employ an open architecture to minimize the costs of integration with any existing or new

systems. The design proposed in this paper attempts to provide a framework architecture

that would satisfy current open architecture standards. Limited review of open architecture

requirements will be addressed in this paper.

6. Multi-mission capability:

The ability of a system to perform multiple missions will be critical for future viability.

Some airframes may not lend themselves to transition across the four primary mission types

of ISR, loiter, delivery, and attack. However, a system that operates primarily in one or

two mission areas should be able to perform multiple roles within those mission areas. For

example, a system that has a primary role of ISR should be able to perform recurring obser-

vation of fixed targets but also be able to transition to tracking of moving targets or persistent

observation over a fixed target. The ability of systems to perform multiple missions will be

discussed throughout the paper.

2.3.2 SYSTEM ARCHITECTURE

In the early 2000s, Boskovich, et al. [15] defined a control architecture for decision making

within an autonomous UAS framework. This architecture described a high-level framework for

designing autonomous intelligent control systems for UASs. The architecture defined four layers

of control: redundancy management, trajectory generation, path planning, and decision making.

This general philosophy is still present in many of the design work prevalent today in UAS mission

and path planning design. However, this architecture only considers the general control and path
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planning of a vehicle. To address the high-level requirements previously defined in Section 2.3.1,

a system architecture needs to be developed that can provide the framework for system design and

functionality for more than just the mission control of the vehicle. Additionally, a significant por-

tion of the existing research in UAS path planning considers the vehicle a point mass and many of

the approaches consider only constant altitude and airspeed. There is minimal consideration of ac-

tual vehicle dynamics in the existing research. In order to address the actual vehicle dynamics and

utilize those dynamics to improve mission performance utilizing existing methods, an architecture

that integrates vehicle dynamics and systems is needed.

Figure 2.1 provides the high-level architecture defined for our proposed autonomous system.

The definition proposes five primary functions: Mission Management, Vehicle Management, Sen-

sors Management, Communications Management, and Safety Management. These five areas pro-

vide the sufficient top-level framework for any system, regardless of mission and vehicle type.

The advantage of this system is that it provides a modular functionality architecture that can be

adjusted for specific vehicles but can be common across numerous vehicle types. The autonomous

algorithms will reside within the mission management functionality and will be dependent upon

common interfaces and architecture.

Figure 2.2 provides a lower-level definition of the system architecture with key critical func-

tionalities within the primary management systems. The functions and capabilities within each

management area could be changed depending on each vehicle. However, the interface to the

mission management system needs to remain consistent. The key to the architecture is that each

primary functional area has a controller that manages the overall function, but capabilities can

be added or removed based upon mission and system requirements in a modular fashion without

impacting the larger system. Additionally, depending on mission tasking and systems on board,

the controller could enable or disable any resident capability to improve performance of mission

objectives without changes to the software. The detailed description of each of the five primary

functions and their subsidiary functions are provided below.

1. Mission Management:
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The mission management function is the key to the success of the system architecture. A sig-

nificant portion of the efforts in this area would be consistent with the work of Boskovic, et

al. [15] as discussed earlier. The mission management will provide the primary high-level

decision making for the mission performance of the vehicle. The mission management area

is the focus of significant research in unmanned and autonomous control. There are three

primary functions within the Mission Manager:

(a) Mission Planning:

The mission planning function provides the mission requirement details for the decision-

making process of the mission executive. A mission-planning dataset could include

definitions of tasks, priorities, and threats. The mission-planning dataset could be

uploaded prior to a mission, during a mission, or self created depending on the au-

tonomous capabilities designed within the system. The mission-tasking information

would provide the required tasks the system is desired to perform. A mission-priority

schema would provide the executive a decision framework to determine which task is

of greater priority. For example, tracking a moving target could be defined as a higher

priority than general reconnaissance data collection. Threat definition would provide

the system considerations for areas to avoid due to known threats as well as consider-

ations for how to handle newly discovered threats. These considerations could include

keep-out zones, self protection actions with sensors, or other actions depending upon

system capabilities.

(b) Path Planner:

The path planner is the key algorithm for defining where and how the vehicle should

move. The path planner utilizes the considerations defined in the mission planning

along with information provided (via the mission executive) on system states. The path

planning algorithms could be dynamic or changed for any given mission based upon

the needs, priority, and other considerations. The path planner must also determine

path planning based upon contingency management requirements of the system for
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subsystem failures. The path-planning algorithm is a significant consideration of this

paper and current capabilities are discussed later in this paper.

(c) Mission Executive:

The Mission Executive (ME) is the primary decision maker for the vehicle. The func-

tionality of the ME defines whether to perform the current task defined by the path plan-

ner or reacts to safety management information. The ME also provides and receives

communication updates with other vehicles, operators, and other sources as required.

The ME commands the vehicle management system to perform flight maneuvers and

other vehicle system functionality. The ME could be considered equivalent to a human

operator within a manned vehicle system.

2. Sensor Management

Sensor Management provides the control for all the mission sensors installed on the vehi-

cle. Mission sensors are defined as any sensor utilized to perform the mission. Sensors

that are used to manage the vehicle control and health are handled within vehicle manage-

ment. There may be some cross utilization of these sensors for both systems. However,

the management of those sensors would be handled by their primary user. Portions of sen-

sor management, such as sensor types and control, are well understood in existing systems.

However, the sensor data processing will require continued and significant research to pro-

vide autonomous sensor data at a decision level that can be trusted. There are three key

functions within the sensor management framework.

(a) Mission Sensors:

Mission sensors are the sensors specifically installed on the aircraft for data gathering

in direct support of mission completion. The mission sensors will be dependent upon

the vehicle and mission requirements. These sensors will perform the primary mission

duties and could include electro-optical/infrared sensors, radar sensors, radio frequency

sensors, or any number of other types. The sensors will have a direct interface to the
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data-processing module and the control-executive module. These sensors will perform

their tasks based upon commands received from the sensor-control executive.

(b) Sensor-Data Processing:

The sensor-data processor will analyze received data and make a decision on the in-

formation received based upon algorithms defined. The processing could be utilized

for any number of tasks including target recognition, geo-location, target motion, and

sensor response. The data will also be processed for transmission, as required, and

sent to the sensor-control executive for passage to the communication management for

dissemination. A significant level of research is ongoing in areas of sensor data fusion,

image processing, and recognition that can support decisions and vehicle tasking.

(c) Sensor Control Executive:

The sensor-control executive (SCE) is the primary controller of all sensors and sensor

taskings. The SCE interfaces with the ME and provides sensor availability, sensor

capability, sensor data evaluation (target ID, geo-location, etc.), and sensor health. The

ME provides the SCE with sensor tasking. The SCE will be required to automatically

identify what sensors it has installed on board and what their capabilities are.

3. Safety Management

Safety Management provides overall safety monitoring for the vehicle. The types of safety

management performed can be dependent upon vehicle type, sensors installed, capabilities

required, and vehicle capabilities. The systems defined in this architecture are notional but

are critical for UASs. The safety executive can provide high-priority tasking to the mission

executive that can result in overriding current activities for safety reasons. Safety man-

agement is an area that is understood, but the integration of it with autonomous systems

continues to be researched and developed across vehicle types. The core safety management

functions defined in this architecture are explained here, but are not exhaustive of possible

functions.
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(a) Safety Executive:

The Safety Executive (SE) processes all information from safety management capabil-

ities and provides that information to the mission executive for execution. The SE will

prioritize which safety feature should be addressed first (if multiple safety issues are

occurring at the same time) and determine the recommended actions.

(b) Collision Avoidance:

Collision Avoidance algorithms for both ground collision and air-to-air would reside

within the safety management area. These algorithms would determine when the vehi-

cle is at risk of impacting something and provide recommended action(s) to avoid these

problems.

(c) Flight Termination:

Flight Termination is a key issue for unmanned air vehicles. Flight termination can

include destructive actions which result in the destruction of the vehicle. However,

it can also contain contingency efforts that include immediate landing, reduction in

system capabilities, flight-plan alteration, or other functionalities depending upon the

mission and range requirements.

(d) Geo-Fence:

The geo-fence capability defines the areas within or outside of which a vehicle should

maintain a presence. There may be unique mission requirements that require a system

to fly in certain areas which the geo-fence may not allow based upon changes in mis-

sion or knowledge of areas of operation. If the vehicle is approaching a fence limit or

has crossed a fence, the safety system should direct the vehicle back within the defined

boundary. This geo-fence could be dynamic based upon known aircraft (air collision

avoidance), major changes in weather (weather avoidance), or known threats and bor-

ders.

(e) Weather Avoidance:
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Depending on vehicle capabilities or mission sensor capabilities and requirements there

may be a need to avoid undesirable weather. Weather avoidance would provide keep-

out areas to the safety executive that could be provided to either the mission executive

or the geo-fence capability for management of vehicle path. For sensor functionality

issues it would be more critical to provide that information to the mission executive for

determination of path route and sensor tasking.

(f) Population Avoidance:

Mission requirements may require the vehicle to perform tasks in areas with significant

or critical populations. As a result, there may be a need to fly close to population

but avoid interference or impact with people and activities. The population avoidance

functionality would determine where the vehicle needs to be to avoid the population of

concern and provide the safety executive of how to react to the given situation.

4. Communications Management

Communications Management provides the key interface between the vehicle and other sys-

tems. The ability to send and receive both mission information and sensor data can be critical

to the success of a given mission. By managing communications separately from the primary

processes, it enables changes in communication methods without impacting the underlying

functionality of the vehicle. Communications Management will divide the data as either mis-

sion management, mission sensor, and planning and intent. There are five primary functions

within the Communications Manager:

(a) Communications Executive:

The communications executive provides the primary interface between the mission ex-

ecutive and the installed communication systems. The communication systems in-

stalled could vary depending on the vehicle type and mission requirements. The com-

munication executive will provide external communications and data dissemination as
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required. The system will also need to recognize when communications are not being

received for potential operations in a denied environment.

(b) Communications Systems:

The vehicle could have one or multiple communication systems installed for external

communications capabilities dependent on mission requirements and vehicle capabil-

ities. Communication types could include line of sight RF, satellite communications,

optical/laser or others. Dissemination of data received and to be sent will be via the

communications executive.

(c) Mission Management Communications:

Mission management communications will provide mission status, priority, tasking,

and threat information for other vehicles. The communications executive will also

update this information from any received data for processing via the mission executive.

(d) Mission Sensors Communications:

The mission sensor data will be processed and sent separately from other priority tasks

(mission management, planning and intent) to provide external users with specific sen-

sor data for analysis and use. By handling the mission sensor data separately from the

other data, it prevents critical data being held up by sensor data dissemination. Mis-

sion and vehicle tasking data should take priority over data dissemination tasks. This

separation will also enable a system to have separate communication systems for data

and mission tasks.

(e) Planning and Intent:

The planning and intent data will provide current information on where the vehicle is,

where it is going and the intents of its upcoming efforts. This will allow any other

vehicles or operators in the mission to monitor and understand the plans of the vehicle.

This information will enable users and vehicles to make decisions and recommenda-

tions on mission plans and efforts.
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5. Vehicle Management

The Vehicle Management system is responsible for the control of the vehicle and systems.

The flight control system, vehicle subsystems, vehicle state (via Prognostics and Health

Monitoring (PHM) and sensors) all reside within the vehicle management system. Vehi-

cle management is well understood and is standard in most manned and unmanned aircraft.

While there is significant research and work ongoing in this area, especially in the areas of

PHM and fault tolerant operations, the underlying requirements and architecture are not sig-

nificantly different from existing platforms. There are five primary areas within the vehicle

management system.

(a) Vehicle Management Executive:

The Vehicle Management Executive (VME) manages the vehicle systems control and

processing. The mission executive provides the tasking that the vehicle must perform

and provide for processing. The data provided is then sent to the flight control sys-

tems, vehicle systems, and any other ancillary systems installed that require control.

The VME also accepts sensor data and PHM data for processing and determination

of whether degraded systems exist and if actions need to be taken. This data is also

provided to the mission executive for mission tasking decisions.

(b) Flight Control Systems:

The Flight Control Systems (FCS) of a vehicle can include propulsion, flight control

surfaces, flight control sensors, and any other system required for vehicle control. The

FCS design and performance is unique to any given vehicle and needs to be provided

to the path planner for determination of proper, efficient, and effective path planning.

(c) Vehicle Subsystems:

Vehicle subsystems can include ancillary systems such as electrical, hydraulic, envi-

ronmental controls, and landing gear. These subsystems provide critical functionality

that support the primary flight controls and mission sensors. Subsystems are gener-
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ally well understood for existing areas but new and improved capabilities (especially in

electrical power capabilities) continue to improve the state of these systems.

(d) Prognostics and Health Monitoring:

Prognostics and Health Monitoring (PHM) can provide an estimate of current and fu-

ture health and capabilities of installed systems. Significant research has been per-

formed and continues to be performed in this area. Fault tolerant design and functions

also continue to be researched and can be integrated with PHM functionalities. PHM

may or may not be present on a given vehicle but can provide enhanced control and

insight into current and future performance.

(e) Vehicle Sensors:

Vehicle Sensors can be numerous and diverse across a vehicle. Depending on the size

of the vehicle and criticality of the system there may be minimal or extensive sensing.

The sensors can include critical flight data such as vehicle speed, rates, and acceler-

ations via air data and/or inertial systems. Sensors can also perform pressure, tem-

perature, voltage, or other critical measurements to support real-time performance or

prognostics of future performance. Vehicle sensors continue to evolve and develop

based upon new technology and needs.

2.3.3 SYSTEM NEEDS

Critical work continues to be performed in all areas of autonomous vehicle systems. The fol-

lowing discussions will provide details on current and ongoing work in selected areas. In the area

of vehicle controls there continues to be significant work being performed on flight control sys-

tems based upon new and changing vehicle types and control schema. Fault-tolerant systems and

PHM continue to be researched and system capabilities need to be improved for future autonomous

system use. Sensor capabilities, sensor fusion, and sensor identification capabilities are areas that

continue to be researched and will be critical for future use in autonomous systems. Mission man-

agement and path planning areas are seeing significant current research and will be required to
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be developed and become more effective for autonomous system use. Communication system ca-

pabilities continue to be researched for improved methods and needs, especially as the available

frequency spectrum for communications is reduced for UAS applications. Safety management will

continue to see research and growth as autonomy grows in order to improve and ensure trust of

these autonomous systems.

2.4 REVIEW OF EXISTING METHODS AND CAPABILI-

TIES

There are significant efforts ongoing in all areas of UAS autonomous control. This section will

provide a review of the current state of path-planning and critical safety control as they relate to

UAS autonomous controls. Section 2.4.1 provides a review of the current state of path planning

algorithms that directly support the mission management capabilities defined in Section 2.3.2.

Section 2.4.2 examines the state of critical safety control features that ensure safe flight, which

directly support the safety management capabilities defined in Section 2.3.2.

2.4.1 PATH PLANNING

Path planning requires knowledge of target or mission needs in order to properly complete the

planning algorithms. We will define three primary types of path planning: Fixed Target, Moving

Target, and Target Search and Surveillance. Additionally, a system that can complete multiple

scenarios within the three primary areas is valuable. An extension to multiple scenarios would be

multiple aircraft supporting either the same type of mission or multiple scenarios.

Fixed Target

Fixed target path planning deals with the algorithms utilized with visiting fixed locations for

information gathering or support. UASs are currently being used in missions that require the

vehicle to visit a set of targets and maintain an optimum flight path to complete their tasks.
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Many of the fixed target path planning problems can be considered similar to the traveling

salesman problem (TSP) that has been evaluated significantly in numerous ways for decades since

Dantzig et al., developed a solution as an integer linear program [16]. The TSP type problem has

been approached with multiple solutions. Many of the evolutionary algorithms used to solve these

NP-hard (short for non-deterministic polynomial-time hard, widely taken to imply that the problem

is computationally intractable [17]) problems provide acceptable results, although many of them

have constrained the problems to some level.

Early approaches in solving the path planning problem included the use of a Tabu Search (TS)

heuristic algorithm [18, 19]. The TS can provide a solution that allows for progression without

becoming trapped in local optima. Ryan, et al. [20] used a Reactive Tabu Search method to solve

UAS routing in the construct of a multiple Traveling Salesman Problem with time windows. Their

objective was to maximize expected target coverage while incorporating weather and a survival

probability at each target as random inputs. Wang et al. [21] proposed a Tabu (Taboo in their paper)

Search algorithm for multiple task planning for multiple UASs that showed better performance

than genetic algorithms or ant colony optimizations. Zhao and Zhao [22] utilized a Tabu search

algorithm to develop their path and time. Numerous methods have been developed more recently

that provide better results to the path-planning problem than the Tabu Search, although it still is

valuable for certain processes. Additionally, TS algorithms are only useful for small problems that

do not consider vehicle availability or tasks that require constraints beyond simple time ordering.

In 1956, Edsger Dijkstra proposed an algorithm for finding the shortest path between two

points [23]. This algorithm is a key method for finding shortest paths for robots and unmanned

vehicles and is used for numerous applications. The use of Dijkstra’s algorithm can be found in

countless applications to UAS path-planning applications [24–29].

Tong et al. [30] proposed a method of path planning that utilized Voronoi Diagrams and Dis-

crete Particle Swarm Optimization (DPSO). A Voronoi diagram depicts lines that are equidistant

to the closest neighboring points of interest, resulting in areas that define all points closest to the

points of interest. A Voronoi diagram works similarly to and in conjunction with Dijkstra’s algo-
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rithm. The lines from the Voronoi were used as an initial path, with the points of interest being

threats to be avoided. A DPSO algorithm was then used for simultaneous target attacks by multiple

vehicles.

Receding horizon control (RHC) [31] is a feedback control technique, also referred to as model

predictive control, which is used across a large variety of applications. Receding horizon control

is used as part of numerous algorithm types for UAS path planning. The advantage of RHCs

is that it enables control of systems with a large number of inputs and outputs, especially for

systems with complex objectives and strong nonlinear dynamics and constraints. The use of future

considerations and predictions while optimizing the current time requirements is the key feature of

RHC. Multiple path-planning algorithms utilize a form of RHC as part of their planning processes.

The RHC control scheme has become useful for UAS algorithms due to the limited requirements

for computational resources when compared to algorithms that perform global planning methods.

Kuwata et al., developed a decentralized RHC for multi-vehicle guidance [32,33]. Xiao et al. [34]

used an RHC method in conjunction with a virtual force method to improve the performance of

the RHC. Peng et al. [35] developed a cooperative search algorithm utilizing RHC with a rapidly

exploring random-tree path-planning algorithm. Schouwenaars et al. proposed a multiple aircraft

trajectory planning algorithm utilizing a RHC strategy with a mixed integer linear programming

basis [36]. There have been multiple efforts utilizing RHC methods in conjunction with Partially

Observable Markov Decision Processes [27, 37–39].

In 1995, Kennedy and Eberhart [40] proposed a methodology of nonlinear function optimiza-

tion using particle swarm optimization (PSO). This method provides a simple and computationally

useful algorithm for optimizing a wide range of functions. The use of PSOs as part of a UAS

path-planning algorithm has been employed successfully by numerous researchers [30,35,41–44].

Roberge et al. [45] provided a comparison of GAs and PSOs for UAS path planning. The resultant

of the comparison shows that the GA produces superior trajectories to the PSO.

An approach that has shown good results is the use of Genetic Algorithms (GA). A GA provides

a heuristic method based on natural evolution by defining the decision variable as a chromosome.
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The chromosomes defined by the problem give the resultant population and an algorithm is utilized

that generates an evolution process until a satisfactory solution results. Sahingoz [46, 47] and col-

leagues [48, 49] have performed significant work in using GAs for both single and multiple UAS

path planning which has shown satisfactory results. Cheng et al. [50] developed an immune ge-

netic algorithm that provided an ”immune operator and concentration mechanism” that improved

convergence of existing GA algorithms. GAs can, under certain circumstances, suffer from pre-

mature convergence. Price and Lamont [51] used a GA design for self-organized search and attack

of UAS swarms. Pehlivanoglu [52] proposed a vibrational GA algorithm enhanced with a Voronoi

Diagram in an effort to improve the convergence problem. Research is continuing in the use of

GAs for path planning of UASs [53, 54].

An algorithm based upon the annealing of metal [55,56] can be utilized to find global minimum

of an objective. Drawing upon the annealing process, a Simulated Annealing (SA) algorithm will

searchrandomly in the area of an initial guess. If an improvement is found, the new value is

kept. If deterioration is noted, the result may be discarded or kept depending upon a temperature-

dependent probability. A cooling schedule is used to determine when the temperature has been

sufficiently cooled from the initial value. Turker et al. [57] presented a method for 2D path planning

in a radar threat constrained environment using a simulated annealing algorithm. Leary et al.

[26] evaluated five algorithms including SA, Consensus Based Bundle Algorithm (CBBA), greedy

allocation, optimal Mixed Integer Linear Programming (MILP), and suboptimal MILP. The results

showed that the SA algorithm provided the best solutions for path generation but required the

longest computation time of the five algorithms; however, the growth in computation time with

increased parameters was the lowest.

In 1992, Marco Doringo proposed an approach for finding an optimal path that drew upon the

behavior of a colony of ants [58]. The ant colony optimization (ACO) approach has been adopted

as a method to optimize UAS path planning. Fallahi et al. [59] proposed a method that inte-

grated ACO and an analytic hierarchy process that showed good results for path planning using the

ACO algorithm. An adaptive ant colony optimization approach for multiple UASs for coordinated
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trajectory re-planning was proposed by Duan et al. [60]. An extension of ACO looks more generi-

cally at digital pheromone responses and has been used to improve target search methods [61–63].

Shang et al. [64] proposed a hybrid algorithm that utilized GA and ACO algorithms for Multi-UAS

mission planning which provided performance improvement over the two independent methods.

Moving Target

Moving Target path planning deals with the algorithms utilized to find and follow moving

targets. Less work has been performed in the area of moving target tracking as compared to fixed

target tracking. However, several similar algorithms to fixed target tracking, including Partially

Observable Markov Decision Processes (POMDPs) and Genetic Algorithms (GAs), have been

used with some success for finding and tracking moving targets.

Krishnamoorthy et al. [65, 66] developed a method of searching and tracking a moving target

traveling with a known speed and direction on a road network while utilizing unattended ground

sensors for target detection. This work was later developed and demonstrated with multiple-

vehicles, multiple-targets, and a large series of ground sensors by Rasmussen and Kingston [67].

This approach relies upon unattended ground sensors to trigger when a moving target passes it’s

location. The sensor then informs the UAS of an intrusion and the associated information required

to search and track the intruder. The system has shown some limitations due to sensor false alarms

and delay in sending information due to limited line of sight data transmission capability. How-

ever, the functionality shows promise in supporting a network of ground sensors and vehicles to

monitor roads or perimeters for intrusion.

Moon et al. [68] proposed the use of probability density functions in coordination with a ne-

gotiation task assignment framework for UAS tasking. The algorithm uses information gathering-

based task assignment with a two-layer framework. An information-gathering layer uses the proba-

bility density functions to generate minimized value future trajectories. The task assignment layer

utilizes a negotiation-based task allocation to assign tasks to the UASs in the network. Results

showed promising results to search an area with minimal overlapping while finding all targets

being searched.
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Xiao et al. [34] proposed a virtual force and receding horizon method that enabled multiple-

UAS cooperative search in a fixed region for unknown moving targets. Virtual force algorithm

alone can be limited by being trapped at local minima while the receding horizon has large compu-

tational requirements that limits the length it can look ahead. The algorithm presented combined

the two methods in order to alleviate the limitations of each method.

Sun and Liu [69] proposed a modified diffusion-based algorithm to manage target uncertainty

while controlling multiple UASs with a hybrid receding horizon/potential method algorithm for

a coordinated search for a moving target. The search area was divided into cells and the algorithm

coordinated vehicle search tasks based upon weighting of cells of the search region. The cells

not searched that were closer to a given UAS were given a higher weighting than ones closer to a

different UAS. A hybrid method that combined potential and receding horizon methods was used

to reduce the computational burden.

Frew et al. [70] and Summers et al. [71, 72] proposed similar control algorithms for multiple

UAS coordinated standoff tracking of moving targets by utilizing Lyapunov guidance vector fields.

Both approaches utilized Lyapunov guidance vector fields to generate stable paths for the UASs

to fly while tracking a moving target. Multiple-UASs could be used by phasing them around the

vector field solution. Both approaches showed acceptable results for multiple vehicles orbiting and

tracking a moving target.

Geyer [73] proposed a method for urban searching of a moving target that considered complex

geometry from buildings that can impact the ability of the sensor to see the target. The method

utilizes search trees and particle filters to evaluate path options and provides efficient filtering along

with a method of compressing the visibility function.

Bertuccelli and How [74] propose a Markov chain-like model for target motion estimation

approach similar to particle filtering in order to account for the uncertainties in the target location

estimates. Stochastic simulations of realizations of the transition matrix with posterior distribution

approximation enable easy re-sampling of the posterior distribution. This method is valuable for

searching for moving targets where the models of the target motion are poorly known.
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Ragi and Chong [39, 75] proposed a method of UAS control utilizing POMDPs for tracking

moving targets including evasive targets and threat avoidance. The resulting algorithm enabled a

vehicle, or multiple vehicles, to be able to track moving targets. The design was robust enough to

be able to track an evasive ground vehicle as well as avoid threats, obstacles, and other friendly

vehicles while maintaining tracking of the target. Wind compensation and variable speed and

altitude capabilities were integrated as well.

Target Search and Surveillance

Target search path planning deals with searching for targets with no or minimal information on

the target of concern. Surveillance deals with repeated coverage and search of a specified area to

obtain the desired information. Search problems are generally defined by generating a grid of cells

over an environment. Poor information about target locations and noisy sensors can increase the

difficulty of quickly and easily finding targets.

One regional surveillance method to ensure maximum coverage is the lawnmower path def-

inition, sometimes referred to as a boustrophedon pattern. The pattern is efficient for ensuring

maximum coverage of an area. However, it is very time consuming, and depending on the require-

ment of the mission, may be ineffective for the needs of the operator. Similarly, a spiral pattern

that slowly spirals in either smaller or larger radius could provide similar results.

One challenge is determining how long or how many times a vehicle must survey a point before

a satisfactory level of confidence that a target exists in a given area. Bertuccelli and How [76]

proposed a robust UAS search method for determining target existence with the consideration that

the prior probabilities for a given cell are poorly known. The use of Beta distribution enabled a

prediction of the number of searches required in a given cell to achieve the desired confidence that

a target exists in a given area.

Qu et al. [61] proposed a pheromone-based algorithm with an artificial potential field to per-

form regional surveillance with multiple UASs. A region would be separated into multiple units

and a pheromone model would be applied to each unit. Pheromones have a diffusion feature that

results in a portion of its information being translated to the units around it, using either an attrac-
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tive or repulsive factor. This information then results in a gradient of pheromones being formed

providing a path for the UAS to follow. An artificial potential field was then used to aid in obstacle

avoidance, collision avoidance, and optimal search.

A planning algorithm by Song et al. [77] for optimal monitoring of spatial environmental phe-

nomena based on Gaussian process priors showed improvement at finding global maximum con-

ditions. This algorithm would be valuable for surveying unknown spatio-temporal fields such as

gas plumes and humidity. Lee and Morrison [78] propose a search algorithm for multiple-vehicle

maritime search and rescue that accounts for target drift using a mixed integer linear program,

relying on a model over multiple periods to account for object location over time.

Zhang and Pei [79] developed a method to track the boundary of an oil spill using model

predictive control and universal kriging. Universal kriging is an interpolation technique closely

related to regression analysis. By combining universal kriging and model predictive control they

proposed a method to search the environment with a sensor and, based upon the initial samplings,

develop a means to track the boundary of the oil spill.

Hu et al. [80] provided a multi-agent information fusion and control scheme for target search-

ing. An individual probability map for target location(s) was maintained by each vehicle and

updated, based on measurements made by the vehicle, using Bayes’ rule. A consensus-like distri-

bution fusion scheme, updated with asynchronous information, was used to create a multi-agent

probability map for target existence. A distributed multi-agent coverage control method for path

planning, using a Voroni partition, that ensured a sufficient number of visits to each cell was per-

formed.

Hirsch and Schroeder [81, 82] proposed a method of decentralized cooperative control of

multiple-UASs performing multiple tasks in an urban environment. The construct assumed limited

communication between the vehicles and considered potential line of sight impacts from buildings.

The method required each UAS to perform independent receding horizon feedback control that re-

lied on its own information along with any received remote information from neighbor vehicles to

plan the required search path.
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Multiple Objective

As a vehicles mission progresses, the need to adapt to new information or to change objec-

tives may be required. Additionally, balancing multiple internal objectives such as path length,

endurance, and safety present challenges to the algorithm development and usage for UAS control.

The ability of a system to perform mission re-tasking and path re-planning is needed to enable

multiple-objective scenario use. Numerous path planning algorithms discussed earlier integrate

object avoidance algorithms. Other safety considerations (such as air collision avoidance) would

require unique algorithms that are discussed separately.

Multiple-objective path planning deals with integrating multiple path-planning algorithms into

one framework to enable a vehicle to perform multiple missions, either in a hierarchical fashion

or simultaneously. Multiple-scenario response can be due to the need to respond to changing en-

vironments, as seen in Meng et al. [24]. They proposed a hierarchical approach that removed and

replaced mission objectives as the mission requirements are changed or canceled. The approach de-

veloped an initial path generation for each vehicle and then, as requirements changed, re-allocation

of objectives was performed with each UAS receiving a unique tasking and path generation.

Hirsch and Schroeder [81,82] defined a solution for vehicles performing tasks of searching for

targets while also tracking targets already found with a hybrid heuristic algorithm that combined

a greedy randomized adaptive search procedure with simulated annealing (GRASP-SA). The UASs

were provided no knowledge of where or how many targets were present in the environment.

At each decision point, the UAS was required to determine whether to continue searching for new

targets or track the targets already detected. The approach was performed in an urban environment

model, incorporating object avoidance and line-of-sight obstructions into the decision process.

The GRASP-SA algorithm was successfully applied to the problem set and provides a unique

approach to the multiple-objective problem for search and tracking of multiple targets.

The use of Tabu search as a method for multiple-objective planning was proposed by Wang [21].

This early evaluation of the problem requires additional work but showed promise as a way to plan

missions for multiple-task planning with goals of maximizing number of completed tasks with
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a minimization of range and time. The Tabu search algorithm is used to optimize the task alloca-

tion scheme after a planning model is built. The problem set evaluated was simple, and requires a

more complex and practical environment to be evaluated in order to determine the overall value of

this approach.

An algorithm utilizing multi-criteria decision making cost functions and multi-attribute utility

theory to make complex decisions for vehicle path planning was designed by Wu et al. [83] with

a focus on UAS delivery of medical supplies while flying in a complex airspace. The approach

focused on flying a vehicle under existing visual flight rules in the national airspace, which con-

tinues to be a critical concern. For en-route planning, multiple criteria were considered within the

cost construct of the algorithm: time, fuel, airspace classes, aircraft separation risk, storm cell risk,

cruising levels, and population risk. These concerns, while more tactically focused on completing

a singular mission type (medical delivery), could be transformed into other objectives in a similar

construct for more complex efforts.

Ilaya [84] proposed the use of a decentralized control scheme involving multiple vehicles per-

forming a multi-objective trajectory tracking and consensus problem using particle swarm op-

timization. The approach incorporated a two-level decision process: a high-level supervisory

level and a local vehicle control level. Decentralized model predictive control was utilized for

the vehicle-level synthesis of cooperative and self behaviors. A Lie group of flocks approach was

used for the high-level supervisory control decision making. In related work, Ilaya et al. [85]

provided an approach for distributed and cooperative decision making for collaborative electronic

warfare. Similar algorithms were utilized with a focus on radar deception, ensemble tracking, and

collision avoidance among the vehicles.

Optimizing resources for multi-criteria decision making using ant colony optimization (ACO)

and analytic hierarchy process (AHP) was proposed by Fallahi et al. [59]. Unlike other approaches

that rank a finite set of alternatives in a multi-criteria decision making problem, this approach

utilizes the ACO to obtain optimal solutions satisfying some of the path-planning criteria. The

AHP is then used to select the best UASs to perform each portion of the mission, optimizing the
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results of the overall mission. This approach could be extended to numerous UAS problems and

objective constructs.

Peng et al. [86] proposed using a linkage and prediction dynamic multi-objective evolutionary

algorithm in conjunction with a Bayesian network and fuzzy logic decision making process. His-

torical Pareto sets are collected and analyzed for the online path planning. A Bayesian network

and fuzzy logic are then utilized for bias calculations for each objective. Results of using this

method shows improved performance over completely restarting the path-planning algorithm at

each objective change.

Multiple Aircraft

Multiple aircraft path planning deals with both centralized and decentralized coordinated mis-

sion efforts of multiple vehicles. Significant research is currently being performed in this area and

could constitute a full survey paper on its own. The goal of this section is to highlight some of

the primary methods being proposed for single and multiple task allocation that show significant

capabilities of interest. Many of the previously discussed methods incorporated multiple vehicle

controls into their algorithms, and are not repeated here. Specifically, the algorithms discussed in

Section 2.4.1 also supported multiple-aircraft control.

Swarming is not considered in detail for this review as the controls for swarming have been ex-

tensively reviewed [87,88] and are generally focused on multiple vehicles working towards a single

task while acting in a more biological-system manner. The term swarm is used in multiple ways

currently to describe different operations. For this paper, a swarm is a group of vehicles working

towards a common task in a group manner. This section focuses on multiple-UASs performing

unique cooperative single and multiple-tasks in a controlled but decentralized environment.

One significant area of research has been at MIT under Professor Jonathan How. An unbiased

Kalman consensus algorithm was proposed by Alighanbari and How [89]. Consensus-based al-

gorithms proposed by How and associates consider both a decentralized consensus-based auction

algorithm (CBAA) and the consensus-based bundle algorithm (CBBA). The CBAA is used for

single-assignment tasking of single agents using an auction with greedy heuristics and a conflict-
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resolution protocol for consensus on winning bids for allocation [90]. The CBBA algorithm allows

each agent to bundle assignments awarded as with CBAA but enables the system to collect and per-

form multiple assignments [91, 92]. Both algorithms show significant value in allocation of tasks

and the overall performance of the system of UASs to complete missions in complex environments.

A survey of early consensus problems for multi-agent coordination and development of con-

sensus seeking algorithms was completed by Ren and Beard [93–95]. Extensions of some of this

work have included forest fire monitoring using multiple UASs [96] and perimeter surveillance

using teams of UASs [97].

Zhao and Zhao [22] propose task clustering as a means to divide a large portion of tasks among

multiple UASs. Ou et al. [98] propose a chaos optimization algorithm for task assignment to

multiple-UASs. Zhang et al. [99] propose a cooperative and geometric learning path-planning

algorithm for single and multiple UASs that attempts to minimize both the risk and length of the

path flown by the vehicle(s).

2.4.2 SAFETY CONTROLS

Safe control of UASs is a critical area of concern. Manned aircraft have the unique advantage of

having a pilot in the loop directly at the vehicle with the ability to react to safety concerns immedi-

ately. UASs require either automated response capabilities or the ability to quickly provide critical

information to an operator for response. The notion of run-time assurance to provide confidence in

autonomous decisions is a critical area of concern. Collision control is a huge concern for UASs,

which has resulted in work on air, ground, and object avoidance. Boundary and population control

work has focused on keeping UASs in controlled areas and out of the area of risk to populations.

Weather avoidance enables a vehicle to evaluate the weather and determine whether the flight path

should be modified autonomously. Fault tolerance, isolation, and prognostics is a large research

area focused on enabling vehicles to continue to operate under less than ideal functionality. Flight

termination is a major concern for how to manage vehicles that are not operating properly and

must immediately cease flight operations. Test safety is a unique area of concern focused on how
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to properly test vehicles prior to release to normal operations where the likelihood of failure is

higher and risks can be increased.

Run-Time Assurance

A critical safety concern for autonomous systems is trust in decision making. As the ability of

autonomy to make decisions, the state space of the system grows so large that it is impossible to

verify and validate all possible decisions made by an autonomous system. As a result, a way to

ensure that the system does not make decisions outside an acceptable region is required. The con-

cept of run-time assurance has been investigated by the Air Force Research Lab [100, 101] and is

supported by research by Barron Associates [102]. Mark Skoog at NASA Armstrong has proposed

an Expandable Variable-Autonomy Architecture (EVAA) system architecture that would enable

confidence in UAS decision making by bounding the decision making to prevent a system from

operating in unsafe manners [103]. Research continues to be performed in trust of autonomous

systems, including in manned systems, such as autonomous ground collision avoidance systems

on fighter aircraft [104–107]. Extending the confidence in autonomous unmanned systems will be

critical in the future. Ensuring that the system architecture enables safety, including implementing

a run-time assurance concept as in the EVAA architecture, will be critical to ensure safe operations.

Collision Avoidance

Collision control has been a key concern for all aircraft, but is more difficult on a UAS due to

the lack of onboard pilots. The vehicle must be able to avoid collision with the ground, with other

vehicles, and any objects it may encounter. Developing algorithms to perform vehicle maneuver-

ing for collision avoidance can be performed by methods previously discussed in Section 2.4.1.

The difficulty in collision avoidance is identification of the risk and determining what mitigation

must be performed. The challenge is identifying what sensor or model is required to determine the

risk and what mitigations can be implemented.

Ground collision avoidance and recovery systems were originally developed for manned air-

craft. In 1990 a patent was granted for an ”Aircraft ground collision avoidance and autorecovery
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systems device” [108] which provided a system design for calculating aircraft flyups to prevent

ground collision. Automatic Ground Collision research efforts [109–112] continued in the USAF

and NASA for years. In early 2015, an Automatic Ground Collision Avoidance System installed

on the F-16, which was based upon the earlier research by the USAF and NASA, saved the pi-

lot and aircraft during operations against the Islamic State in Syria [113]. Recently, NASA [114]

integrated a similar system on a small UAS with a smart-phone interface for ground collision avoid-

ance capabilities. These systems rely upon an onboard digital terrain elevation model of the earth

to calculate threat and recovery, nullifying the need for additional sensors on the vehicle. Avoiding

colliding with stationary objects is an additional consideration in the ground collision avoidance

area. Scherer et al. [115] proposed implementation of Laplace’s equation to develop a potential

field solution. Kobilarov [116] utilized a cross-entropy method in conjunction with rapidly expand-

ing random trees for object avoidance path generation. Hrabar [117] proposed using an expanding

elliptical search method to determine paths for object avoidance.

Air collision avoidance of both aircraft and stationary objects is a more difficult problem to

solve. A patent was filed in 2001 [118] that provided the initial concept of a safety zone sphere

around a vehicle that required both passive and active sensors to monitor the safety zone. Once

incursion was detected, the system would inform an onboard sense-and-avoid computer for correc-

tive action response. This underlying philosophy has been utilized in numerous research efforts.

One of the critical issues for air collision avoidance is awareness of air traffic within the local

airspace. For vehicles that do not have sufficient sensors or capabilities, a ground-based sense-and-

avoid system (GBSAA) has been proposed for numerous aircraft types [119]. The Department of

Defense, under an Army program, is in the process of developing and deploying several GBSAA

systems in specific areas around the US [120]. However, there are challenges to using GBSAA

for UAS operations, including the potential that they may not be able to actually support colli-

sion avoidance between vehicles [121]. The additional disadvantage of a GBSAA system is that it

still requires integration with the UAS or have a pilot in control of the vehicle to make avoidance

decisions. Maneuver algorithms are rather straightforward to implement depending on the path
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requirements; however, integration of GBSAA sensor data is more difficult. Most sensors installed

on vehicles or the ground are only sensing other vehicles that may threaten the vehicle of con-

cern. The integration of that information along with vehicle path planning and control for collision

avoidance is required. One approach for being able to identify where all traffic is for collision

avoidance sensing is the requirement by the FAA to have Automatic Dependent Surveillance-

Broadcast (ADS-B) on all aircraft by the year 2020 [122]. Lin and Saripalli [123] proposed a

method of collision avoidance utilizing ADS-B with a greedy rapidly exploring random tree.

Numerous methods have been proposed and explored as ways to prevent collisions between

UASs and other aircraft. Considering collision avoidance an optimization problem and imple-

menting geometry-based solutions has been proposed by multiple sources [124–126]. Lin and

Saripalli [127] proposed using reachable sets, a collection of locations that can be reached at a

given instant in time, for collision avoidance. Lin and Saripalli [128] also proposed using a varia-

tion of a rapidly expanding random trees approach with 3D Dubins Curves to avoid both stationary

and moving targets. Optimal control methods were proposed by Shim and Sastry [129] and Bareiss

and van den Berg [130] that require accurate system models to be implemented. Methods utiliz-

ing Markov decision processes were proposed in [131–133] but can be limiting due to the large

state space requirements. Jackson et al. [134] propose a sensor suite of both onboard and offboard

sensors with sensor fusion as a method to detect threats. Numerous methods of integrated sensor

solutions exist for identifying air collision threats including Traffic-alert and Collision Avoidance

System (TCAS) [135], mobile radar [136], electro-optical/infrared [137], and Laser & Light De-

tection and Ranging (LIDAR) [138]. Angelov [139] provides a significant review of the work

being performed in this area. In 2009, the US Office of Naval Research performed a detailed study

of sensor solutions for sense and avoid [140].

Boundary Control

Geofence is a general concept of providing boundary control of where a vehicle can oper-

ate. For UASs this can include ceilings and floors as well as walls of operation. Geofencing

is seen as one means of aiding in the sense and avoid issue of UASs, especially small UASs.
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Stevens et al. [141] proposed a geofence system that was platform independent. Many of the small

UAS flight controls systems, such as Arduino [142], include a geofence capability inherent in

its system that can be utilized for safe operations. Hayhurst et al. [143] propose that standards

be developed for assured containment that provides an independent capability separate from the

geofence algorithms that are generally resident internal to system software.

Test Safety

The Range Safety Group of the Range Commanders Council has provided guidelines for Flight

Safety Systems for UAS Operations within defined range locations [144]. This standard provides

guidelines for safe recovery of UASs that are recommendations for flying on these ranges. Johns

Hopkins Advanced Physics Laboratory has proposed a framework for safe testing, Safe Testing

of Autonomy in Complex, Interactive Environments (TACE), that can provide both safety features

and complex interactive environments in a virtual fashion enabling improved safety and testabil-

ity [145]. Emergency recovery and flight termination requirements are a necessary capability of

UASs, especially larger class UASs that can cause danger to property or personnel. A technol-

ogy survey of these systems by Stansbury et al. [146] provide a good overview of the recovery

and termination systems. The need to terminate or provide emergency recovery is critical, espe-

cially when testing unproven systems. Integrating emergency recovery and/or flight termination

capabilities with systems such as TACE for testing of vehicles will be a critical enabler to safety

of the system and any property and personnel close to the test area. Including enabling features

like geofencing/boundary control, collision avoidance techniques, reversionary modes to disable

autonomy algorithms, and the ability to take over the vehicle during undesirable operations will

be critical for safe testing of these systems. The size and level of implementation of recovery and

termination systems along with systems like TACE and EVAA along with considerations of run

time assurance will be dependent upon vehicle size and risk.
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2.5 IMPROVEMENT AREAS

The use of UASs will continue to grow in the future. To be able to address growing and

changing needs in the future, a system will need to be able to adapt and change to new and emerging

requirements. A significant amount of work has been performed to develop algorithms that will

enable path planning for multiple mission types. As discussed, the majority of this work has

been performed with key assumptions about vehicle capability and simplified performance metrics.

In order to improve the capabilities of these systems, the integration of system capabilities and

performance must be included in the algorithms. Development of controls for UASs that include

estimates of vehicle performance and capabilities will be key to improving the usefulness of the

algorithms in actual systems. To date, limited evaluation of existing algorithms with multiple

vehicle types and their associated dynamics has been performed. Additionally, integrating vehicle

performance capabilities and limitations into the algorithms will result in a better understanding of

the capabilities and value of the different algorithms in realistic implementations.

The ability to integrate multiple mission types in a single vehicle will be critical as development

costs and time lines continue to challenge the market. Developing system designs and algorithms

to account for multiple-scenario missions will enable the growth of UASs with reduced delay and

costs. Development of a hierarchical scheme for both single and multiple UASs needs to continue

in order to enable future systems. The integration of key system safety requirements, especially in

the area of collision avoidance and boundary control, will help ensure that these vehicles are safe

and trustworthy to operate. Developing overarching safety architectures that ensure safe operations

will be critical to building trust in autonomy and enabling run-time assurance. Ground collision

avoidance is becoming standard with new capabilities in operation, but air collision and object

avoidance still has development work to be performed to ensure safe and trusted operations.

While not discussed in detail in this paper, sensors and sensor data fusion will be critical areas

that need to be addressed to truly enable autonomous control methods. Until the UAS can self

evaluate the data that it has received and make the appropriate decisions on that data, the usefulness

of the vehicles will be mostly limited to man-in-the-loop operations. The size and capability of
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sensors, and the vehicles they will be integrated in, will be critical to the growth and development

of UASs for future use.

2.6 CONCLUSIONS

The development of autonomous UASs and subsystems will continue to expand in the future.

The systems being developed will need to be safe, reliable, and effective across multiple opera-

tional environments and tasks. Development of systems that can perform multiple scenarios and

be adaptable to new capabilities and responsive to changes in environments and missions will be

key to future success. Significant research and development in capabilities has been performed

and continues. A modular system architecture was proposed in this paper that will enable safe and

trustworthy performance of multiple-scenario missions. Critical path-planning and safety controls

which will provide underlying system capabilities for future development were reviewed. Future

integration of actual UAS performance capabilities, including costs for vehicle dynamics, into the

proposed architecture and evaluation of numerous path-planning algorithms will enable a better

understanding of existing methods and future capabilities on actual systems.
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CHAPTER 3

ROBUST UAV PATH PLANNING USING POMDP

WITH LIMITED FOV SENSOR

3.1 INTRODUCTION

The growth in use of unmanned systems has resulted in an explosion in control methods. Un-

manned aerial vehicles (UAVs) provide the opportunity to perform many of the dull, dirty, and

dangerous missions that are ill-suited for manned systems. In order to effectively and efficiently

perform these missions, robust algorithms to control these UAVs must be developed. Significant

work is being performed in numerous control areas for UAVs [147]. One method of path plan-

ning control that has shown significant promise is the use of decentralized partially observable

Markov decision processes (POMDP) with a nominal belief-state optimization (NBO) approxima-

tion [148].

We design a UAV control method that utilizes POMDPs with NBO approximation utilizing a

fixed field of view (FOV) sensor that has limited observation windows. We build upon our previ-

ous efforts [148–150], that have focused on the ability of the POMDP to provide sufficient path

planning for a UAV tracking of ground based fixed or moving targets. During initial development,

it was assumed that the UAV(s) could always see the targets, giving rise to a restrictive model

for the partially observable portion of the POMDP. We incorporate a fixed FOV sensor to deter-

mine the performance of the POMDP with limited observations. We vary the fixed look angles

and the altitude to determine the performance of the method while tracking one or two targets.

The performance is evaluated using the tracking errors and percentage of observations across the

configurations.

Previous work [148] has shown the ability of POMDP with NBO to perform effective path

planning for tracking fixed and moving targets. Additionally, collision avoidance and wind com-
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pensation schemes were also shown to be effective using the same POMDP algorithms [149]. The

POMDP with NBO approach uses a receding horizon method that is computationally efficient and

provides effective responses to changes in target dynamics or environmental changes. The contri-

bution of this paper is to show that the POMDP with NBO approach provides robust path planning

and target tracking with limited observations due to the fixed FOV of the sensor. In this paper, we

focus on non-evasive moving targets with limited observations.

3.2 PROBLEM SPECIFICATION

The ground targets move in 2-D. A simplified UAV motion model is used, utilizing forward

acceleration and bank angle for control application with constant altitude. The UAVs have fixed

FOV sensors mounted underneath the vehicle that provide limited observation measurement. These

measurements are corrupted by spatially varying random errors, dependent upon UAV and target

locations. The UAV has a limited speed range that can be varied by controlling the forward ac-

celeration. The limited bank angle of the UAV can be adjusted to change the heading, but also

impacts the sensor FOV. The UAV altitude can be set for a given scenario, but will maintain a

constant altitude during that entire scenario. Changing the UAV altitude is effectively the same as

changing the sensor size or FOV. The objective is to minimize the mean-squared error between the

tracks and targets.

3.3 POMDP AND NBO APPROXIMATION

A POMDP is a discrete time controlled dynamical process that is useful for modeling resource

control problems. A POMDP can be interpreted as a controlled version of a hidden Markov reward

process. The NBO approximation is a method that has been shown to be computationally efficient

for guidance optimization.
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3.3.1 POMDP INGREDIENTS

States: The POMDP states represent time evolving system features. Three subsystems are de-

fined: the sensors, the targets, and the tracker. At time k, the state is given by xk = (sk, χk, ξk,Pk),

where sk is the sensor state, χk is the target state, and (ξk,Pk) is the state of the tracker. The sensor

state provides the velocities and position of the UAV, and the target state provides the velocities,

positions, and accelerations of the targets. The tracker state is a standard Kalman filter [151, 152],

with ξk the posterior mean vector and Pk the posterior covariance matrix.

Actions: The actions are controls available to the system. The actions for this problem are the

forward acceleration and the bank angle of the UAV. Specifically, the action at time k is given by

uk = (ak, φk), with ak and φk containing the forward acceleration and bank angle, respectively,

for the UAV.

Observations and Observation Law: The states of a POMDP are not fully observable; only a

random observation of the underlying state is available at any given time. Let χpos
k be the position

vectors of a target and sposk be the position vectors of a sensor/UAV. The observation of the target’s

position can be expressed by

zχk =















χpos
k + wk, if target is visible

no measurement, otherwise

(1)

where wk is a random measurement error whose distribution is dependent on the UAV (sposk ) and

the target (χpos
k ) locations. Sensor and tracker states are assumed to be fully observable.

State-Transition Law: The state-transition law defines the next-state distribution given a current

state and action pair. It is convenient to separately define the state-transition law for each of the

three predefined subsystems. The sensor state progresses by sk+1 = ψ(sk, uk), where ψ is a

mapping function (defined later). The target state evolves according to χk+1 = f(χk) + νk,where

νk is an independent and identically distributed (IID) random noise sequence and f represents the

target motion model (also defined later). The tracker state evolves according to the Kalman filter

equations with joint probabilistic data association (JPDA) [151, 153]. When target observations
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are not available, only the prediction step in the Kalman filter is performed, the update equation is

not evaluated.

Cost Function: The cost function defines the cost of taking an action in a given state. Our

cost function considers the mean-squared error between the tracks and the targets: C(xk, uk) =

Eνk,wk+1
[‖χk+1 − ξk+1‖

2|xk, uk]

Belief State: The belief state is the posterior distribution of the underlying state, which is

incrementally updated via Bayes rule given the observations. The belief state at time k is given by

bk = (bsk, b
χ
k , b

ξ
k, b

P
k), where bsk = δ(s − sk), b

ξ
k = δ(ξ − ξk), bP

k = δ(P − Pk) (because the sensor

and tracker states are fully observable), and bχk is the target state posterior distribution.

3.3.2 OPTIMAL POLICY

The objective of the optimization policy, given the POMDP formulation, is to choose actions

over a time horizon H, k = 0, 1, ..., H − 1, that minimize the expected cumulative cost. The

expected cumulative cost over the time horizon H can be written as JH = E[
∑H−1

k=0
C(xk, uk)].

The action chosen at time k should depend on the history of all observable quantities until time k−

1. If an optimal choice of actions exists, then there exists an optimal action sequence that depends

only on “belief-state feedback” [154]. Therefore, the objective function can be written in terms of

the belief states as follows: JH = E[
∑H−1

k=0
c(bk, uk)|b0], where c(bk, uk) =

∫

C(x, uk)bk(x)dx.

According to Bellman’s celebrated principle of optimality [155], the optimal objective function

value J∗
H given the current belief state b0 can be written as follows: J∗

H(b0) = minu{c(b0, u) +

E[J∗
H−1(b1)|b0, u]}, where b1 is the random next belief state, J∗

H−1 is the optimal cumulative cost

over the horizon H − 1, k = 1, 2, ..., H − 1, and E[·|b0, u] is the conditional expectation given the

current belief state b0 and an action u taken at time k = 0. The Q-value of taking an action u given

the current belief state b0 is defined by QH(b0, u) = c(b0, u) + E[J∗
H−1(b1)|b0, u]. The optimal

policy (from Bellman’s principle) at time k = 0 can be written as π∗
0(b0) = argminuQH(b0, u).

The optimal policy at time k is π∗
k(bk) = argminuQH−k(bk, u).
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In practice, the second term in the Q-function is difficult to obtain exactly. Numerous methods

have been studied [150, 156–162] to approximate the Q-values. We use the NBO approximation

method, which was introduced in [150] along with other guidance problem approximations and

techniques.

3.3.3 NBO APPROXIMATION

Although there are a number of approximation methods available to solve POMDPs, we chose

the NBO method because it is less computationally expensive compared to other POMDP ap-

proximation methods like Q-learning, policy rollout, hindsight optimization, and foresight opti-

mization [154]. In practice, a UAV guidance algorithm needs to be implementable in real-time,

requiring a method that is not computationally prohibitive. In our previous work [148], we showed

that the NBO algorithm provided an acceptable computation quality.

Assume there are Ntargs targets. We represent the target state as χk = (χ1
k, χ

2
k, ..., χ

Ntargs

k ), where

χi
k represents the ith target. The track-state is ξk = (ξ1k, ξ

2
k, ..., ξ

Ntargs

k ) and Pk = (P1

k, ...,P
Ntargs

k ),

where (ξik,P
i
k) is the track-state corresponding to the ith target. We use a linearized target motion

model with zero-mean noise to model the target-state dynamics, as given below (∀i)

χi
k+1 = Fkχ

i
k + νik, νik ∼ N(0,Qk) (2)

with the observations as follows: zχ
i

k = Hkχ
i
k + wi

k if the target is visible, and no measure-

ment otherwise, where wi
k ∼ N(0,Rk(χ

i
k, sk)), Fk is the target motion model (same for all

targets), and Hk is the observation model (1) (same for every target) according to which only

the position of a target is observed. The state of the ith target (χi
k) includes its 2-D position

coordinates (xk, yk), its velocities (vxk , v
y
k) and accelerations (axk, a

y
k) in x- and y-directions, i.e.,

χi
k = [xk, yk, v

x
k , v

y
k , a

x
k, a

y
k]

T . Therefore, the observation model is Hk = [I2x2, 04x4]. We adopt a

constant velocity (CV) model [151, 152] for target dynamics in (2), which defines Fk. The belief

state corresponding to the ith target, based upon assumed Gaussian distributions, can be expressed
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as bχ
i

k (χ) = N(χ − ξik,P
i
k), where ξik and Pi

k are the track-states of the ith target, which evolve

according to the JPDA algorithm [151, 153].

The NBO method approximates the objective function as JH(b0) ≈
∑H−1

k=0
c(b̂k, uk), where

b̂1, b̂2, ..., b̂H−1 is a nominal belief-state sequence and the optimization is over the action sequence

u0, u1, ..., uH−1. The nominal belief-state sequence for the ith target can be identified with the

nominal tracks (ξ̂ik, P̂
i

k), which are obtained from the Kalman filter equations [31, 32] with exactly

zero-noise sequence as follows: b̂x
i

k (χ) = N(χ− ξ̂ik, P̂
i

k), ξ̂ik+1
= Fkξ̂

i
k, and

P̂
i

k+1 =















[[P̂
i

k+1|k]
−1 + Si

k+1]
−1 if measurement available

P̂
i

k+1|k otherwise

(3)

where P̂
i

k+1|k = FkP̂
i

kFT
k +Qk, S

i
k+1 = HT

k+1[Rk+1(ξ̂
i
k+1

, sk+1)]
−1Hk+1 and sk+1 = ψ(sk, uk) (ψ is

defined in the next subsection). In (3), the nominal error covariance matrix P̂
i

k+1 is dependent upon

the availability of future observations. Because the availability of these observations is uncertain,

we can guess by assuming the location of the target at time k + 1 as ξ̂i,posk+1
(component of nominal

track-state corresponding to the ith target at time k + 1) and checking its line of sight from the

sensor location, i.e., sposk+1
. The cost function, i.e., the mean-squared error between the tracks and

the targets, can be written as c(b̂k, uk) =
∑Ntargs

i=1 TrP̂
i

k+1. The goal is to find an action sequence

(u0, u1, ..., uH−1) that minimizes the cumulative cost function (truncated horizon [150]) JH(b0) =
∑H−1

k=0

∑Ntargs

i=1 TrP̂
i

k+1, where P̂
i

k+1 represents the nominal error covariance matrix of the ith target

at time k+1. Here, we adopt a “receding horizon control” approach, where we optimize the action

sequence for H time-steps from the current time-step but implement only the action corresponding

to the current time-step followed by an optimization of the action sequence for H time-steps in the

next time-step.

Our approach is related to model predictive control (MPC), as argued by the authors of [163].

According to [163], the MPC method is a type of rollout algorithm (an approximation method to

solve Markov decision processes (MDPs) and POMDPs) with a particular base policy, where the

stability property of MPC is a special case of the cost improvement property of rollout algorithms
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that employ a sequentially improving base policy. In other words, MPC can also be viewed as an

approach to solve a POMDP.

The measurement error, i.e., wk in (1), has a normal distribution N(0,Rk(χk, sk)), where Rk

reflects p% range uncertainty and q-rad angular uncertainty. If rk is the distance between the target

and the sensor at time k, then the standard deviations corresponding to the range (σrange(k)) and the

angle (σangle(k)) are σrange(k) = (p/100)rk and σangle(k) = qrk. The information matrix depends

on the inverse of the measurement covariance matrix, which depends on the distance between the

sensor and the target. Therefore, the information matrix blows up when the UAV is exactly on top

of the target (i.e., when rk = 0 the sensor’s location overlaps with the target’s location in our 2-D

environment). To address this problem, we define the effective distance (reff) between the sensor

and the target as follows: reff(k) =
√

r2k + b2, where rk is the actual distance between the target

and the sensor and b is some non-zero real value. Therefore, the standard deviations of the range

and the angle are given by σrange(k) = (p/100)reff(k) and σangle(k) = qreff(k). If θk is the angle

between the target and the sensor at time k, then Rk is calculated as follows:

Rk =Mk







σ2
range(k) 0

0 σ2
angle(k)






MT

k where

Mk =







cos(θk) −sin(θk)

sin(θk) cos(θk)






.

The eigenvalues of the matrix Rk are therefore σ2
range(k) and σ2

angle(k).

3.4 UAV KINEMATICS AND FIXED FOV

Simplified UAV kinematics are used for calculating the UAV motion. With utilization of a fixed

FOV sensor, the FOV can be calculated in camera axes. Using Euler angle transformations, it can

be determined if the target is within the sensor FOV.
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3.4.1 UAV KINEMATICS

In this subsection we define the mapping function ψ introduced in Section III to describe the

evolution of the sensor (UAV) state given an action, i.e., sk+1 = ψ(sk, uk). The state of the ith

UAV at time k is given by sik = (pik, q
i
k, V

i
k , θ

i
k), where (pik, q

i
k) represents the position coordinates,

V i
k represents the speed, and θik represents the heading angle. Let aik be the forward acceleration

(control variable) and φi
k be the bank angle (control variable) of the UAV, i.e., uik = (aik, φ

i
k). The

mapping function ψ can be specified as a collection of simple kinematic equations that govern the

UAV motion. The kinematic equations of the UAV motion are as follows. The speed is updated

according to V i
k+1

= [V i
k +a

i
kT ]

Vmax
Vmin

, where [v]Vmax
Vmin

= max{Vmin,min(Vmax, v)}, where Vmin and Vmax

are the minimum and the maximum limits on the speed of the UAVs. The heading angle is updated

according to θik+1
= θik + (gT tan(φi

k)/V
i
k ), where g is the acceleration due to gravity and T is the

length of the time-step. The position coordinate are updated according to pik+1
= pik +V

i
kT cos(θik)

and qik+1
= qik + V i

kT sin(θik).

3.4.2 FIXED FOV CALCULATION

Given a sensor width (xsens) and height (ysens), along with the focal length (f ) of an installed

sensor, a field of view can be calculated for a given altitude (alt). The angular field of view for the

sensor width is FOVw = 2tan−1(xsens/2f) and for the sensor height is FOVh = 2tan−1(ysens/2f).

Given a height above the ground, the edges of the field of view can be calculated in camera axes.

It is assumed that the camera is installed concurrent to the body axis, for ease of calculation. The

top and bottom edges of the FOV are xFOV = ±(alt)tan(0.5FOVh) and the left and right edges of

the FOV are yFOV = ±(alt)tan(0.5FOVw), where alt is the altitude of the sensor.

In order to determine if an observation is made, the position of the target must be translated and

rotated into the UAV body axis. A vector η is calculated between the UAV position and the target

position, η = (pUAV − ptarget, qUAV − qtarget, altUAV − alttarget). Given the UAV Euler angles, pitch

(θ), roll (ψ), and heading (φ) a rotation of η can be made between the world axis and body axis.

The value of η in the body axis can now be compared to the FOV for the sensor. If the position
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Table 3.1: Sensor Field of View

Altitude (m) FOV Height (m) FOV Width (m)
200 113 188
500 283 471
750 424 707
1000 566 943
1500 849 1415
2000 1132 1886

of the target, η, is within the field of view, an observation is made and the POMDP will calculate

normally with an updated observation, as specified in (1). However, if η is not in the FOV, there

will be no observation and no measurement will be passed to the POMDP.

3.5 TARGET TRACKING RESULTS

Monte Carlo runs were performed on several configurations to evaluate the effectiveness of our

method to track the target. The two primary conditions were whether the UAV was tracking one

or two targets. Three sensor angle configurations were evaluated: downward, 15 degrees forward,

and 15 degrees right. Six altitudes were evaluated for each of the six configurations: 200, 500,

750, 1000, 1500, and 2000 meters. A range uncertainty of 10 percent and an angular uncertainty

of 1 percent were used for this evaluation.

The sensor simulated was modeled after several commercially available sensors [164]. The

sensor was assumed to have a focal plane width of 5 mm, height of 3 mm, and a lens focal length

of 5.3 mm. This configuration provides a field of view of 50.5 degree wide and 31.6 degrees tall.

Varying the altitude provides a different size of field of view. Table 3.1 provides the total height

and width of the sensor field of view at each of the altitudes, based upon a straight lookdown angle.

As the angle of the sensor is rotated from straight down, the actual ground plane field of view will

change. It was assumed that all targets could be tracked at all altitudes.

The targets moved at a constant speed of 10 m/s at a constant heading. The UAV was allowed

to vary speed between 16 and 25 m/s and a maximum bank angle of 30 degrees. In order to provide
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a consistent analysis baseline, altitude was only considered for variation of sensor field of view;

otherwise the problem was treated as a 2-D problem. Tracking errors were not considered as a

function of altitude, only of x-y distance variations to enable FOV comparison. Previous efforts

have shown that the average location error was 2-3 meters for similar scenarios [149].

Overall, the algorithm showed a robust ability to track moving targets even with a limited FOV

that decreased the observations and increased the tracking error. However, for general tracking of

vehicles, the method shows the ability to adequately track single and multiple targets for observa-

tion purposes. The algorithm also showed computational efficiency. The POMDP calculation for a

random run averaged 0.46 seconds on an Intel Core I7-6700, 4 GHz, 64-bit processor with 24 GB

of Ram.

3.5.1 SINGLE TARGET TRACKING

Single target tracking with limited field of view sensors showed effective tracking of a single

moving target. Figure 3.1 shows an example run of a UAV tracking the moving target. The figure

shows when the target was observed (green circles), when it was not observed (red x) and what the

predicted location of the vehicle was by the POMDP algorithm (black dot). The line with asterisks

shows the general flight path of the UAV with the location recorded at 2 second intervals.

The quality of the tracking can normally be related to the quantity of observations. The greater

the observation percentage, the lower the location tracking error will be. This trend can be seen in

Figure 3.2 for downward and side facing sensor configurations. However, it can be noted that the

location error increased with increasing observations for the forward facing sensor configuration.
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Figure 3.1: Tracking Example: 1 Target, 1 Sensor, 200 m, 15 deg fwd sensor
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The forward facing sensor does not show a decreasing error due to the geometric conditions that

result in observations. The decreased tracking accuracy, even under high quality observations, can

be related to the geometry of the observations. The observations may be made but the change in

observation may not significantly improve the tracking error, resulting in larger errors than other

configurations.

In general, the increase in altitude results in an increase in the number of observations and a

reduction in the location error. This characteristic relationship is expected, because as the altitude

increases, the size of the observation window increases, as shown in Table 3.1. However, as can

be seen, even with a relatively large decrease in the percent of observations seen at lower altitudes,

there is not a significant increase in the tracking error. As expected, the POMDP algorithm was

able to provide sufficient estimates of target location during non-observation periods such that there

was not a dramatic increase in tracking errors.

Overall, for single target tracking, the downward sensor shows the best overall performance,

followed by the right looking sensor. This result is what is expected when you consider that the

downward and right facing sensor configurations provide more observations at lower altitudes and

provide better geometry for observation updates. Ultimately, the goal of having quality observa-

tions for the moving target is met for all configurations. If having the lowest error is a primary

consideration, then the downward sensor configuration is likely the best choice for single target

tracking.

3.5.2 TWO TARGET TRACKING

Tracking two targets is well suited for the POMDP algorithm. The increased potential of

missed observations due to the fixed FOV and separated targets can be addressed by the POMDP

predictions. Figure 3.3 provides an example of a nominal two target tracking run with a 15 degree

forward sensor angle. The plot is derived similarly to Figure 3.1, except there are two targets being

tracked, as indicated by two separate lines, as opposed to one.
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Figure 3.2: Average Location Error and Observation Fraction: 1 Target, 1 Sensor, 1000 Runs
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Figure 3.3: Tracking example: 2 Targets, 1 Sensor, 200 m, 15 deg fwd sensor

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Average % Observation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

F
re

qu
en

cy

Observations CDF, Downward Sensor

200 m Bottom Target
200 m Top Target
200 m Average
500 m Bottom Target
500 m Top Target
500 m Average
750 m Bottom Target
750 m Top Target
750 m Average
1000 m Bottom Target
1000 m Top Target
1000 m Average
1500 m Bottom Target
1500 m Top Target
1500 m Average
2000 m Bottom Target
2000 m Top Target
2000 m Average

Figure 3.4: Tracking performance at various altitudes for each target

Because two targets are being tracked, the errors and observations can be presented separately

or averaged. For comparisons in this paper, the average errors for each target were averaged

together instead of reported separately. Similarly, the percentage of observations were averaged.

Figure 3.4 shows the cumulative distribution function (CDF) for each altitude, for a downward

looking sensor. A CDF provides the representation of how often (frequency) within the data set

the average observation was at or less than the observation percent at the point. As can be seen, the

CDF for each target is well behaved, as are the averages of the two targets at a given altitude. This

behavior supports using the averages of the percent observation and the cumulative target error of

both targets.
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As was the case in single target tracking, the ability of the POMDP to track two targets shows

promise. For all three sensor configurations, as shown in Figure 3.5, the increase in altitude re-

sults in a decrease in average tracking error. This trend is consistent with single target tracking

and correlates with the expectation that increased altitude should provide increased observations.

However, as can be see in Figure 3.5, the average percent observation actually decreases as the alti-

tude increases for the downward looking sensor. The algorithm, in this case, attempts to cross over

each target to reduce the tracking error for the target, then transverses to the other target. Crossing

over and passing, along with the turns, would result in less time in the sensor FOV, especially for

a directly downward looking sensor

Overall, for two target tracking, the downward sensor shows the best overall performance,

followed by the forward looking sensor. This result is what is expected when you consider that

the downward and forward facing sensor configurations provide more simultaneous observations

for the two target configuration. If having the lowest error is a primary consideration, then the

downward sensor configuration is likely the best choice for single target tracking.

3.6 CONCLUSIONS

Overall, the performance of the POMDP algorithm is similar to previous results. The sensor

model used here, specifically the use of a limited FOV sensor, is a more realistic use case for small

UAV applications that do not have gimbaled sensor capabilities. The ability to track both single

or dual moving targets can be performed well with different sensor configurations. The POMDP

can address the increased number of missed observations under certain circumstances and still

provide adequate predictions of the target location(s) until observations can be made again. While

some sensor configurations may be preferred for certain tracking cases, all configurations showed

acceptable performance to be able to maintain a track on the target(s).
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CHAPTER 4

FUEL EFFICIENT MOVING TARGET

TRACKING USING POMDP WITH LIMITED

FOV SENSOR

The ability to effectively track moving targets is a critical capability for future autonomous

aircraft. While many methods have been developed for performing target tracking, minimal work

has focused on fuel-efficient options to extend mission duration. The ability to tightly track a

target is critical for certain missions; however, increased tracking errors can be accepted in certain

scenarios to extend endurance. Partially Observable Markov Decision Processes (POMDPs) have

been shown to be effective for tracking fixed and moving targets. This paper provides a fuel-

efficient option that shows a 10% endurance increase with adequate target tracking. The algorithm

provides tracking with a limited field of view fixed sensor that will have limited observations

depending on mission requirements. The POMDP formulation proposed in this paper is robust

enough to handle observations while also providing options for improved fuel efficiency. We1

perform 500 Monte Carlo simulations per configuration to provide statistical confidence in the

performance of the algorithm .

4.1 INTRODUCTION

Unmanned aerial vehicles (UAVs) are well suited for performing dull, dirty, and dangerous

missions normally performed by manned aircraft. One mission of critical interest is tracking mov-

ing targets. Significant research has been performed in numerous UAV control areas including

path planning for target tracking [147]. However, the majority of path planning algorithms devel-

oped to date are focused on completing a specific mission task with a focus on tracking accuracy,

1The research in this chapter was done in collaboration with Lucas Krakow [167]
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target coverage, or expediency of mission completion. This approach provides satisfactory per-

formance but generally result in less than desired UAV dynamics and limited endurance. There

is limited consideration for fuel efficiency of the vehicle in the decision process of most of the

algorithms. Ignoring the fuel efficiency concern can result in shorter missions or limit the mission

effectiveness.

Previously, we had presented a robust path planning algorithm for a limited field of view sen-

sor utilizing a partially observable Markov decision process (POMDP) with a nominal belief-state

optimization (NBO) approximation [165], [148], [166]. These efforts have shown the ability of

POMDP with NBO to perform effective path planning for tracking fixed and moving targets with

a limited field of view (FOV) sensor. Additionally, collision avoidance and wind compensation

schemes were also shown to be effective using the same POMDP algorithms [149]. The POMDP

with NBO approach uses a receding horizon method that is computationally efficient and provides

effective responses to changes in target dynamics or environmental changes. This method also

provided a robust capability for tracking the targets across a range of altitudes and sensor configu-

rations.

Here, we design a UAV control method that uses POMDPs with NBO approximation for a fixed

FOV sensor with fuel efficiency considerations. We build upon our previous efforts [148–150,165],

that have shown the POMDP provides sufficient path planning for a UAV tracking of ground based

fixed or moving targets. The cost function is modified to add in variable fuel burn considerations

to improve mission endurance. The performance is evaluated using the tracking errors and the

fuel burned during the simulations for multiple fuel burn options. The contribution of this paper

is to show that the POMDP with NBO can provide effective target tracking while improving fuel

efficiency. In this paper, we focus on non-evasive moving targets with limited observations.

4.2 PROBLEM SPECIFICATION

Ground targets moving in 2-D at constant speed will be tracked. A simplified UAV motion

model with forward acceleration and bank angle controls is used. The UAV has a limited speed
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range that is controlled by commanding longitudinal acceleration. The UAV bank angle is used

to change UAV heading, while also changing the sensor observation area. A fixed FOV sensor

mounted on the bottom of the vehicle provides a limited observation measurement of target loca-

tion. Spatially varying random errors, based on UAV and target locations, corrupt the accuracy

of the target location measurements. The fuel burn of the UAV is calculated based on the speed

and bank angle of the UAV. The UAV altitude can be set for a given scenario, but will maintain a

constant altitude during that entire scenario. Changing the UAV altitude is effectively the same as

changing the sensor size or FOV. The objective is to provide a spectrum of options to balance the

minimization of the mean-squared tracking error with the fuel efficiency of the UAV.

4.3 POMDP AND NBO APPROXIMATION

A POMDP is a discrete time controlled dynamical process that is useful for modeling resource

control problems. A POMDP, unlike a Markov Decision Process that has perfect knowledge of

the system state, has some state information that is not directly observed. The NBO approxima-

tion method has been shown as computationally efficient for guidance optimization. The method

described here builds on our earlier papers [148–150, 165, 166].

4.3.1 POMDP INGREDIENTS

States: The POMDP states represent time evolving system features. Three subsystems are de-

fined: the sensors, the targets, and the tracker. At time k, the state is defined as xk = (sk, χk, ξk,Pk),

where sk is the state of the sensor, χk is the target state, and (ξk,Pk) is the tracker state. The sensor

state is the UAV position and velocities, and the target state is the target position, velocities, and

accelerations. The tracker state is a posterior mean vector, ξk, and posterior covariance matrix, Pk,

of a standard Kalman filter [151, 152].

Actions: The actions for this problem, or the available system controls, are UAV forward ac-

celeration and the bank angle. Specifically, at time k the forward acceleration, ak, and bank angle,

φk, define actions uk = (ak, φk) of the UAV.
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Observations and Observation Law: The target states are not fully observable; at any given

time a random observation of the target state may be available. Let χpos
k be the target position

vector and sposk be the sensor/UAV position vector. The observation of the target’s position can be

expressed by:

zχk =















χpos
k + wk, if target is visible

no measurement, otherwise

(1)

where the random measurement error, wk, has a distribution dependent on target and UAV loca-

tions. Full observability is assumed for Sensor/UAV and tracker states.

State-Transition Law: The state-transition law defines the next-state distribution of the three

predefined subsystems given a current state and action pair of each subsystem. The sensor state

evolves by sk+1 = Ψ(sk, uk), where Ψ is a mapping function (defined later). The target state

progresses according to χk+1 = f(χk) + νk, with independent and identically distributed random

noise sequence, νk, and a target motion model, f (also defined later). Kalman filter equations with

joint probabilistic data association (JPDA) provide tracker state evolution [151, 153]. The update

equation is only evaluated when target observations are available, otherwise only the prediction

step in the Kalman filter is performed.

Cost Function: Our cost function, which is the action cost for a given state, considers the mean-

squared error between the tracks and the targets: C(xk, uk) = Eνk,wk+1
[‖χk+1 − ξk+1‖

2|xk, uk]

Belief State: The underlying state posterior distribution, updated incrementally via Bayes rule

with observations, defines the belief state. At time k, the belief state is bk = (bsk, b
χ
k , b

ξ
k, b

P
k),

where bsk = δ(s − sk), b
ξ
k = δ(ξ − ξk), bP

k = δ(P − Pk) (because of full tracker and sensor state

observability), and bχk is the posterior distribution of the target state.

4.3.2 OPTIMAL POLICY

The objective is to choose actions that minimize the expected cumulative cost over a time

horizon H, k = 0, 1, ..., H − 1. For a time horizon H , the expected cumulative cost can be written
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as JH = E[
∑H−1

k=0
C(xk, uk)]. Historical knowledge of all observable quantities up to time k − 1

should inform the chosen action at time k. If an optimal choice of actions exists, then there exists

an optimal action sequence that depends only on “belief-state feedback” [154]. Therefore, the

belief states can be used to write the objective function as: JH = E[
∑H−1

k=0
c(bk, uk)|b0], where

c(bk, uk) =
∫

C(x, uk)bk(x)dx.

Bellman’s principle of optimality [155] provides for the optimal objective function value J∗
H

given the current belief state b0. The optimal objective function can be written as: J∗
H(b0) =

minu{c(b0, u) + E[J∗
H−1(b1)|b0, u]}, where b1 is the random next belief state, J∗

H−1 is the optimal

cumulative cost over the horizon H − 1, k = 1, 2, ..., H − 1, and E[·|b0, u] is the conditional

expectation given the current belief state b0 and an action u taken at time k = 0. Given the

current belief state b0, the Q-value of taking an action u is defined by QH(b0, u) = c(b0, u) +

E[J∗
H−1(b1)|b0, u]. At time k = 0 the optimal policy, from Bellman’s principle, can be written as

π∗
0(b0) = argminuQH(b0, u). The optimal policy at time k is π∗

k(bk) = argminuQH−k(bk, u).

The second Q-function term is difficult to obtain exactly. Studies of numerous methods to

approximate the Q-values have been performed [150,156–162]. The NBO approximation method,

introduced in [150] along with other guidance problem approximations and techniques, is used

here.

4.3.3 NBO APPROXIMATION

Although a few approximation methods to solve POMDPs are available, we chose the NBO

method because of low computationally cost relative to other POMDP approximation methods like

foresight optimization, hindsight optimization, policy rollout, and Q-learning [154]. In practice,

real-time implementation of a UAV guidance algorithm requires a method that is not computation-

ally prohibitive. Our previous work [148, 165] showed acceptable computation efficiency for the

NBO algorithm.

Given Ntargs targets, the target state is represented as χk = (χ1
k, χ

2
k, ..., χ

Ntargs

k ), where the ith

target is represented by χi
k. The track-state is ξk = (ξ1k, ξ

2
k, ..., ξ

Ntargs

k ) and Pk = (P1

k, ...,P
Ntargs

k ),
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where (ξik,P
i
k) is the ith target track-state. We use a zero-mean noise linearized target motion

model for the target-state dynamics, given by (∀i)

χi
k+1 = Fkχ

i
k + νik, νik ∼ N(0,Qk) (2)

with observations as defined in (1). The measurement error is wi
k ∼ N(0,Rk(χ

i
k, sk)), and the

target motion model (for all targets) is Fk. The ith target state (χi
k) includes position coordi-

nates (xk, yk), velocities (vxk , v
y
k), and accelerations (axk, a

y
k) in x- and y-directions, i.e., χi

k =

[xk, yk, v
x
k , v

y
k , a

x
k, a

y
k]

T . The observation model becomes Hk = [I2x2, 04x4]. A constant velocity

(CV) model [151,152] is implemented for target dynamics in (2), which defines Fk. The ith target

belief state, with assumed Gaussian distributions, can be expressed as bχ
i

k (χ) = N(χ − ξik,P
i
k),

where ξik and Pi
k are the ith target track-states, which evolve according to the JPDA algorithm

[151, 153].

The objective function is approximated by the NBO method as JH(b0) ≈
∑H−1

k=0
c(b̂k, uk),

where b̂1, b̂2, ..., b̂H−1 is a nominal belief-state sequence over an optimized action sequence u0, u1, ..., uH−1.

The ith target nominal belief-state sequence, developed from nominal tracks (ξ̂ik, P̂
i

k) using a zero-

noise Kalman filter [151, 152] is: b̂x
i

k (χ) = N(χ− ξ̂ik, P̂
i

k), where ξ̂ik+1
= Fkξ̂

i
k, and

P̂
i

k+1 =















[[P̂
i

k+1|k]
−1 + Si

k+1]
−1 if measurement available

P̂
i

k+1|k otherwise

(3)

where P̂
i

k+1|k = FkP̂
i

kFT
k +Qk, S

i
k+1 = HT

k+1[Rk+1(ξ̂
i
k+1

, sk+1)]
−1Hk+1 and sk+1 = Ψ(sk, uk) (Ψ is

defined in the next subsection). The nominal error covariance matrix P̂
i

k+1 in (3) is dependent upon

the availability of future observations. Because of the uncertainty of future observations we can

check for target observability by guessing the target location at time k + 1 as ξ̂i,posk+1
and checking

its line of sight from the sensor location (sposk+1
), where ξ̂i,posk+1

is the ith target nominal track-state

at time k + 1. We can write the cost function, defined as the mean-squared error between the

targets and the tracks, as: c(b̂k, uk) =
∑Ntargs

i=1 TrP̂
i

k+1. We want to find the sequence of actions
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(u0, u1, ..., uH−1) that minimizes the cumulative cost function (truncated horizon [150]) JH(b0) =
∑H−1

k=0

∑Ntargs

i=1 TrP̂
i

k+1, where P̂
i

k+1 represents the ith targets nominal error covariance matrix at time

k+ 1. A “receding horizon control” approach is adopted, which optimizes the action sequence for

H time-steps from the current time-step but only the action corresponding to the current time-step

is implemented. At the next time-step, we perform a new action sequence optimization for H

time-steps.

The measurement error, wk in (1), is normally distributed N(0,Rk(χk, sk)), where Rk contains

q-rad angular uncertainty and p% range uncertainty. If the distance between the sensor and the

target at time k is rk, then the standard deviations corresponding to the range (σrange(k)) and the

angle (σangle(k)) are σrange(k) = (p/100)rk and σangle(k) = qrk. The information matrix depends

on the inverse of the measurement covariance matrix, which depends on the distance between the

sensor and the target. Therefore, the information matrix blows up when the UAV is exactly on top

of the target (i.e., when rk = 0 the sensor’s location overlaps with the target’s location in our 2-D

environment). To address this problem, we define the effective distance (reff) between the sensor

and the target as follows: reff(k) =
√

r2k + b2, where rk is the actual distance between the target

and the sensor and b is some non-zero real value. Therefore, the standard deviations of the range

and the angle are given by σrange(k) = (p/100)reff(k) and σangle(k) = qreff(k). If αk is the angle

between the target and the sensor at time k, then Rk is calculated as follows:

Rk =Mk







σ2
range(k) 0

0 σ2
angle(k)






MT

k where

Mk =







cos(αk) −sin(αk)

sin(αk) cos(αk)






.

The eigenvalues of the matrix Rk are therefore σ2
range(k) and σ2

angle(k).
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4.4 UAV KINEMATICS AND FIXED FOV

Simplified UAV kinematics are used for calculating the UAV motion. Using a fixed FOV

sensor, the FOV can be calculated in camera axes. Using Euler angle transformations, we can

determined if the target is within the sensor FOV.

4.4.1 UAV KINEMATICS

In this subsection we define the mapping function Ψ introduced in Section III to describe the

evolution of the sensor (UAV) state given an action, i.e., sk+1 = Ψ(sk, uk). The state of the ith

UAV at time k is given by sik = (pik, q
i
k, V

i
k , θ

i
k), where (pik, q

i
k) represents the position coordinates,

V i
k represents the speed, and θik represents the heading angle. Let aik be the forward acceleration

(control variable) and φi
k be the bank angle (control variable) of the UAV, i.e., uik = (aik, φ

i
k). The

mapping function Ψ can be specified as a collection of simple kinematic equations that govern the

UAV motion. The kinematic equations of the UAV motion are as follows. The speed is updated

according to V i
k+1

= [V i
k +a

i
kT ]

Vmax
Vmin

, where [v]Vmax
Vmin

= max{Vmin,min(Vmax, v)}, where Vmin and Vmax

are the minimum and the maximum limits on the speed of the UAVs. The heading angle is updated

according to θik+1
= θik + (gT tan(φi

k)/V
i
k ), where g is the acceleration due to gravity and T is the

length of the time-step. The position coordinate are updated according to pik+1
= pik +V

i
kT cos(θik)

and qik+1
= qik + V i

kT sin(θik).

4.4.2 FIXED FOV CALCULATION

Given a sensor width (xsens) and height (ysens), along with the focal length (f ) of an installed

sensor, a FOV can be calculated for a given altitude (z). The angular FOV for the sensor width

is FOVw = 2tan−1(xsens/2f) and for the sensor height is FOVh = 2tan−1(ysens/2f). Given a

height above the ground, the edges of the FOV can be calculated in camera axes. We assume that

the camera is installed concurrent to the body axis, for ease of calculation. The top and bottom

edges of the FOV are xFOV = ±z tan(0.5FOVh) and the left and right edges of the FOV are

yFOV = ±z tan(0.5FOVw), where z is the altitude of the sensor.
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To determine if an observation is made, the position of the target must be translated and rotated

into the UAV body axis. A vector η is calculated between the UAV position and the target position

as η = (pUAV − ptarget, qUAV − qtarget, zUAV − ztarget). Given the UAV Euler angles, pitch (θUAV), roll

(ψUAV), and heading (φUAV) a rotation of η can be made between the world axis and body axis. The

value of η in the body axis can now be compared to the FOV for the sensor. If the position of the

target, η, is within the field of view, an observation is made and the tracker will update normally

with an updated observation, as specified in (1). However, if η is not in the FOV, there will be no

observation and no measurement will be passed to the tracker.

4.5 FUEL BURN COST FUNCTION

The nominal cost function often used for vehicle control is focused purely on the estimated

target location error, based on the trace of the covariance Pk. This simple cost function results in

significant dynamics of the UAV to try to precisely track the target for as accurate of a target loca-

tion estimate as possible. However, as a result, the increased dynamics results in less endurance.

There are times during missions that maintaining observations of the target is important, but the

accuracy of the estimated location is less of a concern. In these cases, increasing the mission

endurance of the UAV by decreasing the dynamics becomes a viable option.

Depending on the level of desired tracking accuracy versus the increased mission endurance,

the cost function can be updated to include a fuel burn estimate. A fuel-burn B can be included in

the cost function, with a set of ratio variables, λ1 and λ2, to vary the impact of the error compared

to the fuel burn by:

JH(b0) =
H−1
∑

k=0

(

Ntargs
∑

i=1

λ1TrP̂
i

k+1) + λ2B (4)

The trace of the estimated covariance is calculated for all targets across the horizon of concern

and the fuel burn is calculated by estimating the power usage of the UAV during the horizon.
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4.6 WEIGHTED TRACE PENALTY

When using a limited FOV sensor there are conditions when the UAV may not be able to

observe the target for an extended period of time. As a result, the POMDP algorithm may be unable

to determine an adequate path plan, due to extended non-observation across the limited horizon.

This can be exacerbated when trying to limit maneuvering for fuel efficiency. To determine a

sufficient path we incorporate a Weighted Trace Penalty (WTP) term into the calculation of the

next best UAV command. The WTP term was previously developed as an estimated cost to go

(ECTG) term to deal with occlusions preventing observations [150]. We can estimate this growth

with a WTP term, which is a product of the current covariance trace and the minimum distance to

observability (MDO) for the non-observed target. The terminal cost or ECTG term using the WTP

takes the form:

Ĵ(b) = JWTP(b) := γD(s, ξq)TrP q (5)

where γ is a positive constant, q is the index of the worst non-observed target. The MDO, D(s, ξ),

is the distance from the UAV to the closest point where the target becomes observable. The addition

of the WTP results in a final cost function of:

JH(b0) =
H−1
∑

k=0

(

Ntargs
∑

i=1

λ1TrP̂
i

k+1) + λ2B + γD(s, ξq)TrPq (6)

4.7 EXPERIMENTS

Statistical analysis, based upon 500 Monte Carlo simulations per configuration, was performed

to evaluate the effectiveness of our method to track the target with varying fuel efficiency. The

number of targets tracked, the altitude of the UAV, and the burn ratio of the cost function were all

varied for the experiment. A single UAV tracked either one or two targets. Previous research with

a fixed FOV sensor configuration has shown that above 1000 meters the impact of the sensor FOV

is minimal. Therefore, only three altitudes were evaluated: 200, 500, and 1000 meters. A burn
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ratio (tracking accuracy:fuel burn, λ1 : λ2) of 1:0, 1:1, 1:5, 1:10, and 1:15 were used. A range

uncertainty of 10 percent and an angular uncertainty of 1 percent were used for this evaluation.

The sensor was fixed in a 90 degree straight down FOV configuration, relative to the UAVs nose.

A horizon window of 6 steps, at 2 seconds per step, was used for the trajectory calculation. The

trajectory calculation was performed every 4 seconds. A 400 second duration was used for each

Monte Carlo simulation.

The sensor simulated was modeled after several commercially available sensors [164]. The

sensor was assumed to have a focal plane width of 5 mm, height of 3 mm, and a lens focal length

of 5.3 mm. This configuration provides a field of view of 50.5 degree wide and 31.6 degrees tall.

It is assumed at the altitudes tested, the sensor is capable of resolving the target sufficiently for

tracking.

The targets moved at a constant speed of 10 m/s at a constant heading (unknown to the tracker).

The UAV was allowed to vary speed between 16 and 25 m/s and a maximum bank angle of 30

degrees. To provide a consistent analysis baseline, altitude was only considered for variation of

sensor field of view; otherwise the problem was treated as a 2-D problem. Tracking errors were

not considered as a function of altitude, only of x-y distance variations to enable FOV comparison.

Previous efforts have shown that the average location error was 2-3 meters for single target and 5-6

meters for multiple target tracking in similar scenarios [165].

A basic fuel-burn calculation based upon actual power usage of a small UAV was used [168].

Measurements of real-time energy usage (in watt-hr) from a fixed-speed commercially available

small UAV were taken while the vehicle was flying constant altitude and either wings level or in a

full bank. Data showed that the power usage between wings level and full bank were essentially

linear. For simplicity, it is assumed that the aircraft is symmetric such that left or right bank angle

require the same energy. The burn was estimated across the speed range to extend from just a fixed

speed aircraft. Table 4.1 provides simple lookup values for interpolating fuel burn.
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Table 4.1: Fuel Burn Values

Velocity Wings Level 30 deg Bank
(m/s) (Watt-hr) (Watt-hr)

14 95 110
20 105 120
25 112 135
30 119 145
35 130 160

4.7.1 RESULTS

Overall, the algorithm showed reasonable ability to track moving targets while providing fuel-

efficient options. As previously seen, at lower altitudes, the tracking errors are generally higher

due to reduced observations. The modified cost function provided the ability to increase endurance

by 10% while still providing tracking ability. At the higher altitudes, the tracking errors were not

significantly impacted.

Based on the fuel usage model of the UAV, if the vehicle were to fly straight and level (most

efficient possible) at a speed of 14 m/s for a 400 second window, the UAV would use 10.56 W, or

95 W for an hour. At 35 m/s, that would result in 14.4 W for 400 seconds, or 130 W for an hour.

However, because the vehicle must maneuver, an increase in power usage is experienced.

The average tracking errors and fuel burn were calculated for each altitude and burn ratio

configuration. Figure 4.1 provides the comparison of mean tracking error and mean fuel burn for

a 400 second simulation for a single target. Figure 4.2 shows the mean percent of observations for

each configuration compared to the mean location error. The symbols indicate which burn ratio

was used, and the line connected to the given symbol indicate the altitude for the simulation. The

trace:burn ratio provides the values of λ1 : λ2. As can be seen, as the fuel-burn ratio is increased,

the fuel consumption is reduced while the tracking error is increased. At 200 meters the errors

increase and observations reduce significantly compared to the higher altitudes. This is due to

the limited FOV of the sensor reducing the number of observations. As can be seen at all three

altitudes, the fuel-burn ratio reduces the overall fuel use while showing an increase in tracking
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Figure 4.1: Average Location Error vs Fuel Burn, 1 UAV, 1 Target

errors, as expected. At the higher altitudes, the increase in tracking error is not as significant

for the increased fuel efficiency. At 200 meters, however, a significant reduction in observations

indicates increased lost tracks which drives a larger errors.

Figure 4.3 shows the mean tracking error versus mean fuel burn for two target tracking. Figure

4.4 shows the mean percent observations versus mean tracking error. The mean location errors

and mean observation percentages are the average of all 500 runs for both targets. Only 500 and

1000 meter configurations are shown as the 200 meter data showed inadequate performance of

tracking the second target. Over half of the runs at 200 meters indicated the UAV never made an

observation of the second target. As can be seen, an increase in tracking error, corresponding to

reduced observations, can be seen as we increase the fuel burn. At 1000 meters it can be noted that

the change in fuel burn has a minimal impact on mean tracking errors.

While the 500 and 1000 meter tracking showed good performance, the 200 meter errors with

one target became excessive and with two targets it was inadequate. The 200 meter tracking of a

single UAV could be improved as well. One source of the poor performance is due to the MATLAB

fmincon optimization function finding a local minimum and not the global minimum. Additional

65



0 5 10 15 20 25 30 35 40 45 50

Mean Location Error, meters

40

50

60

70

80

90

100

M
ea

n 
P

er
ce

nt
 O

bs
er

va
tio

n,
 %

Mean Location Error vs. Mean Percent Observation, 1 Target, 1 UAV

200 meters
500 meters
1000 meters
Trace/Burn: 1/0
Trace/Burn: 1/1
Trace/Burn: 1/5
Trace/Burn: 1/10
Trace/Burn: 1/15

Figure 4.2: Average Location Error vs. Percent Observation, 1 UAV, 1 Target
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Figure 4.3: Average Location Error vs Fuel Burn, 1 UAV, 2 Targets
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Figure 4.4: Average Location Error vs. Percent Observation, 1 UAV, 2 Targets

Table 4.2: Mean Fuel Burn

Single Target burn(W ) Two Targets burn(W )
Ratio 200m 500m 1000m 500m 1000m
1 : 0 12.23 12.30 12.29 13.06 12.65
1 : 15 11.12 11.18 11.17 11.70 11.45
%gain 9.98% 10.02% 10.03% 11.62% 10.48%

minimization options will be investigated for future development. Finally, due to the limited FOV

of the sensor, the best way to improve the performance would be to either incorporate a sensor with

a larger FOV or incorporate a gimbaled control of the sensor.

As discussed earlier, the fuel burn flying a pure straight and level 400 second flight would be

10.56 W. Table 4.2 shows the burns for single and two target tracking for each burn configuration.

As can be seen, a 10+% increase in fuel efficiency is noted from the 1:0 configuration as compared

to the 1:15 configuration.
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4.8 CONCLUSIONS

The fuel efficient POMDP presented provides a robust tracking solution that enables fuel ef-

ficient options. Highly accurate tracking with a limited FOV sensor flying at low altitude is a

difficult use case for UAVs. Significant maneuvering is required for a UAV to provide high quality

tracking with minimal errors but leads to reduced endurance. Using a fuel-burn component in the

cost function of the POMDP, alongside a Weighted Trace Penalty provides a highly capable tracker

with improved endurance opportunities. Endurance increases of over 10% were experienced while

still providing useful tracks of moving targets. Improvements in lower-altitude tracking may be

seen by incorporating a gimbaled sensor and an improved optimization function.
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CHAPTER 5

SERVICES BASED TESTING OF AUTONOMY

The test and evaluation (T&E) of autonomous systems, that adequately supports the verifica-

tion and validation (V&V) process, is a significant challenge facing the test community. The abil-

ity to quickly and reliably test autonomy is necessary to provide a consistent T&E, V&V (TEVV)

capability. A safe, efficient, and cost effective test capability, regardless of autonomy or sensor

capability, is required. Autonomy and sensor capabilities, referred to as services, can be integrated

easily into small Unmanned Aircraft Systems (sUAS) of differing capabilities and complexities.

An integrated open-source architecture, for both software and hardware, implemented on multiple

sUAS of varying capabilities can provide a robust test capability for emerging autonomous behav-

iors. The inclusion of a run time assurance (RTA) common safety watchdog and a Live-Virtual-

Constructive (LVC) capability provides a consistent, robust, and safe test capability/environment.

The use of an open software and hardware architecture ensures cross-platform viability. These

features will allow test teams to focus on the newly incorporated autonomy and sensor services,

not on other ancillary capabilities and systems on the test vehicle. Testing of the services in this

manner will enable a common TEVV approach, regardless of final platform integration while de-

creasing risk and accelerating the availability of autonomy services. Services-Based Testing of

Autonomy (SBTA) provides a cost-effective and focused capability to test autonomous services,

whether software, hardware, or both.

5.1 INTRODUCTION

In April 2011, Secretary of Defense Robert Gates designated autonomy as one of seven technol-

ogy priorities. In response, the United States Department of Defense (DoD) created an Autonomy

Community of Interest (COI) to focus on the advancement of technology and capabilities to enable

future autonomous systems [169]. In November 2014, Secretary of Defense Chuck Hagel [170]

announced the Defense Innovation Initiative, which would help the DoD develop autonomy as part
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of a third offset strategy. Specifically, Secretary Hagel discussed areas of new technology research

and development:

"Our technology effort will establish a new Long-Range Research and Development Planning

Program that will help identify, develop, and field breakthroughs in the most cutting-edge technolo-

gies and systems âĂŞ especially from the fields of robotics, autonomous systems, miniaturization,

big data, and advanced manufacturing, including 3D printing. This program will look toward the

next decade and beyond."

Hagel’s speech set the tone for future budget focus and research and development areas for

the DoD. In June 2016, the Defense Science Board (DSB) Summer Study of Autonomy [171]

concluded that autonomy had reached a "tipping point" in value.

One of the focus areas of the Autonomy COI was TEVV. The TEVV central technical chal-

lenge identified was: "From algorithms to scalable teams of multiple agents âĂŞ Developing new

T&E, V&V technologies needed to enable the fielding of assured autonomous systems" [169]. In

June 2015, the Autonomy COI TEVV working group released a Technology Investment Strategy

2015âĂŞ2018, which provided the framework for development of future TEVV needs and capa-

bilities. This strategy provided five primary goals to align research of autonomy around:

1. Methods & Tools Assisting in Requirements Development and Analysis

2. Evidence-Based Design and Implementation

3. Cumulative Evidence through Research, Development, Test and Evaluation (RDT&E), De-

velopmental Testing (DT), & Operational Testing (OT)

4. Run-Time Behavior Prediction and Recovery

5. Assurance Arguments for Autonomous Systems

The DSB autonomy study also noted that current DT and OT methods are in direct conflict with

more advanced commercial methods that are better suited for testing of adaptive software [171].
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The ability to bring in software very early to get user feedback via incremental upgrades inter-

spersed with test is a key commercial capability. The DSB report recommended, among other

things, that a new T&E paradigm for testing software that learns and adapts be established. In

2014, the National Research Council released a report on "Autonomy Research for Civil Aviation:

Toward a New Era of Flight" that identified the need to develop standards and procedures for veri-

fication, validation, and certification of autonomous systems [172]. In 2016, the American Institute

of Aeronautics & Astronautics Intelligent Systems Technical Committee developed a "Roadmap

for Intelligent Systems in Aerospace" that identified the need for critical research in V&V meth-

ods to enable operations of adaptive systems in future vehicles [173]. To achieve improvement

in the TEVV of autonomous systems, approaches to enable flexible and focused testing of auton-

omy are critical. The most challenging of components in these systems is the software embedded

within them, specifically intelligent, learning, and adaptive software. While significant modeling

and simulation, along with hardware in the loop testing, can be used, the ability to test autonomous

capabilities in realistic scenarios is critical to the success of these types of systems. The cost and

difficulty of performing significant flight testing of autonomous unmanned aircraft systems (UAS)

are highly dependent on the vehicles and the integrated autonomous services. This paper pro-

vides the SBTA approach to testing these critical autonomy software and hardware capabilities, or

autonomous services, in a rapid, repeatable, safe, and effective manner.

5.2 SBTA

Software and hardware to enable autonomy are critical focus areas for development of au-

tonomous systems. A significant amount of research and development has been performed in the

areas of path planning and safety controls algorithms [147]. Hardware, especially sensors to en-

able decision making, continue to be developed and improved, especially in the commercial arena.

Autonomy services can be a combination of hardware and software to enable autonomous actions

for a vehicle.
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In most traditional acquisition programs, a new aircraft is procured with a significant amount

of development of both the vehicle and the software. The advent of autonomy currently appears

to be focused on developing capabilities to integrate into existing vehicles and systems. The cost

to integrate autonomy into existing platforms can be expensive and time consuming. Providing

a means to perform early testing of autonomy services is, therefore, critical. The intersection

between the cyber and autonomy worlds raises yet another source of TEVV difficulty: can the

perception sensors feeding the autonomy engine be spoofed (GPS, signature imagery, etc.) and

can the autonomy engine understand that the “perceived world view” has been hacked?

Complex cyber-physical systems, such as autonomous UASs, are difficult to test with tradi-

tional methods currently used for standard UASs and manned aircraft. Testing of autonomy re-

quires a different approach from initial software development through the end of life of the system.

As autonomy becomes more complex, it becomes difficult to test all functions and capabilities due

to the increasing size and complexity of the algorithms. Preventing the systems under test from

getting into an undesirable or uncontrollable state while also challenging the autonomy is diffi-

cult. Providing a robust, reliable, and reusable approach to testing autonomy is key; this is why

the SBTA method has been developed. This approach will provide a heterogeneous fleet of UASs

that are simple and cost effective to modify and operate. These vehicles will be modified to have

an open system architecture that will enable easy reconfiguration and installation of autonomy or

other services that will enable testing. The approach is adaptable to different vehicles across a

large operational envelope.

5.3 PLATFORM & OPERATIONS REQUIREMENTS

In April 2016, the United States Air Force (USAF) released the small Unmanned Aircraft

Systems (sUAS) Flight Plan, which provided vision and strategy for development, operation, and

sustainment of sUAS [174]. The USAF grouped sUAS into three categories, as defined in Table

1. These groups provide different levels of capability that are useful for not only actual operations

but also for methods supporting TEVV.
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Table 5.1: sUAS Platform Characteristics by Group

Group Max Weigt (lbs) Normal Ops Alt (ft AGL) Speed (kts)
1 0-20 <1200 <100
2 21-55 <3500 <250
3 <1320 <FL 180 <250

The sUAS Flight Plan identifies significant future USAF operations for sUAS and autonomous

capabilities. The ability to provide support across multiple scenarios to support numerous dull,

dirty, and dangerous missions for the USAF is becoming more common. Additionally, the concept

of interoperability and modularity between systems is a key capability for enabling future sUAS

operations. Providing an open architecture capability for sUAS will enable these concepts. The

affordability of acquisition and operations of sUAS is important not only for mission operations,

but also for test and evaluation. Providing a test capability that meets these requirements will help

enable future TEVV of autonomous services.

The commercial off the shelf (COTS) availability of numerous sUAS allows for rapid acquisi-

tion and cost effective operations. The majority of these COTS systems use existing commercially

available controllers and autopilots that are easy to integrate and modify. Additionally, the ability

to easily modify and add capabilities to these vehicles allows for flexible test assets. This modifia-

bility and flexibility is a critical capability to enable SBTA. The only disadvantage to the majority

of these systems is the limitation in size, weight, and power capabilities. The smaller the vehi-

cle, the larger the limitation, primarily in the ability to add the autonomy which will require the

integration of new and different sensors.

5.4 OPEN SOFTWARE & HARDWARE ARCHITECTURE

A service-oriented architecture (SOA) is a software design style that enables service provision

to other components through a communication protocol [175]. The advantage of a SOA is that it

provides a common interface for any developer to use. Providing a SOA-like interface for sUAS to

enable integration of new autonomy services is a key to enabling SBTA. One SOA in development
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Figure 5.1: SBTA UxAS Architecture

is the Unmanned Systems Autonomy Services (UxAS) architecture being developed by the Air

Force Research Laboratory (AFRL). The UxAS provides a common software interface architecture

that can be integrated on any aircraft and provides some early autonomy capability developed by

AFRL [176]. Recently, AFRL held a Summer of Innovation (SoI) event to improve the capabilities

and documentation of UxAS [178] [179].

The majority of sUAS on the market use one of several standard autopilots for vehicle control.

The UxAS architecture either already integrates with these standard autopilots or can easily be

adapted via a new service interface. The AFRL has already generated multiple autonomy services

on the UxAS architecture baseline that can be used for some mission scenarios. The results of the

SoI provided improved capabilities and documentation of UxAS. Adopting a common architecture

from initial development through flight testing on sUAS provides a robust TEVV capability.

Integrating the UxAS software onto a processor, such as a Raspberry Pi, oDroid, or Gumstix,

and interfacing it with the sUAS autopilot will provide an initial capability for testing autonomy.

Figure 5.1 provides an example UxAS architecture for SBTA. This architecture shows the segre-

gation of existing known services and services under test. Having a UAS with an UxAS backbone

and fully tested services will provide the framework for testing new services. These existing ser-

vices will have known capabilities enabling testers to focus on the integration and performance of

the new services under test.
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5.5 RUN TIME ASSURANCE (RTA)

Assurance, as defined by the IEEE Standard Glossary of Software Engineering Terminology, is

âĂIJa planned and systematic pattern of all actions necessary to provide adequate confidence that

an item or product conforms to established technical requirementsâĂİ [180]. For most systems,

assurance will be primarily completed during the design, development, and lab-testing phases

of a project. Limited assurance testing is performed during flight testing, owing to the risks of

putting a vehicle in an undesired condition. For autonomous systems with runtime variation in

performance and decision, assurance that the system will not become inconsistent and unsafe is of

critical importance [185].

To provide a safe and robust test asset, an independent watchdog supervisory monitor and con-

troller to provide runtime assurance (RTA) coverage will be critical. In October 2017, ASTM

International released ASTM F3269-17, Standard Practice for Methods to Safely Bound Flight

Behavior of Unmanned Aircraft Systems Containing Complex Functions, which provides guid-

ance for RTA architecture evidence on highly automated UAS [181]. While the primary concept

provided in the specification relates to production RTA, the same concept can be exploited for test

safety RTA. The ability to have both onboard and off-board RTA coverage will be critical during

the testing of autonomous systems. These RTA watchdogs will need to provide user-defined capa-

bilities to include loss of link, geo-fence, aircraft limit control, control override, object avoidance,

and aircraft collision avoidance. Some of these systems may require off-board information (e.g.,

object and aircraft collision avoidance) while others will be required to be onboard (e.g., aircraft

limits and geo-fence). Additionally, the ability to completely isolate the autonomy under test and

revert to basic aircraft controls will be a critical, failsafe feature.

Several test aircraft have had similar capabilities installed on them for safety of test purposes.

One example is the F-16 Variable stability In-flight Simulator Test Aircraft (VISTA) operated

by the USAF Test Pilot School, which has also been used for early testing of autonomy [182].

This system allows changes to the commands, stability, and performance of the aircraft that can

be turned off based upon pilot input or violation of any implemented safety limits. Similarly,
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Calspan has created a variable stability Learjet with a similar implementation [183]. Addition-

ally, NASA Armstrong has been developing their Expandable Variable-Autonomy Architecture

(EVAA), which provides a production watchdog capability [184].

For sUAS, an RTA system currently under development for implementation is the Safe Test-

ing of Autonomy in Complex, Interactive Environments (TACE) by the Johns Hopkins University

Applied Physics Lab (JHU/APL) [145]. This system can provide a variable RTA watchdog for

both onboard and offboard controls as well as interfaces for Live-Virtual-Constructive (LVC). The

TACE system is currently being installed on a 412th Test Wing aircraft for initial capability demon-

stration and evaluation for testing of autonomy. The 412 Test Wing has recently purchased three

Swift Radioplanes Lynx [186] aircraft that will be modified with a watchdog controller and an

autonomy processor for demonstration of the RTA and LVC capabilities as the baseline for their

Services Based Testing of Autonomy efforts.

This TACE RTA approach will provide the ability to manage, via a watchdog, the autonomous

behavior of the vehicles in live flight to demonstrate the ability to mitigate violations of the watch-

dog. The watchdog will provide the interface between the native autopilot and the other control

options (autonomy processor, automated on-board remediation, or ground control station). The

native sUAS radio frequency (RF) Controller will be able to command the autopilot directly, over-

riding the watchdog inputs, as a redundant backup safety control. Figure 5.2 shows an example

implementation of this approach. The TACE implementation will provide RTA watchdog coverage

to keep the vehicles in a safe configuration. Initial capabilities for the TACE RTA implementation

include protections and mitigations for airspace boundary violation, aircraft limit violation, air-

craft collision avoidance, and lost link. The design of the TACE RTA allows for the addition or

modification of protections and mitigations as system requirements change.

5.6 TEST APPROACH

Testing of services in a block style approach from initial algorithms to full-up services on

the platforms of varying capabilities is needed. For example, initial testing of a tracking service
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Figure 5.2: Example RTA Watchdog Implementation

without a real sensor may be performed on a Group 1 sUAS using LVC to exercise the algorithm,

while sensor capabilities are being developed for a larger vehicle implementation. The new sensor

would then be integrated into a larger, more capable vehicle, if required to evaluate the performance

of that sensor service (i.e., tracking and target recognition capabilities) along with integration with

the associated autonomy algorithm. Finally, full integration of the capability as one unique service

onto another system to verify integration across platforms. These tests would show the capability

of the sensor, algorithm, and integrated service on much less expensive platforms than the likely

final product. As a result, when finally integrating on the final platform, the concerns become

solely platform unique implementation differences and not core service functionality.

There are several key capabilities, in addition to the core SBTA architecture, required to provide

a robust SBTA capability. Installation of key instrumentation parameters and recording capabilities

will be critical with unique challenges, depending on the size of the vehicle. In many cases, record-

ing capabilities will be performed within the installed processors and autopilots without additional

instrumentation capability. Independent Time-Space-Position Information (TSPI) instrumentation

is likely the most critical independent data requirement that will be required, depending on the

system under test. Additionally, telemetry data for standard vehicle performance will be required

to ensure degraded system performance is not causing poor autonomy performance.

Critical to testing autonomy, especially as the requirements for multiple vehicles and complex

mission requirements increase, will be the implementation of a LVC capability. The USAF contin-
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ues to consider LVC as a critical capability for both training and testing [187]. In the case of SBTA,

LVC will be used to provide synthetic forces, whether air, sea, or surface and friendly (blue) or

adversarial (red) forces. Additionally, the LVC capability will be able to provide synthetic threats,

topography, simulated loss of communications, and simulated GPS jamming/drifting. The LVC

will allow a tester to design scenarios across an increased spectrum of the state space without re-

quiring complex and expensive range capabilities or a significant number of UASs. This approach

will improve flight test safety by requiring the live flight of fewer vehicles in a clean environment

while providing a complex decision space for the autonomy. Virtual entities can be simulated as

part of the flight test environment and sent to the live test aircraft at real-time speeds, reducing

complexity and safety in open air. Several capabilities are in different stages of development for

this type of testing.

The Test and Training Enabling Architecture (TENA) provides an interface for test control

that will enable the testers to use existing simulation capabilities across the test and training en-

vironment (TRMC n.d.). These TENA environment models could be made available for the LVC

environment. The Navy has developed their Joint Integrated Mission Model (JIMM) that has

been used on other TACE efforts for integration of synthetic forces into system demonstrations

(NAWC-AD n.d.). The Boeing Company and USAF have developed the Advanced Framework for

Simulation, Integration, and Modeling (AFSIM), which has been used in numerous forms and can

provide synthetic force generation capability for SBTA integration [190].

Control of the autonomous systems will be performed initially using the JHU/APL developed

TACE controller on a Linux laptop. However, over time, TACE could be integrated with other

control capabilities with some additional development. Currently, AFRL is using the Vigilant Spirit

Control System (VSCS), which has been released to numerous commercial companies [191]. The

VSCS is also being interfaced with the UxAS development by AFRL, and it provides many unique

capabilities for future SBTA integration.
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5.7 V&V APPROACH

The key to SBTA providing a rapid testing focused on the autonomy services is well-defined

hardware and software interfaces. The UxAS architecture for hardware and software integration

will provide a known interface for any user to develop to, and test against, in a lab environment.

Integration of the UxAS architecture and software backbone onto a heterogeneous fleet of aircraft

will provide a baseline set of aircraft for testing. A series of initial testing and system verifications

will be required prior to any vehicle being ready to be used as an autonomy test bed.

First, the basic aircraft will need to be verified and validated against baseline expectations.

Depending on the complexity of known characteristics of a given vehicle the scope of baseline

testing could range from minimal to complex. Once this initial characterization is completed, this

known aircraft baseline will exist for comparison against new capabilities. These data are also

critical for the implementation of autonomy services since many algorithms require knowledge of

current vehicle capabilities.

Once the base aircraft has been verified, the UxAS or other system architecture, whether soft-

ware or hardware, can be installed. The integrated hardware and software will then be tested to

verify basic integration functionality to include basic aircraft control and communications. At the

completion of this stage of testing, the system will provide an UxAS compliant test platform for

integration of new autonomy services. The vehicle will then have baseline integrated performance

information and will be considered an SBTA compliant aircraft.

A new autonomy service, whether software, hardware, or a combination, can then be integrated

into the UxAS SBTA aircraft for service testing. This services testing will have two test phases.

The first phase will be a verification of proper UxAS interface with the SBTA aircraft. This test-

ing will verify that the communications paths between the newly installed services and the SBTA

aircraft are functioning as demonstrated in the lab environment. Once the UxAS interface test-

ing is completed, autonomy performance testing can be completed. Figure 5.3 shows the SBTA

Autonomy V&V process from basic aircraft verification to autonomy performance testing.
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Figure 5.3: SBTA Autonomy V&V Process

5.8 IMPLEMENTATION

The Emerging Technologies Combined Test Force (ET-CTF) at the 412th Test Wing, Edwards

AFB, CA in conjunction with the Air Force Research Lab Autonomy Division (AFRL/RQQA),

Wright-Patterson AFB, OH is beginning to develop and acquire systems and capabilities necessary

to implement SBTA.

The ET-CTF has provided three Swift Radioplanes Lynx aircraft to JHU/APL for modification

and initial testing of their TACE system. The initial implementation will include use of existing

JHU/APL autonomy capabilities installed on a Raspberry Pi processor, and the TACE watchdog

and LVC on a second Raspberry Pi. This effort, funded by Test Resource Management Center

(TRMC), will provide an integrated autonomy and watchdog capability on the Lynx vehicles to en-

able initial TACE LVC and watchdog functionality verification. The program will culminate in the

Summer of 2018 with a multiple-vehicle single-operator demonstration of the LVC and watchdog

implementation. The initial development and integration will enable improvements and upgrades

of TACE watchdog (RTA) and TACE LVC into services that are an integral part of the UxAS ar-

chitecture. The capability will also provide baseline development requirements for integration on

other sUAS.

Figure 5.4 shows the vehicles currently planned or under consideration for SBTA integration,

from left to right: Swift Radioplanes Lynx [186], UAV Factory Penguin [192], and Arcturus T-

20 [193]. Table 5.2 provides key characteristics of each of the vehicles. The Swift Radioplanes

Lynx Aircraft provide a low-cost, simple vehicle that is being used for initial TACE integration

and evaluation. The Lynx offers the ability to do quick initial checkouts of autonomy algorithms

without complex vehicle integration. The Lynx has limited sensor capability so the majority of

testing will rely on LVC simulation. The UAV Factory Penguin provides a more robust lightweight

test vehicle capability with larger and more robust sensor capability than the Lynx. The Penguin
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Figure 5.4: Potential SBTA Test Articles

Table 5.2: Key Characteristics of Potential SBTA Test Vehicles

Lynx Penguin-B Penguin-BE Arcturus T-20
Length N/A1 7.45 ft 7.45 ft 9.5 ft
Wingspan 7.5 ft 10.82 ft 10.82 ft 17.5 ft
Max Airspeed N/A 70 Kts 70 Kts 75 Kts
Cruise Speed 31.28 Kts 42 Kts 42 Kts N/A
Max Altitude N/A N/A N/A 15,000 ft
Max Endurance 3 hrs 20+ hrs 1.8 hrs 10-20 hrs
Empty Weight 6.6 lbs 22 lbs 32.8 lbs 105 lbs
Payload 1.6 lbs 22 lbs 14.5 lb 75 lbs
Fuel Battery Auto Fuel Battery Auto Fuel
Launch Hand Catapult, Runway Catapult, Runway Catapult
Recovery Deep Stall Runway Runway Belly

2N/A = Not Available

is offered in both electric and fuel configurations. The electric configuration minimizes the need

to deal with fuel transportation and storage but has limited endurance. Both electric and fuel

powered Penguins will be used. The Arcturus T-20 provides a larger vehicle payload, endurance,

and altitude capability than the Lynx or Penguin. The Arcturus has a significantly larger payload

capability and power capability to enable a larger range of autonomy payload service testing. The

development of the capabilities on these sUAS will enable integration onto future larger, faster,

and more capable unmanned systems beyond sUAS.

The initial test capability with the Lynx vehicles is planned for testing Summer of 2018.

Follow-on integration of TACE and other services with UxAS and onto other platforms is planned

for the 2018 − 2020 timeframe, with planned integration onto the Penguin and Arcturus, or sim-

ilar, platforms. Future integration onto larger and faster vehicles are still under discussion and

consideration with potential customers.
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Using sUAS provides a significant cost advantage over the existing military aircraft fleet. First,

the cost of sUAS operations is significantly lower than the thousands-of-dollars-per-hour of exist-

ing military aircraft [177]. Since most sUAS can provide similar flight duration on either battery

power (minimal electrical charge costs) or a few pounds of fuel (tens-of-dollars-per-hour) the cost

advantage is significant. Second, sUAS provide a simple and modifiable system design that doesn’t

require the same significant software and hardware integration efforts necessary to support airwor-

thiness requirements of existing USAF manned and unmanned aircraft. Because the sUAS are low

cost vehicles that are not being integrated into the USAF fleet, the level of airworthiness require-

ments and data to support airworthiness are significantly less. Additionally, the implementation of

the RTA watchdog allows for safe reversion to a baseline aircraft in the event of poor autonomy

integration. The flexibility from sUAS implementation of SBTA is expected to provide implemen-

tation, cost, and schedule advantages over existing platforms.

5.9 CONCLUSIONS

Services-Based Testing of Autonomy, upon successful implementation, is expected to provide

a cost-effective, scalable, and efficient means to test the growing needs for autonomy services that

are being developed across the industry. The use of a common open architecture should allow

for integration into diverse platforms rapidly for quick assessment of autonomy services. The

cost to perform testing on sUAS is anticipated to be significantly less than on larger vehicles,

and allows for rapid changes to hardware and software in a more flexible manner than traditional

test vehicles. Implementation and future studies utilizing SBTA on sUAS will provide the data

necessary to enable verification of the viability of the SBTA approach for testing of autonomy.

Additionally, while this approach is primarily focused on sUAS implementation for cost-effective

testing of vehicle operations, the same approach can be implemented directly on larger UASs or

even manned aircraft with a subset of capability implementation via autonomy.
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CHAPTER 6

CONCLUSIONS AND REMARKS

This dissertation provides an approach for autonomous UAV control and testing with details on

an initial implementation for Services Based Testing of Autonomy and an expanded POMDP con-

trol schema. We have provided a high level architecture approach for autonomy implementation,

two upgrades to our POMDP algorithm, and an approach for testing autonomy using sUAS.

In Chapter 2, we presented a high level architecture for control of UAS for autonomous mis-

sion. The design approach provided a modular architecture that enables safe and effective control.

We also provided a review of the current state of path planning and safety controls that could be

implemented in such an architecture and identified areas that needed improvement. This archi-

tecture and review provided the baseline for future efforts in path planning and system design for

implementation in the support of TEVV of autonomy.

In Chapter 3, we extended previous efforts in the development of POMDP path planning by

implementing controls with a limited FOV sensor. The inclusion of a limited FOV sensor chal-

lenges the POMDP algorithms estimation capability compared to a system that assumed it could

always see the target(s). The results of this implementation showed the robust capability of the

POMDP to be able to maintain tracking of the moving target, even during extended periods of

non-observation periods. Lower altitudes showed limited effectiveness, but larger altitudes pro-

vided expected tracking results.

In Chapter 4, we implemented a fuel efficient cost function to our existing POMDP algorithm.

The baseline cost function focuses on minimizing tracking errors. The addition of a fuel cost

into the cost function provides the ability to improve endurance without significantly increasing

tracking errors, for most altitudes. The addition of the fuel efficient cost function provided a

variable impact, up to 10% increase in endurance. Lower altitude results showed a larger impact

on tracking errors with increased fuel efficiency, and generally showed undesirable results at the
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lowest altitude. Future expansion to include a gimbaled sensor is expected to improve tracking

performance, especially at low altitudes.

In Chapter 5, we provided a system architecture and approach for utilizing sUAS for TEVV of

Autonomy called “Services Based Testing of Autonomy.” This approach provides the capability to

modularize the systems and enable a common system architecture across a heterogeneous fleet of

sUAS. The low-cost and low-complexity of implementation on sUAS provides a means for testing

of autonomy in a rapid, repeatable environment. The approach is currently being implemented by

the Emerging Technologies Combined Test Force at Edwards AFB.

The implementation of autonomy services into sUAS will provide a capability to integrate

and test a diverse set of autonomy algorithms and sensors, including the POMDP algorithms pre-

sented in Chapters 3 and 4. The future viability of the SBTA approach will be dependent upon

the UxAS system architecture along with the integration of TACE watchdog and LVC capabilities.

Implementation and testing of autonomy is a rapidly growing area of concern. The research pre-

sented within this dissertation provides improvements to an existing autonomy algorithm and also

provides an implementation approach to enable repeatable and dependable testing of autonomy

capabilities.
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