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ABSTRACT OF DISSERTATION 

TROPICAL CYCLONE EVOLUTION VIA INTERNAL ASYMMETRIC DYNAMICS 

This dissertation advances our understanding by which tropical cyclones (TCs) evolve 

solely due to internal dynamics, in the absence of large-scale environmental factors and sur

face fluxes, using a hierarchy of numerical model simulations, diagnostics and observations. 

In the first part, the role of inner-core (eye and eyewall) transport and mixing processes in 

TC structure and evolution is examined, and in the second part, some asymmetric dynamics 

of tropical cyclone evolution are studied: spontaneous inertia-gravity wave radiation from 

active TC cores and an observational case study of the role of vortical hot towers in tropical 

transition. Overall, internal dynamics are found to be significant for short term intensity 

change in hurricanes. 

The role of two-dimensional transport and mixing in TC structure and intensity 

change is quantified. First, the mixing properties of idealized hurricane-like vortices are as

sessed using the effective diffusivity diagnostic. Both monotonic and dynamically unstable 

vortices are considered. For generic deformations to monotonic vortices, axisymmetrization 

induces potential vorticity (PV) wave breaking outside the radius of maximum wind, form

ing a finite radial length surf zone characterized by chaotic mixing. Although on a much 

smaller scale, this surf zone is analogous to the surf zone outside the wintertime strato

spheric polar vortex. For unstable rings, during barotropic instability both the inner and 

outer breaking PV waves create horizontal mixing regions. For thin ring breakdowns, the 

entire inner-core becomes a strong mixing region and passive tracers can be transported 

quickly over large horizontal distances. For thick ring breakdowns, an asymmetric partial 

barrier region may remain intact at the hurricane tangential jet, with mixing regions on 
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each side where the waves break. The inner, breaking PV wave is quite effective at mixing 

passive tracers between the eye and eyewall; with a monotonic low-level equivalent potential 

temperature radial profile, these results support the hurricane super-intensity mechanism. 

Next, a systematic study of inner-core PV mixing resulting from unstable vortex breakdowns 

is conducted. After verifying linear theory, the instabilities are followed into their nonlin

ear regime and the resultant end states are assessed for 170 different PV rings, covering a 

wide spectrum of real hurricanes. It is found that during all PV mixing events, both the 

maximum mean tangential velocity and minimum central pressure simultaneously decrease, 

thus empirical pressure-wind relationships are likely not valid during these events. Based 

on these results, the use of a maximum sustained tangential velocity metric in defining 

hurricane intensity is discouraged. Rather, minimum central pressure or integrated kinetic 

energy is recommended. 

In order to examine transport and mixing in three dimensions, two idealized hy

drostatic primitive equation models were developed from a preexisting limited area, peri

odic spectral shallow water model. The first model uses an isentropic vertical coordinate 

and the second model uses a sigma (terrain following) vertical coordinate. The models 

were extended on a Charney-Phillips grid. They include both horizontal momentum and 

vorticity-divergence prognostic formulations, and a nonlinear balance initialization option. 

A simulation of a dynamically unstable hurricane-like PV hollow tower in the isentropic 

model yielded a "PV bridge" across the eye, which has been previously simulated in moist 

full-physics models. Since a portion of PV is static stability, it is possible that the hurricane 

eye inversion is dynamically controlled. In addition, an initially vertically erect PV hollow 

tower became tilted, suggesting one mechanism for creating eyewall tilt is adiabatic PV 

mixing. 

Finally, some asymmetric dynamics of tropical cyclone evolution are examined. First, 

a shallow water simulation of a non-axisymmetrizing active TC core is analyzed. The 
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initially balanced flow rapidly evolves into an unbalanced state, and packets of spiral inertia-

gravity waves (IGWs) are emitted to the environment. The conditions that favor radiation 

of IGWs are assessed. Since low wavenumber vorticity structures are often observed in 

TC cores, it is possible that hurricanes often enter into spontaneously radiative states 

(notwithstanding the IGWs created by latent heat release from moist convection), affecting 

their own intensity and disrupting the local environment. Secondly, a observational case 

study of vortical hot towers (VHTs) in tropical cyclone Gustav (2002) is presented. Multiple 

mesovortices were observed as low level cloud swirls after being decoupled from the VHTs 

due to vertical shear. The observed evolution of these mesovortices is consistent with recent 

full-physics numerical model simulations linking VHTs as fundamental coherent structures 

of TC genesis and intensification. 

Eric A. Hendricks 
Department of Atmospheric Science 
Colorado State University 
Fort Collins, Colorado 80523-1371 
Summer 2008 
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Chapter 1 

INTRODUCTION 

This dissertation is a compilation of journal papers that are either already submitted 

or published, or nearly ready to be submitted. There are five separate papers. Each paper 

adds new insight into structural evolution and intensity change of tropical cyclones due 

solely to internal dynamical processes, i.e., in the absence of enviromental influences (e.g., 

vertical wind shear) and ocean surface fluxes. Each chapter has its own introduction and 

conclusions section, and is meant to be read as a separate entity. Here, a brief overview of 

each chapter is given. 

In chapter 2, the Hendricks and Schubert (2008) paper is given. In this paper, the 

effective diffusivity diagnostic is used to map out two-dimensional transport and mixing 

properties of hurricanes. An analysis of vortex Rossby wave dynamics contributing to 

internal mixing is undertaken for some idealized hurricane-like vortices in a nondivergent 

barotropic model. The results lend new insight into how passive tracers are radially mixed 

in hurricanes. Insights into internal mechanisms of hurricane intensity change are discussed 

in light of the results. 

In chapter 3, the Hendricks et al. (2008) paper is given. This is a systematic study of 

structural and intensity changes in hurricanes due to potential vorticity (PV) mixing in the 

inner-core (eye and eyewall) resulting from dynamic instability of the eyewall PV ring. A 

sequence of numerical experiments is conducted covering a parameter space that represents 

all possible barotropic hurricane-like vortices, and the complete lifecycle of each PV ring is 

assessed. 
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In chapter 4, a draft of the Hendricks et al. (2009a) paper is given. Two mesoscale 

hydrostatic primitive equation models are described that are well-suited for idealized studies 

of geophysical vortex dynamics. The models were developed from a pre-existing periodic 

spectral shallow water model. The first model uses an isentropic vertical coordinate and the 

second uses a sigma (terrain following) vertical coordinate. Some verification and validation 

tests are presented, along with some simulations of evolution of hurricane-like PV hollow 

towers (the generalization of vorticity rings to the stratified atmosphere). Portions of this 

chapter will be used in the final paper, which will be devoted to understanding structural 

and intensity change resulting from three-dimensional PV mixing. 

In chapter 5, a draft of the Hendricks et al. (2009b) paper is given. An analysis of a 

shallow water model simulation of a dynamically active tropical cyclone core is undertaken 

to understand aspects of spontaneous inertia-gravity wave emission from hurricanes. The 

conditions that favor spontaneous radiation are assessed. This work adds to the growing 

body of literature on spontaneous adjustment emission from atmospheric jets and vortices. 

Finally, in chapter 6, the Hendricks and Montgomery (2006) paper is given. This is 

an observational study examining the evolution of vortical hot towers (VHTs) in tropical 

cyclone Gustav (2002). A large portion of Gustav was exposed due to vertical shear, un

covering multiple convectively generated low level mesovortices that originated from VHTs, 

but became decoupled due to the vertical shear. Synoptic-scale and mesoscale observations 

were used to understand the tropical transition that occurred, and comparisons were made 

between the observed mesoscale events and recent cloud resolving numerical simulations. 

The broad conclusions of this dissertation, unifying the individual conclusions in each 

chapter, are given in chapter 7. 



Chapter 2 

BAROTROPIC ASPECTS OF TRANSPORT A N D MIXING IN 

HURRICANES 

2.1 Abstract 

The two-dimensional transport and mixing properties of evolving hurricane-like vor

tices are examined using the effective diffusivity diagnostic on the output of numerical 

simulations with a nondivergent barotropic model. The internal dynamical processes caus

ing mixing, as well as the location and magnitude of both chaotic mixing and partial barrier 

regions are identified in the evolving vortices. Breaking potential vorticity (PV) waves in 

hurricanes are found to create chaotic mixing regions of finite radial extent (approximately 

20-30 km). These waves may break as a result of axisymmetrization or dynamic instabil

ity. For monotonic vortices, the wave breaking may create a surf zone outside the radius 

of maximum wind, while the vortex core remains a partial barrier. Although on a much 

smaller scale, this hurricane surf zone is analogous to the surf zone outside the wintertime 

stratospheric polar vortex. For unstable vorticity rings, which are analogous to intensifying 

hurricanes, the inner and outer breaking PV waves are quite effective at radially mixing 

a passive tracer locally. The horizontal mixing associated with the inner, breaking PV 

wave would support the hurricane superintensity mechanism, provided the passive tracer is 

equivalent potential temperature with a maximum in the eye. For thin rings, which are very 

dynamically unstable, the entire hurricane inner-core can become a chaotic mixing region 

during the breakdown, and passive tracers can be quickly mixed between the eye, eyewall, 

and local environment. Both primary and secondary azimuthal jets in hurricanes are iden-
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titled as partial barriers. A surprising result is that for dynamically unstable thick rings, 

the disturbance exponential growth rates are small enough that the primary azimuthal jet 

may remain a partial barrier for a long time, even though the inner and outer PV waves 

are breaking. Consistent with past work, strong PV gradients in hurricanes are found to be 

barriers to mixing. 

2.2 Introduct ion 

Although large-scale environmental factors such as vertical wind shear and sea sur

face temperature are known to play an important role in intensity change of hurricanes, the 

role of internal dynamical processes is not so clearly understood (see the review by Wang 

and Wu 2004). Some important internal processes are wave-mean flow interaction due to 

vortex Rossby waves (Montgomery and Kallenbach 1997), potential vorticity (PV) mixing 

between the eyewall and eye (Schubert et al. 1999; Kossin and Schubert 2001; Montgomery 

et al. 2002), inner spiral rainbands (Guinn and Schubert 1993; Chen and Yau 2001), eye-

wall replacement cycles (Willoughby et al. 1982; Houze et al. 2007; Terwey and Montgomery 

2008), and mixing of moist entropy between the eye and eyewall (Persing and Montgomery 

2003; Braun et al. 2006; Cram et al. 2007). Accurate prediction of hurricane intensity 

change is currently limited by the lack of a comprehensive understanding of some or all of 

these processes. In particular, these internal processes may be important factors governing 

rapid intensification and weakening of hurricanes. As a striking example of the impor

tance of mixing processes in the hurricane inner-core, observational evidence was presented 

(Montgomery et al. 2006a; Aberson et al. 2006) indicating that Hurricane Isabel (2003) was 

super-intense (i.e., exceeding its maximum potential intensity as defined by the axisym-

metric theory of Emanuel (1986, 1988) due to the persistence of multiple eye mesovortices 

that transported high moist entropy air into the eyewall. The famous starfish mesovortex 

pattern (Fig. 2.1) was hypothesized to be largely a result of barotropic instability of the 

eyewall (Kossin and Schubert 2004). 
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Figure 2.1: Visible satellite image of Hurricane Isabel at 1315 UTC on 12 September 2003 
(from Kossin and Schubert 2004). 
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On the laxge scale, it is well known that geophysical vortices act as transport barriers. 

Their persistence as long-lived entities is believed due in part to this tendency. However, 

in local regions of the vortices and their near environment, strong mixing can occur. For 

example, it has been shown that Rossby wave breaking on the edge of the wintertime 

stratospheric vortex (Mclntyre and Palmer 1983, 1984) produces long filamentary structures 

that can mix chemical species from the vortex to the midlatitudes (Waugh and et al. 1994). 

In complex hurricane flows, similar mixing processes due to vortex Rossby (or PV) wave 

activity are occuring at smaller scales, helping to determine the spatial distributions of both 

quasi-passive tracers (e.g., moist entropy or total airborne moisture) and active tracers (e.g., 

vorticity or potential vorticity). 

Mixing is due to the combined effect of differential advection and turbulent (or in

evitably, molecular) diffusion. Differential advection (i.e., stirring) stretches and deforms 

material lines from which diffusion accomplishes true irreversible mixing. The interplay 

between advection and diffusion in mixing makes it difficult to quantify. Even in rather 

simple unsteady nonturbulent flows, the phenomenon known as chaotic advection, where 

particle trajectories are not integrable, has been shown to exist (Aref 1984; Ottino 1989). 

Recent work has proposed the use of an area (Butchart and Remsberg 1986; Nakamura 1996; 

Winters and D'Asaro 1996; Shuckburgh and Haynes 2003) hybrid Eulerian-Lagrangian co

ordinate system that separates the reversible effects of advection (which is absorbed into 

the coordinate) with the irreversible effects of diffusion. When transforming the advection-

diffusion equation into the area coordinate, an effective diffusion (i.e., diffusion only) equa

tion is obtained with a diagnostic coefficient that quantifies the equivalent length (Nakamura 

1996) of a tracer contour. As this equivalent length becomes large, there is more interface 

for diffusion to act and the "effective diffusivity" is larger. Thus the effective diffusivity 

encompasses aspects of both differential advection and diffusion in mixing. Shuckburgh 

and Haynes (2003) demonstrated that effective diffusivity is a useful mixing diagnostic for 

chaotic time-periodic flows. 
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In recent work the effective diffusivity diagnostic has been used to quantify transport 

and mixing properties in the upper tropophere and stratosphere (see Haynes and Shuck-

burgh (2000a,b); Allen and Nakamura (2001); Scott et al. (2003) and references therein). 

That work compliments the previous use of Lyapunov exponents (e.g., Lapeyre 2002) 

in large-scale transport and mixing (Pierrhumbert and Yang 1993; Ngan and Shepherd 

1999a,b). In the present work, we apply the effective diffusivity diagnostic to aperiodic 

chaotic advective hurricane-like flows. In three dimensions, transport and mixing can be 

quite complicated due to interactions of multiscale three dimensional eddies, from the Kol-

mogorov inertial range to mesovortices that have been observed at scales of 10-50 km (Kossin 

et al. 2002; Reasor et al. 2005; Sippel et al. 2006; Hendricks and Montgomery 2006). In 

order to make this problem initially more tractable, we focus our study on two-dimensional 

hurricane-like vortices in a nondivergent barotropic model framework. Numerical solutions 

to the nondivergent barotropic vorticity equation and the advection-diffusion equation are 

obtained with suitable initial conditions, and the effective diffusivity diagnostic is used to 

quantify barotropic aspects of transport and mixing in a suite of hurricane-like vortices: (i) 

elliptical vorticity field, (ii) binary vortex interaction, (iii) Rankine vortex embedded in a 

turbulent background vorticity field, and (iv) unstable vorticity rings. As will be shown, 

these experiments illustrate some interesting internal barotropic dynamics of tropical cy

clone evolution, such as secondary eyewall formation, PV wave breaking surf zones, and PV 

mixing between the eye and eyewall. The location and magnitude of strong partial barriers 

(time scale for transport across it is large), weak partial barriers (time scale for transport 

across it is small), and mixing (chaotic trajectories) regions are identified in these vortices. 

Implications for the evolution of passive tracers, and their relationship to intensity change, 

are discussed in light of the results. 

The outline of this chapter is as follows. In section 2.2 the dynamical model and 

passive tracer equation used for this study are described. In section 2.3 we review the 

derivation of the transformation of the advection-diffusion equation into the area coordinate 
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and the equivalent radius coordinate, yielding the effective diffusivity diagnostic in a form 

useful for hurricane studies. In section 2.4 we present pseudospectral model results for 

several types of mixing scenarios believed to be relevant in hurricane dynamics. In section 

2.5 we document the relative insensitivity of the effective diffusivity diagnostic to certain 

arbitrary choices made in its calculation from solutions of the passive tracer equation. 

Finally, the main conclusions of this study are presented in section 2.6. 

2.3 Dynamical model and passive tracer equat ion 

The dynamical model used here considers two-dimensional, nondivergent motions on 

a plane. The governing vorticity equation is 

g + u . V C = z,V2C, (2.1) 

where u = k x Vip is the horizontal, nondivergent velocity, C — V2ip is the relative vorticity, 

and v is the constant viscosity. The solutions presented here were obtained with a double 

Fourier pseudospectral code having 768 x 768 equally spaced points on a doubly periodic, 

600 km x 600 km domain. Since the code was run with a dealiased calculation of the 

nonlinear term in (2.1), there were 256 x 256 resolved Fourier modes. The wavelength of 

the highest Fourier mode is 2.3 km. A fourth-order Runge-Kutta scheme was used for time 

differencing, with a 3.5 s time step. The value of viscosity was chosen to be v = 50 m2 

s_ 1 , so the characteristic damping time for modes having total wavenumber equal to 256 is 

2.4 hours, while the damping time for modes having total wavenumber equal to 170 is 5.5 

hours. 

As a way to understand the transport and mixing properties of an evolving flow 

described by (2.1), it is useful to also calculate the evolution of a passive tracer subject to 

diffusion and to advection by the nondivergent velocity u. The advection-diffusion equation 

for this passive tracer is 
dc 
- + u - V c = V-(«Vc), (2.2) 
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where c(x, y, t) is the concentration of the passive tracer and K is the constant diffusivity. 

The numerical methods used to solve (2.2) are identical to those used to solve (2.1). How

ever, the results to be presented here have quite different initial conditions on £ and c. The 

passive tracer c is always initialized as an axisymmetric and monotonic function. We have 

chosen both linear and Gaussian functions with maxima at the vortex center. In contrast, 

the initial vorticity is not necessarily monotonic with radius (e.g., it may have the form of 

a barotropically unstable vorticity ring) and is not necessarily axisymmetric. 

2.4 Area coordinate transformation and effective diffusivity 

To aid in the derivation, a diagram of the area coordinate is shown in Fig. 2.2. 

Consider the transform from Cartesian (x, y) coordinates to tracer (C, s) coordinates, where 

C is a particular contour of the c(x, y, t) field and s is the position along that contour. Let 

dC be the differential element of C and ds be the differential element of s. Let A(C, t) 

denote the area of the region in which the tracer concentration satisfies c(x, y, t) > C, i.e., 

A(C,t)= [[ dxdy. (2.3) 
J Jc>C 

Let j(C, t) denote the boundary of this region. Note that A(C, t) is a monotonically de

creasing function of C and that A(Cmax,t) = 0. Now define uc as the velocity of the 

contour C, so that 

+ uc • Vc = 0. (2.4) 
dt 

Noting that Vc/|Vc| is the unit vector normal to the contour, we can use (2.3) and 

(2.4) to write 

dA(C, t) d 

dt dt 
/ / dxdy 

J Jc>C 

l 

lc>C 

• ( uc- ^-ds (2.5) 
J-y{C,t) |Vc| 

dc ds 

7(c,t) dt |Vc|' 
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Figure 2.2: Diagram of the area coordinate. Two hypothetical contours C of the tracer 
field c(x,y,t) are shown with corresponding area above the contours A{C,t). The other 
parameters used in the derivation are illustrated as well. 

Using (2.2) in the last equality of (2.5) we obtain 

dA(C,t) 
dt 

I V - ^ V c ) - ^ - / u-Vc 
Mc,t) |vc | Jl{c,t) 

ds 

jVcf 
(2.6) 

dsdC 

oc |Vc| 
(2.7) 

We now note that (since dxdy = dsdC/|Vc|) 

Using (2.7) in (2.6) while noting that u • Vc = V • (cu) because u is nondivergent, we obtain 

dA(C,t) Off _ , _ ^dsdC 

+ ^/L v - ( m 

= " a n / K l V c l r f s 

|Vc| 

dsdC 

7v^~ (2.8) 

CU • T——r(XS. 

Vc 
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The third and fourth lines of (2.8) are obtained using the divergence theorem. The fourth 

line of (2.8) vanishes because the factor c in the integrand can come outside the integral, 

leaving L/Ct\ u • (Vc/|Vc|)ds, which vanishes because u is nondivergent. 

Since A(C,t) is a monotonic function of C, there exists a unique inverse function 

C(A,t). We now transform (2.8) from a predictive equation for A(C, t) to a predictive 

equation for C{A,t). This transformation is aided by 

8A(C,t)8C{A,t) _ 8C(A,t) 

dt dA dt ' 

which, when used in (2.8), yields 

; / K|VC| 
J-r(C,t) 

(2.9) 

dC(A,t) _ 8C(A,t) d , „ , „ „ , , 

dt dA dC j~(Ci) 
1{ '' (2.10) 

dA L(C,t) 
Vc| ds. 

7(C,«) 

Because of (2.7), the integral L(ct) K |Vc| ds on the right hand side of (2.10) can be replaced 

by (d/dC) JJC>CK\VC\2 dxdy. Then, (2.10) can be written in the form 

dt dA V v ' dA 

where 

KeS(A,t)^(^y2^llcn\VcfdXdy. (2.12) 

To summarize, the area coordinate has been used to transform the advection-diffusion 

equation (2.2) into the diffusion-only equation (2.11), in the process yielding the effective 

diffusivity Kefi(A,t). Since Ke$(A,t) can be computed from (2.12), it can serve as a useful 

diagnostic tool to help understand the interplay of advection and diffusion in (2.2). However, 

note that, because of the use of A as an independent variable, the effective diffusivity 

Kes(A,t) has the rather awkward units m4 s_ 1 . This is easily corrected by mapping the 

area coordinate into the equivalent radius coordinate re, which is defined by %r\ = A. Thus, 

transforming (2.11) to the equivalent radius using 2Ttre(d/dA) — (d/dre), we obtain 

dt reore \ ore 
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where 

KeS(re,t) = ^ ^ . (2.14) 

Note that, with of the use of re as an independent variable, the effective diffusivity Keg(re, t) 

has the units m2 s_ 1 . Two other interesting diagnostics are the equivalent length, defined 

by 

Le{re,t)=(^f^>j'\nre) (2.15) 

and the normalized effective diffusivity, 

Since the minimum value of Keg is K, we conclude that Le(re,t) > 2irre. As will be shown, 

Le(i"e,t) greatly exceeds 2/xre during strong mixing. The Ae(re,t) diagnostic is the best 

measure of chaotic advection because it is normalized by the tracer diffusivity. It may 

be the most relevant effective diffusivity diagnostic for direct comparisons to Lagrangian 

mixing diagnostics such as Finite Time Lyapunov Exponents (FTLEs). 

The effective diffusivity diagnostics Keg(A, t), Keff (?"e, t), Le(re, t), and Ae(re, t) can be 

calculated at a given time t from the output c(x, y, t) of the numerical solution of (2.2). The 

calculation of Keg(A, t) involves the following discrete approximation of the right hand side 

of (2.12). First, the desired number of area coordinate points is chosen (n^ = 200 for the 

results shown here). The tracer contour interval is set using AC = [max(c) — mm(c)]/riA-

Next, |Vc|2 is calculated at each model grid point. Then, a discrete approximation of 

the function A(C, t) is determined by adding up the area within each chosen C contour, 

i.e., by using a discrete approximation to (2.3). The discrete approximation to A(C,t) is 

then converted to a discrete approximation of its inverse, C(A,t). The denominator of 

the effective diffusivity diagnostic, (dC/dA)2, is calculated by taking second order accurate 

finite differences of C(A, t). The numerator of the right hand side of (2.12) is then calculated 

in the same manner, which completes the calculation of the effective diffusivity Keg(A,t). 

The remaining effective diffusivity diagnostics Kes{re,t), Le(re,t), and Ae(re,£) are then 
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easily computed using (2.14)—(2.17). As will be shown, plots of these diagnostics reveal the 

locations of partial barrier and mixing regions in the vortex. 

For comparison purposes it is useful to have solutions of (2.13) for the special case 

Keg = K and re = r. These can also be interpreted as solutions of (2.2) for the special case in 

which u is purely azimuthal and the passive tracer concentration c remains axisymmetric. 

One such solution can be easily obtained on an infinite domain for the initial condition 

C(r,0) = C0exp(~Y (2.17) 

where Co and ro are specified constants. The solution is 

^•^M^M-ifT^)' ("8) 

In the next section, two-dimensional plots of effective diffusivity will be shown. This 

can be done because effective diffusivity is constant along a tracer contour, and tracer 

contours meander in (x, y) space. From another point of view, Keg(re, i) can be mapped to 

Keft(x,y,t) because each horizontal grid point is associated with an equivalent radius. 

2.5 Pseudospectra l mode l exper iments and results 

We now use the effective diffusivity diagnostic to understand the transport and mixing 

properties of a number of idealized hurricane-like vortices. The cases selected here are: (i) an 

elliptical vorticity field, (ii) a binary vortex interaction, (iii) a Rankine-like vortex embedded 

in a random turbulent vorticity field, and (iv) breakdown of unstable vorticity rings. All 

of the experiments are unforced and exhibit properties of two dimensional turbulence, in 

particular the selective decay of enstrophy over kinetic energy. In the following subsections, 

the initial condition and parameters for each experiment are shown, and the results are 

presented and discussed. 
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2.5.1 Elliptical vorticity field 

The initial elliptical vorticity field is contracted in a manner similar to Guinn (1992). 

In polar coordinates, the initial vorticity field is specified by 

1 0 < r < na(<j>) 

C(r, (f>, 0) = Co { 1 - /A ( r ' ) na((t>) <r< r0a{(j)), (2-19) 

0 roa(4>) < r 

where a((j>) is an ellipticity augmentation factor described in the next paragraph. Here, Co 

is the maximum vorticity at the center, f\(r') = exp[—(A/r')exp(l/(r' — 1))] is a monotonic 

shape function with transition steepness parameter A, r' = (r — ria((f>))/(roa((j>) — ria(<f>)) is 

a nondimensional radius proportional to r = (x2 + y2)ll2, and ri and ro are the radii where 

the vorticity begins to decrease and where it vanishes, respectively. For the special case of 

a(<fi) = 1 the field is axisymmetric. 

This field may then be deformed into an ellipse by specifying an eccentricity e = 

(1 — (62/a2))1/2 , where a is the semi-major axis and b is the semi-minor axis of the ellipse 

(x/a)2 + (y/b)2 = 1. Using the eccentricity and the angle </>, an augmentation factor 

a(<f>) = ((1 - e2)/(l - e2cos2(^>)))1/2 may be defined, and when used in (2.20) the field is 

changed to elliptical for 0 < e < 1. For the experiment conducted, A = 2.0, e = 0.70, and 

the radii r» and ro were set to 30 km and 60 km, respectively. 

Plots of vorticity and effective diffusivity Keg at t = 1.5 h during the evolution of the 

elliptical vorticity field are shown in Fig. 2.3. At this time, two filaments of high vorticity 

associated with breaking PV waves are clearly visible. Associated with these filaments 

are regions of large effective diffusivity. The effective diffusivity peaks just upwind of the 

filaments and extends further upwind. The main vortex acts as a transport barrier during 

the filamentation. In terms of an arbitrary passive tracer, these results indicate that the 

tracer will tend to be well-mixed horizontally in the wave breaking surf zone, and tracers 

initially in the vortex core will be trapped there. During its evolution, continued wave 
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breaking episodes occur as the ellipse tries to axisymmetrize. However, axisymmetrization 

is not complete here within t < 48 h, and the surf zone is a robust feature throughout 

the entire simulation. The persistence of the surf zone is clearly illustrated in Fig. 2.4, 

where the equivalent length and normalized effective diffusivity are large. The ability of 

an elliptical vorticity field to axisymmetrize (Melander et al. 1987) via inviscid dynamics 

was shown to be determined by the sharpness of its edge (Dritschel 1998). If the vortex 

is more Rankine-like (i.e., possessing a sharp edge), it will tend to rotate and not generate 

filaments. If, on the other hand, the transition is not sharp, there will be a tendency to 

generate filaments and axisymmetrize. 

f (» io-s- ' ) «ri. ("•>' s-) 

200 250 300 350 400 200 250 300 3S0 400 
K (km) it (km) 

Figure 2.3: The relative vorticity and effective diffusivity «eff for the evolution of the ellip
tical vorticity field at t = 1.5 h. 

Although it occurs on much smaller time and length scales, there is an analogy 

between this surf zone in tropical cyclones and the planetary Rossby wave breaking surf 

zone associated with the wintertime stratospheric polar vortices (Mclntyre and Palmer 

1983, 1984, 1985; Mclntyre 1989; Juckes and Mclntyre 1992; Bowman 1993; Waugh and 

et al. 1994). Planetary waves excited in the troposphere may propagate vertically and 

cause wave breaking to occur on the edge of the stratospheric polar vortex, from which 

chemical constituents can be mixed into the midlatitudes. The wintertime stratospheric 

polar vortices display similar processes to our experiment, namely the core vortex is a 

transport barrier and the surf zone is a chaotic mixing region. The existence of the main 
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Figure 2.4: Hovmoller plots of the equivalent length Le(re,t) (left panel) and dimensionless 
equivalent length Ae(re, t) (right panel) for the evolution of the elliptical vorticity field. Two 
consistent regions are evident throughout the simulation: the main vortex partial barrier 
and the surf zone chaotic mixing region. 

vortex barrier was thought to be due to the strong PV gradient, a restoring mechanism 

for perturbations imposed upon it. Rossby wave breaking has also been examined in more 

idealized frameworks (Polvani and Plumb 1992; Koh and Plumb 2000). 

In tropical cyclones, the deformation of an initially circular vortex core to an el

lipse may happen due to external (e.g., vertical shear) or internal (e.g., PV generation by 

asymmetric moist convection) processes. The relaxation to axisymmetry will produce wave 

breaking episodes, and, as we have shown here, moderate mixing regions in the associated 

surf zone. 

2.5.2 Binary vortex interaction 

The initial condition for the binary vortex interaction cases are two Gaussian vortices 

defined by C(r, 0) = £ r ae_ r lb , where r is the distance from the vortex center, b is the 

horizontal scale of the vortex and £m is the peak vorticity at the center. For the experiment, 

we use Cm = 6.0 x 10~3 s - 1 and 1.0 x 10 - 3 s_ 1 , and b = 15 km and 45 km, for the strong 

and weak vortices, respectively. The vortex centers are initially 75 km apart. 

Theoretical work on binary vortex interactions has been done by Dritschel and Waugh 
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(1992), who developed a classification scheme for these interactions based upon the separa

tion distance and the ratio of the initial patch radii. Based on these two parameters, five 

regimes were identified: (a) complete merger, (b) partial merger, (c) complete straining out, 

(d) partial straining out, and (e) elastic interaction. Generally, as the separation distance 

increases, there is a tendency to move from (a) to (e). This theoretical work was extended 

to the binary interaction of tropical cyclones (Ritchie and Holland 1993; Prieto et al. 2003) 

and into vortex interactions within the tropical cyclone (Kuo et al. 2004, 2008). Kuo et al. 

(2004) examined the straining out regime further to describe a barotropic mechanism for 

the formation of concentric vorticity structures in typhoons. The experiment conducted 

here is in the straining-out regime ((c) or (d)) and forms a secondary ring of enhanced 

vorticity. 

Relative vorticity and effective diffusivity for the binary vortex experiment are shown 

in Fig. 2.5. The initial condition (top panel) shows the two vortices, with the stronger one 

north of the weaker one. Progressing to the middle panels, at t = 4.0 h the stronger vortex 

is completely straining out the weaker vortex. During this period the effective diffusivity 

shows a mixing region in the strong vortex (with oscillatory rings), and a mixing region 

associated with the large spiral band from the strained out weaker vortex. Similar to the 

elliptical vorticity case, the enhanced mixing region extends from the filamentary structure 

upwind. By t = 24.0 h, the core vortex has completely strained out the weaker vortex 

into a thin secondary ring (bottom left panel) and a low vorticity moat exists between the 

two vorticity regions. At this time the effective diffusivity (bottom right panel) shows a 

partial barrier region associated with the vortex core, and a mixing region extending radially 

outward. 

Hovmoller plots of effective diffusivity and normalized effective diffusivity are shown 

in Fig. 2.6. Two important features to note are that the mixing region moves radially 

outward in time and the core vortex becomes more of a transport barrier region. Thus, 

during binary vortex interactions, the "Victorious" vortex tends to isolate itself and become 
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Figure 2.5: The initial vorticity field (top panel) and side-by-side panels (at 4 h and 24 h) 
of relative vorticity and effective diffusivity for the binary vortex interaction. The model 
domain is 600 km by 600 km, but only the inner 200 km by 200 km is shown. 

resistant to radial mixing. 

To illustrate how the initial tracer field is modified by the binary vortex interaction, 

side-by-side Hovmoller plots of the numerical and analytic solution, equation (2.19), are 
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Figure 2.6: Hovmoller plots of Keg(re, t) (left panel) and Ae(re, t) (right panel) for the binary-
vortex interaction. 

shown in Fig. 2.7. The analytic solution is obtained using K = Keg = 2500 m2 s - 1 , which is 

approximately the average effective diffusivity during the interaction (Fig. 2.6 left panel). 

Although there are differences, the broadening of the tracer concentration with time from 

its initial Gaussian form is evident in both plots. We interpret this result as follows. The 

advection-diffusion equation was tranformed into a diffusion only equation using a quasi-

Langrangian area coordinate that has advection absorbed into it (Eqns. 2.11 and 2.13). 

Mere diffusion could not possibly smooth out the initial tracer gradient in the short time 

frame of 48 h. The combined effects of differential advection and diffusion are responsible 

for smoothing the initial Gaussian tracer field significantly by 48 h. By inserting an average 

effective diffusivity, which includes differential advection, into the radial diffusion equation 

(2.13), we were able to obtain a similar evolution of the initial Gaussian tracer field. Thus, 

in a coarse-grained sense mixing, due to the combined effects of differential advection and 

diffusion, can be parameterized by a large effective diffusivity in the diffusion-only equation 

(cf. Bowman 1995). 
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Figure 2.7: Hovmoller plots of the numerical solution (left) and the analytic solution (equa
tion (19); right) of the tracer concentration C(re,t) for the binary vortex interaction. The 
analytic solution is obtained with «eff = ft = 2500 m2 s - 1 . 

2.5.3 Rankine vortex in a turbulent vorticity field 

A Rankine vortex in a stirred vorticity field may be represented mathematically by 

f 

1 0 < r < n 

S ( £ E £ ) n<r<r2 
C(x,y,0) = Ci ' 

0 r2 <r 

+ Cturb(z,y) < 

(2.20) 

1 

S( 

0 

0 < r < r3 

£ £ ) r3<r<r4, 

r\<r 

where £i is the maximum vorticity of the Rankine vortex, S(x) = 1 — 3a;2 + 2x3 is a cubic 

polynomial shape function providing smooth transitions from r\ to r2, and from rs to r^, 

and Cturb(x) y) 1S a random turbulent vorticity field (Rozoff et al. 2006) given by 

tCrr ^max ^max 
(2.21) 

Here, /cmax and £max are the spectral truncation limits in x and y, L is the domain length, 

C,k,t is random with maximum amplitude of 1.5 x 10~5 s_ 1 , and the total wavenumber 
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K — (k2+£2)1^2 is set for spatial scales primarily between 20 and 40 km. For the experiment, 

we use n = 20 km, r2 = 30 km, r3 = 120 km, r4 — 180 km, and Ci = 5 x 10~3 s_ 1 . 

As an analogy to real tropical cyclones, the Rankine-like vortex can be thought of as 

the tropical cyclone core and the stirred vorticity field can be thought of as generated by 

random convection. The initial condition for this experiment is shown in the top panel of 

Fig. 2.8. As the simulation evolves, the core vortex begins to axisymmetrize the random 

vorticity elements. At t = 9.5 h the core vortex begins to act like a partial barrier region. 

Outside the vortex core, chaotic mixing is occuring as the random vorticity anomalies are 

being axisymmetrized. By t = 40.0 h (bottom panels), the relative vorticity exhibits a cen

tral monopole, a low vorticity moat, and a secondary ring of enhanced vorticity. Comparing 

the two bottom panels, the low vorticity moat is coincident with the ring of moderate ef

fective diffusivity (100 < «efr < 250 m2 s_ 1) . In real tropical cyclones, the moat region is a 

region of suppressed convective activity due to the combined effects of subsidence (Schubert 

et al. 2007) and strain-dominated flow (Rozoff et al. 2006). The moat here was identified 

as a region of enhanced mixing. The secondary ring of enhanced vorticity is concident with 

the ring of low effective diffusivity (/ceff < 100 m2 s_ 1) . The azimuthal mean wind (not 

shown) associated with the bottom left panel of Fig. 2.8 has two maxima. The first is the 

primary azimuthal jet located at the edge of the central vorticity monopole, and the second 

is the secondary azimuthal jet that occurs at the outer edge of the secondary ring of en

hanced vorticity. In the effective diffusivity plot, these jets are partial barriers (white rings) 

with Keff < 100 m2 s_ 1 . Therefore, azimuthal jets in hurricanes are likely to be transport 

barriers, resistant to horizontal mixing. 

2.5-4 Unstable vorticity rings 

Five experiments were conducted for different unstable hurricane-like vortices. The 

initial vorticity field consists of a vorticity ring (the eyewall) and a relatively low vorticity 

center (the eye). Observations (Kossin and Eastin 2001; Mallen et al. 2005) indicate that 



22 

{• (x 10-s") 

A 300 

{ (x 10"* s'1) 

300 350 

x (Km) 

250 300 

x (km) 

350 400 

g^i ("•>' »"') 

i*0O 

*pop 

uoo 

u n 

i.no 

IJOO 

aiao 

<UM 

1 300 

250 

200 

200 250 300 

x (km) 

K* (m* s-') 

£, 300 

Figure 2.8: The initial vorticity field (top panel) and side-by-side panels (at 9.5 h and 40 
h) of relative vorticity and effective diffusivity for the Rankine-like vortex in a turbulent 
vorticity field. The model domain is 600 km by 600 km, but only the inner 200 km by 200 
km is shown. 

strong or intensifying hurricanes are often characterized by such vorticity fields. The average 

vorticity over the inner-core was set to be C,av = 2.0 x 10~3 s_ 1 , corresponding to a peak 
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tangential wind of approximately 40 m s _ 1 in each case. 

The initial condition on the vorticity is given in polar coordinates by ((r, <f>) = ((r) + 

('(r,4>), where £(r) is an axisymmetric vorticity ring defined by 

Ci 0 < r < n 

CiS(^)+C2S(^) n<r<r2 

< M ) = < ( C 2 r2<r<r3, (2-22) 

C2S(-

<3 

;) + C 3 5 ( ^ ) r3<r<r4 

r4 < r < oo 

where Ci, ^2j C3> ri> r2, r 3 , and r4 are constants, and S(x) is the cubic polynomial inter

polation function defined previously. The eyewall is defined as the region between r% and 

r%. Schubert et al. (1999) defined two parameters to describe these hurricane-like vorticity 

rings: a ring thickness parameter 8 = (r\+ T2)/{rz + r4), and a ring hollowness parameter 

7 = Ci/Cav The relative vorticity and radii used for each of the five experiments is shown 

in Table 2.1. Each ring is perturbed with a broadband impulse of the form 

8 

C'(r, <t>, 0) = Camp 5 Z COs(m</> + <Am) 

m = l 

0 0 < r < n 

(2.23) S{%Ek) n<r<r2 

X M T2 < V < 7*3, 

5 ( ^ ) r 3 < r < r 4 

0 r4 < r < oo 

where Camp = 1-0 x 10~5 s _ 1 is the amplitude and <f>m the phase of azimuthal wavenumber 

m. For this set of experiments, the phase angles (pm were chosen to be random numbers in 

the range 0 < (j>m < 2n. In real hurricanes, such asymmetries are expected to develop from 

a wide spectrum of background turbulent and convective motions. 
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Table 2.1: Unstable vorticity ring parameters: £ values are in 10 3 s 1 and r values are in 
km. 

Exp. 
A 
B 
C 
D 
E 

Ci 
0.8 
0.0 
0.0 
0.0 
0.2 

C2 
2.7 
3.1 
4.6 
7.2 
6.7 

n 
22 
22 
28 
32 
32 

ri 

26 
26 
32 
36 
36 

T% 

38 
38 
38 
38 
38 

7*4 

42 
42 
42 
42 
42 

5 
0.60 
0.60 
0.75 
0.85 
0.85 

7 
0.40 
0.00 
0.00 
0.00 
0.10 

Two simulations from Table 2.1 are illustrated. The first (Exp. A) is a thick, filled 

ring, while the second (Exp. D) is a thin, hollow ring. According to Schubert et al. (1999), as 

the rings become thicker and filled, disturbance growth rates become smaller and at lower 

wavenumber. As the rings become very thin and hollow, they rapidly break down and 

sometimes evolve into persistent mesovortices (Kossin and Schubert 2001). Experiment 

A is shown in Fig. 2.9. At t = 13.0 h (middle left panel), the ring is breaking down at 

azimuthal wavenumber m = 4 giving the appearance of a polygonal eyewall with straight 

line segments. The breaking of the inner PV wave has allowed vorticity to be pooled into 

four regions. In the effective diffusivity plot (middle right panel), there are two distinct 

radial intervals of mixing, separated by a rather strong, thin barrier region. The inner 

mixing region is approximately coincident with the vorticity pools, while the outer mixing 

region exists just outside the vorticity core. These two mixing regions are due to the inner 

and outer counterpropagating, breaking, PV waves. The waves are phase-locked and helping 

each other grow, resulting in radial air movement and mixing. During this time the passive 

tracer field becomes relatively well-mixed in the radial intervals of the PV wave activity, 

however the initial gradient is maintained in the barrier region in between (not shown). 

Progressing to t = 41.0 h, the magnitude of the mixing due to the wave activity is smaller, 

but the barrier region still exists. 

The breakdown of the Experiment D ring is shown in Fig. 2.10. The disturbance 

growth rates are larger in this case, allowing the ring to break down much faster. Multiple 
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Figure 2.9: The initial vorticity field (top panel) and side-by-side panels (at 13 h and 41 
h) of relative vorticity and effective diffusivity Keff for a prototypical thick, filled unstable 
vorticity ring (Experiment A of Table 1). 

mesovortices initially form (middle left panel). During the formation stage, these mesovor-

tices and associated filamentary structures are strong mixing regions (middle right panel 

of Fig. 2.10). The mesovortices persist for a very long time, and at t = 20.0 h there are 
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Figure 2.10: The initial vorticity field (top panel) and side-by-side panels (at 6 h and 20 
h) of relative vorticity and effective diffusivity Keg for a prototypical thin, hollow unstable 
vorticity ring (Experiment D of Table 1). 

three mesovortices left after some mergers have occurred. At this time the mesovortices act 

as transport barrier regions. Based on these results, in conjunction with the binary vortex 

interaction and Rankine-like vortex in a turbulent vorticity field, we find that barotropic 
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Figure 2.11: Hovmoller plots depicting the temporal evolution of Kes(re,t) for the A ring 
(left) and the D ring (right). 

geophysical vortices of all horizontal scales tend to act as partial barrier regions when they 

are long-lived. 

To further illustrate the two regimes of internal mixing, Hovmoller plots of Keg(re,t) 

are shown in Fig. 2.11 for Experiments A and D. For the A ring (left panel), there exists 

two distinct mixing regions at 20 km < re < 30 km and 40 km < re < 55 km. These mixing 

regions are associated with the counterpropagating PV waves evident in the middle panels 

of Fig. 2.9. For the D ring, in which a rapid breakdown occurs, the entire hurricane inner-

core (10 km < re < 60 km) is a chaotic mixing region. These two types of mixing regimes 

are further clarified in Fig. 2.12, which shows the time-averaged effective diffusivity Keff for 

all five rings. For the rings with slower growth rates (A and B), there exist two peaks in 

Keg(re) coincident with inner and outer PV wave activity. For the rings with faster growth 

rates (C, D, and E), the entire inner core is a chaotic mixing region. During the evolution of 

each ring, the radius of maximum wind varies, but it is generally confined to radii between 

30 km and 40 km. Thus, for thick, filled rings the hurricane tangential jet acts as a partial 

barrier region for t < 48 h, while for thin, hollow rings, the hurricane tangential jet breaks 

down and chaotic mixing in the entire inner core ensues. The implication of this result for 

real hurricanes is that if the eyewall is very thick, passive tracers will not easily be mixed 
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across the eyewall during barotropic instability, but may be mixed between the eye-eyewall 

and environment-eyewall by the inner and outer breaking PV waves, respectively. If, on 

the other hand, the eyewall is thin, as in rapidly intensifying hurricanes (Kossin and Eastin 

2001), passive tracers can be mixed across the eye, eyewall and environment, and at a much 

faster rate. Assuming hurricanes have a maximum of equivalent potential temperature (0e) 

at low levels in the eye, our results indicate that the inner, breaking, PV wave will mix air 

parcels with high 6e into the eyewall, supporting the hurricane superintensity mechanism 

(Persing and Montgomery 2003). This mixing will be more rapid for the breakdown of thin 

rings. 

The mixing regime in which the tangential jet acts as a partial barrier is analogous 

to the results of Bowman and Chen (1994), who found that air poleward of a barotropically 

unstable stratospheric jet remained nearly perfectly separated from midlatitude air. Our 

hurricane results are again analogous to planetary-scale mixing, and it appears that under 

certain conditions azimuthal jets in hurricanes can become asymmetric but still remain 

partial (but leaky) barriers to radial mixing. 

2.6 Sensit iv i ty tes t s 

In order to assess the robustness of effective diffusivity as a diagnostic of mixing prop

erties of a flow, a number of sensitivity tests were conducted: (i) tracer diffusion coefficient, 

(ii) initial tracer distribution, and (iii) the accuracy of the discrete approximation to the 

diagnostic (2.12). 

2.6.1 Tracer diffusion coefficient 

In the area-based coordinate system, it is expected that the effective diffusivity will 

increase with increasing tracer diffusivity K. AS material lines are stretched and folded 

there exists more interface for diffusion to produce irreversible mixing, and if the diffusion 

coefficient is larger, the level of mixing should be larger as area can diffuse faster between 
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Figure 2.12: Time-averaged (0-48 h) effective diffusivity for all unstable rings versus equiv
alent radius. The radius of maximum wind varies during the evolution but generally lies in 
the region between 30-40 km. 

tracer contours. This is clearly illustrated in Fig. 2.13 for the C unstable ring experiment. 

This experiment is similar to the Experiment D in that a large radial segment becomes a 

chaotic mixing region (Fig. 2.11, right panel). Four different values of the tracer diffusivity 

are chosen: K = 50, 25, 10, and 0.1 m2 s_ 1 . The larger tracer diffusivities clearly have larger 

effective diffusivities, and the radial character of the profiles is broadly preserved for each 

case. For example, the K = 50, 25, and 10 m2 s _ 1 cases are able to capture the peak effective 

diffusivity at re = 30 km. The K = 0.1 m2 s _ 1 is not seen on the figure because the peak 

effective diffusivity associated with it is only /teff = 20 m2 s"1, too low to be visible with 

the plot scaling. The same plot is shown in Fig. 2.14 for Ae(re,t). Note that Ae(re ,i) is not 

very sensitive to varying K, and as stated earlier, is the best measure of chaotic advection. 
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Figure 2.13: Effective diffusivity versus equivalent radius for varying values of the tracer 
diffusivity « (units of m2 s_1) for the C unstable ring experiment at t = 6.3 h. 

2.6.2 Initial tracer distribution 

Since effective diffusivity maps out the mixing properties of a flow, it is supposed to 

be mostly insensitive to the initial tracer field, provided it is monotonic and well behaved. 

In order to illustrate this, plots of effective diffusivity versus equivalent radius are shown in 

Fig. 2.15 for three different initial axisymmetric tracer fields: a Gaussian distribution with 

maximum value of 1000 (used in the elliptical vorticity field, binary vortex interaction, and 

Rankine-like vortex in a turbulent vorticity field), and linearly decreasing distributions with 

maximum values of 1000 (used in the unstable vorticity ring experiments) and 5000. Each 

of these curves has different dC/dre (or dC/dA), used in the denominator of the effective 

diffusivity diagnostic. The Kes profiles are almost identical for the two linear cases, and 

only a slight variation is found for the Gaussian case. The Gaussian case departs from 

the linear cases slightly at small radii. The likely reason for this is that the slope of the 

tangent line (dC/dre) is very small there, causing the effective diffusivity diagnostic to be 
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Figure 2.14: Normalized effective diffusivity Ae(re,i) = Kes(re,t)/K. versus equivalent 
radius for varying values of the tracer diffusivity K (units of m2 s_1) for the C unstable ring 
experiment at t = 6.3 h. 

unrealistically distorted. We feel that the linearly decreasing initial tracer profile is the best 

to use because it guarantees constancy of the initial dC/dA in the domain. Overall, effective 

diffusivity is insensitive to the initial tracer profile and is therefore a robust diagnostic for 

mixing properties of a two-dimensional aperiodic flow. 

2.6.3 Number of area points 

Sensitivity tests were performed using varying numbers of area points in the discrete 

approximation to the effective diffusivity diagnostic (2.12). To illustrate the sensitivity to 

the discrete approximation, the effective diffusivity versus equivalent radius is shown in 

Fig. 2.16 for the C unstable ring with n^ = 50, UA == 200 (used in all the experiments in 

this paper), and UA = 1000 points. All three curves produce peaks near re = 30 km, but 

only the UA = 200 and HA = 1000 curves capture the peak value of Keff — 5000 m2 s _ 1 at 

re s=s 35 km and the dip at re = 40 km. The conclusion is that UA = 50 is not sufficient to 
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Figure 2.15: Sensitivity of effective diffusivity to the initial tracer field. Three curves are 
shown: Gaussian profile with maximum value of 1000 and linearly decreasing profiles with 
maximum values of 1000 and 5000. 

resolve the mixing properties of the inner-core, but little is gained in going from UA = 200 

to riA — 1000. Thus, our choice of UA — 200 is sufficient to resolve the effective diffusivity 

variability. Although the UA = 1000 curve does produce more variability, it is not known 

whether the highly oscillatory nature of the curve is real or an oversampling issue. 

2.7 Conc lus ions 

The two-dimensional mixing properties of aperiodic evolving hurricane-like vortical 

flows were quantified using the effective diffusivity diagnostic on the output of numerical 

simulations with a nondivergent barotropic model. The location and magnitude of both 

chaotic mixing and partial barrier regions were identified, yielding insight into how passive 

tracers are asymmetrically mixed at low levels of hurricanes. The primary finding is tha t 

breaking PV waves, resulting from either axisymmetrization or dynamic instability, are 

quite effective at mixing passive tracers over large horizontal distances in hurricanes. 

• Gauss (max = 1000) 
• Linear (max = 1000) 
• Linear (max = 5000) 

100 
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Figure 2.16: Sensitivity of effective diffusivity to the number of area points: 50, 200, and 
1000. The case shown is the C unstable ring at t = 6.3 h. 

For monotonic vortices, the wave breaking and mixing was confined to a 20-30 km 

wide surf zone outside the radius of maximum wind, while the vortex core remained a barrier. 

In these cases, the eye is a containment vessel and eye air is not easily mixed with the 

environment. For unstable rings, which are analogous to strong or intensifying hurricanes, 

both the inner and outer counterpropagating PV waves break causing two mixing regions: 

one between the eye and eyewall and one between the eyewall and local environment. In 

the case of thick rings, the disturbance exponential growth rates are small and a long-lived 

asymmetric partial barrier region may exist between the two breaking waves, coincident with 

the tangential jet. In the case of thin rings that are very dynamically unstable, the rapid 

breakdown created a strong chaotic mixing region over the entire hurricane inner-core (eye, 

eyewall, and local environment). In this case, passive tracers may be horizontally mixed 

over large radial distances (approximately 60-80 km in our experiments). Since observations 

show a maximum of 9e at low levels in the eye (Eastin et al. 2002), our results indicate that 
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the inner, breaking PV wave would be quite effective at mixing air parcels with high 9e into 

the eyewall, supporting the hurricane superintensity mechanism (Persing and Montgomery 

2003). The hurricane eye remains a partial barrier during barotropic instability because the 

inner, breaking PV wave generally does not penetrate all the way into the center. Thus, it 

is possible that the highest 6e air may never be mixed into the eyewall, limiting the level of 

superintensity. 

Both primary and secondary azimuthal wind maxima were identified as partial bar

riers in our simulations. These jets act as mixing barriers because they are located near 

regions of strong radial PV gradients (cf. Mclntyre 1989). A surprising result is that the 

primary jet barrier region can be maintained for long times during barotropic instability. 

Additionally, it can maintain itself as a partial barrier when it is deformed asymmetrically 

to a polygon with straight line segments. Therefore in this simple framework, the hurri

cane primary jet appears to be a robust transport barrier for both dynamically stable and 

unstable vortices, provided the latter vortices are characterized by thick annular vorticity 

structures. 

The present work could be extended in a number of ways. Effective diffusivity could 

be used as a diagnostic for transport and mixing in axisymmetric hurricane models (Rotunno 

and Emanuel 1987; Hausman et al. 2006). Of particular interest would be examining the 

vertical structure of mixing processes between the eye and eyewall. Effective diffusivity 

can also be used as a diagnostic for three dimensional hurricane simulations, provided the 

evolution is approximately nondivergent. In this case, the area coordinate becomes a volume 

coordinate (Appendix A), which can be mapped to equivalent heights to assess the vertical 

structure of mixing. For the case of either two or three dimensional divergent flow, the 

area coordinate becomes a mass coordinate (Nakamura 1995). Further theoretical work 

would need to be done to obtain a useful mixing diagnostic for these flows, but its utility 

would extend to the output of more complex three dimensional full-physics models. The 

diagnostic could also be used to understand aspects of transport and mixing of water vapor 



35 

in the frictional boundary layer of hurricanes. 



C h a p t e r 3 

L I F E C Y C L E S O F H U R R I C A N E - L I K E P O T E N T I A L V O R T I C I T Y 

R I N G S 

3.1 A b s t r a c t 

The asymmetric dynamics of potential vorticity (PV) mixing in the hurricane inner-

core are further advanced by examining the end states that result from the unforced evo

lution of hurricane-like vorticity rings in a nondivergent barotropic model. The results 

from a sequence of 170 numerical simulations are summarized. The sequence covers a two-

dimensional parameter space, with the first parameter defining the hollowness of the vortex 

(i.e., the ratio of eye to inner-core relative vorticity) and the second parameter denning the 

thickness of the ring (i.e., the ratio of the inner and outer radii of the ring). In approximately 

one half of the cases, the ring becomes barotropically unstable, and there ensues a vigorous 

vorticity mixing episode between the eye and eyewall. The output of the barotropic model 

is used to: (i) verify that the nonlinear model approximately replicates the linear theory of 

fastest growing azimuthal mode in the early phase of the evolution, and (ii) characterize the 

end states (defined at t = 48 h) that result from the nonlinear chaotic vorticity advection 

and mixing. It is found that the linear stability theory is a good guide to the observed fastest 

growing exponential mode in the numerical model. Two additional features are observed 

in the numerical model results. The first is an azimuthal wavenumber-2 deformation of the 

PV ring that occurs for moderately thick, nearly filled rings. The second is an algebraically 

growing wavenumber-1 instability (not present in the linear theory due to the assumed so

lution) that is observed as a wobbling eye (or the trochoidal oscillation for a moving vortex) 
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for thick rings that are stable to all exponentially growing instabilities. Most end states are 

found to be monopoles. For very hollow and thin rings, persistent mesovortices may exist 

for more than fifteen hours before merging to a monopole. For thicker rings, the relaxation 

to a monopole takes longer (between 48 and 72 h). For moderately thick rings with nearly 

filled cores, the most likely end state is an elliptical eyewall. In this nondivergent barotropic 

context, both the minimum central pressure and maximum tangential velocity simultane

ously decrease over 48 h during all PV mixing events. Thus care must be taken when using 

empirical pressure-wind relationships that assume an inverse relationship during PV mixing 

events. 

3.2 Introduct ion 

Diabatic heating due to moist convection in the eyewall of a hurricane produces 

a hollow tower of potential vorticity (PV) in the lower to mid-troposphere (Moller and 

Smith 1994; Yau et al. 2004). The sign reversal of the radial gradient of PV sets the stage 

for dynamic instability. If the hollow tower is thin enough, it may break down, causing 

PV to be mixed into the eye. During these PV mixing episodes, the existence of polygonal 

eyewalls with straight line segments, asymmetric eye contraction, and eye mesovortices have 

been documented in numerical models, laboratory experiments, and observational studies 

(Schubert et al. 1999; Kossin and Schubert 2001; Montgomery et al. 2002; Kossin et al. 2002; 

Kossin and Schubert 2004). Eye mesovortices are often visible as vortical cloud swirls in the 

eyes of strong hurricanes (see Fig. 3.1 for an example). Although the Rayleigh necessary 

condition for dynamic instability is satisfied for all rings, not all rings are unstable. In 

particular, thick rings, which may be analogous to annular hurricanes (Knaff et al. 2003), 

are usually stable to exponentially growing perturbations. 

These PV mixing episodes are thought to be an important internal mechanism govern

ing hurricane intensity change on short time scales (less than 48 h) because, by inversion, PV 

may be partitioned into both inertia! and static stability. From another perspective, mixing 
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Figure 3.1: Vortical swirls observed in the eye of Super Typhoon Yuri (1991). (Credit: 
Image Science and Analysis Laboratory, NASA-Johnson Space Center) 

of PV from the eyewall into the eye changes the azimuthal mean tangential wind profile 

inside the radius of maximum wind (RMW) from U-shaped (d2v/dr2 > 0) to Rankine-like 

(d2v/dr2 « 0). While it may be expected that the maximum tangential velocity would de

crease as the PV is radially broadened, the mixing of PV into the eye causes the v2/r term 

in the gradient wind equation to become very large, which supports a decrease in central 

pressure leading to further intensification. This dual nature of PV mixing has recently been 

studied using a forced barotropic model (Kossin et al. 2006; Rozoff et al. 2008). In addi

tion, eye mesovortices that sometimes form are thought to be important factors governing 

intensity change because they may serve as efficient transporters of warm and moist air 

at low levels of the eye to the eyewall (Persing and Montgomery 2003; Montgomery et al. 
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2006a; Cram et al. 2007) allowing the hurricane to exceed its axisymmetric energetically 

based maximum potential intensity (Emanuel 1986, 1988). 

In order to obtain insight into the basic dynamics of this problem, Schubert et al. 

(1999) (hereafter S99) performed a linear stability analysis for hurricane-like rings of en

hanced vorticity. By defining a ring thickness parameter (ratio of the inner and outer radii) 

and a ring hollowness parameter (ratio of the eye to the inner-core vorticity), they were able 

to express the exponential growth rates of disturbances of various azimuthal wavenumbers 

in this thickness-hollowness space. In the aggregate, they found that the fastest growth rates 

existed for thin, hollow rings, while slower growth rates existed for thick, filled rings. Very 

thick rings were found to be stable to exponentially growing perturbations of all azimuthal 

wavenumbers. The nonlinear evolution of a prototypical hurricane-like vorticity ring was 

examined to study asymmetric details of the vorticity mixing episode. In the early phase, 

a polygonal eyewall (multiple straight line segments) was observed, and later, as high PV 

fluid was mixed from the eyewall to the eye, asymmetric eye contraction was illustrated. 

This confirmed that polygonal eyewalls can be attributed solely to slow vorticity dynamics, 

rather than transient inertia-gravity wave interference patterns (Lewis and Hawkins 1982). 

After approximately two days, the initial vorticity field was redistributed to an end state 

of an axisymmetric monopole. In general, it is not possible to accurately predict these end 

states analytically (i.e., without numerically simulating the nonlinear advection); however, 

the use of vortex minimum enstrophy and maximum entropy approaches have yielded some 

useful insight (S99 sections 5 and 6). 

In the present work, we examine the complete lifecycles of 170 different PV rings 

in a nondivergent barotropic model framework. The model experiments sample the two 

dimensional parameter space using 10 points of varying hollowness of the core (hollow to 

nearly filled) and 17 points of varying thickness of the ring (thick to thin). These rings are 

indicative of vorticity structures present in a wide spectrum of real hurricanes. In the initial 

linear wave growth phase, the nondivergent barotropic model results are compared to the 
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S99 linear theory for the most unstable azimuthal mode. The unforced evolution is then 

allowed to progress into its fully nonlinear advective regime. The end states (defined at t 

= 48 h) are assessed and characterized for each ring. Azimuthal mean diagnostics are also 

presented showing the evolution of the radial pressure and tangential wind profiles for each 

ring to assess the relationship between PV mixing events and hurricane intensity change. 

Provided the axisymmetric potential vorticity field can be ascertained, these results can be 

used as a gauge for understanding the PV redistribution process in real hurricanes. 

The outline of this chapter is as follows. In section 3.3, the linear stability analysis 

of S99 is briefly reviewed. The pseudospectral barotropic model and initial conditions are 

described in section 3.4. A comparison of the fastest growing azimuthal mode observed in 

the numerical model to the linear stability analysis is given in section 3.5. The end states 

of the unstable vortices are characterized and discussed in section 3.6. A discussion of the 

relationship between PV mixing and hurricane intensity change is presented in section 3.7. 

Finally, a summary of the results is given in section 3.8. 

3.3 R e v i e w of linear stabil i ty analysis 

It is well known that the sign reversal in the radial vorticity gradient in hurricanes 

satisfies the Rayleigh necessary condition for barotropic instability 1 . One can view the 

instability as originating from the interaction of two counterpropagating vortex Rossby (or 

PV) waves (Guinn and Schubert 1993; Montgomery and Kallenbach 1997). A Rossby wave 

on the inner edge of the annulus will prograde relative to the mean flow, and a Rossby wave 

on the outer edge will retrograde relative to the mean flow. If these waves phase-lock (i.e., 

have the same angular velocity), it is possible for the whole wave pattern to amplify. 

The linear stability analysis of initially hollow vorticity structures was performed by 

S99 (their section 2). A brief review of that work is presented here. First, the discrete vor-

1 In real hurricanes, where vertical shear and baroclinity is nontrivial, we expect the instability to be a 
combined barotropic-baroclinic one. See Montgomery and Shapiro (1995) for a discussion of the Charney-
Stern and Pjortoft theorems applicable to baroclinic vortices 
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ticity model is defined as three separate regions: eye (£a+£&), eyewall (&), and environment 

(Michalke and Timme 1967; Vladimirov and Tarasov 1980; Terwey and Montgomery 2002): 

ia + Zb if 0 <r<ra (eye) 

C(r) = { £b if ra < r < n (eyewall) . C3-1) 

0 if rb < r < oo (far-field) 

Small amplitude perturbations to this basic state vorticity are governed by the lin

earized nondivergent barotropic vorticity equation: 

(5+*£)*V-&5-* («) 
Here, ui(r) = v/r is the basic state angular velocity, ip' is the perturbation streamfunc-

tion from which the nondivergent velocity can be obtained (i.e., v! = — dip1 /rd<j> is the 

perturbation radial velocity and v' = dip1 /dr is the perturbation azimuthal velocity), and 

C = V 2 ^ ' is the perturbation relative vorticity. By seeking solutions to (3.2) of the form 

tp'(r,(t>,t) = ^ ( r - y ^ - 1 4 ) (where TO is the azimuthal wavenumber and v is the complex 

frequency), (3.2) reduces to an ordinary differential equation for the radial structure func

tion V>(r). Using the ip(r) solution in conjunction with appropriate boundary conditions, a 

mathematical description of the traveling vortex Rossby waves at the two vorticity jumps 

is obtained, along with their mutual interaction. The eigenvalue relation can be written in 

a physically revealing form by introducing two vortex parameters, 6 = ra/rb (where ra and 

rfc are the radii of the vorticity jumps from the eye to the eyewall and from the eyewall to 

the environment, respectively) and 7 = (£n + £,b)/(av (where (av = t;a5
2 + & is the average 

vorticity over the entire hurricane inner-core). Then, the dimensionless complex frequency 

v/(av can be expressed solely in terms of the azimuthal wavenumber m, the ring thickness 
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parameter <$, and the ring hollowness parameter 7 as 

Sav ^ I 

ro_(TO_1)7_2(i^U4^u7_v^)^ 
(3.3) 

l-82JJ \l-S2 J \' 1-52
 # 

Exponentially growing or decaying modes occur when the imaginary part of the frequency, 

i/j, is nonzero, i.e., when the term in brackets is negative. Isolines of the dimensionless 

growth rate Vi/(av
 c a n then be drawn in the (6,7)-parameter space for each azimuthal 

wavenumber m. This set of diagrams can be collapsed into a single summary diagram by 

choosing the most rapidly growing wave for each point in the (8,7)-parameter space. This 

summary diagram is shown in Pig. 3.2. As an example of interpreting this diagram, consider 

a vortex defined by (8,7) = (0.7,0.3). According to Fig. 3.2, the most unstable mode is 

m = 4, and this mode grows at the rate Vi/C,av ~ 0.15. For a hurricane-like vorticity of 

Cav — 2.0 x 10 - 3 s_ 1 , this corresponds to an e-folding time of 0.93 h. 

The rings considered in S99 were stable to exponentially growing modes of wavenum

ber m = 1 and m = 2. As shown by Terwey and Montgomery (2002), there does exist an 

exponentially growing m = 2 mode in the discrete model; however, a necessary condition 

for it is that |£f,| < |£0| (the eye vorticity is negative). This was absent from S99 because 

7 > 0 for their vortices. In the analagous continuous model (6) with smooth transitions 

instead of vorticity jumps, exponentially growing m = 2 modes are also possible (Schubert 

et al. 1999; Reasor et al. 2000). 

Both the discrete and continuous models are stable to exponentially growing wavenum

ber m = 1 modes. However, an algebraic m = 1 instability that grows at t1'2 (Smith and 

Rosenbluth 1990) exists. The only requirement for this instability is a local maximum in 

angular velocity (Nolan and Montgomery 2000), which occurs for every vortex considered 

in S99 and here. However (as will be shown) the m = 1 algebraically growing mode is only 

visible in rings that are stable to all faster exponentially growing modes (thick and filled 

rings). The m = 1 instability is visible as a growing wobble of the eye (Nolan et al. 2001). 
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0.0 0.2 

(thick rings) 

0.4 0.6 0.8 1.0 

(thin rings) 

Figure 3.2: Isolines of the maximum dimensionless growth rate Vi/(av for azimuthal 
wavenumbers m = 3,4, . . . , 12 . Contours range from 0.1 to 2.7 (lower right), with an 
interval of 0.1. The shaded regions indicate the wavenumber of the maximum growth rate 
at each S (abscissa) and 7 (ordinate) point. 

The S99 linear analysis was generalized by Nolan and Montgomery (2002) to three-

dimensional idealized hurricane-like vortices. Broadly, they found that the unstable modes 

were close analogs of their barotropic counterparts. 

3.4 Pseudospectral model experiments 

A pseudospectral nondivergent barotropic model is used for all the simulations. The 

model is based on one prognostic equation for the relative vorticity and a diagnostic equation 

for the streamfunction, from which the winds are obtained (u = —dtfi/dy and v = dip/dx), 
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i.e., 

dt + d(x,y) UW ^ 
(3.4) 

(3.5) 

where v is the kinematic viscosity. The initial condition consists of an axisymmetric vorticity 

ring defined by 

Ci 0 < r < ri 

< i S ( £ £ ) + <2S(£E£) r ! < r < r 2 

C ( r , 0 ) = ^ 2 r 2 < r < r 3 , (3-6) 

C3 r4 < r < 00 

where d , C2, C3; ri> r2, ^3, and r4 are constants, and 5(s) = 1 —3s2 4-2s3 is a cubic Hermite 

shape function that provides smooth transition zones. The eyewall is defined as the region 

between r2 and r3, and the transition zones are defined as the regions between r\ and r2, and 

r3 and r4. In order to relate the smooth continuous model (3.6) to the discrete model (3.1), 

the midpoints of the smooth transition zones are used to compute the thickness parameter, 

so that 6 = ( n + r2)/(r3 + r4) . 

To initiate the instability process, a broadband perturbation (impulse) was added to 

the basic state vorticity (3.6) of the form 

0 0 < r < n , 

S ( £ E £ ) n<r<r2, 

1 r2<r < r3, (3-7) 

S(£E%) r3<r<ri, 

0 r4 < r < 00, 

where Camp = 1-0 x 10 - 5 s _ 1 is the amplitude and <j>m the phase of azimuthal wavenumber 

m. For this set of experiments, the phase angles cj)m were chosen to be random numbers in 

12 
£(r, <f>, 0) = Camp ] P cos(m^ + <̂ >m) x < 

7 7 1 = 1 
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the range 0 < 4>m < 2-K. In real hurricanes, the impulse is expected to develop from a wide 

spectrum of background turbulent and convective motions. 

A sequence of 170 numerical experiments was conducted with the pseudospectral 

model. The experiments were designed to cover the thickness-hollowness (8,7) parameter 

space described above at regular intervals. The four radii (ri,r2,r3,r4) were chosen to 

create 17 distinct values of the thickness parameter 5 = (r\ + r2)/(r3 + r±) points: [0.05, 

0.10, ..., 0.85]. This was accomplished by first setting r^ and r± constant at 38 km and 42 

km, respectively. Then, r\ and ri were varied under the constraint that vi - r\ = r\ - r% 

= 4 km to produce the desired values of 5. For example, r\ = 0 km and r<2 = 4 km defined 

the 5 = 0.05 point, r\ = 2 km and T2 = 6 km defined the 8 = 0.10 point, and so forth. The 

thinnest ring was defined by r\ = 32 km and r-i = 36 km, corresponding to 8 = 0.85 and 

resuting in a 6 km thick eyewall. The 7 points were defined as follows. First, the inner-core 

average vorticity was set to Qav— 2.0 x 10~3 s _ 1 (this value corresponds to a hurricane with 

maximum sustained winds of approximately 40 m s _ 1 for the radii chosen). Then, the eye 

vorticity C,\ was incremented to produce 10 values of 7 = Ci/Cav'- [0.00, 0.10, ..., 0.90]. The 

eyewall vorticity (2 was then calculated by £2 = Cav(1 — 7<^2)/(l ~ <̂ 2)- In e a c n experiment 

the environmental vorticity £3 was set so that the domain average vorticity would vanish. 

The numerical solution was obtained on a 600 km x 600 km doubly periodic domain 

using 512 x 512 equally spaced points. One 48 h simulation was conducted for each of the 

170 8 and 7 points described above. After dealiasing of the quadratic advection term, 170 

Fourier modes were kept yielding an effective resolution of 3.52 km. A standard fourth order 

Runge-Kutta time scheme was used with a time step of 10 s. Ordinary (V2) diffusion was 

used with, v = 25 m2 s _ 1 resulting in an e-folding time of 3.5 h for all modes having total 

wavenumber 170. The same random impulse (3.7) was added to the basic state axisymmetric 

vorticity field in the eyewall region for each experiment. 

The initial conditions of the numerical model experiments are shown in Fig. 3.3. In 

the left panel, the mean relative vorticity, tangential velocity, and pressure anomaly are 
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shown for the [7 = 0.0, S = 0.00, 0.05, ..., 0.85] rings. This illustrates how varying the 

ring thickness affects the three curves while holding the hollowness fixed. Similarly the 

initial conditions for the [7 = 0.0, 0.1, ..., 0.9, S = 0.75] rings are shown in the right panel. 

This illustrates how the three curves change as the hollowness parameter 7 is varied while 

holding the thickness parameter 8 fixed. In the left panel, thicker curves represent thinner 

rings, and in the right panel, thicker curves represent more filled rings. Note that in each 

case only the inner core profiles (r < 42 km) are changing and that the maximum tangential 

velocity is always the same (approximately 40 m s_ 1) . 

The pressure is obtained by solving the nonlinear balance equation 

I y 2 p = /V 2 V - 2 
P 

(d2ip\ d2-ipd2ip 
\dxdyj dx2 dy2 (3.1 

using / = 5 x 10~5 s _ 1 and p = 1.13 kg m - 3 . According to (3.8), in the nondivergent 

barotropic model the pressure immediately adjusts to the evolving wind field. In the real 

atmosphere, the adjustment may be accompanied by inertia-gravity wave emission (nonex

istent in the nondivergent barotropic model). 

Two integral properties associated with (3.4) and (3.5) on a closed domain are the 

kinetic energy and enstrophy relations 

f = -2^ <3-10> 
where the kinetic energy £ = JJ \Vtp • Vtpdxdy, the enstrophy Z = JJ ^C2 dxdy, and the 

palinstrophy V = JJ |VC • V^dxdy. In the absence of diffusion, both kinetic energy and 

enstrophy are conserved. However, diffusion is necessary to damp the enstrophy cascade to 

high wavenumbers in a finite resolution model. During vorticity mixing events V becomes 

very large causing Z to decrease. As Z becomes smaller £ decreases at a slower rate. Thus 

enstrophy is selectively decayed over energy. 

file:///dxdyj
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Figure 3.3: Basic state initial condition of various rings. Azimuthal mean relative vorticity, 
tangential velocity, and pressure are shown for 7 = 0.0 and S = 0.00,0.05,..., 0.85 (left 
panels) and for 7 = 0.0,0.1, . . . ,0.9 and S = 0.75 (right panels). In the left panels thicker 
lines indicate increasing 5 (rings become thinner) and in the right panels thicker lines 
indicate increasing 7 (rings become more filled). 

3.5 Comparison of numerical model results to linear theory 

The fastest growing mode at each (5,7) point is determined from the output of the 

pseudospectral model and compared to the linear stability analysis displayed in Fig. 3.2. 
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By definition, barotropic instability grows by extracting kinetic energy from the mean flow. 

Therefore, the initial instability seen is the fastest growing mode (largest dimensionless 

growth rate), and once that mode extracts significant kinetic energy from the mean flow, 

there is no energy left to support any other slower growing modes. The mode with the 

maximum dimensionless growth rate is shown in Fig. 3.4 at each of the discrete (<5,7) 

points for both the exact linear solution (top panel) and the observed output from the 

pseudospectral model (bottom panel). In the limit of very fine resolution in (6, 7) space, 

the top panel of Fig. 3.4 would reduce to the shaded regions of Fig. 3.2. However, the 

fastest growing mode is shown at the coarser experimental (8,7) points in Fig. 3.4 to allow 

for a direct comparison with the numerical model (bottom panel). It is clear that when 

5 < 0.5 the rings are usually stable to exponentially growing modes. Thicker rings are 

found to be more prone to lower wavenumber growth, while thinner rings are more prone 

to higher wavenumber growth. As the ring becomes more filled, there is a tendency for the 

disturbance instability to be at a higher wavenumber. 

In comparing the numerical results of the pseudospectral model to the exact linear 

results of S99 (Fig. 3.4 top and bottom panels), it is found that the S99 linear stability 

analysis is a good guide to the nonlinear model behavior in the early stages of the evolution. 

The (5, 7) structure of the wave growth bands is similar in both cases for W3,W4,...,etc. 

There are two main differences. The first and most obvious is the Wl and W2 features 

observed in the numerical model that are not present in the linear stability analysis. The 

Wl feature is the algebraically growing instability that is not present in the linear stability 

analysis due to the assumed form of solution. The observed W2 feature is not present in 

the linear stability analysis because it is nonexistent in the discrete three-region model with 

7 > 0. The analogous continuous three-region model on the other hand does support this 

instability. It is not clear whether the W2 pattern is a result of an exponential instability 

(Reasor et al. 2000), diffusion effects (Nolan and Farrell 1999), or a byproduct of nonlinear 

breakdown of the vorticity ring. In some of these cases the fastest growing mode appears to 
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Figure 3.4: Fastest growing wavenumber m (Wm) instability at the discrete 8 (abscissa) 
and 7 (ordinate) points using the linear stability analysis of S99 (top), and the observed 
values from the pseudospectral model (bottom). In the top panel, the 'S' denotes that the 
vortex was stable to exponentially growing perturbations of all azimuthal wavenumbers. 
The 'U' in the bottom panel signifies that the initial wavenumber of the instability was 
undetermined. 

be at a higher wavenumber, but then either a secondary instability or nonlinear interactions 

cause it to slowly evolve into an ellipse. The second difference is that for a given ring 

thickness in the unstable regime, the numerical model tends to produce a slightly higher 
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wavenumber exponentially growing mode than expected by the linear theory. As an example 

of this, at the (#,7)=(0.60,0.30) point the fastest growing mode in the numerical model is 

wavenumber m = 4, while the linear stability analysis of S99 predicts the fastest growing 

mode to be wavenumber m = 3. This difference is probably due to the inclusion of 4 km thick 

smooth Hermite transition zones between the eye-eyewall and the eyewall-environment in 

the numerical simulations. Although the average eyewall vorticity in each case is the same, 

effectively these transition zones make the region of peak vorticity in the experimental rings 

4 km thinner than the linear theory rings. In order to illustrate this, take the following 

example. The (8 = 0.70,7) points correspond to rings with r\ = 26 km, r-i = 30 km, r$ = 

38 km, r4 = 42 km that are filled to various degrees. The same 6 value would yield jump 

radii (ra and r&) from the linear theory of ra = 28 km and r& = 40 km. Thus, for this set of 

5 values, the numerical model sees a peak vorticity region (minus the smooth transitions) 

that is r^ - r-i = 8 km thick, while in the linear stability analysis the region would be r& 

- ra = 12 km thick. This is the primary reason that the pseudospectral model produces a 

higher wavenumber instability for a given 5 value, and it is particularly more pronounced 

for thicker rings (essentially the top and bottom panels of Fig. 3.4 cannot be viewed exactly 

as a one-to-one comparison for the 8 points). 

Other factors that may contribute weakly to the observed differences are the model 

horizontal resolution, diffusion (not present in the inviscid vortex used in the linear stability 

analysis), and periodic boundary conditions. The horizontal resolution (3.52 km) is a little 

coarse to resolve the early disturbance growth of the thinnest rings (8 = 0.85), but should be 

sufficient for all other rings. The inclusion of explicit diffusion (25 m2 s_1) in the numerical 

model may have some effect on the initial wavenumber instability, but it is likely to be minor 

since the e-folding time for damping is 3.5 h. Finally, it is possible that the periodicity that 

exists on a square domain could induce a nonphysical m = 4 mode, which would tend to 

broaden the areal extend of the W4 region in (8,7)-space as compared to theory. However, 

examining Fig. 3.4, this does not appear to occur. Hence, the domain size of 600 km x 600 
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km is large enough so that the periodic boundary conditions do not appear to influence the 

solution to any appreciable degree. 

3.6 End s tates after nonlinear mixing 

The end states for each of the 170 experiments were determined. Generally the end 

states were defined as the stable vorticity structure that existed at t = 48 h; however, in some 

cases additional information during the lifecycle was included. The purpose of characterizing 

these end states is to provide a guide for assessing the most probable vorticity redistribution 

in the short term (less than 48 h) given the known axisymmetric characteristics of the initial 

PV ring. 

The list of end state classifications is shown in Table 3.1. The monopole (MP) classi

fication denotes that at t = 48 h an approximately axisymmetric, monotonically decreasing 

vorticity structure has been established. The slow monopole (SP) classification denotes 

that at t = 48 h a monopole did not yet exist, but the trend was such that if the model 

was run longer (in most cases, less than t = 72 h) a monopole would likely form. In these 

cases, the model was not run long enough to capture the full axisymmetrization process. 

The mesovortices (MV) classification denotes that two or more local vorticity centers per

sisted for at least 15 h during the unforced evolution of the ring. With the exception of 

the (5,7) = (0.85,0.10) ring (in which a stable configuration of four mesovortices existed 

at t = 48 h; Fig. 3.8 left panel), the mesovortices merged into a monopole by t = 48 h. 

The elliptical eyewall (EE) classification denotes an end state involving an ellipse of high 

vorticity. The polygonal eyewall (PE) classification denotes an end state involving a nonan-

nular eyewall with multiple straight line segments. The shape of the polygon was found 

to be the same shape as the initial exponentially growing mode. Note that many of the 

rings having an MP or SP end state exhibited polygonal eyewalls during their evolution 

to a monopole (see Fig. 3.6). Finally, the trochoidal oscillation (TO) classification signifies 

that the end state is more or less identical to the initial state, with the exception of the 
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Table 3.1: End State Definitions 

Identifier 
TO 
MP 
SP 
MV 
EE 
PE 

Name 
Trochoidal Oscillation 

Monopole 
Slow Monopole 

Mesovortices 
Elliptical Eyewall 
Polygonal Eyewall 

Description 
Trochoidal oscillation due to the m—1 instability 

Monotonically decreasing vorticity from center 
Same as monopole but takes longer (48 h < t < 72 h) 

Two or more mesovortices exist for A t > 15 h 
Elliptically shaped eyewall 

Polygonal eyewall with straight line segments 

diffusive weakening of the gradients and the trochoidal wobble of the eye due to the m = 1 

algebraic instability. 

The actual end states observed at t — 48 h for each (5,7)-point are shown in Fig. 3.5. 

For very thin rings (8 = 0.85), there is a strong tendency to produce multiple persis

tent, long-lived mesovortices. In the unforced experiments of Kossin and Schubert (2001), 

mesovortices similar to these had significant meso low pressure areas (as much as 50 mb 

lower than the environment) and this barotropic breakdown was therefore hypothesized to 

precede a rapid fall in central pressure. Examining the 7 = 0 row, we see that for moder

ately thin hollow rings (0.60 < S < 0.75), the mostly likely end states are monopoles (MP); 

for thicker hollow rings (0.45 < S < 0.55), the tendency is for slow monopoles (SP); and 

for thick, hollow rings (S < 0.45), the end states are trochoidal oscillations (TO) generally. 

For a given 8 value, as the eye becomes more filled (increasing 7) there is a tendency for 

the mixing to a monopole to take longer (more like an SP), and it is less likely to have 

persistent mesovortices. For moderately thin rings (0.45 < 5 < 0.75) with nearly filled 

cores (7 > 0.60), there is a tendency for an end state of an elliptical eyewall (EE). This 

tendency is probably the result of either a slower growing wavenumber m = 2 exponential 

mode or nonlinear effects. For a few moderately filled thick rings there was a tendency for 

polygonal eyewalls (PE) to exist at t = 48 h. In these cases, the initial wavenumber m = 3 

and 4 instability was so slow growing that the low vorticity eye could not be expelled or 

mixed out, and the resultant structure was an polygonal eyewall of the same character as 
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Figure 3.5: End states observed in the pseudospectral model after nonlinear vorticity mixing 
at t = 48 h at the discrete 8 (abscissa) and 7 (ordinate) points 

The complete lifecycles of some unstable rings are shown in Figs. 3.6, 3.7, and 3.8. 

The left panel of Fig. 3.6 depicts the evolution of the (5,7) = (0.75,0.20) ring. The initial 

instability is m = 5 (although close to TO = 4), and the end state is a monopole. The right 

panel of Fig. 3.6 depicts the evolution of the (6,7) = (0.50,0.20) ring. The initial instability 

is m = 3, and the end state is a slow monopole. If the model were run slightly longer the PV 

mixing process would be complete and the low vorticity eye would be expelled. Fig. 3.7 (left 

panel) depicts the evolution of the (6,7) = (0.55,0.80) ring. The initial instability is TO = 2, 

and the end state is an elliptical eyewall. Fig. 3.7 (right panel) depicts the evolution of the 

(8,7) = (0.50,0.50) ring. The initial instability is m = 4, and the end state is a square, 

polygonal eyewall. Fig. 3.8 (left panel) depicts the evolution of the (8,7) = (0.85,0.10) ring. 

The initial instability is m = 6, and the end state is a stable (non-merging) pattern of four 

mesovortices. Fig. 3.8 (right panel) depicts the evolution of the (5,7) = (0.25, 0.70) ring. 

The initial instability is m = 1, and the end state is a wobbling eye (TO). 

The evolution of the normalized enstrophy Z(t)/Z(0) for each of the above rings is 
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Figure 3.6: The evolution of the (5,7) = (0.75,0.20) ring (left) and the (S, 7) = (0.50,0.20) 
ring (right). The end states are MP and SP respectively. 

shown in Fig. 3.9. For the SR, EE and PE classifications the enstrophy decay was gradual 

and small. For the SP classification, the enstrophy decay was gradual and slightly larger. 

For the MP and MV classifications, the enstrophy decay was rapid and large. In one 

MV case, the (<5,7) = (0.85,0.00) ring, a stairstep pattern was observed associated with 
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Figure 3.7: The evolution of the (6,7) = (0.55,0.80) ring (left) and the (6,7) = (0.50,0.50) 
ring (right). The end states are EE and PE respectively. 

mesovortex mergers. In the other MV case, this pattern was not observed because the four 

mesovortices that formed during the initial ring breakdown did not undergo any subsequent 

mergers. These results are broadly consistent with the PV ring rearrangement study of 

Wang (2002). 
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Figure 3.8: The evolution of the (S,j) = (0.85,0.10) ring (left) and the (5,j) = (0.25,0.70) 
ring (right). The end states are MV and TO respectively. 

3.7 P V mixing and hurricane intensity change 

What is the relationship between inner-core PV mixing and hurricane intensity change? 

A complete answer to this question would require a comprehensive study of both forced (with 

diabatic heating effects) and unforced simulations using a hierarchy of numerical models: 
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Figure 3.9: Evolution of the enstrophy Z(t)/Z(0) for the rings in Figs. 3.6-3.8. An addi
tional MV curve is plotted for the (6, 7) — (0.85,0.00) ring. 

the nondivergent barotropic model, shallow water model, quasi-static primitive equation 

model, and full-physics nonhydrostatic model. And that work should be complemented 

with available observational data. In this section, we examine the relationship between PV 

mixing and intensity change in the unforced nondivergent barotropic context - see Rozoff 

et al. (2008) for the analogous problem in the forced nondivergent barotropic model. 

In Fig. 3.10, the changes in azimuthal mean vorticity, tangential velocity, and central 

pressure from t = 0 h (solid curve) to t = 48 h (dashed curve) are shown for the evolution 

of two rings: (£,7) = (0.7,0.7) (left panel) and (S,7) = (0.0,0.85) (right panel). The end 

states are SP and MP, respectively. In the left panel, it can be seen that the azimuthal 

mean relative vorticity is not yet monotonic, however the mixing is proceeding such that 

a monopole would form later. During its evolution both the peak tangential velocity and 

central pressure decreased slightly (Avmax = —3.9 m s _ 1 and Apm;n = —0.8 hPa). In the 
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right panel, the annulus of vorticity was redistributed to a monopole causing the radius of 

maximum wind (RMW) to contract approximately 25 km in 48 hours. Both the tangential 

velocity and central pressure decreased significantly (Avmax = -7 .7 m s _ 1 and Apm;n = 

—14.4 hPa) during this period. 

The changes in maximum tangential velocity and central pressure for each ring ex

amined in this study is shown in Fig. 3.11. In the top panel the change in central pressure is 

shown with light gray denoting a pressure change of —5 hPa < Apm;n < 0 hPa and dark gray 

denoting a pressure change of Apm;n < —5 hPa. In the bottom panel the changes in peak 

tangential velocity are shown with light gray denoting a change -7 m s _ 1 < Aumax < - 3 m 

s _ 1 and dark gray denoting a change Awmax < —7 m s - 1 . The main conclusion from this fig

ure is that for all rings that underwent PV mixing episodes both the tangential velocity and 

central pressure decreased. The decreases were most pronounced for thin, hollow rings that 

mixed to a monopole or mesovortices that persisted and then merged into a monopole (cf. 

Kossin and Schubert 2001). Note that since the (5,7) ~ (0.85,0.10) ring had an end state of 

4 mesovortices, the central pressure fall was weak; however, lower pressure anomalies were 

associated with each mesovortex. 

Empirical pressure-wind relationships generally have the form 

% a x = C(Pref ~ Pc)"', (3 .11) 

where C and n are empirical constants, wraax is the maximum azimuthal velocity, pref is the 

reference pressure, and pc is the central pressure. Such approximations may not be valid 

during PV mixing events. To illustrate why this is the case, we write the cyclostrophic 

balance equation v2/r = (l/p)(dp/dr) in its integral form: 

/ P—dr = p i e { - pc, (3.12) 
Jo r 

where rref is the radius at which the pressure equals pTef. Comparing the empirical relation 

(3.11) with the cyclostrophic balance relation (3.12), we see that (3.11) is justified if the 

2 For a review of empirical pressure-wind relationships and a reanalysis of their validity with observed 
storms, see Knaff and Zehr (2007). 
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Figure 3.10: The initial (t — 0 h; solid curve) and final (t — 48 h; dashed curve) azimuthal 
mean relative vorticity, tangential velocity, and pressure for the (8,7) = (0.70,0.70) ring 
(left) and the (S,7) = (0.85,0.00) ring (right). The pressure is expressed as a deviation 
from the environment. The end states of the two rings are SP and MP, respectively. 

integral on the left hand side of (3.12) can be accurately approximated by (vmax/C)1'n for 

all the v{r) profiles encountered during PV mixing events. Examining the two tangential 

velocity profiles in Fig. 3.10 (middle right panel), we see that although the peak tangential 



60 

^Pm l n (hPa) 
mm 

1« 
08 

io, 
0.6 

y o.s 
0.4 

! " 
jo.. 
- o 

0.2 

0.2 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.2 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.2 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.2 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.0 

0.1 

0.2 

0.2 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.2 

0.2 

0.2 

0.1 

0.1 

0.1 

0.1 

-0.3 

-0.3 

0.1 

0.2 

0.2 

0.2 

0.1 

0.1 

0.1 

0.1 

-0.7 

-1.9 

-1.9 

-1.8 

0.2 

0.2 

0.1 

0.1 

0.0 

0.1 

-1.2 

-2.4 

-3.0 

-3.4 

0.2 0.2 

0.1 . 0.1 

0.1 

0.1 

-0.2 

-0.2 

-0.5 -0.6 

-0.9 

-1.7 

-1.6 

-3.9 

-2.8; -3.4 

-3.0 

-4.0 

-3.8 

0.2 

0.0 

-0.4 

-0.9 

-1.2 

-2.0 

-4.3 

0.2 

-0.1 

-0.8 

-0.5 

-3.1 

-4.4 

0.1 

-0.3 

-0.8 

-2.1 

-3.7 

0.1 

-O.S 

-0.9 

-3.0 

-4.4 

0.1 

-0.4 

-2.1 

-3.4 
jjBgggg 

WMHHHM 

BHP 
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 

(thick rings) 8 (thin rings) 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.6 

-1.7 

-1.6 

-1.6 

-1.7 

-1.6 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.8 

-1.7 

-1.8 

-1.7 

-1.7 

-1.7 

-1.7 

-1.7 

-1.8 

-1.8 

-1.8 

-1.4 

-1.8 

AM 

-1.7 

-1.7 

-1.7 

-1.8 

-1.8 

-1.8 

-2.3 

-2.6 

-2.0 

-1.9 

max 

-1.7 

-1.7 

-1.8 

-1.8 

-1.8 

-1.8 

-3.2 

-3.2 

-3.4 

-3.4 

(m 
-1.7 

-1.8 

-1.8 

-1.8 

-2.1 

-L.9 

-3.6 

-4.2 

-4.6 

•4.5 

s-1 

-1.7 

-1.8 

-2.2 

2.3 

-3.2 

-3.1 

-3.7 

-4.4 

-4.7 

-5.2 

) 

-1.7 

-2.1 

-2.9 

-3.2 

-3.8 

-4.1 

-7.0 

-5.4 

-6.2 

-1.8 

-2.4 

-3.5 

-4.8 

-4.6 

-4.8 

-7.2 

-1.9 

-2.8 

-3.9 

-4.5 

-6.5 

-2.0 

-3.2 

-4.2 

-6.1 

-7.3 

-2.1 

-3.5 

-5.1 

-6.8 

-2.3 

-3.9 

-5.9 

-7.2 

wmmm 

HH9 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 

(thick rings) S (thin rings) 

Figure 3.11: (top panel) Central pressure change (hPa) from t = 0 h to t = 48 h for each 
ring. Negative values (pressure drop) are shaded with —5 < Apmin < 0 in light gray and 
Apmin < —5 in dark gray, (bottom panel) Maximum tangential velocity change (m s_1) 
from t — 0 h to t = 48 h for each ring: - 7 < Awraax < - 3 (light gray shading) and 
A i W < - 7 (dark gray shading). 

velocity decreased, there exists a much larger radial region of higher winds for the dashed 

curve at t = 48 h. The pressure fall, which must account for the entire radial integral, is 
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therefore larger in this case even though the peak winds decreased. In addition, mixing of 

angular momentum to small radii causes the v2/r term to be large there, contributing to 

the pressure fall. Based on these results, special care must be taken when using empirical 

pressure-wind relationships during PV mixing events. We have examined this issue in the 

context of a nondivergent barotropic model, which is an oversimplification of the moist 

atmosphere. Nonetheless, if PV mixing is primarily a barotropic process that proceeds 

adiabatically (even though the hollow tower generation is diabatic) with little gravity wave 

radiation, these results should generalize to the real atmosphere with only minor changes. 

3.8 S u m m a r y 

The lifecycles of 170 different hurricane-like potential vorticity (PV) rings, filling the 

parameter space of the hollowness of the core (defined by the ratio of eye to inner-core 

relative vorticity) and the thickness of the ring (defined by the ratio of the inner and outer 

radii), were examined in a nondivergent barotropic model framework. In approximately 

one-half the cases the ring became dynamically unstable, causing vorticity to be mixed 

from the eyewall to the eye. In the early part of the lifecyle, the fastest growing exponential 

mode was compared to the linear stability analysis of Schubert et al. (1999). In the later 

part (nonlinear mixing), the resultant end states were characterized for each ring at t = 48 

h. 

It was found that the linear stability analysis of S99 is a good guide to the nonlinear 

model behavior in the exponential wave growth phase of the lifecycle. The assumptions 

used in the S99 linear stability analysis eliminated the possibility of wavenumbers m — 1 

(algebraic) and m = 2 instabilities, which were both observed in the pseudospectral model 

results. The slowly growing wavenumber m = 1 instability was visible as a wobble of 

the eye in thick, filled rings that were stable to all other exponentially growing modes. 

If the vortex were moving, this wobble would be observed as a trochoidal oscillation. A 

wavenumber m = 2 pattern was observed for a few moderately thick, nearly filled rings. This 
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was most likely due to either an exponential instability (allowed by the model's continuous 

vorticity profile), or nonlinear vorticity mixing. Elliptically shaped vorticity structures have 

been observed in hurricanes (Reasor et al. 2000; Corbosiero et al. 2006) and simulated as 

a nonlinear interaction between a monopole and a secondary ring of enhanced vorticity 

(Kossin et al. 2000), however their formation dynamics are not clear in the evolution of 

unforced PV rings. 

The most likely end state of all unstable rings was a monopole. For thick, filled rings, 

the relaxation to a monopole took longer than for thin, hollow rings. For very thin rings 

with relatively hollow cores, multiple long-lived (order 15 h) mesovortices persisted before 

mixing to a monopole. For moderately thick and filled rings, the end state was an elliptical 

eyewall that formed due to the wavenumber m = 2 feature described above. For some thick 

and moderately filled rings, the end state was a polygonal eyewall of the same character as 

the initial instability. 

For all rings that underwent a barotropic breakdown and PV mixing, both the cen

tral pressure and peak azimuthal mean tangential velocity decreased. The most dramatic 

pressure and tangential velocity decreases were found for thin, hollow rings that formed 

monopoles, or mesovortices that persisted and then merged into monopoles. In a 48 h time 

frame, the storms that formed monopoles (on average) had a central pressure fall of 6 hPa 

and tangential velocity fall of 9 m s_ 1 . Weaker falls for both quantities were found for slow 

monopoles (1 hPa and 4 m s_ 1 , respectively). Very minor changes occurred for all other 

rings. 

In real hurricanes, diabatic effects tend to constantly produce a PV hollow tower. 

This hollow tower will periodically become dynamically unstable and PV will be mixed 

from the eyewall into the eye. Subsequently, diabatic heating will tend to regenerate the 

hollow tower, from which another mixing episode may occur, and so forth. In this work, we 

have shown what end states are most likely to result from these short term (order of a couple 

days) episodic PV mixing events for hollow towers (PV rings in the barotropic context) that 
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are rilled and thin to various degrees. For strong and intensifying hurricanes that produce 

thin hollow towers, these results suggest another mechanism by which the central pressure 

can rapidly fall. Thus PV mixing may complement the intensification process. 

Finally, we have chosen a very simple framework (nondivergent barotropic model) to 

study this problem. In real hurricanes, where baroclinity and moist processes are important, 

these results may change to some degree. Future work should be focused on studying 

the relationship between inner-core PV mixing and hurricane intensity change in more 

complex models. Logical next steps to the current work would be the examination of PV 

mixing in both shallow water and three-dimensinal quasi-hydrostatic primitive equation 

model frameworks. In the former case, the results are hypothesized to be nearly the same, 

however, spontaneous gravity wave emission from thin ring breakdowns may be significant. 

In the latter case, one could examine the adiabatic lifecycles of initially hollow PV towers, 

including the preferred isentropic layers for PV mixing. 



Chapter 4 

IDEALIZED MESOSCALE MODELS FOR STUDYING TROPICAL 

CYCLONE DYNAMICS 

4.1 Introduction 

In contructing an atmospheric mesoscale model many choices must be made. First, 

the desired fidelity of the model must be determined: (i) hydrostatic or nonhydrostatic, (ii) 

inclusion or exclusion of moist processes, (iii) inclusion and complexity of various physics 

parameterizations, such as planetary boundary layer, microphysical, cumulus and radiation 

schemes. Next, numerical considerations must be taken into account such as the use of 

the finite difference, finite volume or spectral methods for solving the governing equations. 

One of major appeals of the spectral method is that the error decays exponentially with 

increasing resolution, while for finite difference methods the error generally decays alge

braically (Pulton and Schubert 1987a,b). However, this nice quality is partially negated by 

the requirement of periodicity at the lateral boundaries (for Fourier spectral methods) and 

the Gibbs phenonenon that arises when attempting to represent steep gradients. 

Choices must also be made for the vertical coordinate. A popular choice is the terrain-

following a-coordinate which is used in many mesoscale models such as the full-physics 

Regional Atmospheric Modeling System (RAMS; Pielke et al. 1992) and the Weather 

Research and Forecasting Model (WRF; Skamarock et al. 2005). However, the expense that 

is paid for the terrain-following property is the separation of the horizontal pressure gradient 

force into two terms that may be large and of opposite sign near steep topography. Another 

option is the isentropic vertical coordinate. Since isentropic surfaces are material surfaces, 
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a quasi-Lagrangian view of the atmosphere may be obtained in these models. The primary-

problem with this coordinate is that for realistic planetary boundary layers ^-surfaces will 

intersect the ground. The benefits of the isentropic coordinate at upper levels and a-

coordinate near the surface have led to the development of hybrid a-6 coordinates (Simmons 

and Burridge 1981; Konor and Arakawa 1997). With any hybrid coordinate, however, there 

are consistency issues at the coordinate surface transitions. Although not widely used in 

numerical models, some other vertical choices are physical height, pseudoheight (Hoskins 

and Bretherton 1972), pressure and log-pressure coordinates. 

With idealized hurricane and vortex simulations in mind, two hydrostatic primitive 

equation models were made using a periodic, spectral shallow water model (Fulton 2007) 

as a starting point. The first model uses an isentropic vertical coordinate and the second 

uses a sigma-vertical coordinate. The models include dynamical cores with the option of 

prognostic equations for either the momentum or the vertical vorticity and divergence. 

The equations are solved on a limited area periodic, /-plane domain. At this point, the 

models are simple. There is no moisture or surface fluxes. Similar to operational global 

models (e.g., the ECMWF model), the model uses the Fourier spectral representation in the 

horizontal and finite difference schemes in the vertical. As we will see, the horizontal Fourier 

spectral representation is ideal for simulating the intricate details of asymmetric PV mixing 

in hurricanes. In section 4.2, the quasi-hydrostatic primitive equations on which the model is 

based are shown. In section 4.3, the horizontal discretizations are described. The temporal 

discretization options are discussed in section 4.4. The vertically discrete isentropic and 

sigma coordinate models are described in section 4.5. Some additional features of the 

model are described in section 4.6. The initialization procedure is shown in section 4.7. 

Some preliminary verification and validation tests are presented in section 4.8, including 

unforced PV hollow tower simulations. Finally, a summary of the results is presented in 

section 4.9. 
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4.2 Governing Equat ions 

We consider a compressible atmosphere constrained by quasi-hydrostatic motions on 

an /-plane. Using the generalized r](p,ps,0) vertical coordinate, the equations are shown 

for both isentropic (77 = 9) and sigma (r? = a = {p — Pt)/(ps — Pt)) vertical coordinates. 

4-2.1 Isentropic vertical coordinate 

The isentropic vertical coordinate primitive equations in rotational form are shown 

below. The horizontal momentum equations can be cast in either layer momentum and 

vorticity-divergence form. In momentum form, given a layer velocity u = (u, v) the equa

tions for zonal and meridional momentum are 

s+^-*"p" + £<M + i ^ F » <") 

^ + ^ + m p u + ^(M + K).Fv. (4.2) 

By taking the curl (k • V#x) and divergence (Vg-) of du/dt, the equations in vorticity-

divergence form are 

d(e d f»dv\ d (Adu\ djmPu) djmPv) 

The hydrostatic, continuity, and thermodynamic equations are the same for both formula

tions: 

w = n , (4-5) 
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dm d(rmi) d(mv) d(mO) „ .. „. 

^ + J a ^ + V + V = 0' (4'6) 

9 = 9.. (4.7) 

Here, u is zonal momentum, v is the meridional momentum, K = (u2 +v2)/2 is the kinetic 

energy, II = cp(p/po)K is the Exner function, <fr = gz is the geopotential, M = 9H + <& is the 

Montgomery potential, .F are arbitrary momentum sources and sinks, Q is a heat source or 

sink, r]$ = f+dv/dx—du/dy is the isentropic absolute vertical vorticity, (g = dv/dx—du/dy 

is the isentropic relative vertical vorticity, m = —dp/09 is the pseudodensity, 9 is the 

diabatic heating rate, and P = rjg/m is the potential vorticity. All variables are functions 

of x, y, 9, and t, and all horizontal derivatives are taken on isentropic (9 = const.) surfaces. 

The potential vorticity principle can be obtained by combining (4.3) and (4.6) while 

eliminating the isentropic divergence: 

DP 1 
Dt ~ m 

d(m9) d f,dv\ d (,du\ 
(4.8) 

Note than in the absence of diabatic heating and friction, P is materially conserved. 

4-2.2 Sigma vertical coordinate 

The sigma vertical coordinate primitive equations in rotational form are shown below, 

in both momentum and vorticity-divergence formulations as well. The horizontal momen

tum equations are 

£+*£-*«+!<•+*>+•»£-*• M 

~ + ^ + r]au + ^ - ^ + K)+aa j^=Fv. (4.10) 
at da dy dy 

Similarly taking the curl (k- V a x) and divergence (VV) of du/dt, the cr-coordinate equations 

in vorticity-divergence form are 



68 

d(a d f. dv\ _ d_ (. du\ d(r]au) 

dt dx \ da J dy \ da J dx 

d{r)av) fdad^ _ dadpA _ 
dy \ dx dy dy dx J 

d5a d (. du\ d_ f. dv\ , d{r]au) 

(4.11) 

dt dx \ da J dy \ da J dy 

d(jlav) 
dx 

• V2 ($ + M) + aaS72ps 

(4.12) 
+ , [ ' ^ + ^ • 1 = * . , . 

dx dx dy dy 

The hydrostatic, continuity, and thermodynamic equations are the same for both formula

tions: 

9 $ 
7T- = -P-«» (4 '13) da 

dps + d(psu) + d(psv) + d(psa) = Q 

dt dx dy da 

%-Q. (4-15) 

Here, t)a = / + dv/dx — du/dy is the absolute vertical vorticity on a a surface, (a = 

dv/dx — du/dy is the relative vertical vorticity on a a surface, ps is the surface pressure, a 

is the cr-velocity. With the exception of ps, all variables are functions of x, y, a, and t, and 

all horizontal derivatives are taken on sigma (a = const.) surfaces. 

For simplicity, in both formulations only the vertical component of relative vorticity 

is predicted. 

4.3 Horizontal Discret izat ion 

Both the sigma and isentropic vertical coordinate models were developed using a 

periodic shallow water model (PSWM) (Fulton 2007) as a starting point. This model uses 
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a Fourier spectral representation of the state variables on a two-dimensional periodic / -

plane domain. The spectral truncation limits in x and y are denoted Mx and My, and 

the periods are Lx and Ly, respectively. The inverse discrete Fourier transform (IDFT) of 

fe(x, y) in each layer £ is 

MX My 

Mxj,Vk)= £ £ fmtne
2^m/N*e2*ikn/N*, (4.16) 

m=~Mx n=—My 

where Xj = jLx/Nx and yk = kLy/Ny for j = 0,1, . . . , Nx — 1 and k = 0 ,1, . . . , Ny — 1. The 

corresponding discrete Fourier transform (DFT) is 

, Nx-1 

UVk) = f- £ /£(^,2/*)e-2™im/JV*, (4.17) 
x j=o 

/">.» = ^ E / ™ ^ ) 6 " 2 ^ ^ ' (418) 
By periodicity, it is also required that ft(x, y) = fa(x + Lx,y), fe(x, y) = fe(x, y + Ly), and 

f((x,y) = ft(x + Lx,y + Ly). The DFTs and IDFTs above are computed using the fast 

Fourier transform (FFT) routine of Temperton (1983c,b,a). In the model, linear terms and 

derivatives are computed in spectral space, and nonlinear terms and physical features such 

as the lateral sponge layer are done in physical space. All fields are transformd to physical 

space when vertical finite differences are taken (section 4.5). 

4.4 Temporal discret izat ion 

The hydrostatic primitive equation models include a number of options for both 

explicit and semi-implicit time differencing. The explicit differencing schemes were taken 

directly from the base shallow water model, and include a simple forward scheme, second and 

third order Adams-Bashforth schemes, and a leapfrog scheme. The implicit schemes include 

a backward Euler, multi-step trapezoidal, and Adams-Moulton. The implicit methods have 

the potential for increased stability and larger time step (at the expense of distorting the 

fast gravity waves). However, since the advection velocity in hurricanes is large, it is not 
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clear whether a semi-implicit method would yield a faster simulation considering the added 

time to solve the implicit equation at each time step. At this point, the models are being 

run using the third order Adams-Bashforth explicit scheme (for which the time step is set 

by the CFL condition for the Lamb wave). 

4.5 Vertical Discret izat ion 

A Charney-Phillips (C-P) grid (Charney and Phillips 1953) is used for both models 

which carries momentum and temperature at different levels. The Lorenz grid (Lorenz 1960) 

which carries momentum and potential temperature on the same level is not used because 

it has an extra degree of freedom in the vertical for potential temperature. Arakawa and 

Moorthi (1988) showed that a spurious amplification of short waves existed in the Lorenz 

grid when simulating baroclinic instability of an idealized midlatitude zonal jet. 

4-5.1 Isentropic vertical coordinate 

The variables are discretized using the conventions of Hsu and Arakawa (1990). 

Fig. 4.1 shows the staggering of variables on the C-P grid. The vertical grid is defined with 

a layer index £ between two half-layer indices ^4-1/2 and £—1/2. The layers and half-layers 

are indexed from the top of the atmosphere (TOA; I = 1/2) to the surface {£ = L + 1/2). 

The half-layer potential temperature values are specified. The layer potential temperature 

values are computed using de = ^ /^+i /2^- i /2 if P1/2 ¥" 0 a n d 9e = (1 + K)0£+I_/2 if P1/2 = 0. 

In a hydrostatic model the pseudodensity is used to obtain the balanced Montgomery po

tential by integrating (5). In the continuous model, this is done by the following procedure 

assuming m(x, y, 9) is known: 

f° 
p(x,y,9)=pt+ m(x,y,0')d9', (4.19) 

U(x,y,0)=cp(^^-)\ (4.20) 
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1/2 # = 0 0T,pT,UT 
1 

1 + 1/2 O,0,P,T1 

t-i/2 0,0,p,n 
l u,v,m,S,C,p>M . 

* + l/2 0,6, p,U 

1-1/2 O,0,p,U 
L 

L + l/2 <9 = o Os,ps,Us 

Figure 4.1: The staggering of variables on the Charney-Phillips grid for the isentropic 
vertical coordinate model. 

$(x,y,9) = *(x,y,9a)- 9dW, (4.21) 
Jns 

M{x, y, 9) = 0U(x, y, 9) + $(x, y, 9), (4.22) 

where (4.21) is the integral form of the hydrostatic equation (d$/dU = —9). The vertically 

discrete approximation to (4.19)-(4.22) is 

Pi+i/2 = Pe-i/2 - (fy+1/2 - 0e-i/2)ee, (4-23) 

Ue+1/2 = cp(^J, (4.24) 

1 ^1+1/2 Vj-1/2 

1 + K Pe+i/2 - Pt-l/2 
(4.25) 

n ' = C p ^ ) K ' ( 4 ' 2 6 ) 
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$L = $L+l/2 + 0L(nL + i / 2 - UL), (4.27) 

3>f = $e+i + M n € - n m / 2 ) + %i(n<!+i - n^ + 1 / 2 ) , (4.28) 

®t-i/2 = ®e + 8e(H-e - n € _ 1 / 2 ) , (4.29) 

M/ = 0 ^ + */, (4.30) 

where it is assumed that /^ and f 1+1/2 are f(x,y) arrays. Having summarized the hydro

static calculation, we now summarize the entire vertically discrete model. The horizontal 

momentum equations are 

due 1 
dt me 

, fa ue-i/2-u-e A ue-
L M ) , _ 1 / 2 9e_i/2 _ ^ + (me)e+1/2 Bt 

+ — (Me + Kt) = Fut, 

dvi 1 
dt me 

-\ 

', fa vt-i/2-ve , , fa n-

-^-(Mt + Kt) = Fvt. 

- MM-i/2 

_ ^ + 1 / 2 

-Vl+l/2 

- 91+1/2. 

• mtPtvi 

+ meP(U£ 

The isentropic vorticity and divergence prognostic equations are 

(4.31) 

(4.32) 

dCoe d 
dt dx 

_d_ 
dy 

1 / , x. ve-i./2-vt • vt-vi+1/2\ 
(mfl)/_i/2T— T + {m9)e+1/2- - — ' -

me 

1 
£-1/2 _ °e 

un.-\/2 - ut {m9)e_1/2 

djutmePj) d(vemiPj) _ 

+ (m9)e+1/2 

1+1/2 
Ul — U£+1/2 

®t — ®i+\/2 

dx dy •Fa, 

d50e d 
dt dx 

d_ 
dy 

, fa ue_1/2 -ue : 
{m0)e_l/2-— -T- + {m6)i+1/2 

v(.-\/2 ~ &e 

ut-ue+1/2\ 

®L - ®l+\/2 / .me 
1 (, fa n-\/2 -vt , fa ve--ve+i/2\ 

— {m6)e-1/2-—' T + {m6)e+i/2- — ' -
me \ ' Ve-i/2-ve ^ - f y + 1 / 2 / 

+ 
d(uemePe) , d{vemtPe) + y 2 ( ^ + M() = ^ 

dy + • dx 

(4.33) 

(4.34) 
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The hydrostatic equations are 

ML - $ s = 9LUL+1/2, (4.35) 

M - M ^ = n w / 2 . (4.36) 

The continuity and thermodynamic equations are 

dmt djmeuj) d(meve) (m(9)£_1/2 - (m0)t+l/2 = 

9t 9x cty ^ - i / 2 - % i / 2 

<W = ̂  (4-38) 

Finally, the upper and lower boundary conditions are 

(m6)1/2 = 0, (4.39) 

M ) L + I / 2 = 0. (4.40) 

4-5.2 Sigma vertical coordinate 

The cr-coordinate model is also discretized on a C-P grid (Fig. 4.2). The vertical grid 

is defined with a layer index £ between two half-layer indices £ + 1/2 and £ — 1/2. The 

layers and half-layers are indexed from the top of the atmosphere (TOA; £ = 1/2) to the 

surface (£ — L + l/2). The potential temperature 9 is predicted at the half-layers, while the 

momentum or vorticity and divergence are predicted at the layers. 

In the continuous model, the hydrostatic integration is done by first obtaining the 

specific volume knowing 6 using the ideal gas law, 

a(X,y,*)=™^(P-^±y, (4.41) 
p(x,y) \ po J 
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1/2 <x = 0,<x = 0 9T,pT,aT 

1 
1+1/2 a,e,&,a 

t-\ll <J,0,&,a 

* u,v,s,e,p,® 

Z- l /2 a,0,&,a 
L 

L + l/2 a = l,& = 0- 6s,ps,as 

Figure 4.2: The staggering of variables on the Charney-Phillips grid for the sigma vertical 
coordinate model. 

where p(x,y) = a(ps(x,y) — pt) +Pt, and then integrating the hydrostatic equation, 

$(x,y,a)-$(x,y,l)= -ps{x,y)a(x,y,a)da. (4.42) 

The discrete finite difference approximation to (4.41)-(4.42) is 

&H1/2 = — -—— , (4-43) 
' Pe+1/2 \ Pa ) 

$L = $ L+l/2 - PsaL+l/2^L ~ O-L+l/2)) (4-44) 

$£ = &Z+1 - psui+\i2{ai ~ ^ + i ) - (4-45) 

The surface pressure ps(x,y) changes according to 

from which &(x, y, a) is determined by 

dps 
dt 



75 

The discrete approximation to (4.46)-(4.47) is 

(4.47) 

d]h =ST^ 
8t ^ 

e=i 

d(psuz) , d(psve) 

dx dy ( ^ + 1 / 2 - ^ - 1 / 2 ) ) . (4-4 8) 

<^+l/2 — 0^+1/2' 
dPs_ 
dt 

d(psue) d(psvc) 
(vi+1/2 ~ 0^-1/2) • (4.49) 

dx dy 

Having summarized the hydrostatic integration, the entire vertically discrete model is 

shown. The horizontal momentum equations are 

du£ . ue_1/2 - ue+1/2 d dps 

—- + cre '- '— - rim + -K- ($e + Ke) + otoit— = Fue, (4.50) 
dt ve-1/2 ~ <*t+i/2 dx dx 

dve . ve_1/2 - ve+1/2 d dps 
— - + at '- '— + rftui + — ($t + Ke) + veoie-z— = Fve-
dt ^ - 1 / 2 - ^ + 1 / 2 dy oy 

The vorticity-divergence equations are 

(4.51) 

dC,at d_ (. %- i /2 ~ V£+i/2 \ _ d_ (. " i - i / 2 - ^ + 1 / 2 \ , d{r]aSui) 

dt dx V £ <?e-i/2 ~ vt+1/2 J dy \ e ae_1/2 - cre+1/2 J dx 

+ 
d(Va. 

dy 

daedps daedps • = „ 

dx dy dy dx ' 

(4.52) 

d<W ,<!_(• M^-i/2 - "1+1/2 A ,_&_(. vl-i/2 ~ vl+i/2 \ d(rja. • + ae-
dt ^ dx V ^ ^ - i / 2 - ^ + 1 / 2 / <h/V* °t-i/2 ~ ve+1/2 J ' dy 

d(Va£Ve) _ 2 ,^ , ^ ^ , __„2. 

See 
- V 2 ( $ / + Kt) + aaV2ps 

fdaedps daedps\ 

\ cte dx dy ay 

The hydrostatic equations are 

(4.53) 

$L ~ $L+l/2 

<?L - 0"L+l/2 
- p s a L + 1 / 2 , (4.54) 
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= -psai+1/2, (4.55) 

and the continuity and thermodynamic equations are 

dp* , d(psUi) d{psVi) {PsVi-\/2-Ps°i+\ii) _ n , . _„. 

dt dx dy (Ti-i/2 - oi+\/2 

-aT+ue+l^-^r+vw-aT+ae+1/2^^+~i= Qe+1/2- (457) 

Finally, the upper and lower boundary conditions are 

(pa&)1/2 = 0, (4.58) 

(PS&)L+I/2 = 0- (4.59) 

4.6 Addit ional Features of t h e Mode l s 

4-6.1 Mass restoration 

The isentropic vertical coordinate model includes a mass restoration routine that 

is exactly mass conserving when time is continuous. The user specifies a minimum layer 

pressure. If the model tends to produce a pressure lower than this threshold, the layer 

pressure is set to the user-specified value and mass is evenly redistributed in a vertical 

column at the horizontal grid point. 

4-6.2 Damping 

Both models include both explicit diffusion V2 m damping and a sponge layer at the 

lateral boundaries. There are multiple options for the sponge shape function and either 

Rayleigh (-/?(/ — / * ) , where / * is specified) or Laplacian V 2 m damping may be used. The 

sponge layer is necessary to damp outward propagating internal gravity waves excited in 
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the domain interior, especially in light of the periodic boundary conditions. The damping 

terms are included in the F terms in (4.1)-(4.4), and (4.9)-(4.12). 

4-6.3 Surface friction 

The isentropic coordinate model includes surface friction in the form of a bulk drag 

formula (Hsu and Arakawa 1990). A pressure depth of the boundary layer is specified and 

the friction force is set constant in each isentropic layer within the boundary layer. Surface 

friction has not yet been added to cr-coordinate model. 

4.7 Initialization 

4-7.1 Isentropic vertical coordinate model 

In momentum form, the model is initialized by specifying u(x,y,9), v(x,y,0), and 

m(x,y,9). In vorticity-divergence form, the model is initialized by specifying ((x,y,9), 

8(x,y,9), and m(x,y,9). A particularly useful initialization is using the nonlinear balance 

equation in conjunction with the hydrostatic equation. By using this method one can specify 

the wind field (either through £ or a nondivergent u and v) and obtain the balanced mass 

field. In isentropic coordinates, the nonlinear balance and hydrostatic equations are 

r 
- = n, (4.6i) 

where u = -dip/dy, v = dtp/dx and Ce — V 2 ^ . Equations (4.60) and (4.61) can be 

solved to obtain the balanced Montgomery potential deviation, M'(x,y,9), for a given 

three dimensional nondivergent flow. The total Montgomery potential is then M(x, y, 9) = 

M(9) + M'(x,y,9), where M(9) is the background potential. Knowing M(x,y,9), the 

corresponding balanced mass field, m(x,y,9), is obtained by 

dx2 dy2 \dxdyj 

file:///dxdyj
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In the numerical procedure, first Q is specified. Second, V2ip£ = Q is solved to 

obtain rpt. Third, the nonlinear balance equation V2M^ = C is solved, where C is known. 

Fourth, M[ is added to the background Montgomery potential to obtain Mi. Finally, the 

new pseudodensity is calculated by the following sequential procedure: 

n1/2 = c p ^ y , (4.63) 

_ Me - Me+1 
111+1,2 - ^ % T ' (464) 

ML - $ s > 
n L +i / 2 = — ^ , (4-65) 

Pe+1/2 = Po ( c ) , (4-66) 

1 *V+l/2 ^1-1/2 

1 + K Pe+1/2 ~ Pt-l/2' 

dU\ __ TLe+1/2 - Ut-i/2 

99 ) e 6t+i/2 — Oe-1/2 

(4.67) 

Ui = cp[^J, (4.68) 

(4.69) 

' - - I ' f ) ,^- (4'™> 
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4-7.2 Sigma vertical voordinate model 

In momentum form, the sigma coordinate model is initialized by specifying u(x, y, a), 

v(x,y,a), 9(x,y,a), and ps(x,y). In vorticity-divergence form, the model is initialized by 

specifying ((x,y,6), 5(x,y,6), 8(x,y,a), and ps(x,y). A balance initialization is also in

cluded in the <r-coordinate model based from Sundqvist (1975) and Kurihara and Ben

der (1980) that determines 9(x,y,cr) and ps(x,y) from known nondivergent u(x,y,a) and 

v(x,y,a), or ((x,y,a). 

The nonlinear balance equation 

+ / v V = V 2 $ + V • {aaVps). (4.71) 

is obtained by setting d5a/dt and a to zero in (4.53). Since ps is only a function of the x 

and y, this equation can be solved using 

V • (aasVps) cr = l 
(4.72) 

V 2 * + V • (aaVp s) a < 1. 

Generally speaking, (4.72) is solved by an overrelaxation method. Zhu et al. (2001) recom

mends that the equation be first solved for ps at a = 1 assuming a surface temperature field, 

and then solved for $ and a at a < 1. The balance intialization in the current model is as 

follows: (a) hold as(x, y) fixed, and solve (4.72) for ps(x, y) at a = 1, (b) use a horizontally 

homogenous background a(x,y,a) profile and solve (4.72) for $(x,y,<j) for a < 1, (c) en

force the hydrostatic condition, d$/da = —paa, to obtain an updated a(x, y, a), (d) obtain 

an updated $(x,y,cr) using the new a(x,y,a) in (4.72) for a < 1, and (e) repeat steps 

(c) and (d) until convergence, i.e., $(x,y,cr) and a(x,y,cr) are not changing. Once this is 

done 6(x, y, a) may be obtained using the ideal gas law, completing the intialization for the 

prognostic variables. This balance initialization has been incorporated into the model, but 

it has not yet been fully tested. 

dx2 dy2 \dxdyj 

d2tp d2ip 
dx2 dy2 

f d2j> y 
\dxdy) + /V2^ = 

file:///dxdyj
file:///dxdy
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4.8 Evaluation Tests; Isentropic Vertical Coordinate Model 

The results of some verification and validation tests are presented in this section. We 

define verification as ensuring that various parts of the model accomplish their designed 

purpose. On the other hand, scientific validation would be the evaluation of the model 

predictions against observations and other models; this is accomplished over long time 

periods as the model is used to simulate a variety of different meteorological phenomena. 

The evaluation tests are broadly consistent with those recommended by Pielke (2002) for 

verification and validation of mesoscale models. 

4-8.1 Initialization: comparison to analytic solution 

The first task is to ensure that the balance initialization works correctly for a three 

dimensional vortex. This is done by comparing the analytical solution for the pseudodensity 

of a simple axisymmetric vortex in gradient and hydrostatic balance to the output of the 

model nonlinear balance routine. Consider the axisymmetric vorticity and tangential winds 

for a Rankine vortex which decays vertically with structure f(0) = exp(—a(0 — 0a)/(Qt — 9g)) 

(where a is a decay constant, 6S is the surface potential temperature and 9t is the TOA 

potential temperature): 

C(r,9) = { 
Co/(0) 0 < r < r m 

(4.73) 

rv(r,6) = < 

0 rm < r < oo, 

Cor2/(0)/2 0 < r < rm 

(4.74) 

Corf„/(0)/2 rm<r < oo, 

Solving the gradient wind equation (v2/r + fv = dM'/dr) for the analytic Montgomery 

potential deviation, we obtain 



81 

M'(r,9) = 

(Cor' 

Cô  

f(0)(2f + Cof(9)) 0<r<rn 

l-f(9)(4flnr- (4.75) 

where the constant of integration C0 = (Corm/4)/(0)[/(l — 21nrTO) + (of (9)]. 

In Fig. 4.3, a side-by-side comparison of the azimuthal mean analytic v(r, 9) and 

M'(r,6) and the numerical model nonlinear balance initialization is shown. The initial 

parameters in the model are nx = ny = 100, nl — 10 over a 600 km square domain with 6S 

= 300 K, 6t = 360 K, a = 2.5, / = 0.00005 s"1, Co = 0.0005 s " \ and rm = 50 km. The 

Montgomery potential deviation from the numerical balance initialization is nearly identical 

to the analytic solution. Thus, the balance initialization is verified to work correctly. 
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Figure 4.3: [top panels] The initial wind field v(r, 9) for the analytic Rankine vortex (left) 
and the initial condition of the model (right), [bottom panels] Comparison of the analytic 
M'(r, 9) (left) to the nonlinear balance initialization of the model (right) 
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4-8.2 Gradient adjustment of an axisymmetric vortex 

An important physical process that any primitive equation model should simulate is 

balance adjustment. This is often called geostrophic adjustment, but does not necessarily 

have to be a linear balance adjustment. Here we provide evidence that the present model 

can simulate the gradient adjustment process for some ideal three-dimensional baroclinic 

vortices with unbalanced mass fields. 

Gradient adjustment in axisymmetric vortices has previously been studied by Schu

bert et al. (1980), who examined conditions in which cloud-cluster heating energy is parti

tioned into the balanced flow and inertia-gravity waves. In a simpler context, using a lin

earized system of the shallow water equations (W. H. Schubert dynamics notes and Holton 

1992), the conditions for which an initially unbalanced flow adjusts into geostrophicbalance 

were determined. Let b be the horizontal scale of the disturbance, and c/f be the Rossby 

radius of deformation. If b » c/f (the scale of the initial disturbance is much larger than 

the Rossby radius) the pressure hardly changes and the wind adjusts to the pressure. On 

the other hand, if b « c/f, the wind hardly changes and the pressure adjusts to the wind. 

Since the adiabatic isentropic model is the natural extension to the shallow water equations, 

we expect that these conditions may hold true for gradient adjustment of a baroclinic vortex 

in the isentropic model. However, for the case of gradient adjustment for a rapidly rotating 

vortex, / must be replaced by vortex inertial stability parameter I = [(/ + £)( / + 2v/r)]1/2 

(Shapiro and Willoughby 1982; Shapiro and Montgomery 1993). Therefore, the vortex 

Rossby radius of deformation is c/I, and as we will see, / is insignificant in this quantity 

for realistic rapidly rotating hurricanes. 

The initial vortex is the same Rankine vortex defined in (4.75) with Co = 0.0005 s _ 1 

and rm = 50 km. A smooth transition zone is included in the initial conditon so that the 

relative vorticity decays smoothly to zero between r — 50 and r — 60 km. The background 

pseudodensity field is initialized using m{9) = TOO exp(—a(9 — 9s)/(9t — #«)), where a = 2.5, 

9S = 300 K, 6t = 360 K, and m0 = 4000 Pa K - 1 . Using C = Co = 0.0005 s _ 1 and estimating 
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2v/r = 0.00032 s _ 1 (note that in reality this quantity should be averaged over the entire 

storm, but we have estimated it as the mean velocity over the whole atmosphere at the 

radius of maximum wind, i.e., v = 4 m s _ 1 at r = 50 km), we obtain / = 0.000297 s_ 1 . 

Hence for this vortex, I > > / . The vortex Rossby radius of deformation is then c/I « 169 

km (using a typical internal gravity wave phase speed c = 50 m s_ 1) . The vortex scale is 

b = 50 km, so b < c/I and it is expected that the wind would hardly change and the mass 

would adjust to the wind. 

In Fig. 4.4, side-by-side plots of the azimuthal mean v(r, 9) and M'(r,6) are shown 

in early phases of the gradient adjustment simulation. Note that the wind field is hardly 

changing, and the Montgomery potential (mass field) is adjusting to the wind. 

4-8.3 Unstable baroclinic vortex evolution 

The model was run with an initial condition of an unstable baroclinic vortex, which 

shall be referred to as a potential vorticity (PV) hollow tower. The radial reversal of PV 

satifi.es the Charney-Stern necessary condition for combined barotropic-baroclinic instability 

(see Montgomery and Shapiro (1995) for a discussion of this theorem as it relates to rapidly 

rotating vortices). Here we simulate the dry, adiabatic rearrangement PV due to dynamic 

instability of a hurricane-like PV hollow tower. The initial condition for relative vorticity 

is separable: ((r,0,9) = C(^O)/(0), where 

Ci 0 < r < r i 

CiS(£E£) + C2S(£E£) n<r<r2 

C M ) = <(C2 r2<r<rz, (4-76) 

< 2 S ( ^ ) + <3S(#E£) r3<r<r4 

Cs r4 <r < oo 

and f(6) = exp[(0 - 6»ref)
2/(2cr)]. Here, & = 0.0 and C = 0.001 s"1, n,r2,r3,r4 = 

30,40,50,60 km, S(s) = 1 — 3s2 + 2s3 is a cubic Hermite shape function that provides 

http://satifi.es
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Figure 4.4: [left panels] The evolution of the azimuthal mean wind field v{r, 9) and [right 
panels] the evolution of the azimuthal mean montgomery potential deviation M'(r,9) for 
the gradient adjustment simulation. 

smooth transition zones, #ref = 305 K, and <r = 5 K below 0ref and a = 15 K above 9Te{. 

The background pseudodensity m(9) = moexp(— a(0 — 9a)/(9t — 9S)), with mo = 4000 Pa 

K _ 1 and a = 2.5. The balance initialiation is used to determined the balanced mass field due 
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to the baroclinic vortex. The solution is obtained numerically using the vorticity-divergence 

formulation with ((x, y, 8,0) and m(x, y, 9,0) denned above, and 5(x, y, 8,0) equal to zero. 

An unbalanced, weak perturbation is added the basic state vorticity at each isentropic layer 

of the form C(r, </>, 9) = C'(r, <j>)f(9) where 

0 < r < n , 

12 

C'(r, <j>, 0) = Camp Yl c o s(m <£ + M x { 

S ( £ E £ ) n<r<r2, \r2-r1 

r-2 < r < r3, ( 4 7 7 ) 

5 ( ^ ) rs<r<r4, 

0 r4 < r < oo, 

where Camp = 1-0 x 10 - 5 s _ 1 and f(8) is defined as above. The impulse is expected to arise 

from a wide spectrum of background convection. The simulation was done on an /-plane 

with / = 5 x 10"5 s_ 1 . 

The solution is obtained on a double periodic domain in the horizontal with 250 x 

250 points, and 8 isentropic layers between 6 = 300, 307.5, 315,..., 360 K. Ordinary diffusion 

was used with v = 50 m2 s - 1 on C> <5 and m primarily for numerical damping associated 

with the grid resolution. Since internal gravity waves may be generated during PV mixing, 

the sponge layer was active near the lateral boundaries with Laplacian damping and e-

folding time of 0.5 h for the shortest wave. The top and bottom boundaries were rigid. The 

purpose of this experiment was to isolate the advective dynamics of PV mixing; as such 

the evolution is nearly conservative (aside from numerical diffusion) and adiabatic. Surface 

friction was not used. 

The adiabatic evolution the PV hollow tower is shown in Figs. 4.5-4.8 progressing 

from t = 0 — 48 h. In each plot, 4 panels are shown. The top panels depict the azimuthal 

mean PV and tangential velocity, and the bottom panels depict 6 slices of PV near the 

surface and at upper levels. In Fig. 4.5 (top left panel), note the initially vertical erect PV 

hollow tower due to the baroclinic vortex. Also note the background PV that increases due 

file:///r2-r1
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Figure 4.5: The azimuthan mean PV (PVU) [top left panel], the azimuthan mean tangential 
velocity (m s _ 1 [top right panel], PV (PVU) on the 6 = 304 K surface [bottom left panel], 
and PV (PVU) on the 6 = 341 K surface [bottom right panel]. All fields are shown at 
t = 0.25 h. 

to greater static stability near the tropopause in the presence of background rotation. 

Progressing to t = 12 h in Fig. 4.6, note that the PV ring on of the 6 = 304 K surface 

has become dynamically unstable and is breaking down at azimuthal wavenumber m = 3. 

The upper level PV ring has not changed. The ring breakdown at lower levels has cause the 

PV tower to tilt inward slightly (top left panel). Moving forward to t = 24 h in Fig. 4.7, 

the low level PV ring has broken down completely and PV is being mixed into the eye, 

while the upper level PV ring is still unchanged. The PV hollow tower is now tilting more 

significantly below 9 = 325 K, but is vertically erect above it. The P V mixing at low levels 

causes the tangential velocity to increase at lower radii, changing the radial profiles from 

U-shaped to V-shaped. Finally, at t = 48 h (Fig. 4.8), the low level PV ring has mixed 
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Figure 4.6: The azimuthan mean PV (PVU) [top left panel], the azimuthan mean tangential 
velocity (m s _ 1 [top right panel], PV (PVU) on the 9 = 304 K surface [bottom left panel], 
and PV (PVU) on the 6 = 341 K surface [bottom right panel]. All fields are shown at t = 12 
h. 

from an annulus into a near monopole. The upper level PV ring is still similar to the initial 

condition. The PV hollow tower now slopes outward with height, at approximately 50 km 

per 30 K, or 1.67 km K_ 1 . The tower is now hollow above 9 = 317 K and monopolar below 

9 = 317 K. A "PV bridge" exists at 9 = 310 K across the eye. The PV bridge has previously 

been simulated in a high resolution (2 km), full-physics nonhydrostatic model simulation 

of Hurricane Andrew (1992) using the PSU-NCAR MM5 model (Yau et al. 2004). We 

have simulated a similar structure in an idealized model with no physics, adiabatic, and 

nearly conservative dynamics. A side-by-side comparison of the azimuthal mean P V in our 

simulation and the Yau et al. (2004) azimuthal mean PV simulated in Hurricane Andrew 

(1992) are shown in Fig 4.9. 
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Figure 4.7: The azimuthan mean PV (PVU) [top left panel], the azimuthan mean tangential 
velocity (m s - 1 [top right panel], PV (PVU) on the 9 = 304 K surface [bottom left panel], 
and PV (PVU) on the 9 = 341 K surface [bottom right panel]. All fields are shown at t = 24 
h. 

Willoughby (1998) has shown that there are two distinct eye regimes separated by a 

low level inversion. The inversion is typically near 800 hPa. The air above the inversion 

has been in the eye since it formed and is characterized by very weak descent. Below the 

inversion, the air is moist due to sea surface fluxes, moist frictional inflow, and evaporation 

of downdrafts. A schematic of the flow regimes in the eye is shown in Fig. 4.10. Willoughby 

(1998) has hypothesized that the eye inversion is caused by subsidence warming. An in

teresting question is whether it is possible that this inversion is caused dynamically (not 

thermodynamically) by PV mixing. To illustrate this point, it is useful to go back to the 

PV conservation equation, 
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and PV (PVU) on the 6 = 341 K surface [bottom right panel]. All fields are shown at t — 48 
h. 

DP 
~~Dt 

1 
m 

)d(m0) d (frdv d I\du . 
dx \"d0j + 9y V d9> + i (4.78) 

In our simulation the diabatic term is zero and F^ is weak, and therefore PV is nearly 

materially conserved. The hydrostatic PV in isentropic coordinates on an /-plane is P = 

( / + 0/fn, or written another way, P = —(/ + QdO/dp (where g has been removed for 

simplicity). Thus P can be viewed as "absolute vorticity" ( / + C) multiplied by "static 

stability" {—dd/dp). Assuming the evolution proceeds is quasi-balance, by inversion, a 

given P V map can be partit ioned into each of these components. Since the large P V tha t 

exists in the "PV bridge" across the eye was mixed from the eyewall, it is possible that the 

hurricane eye inversion is dynamically controlled. If this were the case, it may be one of 
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Figure 4.9: The azimuthan mean PV (PVU) in our ideal model [left panel] and in the (Yau 
et al. 2004) full-physics nonhydrostatic model simulation [right panel]. In the right panel, 
the ordinate is height above sea level in km. 

the only inversions on Earth that forms dynamically, rather than by subsidence warming 

or warm air advection over a cool layer. 

Another interesting aspect of this simulation is that initially vertically erect PV hollow 

tower evolved to a tilted structure. Is it possible the PV mixing in three-dimensions is one 

mechanism by which the eyewall slope initially forms? This will be explored in future work. 

4.8.4 Integral quantities conservation 

A verification test was presented to show that integral quantities are conserved. The 

total mass is defined as 

R= fff — dxdyd9, 

the kinetic energy is defined by 

K= fff^(u2 + v2)dxdyc 

the total energy is defined by 

- / / / 
\(u2 + v2)+6Yl dx dy d8, 

(4.79) 

(4.80) 

(4.81) 
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Figure 4.10: Schematic of the secondary flow in the hurricane eye and eyewall (taken from 
Willoughby (1998)). 

and the potential enstrophy is defined by 

Z = fff ]-P2m dx dy d9. (4.82) 

In the absence of diabatic heating and friction, it can be shown that total energy is conserved 

(however kinetic and potential energy can vary). Total mass should be conserved under any 

circumstance. In the presence of diffusion, potential enstrophy will decay, but it is exactly 

conserved if there is no diffusion. 

The integral quantites of total mass, total energy (potential plus kinetic), kinetic 

energy, and potential enstrophy are shown for the unstable baroclinic vortex evolution in 

Fig. 4.11. Note that the total mass and total energy are almost exactly conserved. The 

potential entrophy decays from its initial value due to the PV mixing (analogous to the 

two-dimensional results in Hendricks et al. (2008) (chapter 3). 
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Figure 4.11: Temporal evolution of the domain integral quantities for the unstable baroclinic 
vortex simulation. In each panel the values are normalized by the initial value which is shown 
in the bottom right portion of the plot. 

4.9 Conclusions 

Two vertically discrete idealized hydrostatic primitive equation mesoscale models 

were developed using a periodic spectral shallow water model as a starting point. The first 

model uses an isentropic vertical coordinate and the second model uses a sigma (terrain 

following) vertical coordinate. Vertical staggering was done on a Charney-Phillips grid. The 

models can be run using either the momentum or vertical vorticity-divergence prognostic 

formulations. The models are simple at this point, dry and limited physics, and are designed 

primarily for studying the dynamics of simple flows, in particular potential vorticity (PV) 

and gravity wave dynamics in geophysical vortices. The major advantage of these models 

is the horizontal spectral representation which is ideal for simulating the intricate details of 
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PV mixing in resulting the from the dynamic breakdown of unstable vortices. The models 

include a balance initialization that computes the balanced mass field given a specified 

wind field. The nonlinear balance equation is solved in the horizontal and the hydrostatic 

equation is enforced in the vertical. The models are written in FORTRAN-90 and compile 

easily with the free GNU g95 compiler. 

Evaluation tests were presented for the isentropic vertical coordinate model. First, 

verification tests were performed that the balance intialization works correctly and that 

the integral quantities of mass and total energy were conserved. Two validation tests were 

also performed. In the first test, the primitive equation model was shown to simulate the 

gradient adjustment of axisymmetric vortex. Realistic internal gravity waves were produces 

as the mass field adjusted to the vortex winds. The mass field adjusted to a steady final 

state which was similar to that obtained from the model's balance initialzation. Secondly, 

the evolution of an unstable hurricane-like PV hollow tower was simulated. The unstable 

baroclinic vortex broke down at lower levels causing PV to be mixed from the eyewall to the 

eye. A "PV bridge" formed across the eye which has been previously simulated in moist full-

physics models. It is interesting that our ideal model simulated this feature. By inversion, 

a portion of this "PV bridge" is static stability, and thus it is possible that the hurricane 

eye inversion is dynamically controlled, and as such, it may be one of the only inversions 

of this sort on Earth. Another interesting aspect of this simulation was that an initially 

vertically erect PV hollow tower became tilted due to adiabatic PV mixing preferentially at 

lower levels. Thus it is possible that one mechanism for the formation of the eyewall slope 

in hurricanes is PV mixing resulting from dynamic instability. This will be explored further 

in future work. 

At present, the isentropic coordinate model has difficulty simulating the evolution of 

strong vortices (i>max > 30 m s_ 1) . In these cases, the balanced mass field has massless layers 

due to 9 surfaces bending into the ground. The model's mass restoration routine corrects 

this however, at each time step the mass tries to become negative due to the Rossby radius 
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regime of mass adjusting to the wind. In light of this fact, the sigma coordinate model is 

recommended for stronger vortices. The results of the isentropic model are very encouraging, 

and this model presents a great way to view the hurricane evolution in a dynamically clean 

manner, i.e., making PV maps on isentropic surfaces similar to Hoskins et al. (1985) for 

global data. 

Further verifcation tests need to be conducted on the sigma coordinate model. Future 

work will be focused on improving the sigma coordinate model, as well as add as well as 

adding addition physics (such as surface fluxes and moisture) to both models so they can 

simulate the evolution of more realistic tropical cyclones. 



Chapter 5 

SHALLOW WATER SIMULATION OF A SPONTANEOUSLY 

RADIATING HURRICANE-LIKE VORTEX 

5.1 Introduction 

Gravity waves are ubiquitous features in the stably stratified atmosphere. They may 

be produced by flow over topography (mountain waves), latent heat release from moist 

convection, and by an adjustment of an unbalanced flow into a state of balance. The latter 

is usually referred to as geostrophic adjustment, however balance adjustment is a more 

appropriate term for a general flow. In the special case when a flow evolves at sufficient 

rapidity to fall out of balance, the term spontaneous radiation has been used to describe the 

unforced inertia-gravity wave radiation that ensues. The slow manifold (Leith 1980) is an 

atmospheric invariant completely devoid of such gravity wave activity. The flow is balanced, 

and it, along with the geopotential, may be obtained at any instant by potential vorticity 

(PV) inversion. The existence (Lorenz 1986) or nonexistence (Lorenz and Krishnamurthy 

1987) of such a strict slow manifold in the real atmosphere has been debated for decades. 

In a pioneering paper, Lighthill (1952) explicitly defined the concept of spontaneous 

adjustment emission of sound waves from vortical flow through multiscale frequency match

ing. These ideas were extended to spontaneous inertia-gravity wave radiation from vortical 

flows in the atmosphere using the shallow water equations (Ford 1994a,b; Ford et al. 2000). 

The question that arises is whether or not spontaneous inertia-gravity wave (hereafter IGW) 

emission is of meteorological significance from an energy and angular momentum budget 

perspective, which ultimately lies at the heart of the validity of the balance approximation 
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and potential vorticity inversion. While it is generally regarded that the strict slow manifold 

rarely, if ever, exists, the level of fuzziness is not well understood. Saujani and Shepherd 

(2002) argued that the fuzziness is exponentially small for quasigeostropic flow. Moreover, 

the characteristics of a given balanced flow that favor its potential to spontaneously radiate 

are not well understood (Viudez and Dritschel 2006). 

Spontaneous IGW radiation has recently been studied for both atmospheric jets (e.g., 

O'Sullivan and Dunkerton 1995, Zhang 2004) and vortices (e.g., Ford et al. 2000, Schecter 

and Montgomery 2006, Viudez 2006). Schecter and Montgomery (2006) examined condi

tions that favor spontaneous radiation from intense mesocyclones such as tornadoes and 

hurricanes. One interesting result from their study was that under certain conditions PV 

edge waves on monotonic cyclones can grow due to a positive feedback from the spontaneous 

IGW emission. IGWs have been hypothesized to create the moving spiral cloud bands in 

tropical cyclones that are often visible in satellite imagery (Kurihara 1979; Chow et al. 

2002). This is in contrast to theories ascribing their existence to breaking PV waves (Guinn 

and Schubert 1993; Montgomery and Kallenbach 1997). Chow and Chan (2004) argued 

that this emission may be an important sink of angular momentum from the hurricane. 

In this paper, spontaneous adjustment emission from TC cores is explored further. 

An unforced dynamically active, spontaneously radiating, hurricane-like vortex has been 

simulated using a shallow water model. The initial condition is balanced, and motivated 

by observations of hurricanes that have elliptically shaped eyewalls. An analysis of this 

case study is given lending new insight into the growing body of literature on spontaneous 

radiation from intense vortices. In section 5.2, solutions to the linearized shallow water 

equations about a resting basic state are obtained to use as a guideline for interpreting the 

nonlinear numerical simulation. A description of the numerical simulation, observational 

justification, and results are given in section 5.3. An analysis of the results is given in 

section 5.4. Finally, a summary of the relevant findings of this case study is presented in 

section 5.5. 
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5.2 Linearized Shallow Water Equat ions 

The linearized shallow water equations governing small amplitude motions about a 

resting basic state in polar coordinates are 

dv! dh' 
(5.1) 

dv' , dh' n 

^t+fu + 9Vd6=°> 
(5.2) 

dhJ_ r (d(ru') dv'' _ 
dt \ rdr rd(f>; 

(5.3) 

where v! is the perturbation radial velocity, v' is the perturbation tangential velocity, hi is 

the perturbation fluid depth, and h is the mean depth. These equations may be expressed 

in vorticity-divergence form as 

dt 
+ fS' = 0, (5.4) 

'dt 
-f(' + gV2ti=--0, (5.5) 

% + M-o, (5.6) 

where 5' is the divergence and (,' is the perturbation relative vorticity. Seeking separable 

modal solutions of the form g'(r,4>,t) = g(r)exp(i(m(f> — vt)) for each prognostic variable, 

we obtain 

-i< + fS = 0, (5.7) 

-w5- fC + g 
d / dh 

rdr \ dr 
777,2 h = 0, (5.8) 
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-iuh + hS = 0. (5.9) 

The combination of / x(5.9) and hx (5.7) yields 

-*(c-{*)=o. 
Substituting (5.9) and (5.10) for nonzero v into (5.8), we obtain 

(y2-f)h + gh 
d dh mr 

rdr \ dr 
= 0 

Rewriting (5.11) using v2 — f2 + ghk2, we obtain Bessel's equation 

,<i2/i dh 
+ ^ + (fc2 

dr2 dr 
• m '•)h = 0. 

(5.10) 

(5.11) 

(5.12) 

One solution to (5.12) are Hankel functions (linear combinations of first Jm(kr) and second 

Ym(kr) order Bessel functions) 

H£>(kr) = Jm(kr)+iYm(kr), (5.13) 

HgXkr) = Jm(kr) - iYrn(kr). (5.14) 

The H(l> Hankel function represents outward propagating cylindrical waves while the H& 

Hankel function represents inward propagating waves. The nonlinear simulation exhibits 

outward radiation, therefore the H^1' function is chosen. The final linear solutions for the 

perturbation quantities are thus 

C'(r, </>, t) = (fho/h) H£\kr)exp [i(m<f> - vt)}, 

S'(r,<f>,t) = (ivho/h) H$(kr)exp [i{m^ - vt)], 

h'(r, <j>, t) = h0H^\kr)exp {i(mcf> - vt)] , 

(5.15) 

(5.16) 

(5.17) 

where ho is specified. In Fig. 5.1, polar plots of the linear solution are shown for varying 

azimuthal wavenumbers m = 1,2,3,4 while holding the radial wavenumber k = 0.04 k m - 1 
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and / = 0.000037 s _ 1 fixed. Similarly, the dependence of the solution on varying radial 

wavenumber k = 0.01,0.025,0.05,0.1 k m - 1 is shown in Fig. 5.2, while holding the azimuthal 

wavenumber m = 2, and / = 0.000037 s _ 1 fixed. The linear solutions will be used as a 

guideline to interpret portions of the nonlinear model simulation (next section). 

By defining the potential vorticity of the fluid as 

P = h ^ ^ = fe^tC+C (5.18) 
h h + h' 

it can easily be shown that the P field does not see propagating inertia-gravity waves. Note 

that in Figs. 5.1 and 5.2, h' and (' always have the same sign in the same regions, thus the 

two fields change such that P does not change. To illustrate this, a contour plot of P is 

shown in Fig. 5.3 for m = 2, k = 0.01 km - 1 , / = 0.000037 s_ 1 , and h = 4285 m. Also note 

in Figs. 5.1 and 5.2 that the divergence 5 is 7r/2 radians out of phase from b! and £'. 

5.3 Numerica l Simulat ion 

A periodic Fourier spectral shallow water model (Fulton 2007) is used for the nu

merical simulation. In the shallow water model, there are options for both momentum 

and vorticity-divergence prognostic formulations. Instead of predicting the fluid depth, the 

model predicts p := g(h — h)/c, where c2 = gh is the square of the pure gravity wave phase 

speed. Note that p has units o f m s " 1 . Since p is the geopotential deviation divided by the 

constant gravity wave phase speed, p may be converted to h and vice-versa. The momentum 

equations in rotational momentum form are 

-gI-fv + — (cp + K) = Fu, (5.19) 

^+fu+jr (CP + K)=FV, (5.20) 
at ay 

where K — (u2 + v2)/2 is the kinetic energy. By taking the curl (k • Vx) and divergence 

(V-) of du/dt, the equations in vorticity-divergence form are 
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Figure 5.1: Linear solution to the shallow water equations in cylindrical polar space for 
varying azimuthal wavenumber: m = 1 (top left), m == 2 (top right), m — 3 (bottom left), 
m = 4 (bottom right). The radial wavenumber k = 0.04 k m - 1 is held fixed. The contour 
intervals for h',C and 5' are 20 m, 2 x 10~7 s - 1 , and 5 x 10~5 s - 1 , respectively. The 
perturbation height hi is set to a maximum amplitude of 100 m, and all other variables are 
determined from this value. 
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Figure 5.2: Linear solution to the shallow water equations in cylindrical polar space for 
varying radial wavenumber: k = 0.01 (top left), k = 0.025 (top right), k = 0.05 (bottom 
left), k = 0.10 (bottom right) km - 1 . The azimuthal wavenumber m = 2 is held fixed. The 
contour intervals for h',C,' and 5' are 20 m, 2 x 10~7 s_ 1 , and 5 x 10~5 s_ 1 , respectively. 
The perturbation height h! is set to a maximum amplitude of 100 m, and all other variables 
are determined from this value. 
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Figure 5.3: The potential vorticity P for m = 2, k = 0.01 km - 1 , / = 0.000037 s_ 1 , and 
h = 4285 m. The contour plot was made with 100 contour levels of P to illustrate that P 
is invariant as IGWs propagate. 

dc , d((u) d((v) „ 
+ —— = re dt dx dy 

(5.21) 

08,0(Cu) 9(Cv)+v2{cp + K) = Fs_ 
dt + dy dx 

The continuity equation, 

(5.22) 

®E + c (— + —\ + (d(Pu) + ^M^i = F 

dt \dx dy) \ dx dy J p' 
(5.23) 

is the same for both formulations. By introducing a streamfunction ip and a velocity poten

tial Xi the vector velocity may be expressed as u = Vx + k x Vi/', implying that V ip = C 

and V2x = S. 

The initial condition is an offset monopole in a hollow ellipse (Fig. 5.4 left panel). 

This initial condition was motivated by observations of Hurricane Ivan (2004) (Fig. 5.5). 
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Figure 5.4: The relative vorticity C, (left panel) and pressure p (right panel) at t = 0 h. The 
divergence <5 (not shown) is initially zero. 

At this time Ivan had concentric eyewalls, and the outer eyewall was distinctly elliptically 

shaped. To simplify the initial condition, in our experiment the inner eyewall was modeled 

as a monopole. 

The vorticity-divergence prognostic formulation was used for the simulation. The 

solution was obtained on a doubly periodic /-plane domain with L = 600 km. The resolution 

is 1024 x 1024 points. After dealiasing of the quadratic advection term, 370 Fourier modes 

were kept, yielding an effective resolution of 1.8 km. Diffusion was set to 25 m2 s - 1 , yielding 

an e-folding time of 0.19 h for all modes having total wavenumber 370. Time differencing 

was accomplished using a standard third order semi-implicit scheme1 with a time step of 1 

s. The simulation was executed for 48 h and and output was obtained at 180 s intervals. 

A sponge layer was used near the lateral boundaries to damp the outwardly propagating 

IGWs. The lateral extent was 60 km, a smoothly transitioning sponge function was used, 

and Rayleigh damping was used with a coefficient (3 = 0.00278 s_ 1 . This corresponds to an 

e-folding time of 0.10 h for the shortest wave. 

1 Although implicit methods are known to distort gravity waves, recent work has shown that only the 
high frequency, low energy containing waves are distorted significantly (Thomas and Browning 2001). Spon
taneous adjustment emission is by nature low frequency since it is forced by Rossby wave dynamics. This, 
combined with the fact that the time step used satisified the Courant condition for shallow water gravity 
waves, indicates that the waves are likely not distorted. 
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Figure 5.5: Composite radar reflectivity (dBz) of Hurricane Ivan from NOAA P-3 aircraft, 
[credit: NCDC/NOAA/AOML/Hurricane Research Division]. 
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5.4 Discussion of results 

Side-by-side plots of the relative vorticity and divergence are shown in Fig. 5.6 at 

various times during the unforced evolution in the innermost part of the domain: [-100,100] 

km. The vorticity field evolves as follows. At t = 0.5 h, the differential rotation associated 

with the central monopole deforms the outer ring. The initial deformation of the outer ring 

is quite similar to the contour dynamics experiment of Oda et al. (2006). By t = 2.5 h, 

the low vorticity region has been separated into two pieces: an axisymmetric inner region 

outside the central monopole, and an outer region. By t — 10.0 h, very low vorticity 

environmental air has been enclosed near (x, y) = (—30,0) km. At this time, the vortex can 

be characterized as a tripole (high-low-high vorticity) in the ^-direction and a pentapole 

(high-low-high-low-high) in the ^-direction through the origin. Examining the divergence 

(right panels), a persistent wavenumber-2 feature is present. This is the response of the 

mass field to the propagating wavenumber-2 vortex Rossby wave, or elliptical deformation 

of the central monopole. Outward propagating IGWs are being emitted from the vortex 

core and the vortex can be considered to be spontaneously radiating very early. 

In Fig. 5.7, the evolution of the vortex is shown at later times: t = 20.0,30.0,45.0 h. 

The central monopole now has a stronger elliptical signature, and the eccentricity becomes 

larger with time. The pentapole structure is evident, and the ellipse and outer low vorticity 

regions are rotating at different frequencies, causing them to align in and out of phase. 

In the divergence plots, outward propagating IGWs are evident and the amplitude has 

increased significantly from earlier times. This simulation was run to t = 48.0 h, and there 

was no apparent reduction in IGW activity at this time. 

In Fig. 5.8, Hovmoller plots of the evolution of relative vorticity and divergence are 

shown from t = 24—25 h. The plots were made by taking a y cross section through the vortex 

center at each time. In the top panel, the important features to note are the semimajor axis 

a and semiminor axis b of the rotating elliptical vorticity core. The period of the ellipse 

oscillation it Le = 0.25 h (or 900 s), corresponding to a frequency ve = 0.00698 s~1. The 
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Figure 5.6: Early evolution of relative vorticity (left panels) and divergence (right panels) 
in the shallow water simulation. 
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in the shallow water simulation. 
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Figure 5.8: Hovmoller plots of relative vorticity (top panel) and divergence (bottom panel) 
in the shallow water simulation from t = 24-25 h. Plots were made by holding the y-
coordinate of the vortex center (largest vorticity) fixed at each output time level. In the top 
panel, a and b denote the semi-major and semi-minor axes of the central ellipse, Le denotes 
the oscillation period of the central ellipse, and L0 is the oscillation period of the outer low 
vorticity regions. In the bottom panel, c is the pure gravity wave phase speed, LJQ is the 
IGW period and LR is the radial wavelength. 
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period of the outer low vorticity patch is longer, L0 = 0.65 h (or 2340 s), corresponding 

to a frequency v0 = 0.00269 s_ 1 . During the simulation, the outer structures and inner 

structures move in and out of phase, possibly contributing to non-axisymmetrization. In 

the bottom panel, the important features are the outward propagating IGWs. The phase 

speed of the observed IGWs appears to be constant, and can be estimated from the figure. 

For example, the area of convergence with the arrow over it propagates approximately 

Ad = 110 km in a time period of At = 0.15 h. The phase speed associated with this is 

c=(100000 m)/(540 s)=203.7 m s_ 1 , which is very close to the phase speed c=205 m s - 1 

supported by the resting model fluid depth of h — 4284 m. The period of the IGWs can be 

ascertained from two places: near the ellipse and in the outer domain. Both locations give 

the same L\Q = 0.25 h (or 900 s), corresponding to a frequency Z^G = 0.00698 s_ 1 . Lastly, 

the radial wavelength of the waves is determined from the diagram: L R = 200 km (or a half 

wavelength of 100 km). This corresponds to a radial wavenumber k = 0.034 km - 1 . One 

can verify that the parameters above satify u2
G = f2 + c2fe2. 

Note that ve = U\Q — 0.00698 s - 1 indicating that frequency matching has occured 

between the rapidly oscillating ellipse and an intrinsic IGW frequency. Plotting the rela

tionship U\Q = (f2 + (?k2)1'2 in Fig. 5.9, note the frequency matched radial wavenumber 

k = 0.034 km"1 . To summarize, a rapidly oscillating, non-axisymmetrizing, ellipse evolves 

out of the unforced initial condition of the experiment. The oscillation frequency of the 

ellipse matches an intrinsic IGW frequency, causing outward IGW radiation to the environ

ment of a preferred radial wavenumber. 

Why does the rapidly oscillating ellipse not axisymmetrize? Dritschel (1998) has 

shown that the ability of a non-axisymmetric vorticity core to axisymmetrize via inviscid 

nondivergent dynamics is dependent on the sharpness of its edge. Rankine-like vortices (i.e, 

possessing a sharp edge) are not as likely to axisymmetrize as Gaussian vortices because 

they cannot generate filaments as easily. The filamentation process is a sign of axisym-

metrization. Examining Fig. 5.8, the ellipse in the experiment has a very sharp edge, with 
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the relative vorticity C dropping an order of magnitude (from 10 x 10 - 3 s _ 1 to 1 x 10 - 3 

s_1) in approximately 3-5 km. Also note that in Fig. 5.7, strong vorticity filaments are 

not being created. At t = 45 h, two thin weak filaments are evident, but at other times 

it is hard to find filaments. Thus it is likely that the ellipse's sharp edge is contributing 

to non-axisymmetrization. A second reason for non-axisymmetrization are the vorticity 

structures outside of the central ellipse. A pentapole structure formed with the outer low 

vorticity structures (with period L0\ see Fig. 5.8) rotating with a lower angular velocity 

than the ellipse. This causes alternating tripole and pentapole patterns to exist. While 

the main reason for non-axisymmetrization is the central ellipse with a sharp edge, it is 

possible that the flow associated with the outer vorticity structures is also contributing. 

Vorticity structures with sharp edges are often numerically simulated in full-physics models 

(Corbosiero et al. 2006) and observed (Kossin and Eastin 2001) in hurricanes. Thus persis

tent non-axisymmetric structures likely exist in tropical cyclone cores, promoting prolonged 

episodes of spontaneous adjustment emission. 

Can the central ellipse oscillation frequency be explained in a simpler context? It 

is well known that in a nondivergent framework an elliptical vortex patch (the Kirchhoff 

vortex) will rotate with a certain angular velocity owing to the magnitude of the vorticity 

patch and the semi-major and semi-minor axis, i.e., 

where U>KI is the angular velocity of the Kirchhoff elliptical vortex. This occurs because 

when the Poisson equation is solved to obtain the streamfunction, it is less eccentric than 

the vorticity ellipse leading to vorticity advection (see Fig. 5.10). Larger vorticity indicates 

larger winds leading to an increased rotation rate U>KI-

In the numerical simulation, the central ellipse is nearly a constant vorticity patch 

with magnitude £ = 0.016 s - 1 . In the 24-25 h period, the semi-major axis a = 33 km and the 

semi-minor axis b = 22 km. Substituting these values into (5.23), we obtain WRI = 0.00384 

rad s_ 1 . Since the signal is repeated twice for every ellipse rotation, the Kirchhoff ellipse 
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Figure 5.9: IGW frequency versus radial wavenumber for c = 205 m s and / = 0.000037 

frequency Ẑ KI = 2WKI = 0.00768 s_ 1 . Hence, the frequency of a Kirchhoff ellipse is nearly 

the same as (but slightly greater) the observed frequency, i.e., I/RI » ve. Therefore, the 

rotation rate of the simulated central ellipse can largely be explained by a simple Kirchhoff 

vortex, and because it is slightly larger than the obsered rotation rate, the outer wind field 

is actually slowing the elliptical vortex down slightly. 

In Fig. 5.11, the linear solution is compared to the numerical experiment for the 

divergence for three successive times (each 3 minutes apart). At small radii, the linear 

solution is not valid, however note that the azimuthal cyclonic propagation of the IGW 

spiral bands nearly match the spiral bands in the numerical experiment. This is evidence 

that the just outside the central ellipse the dynamics are mostly linear - freely propagating 

IGWs on a weak basic state flow. 

In Fig. 5.12, the azimuthal mean velocity and pressure are shown for the sponta

neously radiating vortex at t — 0 h and t — 48 h. The vortex center was defined by the 
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Figure 5.10: Conceptual diagram of the Kirchhoff vorticity ellipse and associated stream-
function that would be obtained by solving Poisson's equation (i.e., V2ip = () for a non-
divergent flow. The ellipse rotates cyclonically (for positive £) because the streamfunction 
is slightly less elliptical than the vorticity patch. This occurs because solving the Poisson 
equation is a smoothing operation. 

maximum vorticity in the domain. This was obtained by moving a square with a dimen

sion of 23 km over the entire domain, averaging the vorticity in that square, and then 

determining the grid point in the square center where for which the average vorticity was 

a maximum. Over the course of the simulation the peak mean tangential winds fell from 

100.8 m s _ 1 to 86.6 m s _ 1 and the minimum central pressure rose from -67.5 m s~1 to -63.5 

m s _ 1 . Thus, the outward radiation of spiral IGWs is a sink of tangential (and angular) 

momentum (consistent with Chow and Chan 2004). 
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Figure 5.11: Comparison of the outward propagating IGWs in the numerical model sim
ulation (left panels) and according to the linear wave theory (right panels). The linear 
solution was obtained with UR = 0.034 km - 1 , as determind by frequency matching by ve, 
and azimuthal wavenumber m = 2. Moving down, each plot is 3 minutes apart. 
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Figure 5.12: The change in the vortex azimuthal mean velocity (left panel) and pressure 
(right panel) over the 48 h numerical simulation. The solid line denotes t = 0 h and the 
dotted line denotes t = 48 h. 

5.5 Conclusions 

A shallow water primitive equation model simulation of a dynamically active, non-

axisymmetrizing hurricane-like vortical core was analyzed. The initial condition for the 

simulation was a offset monopole in an elliptical vorticity ring, and was motivated by ob

servations of elliptically shaped eyewalls in hurricanes. The initially balanced flow evolved 

quickly into an unbalanced state, and freely propagating IGWs radiated from the central 

core, which slowly became more elliptical as the simulation progressed. Spontaneous ra

diation was sustained for the entire length of the simulation (until t = 48 h), and there 

was no indication that it would cease shortly. The radiation was sustained because fre

quency matching occurred between the rapidly oscillating vorticity ellipse (or propagating 

wavenumber-2 vortex Rossby wave) and an intrinsic IGW. From a more pragmatic view, the 

mass field could not adjust to a rapidly changing wind field leading to prolonged radiation. 

Simpler models were used to diagnose and explain the numerical simulation. Outside 

the central core, the freely propagating IGWs were explained by the linear solution to the 

shallow water equations about a resting basic state. The oscillation frequency of the central 

ellipse was nearly identical to the frequency of a simple Kirchhoff ellipse. This is strong 

evidence that non-axisymmetrization was largely caused by the fact that the simulated 

r (km) 
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ellipse had a sharp edge (cf. Dritschel 1998). During the simulation, the PV edge wave 

and IGWs grew in amplitude likely due to the positive feedback mechanism described by 

Schecter and Montgomery (2006). The spontaneous radiation was shown to be a sink of 

tangential momentum: the peak azimuthal mean swirling wind decreased 14% (from 100.8 

m s _ 1 to 86.6 m s_1) over 48 hours. Based on this simulation, it is possible that the 

sustained emission of spiral IGWs into the environment from a spontaneously radiating 

hurricane core is not that significant for short term intensity change. However, this result 

needs to be explored further through the use of total energy budgets and wave activity 

diagnostics. 



Chapter 6 

RAPID-SCAN VIEWS OF CONVECTIVELY GENERATED 

MESOVORTICES IN SHEARED TROPICAL CYCLONE GUSTAV 

(2002) 

6.1 Abstract 

On September 9-10, 2002, multiple mesovortices were captured in great detail by 

rapid-scan visible satellite imagery in Subtropical, then later, Tropical Storm Gustav. These 

mesovortices were observed as low-level cloud swirls while the low-level structure of the 

storm was exposed due to vertical shearing. They are shown to form most plausibly via 

vortex tube stretching associated with deep convection; they become decoupled from the 

convective towers by vertical shear; they are advected with the low-level circulation; finally 

they initiate new hot towers on their boundaries. Partial evidence of an axisymmetrizing 

mesovortex and its hypothesized role in the parent vortex spin up is presented. 

Observations from the mesoscale and synoptic-scale are synthesized to provide a 

multi-scale perspective of the intensification of Gustav that occurred on September 10. 

The most important large scale factors were the concurrent relaxation of the 850-200 hPa 

deep layer vertical wind shear from 10-15 m s _ 1 to 5-10 m s - 1 and movement over pockets 

of very warm sea surface temperatures (approximately 29.5 °C- 30.5 °C). The mesoscale 

observations are not sufficient alone to determine the precise role of the deep convection 

and mesovortices in the intensification. However, qualitative comparisons are made between 

the mesoscale processes observed in Gustav and recent full-physics and idealized numerical 

simulations to obtain additional insight. 
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6.2 Introduction 

Two major forecasting difficulties with tropical cyclones are genesis and intensifica

tion. Forecast skill for these processes has consistently lagged forecast skill for track over the 

years (e.g., Sheets 1990). While general favorable (sea surface temperatures greater than 

26 °C, moist mid-troposphere, and presence of a pre-existing disturbance) and unfavorable 

(particularly strong vertical wind shear) synoptic-scale conditions affecting these processes 

have been well-known for some time (Gray 1968), significantly less is known about the 

intrinsic storm-scale dynamical and convective processes that affect genesis and intensifica

tion. 

Recent studies of near cloud resolving numerical simulations run at a horizontal grid 

spacing of 2-3 km have added new clarity to these processes. Montgomery et al. (2006b) 

(hereafter MNCS) demonstrated that the incipient surface vortex could be built by small-

scale cores of rotating deep convection (so-called vortical hot towers; hereafter VHTs) via the 

coalescence and system-scale concentration of their convectively-generated cyclonic vorticity 

anomalies in an idealized framework. Hendricks et al. (2004) (hereafter HMD) demonstrated 

a similar pathway to the genesis of a real storm, Hurricane Diana (in 1984). However, the 

lack of dense in-situ measurements combined with cirrus cloud canopies that tend to obscure 

the low-level storm structure have limited the ability to assess these and other numerical 

model simulations. 

Tropical cyclone Gustav presented a unique opportunity to look into a developing 

tropical system and observe the low-level structure. The eastern portion of the storm 

was exposed on September 9 due to moderate easterly vertical shear, uncovering multiple 

mesovortices that were present. Areas of the storm were also exposed on September 10, and 

more of these mesovortices were visible. The evolution of these mesovortices was captured 

with the rapid scan visible satellite imagery. An observational analysis of this storm is 

presented during this period using the rapid scan imagery in conjunction with scatterometer-

derived ocean surface winds and an analysis of the synoptic scale fields. 
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Gustav was of the class of storms that made a transition from an ordinary baro-

clinic cyclone to a warm-core tropical storm (tropical transition (TT); Davis and Bosart 

2003, 2004; hereafter DB03, DB04, respectively) . This is in contrast to the well-known 

extra-tropical transition that occurs sometimes when tropical cyclones move into the higher 

latitudes (typically greater than 30 °N). TT is physically defined as the morphing of a 

cold-core cyclone with baroclinic origins into a warm-core surface-based tropical cyclone 

(DB04). In the TT classification system of DB04, Gustav was considered initially to be a 

strong extratropical cyclone. In such cases, the frontal cyclone is strong enough to trigger a 

wind-induced surface heat exchange amplification process (WISHE; Emanuel et al. 1994). 

According to DB04, the TT happens via diabatic convective processes that tend to erode 

the pre-existing vertical wind shear and produce a warm core (cf. Montgomery and Farrell 

1993). 

While the main focus of this note will be a detailed illustration of the structure and 

evolution of the mesovortices, the observational data and QuikSCAT near-surface winds 

will be used to provide a multi-scale perspective of the TT that occurred. Insights into 

potential mechanisms of the TT will be discussed in light of this observational study. 

6.3 Synopt ic History: September 8-12, 2002 

A detailed synoptic history of Tropical Storm Gustav is provided by the National 

Hurricane Center (NHC) in Miami, FL (Beven 2003). A brief summary of that report 

is provided here. The incipient storm formed from an area of disturbed weather between 

the Bahamas and Bermuda on September 6, 2002, in association with a trough. Late 

on September 7, 2002, a broad surface low formed in the area of disturbed weather. By 

1200 UTC (Coordinated Universal Time) on September 8, the surface low was classified as 

a subtropical depression and was located approximately 815 km south-southeast of Cape 

Hatteras, North Carolina. Later that day, an Air Force Reserve Hurricane Hunter aircraft 

investigated the cyclone and found it had become Subtropical Storm Gustav. 
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On September 9, Gustav moved erratically west northwestward and slowly intensified. 

Gustav turned north early on September 10 and the convection became better organized 

near the center. The system was classified as a tropical storm by the NHC at 1200 UTC 

on September 10 based on the development of strong winds close to its center. As the 

center of Gustav reached Cape Hatteras, the maximum sustained winds increased to 28 m 

s~1. The storm continued to intensify after interacting with the non-tropical low-pressure 

system and became the first hurricane of the 2002 Atlantic hurricane season at 1200 UTC 

on September 11. Gustav made landfall as a hurricane in Nova Scotia at 0430 UTC on 

September 12. After this, observations indicated that the storm was beginning to lose its 

tropical characteristics. Gustav lost all tropical characteristics by approximately 1200 UTC 

on September 12 near Newfoundland. 

6.4 Data and analysis procedures 

The observational products used are rapid-scan visible satellite imagery, National 

Center for Atmospheric Research-National Centers for Environmental Prediction (NCAR-

NCEP) reanalysis data (Kalnay et al. 1996; Kistler et al. 2001), and microwave scatterom-

eter data. 

The visible imagery (Channel 1; A = 0.65 /xm) is obtained from the GOES-8 storm 

floater on September 9-10, 2002. The approximate horizontal resolution is 1 km. The satel

lite was scanning in the Rapid Scan Operating (RSO) mode, with satellite images produced 

in 7.5-minute intervals. Gridded data is obtained from the NASA Seawinds scatterome-

ter on board the QuikSCAT satellite during 9-10 September 2002. (More detail on the 

scatterometer can be found in Appendix B). The data set contains scatterometer-derived 

zonal and meridional vector components of the near-surface winds for a morning ascending 

pass and evening descending pass of the satellite over the region where Gustav developed. 

The NCAR-NCEP reanalysis six-hourly composite data are used for analysis of the larger-

scale environment; namely vertical wind shear, thermodynamic profiles and atmospheric 
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moisture. The reanalysis data resolution is 2.5° by 2.5° (latitude by longitude). While 

this resolution is somewhat coarse, it is sufficient to broadly capture the evolution of the 

large-scale fields in the vicinity of Gustav. 

6.5 Synoptic-scale analysis 

6.5.1 Thickness, vertical wind shear and moisture advection 

The evolution of the 850-200 hPa thickness, the 850-200 hPa vertical wind shear and 

the 1000 hPa horizontal moisture advection are shown in Fig. 6.1 at 1200 UTC and 0000 

UTC on September 9-10. The fields are calculated from six-hourly NCAR-NCEP reanalysis 

data composites. The thickness is calculated by the difference between geopotential heights 

of the 200 hPa and 850 hPa pressure levels. The vertical wind shear is expressed by the 

magnitude of the difference between the horizontal velocity vectors at the 200 hPa level 

and 850 hPa level. The moisture advection is calculated from the specific humidity (q) 

and horizontal velocity vector (V) from the reanalysis data, —V • Vq, at the surface, and 

displayed in 12 h tendencies. 

At 1200 UTC on September 9 (Fig. 6.1a), the storm was in a region of deep layer 

shear between 10-15 m s_ 1 . The low level center (marked by the "TS") was southwest of 

the warm thickness center. The geostrophic vertical wind shear was approximately from 

the east-southeast (using thermal wind) as shown by the thickness field associated with the 

warm thickness center north of the storm. The strongest moisture advection was northwest 

of the storm at this time. Progressing to 0000 UTC on September 11 (Fig. 6.Id), the main 

changes in the synoptic environment were as follows: (1) the warm thickness ridge became 

stronger, (2) the shear weakened to less than 10 m s _ 1 and (3) the low level center became 

more aligned with the warm thickness center. At 1200 UTC on September 10 (12 h earlier), 

the synoptic environment appeared to be even more favorable, with tota l shear of less than 

5 m s " 1 over the storm. 
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Figure 6.1: Evolution of low-level moisture advection, deep layer vertical wind shear and 
thickness. Moisture advection is calculated at 1000 hPa and displayed with white contours 
(g k g - 1 12 h - 1 ) , the 200 hPa-850 hPa vertical wind shear is plotted in the solid black lines 
(m s_ 1) , and the 850 hPa-200 hPa thickness is shaded, with increasing heights as lighter 
shades (interval is 20 m, peak is 10980 m (white), and minimum is 10750 m (black)). Panels: 
(a) 1200 UTC September 9, (b) 0000 UTC September 10, (c) 1200 UTC September 10, and 
(d) 0000 UTC September 11. The NHC best track position of Gustav is marked with a 
"TS" symbol 

6.5.2 Sea surface temperature 

A detailed composite of sea surface temperatures (SST) from the Advanced High 

Resolution Radiometer (AVHRR) on the NOAA polar-orbiting satellites in the region of 

Gustav is shown in Fig. 6.2 at 2215 UTC on September 8, 2002. The SSTs were shown at 
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this time since the storm had not yet moved over the region, and are therefore indicative 

of the environment into which the storm was heading (nor were the waters cooled by any 

previous system before Gustav). SSTs ranged from 28°C to 29°C in the storm vicinity, 

although small areas of higher temperatures (up to approximately 29.5-30.5°C) were seen 

as well. 

25 26 2? 28 29 X 31 32 

Figure 6.2: Sea surface temperatures in the region where Gustav formed (C) from the 
AVHRR on board the NOAA polar orbiting satellites. The NHC best track position of the 
storm is marked by black circles: (1) 09/1200 UTC [31.6°N, 73.6°W], (2) 09/1800 UTC 
[31.9°N, 74.5°W], (3) 10/0000 UTC [32.1°N, 75.5°W], (4) 10/0600 UTC [33.0°N, 75.5°W], 
(5) 10/1200 UTC [33.7°N, 75.4°W], (6) 10/1800 UTC [35.0 °N, 75.4°W] , and (7) 11/0000 
UTC [35.5°N, 74.7°W] (Figure is courtesy of the Johns Hopkins University Applied Physics 
Laboratory.) 

From 1200 UTC on September 9 to 0000 UTC on September 10 (positions 1, 2 and 

3), the storm was over waters of approximately 28-29°C. From 0600 UTC on September 
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10 to 0000 UTC on September 11 (positions 4, 5, 6, and 7), the storm moved over the 

warmer pockets (29.5-30.5°C) associated with the Gulf Stream. Excluding other factors, 

these higher SSTs would have promoted further intensification. 

6.5.3 Near-surface winds and vorticity derived from QuikSCAT 

Four passes of QuikSCAT occurred on September 9-10. The passes were approxi

mately twelve hours apart and include a morning ascending pass and evening descending 

pass on each day. The scatterometer-derived near-surface wind barbs and absolute vertical 

vorticity for each pass are shown in Fig. 6.3. The direction of satellite movement and the 

time of the pass are also shown on each plot. Absolute vertical vorticity was calculated 

with the zonal (u) and meridional (v) QuikSCAT wind components and the planetary vor

ticity, i.e., / + dv/dx - du/dy, with dx — dy = 25 km. In precipitating regions in TC cores, 

QuikSCAT is known to be less reliable. At certain times the shape of the TC vortex appears 

elliptical in Fig. 6.3. It is not known whether this shape is real or if it is caused by some 

erroneous QuikSCAT winds in the precipitating regions of the storm. 

At 0950 UTC on September 9, a cyclonic circulation existed with wind speeds gen

erally between 10-15 m s_ 1 . By 2351 UTC, some moderate strengthening was seen on the 

western side of the center (Fig. 6.3b, marked by the "TS") (winds approximately 15-20 m 

s_ 1) , while winds were more or less steady elsewhere. At 1106 UTC on September 10, the 

area of stronger winds was gone, and generally, maximum winds were approximately 10-15 

m s_ 1 . In the final pass, significant strengthening of the storm was observed; low-level 

winds increased to approximately 15-25 m s_ 1 . The QuikSCAT data indicate that Gustav 

was not changing significantly in intensity on 9 September, and then it began to intensify 

on September 10, particularly after 1200 UTC. The peak absolute vertical vorticity was 

approximately 60 x 10 - 5 s _ 1 on September 9 (both passes; Figs. 6.3a and 6.3b). The 1107 

UTC pass (Fig. 6.3c) on September 10 yielded the largest peak absolute vorticity, 80 x 10~5 

s - 1 . The peak values on the final pass on that day were smaller, 40 x 10~5 s - 1 . QuikSCAT 
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Figure 6.3: Near-surface wind barbs and absolute vertical vorticity (in units of 10 - 5 s - 1 ) 
derived from the QuikSCAT scatterometer during 9-10 September 2002. Each contour 
represents an interval of 20 x 10~5 s - 1 . Panels: (a) ascending pass at 0950 UTC September 
9, (b) descending pass at 2350 UTC September 9 (c) ascending pass at 1106 UTC September 
10, and (d) descending pass at 2325 UTC September 10. The NHC best track storm center 
fix is marked by the "TS" symbol. The direction of satellite movement and the UTC time 
of the eastern and western edge of the pass are also marked on the plot. 

winds (and vorticity) were not available on the western portion of the storm at this time 

since this area was over land (North Carolina). The larger values on Fig. 6.3c may be a 
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signature of one of the mesovortices on September 10 (see section 6.3). However, due to the 

coarse QuikSCAT resolution of 25 km, the mesovortex vorticity is not resolved. In compar

ison to the NHC best track intensity estimate, QuikSCAT near-surface winds were slightly 

lower throughout this period. The NHC best track intensities were: 21 m s - 1 (1200 UTC 

on September 9), 23 m s"1 (0000 UTC September 10), 26 m s - 1 (1200 UTC September 

10), and 28 m s"1 (0000 UTC September 11). 

6.5.4 Discussion 

Based on the analysis above, it is concluded that the synoptic environment became 

more favorable on September 10. The main favorable changes were the concurrent relaxing 

of the 850-200 hPa vertical wind shear from 10-15 m s _ 1 to 5-10 m s _ 1 combined with 

storm movement over very warm waters. The moisture advection was maximized northwest 

of the storm center, and was likely the primary contributor to the sustained deep convec-

tive activity in that area. According to DB04, the environmental vertical wind shear can 

be reduced in subtropical storms such as Gustav by diabatic processes in sustained deep 

convection. It is possible that the vertical wind shear reduction that occurred in Gustav 

may have proceeded via this pathway. However, we also cannot rule out the shear reduction 

being caused by the evolving large-scale environment. 

The relatively high 850-200 hPa thickness values over the storm indicate that the cold-

core system had already eroded substantially by September 9. However, the movement of 

the surface low beneath the warm thickness center did not occur until approximately 1200 

UTC on September 10 (Fig. 6.1c). The QuikSCAT data indicates that the strongest low-

level wind increase occurred between approximately 1200 UTC on September 10 and 0000 

UTC on September 11 (Figs. 6.3c and Figs. 6.3d). The timing of the tropical transition 

cannot be determined explicitly because of the lack of temperature time history in the 

storm core and also spatial uncertainty in the reanalysis fields. However, a warm-core 

had probably formed by 1200 UTC on September 10, since this was the time of the most 
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significant low-level wind spin-up. 

6.6 Mesoscale analysis 

6.6.1 Observed convection 

Having now summarized the synoptic scale conditions, we turn our focus to the 

mesoscale and convective scale conditions. Multiple hot towers were observed in Gustav 

on September 9-10, 2002. They are evident as overshooting tops in Fig. 6.4, along with 

two exposed mesovortices (discussed in section 6.2). The hot towers are found to grow 

and die with lifetimes of approximately 0.5-1.0 h. The rapid-scan imagery was used to 

obtain vertical velocity estimates in these towers, and vertically-averaged (through the 

troposphere) updrafts of approximately 10 m s _ 1 were found. These were spatially and 

temporally averaged updrafts, therefore velocities in excess of this value are expected to 

peak in the middle and upper troposphere (e.g., Zipser and Gautier 1978; Zipser 2003) 

and in more localized regions. The deep convection initiated from an unstable moist air 

mass. The most indicative sounding is the MHX (Newport, NC) sounding at 1200 UTC on 

September 10, shown in Fig. 6.5. Surface-based CAPE (based on pseudo-adiabatic parcel 

ascent) from this sounding is approximately 1000 J kg - 1 . 

6.6.2 Structure and evolution of mesovortices 

Close-up images of Gustav are shown on September 9 in Fig. 6.6 at 1815 UTC and 

1945 UTC. Two distinct mesovortices are visible at each time, and a third one emerges just 

before dark (not shown). While there is no easy method for determining the horizontal 

scale of the mesovortices, they appear to be approximately 25-45 km in horizontal scale 

from their velocity signatures (low-level cloud swirls) in Fig. 6.6. The vorticity signatures 

of these mesovortices (or the horizontal extent of an isolated region of elevated vorticity) 

are likely smaller. For example, Reasor et al. (2005) (hereafer RMB) found near-hurricane-

strength low-level vorticity regions in pre-storm Hurricane Dolly (1996) at very small scales 
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Figure 6.4: Large-scale visible satellite image of Gustav at 1945 UTC on Sept 9. Multiple 
hot towers and two exposed mesovortices are evident 

(10-20 km) using airborne Doppler radar. The scales of the deep convective regions (defined 

by the width of the cloud shield just prior to the anvil stage) are approximately at the MV 

scale (25-45 km; see Fig. 6.6). These mesovortices are found to emerge from underneath the 

deep convection and move with the low level winds (Fig. 6.6, white arrows). For example, 

at 1815 UTC, MV2 has just emerged from the sustained deep convective activity to the 

west. The exposure of the mesovortices from the convective towers is due to the moderate 

vertical shear at this time. 

In summary, since, (1) the mesovortices are close to the same scale of the deep 

convective areas (Fig. 6.6), (2) there are no islands in the vicinity, (3) they emerge as 

low-level circulations immediately after and from underneath the deep convective bursts, 

it is most likely that the mesovortices were generated via vortex stretching by updrafts 

in the deep convective cores. This convective coupling is observed more clearly in the 

animation of the 7.5-minute rapid-scan imagery on 9 September on the Internet web

site, http://wx.met.nps.navy.mil/mtmontgo/GustavAnimations/. The QuikSCAT data in-

http://wx.met.nps.navy.mil/mtmontgo/GustavAnimations/
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Figure 6.5: Representative sounding from of inflow air into Gustav on September 10 (cour
tesy of the University of Wyoming) 

dicates that Gustav formed in a vorticity-rich environment, with a large area of near-surface 

absolute vertical vorticity greater than 2 x 10 - 4 s_ 1 . This reservoir was likely utilized by 

the convective towers. 

When Gustav became a tropical storm on September 10, two more mesovortices were 

strikingly visible (Fig. 6.7, marked MV4 and MV5). The satellite imagery indicates that 

these mesovortices were rotating around one another from at least 1445 UTC until 1900 

UTC. At 1925 UTC, MV5 is no longer visible and MV4 appears to become the dominant 

vortex. A gigantic convective burst was initiated by MV4 with a circular exhaust cloud 

(Gentry et al. 1970) of horizontal scale of approximately 50-70 km (the early stages are 

shown at 1925 UTC in Fig. 6.7b). After this, sustained deep convection was present over 

the center of Gustav and the next day it was classified as a hurricane by the NHC. Due to the 

onset of darkness and increasing cloud cover, it is not known whether MV5 was expelled 

from the storm, merged into MV4, or dissipated. Subsequent to this, MV4 appeared to 

become the new circulation center, as has been shown in previous cases (Stossmeister and 
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Barnes 1992). 

The convective generation of mesovortices is well documented in the literature (Marks 

et al. 1992; Stossmeister and Barnes 1992; Pritsch et al. 1994; Reasor et al. 2005). Fritsch 

et al. (1994) demonstrated the formation of a mesovortex (with an initial scale of approx

imately 100 km in diameter) over land via CAPE, without heat and moisture fluxes from 

the sea surface. Stossmeister and Barnes (1992) linked the formation of a second circulation 

center in Tropical Storm Isabel (1985) to intensifying deep convection in a rain band spi-

raling from the original center. RMB also demonstrated that the formation of circulations 

in the pre-Hurricane Dolly (1996) disturbance likely proceeded via vortex tube stretching 

in association with hot tower convection. 

These mesovortices form from a different process than in mature hurricane eyewalls 

(Kossin and Schubert 2004). The latter are believed to form principally from a barotropic 

instability that necessarily requires a sign reversal of the local radial gradient of absolute 

vertical vorticity (Schubert et al. 1999). The Gustav mesovortices formed in an area where 

the vorticity distribution was approximately monotonic with radius from the circulation 

center, and thus formation by barotropic instability is not plausible. 

6.6.3 Partial evidence of system-scale axisymmetrization 

The visible imagery provided partial evidence of the axisymmetrization of one mesovor

tex into the larger scale vortex circulation (Fig. 6.8). As night began at 2125 UTC on 

September 9, MV1 appeared to be strained and elongated from its earlier circular structure 

(see Fig. 6.6). The straining and elongating of MV1 is consistent with the early phase of the 

axisymmetrization process of convectively generated vorticity anomalies leading to strength

ening of the larger-scale (parent) vortex (Montgomery and Kallenbach 1997; Montgomery 

and Enagonio 1998; Melander et al. 1988; Dritschel and Waugh 1992). Based on available 

data, however, it is impossible to determine conclusively whether axisymmetrization of this 

anomaly occurred, since night fell and it moved underneath the convection. Shortly after 
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MV1 moved underneath the convection, a large convective burst occurred over it, possibly 

indicating an intensification trend. MV1 was the only mesovortex that was observed to 

have strained and elongated. 

6.7 Summary 

Mesoscale and synoptic scale observations of tropical storm Gustav were synthesized 

to provide a multi-scale perspective of the tropical transition (TT) that occurred on Septem

ber 9-10, 2002. On the mesoscale, rapid scan visible satellite imagery from GOES-8 was 

used to illustrate and examine multiple mesovortices that existed in the storm on both 

of these days. The origin of these mesovortices was strongly suggested to be from vortex 

tube stretching due to their emergence from underneath deep convective regions soon after 

convective events. They became visible as low-level cloud swirls on September 9 due to 

easterly/southeasterly deep layer shear of approximately 10-15 m s - 1 . Partial evidence of 

the axisymmetrization of one mesovortex into the parent vortex circulation was suggested 

with the rapid scan visible satellite imagery in the evening of September 9. Two more 

mesovortices were visible on September 10, while Gustav was a strong tropical storm. On 

both days, new hot towers were observed to form on the boundaries of existing mesovortices 

(MV1 on September 9 and MV4 on September 10). 

The synoptic-scale analysis of vertical wind shear, sea surface temperature and mois

ture indicated that the environment was unfavorable for tropical cyclone formation on 

September 9, but became favorable on September 10. This was due to the concurrent re

laxation of the 850-200 hPa vertical wind shear from 10-15 m s _ 1 to 5-10 m s _ 1 combined 

with storm movement over very warm SSTs (29.5 °C- 30.5 °C) associated with the Gulf 

Stream. The spin-up of near surface winds from 10-15 m s _ 1 to 20-30 m s _ 1 from 1200 

UTC on September 10 to 0000 UTC on September 11 (observed by QuikSCAT) indicates 

that the TT of Gustav probably had completed by this time. QuikSCAT background ab

solute vertical vorticity was found to be approximately 1-2 x 10~4 s _ 1 with peak values of 
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approximately 5-8 x 10~4 s_ 1 . An accurate representation of the mesovortex vorticity was 

not possible since the QuikSCAT resolution was too coarse (25 km). 

The observations presented herein are not sufficient to determine the precise role of 

the convective mesovortices in the TT of Gustav. However, recent numerical simulations 

link warm core formation and tangential momentum spin-up tendencies to these asymmetric 

eddy processes (MNCS, HMD and Montgomery and Enagonio (1998)). Perhaps the most 

interesting aspect of this study is the illustration of the low level complex flow patterns in a 

developing tropical cyclone, as well as the likelihood that convectively generated mesovor

tices exist in many tropical cyclones. Denser in-situ observations and airborne Doppler 

radar will be necessary to observationally determine the relative importance of convective-

scale eddy processes versus storm-scale mean processes in the genesis and intensification of 

tropical cyclones. 
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Figure 6.6: GOES-8 visible close-up depiction of mesovortices in Gustav at 1815 and 1945 
UTC on September 9. The overshooting convective tops associated with multiple hot towers 
are circled in black and marked "HTs". The low level exposed mesovortices are circled in 
white and marked with "MV". The low level motion of the MVs is shown by the white 
arrows. The approximate scales of the structures can be discerned from the scale of the 
latitude-longitude box: 32-33° N (110 km) by 74-75° E (94 km). The system-scale low-level 
circulation is shown by the white arrows. 
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Figure 6.7: Mesovortices in T.S. Gustav on September 10. Panels: (a) 1615 UTC September 
10, (b) 1925 UTC September 10 

Figure 6.8: Partial evidence of the axisymmetrization of a low level mesovortex. At 2125 
UTC 9 Sept 2002, MV1 appears to be strained and elongated from its earlier circular 
structure. The broader low level circulation is shown by the white arrows. 



Chapter 7 

CONCLUSIONS 

Tropical cyclones (TCs) may change in structure and intensity due to environmental 

factors, ocean surface fluxes, and internal dynamics. In this dissertation, aspects of the 

evolution of TCs solely due to internal dynamical processes has been assessed. The first 

part of the dissertation focused on idealized studies of transport and mixing in the hurricane 

inner-core, and the second part was devoted to understanding some specific asymmetric dy

namics of TC evolution: spontaneous radiation from active TC cores and vortical hot towers 

in TC genesis and intensity change. A hierarchical modeling approach (from the nondiver-

gent barotropic model to the hydrostatic primitive equation model) was undertaken, and 

diagnostics and observations were also used. The principle finding is that internal dynamics 

are as significant as environmental factors and ocean surface fluxes in governing short term 

intensity change of hurricanes. 

In chapter 2, the effective diffusivity diagnostic was used to map out the transport 

and mixing properties of idealized barotropic hurricane-like vortices. Complementing its 

previous use in simple time-periodic flows and stratospheric dynamics, effective diffusivity 

was found to be a useful tool to diagnose two-dimensional mixing in hurricanes. Potential 

vorticity (PV) wave breaking events occur often in hurricanes, either due to barotropic 

instability or during axisymmetrization of anomalies on monotonic vortices. These breaking 

PV waves create finite radial length chaotic mixing regions (surf zones) in the vortex. For 

monotonic vortices, the surf zone outside the radius of maximum wind is analogous to the 

surf zone outside the wintertime stratospheric polar vortex. During PV wave breaking 
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events, passive tracers can be easily mixed over large horizontal distances in the hurricane. 

An interesting result for unstable PV rings is that the hurricane tangential jet appears 

to be a robust transport barrier in certain instances, even though the inner and outer PV 

waves are breaking. The inner, breaking PV wave is quite effective at mixing passive tracers 

between the outer edge of the eye and the eyewall. Assuming a monotonically decreasing 

equivalent potential temperature profile with radius at low levels, these results support the 

hurricane superintensity mechanism. 

In chapter 3, a systematic study of structural and intensity change of all possible 

dynamically unstable hurricane-like vortices (i.e., PV rings) was performed. A sequence of 

170 numerical simulations was executed covering a parameter space with the first parameter 

being the thickness of the ring (i.e., the ratio of the inner and outer radii) and the second 

parameter being the hollowness of the ring (i.e., the ratio of the eye vorticity to the average 

inner-core vorticity). In approximately one-half the cases, the ring became dynamically 

unstable and a vigorous PV mixing episode occurred between the eyewall and eye. The 

observed most unstable mode in the numerical model was compared to linear theory, and 

resultant end states after the nonlinear advection and mixing were assessed. During all PV 

mixing events, both the central pressure and maximum mean tangential velocity simultane

ously decreased. Thus empirical pressure-wind relationships are invalid during PV mixing 

events. Rapid pressure falls were found to occur for the barotropic breakdown of very thin 

rings; thus PV mixing can be a factor in rapid intensification. Based on these results, the 

use of maximum sustained wind as a metric for hurricane intensity is strongly discouraged. 

Rather, minimum central pressure or integrated kinetic energy should be used. Addition

ally, rapid intensification of hurricanes should be assessed in terms of pressure, not winds, 

and should be referred to as rapid deepening. 

In chapter 4, two idealized hydrostatic primitive equation mesoscale models were 

described and some evalution tests were presented. The vertically discrete models were 

created from a preexisting periodic spectral shallow water model. The first model used an 
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isentropic vertical coordinate and the second model used a sigma (terrain following) vertical 

coordinate. Both models were extended on a Charney-Phillips grid, and include options for 

horizontal momentum and vorticity-divergence prognostic formulations. Evaluation tests 

were presented for the isentropic model: gradient adjustment in an axisymmetric baroclinic 

hurricane-like vortex and the quasi-balanced evolution of a dynamically unstable hurricane

like vortex (i.e., a PV hollow tower). A "PV bridge" formed across the eye at low levels due 

to PV mixing preferentially at lower levels. This was an interesting result because the bridge 

had previously been simulated in a moist full-physics model. Since a portion of the PV in 

the bridge is static stability, it is possible that the hurricane eye inversion is dynamically 

controlled, making it potentially the only such inversion on Earth of this nature. In addition, 

an initially erect PV hollow tower evolved into a tilted structure, suggesting one mechanism 

by which the eyewall slope forms is adiabatic PV mixing. The sigma coordinate model 

is not yet complete, but it will ameliorate some problems found in the isentropic model, 

namely the bending of theta surfaces into the ground for strong hurricane-like vortices. 

In chapter 5, spontaneous inertia-gravity wave (IGW) radiation from atmospheric 

vortices was advanced by examining a case study of an active hurricane-like core in a 

shallow water model. An initially balanced state of an offset monopole in an elliptically 

shaped eyewall evolved into a unbalanced (or quasi-balanced) spontaneous radiative state. 

The central monopole was deformed into an ellipse, and it began to rapidly rotate. The 

mass field could not adjust to the rapidly oscillating wind field, and spontaneous adjustment 

emission ensued. Frequency matching occurred between a PV edge wave and a intrinsic 

IGW (analogous to Lighthill radiation), causing radiation to the environment at a preferred 

radial wavenumber. The radiation was sustained because the central ellipse would not 

axisymmetrize, due almost entirely to the fact that it had a sharp edge. The multitude of 

low wavenumber vorticity structures that are observed and simulated in numerical models 

suggest that spontaneous radiation is likely often occuring in hurricanes (even in the absence 

of gravity wave generation my moist convection), affecting its own intensity and disrupting 
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the local environment. Future work will be devoted to understanding whether spontaneous 

radiation is a significant for hurricane intensity change. 

In chapter 6, an observational case study of vortical hot towers (VHTs) in tropical 

cyclone Gustav (2002) was examined, building on previous full-physics numerical model

ing work linking VHTs as fundamental building blocks of seedling TC vortices. Multiple 

convectively generated mesovortices were observed as low level cloud swirls after being de

coupled from the VHTs due to moderate vertical shear. The exposure, we feel, uncovered an 

inherent eddy-driven intensification mechanism by VHTs that is likely occuring in many, 

if not all, hurricanes. The observed evolution of the mesovortices was compared to full-

physics numerical simulations suggesting the multiple mergers and axisymmetrization of 

these anomalies can create a seedling TC vortex, with a secondary circulation enhancement 

from the aggregate diabatic heating from all the VHTs. 

In this dissertation, the role of barotropic dynamics in TC evolution has been empha

sized. Outside localized deep convective regions, the combined effects of stratification and 

rotation tend to make the hurricane behave as a two-dimensional, layered, quasi-balanced 

system. The important modes of variability in such flows are the low frequency vortex 

Rossby waves, which we have shown to be significant in affecting hurricane structure and 

intensity change on short time scales (less than 48 h). Much insight into hurricane dynamics 

in this dissertation has been obtained by simple, idealized models. In closing, we note the 

quote from Ian James: "Comprehensive complexity is no virtue in modeling, but rather, an 

admission of failure." 
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APPENDIX A 

Volume Coordinate Transformation for Effective Diffusivity 

The effective diffusivity area-based coordinate becomes a volume-based coordinate for 

a three dimensional nondivergent flow. To illustrate this, consider the Bousinessq equations 

on an /-plane: 

du _ , _ , 1 dp ,. _. 
- + u - V « - / ! ; = i / V 2 « - - / , A.l 
at pox 
dv _ „ _ 9 1 dp ,. _.. 
at pay 

dw _ _ 2 1 dp p' ,. oN - + u . V w = cViw ^r+g— (A.3) 
ai po dz po 

V • u = 0, (A.4) 

where u is zonal momentum, v is the meridional momentum, p is the pressure, v is the 

momentum diffusity, and V is a three dimensional operator. A passive tracer c(x,y,z,t) in 

this flow must satisfy 

dc 
— + u - V c = V-(«Vc) , (A.5) 

where K is the tracer diffusivity. 

Let C denote a particular surface of the c(x, y, z, t) field and V(C, t) denote the volume 

of the region in which the tracer concentration satisfies c(x,y, z,t) > C, i.e., 

V(C,t)= Iff dxdydz. (A.6) 
J J Jc>C 

Let 7(C, t) denote the bounding surface of this volume. Note that V(C, t) is a monotonically 

decreasing function of C and that F(Cmax, t) = 0. Now define u"^ as the velocity of the 

bounding surface C, so that 

^ + u p . V c = 0. (A.7) 
dt 
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Let dA be an area element on the surface C. Noting that Vc/|Vc| is the unit vector 

normal to the contour, we can use (A.6) and (A.7) to write 

-II dc dA 
,l{c,t) dt |Vc|' 

where dA is an area element on the bounding surface. Using (A.5) in the last equality of 

(A.8) we obtain 

= ff V-OcVch 

"I/ „ dA 
U ' V C ] = - 7 . 

f(c,t) |Vc| 

(A-9) 

We now note that (since dxdy, dz — dAdC'/\Vc\) 

dA -IS <> 
(A.10) 

7(C,*) l V c i 

Using (A.10) in (A.9) while noting that u • Vc = V • (cu) because u is nondivergent, we 

obtain 

8V(C,t) d fff „ , „ ,dAdC -.(If V-(.cVc) 
J J Jc>C 

d fff „ , ,dAdC 
Vcl 

a rr (A,11) 

/ / K|VC|CL4 dC J Jf(c,t) 

9 ff V c J , 
dC JJ^ct) |Vc| 

The third and fourth lines of (A. 11) are obtained using the divergence theorem. The fourth 

line of (A. 11) vanishes because the factor c in the integrand can come outside the integral, 

leaving JL(Qt\ u • (Vc/|Vc|)cL4, which vanishes because u is nondivergent. 

Since V(C,t) is a monotonic function of C, there exists a unique inverse function 

C(V,t). We now transform (A.ll) from a predictive equation for V(C,t) to a predictive 
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equation for C(V,t). This transformation is aided by 

dV(C,t)dC(V,t) dC(V,t) 
(A.12) 

dt dV dt 

which, when used in (A.11), yields 

dC(V,t) dC(V,t) d 
— II «| v q U J I 

(A.13) 
dt ov ocIl(at)

K^dA 

=wJLt)^
dA-h(c,t) 

Because of (A.10), the integral JJ ,Ct-.K\Vc\dA on the right hand side of (A.13) can be 

replaced by (d/dC) JJJC>CK\VC\2 dxdydz. Then, (A.13) can be written in the form 

eo^-afiuy.t)?£m, (A.i4) 
dt dV \ e i lv ' ' dV 

where 
-2 

KeS{V,t) = (^pj -^JJJ^K\Vc\2dxdydz. (A.15) 
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APPENDIX B 

N A S A SeaWinds Scatterometer 

The SeaWinds scatterometer is a microwave radar sensor used to measure the re

flection or scattering effect produced while scanning the surface of oceans and gives an 

estimate of the near-surface winds. The instrument provides measurements over a 1,800 

km swath during each orbit and covers 90 percent of the Earth's oceans every day. Surface 

wind speeds are measured in the range of 3 to 20 m s _ 1 with an accuracy of 2 m s _ 1 for 

magnitude and 20 degrees for direction. The horizontal resolution of the retrieved wind 

vectors is 25-km. More information on the Seawinds scatterometer can be found on the 

internet website: http://winds.jpl.nasa.gov/ and more information on the level 3 gridded 

data set from QuikSCAT can be found on the internet website: 

http://podaac.jpl.nasa.gov/products/productl09.html/. 

http://winds.jpl.nasa.gov/
http://podaac.jpl.nasa.gov/products/productl09.html/
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