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Abstract

Space Efficient String Search Algorithms and Data Structures

We address the problem of finding all the occurrences of a pattern of length m in a text

of length n. We introduce two new data structures, called the Sloppy Suffix Array and the

Super Sloppy Suffix Array. These data structures are space efficient, easy to understand and

implement. Sloppy suffix arrays can be built faster than suffix arrays with just one array of

n integers; the search algorithms for both have the same time complexity of O(m log n). We

also give a space efficient representation for positional de Bruijn graphs using suffix arrays.
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CHAPTER 1

Introduction

Given a string X let |X| denotes its length. We want to find all the occurrences of string

P in string T . We call string P the pattern and T the text. |P | = m and |T | = n. Let

occ(X) be the set of occurrences of a string X in text T .

The string will be searched repeatedly, so it makes sense to build a data structure. There

are two algorithms associated with such a data structure. The construction algorithm builds

the data structure from T . The search algorithm finds all the occurrences of P in T with

the help of the data structure.

This problem is far from solved for all the cases [1]. There has been a lot of interest

in space efficient data structures due to bioinformatics. Many existing data structures hide

constants in their asymptotic space bounds. Thrashing can begin if the data structure does

not fit entirely inside the RAM. There are algorithms that work in limited space. These

algorithms tend to be very complicated, making the implementations bug-prone.

We design data structures with these things in mind. In this paper, we give data struc-

tures that are space efficient and easy to implement. To keep hidden constants in sight and

calculate exact space used by the data structures we avoid using asymptotic notation for

space bounds.

Definition 1. Let h(T ) be the length of the longest substring X of T that occurs at least |X|

times in T . [2]

We use d(T ) to denote the smallest power of 2 greater than or equal to h(T ) + 1. The

expected value of h(T ), hence of d(T ), is O(log n) for a randomly generated string of size n.

For string T = bananababa, h(T ) = 2 because ba occurs 3 times and |ba| = 2.
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Definition 2. Let h(i, T ) be the length of the longest substring X of T that starts at position

i in T and occurs at least |X| times in T . [3]

Thus, the average value of h(i, T ) is

ĥ(T ) =
1

n

n∑

i=1

h(i, T ).

We use d(i, T ) to denote smallest power of 2 that is greater than or equal to h(i, T ) + 1.

Let

d̂(T ) :=
1

n

n∑

i=1

d(i, T ).

We use the following notation. Given a set S, let S[i] denote ith element of the set. We

think of strings as ordered set of characters. Then we have following definition T [i..j] :=

{T [k] | i ≤ k ≤ j}. We call T [i..j] a slice of T . The prefix of string T that ends at position i is

prefix(i, T ) := T [1..i]. The suffix of string T that begins at position i is suffix(i, T ) := T [i..n].

Older papers assume 32-bit representation of integers. For modern applications 32 bits

is not enough. Assuming 64-bit representation of integers makes us overstate the space

required. This makes it difficult to compare space complexity of the data structures. Since

most algorithms build data structures that are indexes of integers and pointers are also

integers, it makes sense to use number of integers used by an algorithm/data structure

as the measure of space complexity. Throughout this document we represent an array of n

integers as an array of bits, where each integer takes only ⌈log n⌉ bits. Similarly, we represent

a string as an array of characters where each character uses ⌈log σ⌉.

In this document, a general set S of strings is represented as an array of strings. As-

sociated with each string is an integer which is the index of the string in S. When sorting

S, we don’t move strings around; we move the associated indices. Strings (or prefixes of
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a certain length) are used as keys by the sorting algorithm. This representation requires

∑
s∈S

|s|⌈log |σ|⌉ + |S|⌈log |S|⌉ bits where σ is the alphabet. Our work is inspired by applica-

tions in bioinformatics where the alphabet sizes are typically small. Therefore, we consider

alphabet size to be constant.

When dealing with a set of suffixes of string T , the set is represented using T and the set

of indices is an array of integers, where each integer is the starting location of the suffix in

T . This set contains integers from 1 to |T |. This takes |T |⌈log |σ|⌉+ |T |⌈log |T |⌉ bits. While

comparing suffixes of unequal length, we assume that there is a special character $ at the

end of any string and that $ is lexicographically smaller than all the characters.
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CHAPTER 2

Liturature Survey

2.1. Tries

Definition 3 (Trie). A trie on alphabet σ is a rooted tree with the following properties.

(1) Each edge is labeled with a character.

(2) For each node u and each character c ∈ σ, there is at most one edge with label c

from u to a child of u.

The path label of a node u in a trie is the string spelled out by the path from the root

of the trie to u. The name trie comes from retrieval and is pronounced like try. It can

be used to store a arbitrary set S of strings. Because of the second property of tries, there

is a one-to-one correspondence between nodes of a trie and path labels. They can be used

interchangeably. A trie is a tree, because there is only one path from each node to any other

node (Figure 2.1). When the set that the trie represents is the set of suffixes of a string T

we call it a suffix trie (Figure 2.2).

Figure 2.1. The trie of S = {ab, aa, aba, b}.

Insertion of a new string q in a trie can be performed by starting at the root, following the

edges that are labeled by characters of q and creating new edges corresponding to characters

if they are not already the path label of any node of the trie. There is a node corresponding

to every string of the set. At the node representing string q, we install a pointer that points
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Figure 2.2. The suffix trie of T = banana.

to q. At nodes that represent no string in the set S we install a pointer that points to NULL.

All leaf nodes point to some string in the set. Clearly, this can be done in O(|q|) time. Thus,

insertion in a trie is linear in the length of the string. Inserting all the strings in a set into

the trie completes construction of the trie for the set of strings.

A search algorithm is just like the construction algorithm above. Start at the root. Keep

following outgoing edges labeled from current node and current character. If no outgoing

edge exists from current node on the current character then s 6∈ S. If you end up at a node

u that points to NULL and s is exhausted, then there exists some t ∈ S of which s is a

prefix. This is useful when searching for all the occurrences of a string in T . The subtree

below node u gives us all the strings in S of which s is a prefix. If S is the set of suffixes of

T then the subtree contains pointers to all the occurrences of s ∈ T . Searching can be done

in O(|s|) time. This algorithm finds whether s occurs as a prefix of any string in S.

The construction algorithm for a trie takes

O(
∑

s∈S

|s|)

time. Hence to construct a suffix trie takes

O(n(n+ 1)/2) = O(n2)

5



time. A worst case space requirement for a trie is O(n2), for strings of the form an/2bn/2

[4] (Figure 2.3). This space requirement is prohibitive for many applications of practical

interest.

Figure 2.3. Worst case suffix trie for T = an/2bn/2 for n = 6.

Despite the disadvantages, tries have found some real world applications. If set of strings

is small and you want to filter out strings that are not in the set, then tries are good choice

of data structure. They are used in the high performance messaging library ZeroMQ. There

is a large number of machines that broadcast messages and every machine is subscribed to

a small subset of machines to receive updates from. Each message contains identifier of the

sender. Subscribers need to decide quickly if the message is from one of the machines it

is subscribed to or not. Tries are used to decide if a given sender is in the subscribed list,

independently of the size of the subscribed list [5].

2.2. Suffix Trees

We can merge two edges into one and label the new edge by concatenation of the labels

of the original edges. This is called path compression. To reduce the space requirement of

a suffix trie, we compress the paths that don’t branch and connect two nodes that point to

some string in the set represented (i.e. non-NULL nodes). This gives us the suffix tree. We
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label each edge with a string instead of a character. This reduces the number of the internal

nodes in the tree. Compare the suffix trie and the suffix tree of T = banana in Figure 2.4,2.5.

Figure 2.4. Suffix trie of T = banana

Figure 2.5. Suffix tree of T = banana

There are at least n nodes in this tree, each corresponding to a suffix. The label of each

edge is an integer tuple, which is the start and end position of the label of the node in T .

Hence it is necessary to have 4n integers. There can be at most n internal nodes and hence

the worst case space requirement is 5n integers which is O(n).

Path compression improves space complexity to O(n) for suffix trees vs O(n2) for suffix

tries. The suffix tree can be constructed by first constructing the suffix trie and compressing

paths. However, this construction algorithm uses O(n2) space. There are algorithms that

construct the suffix tree without constructing the suffix trie first, and require only O(n)

working space [6–9].

7



2.3. Position Heaps

The position heap data structure was first described in [2].

Definition 4 (Position Heap). Position heap for a text T is created by inserting suffixes of

T into a trie by the following two rules:

(1) A shorter suffix is inserted before a longer suffix.

(2) While inserting a suffix s in a position heap we insert shortest prefix of s that is not

already in the trie.

Let T = bananababa. The position heap for T ′ = ananababa is shown in Figure 2.6

where the suffix bananababa is being inserted.

10 9 8 7 6 5 4 3 2 1

b a n a n a b a b a

ban is the shortest prefix of suffix bananababa that is not already in the position heap, so

we insert ban in the trie and label the node 10. See Figure 2.6. Its easy to see that insertion

into position heap is linear in length of the string being inserted.

Figure 2.6. Inserting bananababa into the position heap.
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Note that positions in the tree satisfy the min heap property (label of root is smaller

than or equal to labels of its children) hence the name position heap.

To search for all the occurrences of some pattern P , we find longest prefix X of P that

is in the position heap. Then there are two cases,

(1) P = X: In this case all the nodes in the subtree below X are labeled with occur-

rences of P . All the nodes on the path leading up to X are potential occurrences

and need to be checked one by one to confirm if P really occurs at that location.

(2) P > X: In this case all the nodes on the path leading up to X are labeled with

potential occurrences and we check each of them individually to see if its really an

occurrence of P .

We give example of searching in a position heap below. Let P = ba. See Figure 2.7. In

this case X is ba and so 4,10 are occurrences of P . 1, 2 are potential occurrences of P . We

lookup the positions 1, 2 and see that P occurs only at position 2. So P occurs at {2, 4, 10}.

Figure 2.7. The positions 4, 10 are definite occurrences of ba and 1,2 are
potential occurrences

Since the height can be at most 2h(T ) and we insert n suffixes into the position heap

construction takes O(nh(T )) time.
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While searching for a pattern P we find longest prefix X of P that is in the position

heap. At each of O(|X|) ancestors of X we perform an O(m) time operation to check if P

occurs at that position. The number of ancestors is min{m,h(T )}. So the search algorithm

takes O(mmin{m,h(T )}+ |occ(P )|) time.

In a position heap, each suffix has a node corresponding to it and a parent. There are n

suffixes so the space requirement is at least 2n integers.

Any σ-ary tree can be represented by a binary tree. Each node stores data corresponding

to that node, a pointer to the leftmost child and a pointer to the right sibling. This requires 3n

integers space (assuming data stored at each node is an integer). This representation doesn’t

save us any space for trees in general. For position heaps we know that data corresponding

to each node is a position of a suffix. The positions of the suffixes are integers from 1 to n.

This allows us to represent the position heap in only 2n integers. We store the left child and

right sibling pointers for a node with data i at index i in the left child array and the right

sibling array respectively.

Succinct representation of the position heap of T = bananababa is shown below.

Index 1 2 3 4 5 6 7 8 9 10

Left child array 3 4 5 10 0 8 9 0 0 0

Right sibling array 0 6 2 0 7 0 0 0 0 0

We can do even better with position heaps. They can be built in O(n) time and the

search time can be improved to O(m + |occ(P )|). This requires more space. Interested

readers should refer to the original paper [2]. There also is online construction algorithm for

position heaps [10].
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2.4. Suffix Arrays

All the data structures above used pointers and hence a lots of storage space was required.

Suffix arrays (SA) don’t use any pointers, so they are a space efficient alternative to the above

data structures. Searching in suffix arrays takes O(m log n) time instead of O(m). We can

speed up searches to take only O(m+log n) time, but that increases the space requirements.

Suffix arrays are constructed by sorting the suffixes of a string T . We store only the

positions of these suffixes in an array of integers, so the space requirement is just n integers.

Since comparison of two suffixes takes O(n) time in the worst case, suffix arrays can be built

in O(n2 log n) time. We can reduce this to O(n log n) time using extra space. By traversing

suffix tree in inorder the suffix array can be constructed in O(n) time. There are many

algorithms to build suffix array they fall into different classes according to algorithmic tricks

they use [11].

Searching in suffix array for patter P of length m can be performed in O(m log n) time

using binary search, where each comparison takes O(m) time.

Definition 5 (Bucket). Let a k-bucket be a set of strings sorted using their k-prefixes as the

sort keys.

Let A be an algorithm that produces a 2i-bucket of set S given its i-bucket in O(n) time

where n = |S|. Then we can use A to build the suffix array in O(n log n) time as follows,

(1) Construct a 1-bucket of suffixes. This takes O(n log n) time.

(2) Then use A to get a 2i-bucket from i-bucket for i ∈ {1, 2, 4, . . . , 2⌈log2 n⌉}

We have to use A only log n times. This shows we can successfully use A to build SA

in O(n log n) time. The authors give an algorithm A in the paper [12]. It requires an extra

array of n integers which brings space requirement of the algorithm to 2n integers.
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CHAPTER 3

Space Efficient Representation of Positional de

Bruijn Graphs

The positional de Bruijn graphs are useful in bioinformatics. They were introduced in

[13].

A k-mer is simply a string of length k. Given a string R we can get |R| − k + 1 k-mers

from it by extracting the string of length k corresponding to each position 0 ≤ i ≤ |R|−k+1.

A tuple (R[i..i+k], i) corresponding to a k-mer and its position within R is called positional

k-mer.

Definition 6 (Positional de Bruijn Graphs). Given a set R of strings the positional de

Bruijn graph is Gk,∆ := (V,E) where V := positional k-mers extracted from each string

R ∈ R. There is an edge connecting (u, p), (v, q) ∈ V if u[2..k] = v[1..k− 1] and |p− q| ≤ ∆.

The naive representation of this graph is space consuming. For a set of strings R we

give,

(1) A representation of this graph that uses only 2|V | integers space other than space

required by R.

(2) An algorithm to build it in O(k|V |) time from R.

(3) An algorithm to find the neighbors of v ∈ V in O(|σ|k log |V |) time for alphabet σ.

We can represent each v ∈ V as a tuple (i, j) of integers, where i is the index of the

k-mer and j is the index of corresponding string R ∈ R.

To build the data structure we sort the tuples using k-mer (i, j) as primary key and i

as secondary key. Since the alphabet size is fixed we can do sorting by the primary key in

12



O(k|V |) time using the radix sort. Similarly sorting by the secondary key can be done in

O(k|V |) time.

To search for the neighbors of a (u, p) ∈ V we first binary search for strings from {c +

u[1..k − 1], u[1..k] + c|c ∈ σ} in the data structure and then binary search for p to find the

positions that are within ∆ distance of p. This takes O(|σ|k log |V |) time.
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CHAPTER 4

Sloppy Suffix Arrays

Constructing the a suffix array without extra space requires O(n2 log n) time. Searching

in a suffix array requires O(m log n) time with extra space this can be improved to O(m +

log n) time [12].

In this section we present a new data structure called the Sloppy Suffix Arrays (SSA) that

requires only n integers of space and can be constructed in O(d(T )n log n) time. For a ran-

domly generated string expected time complexity of the construction algorithm isO(n log2 n).

We also present some experimental results about the SSA. First we define some concepts

that are needed to talk about the SSA.

Definition 7 (Bucket). Let a k-bucket be a set of strings sorted using their k-prefixes as the

sort keys.

We also say that the depth of a k-bucket is k. For example, the 2-bucket of the set of

suffixes of banana is,

6 a |

2 an|ana

4 an|a

1 ba|nana

5 na|

3 na|na

Let BuildBucket(k, S) be an algorithm that builds the k-bucket from an unsorted set of

strings S in place. Clearly, BuildBucket(k, S) takes O(k|S| log |S|) time to build k-bucket

from S.

14



Definition 8 (Block). For a k-bucket B let a p-block be a maximal slice B[i..j] that shares

a common k-prefix and has size at most p.

A bucket is k-perfect iff it is a k-bucket and has no i-block for i > k. For example,

the 2-bucket of suffixes of banana is 2-perfect but not 1-perfect. Let IsPerfect(k,B) be an

algorithm that checks if a bucket B is k-perfect. Obviously, it takes O(k|B|) time to check

if B is k-perfect.

4.1. Construction Algorithm

Now we give an algorithm to construct Sloppy Suffix Array (SSA) from T .

Definition 9. The SSA of a string T is the d(T )-perfect bucket built from the set of suffixes

of T .

Algorithm: BuildSSA

Input: Text T

Output: SSA(T ) the sloppy suffix array of T .

1: B ← Set of suffixes of T

2: k ← 1

3: B ← BuildBucket(k,B) // In place sort.

4: while k ≤ n do

5: if IsPerfect(k,B) then

6: return B

7: else

8: k ← 2k

9: end if

10: end while

15



Notice that when strings fall into a k-block they will stay together in 2k-bucket. From

the definition of d(T ) we can see that when the set of suffixes of a string is sorted by d(T )

characters each string falls into a d(T )-block. After sorting by at least d(T )-prefixes B is

d(T )-perfect. Hence, the algorithm terminates and produces the SSA of T .

This gives us runtime of the construction algorithm. The time complexity is

∑

k∈{1,2,4,...,d(T )}

kn log n+ kn

= (n log n+ n)
∑

k∈{1,2,4,...,d(T )}

k

= (2d(T )− 1)(n log n+ n)

= O(d(T )n log n)

We use in-place sorting algorithm so only O(1) extra space is used at any point that

gives space complexity of n integers. The expected value of d(T ) is O(log n) on a randomly

generated string, so the expected runtime of the algorithm is O(n log2 n).

4.2. Search Algorithm

Search for a pattern P of length m in SSA can be performed in O(m log n) time. Note

that this is also the time complexity of searching in the suffix arrays when no extra space

or auxiliary data structures are allowed. We give recursive version of the algorithm because

it is easy to analyze. It can easily be converted into a iterative version with the same

complexity, which will allow us to save stack space used for function calls. FindSSA finds

all the occurrences of string P in T given SSA(T ).
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Algorithm: FindSSA

Input: Pattern P of length m

Output: All the occurrences of P in T .

1: S1 = BinarySearch(P ) // Returns all the occurances of P .

2: if |P | ≤ d(T ) then

3: return S1

4: else

5: q = min{d(T ), |P | − d(T )}

6: S2 = FindSSA(P [q + 1 .. |P |])

7: S3 = {x− q|x ∈ S2}

8: return S1 ∩ S3

9: end if

When m > d(T ) is not a multiple of d(T ) we search for the last d(T ) characters of P to

guarantee that BinarySearch returns at most d(T ) hits. No string of length d(T ) occurs

more than d(T ) times so BinarySearch never returns more than d(T ) occurrences. Each

binary search for a string of length d(T ) takes O(d(T ) log n) time (log n comparisons; each

comparison takes d(T ) time).

Using a naive algorithm, the intersection of two sets of size at most d(T ) can be done in

O(d(T ) log d(T )) time (We can sort one set and binary search elements of the other in the

sorted array). If we use indices as the secondary key while building SSA, the search algorithm

will always return a sorted set. A simple Merge like algorithm can intersect sorted sequences

in O(d(T )). Note that we can not use compressed representation of integers with intersection

17



algorithm if we want to take advantage of processor instructions. Fast implementation of

the algorithms is of great practical interest.

The running time of the above algorithm is given by following recurrence,

Time taken = Recursive call + Binary Search + Set Intersection

T (m) = T (m− d(T )) +O(d(T ) log n) +O(d(T ) log d(T ))

= T (m− d(T )) +O(d(T ) log n)

=

m/d(T )+1∑

i=1

d(T ) log n

=
m+ d(T )

d(T )
d(T ) log n

T (m) = O(m log n)

To report all the occurrences of P we need extra O(|occ(P )|) time so the time complexity

is O(m log n+ |occ(P )|). Search time in SSA is independent of d(T ).

4.3. Experiments

We generated random binary strings of lengths ranging from 1000 to 9500 in increments

of 500. For each length and for each p ∈ 0.5, 0.51, . . . , 0.99 we picked characters from

distribution p = Prob{C =′ a′} and 1 − p = Prob{C =′ b′} and generated 1000 strings.

These strings were used to calculate the average value of d(T ) for a string of given length

and p.

We can see from the plots that the value of d(T ) barely exceeds 10% of the string length

even for highly skewed distributions 0.9 < p < 0.97. Only when p ≥ 0.98 d(T ) takes bigger
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values. Such strings are unlikely to arise in practice because they contain little information.

A reasonably complex organism is likely to have complex DNA and therefore small d(T )

value. For E.coli genome of length 4707963, d(T ) is merely 32. It is important to observe

that long repeated substrings do not change the value of d(T ) by a lot unless they occur too

many times. Hence, we can expect the construction algorithm to be fast in practice.
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CHAPTER 5

Super Sloppy Suffix Arrays

To construct the SSA we sorted suffixes of T by first d(T ) characters. The construction

algorithm took O(d(T )n log n) time. We give new data structure that has faster construction

algorithm that takes O(d̂(T )n log n) time by being sloppier. We call this data structure

Super Sloppy Suffix Array (SuperSSA). Searching in SuperSSA for a pattern of length m

takes O(m log2 n) time.

Construction of SuperSSA takes space for n + log n + O(1) integers but to bound the

runtime of the search algorithm we need to augment SuperSSA with lookup table called

Inverse SuperSSA which requires extra n integers. Hence, the total space requirement is

2n + log n + O(1) integers. In the following sections we give algorithms to construct and

search in SuperSSA.

5.1. Construction Algorithm

To construct SuperSSA we sort the set B of all suffixes of the text by the first k (initially

k = 1) characters. Then remove groups of suffixes that form k-blocks into a k-bucket Bk.

Note that this Bk will be perfect. This leaves us with fewer suffixes, which are the sorted by

first 2k characters during the next iteration of the algorithm. We repeat the process until

we run out of suffixes to sort. This procedure is outlined below. For exact implementation

details see the pseudocode BuildSuperSSA.

(1) Let B = Suffixes of T

(2) k ← 1

(3) While B is not empty
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(a) Sort B by first k characters.

(b) Construct a perfect k-bucket from suffixes that form k-blocks by removing the

blocks from B. See Figure 5.1

(c) k ← 2k.

Implementation of this algorithm needs two important subroutines after sorting the suf-

fixes by the first k characters, one to find k-blocks and another to construct a perfect k-bucket

using those blocks. Moreover, these subroutines have to work in constant extra space.

5.1.1. Finding Blocks. The k-blocks can be found by starting at the top of the k-

bucket and scanning until a suffix s, that has a different k-prefix than starting suffix is

found. If there are less than or equal to k suffixes between s and the starting point, we

have found a k-block. Otherwise the location of s becomes new starting point and scanning

continues. This is what FindBlock does and returns indices of start and end of the block.

We need 2 integers to mark out a block one for the beginning and one for the end of the

block. To avoid using space to mark all blocks, we move a block to its bucket as soon as

it is found. This subroutine uses O(1) extra space. Since the FindBlock eventually has

to go through all the suffixes in bucket B, and compare first k characters for each the time

complexity is O(k|B|).

Algorithm: FindBlock

Input: A k-bucket B, k, index to start scanning t

Output: Start index, end index, (i, j) of k-block that starts at or after t. If no k-block is

found return (B.end+ 1, B.end+ 1).

1: i← t

2: j ← t

23



3: while i ≤ B.end do

4: while k-prefix(Bi) = k-prefix(Bj) do

5: j ← j + 1

6: if j = B.end then

7: if j − i+ 1 ≤ k then

8: return (i, j)

9: end if

10: end if

11: end while

12: if j − i ≤ k then

13: return (i, j − 1)

14: end if

15: i← j

16: end while

17: return (B.end+ 1, B.end+ 1)

5.1.2. Moving Blocks. Let B be a k-bucket. We want to find k-blocks in it and build

a perfect k-bucket Bk without using extra space. This can be achieved by moving all the

k-blocks to the top of B. We set Bk.start to the top of B and keep updating Bk.end as we

move k-blocks. Once we have moved all the k-blocks to the top of B we have built Bk and

suffixes from Bk.end + 1 to B.end is the new B. This uses 2 integers for marking out the

boundaries of Bk. There can be at most log n perfect buckets so overall 2 log n integers will

be required. See Figure 5.2 for working of the algorithm.
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Figure 5.1. Constructing a perfect k-bucket Bk using k-blocks b1, b2, . . . , bm

Figure 5.2. Working of MoveBlock

Algorithm: MoveBlock

Input: A k-bucket B, (i, j) the start index, the end index of block to be moved.

Output: Returns modified B where B[i..j] is moved to the front of B.

1: t← B.start

2: while i ≤ j do
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3: Swap B[t] with B[i]

4: i← i+ 1

5: t← t+ 1

6: end while

7: Bk.start← t

8: return B

One issue is some suffixes that don’t form k-blocks will become unsorted. But since

those suffixes were not in any k-block they won’t get into a k-bucket. This is not a problem

because they will be sorted by 2k characters in the next phase of the algorithm and fall into

their proper places.

5.1.3. Building Inverse SuperSSA. To make intersection faster in cases where there

are too many occurrences we can we construct an index. This index answers where a suffix

occurs in SuperSSA in O(1) time. This index is called Inverse Super Sloppy Suffix

Array (ISuperSSA). Its defined as

ISuperSSA[SuperSSA[i]] = i, ∀1 ≤ i ≤ n.

We can store it in an array of n integers. And its definition gives us direct construction

algorithm.

5.1.4. Analysis. It is easy to see that all the subroutines used only O(1) extra space.

Now we analyze the time complexity. BuildBucket(k,B) takesO(k|B| log |B|) time. FindBlock

touches every suffix in B at constant number of times because once it finds a k-bucket B[i..j]

after index t next time it is called with index j + 1 as starting point so suffixes between t
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and j are not touched again. FindBlock takes total O(k|B|) time. Similarly MoveBlock

touches the suffixes only O(1) times and takes O(|B|) time overall. The total time con-

sumed between Step 13 and Step 22 is O(k|B|+ |B|) see pseudocode for BuildSuperSSA.

BuildBucket which involves sorting dominates the runtime.

If a suffix T [i..n] falls into bucket Bk then it was involved in 1 + 2 + 4 + . . .+ k = O(k)

comparisons. It will fall into Bk if its k-prefix i.e. T [i..k] occurs more than k/2 times but

≤ k times. In other words, T [i..n] falls into bucket k if k/2 < d(i, T ) ≤ k, because that

is when it forms a k-block. T [i..n] is inspected upto only O(d(i, T )) characters. Average

suffix comparison time is O(d̂(T )). Which gives the runtime of O(d̂(T )n log n) for SuperSSA

construction algorithm . Since d̂(T ) < d(T ) building SuperSSA is faster than building SSA.

Following calculation is another way of proving runtime of the construction algorithm. We

use Bk for size of k-bucket Bk.

T (n) =
∑

k

k(n−
∑

i<k

Bi) log(n−
∑

i<k

Bi)

≤ log n
∑

k

k(n−
∑

i

Bi<k)

= log n
∑

k

k
∑

i≥k

Bi

≤ log n
∑

k

2kBk

= 2 log n
∑

i

d(i, T )

= O(d̂(T )n log n)
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5.1.5. Pseudocode.

Algorithm: BuildSuperSSA(T )

Input: Text T

Output: SuperSSA(T)

1: B ← Suffixes of T

2: B.start← 1

3: B.end← n

4: for k ∈ {1, 2, 4, . . . , n} do

5: Bk.start = B.end+ 1

6: Bk.end = B.end+ 1

7: end for

8: k ← 1

9: while B 6= φ do

10: B ← BuildBucket(k,B)

11: Bk.start← B.start

12: t← B.start

13: while t 6= B.end+ 1 do

14: (i, j)← FindBlock(k,B, t)

15: if i = j = B.end+ 1 then

16: GOTO Step 23

17: end if

18: B ←MoveBlock(i, j, B)

19: B.start← B.start+ (j − i) + 1
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20: Bk.end← B.start− 1

21: t← t+ j + 1

22: end while

23: k ← 2k

24: end while

25: return {B1, B2, B4, . . . , Bn}

5.2. Search Algorithm

To search in SuperSSA we start with prefix of P of size i (initially set to 1) and search

for it in bucket Bi. If it doesn’t occur in Bi we we search for prefix of size 2i in bucket B2i.

Once a prefix |x| is found we recursively find occurrences of the y := suffix(|x|+1, P ). We

subtract |x| from each element of occ(y) and find intersection of the resulting set with occ(x).

This gives us all the occurrences of P . For example, while searching for P = abcdefgh if

occ(abc) = {3, 11, 25} and occ(defgh) = {5, 27, 99} then occ(P ) = {3, 25}.

5.2.1. Analysis. First we analyze the search algorithms complexity. For a string of

length m we binary search in at most log n buckets of size at most n, so it clearly takes

O(m log n) time for each of the log n buckets. This gives us runtime of O(m log2 n).

Now let us analyze the complexity of intersection. Let A and B be the sets of integers

(in our case these are the sets of occurrences of the substrings of the pattern) we can sort

A and binary search for occurrences of b ∈ B and output b if it is found in A. This

O(|A| log |A| + |B| log |A|) time to find the intersection. We can use this algorithm for

intersection as long as the number of occurrences of the string is proportional to its length.

But this is not true when searching in SuperSSA for string x that does not occur in any
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k-bucket for k ≤ |x|. In this case, x can have more than |x| occurances. We can get arround

this problem by using ISuperSSA.

Intersection Algorithm using ISuperSSA Let X be the set of occurrences of P [1..i] a small

set and Y be set of occurrences of the part of the pattern under consideration i.e P [i+1..m]

a large set. Y is represented as a set of log n intervals i.e. lower and upper bound locations

of P [i+ 1..m] in each bucket as shown in Figure 5.3.

Figure 5.3. Intersection using Inverse SuperSSA

(1) For x ∈ X

(a) j ← ISuperSSA[x+ i]

(b) If j doesn’t fall within any of the intervals that specify Y remove it from X.

This algorithm takes O(|X| log n) time. The complexity of search for pattern of length

m in SuperSSA of a string of length n is,
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Search time P = Search time for suffix of P + Search time for prefix of P of size mi

+ Time for intersection of occurances

T (m) = T (m−mi) +O(mi log
2 n) +O(mi log n)

=
∑

i

miO(log2n)

= O(m log2 n)

To report all the occurrences of P we need extra O(|occ(P )|) time. Hence, we can search

in SuperSSA in O(m log2 n+ |occ(P )|) time.

5.2.2. Pseudocode.

Algorithm: FindSuperSSA

Input: Pattern P

Output: All the occurrences of P

1: t← 1

2: while t ≤ d(T ) do

3: if t ≤ |P | then

4: X ← BinarySearch(P [1..t], Bt)

5: else

6: return
⋃

l>|P |

BinarySearch(P,Bl)

7: end if

8: if X = φ then

9: t← 2t
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10: continue

11: else

12: break

13: end if

14: end while

15: return X ∩ FindSuperSSA(P [t+ 1..m])
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