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ABSTRACT 
 
 

COMPARING PRECIPITATION ESTIMATES, MODEL FORECASTS, AND 

RANDOM FOREST BASED PREDICTIONS FOR EXCESSIVE RAINFALL 

 
 

Flash flooding is an important societal challenge, and improved tools are needed for both 

real-time analysis and short-range forecasts.  We present an evaluation of threshold exceedances 

of quantitative precipitation estimate (QPE) and forecast (QPF) datasets in terms of their degree 

of correspondence with observed flash flood events over a seven-year period.  We find that 

major uncertainties persist in QPE for heavy rainfall.  In general, comparison with flash flood 

guidance (FFG) thresholds provides the best correspondence, but fixed thresholds and average 

recurrence interval thresholds provide the best correspondence in certain regions of the 

contiguous US (CONUS).  QPF threshold exceedances from the High-Resolution Rapid Refresh 

(HRRR) generally do not correspond as well as QPE exceedances with observed flash floods, 

except for the 1-h duration in the southwestern CONUS; this suggests that high-resolution model 

QPF may be a better indicator of flash flooding than QPE in some poorly observed regions.   

Subsequently, we describe a new random forest (RF) based excessive rainfall forecast 

system using predictor information from the 3-km operational HRRR.  Experiments exploring 

the use of spatial predictor information reveal the importance of averaging HRRR predictor 

fields across a spatial radius rather than using only information from sparse input grid points for 

regimes with small-scale excessive rain events.  Tree interpreter results indicate that the forecast 

benefits of spatial aggregation stem from greater contributions provided by storm attribute 

predictors.  Forecasts are slightly degraded when there is a mismatch between the trained RF 

model and the daily HRRR forecasts to which the model is applied, both in terms of initialization 
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time and HRRR model version.  Use of FFG as an additional predictor leads to forecast 

improvements, highlighting the potential of hydrologic information to contribute to forecast skill.  

In addition, averaging predictor information across several HRRR initializations leads to a 

statistically significant improvement in forecasts relative to using predictor fields from a single 

HRRR initialization.  The HRRR-based RF has been evaluated at the annual Flash Flood and 

Intense Rainfall Experiment (FFaIR) over the past three years, with year-over-year 

improvements stemming from the results of sensitivity experiments.  The HRRR-based RF 

represents an important baseline for future machine learning based excessive rainfall forecasts 

based on convection-allowing models.   
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CHAPTER 1: INTRODUCTION 
 
 
 

 Flash flooding, defined by the United States (US) National Weather Service (NWS) as “a 

rapid rise in water levels along rivers, creeks, normally dry washes, arroyos, or even normally 

dry land areas, generally occurring within 6 h of the causative rainfall or other event”, is a 

critical societal challenge globally, and particularly in the US.  The National Centers for 

Environmental Information (NCEI) estimates more than $72 billion (U.S. dollars) in damage and 

212 deaths resulting from flooding and excessive rainfall in the U.S. during 2010-2019 (NCEI 

2020).  The majority of flood-related fatalities in the U.S. over the last ~50 y can be attributed to 

flash flooding (Ashley and Ashley 2008).  Flash floods kill more people per year in the U.S. than 

any other weather hazard except for heat waves (NOAA 2022).  Notable recent flash flooding 

disasters in the U.S. include Hurricane Harvey in Texas in August 2017 (Martinaitis et al. 2021), 

flooding associated with the remnants of Hurricane Ida in the northeastern U.S. in Sep 2021 

(Smith et al. 2023), and repeated mesoscale convective systems (MCSs) in Kentucky and 

Missouri in Jul 2022 (Wix 2023).  Many other parts of the world have also been subjected to 

severe flash flooding in recent years; for example, in Pakistan and Iran in Jul 2022 (at least 1800 

people killed; Ghasabi et al. 2023; Pakistan National Disaster Management Authority 2022), and 

in central Europe in Jul 2021 (at least 180 people killed; Lehmkuhl et al. 2022).   

 Recent research has suggested that extreme precipitation in the U.S. may become more 

frequent with climate change, both in terms of volumetric rainfall from MCSs (Prein et al. 2017) 

and in terms of the upper tail of the wet day precipitation distribution (Harp and Horton 2022).  

Hydrologic model results forced with high-resolution climate simulations also indicate increased 

flashiness of U.S. floods under a high emission scenario (Li et al. 2022).  Potential resulting 
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future increases in the frequency of flash flooding events, as well as increasing vulnerability due 

to population growth (Pielke and Downton 2002), underscores the importance of improved flash 

flood predictions.   

 Despite the societal importance of accurate flash flood forecasts, the rate of improvement 

of quantitative precipitation forecasts (QPF) for heavy rainfall events lags behind other forecast 

quality metrics (Barthold et al. 2015; Novak 2023).  Accurate prediction of heavy rainfall 

depends not just upon an accurate representation of the convective environment, and not just 

upon an accurate representation of instantaneous storm structure, but also upon accurate storm 

morphology and evolution over time, including treatment of successive storms and training.  

Excessive rainfall can also arise from a much broader spectrum of precipitation systems than the 

spectrum that can produce, for example, tornadoes.   

 The Weather Prediction Center (WPC) issues daily Excessive Rainfall Outlooks (EROs) 

to highlight regions of concern for flash flooding in the coming days (Burke et al. 2023).  The 

ERO is formulated as a probability of exceeding flash flood guidance (FFG) over a 24-h period 

within 25 miles of a point, and is issued operationally out to day five; in this work, we focus only 

on the day-one period.  One of the major challenges associated with the ERO is how to define an 

excessive rainfall event for the purposes of forecast verification.  Erickson et al. (2021) present 

quantitative verification of the WPC ERO during 2015-21 against a Unified Flooding 

Verification System (UFVS), which consists of Stage IV quantitative precipitation estimates 

(QPE) exceeding FFG, Stage IV QPE exceeding the 5-year average recurrence interval (ARI), 

U.S. Geological Survey (USGS) river gauge observations, and NWS local storm reports.   

 While many tools have been developed for flash flood analysis and forecasting, these 

tools have outstanding issues and challenges.  In terms of precipitation analyses, QPE datasets 
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often do not agree with each other (e.g., Bytheway et al. 2020) and have substantial quality 

control issues (e.g., Nelson et al. 2016).  Numerical weather prediction (NWP), which is the 

backbone of prediction beyond a few hours, struggles with capturing convective evolution 

relevant to flash flooding (e.g., Nielsen and Schumacher 2020).  Nowcasting approaches struggle 

with realism (e.g., Radhakrishnan and Chandrasekar 2020).   

 Machine learning (ML) holds promise for providing improved tools for flash flood 

analysis and forecasting.  Particular applications of ML relevant for flash flood analysis and 

forecast include ML-based QPE in complex terrain (Osborne et al. 2023), novel ML 

architectures for precipitation nowcasting (e.g., Zhang et al. 2023), post-processing of ensemble 

QPF for improved forecasts (Loken et al. 2019), and ML-based excessive rainfall prediction 

systems (e.g., Herman and Schumacher 2018a).  ML-based excessive rainfall prediction has not 

received as much attention as ML-based prediction of the other convective hazards of tornadoes, 

hail, and severe wind (McGovern et al. 2023).   

 In this work, we first examine existing QPE and QPF datasets to shed light on their 

ability to highlight potential flash flooding.  We adopt the framework of Herman and 

Schumacher (2018c) to evaluate how well exceedances of various types of precipitation 

thresholds in QPE and QPF datasets correspond with observed flash floods.  Understanding the 

strengths and weaknesses of these datasets in terms of representing impactful precipitation 

provides important context for examining excessive rainfall prediction skill variability around 

the US.   

We then build upon previous work to describe a new random forest (RF) based system 

for excessive rainfall prediction based on inputs from a deterministic convection-allowing model 

(CAM).  In particular, we focus on how predictors from a CAM should be treated differently 
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from those from a coarse global ensemble.  ML in general, and RFs in particular, continue to 

grow in importance within the forecasting process for high-impact weather events, so 

understanding how to optimally construct such RF systems is of paramount importance for the 

future of these prediction systems.  We present a variety of sensitivity experiments addressing 

the spatial and temporal aggregation of meteorological predictors for the RF, as well as the 

importance of the RF training period length and the impact of model changes during the training 

period.  We also present an objective evaluation of real-time forecasts from the RF system over a 

three-year period, with a comparison against operational WPC EROs.  The deterministic CAM-

based RF described here represents an important baseline for future, more sophisticated ML 

approaches which use high-resolution predictor information from deterministic CAMs, as well as 

those based on future formal CAM ensemble systems.   
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CHAPTER 2: PRECIPITATION PROXIES FOR FLASH FLOODING: A SEVEN-YEAR 
ANALYSIS OVER THE CONTIGUOUS UNITED STATES 

 
 
 

Flash flooding remains a difficult prediction problem, and one of high societal 

importance due to the projected increases in flash flood related losses due to population growth 

(e.g., Downton et al. 2005) and climate change (Prein et al. 2017).  One of the key challenges 

with flash flood forecasting is the lack of a universally accepted definition of the phenomenon.  

The National Weather Service (NWS) defines a flash flood as “a rapid rise in water levels, along 

rivers, creeks, normally dry washes, arroyos, or even normally dry land areas, generally 

occurring within 6 h of the causative rainfall or other event” (NWS 2023).  Even beyond the 

formal definition, the likelihood of flash flooding resulting from a given intensity and duration of 

heavy rain is strongly dependent upon a hydrologic response, which dramatically varies 

regionally and in time.  Due to these complications, it is helpful for forecasters to have a quick 

way to see what magnitude of rainfall accumulation or rate is climatologically anomalous or 

would cause a flood response given other hydrologic factors.  One way to sift the available 

information is to filter out events that are climatologically or hydrologically not as likely to cause 

flooding.  A given rainfall accumulation over a given duration could have vastly different 

impacts depending on location or time (i.e., antecedent conditions, land surface type, vegetation, 

topography, etc.).  In this regard, it is important to have accurate estimates of the precipitation 

threshold beyond which flash flooding may occur, at high spatial and temporal resolutions.  

From a climatological perspective, NOAA Atlas 14 (Bonnin et al. 2006; Perica et al. 2011, 

2013a,b, 2015, 2018) is intended to reflect the average amount of precipitation that corresponds 

to a given recurrence interval, highlighting statistically “rarer” precipitation events.  Flash flood 

guidance (FFG), on the other hand, is intended to reflect hydrologic capacity given soil 
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information and antecedent conditions.  These thresholds are available down to the 1-h temporal 

scale, but there is some indication that precipitation accumulations at even finer temporal scales 

(e.g., 15 min) could be important for some types of flooding events (e.g., landslides; Kean et al. 

2019). 

Ultimately, treatment of the hydrological factors influencing the probability of flash 

flooding is appropriately handled only with advanced hydrologic models.  The Flooded 

Locations and Simulated Hydrographs (FLASH) system (Gourley et al. 2017) now provides 

gridded comparisons of radar-based quantitative precipitation estimates (QPE) with recurrence 

intervals and FFG, as well as an ensemble hydrologic model which provides high-resolution and 

frequently-updated streamflow predictions.  Recent work has also coupled the FLASH system 

with an experimental short-range ensemble forecast system (Yussouf et al. 2020; Martinaitis et 

al. 2022), enabling improved meteorological forcing and therefore improved streamflow 

forecasts.  However, these novel applications are restricted to shorter lead times (3-6 hours), and 

there remains a need for comparison of longer-range convection-allowing model (CAM) 

forecasts with precipitation thresholds of interest.   

In response to the somewhat ambiguous nature of flash flood events, and because of 

issues with the flash flood report (FFR) dataset, the Weather Prediction Center (WPC) has 

developed a dataset, known as the Unified Flooding Verification System (UFVS), which 

combines FFRs with “proxy” flood events derived from gridded comparisons of QPE vs. several 

thresholds (Erickson et al. 2019).  This dataset builds upon earlier efforts to create a flash flood 

dataset which merges several data sources (Gourley et al. 2013), and is used to examine the 

performance of WPC’s operational excessive rainfall outlooks (EROs; Erickson et al. 2021), as 
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well as other potential forecast guidance products such as the Colorado State University random 

forest (RF) systems (Herman and Schumacher 2018a; Schumacher et al. 2021).   

Previous work has evaluated the correspondence between QPE compared with 

precipitation thresholds potentially of interest for the onset of flash flooding with reported flash 

flood events.  Herman and Schumacher (2018c; HS18 hereafter) compared several common QPE 

datasets against fixed precipitation thresholds, average recurrence intervals (ARIs) from NOAA 

Atlas 14 and other sources, and FFG, examining their correspondence with both flash flood 

reports (FFRs) and NWS-issued flash flood warnings during a 2.5-year period.  They found the 

best correspondence for 2.5 inches of precipitation in 24 h considering the CONUS as a whole, 

with regionally varying results for ARI exceedances.  Gourley and Vergara (2021; GV21 

hereafter) carried out a similar analysis using a more recent version of the multi-radar multi 

sensor (MRMS) product, finding best agreement with FFRs at shorter accumulation periods and 

much higher fixed thresholds, and also better performance for more sophisticated approaches 

such as ARI and FFG comparisons.  Schumacher and Herman (2021) demonstrated that most of 

the differences in results between HS18 and GV21 were due to more frequent temporal sampling 

by GV21.  There have also been a few studies of correspondence for smaller regions (e.g., 

Lincoln and Thomason 2018; Hammond 2018).   

The purpose of this study is to extend the analysis of HS18 to a longer time period (seven 

years vs. 2.5 years), and to include, in the same analysis context, forecasts from a state-of-the-art 

convection-allowing modeling system.  Comparing model quantitative precipitation forecasts 

(QPF) with various QPE products in this framework provides some guidance for forecasters 

seeking to use gridded model-based threshold exceedances in their forecasting operations.  

Although it would be instructive to include running totals to quantify agreement when including 
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overlapping time periods (as done by GV21), we focus on non-overlapping 1-h and 6-h periods 

in order to allow comparison with QPE datasets such as Stage IV.  It is anticipated, as 

demonstrated by Schumacher and Herman (2021), that this will reduce the relative number of 

exceedances.  Thus, the results presented here are likely to be more instructive for forecasting 

applications, rather than for real-time warning operations.   

In the following section, the datasets used in the analysis are described.  Section 2.2 

outlines the methodology used for the analysis.  Section 2.3 presents results, and section 2.4 

provides a discussion and conclusions.   

2.1. Datasets 

As described by HS18, there are large uncertainties associated with defining the 

occurrence of a flash flood event, even within the US.  They propose a simple contingency table 

framework for evaluating correspondence between QPE exceedances of different thresholds, and 

FFRs, keeping in mind all the uncertainties associated with FFRs.  We adopt this framework 

herein to examine the frequency of these so-called “proxy” flash flood events in both QPE and 

QPF.  In this section, we describe the datasets used to set a threshold for flash flooding.  Table 1 

shows the datasets evaluated in this study, in addition to the time periods included, and data 

availability.  The remainder of this section describes the datasets included in this study.   

2.1.1. Flash flood reports 

In this study, we verify against flash flood reports (FFRs) obtained from the Iowa 

Environmental Mesonet (https://mesonet.agron.iastate.edu/lsr/).  As documented in prior studies 

(e.g., Calianno et al. 2013; Clark et al. 2014; HS18), FFRs are subject to significant reporting 

biases related to population density and time of day, as well as biases related to NWS WFO 

reporting procedures.  HS18 additionally compared against NWS flash flood warnings (FFWs),  
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Table 1. Datasets included in this study, with the corresponding analysis period.  Percent 
complete indicates the fraction of times in which the CONUS grid is at least 90% spatially 
complete.  See text for more description on treatment for FFG.   

Dataset Analysis period Percent complete (days) 

1 h 6 h 

Stage IVv2 
QPE 

1 Jan 2015 – 13 Dec 2017 
(1077 days) 

100.0% 98.7% 

Stage IVv3 
QPE 

13 Dec 2017 – 28 Jul 2020 
(958 days) 

100.0% 99.5% 

Stage IVv4 
QPE 

28 Jul 2020 – 1 Jan 2022 
(522 days) 

100.0% 95.4% 

CCPAv3 
QPE 

1 Jan 2015 – 18 Jul 2018 
(1294 days) 

- 98.9% 

CCPAv4 
QPE 

18 Jul 2018 – 1 Jan 2022 
(1263 days) 

- 99.8% 

MRMSv10 
radar-only 
QPE 

23 Feb 2015 – 1 Dec 2016 
(647 days) 

61.7% 81.9% 

MRMSv11 
radar-only 
QPE 

1 Dec 2016 – 14 Oct 2020 
(1413 days) 

84.0% 94.8% 

MRMSv12 
radar-only 
QPE 

14 Oct 2020 – 1 Jan 2022 
(444 days) 

80.6% 94.4% 

HRRRv1 
QPF 

1 Jan 2015 – 23 Aug 2016 
(600 days) 

92.8% 95.7% 

HRRRv2 
QPF 

23 Aug 2016 – 12 Jul 2018 
(688 days) 

94.6% 98.4% 

HRRRv3 
QPF 

12 Jul 2018 – 2 Dec 2020 
(874 days) 

97.0% 99.0% 

HRRRv4 
QPF 

2 Dec 2020 – 1 Jan 2022 
(395 days) 

95.7% 98.5% 

FFG 1 Jan 2015 – 1 Jan 2022 97.7% 99.1% 

ARIs - - - 

 

but demonstrated similar results when comparing against either FFRs or FFWs.  As a result, we 

focus only on FFRs.   

Figure 1 shows a map of the spatial distribution of FFRs during the seven-year period of 

record included in this study.  Consistent with HS18’s 2.5-year analysis, and with the 20-year 
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analysis of Ahmadalipour and Moradkhani (2019), FFRs are more common in the south-central 

and east-central US, with a secondary maximum in the southwestern US (along the lower 

Colorado River valley).  In Texas, population influences and/or impacts of urbanized areas 

which are more prone to flash flooding are evident with the concentrations of FFRs in the 

Houston, Austin, and Dallas-Fort Worth areas, as well as near smaller cities such as Corpus 

Christi and Midland – Odessa.  Similar urban effects are also evident elsewhere around the US. 

The climatological frequency of “true” flash flood events is likely somewhat higher than 

reflected by the FFR dataset, and would likely benefit from a bias correction procedure similar to 

that developed by Potvin et al. (2019) for the tornado report dataset.  However, such a procedure 

cannot correct bias by introducing FFRs for individual events.  As a result, despite its 

deficiencies, we proceed with using FFRs as the “ground truth” data for our analysis.   

 

Fig. 1. Number of flash flood reports received during 2015 – 2021, on a 60 x 60 km grid.   
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2.1.2. Precipitation thresholds 

Defining a precipitation threshold beyond which flash flooding occurs is a hydrologic 

problem.  In this section, we describe the various approaches to defining a precipitation threshold 

in order to analyze correspondence with flash flood events.   

2.1.2.1. FIXED PRECIPITATION THRESHOLDS 

The simplest approach to defining a precipitation threshold is to use a fixed threshold.  In 

this paper, we use several fixed thresholds in conjunction with different accumulation periods, 

based on previous studies.   

2.1.2.2. AVERAGE RECURRENCE INTERVALS 

As described by HS18, the use of ARIs is more complicated.  Since the study of Herman 

and Schumacher (2018c), NOAA Atlas 14 (Bonnin et al. 2006; Perica et al. 2011, 2013a,b, 2015) 

has been updated for Texas (Perica et al. 2018), but still does not include the Pacific Northwest.  

For this reason, we use the approach of HS18 (described in their Appendix B) to estimate 

recurrence intervals in the Pacific Northwest for these accumulation periods.  The ARIs are 

constructed from rain gauge observations with long records, using spatial statistics to estimate 

frequencies in regions of sparse observations.    

Figure 2 shows the resulting ARIs for the 1-h and 3-h accumulation periods; these maps 

may be compared with HS18 Fig. 1.  By definition, ARI values increase monotonically with 

increasing rarity.  There is a spatial pattern with higher values in the southeastern US and lower 

values to the north, and especially in the interior western US.  Comparing Fig. 2g with HS18’s 

Fig. 1g illustrates the changes over Texas associated with the Atlas 14 update there, with more 

physical detail evident in the revised results (Fig. 2g).   
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Fig. 2. Average recurrence intervals (ARIs), derived primarily from NOAA Atlas 14, for 
(left column) 1-h and (right column) 3-h durations, in mm.  Shown are (a-b) 1-y, (c-d) 2-y, (e-f) 
5-y, (g-h) 10-y, (i-j) 25-y, (k-l) 50-y, and (m-n) 100-y ARIs.  Additional details on the derivation 
of the ARIs are provided in the text. 

 
 
 
 



 13 

2.1.2.3. FLASH FLOOD GUIDANCE 

Flash flood guidance (FFG) describes the fields produced by River Forecast Centers 

(RFCs), through various approaches, to provide guidance on probable amounts of precipitation 

over a given period of time required for the onset of bank full conditions on streams (Clark et al. 

2014).  The FFG construction methodology varies regionally around the US, leading to 

regionally varying performance characteristics.  Figure 3 shows the median FFG value for the 7-

year analysis period, as well as the 10th percentile, and the equivalent ARI recurrence interval; 

the figure may be compared with HS18’s Fig. 2.  Consistent spatial patterns emerge between Fig. 

3 and HS18’s Fig. 2, despite the difference in analysis period (7 years here vs. 2.5 years in 

HS18).  Median 6-h FFG values range from less than 25 mm in the Pacific Northwest to greater 

than 150 mm in portions of the southern US.  As shown by HS18, dramatic differences in FFG 

emerge across RFC boundaries.  In particular, the Northwest RFC produces FFG that varies only 

slightly across accumulation interval, while the California Nevada and Colorado Basin RFCs’ 

FFG increases dramatically from 1-h to 6-h accumulation (Fig. 3a-c).  The same pattern is seen 

for the higher-risk 10th percentile FFGs (Fig. 3g-i).  Finally, comparing the median and 10th 

percentile FFG values reveals that FFG is essentially constant in time in the western US (e.g., 

Fig. 3d-f, j-l); this is consistent with the use of the Flash Flood Potential Index in these regions, 

which is based on gridded physiographic information rather than soil moisture estimates (e.g., 

Clark et al. 2014).   

Clark et al. (2014) carried out an analysis of FFG performance by evaluating Stage IV 

QPE vs. FFG and comparing against FFRs, finding critical success index (CSI) maximizing at 

0.2 in the eastern CONUS.  It is important to note that some of the low skill evident in the 

western CONUS in their analysis is likely due to shortfalls in the Stage IV QPE.  They also  
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Fig. 3. (a-f) Median and (g-l) 10th percentile FFG estimates over the 7-yr period of 
record.  Shown are (left column) 1-h, (middle column) 3-h, and (right column) 6-h FFG values.  
Panels (a-c) and (g-i) correspond to the actual threshold estimates, while (d-f) and (j-l) 
correspond to the equivalent ARIs to those thresholds to the particular gridpoint.   

 

found that there was significant skill dependency upon the dataset of flash flood events used for 

verification.   

For FFG in this study, special treatment was carried out to allow extension of the analysis 

back to 2015.  Prior to July 2017, all FFG grids valid at 06 UTC were missing data for six RFCs 

covering the western, northern, and central CONUS, and FFG grids at 00 and 18 UTC were 

missing data for the three western RFCs.  This was handled by using FFG values from the most 

recent valid time that provided values for the point in question, as long as it occurred during the 

previous 24 h.  This allows us to achieve 99.1% data coverage for the 2015-21 period (see Table 

1).   
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2.1.3. Quantitative precipitation estimates 

In this section, we describe the various QPE datasets used in the analysis, building upon 

the findings of HS18.   

2.1.3.1. STAGE IV 

Stage IV is the RFC-produced precipitation analysis (Nelson et al. 2016).  There are well-

known Stage IV quality control (QC) issues, including discontinuities along RFC boundaries, 

and radar artefacts.  The quality of Stage IV estimates varies by RFC, largely dependent upon the 

availability of radar and gauge observations.  In addition, the hourly and 6-h Stage IV QPE 

values are not necessarily consistent.  However, the Stage IV products are widely used in 

precipitation retrieval evaluation as well as model verification.   

2.1.3.2. CLIMATOLOGY-CALIBRATED PRECIPITATION ANALYSIS (CCPA) 

Because of the aforementioned weaknesses of Stage IV, particularly in the population of 

heavy to extreme precipitation events, another dataset has been developed which uses a simple 

linear regression model to adjust Stage IV towards the daily Climate Prediction Center (CPC) 

global gauge analysis.  This dataset, referred to as the Climatology-Calibrated Precipitation 

Analysis (CCPA; Hou et al. 2014), corrects some of the biases of the Stage IV dataset, but 

retains the small-scale structure of precipitation events.  Previous studies have documented how 

CCPA also tends to mute extreme values that are found in Stage IV (HS18).   

2.1.3.3. MULTI-RADAR MULTI-SENSOR (MRMS) RADAR-ONLY QPE 

The NSSL MRMS project aims to use data from ground-based radar and other sources to 

create a variety of user-focused analysis products, including QPE.  The MRMS QPE, formerly 

entitled the National Mosaic and multi-sensor QPE (NMQ; Zhang et al. 2011), has undergone 
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extensive development over the past decade (e.g., Zhang et al. 2016; Qi et al. 2016).  MRMS was 

implemented operationally in 2014.   

The original radar-based MRMS QPE is described by Zhang et al. (2011).  The QPE 

features four Z-R relationships, applied on a pixel-by-pixel basis.  Since its original inception, 

improved QC measures have been applied, including use of polarimetric radar observations, and 

a vertical profile of reflectivity correction for bright banding (Zhang et al. 2016).  Tang et al. 

(2020) describe more recent QC developments for radar-based QPE.  In addition, Zhang et al. 

(2020) describe a dual-polarization radar synthetic QPE which has since been implemented as 

part of the operational MRMS radar-only QPE (GV21).   

2.1.4. Quantitative precipitation forecasts 

The HRRR is an hourly-updating convection-allowing model run operationally since Sep 

2014, using community-supported data assimilation and model software (Dowell et al. 2022, 

hereafter D22; James et al. 2022).  The HRRR produces hourly QPF, which has been evaluated 

against both QPE datasets and rain gauge observations in certain regions and for limited time 

periods (e.g., Ikeda et al. 2013, Bytheway and Kummerow 2015, Bytheway et al. 2017, 

Dougherty et al. 2021, and English et al. 2021).  A comprehensive evaluation of HRRR QPF, 

including how it has changed between HRRR versions, is beyond the scope of this study, but 

work is underway to document this in a peer-reviewed article.   

The HRRR initialization procedure is described in detail by D22 (section 3), and consists 

of several steps.  Radar data are ingested in the context of latent heat application in four 15-min 

windows during a 1-h “pre-forecast” for each HRRR simulation (Weygandt et al. 2022).  

Following the radar DA, conventional observations are assimilated using an approach that varies 

by HRRR version (D22).  The assimilation step also carries out a non-variational stratiform 
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cloud hydrometeor analysis step (Benjamin et al. 2021), which allows for realistic analysis and 

short-term prediction of cloud cover.  Short-range HRRR forecasts exhibit some dependence on 

radar observations due to the use of radar data for initialization.     

2.2. Methodology 

Analysis of model QPF exceedances of various thresholds, in the context of flash flood 

prediction, has been done for several years as part of the annual Flash Flood and Intense Rainfall 

(FFaIR) experiment (e.g., Barthold et al. 2015).  In this section, we describe the methodology 

employed here to examine the correspondence of QPE/QPF threshold exceedances with FFRs, 

following the general approach of HS18.   

In contrast to HS18, who evaluated on the ~4 km HRAP grid, here comparison is done on 

the 3km HRRR grid.  QPE products are interpolated to the 3km HRRR grid using the National 

Centers for Environmental Prediction (NCEP) ipolates library 

(https://www.nco.ncep.noaa.gov/pmb/docs/libs/iplib/ipolates.html).  We used neighborhood 

budget interpolation, preserving precipitation maxima; we tested sensitivity to using ipolates 

budget interpolation, as well as the impact of preserving maxima versus doing average 

interpolation, finding minimal sensitivity in the results.  LSRs are put on the closest HRRR 

gridpoint, and then projected onto multiple nearby HRRR gridpoints using a 40 km radius of 

influence, as in HS18.  Both the point QPE / QPF exceedances and the projected LSRs are then 

upscaled to a 60-km grid for evaluation.  HS18 used a 0.5-degree latitude – longitude grid; we 

tested using a latitude-longitude grid, finding only minor sensitivity for the results.  Contingency 

table statistics were then calculated relating the QPE / QPF exceedances to the occurrence of 

flash flood reports.   

https://www.nco.ncep.noaa.gov/pmb/docs/libs/iplib/ipolates.html
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In order to remove clearly erroneous QPE values, we followed the approach of Herman 

and Schumacher (2016b; their Appendix).  This approach uses the fact that recurrence interval 

(ARI) threshold exceedances should occur with some specified frequency.  Time series of QPE 

(for 1-, 6-, or 24-h durations) at each gridpoint were used to assess time-lagged correlations, and 

thus to determine the approximate number of independent events in each time series; based on 

this, we can assess the statistical likelihood of observing different numbers of ARI exceedances 

based on the binomial distribution.  We remove QPE values exceeding the 99.99% percentile for 

any of the ARIs shown in Fig. 2.  All QPE datasets were subject to this QC; model QPF was not 

subjected to it.   

2.3. Results 

The volume of data involved in this study, especially the variety of QPE / QPF sources, 

precipitation thresholds, and accumulation windows, is large, so we present here only a subset 

that is relevant to telling the story of comparison with HS18, as well as evaluating HRRR QPF in 

the same framework.   

2.3.1. CONUS-wide results 

In this section, we summarize our results in terms of CONUS-wide performance.  We 

begin with some “heat maps”, showing the frequency of exceedance of various thresholds; these 

spatial patterns can be compared with Fig. 1, which shows the frequency of FFRs during the 

period.   

2.3.1.1. HEAT MAPS 

Figure 4 shows exceedance counts of a single QPE dataset (6-h CCPA) against various 

fixed, ARI, and FFG ratios.  Fixed thresholds, as the simplest formulation, exhibit the well-

known climatology of heavy precipitation across the CONUS.  The high precipitation thresholds  
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Fig. 4.  Exceedance counts of 6-h CCPA during 2015 – 2021.  Shown are (left column) 
fixed thresholds, (middle column) ARI thresholds, and (right column) FFG ratio thresholds.  
Specifically, panels (a, d, g, j, m) show 50.8, 63.5, 76.2, 88.9, and 101.6 mm (6 h)-1, respectively, 
(b,e,h,k,n) show 1, 2, 5, 10, and 25 y ARI thresholds for the 6-h duration, respectively, and 
(c,f,i,l,o) show 0.75, 1.0, 1.5, 2.0, and 2.5 FFG for the 6-h duration.  2519 days are included in 
the analysis. 

 

are mostly confined to the Gulf coast region with tongues of higher probability of exceeding, for 

example, 76.2 mm (6 h)-1, extending northward along the Atlantic coast and into eastern 

Oklahoma (Fig. 4g).  CCPA estimates exceeding 50.8 mm (6 h)-1 occur occasionally along the 
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Pacific coast and in the Sierra Nevada and Cascade ranges, and also in the Sonoran desert of 

Arizona (Fig. 4a).  The ARI thresholds accomplish their purpose by somewhat normalizing 

frequency across the CONUS (e.g., Fig. 4b).  However, maxima and minima are still evident, 

due to departures from climatology during this period, errors in CCPA, and/or biases in the 

ARIs.  Exceedances of FFG (Fig. 4f) exhibit a somewhat different spatial pattern, due to the 

intended physical variability of the thresholds required for flash flooding, as well as artificial 

regional differences in FFG methodology.  In general, FFG exceedances are more frequent, 

relatively, in the Midwest and Appalachians, and less frequent in Florida / southern Georgia and 

the Nebraska sandhills, than exceedances of 63.5 mm (6 h)-1 (Fig. 4d,f).  Six-hour FFG is almost 

never exceeded in much of the southwestern CONUS (particularly Nevada, Utah, and Arizona; 

Fig. 4f).   

Figure 5 shows comparisons of 6-h heat maps for different QPE / QPF datasets compared 

against representative fixed, ARI, and FFG thresholds.  Striking differences emerge among the 

different datasets in this analysis.  The Stage IV high bias in the New Mexico through Montana 

Front Range area discussed by HS18 is seen (Fig. 5a-c), particularly in the ARI exceedances 

(Fig. 5b), compared with CCPA exceedances (Fig. 5d-f) which may be expected to be close to 

reality in the eastern US due to the climatological correction.  Yet the radar-only MRMS product 

shows even more ARI exceedances in this region than the Stage IV (Fig. 5h), and in fact the 

radar-only MRMS product has much more precipitation than the other datasets across most of 

the CONUS (Fig. 5g-i).  The counts of HRRR forecasted 76.2 mm (6 h)-1 precipitation events 

appear spatially similar to the QPE datasets, although HRRR predicts more events than captured 

by CCPA or Stage IV in the eastern US, instead more closely matching the number of radar-only  
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Fig. 5.  Exceedance counts of 6-h QPE and QPF during 2015 – 2021.  Shown are 
exceedances of (left column) 76.2 mm (6 h)-1, (middle column) 6-h 5 y ARI, and (right column) 
1.5 6-h FFG.  Products shown are (a-c) Stage IV, (d-f) CCPA, (g-i) radar-only MRMS, and (j-l) 
0-6-h HRRR QPF.  2204 days are included in the analysis.   

 

MRMS events (Fig. 5g,j).  However, the HRRR predicts fewer 76.2 mm (6 h)-1 events than 

indicated by MRMS over the western US, with the exception of the Sierra Nevada and Cascade 

Range (Fig. 5g,j).  The pattern and magnitude of FFG exceedances is similar among the datasets, 

indicating that FFG variability outweighs the importance of QPE / QPF differences (Fig. 5, right 

column).  This suggests the correspondences of different QPE / QPF datasets vs. FFG thresholds 

against FFRs will vary more depending on the FFG ratio used, rather than on the precipitation 

dataset.  HS18 evaluated QPE datasets against an FFG ratio of 1 only, while GV21 evaluated 
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MRMS only, so it is difficult to determine if this is consistent with prior studies.  HRRR QPF 

has dramatically fewer ARI exceedances than MRMS in the western US (compare Fig. 5h,k).   

For 1-h accumulations, results are broadly consistent with those seen for the 6-h duration 

(Fig. 6).  In the western US, pronounced circles of higher frequency of MRMS exceedances of 

the 5-year ARI are seen around each WSR-88D (Fig. 6e); such radar artefacts are not as evident 

for the 6-h duration (Fig. 5h).  We again see the relative high bias of MRMS compared to Stage 

IV (Fig. 6a,d).  For the 1-h duration, we see relatively more events in the southwestern US, 

potentially reflecting the prevalence of short-duration extreme rainfall events in this region (left 

column of Fig. 6 vs. Fig. 5).  The pattern of 1-h FFG exceedances (right column of Fig. 6) is 

somewhat different from the pattern of 6-h FFG exceedances (right column of Fig. 5), with 1-h 

exceedances appearing more uniformly distributed across the southern US in the QPE datasets, 

including in the desert southwest.  The 1-h FFG exceedances seem to be in better agreement with 

the spatial pattern of flash flood reports than the 6-h FFG exceedances (cf. Fig. 1).   

2.3.1.2. CORRESPONDENCE METRICS 

Figure 7 shows equitable threat score (ETS) for the dataset / threshold combinations 

shown in Fig. 5, illustrating the changes in correspondence with varying datasets and 

precipitation thresholds.  ETS is calculated in a contingency table framework, with FFRs 

functioning as the observed events.  ETS is formulated similarly to CSI, but is compared with a 

reference random set of events, such that positive values indicate better correspondence than a 

random set of events, and negative values indicate worse correspondence than a random set of 

events.  Greater skill is evident in the east for all thresholds (Fig. 7).  Note that ETS cannot be 

calculated at gridpoints where forecasted events never occur; these are evident as white 
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Fig. 6.  Exceedance counts of 1-h QPE and QPF during 2015 – 2021.  Shown are 
exceedances of (left column) 50.8 mm (1 h)-1, (middle column) 1-h 5 y ARI, and (right column) 
1.5 1-h FFG.  Products shown are (a-c) Stage IV, (d-f) radar-only MRMS, and (g-i) 0-1-h 
HRRR.  1227 days are included in the analysis.   
 

gridpoints in Fig. 7.  For example, Stage IV never exceeded the 76.2 mm (6 h)-1 threshold during 

2015-21 in many places in the northwestern US (Fig. 7a).  Overall, comparison with the static 

76.2 mm (6 h)-1 threshold corresponds best with FFRs in the southern US for Stage IV and 

CCPA (Fig. 7a,d), while the 1.5FFG threshold appears to have the best correspondence in the 

northern US (Fig. 7c,f).  For the southwestern US, MRMS and HRRR exceedances of ARIs 

appear to have the best correspondence with FFRs (Fig. 7h,k).  Interestingly, HRRR exceedances 

of the 5-year ARI (Fig. 7k) have higher ETS than Stage IV or CCPA exceedances of the 5-year 

ARI in this region (cf. Fig. 7a,b,d,e).  ARI thresholds appear to provide the best correspondence 

in the northwestern US, for all datasets (middle column of Fig. 7).   
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Fig. 7.  Maps showing equitable threat score (ETS) for QPE/QPF exceedances of 
thresholds vs. observed flash flood reports (FFRs) during 2015 – 2021.  Shown are exceedances 
of (left column) 76.2 mm (6 h)-1, (middle column) 6-h 5 y ARI, and (right column) 1.5 6-h FFG.  
Shown are (a-c) Stage IV, (d-f) CCPA, (g-i) radar-only MRMS, and (j-l) 0-6-h HRRR QPF.  
2204 days are included in the analysis.   

 

Figure 8 shows CONUS-wide ETS results for each dataset and thresholds.  These results 

may be compared directly with Fig. 15 of HS18, and with Figs. 2-4 of GV21 (keeping in mind 

the more frequent temporal sampling by GV21).  For the 6-h duration, ETS maximizes for the 

50.8 – 63.5 mm (6 h)-1 for fixed thresholds (Fig. 8a), at the 2–5-year ARI (Fig. 8c), and an FFG 

ratio of 1-1.5 (Fig. 8e), with Stage IV providing slightly higher ETS than MRMS; these results 

agree well with HS18, although we find highest ETS for Stage IV exceedances of ARI thresholds 

and MRMS or HRRR exceedances of FFG thresholds (in contrast to HS18’s finding of highest 

ETS for fixed threshold comparisons).  For the 1-h duration, the highest ETSs are seen for FFG 
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Fig. 8.  ETS (multiplied by 100) by dataset and threshold for (a,c,e) 6-h and (b,d,f) 1-h 

duration.  Shown are (a-b) fixed, (c-d) ARI, and (e-f) ratios of FFG thresholds.  Dataset / 
threshold combinations are color coded by ETS, with higher ETS being shaded darker green.  
Results are for the 2015 – 2021 period, with 1199 days included in the analysis.   
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exceedances for every dataset (Fig. 8f); this is in contrast to HS18 finding higher ETS for fixed 

thresholds at the 1-h duration (see their Fig. 15a-c,g).  For fixed and ARI thresholds, we 

generally find higher scores for the 6-h duration (Fig. 8a,c) than for the 1-h duration (Fig. 8b,d), 

in agreement with both HS18 and GV21.  In terms of ETS, Stage IV emerges with the highest 

CONUS-wide score for all types of thresholds and for both 1-h and 6-h durations, in general 

agreement with HS18.  The highest ETS for Stage IV tends to be at lower thresholds than is seen 

in MRMS, for all threshold types and both durations; this is because of the generally higher QPE 

in MRMS.  Higher QPE in MRMS overall leads to heavier QPE events matching the frequency 

of FFRs more closely than lighter QPE events.   

To visualize correspondence between QPE / QPF exceedances and observed FFRs in a 

more wholistic fashion, Figure 9 shows performance diagrams (Roebber 2009) for all of 

CONUS, showing (left column) 6-h and (right column) 1-h durations.  Pairs associated with a 

single QPE / QPF dataset are colored alike, with precipitation thresholds types grouped into the 

same panel.  Before we discuss the differences between the datasets, there are some general 

characteristics of the performance diagrams worth noting.  All results for a single dataset and 

threshold type exhibit a curve going from the upper left portion of the diagram (high probability 

of detection, POD, but also high false alarm ratio, FAR, for relatively light thresholds) to the 

lower middle portion of the diagram (low POD but with varying FAR by dataset for rare 

thresholds like the 100-year ARI).  Fixed and ARI thresholds in general exhibit a similar 

appearance, with distinction in the slope of their performance diagram curves, going from 

minimal distinction between the various QPE/QPF datasets at the lowest precipitation thresholds 

(in terms of POD and success ratio, SR), but a greater distinction at the highest thresholds (in 

terms of SR).  The different slopes represent the different datasets’ climatologies of heavy  
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Fig. 9.  Performance diagrams evaluating the degree of correspondence between 
QPE/QPF exceedances of (a-b) fixed thresholds, (c-d) ARIs, and (e-f) FFG, and observed FFRs.  
The evaluation period is Feb 2015 – Dec 2021 (1199 days included), for (left column) 6-h 
durations and (right column) 1-h durations.  Thresholds shown are, from upper left to lower right 
of each panel, 25.4, 38.1, 50.8, 63.5, 76.2, 88.9, 101.6, 114.3, and 127 mm (6 h)-1; 1, 2, 5, 10, 25, 
50, and 100 y ARIs; and 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5xFFG.  Curved lines 
from upper left to lower right in each panel correspond to 100*critical success index (CSI), while 
dashed lines correspond to frequency bias.   
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precipitation amounts.  For example, the HRRR QPFs have a higher FAR (lower SR) than CCPA 

at the heaviest precipitation threshold (127 mm [6 h]-1; Fig. 9a, lowest points on the purple and 

blue curves), indicating that HRRR predicts many more 127 mm (6 h)-1 precipitation events than 

are seen in CCPA.  The high FAR in the HRRR also manifests as a lower CSI at these heavier 

thresholds.  The FFG curves behave differently, because those thresholds are generally not static 

in time.   

CCPA (blue curves) exhibits the greatest CSI overall (closest to top right) for all three 

types of thresholds for the 6-h duration (Fig. 9, left column).  Stage IV QPE (red curves) is just 

slightly lower in CSI, but has an evident shift towards higher frequency bias (more frequent 

exceedances; Fig. 9, left column).  MRMS corresponds to FFRs comparably to Stage IV / CCPA 

for fixed thresholds, but with a lower SR at the high precipitation thresholds (Fig. 9a), indicating 

more frequent heavy precipitation events in the MRMS dataset.  In terms of FFG exceedances, 

MRMS corresponds almost as well as Stage IV and CCPA to FFRs (Fig. 9e).   

For the 1-h QPE and QPF results (right column of Fig. 9), we see the same relative 

correspondence of the Stage IV and MRMS QPE for fixed threshold exceedances (Fig. 9b).  For 

the 1-h ARI exceedances (Fig. 9d), we see less decrease in FAR with increasing threshold than 

was seen for the 6-h duration (Fig. 9c); this stems from relatively more frequent false alarms at 

the rare ARIs (100y ARI) for the 1-h duration compared to the 6-h duration.  HRRR QPF 

exceedances of ARIs correspond better with FFRs than MRMS exceedances of ARIs at the 1-h 

duration (Fig. 9d).  In general, HRRR QPF exceedances do not correspond to FFRs as well as the 

QPE datasets, which is not a surprising result given that it is a forecast rather than an 

observational estimate.   
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2.3.2. Regional correspondence variations 

In this section, we examine regional variations in degree of correspondence between 

exceedances and FFRs.  Figure 10 shows the region definitions used for the regional verification 

statistics shown in this section; these regions are identical to those used by HS18.   

Figure 11 shows performance diagrams for the SW region (shown in Fig. 10).  In this 

region, we see a much more pronounced difference between Stage IV and MRMS for all 

thresholds and both durations (Fig. 11), with MRMS comparisons exhibiting a much higher 

frequency bias than seen in the CONUS results (cf. Fig. 9).  Comparing frequency bias between 

Stage IV and MRMS for the 25.4 mm (1 h)-1 threshold (Fig. 11b, uppermost points on the red 

and green curves), it is seen that MRMS contains ~5 times as many exceedances as Stage IV, 

and ~5 times as many exceedances as FFRs.  HRRR QPF exceedances of this threshold, on the 

other hand, have a frequency bias near 1 when comparing against FFR occurrences.  In general, 

for the southwestern CONUS, we see that HRRR QPF is competitive with the QPE datasets in 

terms of correspondence with FFRs.  In fact, HRRR 1-h QPF exceeding the 2-year ARI has the 

highest CSI of any comparison for this region (Fig. 11d).  These results are in agreement with 

previous studies documenting that our ability to model precipitation in sparsely-observed 

mountainous regions is overtaking the capabilities of our observations (Lundquist et al. 2019).  

These results can provide context for forecasters interpreting QPE datasets and CAM QPF in the 

southwestern US.   

2.3.3. Summary 

In order to summarize our quantitative comparison between QPE/QPF exceedances of 

various thresholds and FFRs, Fig. 12 shows the best-corresponding thresholds for Stage IV, 

MRMS, and HRRR QPF.  For this evaluation, thresholds are considered optimal when they have  
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Fig. 10.  Map of CONUS showing the eight regions used for correspondence evaluation.   

 

the highest ETS, with a frequency bias falling between 0.5 and 2 (between predicting half as 

many events as FFRs up to twice as many events).  Thresholds are colored green according to 

ETS, with darker colors associated with higher ETS, following the convention of HS18.  For the 

CONUS as a whole, FFG exceedances emerge with the best correspondence to FFRs for all three 

datasets for the 1-h duration, and for MRMS and HRRR for the 6-h duration, which is 

encouraging given the additional information provided by FFG.  For Stage IV exceedances, the 

2-year ARI threshold has a slightly higher ETS than any FFG threshold.   

Regionally, correspondence with FFRs is greatest in the eastern half of the CONUS (Fig. 

12), in agreement with Fig 7.  Lowest correspondence is seen for the PCST and ROCK regions, 

largely due to the relative infrequency of FFRs in these regions (cf. Fig. 1).  Some interesting 

patterns emerge regionally in terms of the optimal 6-h thresholds to use for correspondence with 

FFRs (Fig. 12a).  FFG comparisons become inferior to fixed and ARI thresholds in parts of the 

central and western US for the 6-h duration, with FFGs not corresponding best for any QPE or 

QPF dataset in the SW or ROCK regions.  ARIs emerge as the best thresholds to use for all 

datasets in the SW region.  Fixed 6-h thresholds find utility for several regions, despite their  
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Fig. 11.  As in Fig. 9, but for the southwestern CONUS, and showing (a,b) fixed, (c,d) 
ARI, and (e,f) FFG thresholds for (a,c,e) 6-h and (b,d,f) 1-h durations.   
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Fig. 12.  As in Fig. 8, but comparing highest ETS thresholds for Stage IV, radar-only 
MRMS, and HRRR for each region with a frequency bias falling between 0.5 and 2, for (a) 6-h 
and (b) 1-h duration.  The numbers and shading correspond to ETS multiplied by 100.   
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simple formulation; they have the best correspondence to FFRs for QPE (Stage IV or MRMS) 

exceedances in SGP, for MRMS exceedances in ROCK, and for HRRR QPF exceedances in 

PCST.  Stage IV 6-h exceedances emerge with the top correspondence in all regions but SW and 

ROCK (where MRMS exceedances have better correspondence with FFRs).   

Results for the 1-h duration are similar, but with some interesting differences (Fig. 12b).  

FFG comparisons emerge as the best threshold to use more often at this short duration, with 

fixed thresholds only finding utility in the ROCK region.  ARI comparisons are the best 

threshold to use only for the SW, Stage IV in the NE, and HRRR in the PCST.  Again, Stage IV 

emerges as the top dataset in all regions but SW and ROCK.  MRMS exceedances have the best 

correspondence with FFRs in the ROCK region, and HRRR 0-1-h QPF exceedances correspond 

best in the SW region (consistent with results shown in Fig. 11).   

2.4. Discussion and Conclusions 

The correspondence of QPF / QPE datasets exceedances of precipitation thresholds with 

occurrences of flash floods is a complicated relationship.  There are many reasons why we would 

not expect perfect correspondence, even with a somewhat sophisticated threshold such as FFG.  

However, the framework introduced by HS18 provides a way of quantitatively evaluating QPE 

datasets and thresholds for their relative value in flash flood analysis and forecasting, since they 

are the tools available to operational forecasters.  In this article, we have extended the analysis of 

HS18 to a longer time period, and included, in the same framework, QPF from a state-of-the art 

CAM.   

A key finding from this study, which is consistent with previous work, is that dramatic 

uncertainties persist in QPE, particularly in sparsely observed regions of the US.  The major 

differences in population of heavy precipitation events between different QPE datasets is 
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concerning when these datasets are routinely used for many purposes, including model 

evaluation.  As an example, Fig. 5 shows that, even in a relatively well-observed region like 

central South Carolina, 6-h CCPA contains 20-30 6-h QPEs exceeding 76.2 mm during a seven-

year period (Fig. 5d), but MRMS contains 70+ events (Fig. 5g).  The more frequent occurrence 

of heavy precipitation in MRMS also manifests in higher thresholds providing best 

correspondence with FFRs in the framework of this study.  These uncertainties pose major 

challenges for both the research and operational communities.  The MRMS team continues to 

refine their QPE algorithms using more sophisticated gauge correction and polarimetric 

information (e.g., Qi et al. 2016; Zhang et al. 2020); these and other innovative approaches are 

needed to improve the quality of QPE, particularly in the western US.   

In agreement with HS18, we find that the skill of correspondences generally is highest in 

the eastern US, with lower skill in the west.  We also find the same recurring deficiencies and 

biases reported by HS18, including the high bias of Stage IV in the interior western US, and the 

dependence of 1-h MRMS QPE upon proximity to radars.  Consistent with HS18, we find that 

MRMS generally outperforms Stage IV and CCPA in terms of FFR correspondence in the 

western US for the 6-h duration, but with a much greater frequency of events.  Stage IV 

exceedances have the highest correspondence with FFRs in the eastern US.  We find that, at the 

1-h duration, Stage IV exceedances have the best correspondence for almost every region.  

Exceedances for the 6-h duration have better correspondence with FFRs in all regions except the 

SW and PCST, where 1-h durations have higher correspondence.   

In terms of thresholds, FFG is the best threshold for correspondence with FFRs for most 

dataset / region combinations and both for 1-h and 6-h durations (Fig. 12).  This is true for the 

CONUS as a whole as well, in contrast to HS18’s finding that fixed thresholds provided the best 
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correspondence for the CONUS.  The correspondence of FFG exceedances with FFRs is 

encouraging, demonstrating the value of the dynamic FFG as a threshold for flash flooding onset.  

There are, however, some interesting exceptions to this result.  In the ROCK region, FFGs do not 

provide the best correspondence for any dataset.  For the 1-h duration, fixed thresholds provide 

the best correspondence for all datasets, with the specific threshold ranging from 25.4 mm (1 h)-1 

for HRRR QPF to 50.8 mm (1 h)-1 for MRMS QPE (also illustrating the high frequency of 

exceedances in MRMS 1-h QPE).  At the 6-h duration, for the ROCK region, relatively high ARI 

thresholds of 25 y (Stage IV) and 50 y (HRRR) provide the best correspondence.  Overall, the 

ROCK region features the second-lowest correspondence between exceedances and FFRs. 

The lowest correspondence is seen for the PCST region.  This region is noteworthy for 

the relatively high thresholds that provide best correspondence with FFRs, including twice FFG 

for Stage IV and MRMS 1-h QPE, 100y ARI for 1-h HRRR QPF (Fig. 12b), and a fixed 

threshold of 101.6 mm (6 h)-1 for HRRR 0-6h QPF.  The need for very high precipitation 

thresholds to obtain optimal (although still very poor) correspondence with FFRs stems from the 

rarity of FFRs in this region (Fig. 1); the requirement for a frequency bias between 0.5 and 1 for 

the results shown in Fig. 12 necessitates using an extremely trimmed down set of exceedances 

for any of the datasets shown here.   

HRRR forecasts are evaluated here in the same framework as the QPE datasets, and as 

expected, HRRR QPF exceedances generally have inferior correspondence to FFRs for the 

CONUS scale for 1-h and 6-h durations.  FFG is the best threshold with which to compare 

HRRR forecasts, both for 6-h and 1-h QPF.  However, in certain poorly-observed regions like 

the SW, HRRR exceedances correspond better with FFRs than any QPE exceedance for the 1-h 

duration (Fig. 12).  This is indicative of the relative skill of the HRRR in predicting short-
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duration excessive rainfall events, compared with the relative lack of radar observations in this 

region.  These results argue for the consideration of model QPF when determining a best 

estimate of QPE in regions of complex terrain and/or sparse observations.   

As noted by HS18, it is important to acknowledge the problems associated with the FFR 

dataset.  FFRs have an inherent low bias in rural regions and during the night, and are also 

subject to reporting differences between WFOs.  It is likely that the true number of flash flood 

events is somewhat higher than that indicated by the FFR dataset, indicating that QPE / threshold 

comparisons featuring a frequency bias above unity may actually be superior to those with a bias 

of unity.   

Another important issue to note is the limitation of our analysis to non-overlapping 

hourly 1-h QPEs, and 6-h QPEs between synoptic times; as demonstrated by GV21 and 

Schumacher and Herman (2021), this has the effect of reducing the number of events.  The 

inclusion of additional MRMS QPE, to include “rolling average” QPEs ending at off-hour times, 

would be informative, but comparison with other datasets would not be possible.   

This study (as well as HS18) has highlighted the regionally varying relationships between 

QPE / QPF and flash flood events.  These variations are somewhat analogous to the varying UH 

thresholds used in predicting severe weather (Loken et al. 2020), and are an important 

consideration in the use of any QPE-based dataset for training a machine learning system to 

predict flash flooding (e.g., Hill and Schumacher 2021; Schumacher et al. 2021).  Work also is 

underway to evaluate probabilistic QPFs from the High-Resolution Ensemble Forecast (HREF; 

Roberts et al. 2020) system in this framework; these results will be reported in a subsequent 

manuscript.   
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Our results highlight that flash flood forecasting is a highly probabilistic problem.  

Uncertainties are present in both the forcing (QPF) and the response (hydrology, or the threshold 

for flooding) components of the flash flood prediction problem; state-of-the-art flash flood 

prediction problems need to approach the forecast from this perspective.  The use of a 

probabilistic FLASH system (Gourley et al. 2017) in combination with ensemble forecasts from 

the Warn on Forecast System (WoFS; Stensrud et al. 2009, 2013) is one such example, tested 

recently at the Hydrometeorology Testbed (Martinaitis et al. 2022).  Use of convection-allowing 

ensemble systems, in combination with increasingly advanced hydrologic modeling, will 

continue to advance the skill of probabilistic flash flood forecast in the coming years.    
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CHAPTER 3: EXPLORING THE TREATMENT OF PREDICTORS FOR FORECASTING 
EXCESSIVE RAINFALL WITH RANDOM FORESTS BASED ON A DETERMINISTIC 

CONVECTION-ALLOWING MODEL 
 
 
 

Applying machine learning (ML) approaches to high-impact weather prediction is an 

active area of research, with numerous candidate systems introduced in recent years (e.g., 

Herman and Schumacher 2018a; Sobash et al. 2020; Burke et al. 2020; Chapman et al. 2022), 

and formal evaluation occurring at testbed experiments including NOAA’s Hazardous Weather 

Testbed (HWT; Clark et al. 2021) and Hydrometeorological Testbed (HMT; Trojniak and 

Correia 2021).  Also recently, deterministic and ensemble convection-allowing modeling (CAM) 

systems have reached a level of maturity where they can, to some extent, directly predict high-

impact events (or their storm attribute indicators; Dowell et al. 2022; James et al. 2022; Roberts 

et al. 2020).  In addition to direct prediction of hazardous weather, CAM forecasts have been 

successfully used as predictors within ML systems in order obtain even more skillful forecasts.  

Random forests (RFs) show promise for these predictions, both from global ensembles and from 

CAMs.  Successful RF based prediction systems span a wide range of applications, from 

predicting fog and low visibility for aviation (Herman and Schumacher 2016a), to severe weather 

forecasting (Loken et al. 2020; Hill et al. 2020), flash flood prediction (Herman and Schumacher 

2018a,b; Hill and Schumacher 2021), non-convective windstorm forecasting (Brothers and 

Hammer 2022), and frontal analysis (Justin et al. 2023).   

An initial RF system for prediction of excessive rainfall based on the Global Ensemble 

Forecast System (GEFS) reforecast (Herman and Schumacher 2018a,b) was transitioned into 

operations at the Weather Prediction Center (WPC) in 2019 (Schumacher et al. 2021), with day-

one forecasts operational since 2020.  This system has been demonstrated at the annual Flash 
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Flood and Intense Rainfall (FFaIR; Barthold et al. 2015) experiment for a number of years, and 

performs competitively with the operational WPC excessive rainfall outlook (ERO).  Since 2018, 

the same RF framework has been applied to day-one forecasting based on a deterministic CAM, 

the NSSL-WRF, with the RF configuration largely similar to the GEFS-based system (Hill and 

Schumacher 2021).  Overall, the NSSL-WRF based system does not perform as well as the 

GEFS based system for the day one period; preliminary testing with a similar system based on 

the High-Resolution Rapid Refresh (HRRR; Dowell et al. 2022; James et al. 2022) also indicates 

objectively and subjectively inferior performance to the GEFS-based system (Trojniak and 

Correia 2021).  An outstanding research question is why, to date, deterministic CAM-based RF 

systems have not performed as well as those based on coarse global ensembles.   

One hypothesis for the inferior performance of CAM-based RFs has to do with the 

assembly of predictors, to which random forests are sensitive (e.g., Sobash et al. 2020).  The 

predictor assembly approach needs to be carefully considered based on characteristics of the 

input datasets as they relate to the representation of the target phenomenon.  Foremost among 

concerns is the grid spacing (horizontal and vertical), since, for numerical weather prediction, the 

scale of phenomena able to be represented on the model grid depends on the grid spacing.  For 

example, a global model with 13 km grid spacing will not contain convective-scale features (e.g., 

Weisman et al. 1997), whereas a 3-km convection-allowing model (CAM) will represent 

convective scales of motion.  At the same time, the higher resolution of CAMs may introduce 

more redundant information: for example, is the temperature at one 3-km model grid point 

adding new information that isn’t contained at the neighboring point?  For a machine learning 

system such as an RF, it is important to ensure that the signal (for example, model indicators of 

excessive rainfall in a particular region and day) is adequately captured in the predictors, while 
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balancing the computational cost of processing higher-resolution output with incorporation of the 

most relevant inputs.   

Herman and Schumacher (2018a) describe extensive sensitivity tests with GEFS-based 

excessive rainfall prediction models for days two and three, showing regional variability in the 

results of their tests.  In particular, they found that, in most regions, predictions were relatively 

insensitive to using a 6-h vs. 12-h time step for the predictors.  Forecasts were also relatively 

insensitive to the spatial predictor radius used (although the northeastern US and Pacific Coast 

regions had improved skill with a broader radius).  They also found some sensitivity to the way 

ensemble information was utilized.  However, it is unlikely that these results will hold for an RF 

using much higher resolution CAM-based predictors.  Performing similar experiments for a 

CAM-based RF would be informative.    

Other researchers have explored the formulation of predictors for CAM-based machine 

learning for severe weather prediction.  Loken et al. (2020) describe probabilistic forecasting of 

day-one severe weather based on an RF using a CAM ensemble, the High-Resolution Ensemble 

Forecast (HREF) system.  They use temporal and spatial aggregation to reduce the 

dimensionality of the 4-km input dataset, treating environmental and storm attribute fields 

differently, and also computing ensemble distribution metrics as separate input variables.  With 

their 80-km grid spacing prediction model, they achieve superior performance to operational 

severe weather outlooks by the Storm Prediction Center (SPC).  In a separate effort to use RFs to 

correct ensemble-based probabilistic precipitation forecasts, Loken et al. (2019) found that using 

the ensemble mean of each predictor performed just as well as using the predictors from 

individual ensemble members.  More recently, Loken et al. (2022) carried out more extensive 

experiments exploring the value of retaining individual members from a CAM ensemble vs. 
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using an ensemble mean value at neighboring gridpoints, finding that use of the ensemble mean 

at the neighboring gridpoints led to superior performance.  They also found that, while ensemble-

based storm attribute predictors add little skill for the day two period and beyond, they are quite 

valuable for the day one period.  Clark and Loken (2022) similarly used the Warn-on-Forecast 

System (WoFS; Lawson et al. 2018) to predict severe weather occurrence using RFs, exploring 

the contributions of storm attribute and environmental type variables, as well as different 

ensemble summary predictors.   

Sobash et al. (2020) describe a neural network system for severe prediction, based on 

deterministic 3km WRF runs, in which the mean of the upper air and environmental fields in an 

80 km box was used, but the maximum of explicit storm attribute fields.  They also include 

additional spatial and temporal neighborhood means and maxima of explicit and environmental 

fields, and quantified the impact of their inclusion, finding degraded forecasts when those 

predictors were not included.  They demonstrate that the neural network system, since applied in 

real-time to the HRRR (R. Sobash, personal communication), is superior to the alternative 

“surrogate severe” approach described by Sobash et al. (2011).   

The goal of this article is to describe a set of controlled sensitivity experiments exploring 

the treatment of deterministic CAM forecasts as inputs to RFs for excessive rainfall prediction.  

In particular, we test the impact of using information within a spatial or temporal window, the 

impact of using finer time step predictor information, and the use of time-lagged ensemble 

information.  This work complements prior studies, which have largely focused on use of CAM 

ensembles, and on the prediction of the severe convective hazards of tornadoes, hail, and severe 

convective wind.  In exploring how best to condense CAM forecasts for RF predictions, we aim 
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to shed light on the reasons for inferior performance of CAM-based RFs compared to the GEFS-

based RF for excessive rainfall.   

The remainder of this article is organized as follows.  Section 3.1 outlines the design of 

the HRRR-based RF system, with which the experiments are carried out.  We then describe the 

sensitivity experiments in section 3.2, results in section 3.3, and discussion and conclusions in 

section 3.4.   

3.1. System Design 

RFs (Breiman 2001) are a supervised ML technique consisting of an ensemble of 

decision trees.  Individual decision trees are set up by the algorithm based on their ability to 

discern between events and non-events.  Probabilistic forecasts can be constructed by tallying the 

resulting prediction from each of the many branches of the RF.  The system employed here is 

described in detail by Herman and Schumacher (2018a,b) and Hill and Schumacher (2021), with 

differences from their approach noted here.  We employ eight independent RF models, one for 

each of the eight CONUS sub-regions shown in Fig. 10, and the resulting predictions are 

smoothed at the regional boundaries to avoid sharp gradients or discontinuities.  In the following 

sub-sections, we describe the various components needed for the final trained model: 

predictands, predictors, and model training, followed by a description of the verification metrics 

employed in this study.   

3.1.1. Predictand assembly 

It is critical to define a high-quality predictand (or target vector) for a good RF system.  

For flash flood prediction, this is a non-trivial problem.  Since the product is intended for use at 

WPC, one option is the current definition of the outlook: probability of precipitation exceeding 

flash flood guidance (FFG; Sweeney 1992).  However, FFG is subject to large differences in 
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methodology, and thus discontinuities, between different River Forecast Centers (RFCs; Clark et 

al. 2014; Burke et al. 2023).  A simpler approach would be to use flash flood reports (FFRs) as 

the predictands, but FFRs are subject to substantial regional biases, as described in detail by 

Herman and Schumacher (2018c).  Alternatively, one can follow the approach of Hill and 

Schumacher (2021), also described by Schumacher et al. (2021), to take advantage of 

quantitative precipitation estimate (QPE) exceedances of average recurrence intervals (ARIs) to 

augment FFRs in defining excessive rainfall events.  Table 2 describes the predictands 

constructed for the HRRR-based system described herein, with regionally varying target vectors 

assigned for the various RF models.  While this general approach is somewhat subjective, it 

provides a configuration for controlled experiments and has been demonstrated to perform 

reasonably well; Hill and Schumacher (2021) describe sensitivity experiments varying the target 

vectors for the NSSL-WRF based excessive rainfall RF.  The derivation of the ARIs is described 

by Herman and Schumacher (2018c).   

3.1.2. Predictor assembly 

Building off Hill and Schumacher (2021), the HRRR-based system uses similar output 

variables from the HRRR as are used for the NSSL-WRF.  We used the same variables (see their 

Table 2: Regionally varying target vectors used for the sensitivity experiments described 
herein.  FFR refers to Flash Flood Reports, CCPA refers to Climatology Corrected Precipitation 
Analysis, and ST4 refers to Stage IV QPE, while the number of years refers to the threshold 
average recurrence interval (ARI) used. 

Region Target Vector 

PCST FFR+CCPA, 2-year 

ROCK FFR+CCPA, 2-year 

SW FFR+CCPA, 2-year 

NGP FFR+CCPA, 1-year 

SGP FFR+CCPA+ST4, 2-year 

MDWST FFR+CCPA, 1-year 

SE FFR+CCPA+ST4, 1-year 

NE FFR+CCPA+ST4, 2-year 
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Table 1), with the exception of a few variables defined differently (Table 3).  In particular, 

accumulated precipitation in the HRRR is output at 1-h intervals, so the HRRR-based model is 

trained on run total accumulated precipitation rather than the 3-h accumulation.  This is not an 

ideal configuration because precipitation early in the 24-h period will be included in the predictor 

array many times, while precipitation in the 09-12 UTC period (33-36 h forecast) will only be 

used once; sensitivity experiments are underway to quantify the impact of this misconfiguration.  

The use of updraft helicity is expanded from Hill and Schumacher (2021) through use of 1-h max 

and 1-h min values for 2-5 km updraft helicity, which has been previously used in RFs for 

precipitation prediction due to its association with sustained rotating storms (Nielsen and 

Schumacher 2018, 2020; Smith et al. 2023).  We use 0-6 km wind shear values, rather than the 

mean 0-6 km wind components as in Hill and Schumacher (2021).  Finally, we use 700-hPa 

vertical velocity instead of 0-3 km average vertical velocity.  In addition to these meteorological 

predictors, we use the same static inputs as Herman and Schumacher (2018a) and Hill and 

Schumacher (2021), which are related to the climatological likelihood of excessive rainfall.   

Table 3: Meteorological predictors using in training and forecasting with the RF models.    

Predictor Description Type 

APCP Run total accumulated precipitation (kg m-2) STORM 

W700 700-hPa vertical velocity (m s-1) STORM 

UHMAX 1-h maximum 2-5 km updraft helicity (m2 s-2) STORM 

UHMIN 1-h minimum 2-5 km updraft helicity (m2 s-2) STORM 

CAPE Surface convective available potential energy (J kg-1) ENV 

CIN Surface convective inhibition (J kg-1) ENV 

PWAT Precipitable water (kg m-2) ENV 

MSLP Mean sea level pressure (Pa) ENV 

T2M 2-m temperature (K) ENV 

Q2M 2-m specific humidity (kg kg-1) ENV 

U10 10-m latitudinal horizontal wind speed (m s-1) ENV 

V10 10-m longitudinal horizontal wind speed (m s-1) ENV 

Z500 500-hPa geopotential height ENV 

USHR6000 0-6-km average latitudinal vector wind difference (m s-1) ENV 

VSHR6000 0-6-km average longitudinal vector wind difference (m s-1) ENV 
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Sensitivity experiments addressing the temporal and spatial aggregation of predictors are 

described in section 3, but we provide here a brief description of the control experiment 

configuration, also used by Hill and Schumacher (2021).  The model prediction grid is based on 

an earlier version of the GEFS, with resolution T254L42 (~55 km at 40° latitude; Herman and 

Schumacher 2018a).  Predictors for each gridpoint are taken from the closest 3-km HRRR 

gridpoint, and also every 10 HRRR gridpoints (30 km) out to 180 km from the prediction point, 

corresponding to a radius (n) of 6 gridpoints on the GEFS grid; n is hereafter referred to as the 

predictor radius.  The model predictors are then collected in space at 3-h intervals over the 24-h 

period from 12 UTC to 12 UTC, based on 12- to 36-h forecasts from the 00 UTC HRRR 

simulation, corresponding to the time period associated with WPC EROs.  The number of 

predictors per training label is then N = pt(2n + 1)2, where t is the number of forecast times (t = 

9 here), amounting to 1521 predictors per variable p, and N = 22815 HRRR predictors per 

training example.  The spatial predictor assembly procedure is illustrated in Fig. 13.   

For the HRRR-based system, we gave some additional consideration to the masking out 

of non-land areas in each of the regions shown in Fig. 10.  Since our target vectors are based on 

flash flood reports and QPE exceedances of ARIs (Table 2), it is important to exclude from the 

training dataset any model prediction for a non-land point, where flash floods can never be 

observed and ARIs are undefined.  This eliminates mis-training, where the RF learns that a 

certain meteorological pattern is less likely to be associated with flash flooding simply because it 

occurred over an offshore or Great Lake area.  We eliminated all predictor points over oceans or 

Great Lakes for the experiments described here, amounting to a reduction in number of predictor 

points by 0-39%.  The largest reduction was for the NE region (see Fig. 10), with the land-locked  
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Fig. 13. Illustration of predictor assembly procedure.  Tiny black dots represent 3-km 
HRRR gridpoints.  Large blue circles indicate predictor gridpoints (where the forecast is issued).  
Intermediate blue circles indicate input gridpoints (information from these points, in addition to 
the predictor gridpoint, is used to make predictions).  A predictor radius of only one input 
gridpoint is shown here, but for the real system, a predictor radius of 6 input gridpoints is used 
(unless otherwise specified).  The red boxes indicate regions over which predictors are spatially 
averaged (or a spatial max/min is taken) for the spatial aggregation experiments.   

 

 

NGP and ROCK regions unaffected.  Further details on the masking impact are provided in 

chapter 4.   
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3.1.3. Training 

The training period for the RF was three years (13 Jul 2018 – 31 Aug 2021), with 80 

missing days (7% of the 1146-day period, leaving 1066 training days; days were missing due to 

gaps in the HRRR archive on the NOAA High Performance Storage System).  For the time-

lagged experiments, there are 128 missing days (leaving 1018 training days).  While a three-year 

training period is relatively short for skillful predictions of a rare event like excessive rainfall, it 

again provides a testing ground for experiments on predictor assembly.  The training includes a 

period of HRRRv3 (prior to 2 Dec 2020) and HRRRv4 (after 2 Dec 2020); the impact of this 

mismatch in HRRR version, as well as sensitivity to training length, are described elsewhere.  

Training was conducted in a manner consistent with Hill and Schumacher (2021), relating 

predictor variables to occurrence of target vector events (Table 2).  The number of decision trees 

was set to 1000, the maximum number of predictors evaluated at each node was sqrt(N), and 

entropy was used as the splitting parameter.  All models used 120 samples.   

3.1.4. Verification approach 

In order to evaluate the experimental results, we carry out daily verification of the various 

forecasts during the independent one-year period 1 May 2022 – 30 Apr 2023.  The probabilistic 

forecasts are evaluated in several ways in a contingency table framework against indications of 

flash flooding within the Unified Flood Verification Dataset (UFVS; Erickson et al. 2019), 

which uses NWS storm reports, USGS stream gauge observations of flooding, and also QPE 

exceedances of flash flood guidance or the 5-year average recurrence interval, with a 40-km  

radius applied to match the neighborhood used in the definition of the ERO.  We use a similar 

approach to analysis of the results as used by Schumacher et al. (2021), including the fractional 

coverage of observed events within probability contours, as well as Brier Skill Score (BSS) and 
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the area under the Relative Operating Characteristic (ROC) curve (AUC).  A similar verification 

approach has been used by developers at the WPC (Erickson et al. 2021).  The BSS calculation 

uses a daily varying climatological forecast constructed from the UFVS during the six-year 

period 1 May 2017 – 30 Apr 2023.  In addition, we demonstrate forecast performance for 

representative cases.  Statistical significance is determined using 100 bootstrap samples of the 

contingency table, with error bars showing the 2.5th to 97.5th percentile, as shown by Schumacher 

et al. (2021).  Comparison is also made with the WPC ERO issued at 0900 UTC each day.  In 

order to compare the RF predictions with the ERO on a level playing field, the RF predictions 

are discretized to the same probability contours as are included in the WPC ERO.   

3.2. Sensitivity Experiments 

In this section, we describe a number of sensitivity experiments intended to explore the 

use of CAM-based predictors in an RF model for excessive rainfall prediction.  Table 4 provides 

experimental configurations for the sensitivity experiments described here. 

3.2.1. Spatial aggregation experiments 

Table 4 describes experiments intended to investigate the optimal path for spatial 

aggregation of predictor information from CAMs.  The control experiment (CTRL) configuration 

is described in section 2.  The MEAN and MEAN_MAX experiments explore the impact of 

spatial aggregation of predictors.  Using just the sparse input gridpoints illustrated in Fig. 13 

risks missing important information, for example convective storms with torrential rain, from 

CAM fields in between the input gridpoints.  For the MEAN experiment, predictor values are 

computed as the spatial mean of each variable within the red boxes shown in Fig. 13.  For the 

MEAN_MAX experiment, the spatial aggregation operation varies by input variable; for the 

environmental predictors (ENV in Table 3), a spatial mean is used, but for the storm attribute 
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predictors (STORM in Table 3), a spatial max (for APCP, W700, and UHMAX) or min (for 

UHMIN) is used.  All predictors retain the same 3-h time step (with nine input times for the 24-h 

prediction period).  Prior work (e.g., Sobash et al. 2020; Loken et al. 2022) has found beneficial 

impact from treating environmental and storm attribute fields differently for severe convective 

weather prediction with RFs; our spatial aggregation experiments are intended to determine if 

their results apply to a deterministic CAM configuration.   

A second set of experiments explores the impact of the predictor radius, n.  With fine-

scale predictors from a deterministic CAM, it is possible that the signals for excessive rainfall 

that an RF would learn are more local than the 180-km radius used in the default configuration.  

To explore this question, we carry out experiments reducing n from 6 to 4 and 2 (PREDRAD4 

and PREDRAD2 in Table 4).   

 

Table 4: Predictor assembly experimental configurations.   

Experiment name Spatial aggregation Predictor 

time step 

Predictor time 

window 

CTRL Default (every 10 3km 
gridpoints) 

3 h None 

MEAN Spatial mean over 10 x 10 
3km gridpoints for each input 
point 

3 h None 

MEAN_MAX As MEAN, but spatial mean 
only for ENV fields, and 
max/min for STORM fields 

3 h None 

PREDRAD4 As MEAN_MAX, but using 
predictor radius of 4 (120 km) 

3 h None 

PREDRAD2 As MEAN_MAX, but using a 
predictor radius of 2 (60 km) 

3h None 

1H Default (every 10 3km 
gridpoints) 

1 h None 

1H_1H Default (every 10 3km 
gridpoints) 

1 h 1 h (temporal 
mean) 

MEAN_MAX_TL As MEAN_MAX, but 
averaging across 00, 06, and 
12 UTC HRRR runs 

3 h None 
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3.2.2. Temporal aggregation experiments 

We also carry out two temporal aggregation experiments.  The 1H experiment uses a 1-h 

predictor time step, instead of the control run’s 3-h time step, to investigate whether additional 

information can be provided by a finer temporal resolution for the predictors.  The 1H_1H 

experiment uses a 1-h predictor time step, but also uses a 1-h temporal radius, meaning that 

values from both 1 h before and 1h after each predictor valid time are also used (i.e., three valid 

hours are averaged together for all predictors).  This experiment explores whether additional 

valuable information would be provided by considering CAM fields across a time range rather 

than at an instantaneous time.   

The final experiment, MEAN_MAX_TL, uses a “time-lagged” ensemble of HRRR 

initializations to explore whether it is beneficial to consider predictions from multiple HRRR 

simulations.  Specifically, in this experiment we consider information from the 06 and 12 UTC 

initializations, in addition to the 00 UTC forecast as used in all the other RFs.  We take the same 

spatial predictor aggregation approach of the MEAN_MAX experiment, but average the 

resulting predictor values across the three initialization times.  Forecasters routinely assess run-

to-run consistency in hourly HRRR runs in order to estimate the uncertainty of a meteorological 

situation (e.g., Benjamin et al. 2023); our hypothesis is that having run-to-run consistency 

quantified in the RF predictors would strengthen the signal for occurrence (or non-occurrence) of 

excessive rainfall.    

3.3. Results 

In this section, we summarize the results of our sensitivity experiments.  We begin with 

the overall frequency of issuance of several probability thresholds in the RF systems compared to 
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the WPC ERO during the evaluation period.  We then discuss results of the spatial and temporal 

aggregation experiments. 

3.3.1. Outlook risk issuance frequency 

Figure 14 shows maps of the frequency of issuance of the various WPC ERO risk 

categories during the 356 evaluation days (22 Apr 2022 – 1 May 2023).  Marginal risk areas 

were issued by WPC a maximum of 25% of the time in southern Arizona (not shown), with 

broad maxima in the interior southeastern US and in Arizona / New Mexico (Fig. 14a).  WPC 

ERO slight risk areas were issued most frequently in Arkansas, and along the lower Ohio River 

Valley area, with secondary maximum along the Mogollon Rim of Arizona (Fig. 14c).  WPC 

ERO moderate risk areas were quite rare, with a maximum associated with landfalling 

atmospheric rivers in California (Fig. 14e).  High risk outlooks are not shown; during this period 

of evaluation, there were two in California and two in Florida.   

Comparing the issuance frequency of the CTRL RF system (Fig. 14b,d,f), we see that the 

CTRL system issues much lower probabilities than the WPC ERO overall.  The maximum 

frequency of issuance of the marginal risk is ~30% along the east coast of Florida.  The most 

notable differences in frequency of marginal risk issuance are seen in the interior southeastern 

US (Mississippi / Alabama), in the northeastern US, and in the Four Corners region associated 

with the North American Monsoon (Fig. 14b).  Slight and moderate risk issuances are very rare 

in the CTRL system (Fig. 14d,f).  Also evident in Fig. 14 are the relatively sharp changes in 

issuance frequency across region boundaries, particularly between the MDWST and the SE and 

NE regions (cf. Fig. 10).   
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Fig. 14. Frequency of issuance of (a,b) marginal, (c,d) slight, and (e,f) moderate risk 
areas in (a,c,e) the WPC ERO and (b,d,f) the CTRL RF system during 22 Apr 2022 – 1 May 
2023.  The three risk categories correspond to 5%, 15%, and 40% chance of exceeding FFG 
within 25 miles of a point.     

 

3.3.2. Spatial aggregation results 

Figure 15a shows BSS for the spatial aggregation experiments over the entire period.  On 

the CONUS scale (rightmost set of bars), we see no benefit from applying a spatial mean to the 

predictors (MEAN), but statistically significant improvement from applying a spatial max / min 

for storm attribute fields (MEAN_MAX).  All the RF systems are substantially inferior to the 

WPC ERO in terms of BSS.   The inferiority of the RF systems compared to WPC EROs is seen 

for all the regions, although the degree of inferiority varies.  For the ROCK region, the spatial  
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Fig. 15. Brier Skill Score for (a) spatial aggregation experiments and (b) predictor radius 
experiments.  Shown are WPC ERO (green), CTRL (brown), MEAN (orange), MEAN_MAX 
(red), PREDRAD2 (blue), and PREDRAD4 (purple) by region during the 1-year evaluation 
period.  95% statistical significance is indicated by the narrow black bars.   
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spatial aggregation experiments are statistically indistinguishable from the WPC ERO in terms of 

BSS.   

We also see that the benefit from the spatial aggregation varies by region.  In particular, 

the RF forecasts in the eastern US show a clearer benefit from use of spatial max / min of storm 

attribute fields (MEAN_MAX).  In the interior western US, special treatment of storm attribute 

fields (MEAN_MAX) does not lead to much of a skill improvement.  In the PCST, the situation 

is unique, with marginally statistically significant degradation seen in the MEAN_MAX 

experiment; however, in this region, MEAN performs comparably to the control run.   

For the PREDRAD experiments, we find smaller impacts than in the MEAN and 

MEAN_MAX experiments (Fig. 15b).  On the CONUS scale (rightmost set of bars), both 

PREDRAD4 and PREDRAD2 do slightly outperform the control run (MEAN_MAX); however, 

the differences are not statistically significant.  The greatest difference is seen in the SW region, 

where PREDRAD4 and PREDRAD2 both outperform MEAN_MAX; PREDRAD2 achieves the 

highest BSS in this region.  This suggests there may be some benefit to restricting the predictor 

radius to a smaller distance in the SW.   

In maps of the difference in BSS between the control and spatial aggregation experiments 

(Fig. 16), some of the same patterns emerge as are evident in Fig. 15.  The BSS difference 

between MEAN and CTRL is small and somewhat mixed throughout the CONUS (Fig. 16a).  In 

terms of the MEAN_MAX experiment (Fig. 16b), we see a clearer improvement over CTRL in 

the eastern US, in agreement with Fig. 15.  In the rest of the CONUS, differences with CTRL are 

generally larger than seen for the MEAN experiment, although there are also regions of 

degradation in the UT/CO/WY area westward into NV/ID and northern CA.  These areas have  
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Fig. 16. Maps of BSS difference between (a) MEAN and CTRL, (b) MEAN_MAX and 
CTRL, (c) PREDRAD4 and MEAN_MAX, and (d) PREDRAD2 and MEAN_MAX during the 
1-year evaluation period.   
 

very few excessive rain events in the UFVS during the 2022-23 evaluation period (not shown), 

so BSS in these regions is likely unduly affected by a single forecast.   

For the PREDRAD experiments (Fig. 16c,d), the BSS differences are generally less 

coherent.  PREDRAD2 and PREDRAD4 appear to have systematically higher BSS in parts of 

the southwestern US, and also in Florida, but systematically lower BSS in some other regions.  

This agrees with the bulk statistics shown in Fig. 15b.   

The area under the relative operating characteristic (ROC) curve, which measures 

forecast resolution, or the ability of the forecasts to distinguish excessive rainfall events from 
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nonevents, is shown in Fig. 17.  Over the CONUS as a whole (Fig. 17, rightmost set of bars), the 

WPC ERO has superior resolution to any of the RF systems.  However, we see that 

MEAN_MAX improves upon the resolution of the CTRL and MEAN experiments.  Regionally, 

we see that the resolution improvement in MEAN_MAX holds true in every region but PCST.  

In fact, MEAN_MAX has comparable resolution to the WPC ERO in the MDWST, NGP, 

ROCK, and PCST regions.   

For the PREDRAD experiments (Fig. 17b), there is very little impact of the predictor 

radius value upon the resulting forecast resolution.  Consistent with Fig. 15, we see the largest 

impact of a reduced predictor radius in the SW region, with PREDRAD2 having the largest area 

under the ROC curve.   

The reliability of the forecasts is assessed using a reliability diagram; for this evaluation, 

we retained a finer set of probability categories than included in the WPC ERO in order obtain a 

picture of reliability across a wide range of forecast probabilities (Fig. 18).  Reliable forecasts 

will lie along the diagonal line, indicating forecasts of a given probability verify with the same 

probability threshold.  As shown in Fig. 18, the RF systems all underpredict the probability of 

excessive rainfall.  For example, 20% probability forecasts from CTRL verify ~35% of the time 

(brown curve in Fig. 18a).  The spatial aggregation experiments do not show substantially 

improve the reliability of the RF forecasts (Fig. 18a); the results become noisy at higher 

probability thresholds due to relatively infrequent forecasts of extreme events.   

For the PREDRAD experiments (Fig. 18b), there does not appear to be any additional 

improvement to reliability from restricting the predictor radius; MEAN_MAX, PREDRAD4, and  
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Fig. 17. Area under the relative operator characteristic (ROC) curve by region during the 
1-year evaluation period, showing WPC ERO (green), and (a) CTRL (brown), MEAN (orange), 
and MEAN_MAX (red), and (b) MEAN_MAX (red), (c) PREDRAD2 (blue), and (d) 
PREDRAD4 (purple).  95% statistical significance is indicated by the narrow black bars.   
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Fig. 18. Reliability diagram of RF forecasts, showing (a) CTRL (brown), MEAN 
(orange), and MEAN_MAX (red), and (b) MEAN_MAX (red), PREDRAD2 (blue), and 
PREDRAD4 (purple) experiments, during the 1-year evaluation period.  Inset graphs describe 
the normalized frequencies of forecast at each probability threshold.  Solid black diagonal lines 
and dashed black lines indicate perfect reliability and no skill, respectively.     
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PREDRAD2 are all similarly unreliable.   

In order to determine if the impact of spatial aggregation is more prominent at certain 

times of year, we examine a monthly time series of BSS for the CONUS (Fig. 19).  The BSSs for 

the three spatial aggregation experiments are nearly statistically indistinguishable during the 

majority of the year, but slightly higher BSS is seen from the MEAN_MAX experiment 

compared to CTRL and MEAN in several months, most notably during the warm season (April 

to September).  This is likely due to the relatively smaller scale of warm season convective 

precipitation events relative to cool season synoptic precipitation events.   

As shown in Fig. 19b, there does not appear to be a systematic difference in BSS between 

the PREDRAD experiments and the MEAN_MAX experiment, and what differences there are 

fail to reach statistical significance.  This is consistent with the results of Fig. 15b, suggesting 

there is not a substantial benefit to restricting the predictor radius for the RF.   

3.3.3. Temporal aggregation results 

Turning our attention to the temporal aggregation experiments, Fig. 20a shows BSS for 

the temporal aggregation experiments.  Once again, we see that the WPC ERO outperforms all of 

the RF experiments.  We do not see a statistically significant benefit to using a 1-h time step 

rather than a 3-h time step on the CONUS scale (compare the CTRL and 1H experiments in the 

rightmost set of bars in Fig. 20a).  Looking at different regions, there are not statistically 

significant differences between the experiments except in the PCST region, where a 1-h time 

step (1H), as well as using a 1-h temporal window (1H_1H) leads to statistically significant 

degradation compared to the control run (CTRL).   

On the other hand, using predictors averaged across three separate HRRR initialization 

times (MEAN_MAX_TL), leads to a significant increase in BSS on the CONUS scale and in  
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Fig. 19. Monthly time series of BSS among the spatial aggregation experiments during 
the 1-year evaluation period.  Thick lines indicate the BSS, and shading indicates 95% 
confidence interval.   
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Fig. 20. Brier Skill Score for WPC ERO (green), (a) temporal aggregation experiments: 
CTRL (brown), 1H (cyan), and 1H_1H (dark blue), and (b) time-lagged input experiment: 
MEAN_MAX (red) and MEAN_MAX_TL (cyan), by region during the 1-year evaluation 
period.  95% statistical significance is indicated by the narrow black bars.   
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most regions (Fig. 20b).  This means that the use of different simulations for the same time 

period provides the RF with a clearer indication of the true risk of excessive rainfall.  This result 

agrees with our expectations, and implies that the use of ensemble information is one factor in 

why deterministic CAM-based RFs have not performed as well as global ensemble-based RFs.   

Spatially varying impacts of the shorter time step are apparent, with larger BSS 

differences (although mixed in direction) seen in the northern US (Fig. 21a).  Figure 21b shows a 

difference map between MEAN_MAX and MEAN_MAX_TL.  The impacts of using time-

lagged predictor information are more positive overall, with benefits seen all around the 

CONUS, in agreement with Fig. 21b.   

In terms of the area under the ROC curve, there are relatively few differences between 

the CTRL, 1H, and 1H_1H experiments in any region (Fig. 22a).  However, use of time-lagged 

predictor information leads to a modest increase in forecast resolution for the CONUS and for 

most regions (Fig. 22b).   

As with the spatial aggregation experiments, all systems underpredict probabilities of 

excessive rainfall, but we see modestly improved reliability with the 1H and 1H_1H experiments 

(Fig. 23a).  For the time-lagged input experiment (Fig. 23b), we see slightly improved reliability 

(less underprediction) at probabilities less than about 20%, but degraded reliability (increased 

underprediction) at higher probabilities.  This suggests that, at least for higher probability  

excessive rainfall scenarios, the inclusion of time-lagged predictor decreases confidence and 

leads to a less reliable forecast, despite leading to improved BSS (Fig. 20a).  This makes sense, 

as it is likely that there will be substantial run-to-run variability in the HRRR forecast in some 

scenarios, which could decrease confidence.  It is important to note that the sample size is quite 

small at forecasted probabilities of greater than 20% (see inset to Fig. 23b).   
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Fig. 21. Map of BSS difference between (a) 1H and CTRL, and (b) MEAN_MAX_TL 
and MEAN_MAX during the 1-year evaluation period.   
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Fig. 22. Area under the relative operator characteristic (ROC) curve by region during the 
1-year evaluation period, showing WPC ERO (green), (a) temporal aggregation experiments: 
CTRL (brown), 1H (cyan), and 1H_1H (dark blue), and (b) time lagging experiments: 
MEAN_MAX (red) and MEAN_MAX_TL (cyan).  95% statistical significance is indicated by 
the narrow black bars.   
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Fig. 23. Reliability diagram of RF forecasts, showing (a) temporal aggregation 
experiments: (brown) CTRL, (cyan) 1H, and (dark blue) 1H_1H, and (b) time-lagged input 
experiment: (red) MEAN_MAX and (cyan) MEAN_MAX_TL, during the 1-year evaluation 
period.  Inset graphs describes the normalized frequencies of forecast at each probability 
threshold.  Solid black diagonal lines and dashed black lines indicate perfect reliability and no 
skill, respectively.     
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In contrast to the results from the spatial aggregation experiments, the increase in BSS 

from the MEAN_MAX_TL configuration with respect to the MEAN_MAX configuration is 

seen fairly consistently across the annual cycle (Fig. 24).  There are a few months in which the 

BSSs are statistically indistinguishable (for example, June – July and September – October).  

However, it appears that the use of time-lagged predictor information from the HRRR provides 

benefits both in the warm season and the cool season.  Benefits do appear slightly greater during 

the cool season (October – April).   

3.3.4. Feature contributions 

In this section, in order to shed light on the mechanisms for the benefit stemming from 

spatial predictor aggregation and use of a shorter predictor time step, we examine feature 

contribution metrics calculated with the tree interpreter python package (Saabas 2016).  Loken et  

 

Fig. 24. Monthly time series of BSS between the MEAN_MAX and MEAN_MAX_TL 
experiments during the 1-year evaluation period.  Thick lines indicate the BSS, and shading 
indicates 95% confidence interval.   
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al. (2022) provide a brief review of the various approaches available for interpreting ML / RF 

model results, including the strengths and weaknesses of the tree interpreter approach.  Tree 

interpreter is a local interpretability method which measures the mean contribution of each 

predictor over all nodes in each tree within the RF.  The resulting contributions reflect the 

influence of each predictor upon the resulting forecast, for a specific forecast case.   

Figure 25 compares feature contributions for the CTRL, MEAN_MAX, and 1H 

experiments for the entire CONUS and the one-year evaluation period.  In general, APCP and 

PWAT emerge as the two predictors with the largest positive contribution for both experiments 

(Fig. 25a).  Relatively large positive contributions are also seen from Q2M.  APCP has a much 

larger mean positive contribution in the MEAN_MAX experiment than in the CTRL experiment.  

This indicates that the use of spatial aggregation allows the RF to use information from the 

HRRR APCP field more effectively to improve forecasts (cf. Fig. 15a).  Differences in mean 

positive contribution are also seen for other predictors, including UHMAX and UHMIN (with ~3 

times the positive contribution in MEAN_MAX compared to CTRL).  These fields, in addition 

to APCP and W700, are storm attribute fields (cf. Table 3); the RF is able to more effectively use 

information from APCP, UHMIN, and UHMAX when a spatial maximum or minimum is used.  

The W700 predictor does not contribute much more in MEAN_MAX than in CTRL, perhaps 

because this field is complicated by the presence of non-storm values related to synoptic systems 

or gravity waves.   
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Fig. 25. Mean positive (a) and (b) predictor contributions for (brown) CTRL, (red) 
MEAN_MAX, and (cyan) 1H experiments, for every other day during the one-year evaluation 
period (178 days), as determined with the tree interpreter package.  Positive and negative 
contributions are summed across all predictor time steps for each forecast, and then averaged 
across cases. 
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For the 1H experiment, differences in contributions from the control run are relatively 

more modest.  Feature contributions are generally decreased with an hourly time step relative to 

the CTRL experiment, with the exception of a few fields, including CIN, UHMAX, and 

UHMIN.  It makes sense that UHMAX and UHMIN would provide more information on an 

hourly time scale, since those fields are 1-h maximum and minimum fields from the HRRR.   

To summarize the tree interpreter results, use of spatial aggregation allows the RF to 

more effectively use information from storm attribute fields like APCP, UHMAX, and UHMIN 

to increase the predicted probability of excessive rainfall where appropriate.  Using a 1-h 

predictor time step does not dramatically impact RF forecast skill, although it does all the RF to 

glean more information from 1-h maximum or minimum fields from the HRRR (such as the 

UHMAX and UHMIN predictors).   

3.3.5. Sample forecasts 

In this section, we show some example forecasts comparing the different sensitivity 

experiments in order to illustrate how the differences in forecast skill, as well as the differences 

in predictor contributions, appear for a single forecast.  Figure 26 shows predictions for the 12 

UTC 26 Jul – 12 UTC 27 Jul 2022 period.  This was a day of excessive rainfall in the central 

Appalachians of eastern Kentucky and southern West Virginia, and also an active day in the 

southwestern US.  Widespread excessive rainfall occurred in Arizona, New Mexico, and 

Colorado, and also in a swath from southern Illinois to southern West Virginia.  The control RF 

predicted excessive rainfall probabilities of 10-20% in parts of the southwestern US, and an east-

west swath of 10-15% probabilities along the threat axis from southern Illinois to central 

Virginia (Fig. 26a).  The MEAN_MAX experiment, in this case, predicted slightly higher 

probabilities of excessive rainfall in the southwestern US (compare the extent of 10-15%  
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Fig. 26. Sample forecasts and a subset of predictor contributions for the 12 UTC 26 Jul – 
12 UTC 27 Jul 2022 period, based on the 00 UTC 26 Jul 2022 HRRR run.  Shown are (top row) 
the probabilistic forecasts of excessive rainfall (note the color scale which is different from the 
operational WPC outlooks), (middle row) contributions summed across all time steps from the 
APCP predictor, and (bottom row) contributions summed across all time steps from the PWAT 
predictor.  Shown are (a,d,g) CTRL, (b,e,h) MEAN_MAX, and (c,f,i) 1H experiments.   

 

probability in Arizona between Fig. 26a,b), but forecasted similar probabilities as the CTRL run 

in the Midwest (Fig. 26b).  The 1H experiment forecast was similar to the CTRL forecast, with 

slightly higher probabilities in the east (Fig. 26c).  Examining the feature contributions for this 

case, we see the strikingly larger positive contribution from the APCP predictor in the 

MEAN_MAX experiment compared to the CTRL experiment (Fig. 26d,e) in the SW, associated 

with small-scale convective heavy precipitation in this case (not shown).  In contrast, in the 

Midwest, where the heavy precipitation was larger in scale, we see more similar contributions 

from the APCP predictor in the MEAN_MAX and CTRL experiments (Fig. 26d,e).  APCP 

contributions in the 1H experiment appear similar to the CTRL experiment (Fig. 26f).  For the 
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environmental PWAT predictor, broad but small positive contributions are seen in the SW 

region, with larger contributions in the Midwest, for all three experiments (Fig. 26g,h,i).   

Another case, 12 UTC 5 Sep – 12 UTC 6 Sep 2022, is shown in Fig. 27.  This case 

featured small-scale bands of excessive rainfall producing convection in the northeastern US (not 

shown).  In this case, excessive rainfall was observed broadly across the eastern US, but with a 

swath of more widespread occurrences from north-central Pennsylvania eastward through New 

York, Connecticut, Rhode Island, and eastern Massachusetts.   For this event, the CTRL 

experiment predicted a broad 20-25% risk of excessive rainfall from Pennsylvania to 

Massachusetts, with a small region of 25-30% risk in Pennsylvania and southern New York (Fig. 

27a).  In contrast, the MEAN_MAX experiment predicted much higher probabilities of excessive 

rainfall, greater than 25% across the entire area (Fig. 27b).   

Examining the feature contributions, it is clear that the APCP predictor makes a much 

larger positive contribution in the MEAN_MAX experiment compared to the CTRL experiment 

(Fig. 27d,e).  This larger contribution stems from the use of a spatial maximum for the APCP 

predictor field, which provides large benefits to the forecast when the HRRR prediction is for 

very small-scale precipitation features.  The greater contribution from the MEAN_MAX 

experiment extends into the southeastern US, where scattered excessive rainfall was also 

observed (Fig. 27e).   

Summarizing the results of these case studies, there is a clear indication that the benefit of 

using a spatial maximum for the APCP predictor field depends upon the spatial scale of the 

expected precipitation event.  For large-scale events, the RF does not gain much information 

from using a spatial maximum of the APCP predictor field, since the field at sparse input 

gridpoints already provides a good representation of the expected precipitation.  However, for 
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Fig. 27. As in Fig. 26, but for the 12 UTC 5 Sep – 12 UTC 6 Sep2022 period, based on 
the 00 UTC 5 Sep 2022 HRRR run.   

 

 

small-scale precipitation events, there is a great benefit to taking a spatial maximum of the APCP 

predictor field, to ensure that the RF is able to have a good representation of the causative heavy 

precipitation event.   

3.4. Discussion and Conclusions 

Predictor assembly is an important question for all RFs, which have been gaining 

popularity as a tool for high-impact weather prediction.  This study sheds light on the question of 

predictor assembly for a deterministic CAM, as a complement to the study of Loken et al. (2022) 

for predicting severe weather based on a CAM ensemble.  Our study also sheds light on possible 

reasons for the inferior performance of RF-based prediction tools for excessive rainfall in the 

southwestern US.   
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To summarize our results, we find that use of spatial aggregation (use of a spatial mean, 

with even better performance stemming from use of a spatial maximum or minimum for storm 

attribute predictors) leads to a statistically significantly improvement to RF forecasts of 

excessive rainfall, with greater improvement seen for precipitation events which feature small-

scale precipitation maxima.  We also find that use of a 1-h time step rather than a 3-h time step, 

and use of a 1-h temporal window for predictor information, does not lead to any substantial 

forecast improvement.   

Regarding the benefit of spatial aggregation, it is interesting that the benefit is seen most 

strongly for events with small-scale precipitation maxima.  This suggests that the CTRL 

experiment, which uses only sparse input information from the predictors, does not have a 

coherent signal with which to predict small-scale excessive rainfall events, and it is important to 

aggregation predictor information over a spatial radius for these types of events.  Benefit of the 

spatial aggregation approaches is seen in most regions of the country, with the exception of the 

PCST, indicating that some fraction of excessive rainfall events around the rest of the US are 

characterized by small spatial scales that can only be accounted for using these spatial 

aggregation approaches.   

The lack of benefit stemming from a shorter time step (as shown in the 1H experiment) 

indicates that the signals for excessive rainfall are generally adequately captured with a 3-h time 

step.  However, we do find slightly larger feature contributions from the 1-h maximum and 1-h 

minimum updraft helicity predictors from the HRRR (UHMAX and UHMIN) when using a 1-h 

predictor.   

Another set of experiments exploring the radius of predictor information being used by 

the RF revealed minimal sensitivity to this parameter, although with slightly improved 
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predictions in the SW region when using a shorter predictor radius.  Additionally, use of 

predictor information averaged across three HRRR initializations, instead of the single 0000 

UTC HRRR simulation, led to statistically significant benefit in all regions of the US.  The 

benefit stemming from use of time-lagged ensemble information suggests that the availability of 

ensemble information is an important factor in the difference in forecast skill between the global 

ensemble-based RFs for excessive rainfall and those based on deterministic CAMs.   

During the Flash Flood and Intense Rainfall (FFaIR) experiment 2021, several real-time 

versions of RFs for excessive rainfall were formally evaluated by participants, including the 

GEFS-based system described by Schumacher et al. (2021), the NSSL-WRF based system 

described by Hill and Schumacher (2021), and an earlier version of the HRRR-based system 

described here.  It was noted in the experiment report that the HRRR-based RF performed worst 

of all the RFs, particularly in the southwestern US, and it was hypothesized that the short training 

period (only ~2 years at the time, and not including an active monsoon season) was the cause of 

the low probabilities and generally poor performance.  This study suggests that another factor in 

the performance of the HRRR-based RF in the southwestern US is the use of spatial predictor 

aggregation.   

Our experiments focus on the operational HRRR model, a deterministic CAM, but future 

work should explore the use of CAM ensembles for excessive rainfall prediction, as has been 

done for severe weather prediction (e.g., Loken et al. 2022).  The operational CAM ensemble is 

currently the High-Resolution Ensemble Forecast (HREF), but development is underway on a 

formal 3-km ensemble prediction system based on the Unified Forecast System (UFS).   

Some features of the tree interpreter-based contributions suggest opportunities for RF 

improvement.  It is evident in Figs. 26 and 27 that there are sharp gradients in the predictor 
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contributions near the region boundaries (cf. Fig. 10).  Also evident in these figures are relatively 

high probabilities of excessive rainfall along the coast of southern California where no excessive 

rainfall was observed.  Erroneous high probabilities along the coast of southern California were 

noted on many days during the 2023 FFaIR experiment; further examination reveals that the RF 

is recognizing meteorological patterns in this area that are associated with excessive rainfall 

when they occur elsewhere in the SW domain, but are very unlikely to lead to excessive rainfall 

in the coastal mountains of southern California.  Taken together, these results suggest that the 

regional definitions for the RF could be improved.  Alternatively, one could envision a system 

with no regional breakdown, in which the final forecast results from the sum of predictions from 

several different RFs designed to capture different types of excessive rainfall events.   

Our results suggest that careful consideration of the spatial scales of excessive rainfall 

events and their environmental indicators can provide some guidance on how to best assemble 

predictors for an RF-based system.  The spatial aggregation experiments shown here led to 

improvements in almost all regions of the US, but most strongly in the eastern US, while use of a 

shorter predictor radius led to the greatest improvements in the SW US.  Excessive rainfall 

events in the SW are a known challenge for WPC, with this region experiencing the most 

frequent “missed” damaging flash flood events (Williamson et al. 2023).  For this reason, our 

results are important for future RF systems to take into account, and may hold promise for 

developing improved early warning capabilities regarding potential flash flooding during the 

North American monsoon.   
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CHAPTER 4: PROGRESS ON RANDOM FORESTS FOR PREDICTION OF EXCESSIVE 
RAINFALL BASED ON AN OPERATIONAL CONVECTION-ALLOWING MODEL 

 
 
 

Flash flooding is one of the leading weather-related causes of death and property damage 

in the United States (Ashley and Ashley 2008), with billions of dollars in damage and dozens of 

lives lost in the annual mean (e.g., Ashley and Ashley 2008; NWS 2017a).  Population growth in 

flash flood prone regions (Downton et al. 2005; Pielke and Downton 2002), as well as projected 

increases in flash flooding associated with climate change (Prein et al. 2017), underscore the 

growing importance of timely and accurate flash flood forecasts.  Characterized by short time 

scales and watershed-dependent hydrologic responses, flash floods require a fundamentally 

different forecasting paradigm than longer-term river flooding.   

Flash flood prediction is a very challenging problem, with multiple sources of 

uncertainty.  QPFs from numerical weather prediction (NWP) models are prone to errors related 

both to initial condition and model errors, particularly in the rapidly-evolving and sensitive 

environments of deep, moist convection.  Even with perfect QPFs, the hydrologic response to a 

given amount of precipitation is highly spatially variable, and exhibits changes in time due to 

land surface processes.  These factors suggest that flash flood prediction is an inherently 

probabilistic forecasting challenge.  An additional complication is the fact that there is no 

universally accepted definition of a flash flood.  A wide variety of different forecasting 

approaches have been developed to address flash flood threats both from an atmospheric 

perspective (i.e., quantitative precipitation forecasts QPF) and a hydrologic perspective (e.g., 

Sharif et al. 2006; Javier et al. 2007; Chen et al. 2013; Broxton et al. 2014).  Heavy rainfall 

prediction development has included early ingredients-based techniques (e.g., Maddox et al. 

1978, 1979; Doswell et al. 1996), analog techniques (e.g., Marty et al. 2012), increasingly 
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sophisticated data assimilation and NWP systems (e.g, Yussouf et al. 2016; Yussouf and 

Knopfmeier 2019), nowcasting systems (e.g., Sun et al. 2020; Radhakrishnan and Chandrasekar 

2020), as well as statistical and machine learning approaches (Herman and Schumacher 

2018a,b).   

Operational forecasters at the NOAA Weather Prediction Center (WPC) have 

responsibility to issue Excessive Rainfall Outlooks (EROs) for 24-h periods from 12 UTC to 12 

UTC each day, out to five days lead time (Burke et al. 2023).  These outlooks (issued in some 

form for 45 years, but revised to include three risk categories in 2004; Erickson et al. 2021) are 

defined as the probability of exceeding Flash Flood Guidance (FFG) within 25 miles of a point, 

and are intended to reflect the expected probability of flash flooding.  The category thresholds 

were recently revised to better reflect the true probabilities (Erickson et al. 2021).  WPC 

forecasters have access to a wide variety of observational datasets for monitoring occurrence of 

heavy rainfall and flooding, as well as operational and experimental deterministic and ensemble 

NWP systems.   

Machine learning (e.g., McGovern et al. 2019) has shown significant promise in 

application to various problems in the atmospheric sciences, and has recently been applied to the 

flash flood prediction problem.  Among machine learning approaches, random forests (RFs) have 

been widely used for forecasting in the last few years, with strengths including their inherent 

probabilistic predictions for occurrence of a well-defined event, their ability to find signals in 

massive datasets, and their accounting for biases in inputs.  Applications have included severe 

convective hazards (Hill and Schumacher 2021, Loken et al. 2020, Gagne et al. 2017), low 

visibility and cloud ceilings (Herman and Schumacher 2016a), aviation turbulence (Williams 

2014) and occurrence of high winds along sensitive interstate highway sections (Brothers and 
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Hammer 2022).  Herman and Schumacher (2018a,b), and Schumacher et al. (2021) describe a 

novel RF excessive rainfall prediction system based on the global ensemble forecast system 

(GEFS) reforecast dataset.  The GEFS system has relatively coarse horizontal grid spacing, as 

well as limitations related to its convective parameterization and other aspects of its data 

assimilation and physics suite.  While development of the RF excessive rainfall forecasting 

algorithm for days two and three was originally motivated by the lack of convective-allowing 

model (CAM) guidance for that time window, success with the GEFS-based RF raises the 

question of whether a similar approach could be adopted to utilize information in current state-

of-the-art convection-allowing models (CAMs) within the day one time window.  CAMs, in 

particular the operational High-Resolution Rapid Refresh (HRRR; Dowell et al. 2022, James et 

al. 2022), exhibit skill for predicting the timing and location of heavy rainfall (e.g., Szoke et al. 

2015, 2018; Herman and Schumacher 2016b).   

Hill and Schumacher (2021) describe work towards a RF excessive rainfall prediction 

system based on the NSSL-WRF model, using a seven-year training dataset.  They find major 

dependence on the construction of the target vector in different regions of the CONUS, largely 

due to biases in quantitative precipitation estimate (QPE) datasets during their training period.  In 

addition, they find improved forecasts with spatially aggregated predictors, possibly due to 

reduced convective-scale noise in the meteorological input data.  One of the main motivations 

for use of the NSSL-WRF model was the long training period with a static model; however, it 

remains to be quantified how short of a training period can produce reasonably skillful forecasts.  

Additionally, it is unclear how detrimental would be a change in model configuration during the 

training period.   
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While NSSL-WRF has the strength of a long period of record, it has been static for many 

years with no active development, and has no data assimilation.  The HRRR, in contrast, features 

storm-scale ensemble data assimilation and continued physics development until recently 

(Dowell et al. 2022).  The HRRR has recently been successfully used in a neural network 

prediction system for occurrence of severe convective hazards (Sobash et al. 2020), and 

represents an interesting candidate for application of a RF system for predicting excessive 

rainfall.  In this article, we build upon the work of Hill and Schumacher (2021) to explore 

excessive rainfall prediction based on RFs using deterministic CAMs.  In particular, we want to 

answer the following research questions: Does the relatively short period of record for the HRRR 

seriously undermine the RF approach?  How significant are HRRR version changes for 

interrupting the training dataset?  Can we get any improvement from using more recent 

initialization times (since the HRRR runs more than once per day)?  And finally, has any 

progress been made on improving HRRR-based RFs over three years of development and 

evaluation from the WPC Flash Flood and Intense Rainfall Experiment (FFaIR)?     

The remainder of this article is organized as follows.  Section 4.1 outlines the design of 

the HRRR CSU-MLP system.  We then describe a number of sensitivity experiments in section 

4.2, and results of realtime evaluation of forecasts in section 4.3.  We provide a discussion and 

conclusions in section 4.4.   

4.1. System design 

The system employed here is described in some detail in chapter 3; here we review the 

RF configuration.  We develop eight independent machine learning models, one for each of the 

eight CONUS sub-regions (shown in Fig. 10).  In the following sub-sections, we describe the 
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various components needed for the final trained model: predictands, predictors, and model 

training.   

4.1.1. Predictand assembly 

It is critical to define a high-quality predictand (also known as labels or the target vector) 

for a good RF system.  For flash flood prediction, this is a non-trivial problem.  Since the product 

is intended for use at WPC, one option is the definition of the outlook: probability of 

precipitation exceeding FFG (Sweeney 1992).  However, FFG is subject to large differences in 

methodology, and thus discontinuities, between different River Forecast Centers (RFCs; Clark et 

al. 2014).  A simpler approach would be to use flash flood reports (FFRs) as the predictands, but 

FFRs are subject to substantial regional biases, as described in detail by Herman and 

Schumacher (2018c).  Alternatively, one can follow the approach of Hill and Schumacher 

(2021), also described by Schumacher et al. (2021), to take advantage of QPE exceedances of 

average recurrence intervals (ARIs) to augment FFRs in defining excessive rainfall events.  

Table 5 describes the predictands constructed for the HRRR-based system described herein.  

“HRRR2021” indicates the initial version of the HRRR-based RF system, following the 

predictand assembly used for the “NSSL1” model evaluated during FFaIR 2020 (Trojniak et al. 

Table 5: Regionally varying target vectors used for “HRRR2021”, the preliminary 
version of the HRRR RF system, evaluated during FFaIR 2021, and “HRRR2022” and 
“HRRR2023”, the subsequent version evaluated at FFaIR 2022 and 2023.   

Region HRRR2021 HRRR2022-2023 

PCST FFR+CCPA, 2-year FFR+CCPA, 2-year 

ROCK FFR+CCPA, 2-year FFR+CCPA, 2-year 

SW FFR+CCPA, 2-year FFR+CCPA, 2-year 

NGP FFR+CCPA, 1-year FFR+CCPA, 1-year 

SGP FFR+CCPA+ST4, 2-year FFR+CCPA, 1-year 

MDWST FFR+CCPA, 1-year FFR+CCPA, 1-year 

SE FFR+CCPA+ST4, 1-year FFR+CCPA+ST4, 1-year 

NE FFR+CCPA+ST4, 2-year FFR+CCPA, 2-year 
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2020), while “HRRR2022” indicates the optimized model evaluated at FFaIR 2022.  Since the 

impact of regionally varying target vectors was previously assessed by Hill and Schumacher 

(2021), we do not report on controlled tests examining these settings; however, the configuration 

for HRRR2022 - HRRR2023 follows the best-performing regional definitions found by Hill and 

Schumacher (2021).   

A more straightforward approach to defining the target vector used for the flash flood RF 

system is enabled by the availability of a Unified Flood Verification System (UFVS, Erickson et 

al. 2019), developed by the WPC.  The UFVS consists of a combination of flash flood 

observations and proxies from a number of data sources, including LSRs, USGS stream gauges, 

and Stage IV exceedances of FFG and ARIs.  The UFVS is unlikely to miss any potential flash 

flood events, and thus could serve as a replacement for the somewhat arbitrary and subjective 

selection of regional target vectors based on Stage IV and CCPA exceedances of ARIs.  It also 

has the advantage of including both static thresholds (from the ARIs) and information about 

antecedent and hydrologic conditions (from FFG).   

4.1.2. Predictor assembly 

Building off Hill and Schumacher (2021), the HRRR-based system uses similar output 

variables from the HRRR as are used for the NSSL-WRF.  We used the same variables (see their 

Table 1), with the exception of a few variables defined differently (Table 3).  In particular, 

accumulated precipitation in the HRRR is output at 1-h intervals, so the HRRR-based model is 

trained on run total accumulated precipitation; as noted in section 3.1.2, this is not an ideal 

configuration, and sensitivity tests are underway to quantify the impact of this choice.  The use 

of updraft helicity is expanded from Hill and Schumacher (2021) through use of 1-h max and 1-h 

min values for 2-5 km updraft helicity (UH).  2-5 km UH has been previously used in RFs for 
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precipitation prediction due to its association with sustained rotating storms (Nielsen and 

Schumacher 2018, 2020: Smith et al. 2023).  We use 0-6 km wind shear values, rather than the 

mean 0-6 km wind components as in Hill and Schumacher (2021).  Finally, we use 700-hPa 

vertical velocity instead of 0-3 km average vertical velocity.  In addition to these meteorological 

predictors, we use the same static inputs as Herman and Schumacher (2018a) and Hill and 

Schumacher (2021), which are related to the climatological likelihood of excessive rainfall.   

As described by Hill and Schumacher (2021), the fine scale model predictors (3 km in the case of 

the HRRR) are collected in space at 3-h intervals over the 24-h period from 12 UTC to 12 UTC, 

based on 12- to 36-h forecasts from the 00 UTC HRRR simulation, corresponding to the periods 

associated with WPC EROs.  For HRRR2021 (versions described in Table 6), predictors are 

spaced by 30 km (10 grid points), and up to 180 km from the forecast point, corresponding to a 

radius (n) of 6 nearby HRRR grid points.  The number of predictors per training label is then N = 

pt(2n + 1)2, where t is the number of forecast times (t = 9 here), amounting to 1521 predictors 

per variable p, and N = 22815 predictors per training example.  For the HRRR2023 version, we 

use a 1-h time interval instead of a 3-h interval based on sensitivity experiments in chapter 3; in 

this case t = 25, and N = 63375. 

Previous studies (e.g., Loken et al. 2022; Hill et al. 2021) have found benefit to spatial 

averaging of predictors within an RF system.  Thus, we use different aggregation approaches for 

the different versions of the HRRR-based RF, shown in Table 6.  The HRRR2022 version uses 

the OPT_AVG formulation of spatial averaging described by Hill and Schumacher (2021).  The 

HRRR2023 version includes every 3 km HRRR gridpoint within a 60 km radius to calculate the 

predictor values at each prediction point, using a spatial mean for environmental fields and a 

spatial maximum or minimum for storm attribute fields, based on the experiments in chapter 3. 
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Table 6: Versions of the HRRR RF system demonstrated at FFaIR during 2021-23, with 
their configurations. 

Version HRRR2021 HRRR2022 HRRR2023 

Training period 13 Jul 2018 – 31 Jul 
2020 (HRRRv3) 

13 Jul 2018 – 31 Oct 
2021 (HRRRv3-
HRRRv4) 

1 Apr 2020 – 31 Mar 
2023 (HRRRv4) 

Training period 

length 

750 days 1207 days 1095 days 

Masking Offshore points Offshore and non-
CONUS points 

Offshore and non-
CONUS points 

Predictor assembly HRRR2021 
approach (see text) 

OPT_AVG approach 
of Hill and 
Schumacher (2021)  

MEAN_MAX 
approach of chapter 
3 

Predictor time step 3 h 3 h 1 h 

Target vectors HRRR2021 (see 
Table 5) 

HRRR2022 (see 
Table 5) 

HRRR2022 (see 
Table 5) 

 

For the HRRR-based system, we gave some additional consideration to the masking out of non-

land areas in each of the regions shown in Fig. 10.  Since our target vectors are based partially on 

flash flood reports (Table 5), it is important to exclude from the training dataset any model 

prediction for a non-land point, where flash floods can never be observed.  This eliminates mis-

training, where the RF system learns that a certain meteorological pattern is less likely to be 

associated with flash flooding simply because it occurred over an offshore or Great Lake area.  

Table 7 describes the degree of masking for each region; in our initial HRRR2021 configuration, 

the NE region had 39% of its original points removed (although this one region did have some 

gridpoints masked out in the original configuration).  Other regions had between 3% (SGP) and 

20% (SE) of their points removed, while the continental regions ROCK and NGP regions were 

unchanged.  Some additional masking of Canadian and Mexican land areas, as well as a small 

portion of the Pacific Ocean for the PCST region, was carried out for the HRRR2022 

configuration (see rightmost column in Table 7).   
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Table 7: Number of spatial gridpoints included in each region in the original 
configuration, HRRR2021 version, and HRRR2022 version.  Shown in parentheses is the 
fractional size of the resulting region, after masking out offshore and non-CONUS points, 
compared with the original configuration.  Versions / regions where a change was made are 
highlighted in bold.  Fig. 28 shows results comparing the original configuration with the 
HRRR2021 version. 

Region Original Configuration HRRR2021 HRRR2022-

2023 

PCST 288 or 284 235 (82%) 232 (81%) 

ROCK 704 704 (100%) 704 (100%) 

SW 512 481 (94%) 459 (90%) 

NGP 484 484 (100%) 484 (100%) 

SGP 528 514 (97%) 477 (90%) 

MDWST 630 562 (89%) 540 (86%) 

NE 396 or 276 242 (61%) 242 (61%) 

SE 576 459 (80%) 459 (80%) 

 

Figure 28 shows the impact of masking upon forecast verification, for a relatively short 

verification period from 1 Aug to 15 Oct 2020.  Note that the number of events occurring during 

this period is highly spatially variable.  However, it is evident that some of the regions with 

masking (e.g., PCST and NE) exhibit significantly improved forecasts in terms of Brier Skill 

Score (BSS).  Examining Relative Operating Characteristic (ROC) curves (not shown) reveals 

that these improvements are due mostly to large gains in probability of detection with the 

additional masking.  This indicates that excluding from the training misleading gridpoints where 

observed events can never occur tends to increase the chance that the RF can predict an event.   

4.1.3. Training 

The training periods for the various configurations are described in Table 7.  The three 

training periods included 54, 85, and 77 days, respectively, in which the 00 UTC HRRR run was 

not available; these days are excluded from the training.  Training was conducted in a manner 

consistent with Hill and Schumacher (2021), relating predictor variables to occurrence of target 

vector events (Table 5).  The number of decision trees was set to 1000, the maximum number of  
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Fig. 28. Regional Brier Skill Score of HRRR-based RFs, showing (purple) the original 
configuration without offshore areas masked out from the training data, (green) HRRR2021 
version which includes masking out offshore areas, and (yellow) WPC ERO, during 2 Aug – 15 
Oct 2020. 
 

predictors evaluated at each node was sqrt(N), and entropy was used as the splitting parameter.  

The HRRR2021 version used the same number of samples across all regions: 120, while the 

HRRR2022-23 versions used a regionally varying number following the testing of Hill and 

Schumacher (2021; see Table 8).   

The initial version of the HRRR-based system (HRRR2021), with its 2-year training 

dataset, was noted to provide poor forecasts over the SW region and some adjoining regions 

(Trojniak and Correia 2021); it was hypothesized that this was due to the relative dearth of 

monsoon-related flash flood activity in the North American monsoon (NAM) region during the 

2018 – 2020 training period.  These results, combined with the relatively active 2021 NAM  
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Table 8: RF regional model configuration: minimum number of samples required to split 
an internal node. 

Region HRRR2021 HRRR2022-2023 

PCST 120 16 

ROCK 120 30 

SW 120 30 

NGP 120 120 

SGP 120 120 

MDWST 120 120 

SE 120 120 

NE 120 120 

 

season, motivated the development of the HRRR2022 version, with an extension of the training 

period through Oct 2021.   

The latest version of the HRRR-based system (HRRR2023) used a three-year training 

period based exclusively on HRRRv4; while HRRRv4 was implemented operationally on 2 Dec 

2020, it was run experimentally at NOAA GSL for more than six months prior to the operational 

implementation.  Access to these experimental HRRR data allows the training period to extend 

back to early 2020.    

4.1.4. Forecast verification 

As described in chapter 3, we verify the probabilistic RF forecasts against indications of 

flooding from the UFVS.  We evaluate forecasts of independent sets of days (shown in Table 

9a,b) in terms of Brier Skill Score (BSS), which uses a daily varying climatological baseline 

forecast constructed from the UFVS during the six-year period 1 May 2017 – 30 Apr 2023.  

Statistical significance is determined using 100 bootstrap samples of the contingency table, with 

error bars showing the 2.5th to 97.5th percentile, as shown by Schumacher et al. (2021).  

Comparison is also made with the WPC ERO issued at 09 UTC each day.  In order to compare 

RF predictions with the ERO on a level playing field, the RF predictions are discretized to the 
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same probability contours as are included in the WPC ERO.  Forecast resolution is also 

evaluated in terms of the area under the Relative Operating Characteristic (ROC) curve (AUC).   

4.2. Sensitivity experiments 

In this section, we describe a number of sensitivity experiments intended to explore the 

potential utility of a CAM-based RF model for excessive rainfall prediction, and also to 

determine the reasons for the inferior performance of deterministic CAM-based systems as 

compared with global ensemble-based system.  Table 9 shows the experiments discussed in this 

section. 

4.2.1. Impact of operational model upgrades 

A long-standing question in the ML community has been related to the impact of changes 

(of varying significance) in the configuration of operational models used for training ML 

systems.  Operational upgrades of numerical weather prediction models are quite frequent, 

potentially interrupting training periods and undermining the capability of the ML to learn bias  

 

Table 9a: Experimental configurations, part 1.  All experiments use the HRRR2021 target 
vector configuration (see Table 1).   

Configuration Unmasked HRRRv3 / 

HRRRv4 mismatch 

Extended 

training period 

HRRR+FFG 

Training 
period 

13 Jul 2018 – 31 
Jul 2020 

13 Jul 2018 – 31 Jul 
2020 

13 Jul 2018 – 
31 Aug 2021 

13 Jul 2018 – 
31 Aug 2021 

HRRR version 
for training 

V3 V3 V3-V4 V3-V4 

HRRR 
realtime 
version 

V3 V4 V4 V4 

Masking Original 2021 2021 2021 

HRRR init for 
training 

00Z 00Z 00Z 00Z 

HRRR init for 
forecast 

00Z 00Z 00Z 00Z 

Evaluation 
period 

2 Aug – 15 Oct 
2020 

2 Aug – 3 Dec 2020 17 Apr 2022 – 1 
May 2023 

5 Jul 2022 – 31 
Aug 2023 
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Table 9b: Experimental configurations, part 2.   

Configuration Realtime 06Z, 

HRRR2021 

Realtime 12Z, 

HRRR2021 

Realtime 06Z, 

HRRR2022 

Realtime 12Z, 

HRRR2022 

Training 
period 

13 Jul 2018 – 
31 Jul 2020 

13 Jul 2018 – 31 
Jul 2020 

13 Jul 2018 – 31 
Oct 2021 

13 Jul 2018 – 31 
Oct 2021 

HRRR version 
for training 

V3 V3 V3-V4 V3-V4 

HRRR 
realtime 
version 

V3-V4 V3-V4 V4 V4 

Masking 2021 2021 2021 2021 

HRRR init for 
training 

00Z 00Z 00Z 00Z 

HRRR init for 
forecast 

06Z 12Z 06Z 12Z 

Evaluation 
period 

01 Aug 2020 – 
23 Apr 2022 

01 Aug 2020 – 
23 Apr 2022 

23 Apr 2022 – 
31 Aug 2023 

23 Apr 2022 – 
31 Aug 2023 

 

characteristics and other performance features.  In this section, we describe a sensitivity 

experiment quantifying the impact of a version mismatch in the HRRR-based RF system (see 

Table 9a).   

In this experiment, we used the HRRR2021 version of our RF model, and compared 

results from applying it to the daily 00 UTC operational HRRR (consistent with the model 

version used in the 2018-2020 training) with results from applying it to the daily 00 UTC 

experimental HRRRv4, for the time period during which both were available (Aug – Dec 2020, 

prior to the 2 Dec 2020 operational implementation of HRRRv4).  Figure 29 shows the results 

from this four-month test.  Note that the experimental HRRRv4 was subject to much more 

frequent outages due to its running on a NOAA research and development machine (~25% of 

days are missing).  It is evident that the version mismatch in the experimental HRRRv4 

experiment does lead to some degradation in forecast skill on the CONUS scale (and in most  
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Fig. 29. Impact of daily HRRR version passed into the HRRR2021 model, for 2 Aug – 3 
Dec 2020.  Shown are (a) regional BSS, (b) fractional coverage of observations for each 
probability category: marginal (5-15%), slight (15-40%), moderate (40-70%), and high (>70%), 
(c) regional area under the ROC curve, and (d) CONUS ROC curves.  Experiments shown are 
(red) HRRR2021 trained and applied using HRRRv3, (orange) HRRR2021 trained with 
HRRRv3 but applied to HRRRv4, and (green) WPC ERO. 

 

sub-regions).  However, we see that the differences are generally not statistically significant for 

this short intercomparison period.  Note that HRRRv4 featured major changes to the DA 

methodology (Dowell et al. 2022), but those changes mostly affected shorter lead times (James et 

al. 2022); at the lead times used in the RF, the bias characteristics of HRRRv4 were not 

dramatically different from HRRRv3.  For this reason, these results may not be generally 

applicable to other model version upgrades.  However, these results do suggest that model 

upgrade discontinuities are not always a major problem for RF training.   
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4.2.2. Impact of initialization time mismatches 

Here we describe the results of another experiment in which we explore the impact of an 

initialization time mismatch between the trained RF model and the daily HRRR forecast to 

which the model is applied.  We carried out this experiment with both the HRRR2021 and 

HRRR2022 versions of the model, which were trained on the 0000 UTC initialization of the 

HRRR, and explored applying these trained models to the 06 and 12 UTC HRRR initializations.  

Once again, the mismatch in initialization time may undermine the capability of the RF to learn 

the performance characteristics of the HRRR; however, the assimilation of more recent 

observations ought to improve the HRRR forecasts for the later initialization times.  We aim to 

quantify the net impact of these effects.   

Overall, we see increasing forecast degradation with increasing difference in initialization 

time between the trained model and the HRRR forecast to which the model is applied (rightmost 

column of Fig. 30a).  This makes sense, as there is some temporal coherence (or run-to-run-

consistency) to the hourly HRRR forecasts; forecasters often use this information to gauge 

uncertainty (e.g., Benjamin et al. 2023).  The difference in BSS between the 00 UTC and 06 

UTC initializations is relatively small (Fig. 30a,c).  However, there are substantial regional 

differences in the degree of degradation stemming from a 12-h initialization time mismatch (Fig. 

30a,d).  The largest degradation during this ~21-month period is seen in the MDWST and 

especially the NGP region, and to some extent in the SE (Fig. 30a,d).  In the SW region, we 

actually see an improvement in BSS when there is a 12-h initialization time mismatch (Fig. 

30a,d).  On the other hand, in almost all regions, the area under the ROC curve is highest when 

there is a 12-h initialization time mismatch (Fig. 30b).   
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Figure 30: Experimental results comparing application of the HRRR2021 RF model to 
(red) 00 UTC, (orange) 06 UTC, and (yellow) 12 UTC daily HRRR simulations during 2 Aug 
2020 – 23 Apr 2023.  Shown are (a) regional BSS, (b) regional area under the ROC curve, (c) 
map of the BSS difference between the 06 UTC version and the 00 UTC version, and (d) map of 
the BSS difference between the 12 UTC version and the 00 UTC version.   

 

The increase in area under the ROC curve with a 12-h initialization time mismatch stems 

mostly from the increase in frequency of marginal risk issuance (5% probability contour; not 

shown), with the 12 UTC experiment exhibiting a higher probability of detection (POD) but also 

a higher probability of false detection (POFD) with these probabilities (not shown).  This 

indicates that the 12 UTC HRRR initialization has more signal for excessive rainfall events than 

the 00 UTC initialization.  However, as is evident from Fig. 30a, the increased probabilities from 
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the 12 UTC experiment lead to a degradation in BSS in most regions.  The only exceptions are 

the SW region and to some extent the SGP region, where the higher probabilities lead to a large 

increase in POD but not much increase in POFD.  Apparently, in the SW and SGP regions for 

this ~21-month period, the increased signal for excessive rainfall from the 12 UTC HRRR 

initialization outweighed the degradation stemming from the 12-h initialization time mismatch.   

Figure 31 shows the same experiment as Fig. 30, but with the more recent HRRR2022 

RF version; note that there is no overlap between the evaluation periods shown in Figs. 30 and 

31.  With the HRRR2022 RF, and for this more recent time period, the degradation in BSS in the 

north-central US with an initialization time mismatch is much more muted (Figs. 31a,c,d).  

However, we still see the highest area under the ROC curve in most regions with a 12-h 

initialization time mismatch (Fig. 31b), and we still see indications of improved BSS in the SW 

and SGP regions when there is a 12-h initialization time mismatch (Fig. 31a,d).   

Summarizing the initialization time experiments, applying the RF which was trained on 

the 00 UTC HRRR initialization to other HRRR initialization times does in general lead to a 

degradation in BSS.  Larger impacts are generally seen when applying the system to the 12 UTC 

initialization compared to the 06 UTC initialization, presumably because the differences in 

HRRR forecasts are much greater.  Applying the RF to the 12 UTC initialization leads to higher 

probabilities of excessive rainfall in almost every region, particularly using the HRRR2021 RF.  

This leads to an interesting north-south contrast in the impact of the initialization time mismatch.  

In the north-central US (the NGP and MDWST regions), the increase in probabilities leads to a 

large increase in POFD, which dramatically degrades the BSS for the HRRR2021 experiment.  

In contrast, in the south-central US (SW and SGP regions), the increase in probabilities leads to a  
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Figure 31: As in Fig. 30, but using the HRRR2022 RF model, and for the time period 24 
Apr 2022 – 25 Aug 2023.   
 

substantial increase in POD with minimal change to POFD, resulting in improved BSS with both 

the HRRR2021 and HRRR2022 experiments.   

Because of the different experimental periods shown in Figs. 30 and 31, it is impossible 

to separate the effect of different seasons and different meteorological regimes during the two 

periods from the effect of the differences between the two trained RFs, HRRR2021 and 

HRRR2022.  However, we can examine the frequency of UFVS events during the two periods; 

Figure 32 shows maps of the frequency of UFVS events during the two experimental periods 

shown in Figs. 30 and 31.  One difference between the two periods is the relative lack of 

excessive rainfall events in the north-central portion of the US during 2 Aug 2020 – 23 Apr 2022  
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Figure 32: Relative frequency of UFVS events during (a) 2 Aug 2020 – 23 Apr 2022, and 
(b) 24 Apr 2022 – 25 Aug 2023.   

 

(Fig. 32a), compared to the 24 Apr 2022 – 25 Aug 2023 experimental period (Fig. 32b).  This 

suggests that the dramatic impacts of initialization time mismatch in the northern US shown in 

Fig. 30 may be based on only a few excessive rainfall events from this period.  In contrast, the 

frequency of excessive rainfall events in the southern US (SGP and SW regions) appears 

relatively similar between the two experimental periods (Fig. 32), suggesting that the impact of 

initialization time mismatch seen in this region may be more robust.   

4.2.3. Impact of training period length 

In this section, we explore the impact of extension of the training period from two years 

to three years.  In general, it is expected that a longer training period would be beneficial for 



 95 

forecast skill, because it would capture a wider range of possible scenarios in the RF training.  It 

is challenging to obtain a long training period with an operational CAM, because operational 

models are updated relatively frequently (every ~2 years for HRRR; Dowell et al. 2022).  For 

this reason, our training period length experiment has the additional complication of mixing 

HRRR versions in the RF training period.  It is a high priority for future work to evaluate the 

impact of extending the training period with a static model version, for example with the 

HRRRv4 which has now been in operations for nearly three years.   

With that caveat in mind, we examine the impact of extending the training period for our 

RF from two to three years, which was one of the key recommendations from FFaIR 2021 

(Trojniak and Correia 2021).  Figure 33 shows the results of the experiment.  We do see 

statistically significant BSS improvements to the RF predictions coming from a training period 

extension in this framework.  The benefit is quite regionally variable, with the greatest BSS 

improvement seen when using a longer training period in the PCST and SW regions; BSS is 

virtually unchanged with a longer training period in central portions of the CONUS (Fig. 33a).  

In terms of forecast reliability (Fig. 33b), the extended training period does improve the 

underforecasting of the HRRR2021 version for the SLGT and MDT risk categories. 

Figure 33d shows a map of the difference in BSS between the two RFs, and similar 

patterns emerge as are indicated in Fig. 33a: substantial BSS improvements are seen in the 

western CONUS, with more mixed results in the central and eastern US.   

Due to the operational HRRR upgrade on 2 Dec 2020, it is possible that the training 

length extension benefit would be even greater if a static version of the underlying CAM was 

used for this experiment; future work should examine this question in a more controlled 

experiment.   
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Figure 33: Experimental results comparing performance of the HRRR2021 RF model 

(red) to an identical model with a training period extended to three years but also mixing 
HRRRv3 and HRRRv4 (cyan) during 17 Apr 2022 – 1 May 2023.  Shown are (a) regional BSS, 
(b) fractional coverage of observations for each probability category: marginal (5-15%), slight 
(15-40%), moderate (40-70%), and high (>70%), (c) regional area under the ROC curve, and (d) 
map of the BSS difference between the 3-year-training period version minus HRRR2021.   

 

4.2.4. Impact of an additional predictor on soil conditions 

One potential weakness of RFs trained exclusively on model forecasts is the lack of 

predictor information regarding the soil state or antecedent conditions.  The effects of heavy 

rainfall are known to be highly variable depending on the underlying land surface type as well as 

soil wetness.  To explore this question, we trained an additional RF which has a 16th predictor: 



 97 

gridded 6-h flash flood guidance (FFG).  FFG is produced by the RFCs, and is intended to reflect 

the amount of precipitation in a given duration that would be expected to lead to bank-full 

conditions.  Including FFG as an additional predictor allows the RF to learn about values of FFG 

that are more likely to lead to flash flooding.  Note that FFG exceedances are one component of 

the UFVS used for forecast verification, but there are other components including stream gauge 

observations and local storm reports of flooding.  We used the daily 00 UTC 6-h gridded FFG.   

As shown in Fig. 34a, including FFG leads to a statistically significant improvement in 

BSS on the CONUS scale (rightmost set of bars).  Regionally, BSS improvement from including 

FFG is seen in every region except the SE and NGP.  In terms of forecast reliability, including 

FFG greatly reduces the underprediction bias in the HRRR2022 RF (Fig. 34b), which is seen 

most dramatically for the slight and moderate risk categories (15% and 40% probability 

contours).  Including FFG also leads to an improvement in forecast resolution in all regions (Fig. 

34c).  Regionally, the most notable BSS improvements are seen in northern California, the area 

from southeastern Wyoming to central New Mexico, and in Texas.  Some of these BSS 

differences may be due to regional variability in FFG methodology.  It is clear that, overall, 

including an additional predictor related to soil saturation and/or antecedent conditions is 

beneficial for the performance of the RF.     

4.3. FFaIR evaluation 

Since 2021, the HRRR-based RF for excessive rainfall has been evaluated both 

objectively and subjectively by participants at the Flash Flood and Intense Rainfall Experiment 

(FFaIR; Barthold et al. 2015).  As shown in Table 6, each subsequent year’s HRRR-based RF 

has had a different configuration aimed at improving the forecast skill.  In this section, we  
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Figure 34: Experimental results comparing performance of the HRRR2022 RF model 

(red) to an identical model using FFG as an additional predictor, for 6 Jul – 27 May 2023.  
Shown are (a) regional BSS, (b) fractional coverage of observations for each probability 
category: marginal (5-15%), slight (15-40%), moderate (40-70%), and high (>70%), (c) regional 
area under the ROC curve, and (d) map of the BSS difference between the RF including FFG and 
the traditional RF (HRRR2022).   
 
 

present quantitative verification of the three HRRR-based RF versions evaluated at FFaIR, in 

addition to subjective feedback from FFaIR participants.   

FFaIR has been held annually during the summer months since 2013, with a focus on 

evaluating the utility of high-resolution models and ensembles for flash flood forecasting, 

exploring new tools and approaches for combining meteorological and hydrologic information, 

and exploring improvements to WPC’s operational forecasts (Barthold et al. 2015).  The 

experiment is generally configured with a fixed set of participants each week, including 

representatives from academia, research laboratories, and operational forecasting offices.  The 
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experiments were held in person at the Hydrometeorology Testbed during 2013-2019, and 

virtually during 2020-2022 due to the COVID-19 pandemic.  The 2023 FFaIR featured a hybrid 

in person / virtual format.  As with all real-time experiments, there is a great deal of variability in 

the meteorological regime from year to year; for FFaIR, this corresponds to substantial regional 

shifts in the locations of the country experiencing excessive rainfall from year to year.  It is 

important to keep this in mind when synthesizing the FFaIR results.   

4.3.1. FFaIR 2021 

In 2021, FFaIR was held from 21 Jun – 23 Jul 2021 (Trojniak and Correia 2021).  Due to 

the COVID-19 pandemic, the experiment was held virtually, with two dedicated facilitators from 

HMT.  The experiment had 58 participants spanning the four weeks of the experiment 

(evaluation occurring Monday – Friday).  While a major focus of the experiment was an 

evaluation of early prototypes of the Rapid Refresh Forecast System (RRFS) based on the Finite 

Volume Cubed-sphere (FV3) dynamical core, a part of the evaluation focused on machine-

learning based excessive rainfall outlooks provided by Colorado State University, including the 

first version of the HRRR-based system described herein (HRRR2021).   

As noted by Trojniak and Correia (2021), heavy rainfall events over the CONUS during 

FFaIR 2021 were characterized by forcing associated with frontal passages and the return of the 

NAM, the latter of which was largely absent during FFaIR 2020.  Major events from the first two 

weeks of FFaIR included heavy rainfall across northern Missouri associated with a stalled frontal 

boundary on 24-25 Jun, flash flooding in southern Utah on 28-29 Jun, and heavy rainfall in 

Colorado and Oklahoma on 1-2 Jul (Trojniak and Correia 2021).  During the latter half of FFaIR 

2021, there was extreme rainfall in Pennsylvania / New Jersey on 12-13 Jul leading to issuance 

of a Flash Flood Emergency, heavy rain in New York on 14 and 19 Jul, and widespread 



 100 

monsoon activity in the southwestern US including training convection in southern Utah during 

15-16 Jul which led to a train derailment, flash flooding and debris flows near Flagstaff, Arizona, 

during 13-14 Jul, and a number of burn scar debris flows in Colorado during 20-29 Jul (Trojniak 

and Correia 2021).   

The HRRR2021 RF did not receive favorable subjective ratings during FFaIR 2021.  

Figure 35 shows the subjective scores during (top) the first two weeks of FFaIR 2021 and 

(bottom) the final two weeks of FFaIR 2021.  The HRRR2021 received the lowest scores of any 

of the CSU RFs during both periods.  However, during the second half of the experiment, when 

the NAM was active, HRRR2021 ratings dropped even as ratings for the other RFs generally 

increased.  This indicates that the low ratings were due in part to poor performance (too low 

probabilities) in the southwestern CONUS.  The FFaIR report (Trojniak and Correia 2021) 

hypothesized that the poor performance of the HRRR2021 in this region was due to the lack of 

an active monsoon in the training period, and put forth the recommendation that the HRRR-

based RF be retrained for a longer period which should include the active 2021 NAM season.  

This recommendation motivated the extension of the training period for the subsequent version 

of the HRRR-based RF (Table 6).   

Quantitative verification of the HRRR2021 (Fig. 36) agrees with the subjective ratings of 

Trojniak and Correia (2021).  Figure 36 shows a quantitative evaluation of the HRRR2021 RF 

against the other CSU ML-based EROs, as well as the 09 UTC WPC EROs, during the nearly 

three years of overlapping forecasts.  Note that evaluation over this period involves a much 

broader spectrum of seasonal and meteorological environments than just the FFaIR 2021 period.  

Also, note that the NSSL-WRF RF shown in Fig. 36 corresponds to the “NSSL2” model shown 

in Fig. 35.  On the CONUS scale, the HRRR2021 has a lower BSS than the other two RFs (Fig.  
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Fig. 35. Summary of subjective scores of the various RFs evaluated by FFaIR 2021 
participants during (top) 21 Jun – 2 Jul 2021 and (bottom) 12-23 Jul 2021.  The HRRR2021 RF 
is labeled as “HRRR”.  Figure is from Trojniak and Correia (2021).   

 

36a).  It performed particularly poorly with respect to the other RFs in the SW, ROCK, and SGP 

regions (Fig. 36a).  In terms of reliability, Fig. 36b shows that HRRR2021 underpredicts the 

probability of excessive rainfall.  Figure 36d shows that HRRR2021 has a lower POD than the 

other RFs, resulting in a smaller area under the ROC curve (Fig. 36c).   

In summary, the HRRR2021 RF significantly underpredicted the risk of excessive 

rainfall, undermining the ability of the predictions to compete with other candidate RFs and the 

operational WPC ERO.  As the first candidate RF for excessive rainfall based on a deterministic 

CAM, it is not surprising that further development was needed in order to address forecast 

deficiencies.  Subsequent HRRR-based RF versions are described in the following sections.   
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Fig. 36. Comparison of HRRR2021 version with WPC ERO and other CSU ML-based 
EROs during 2 Oct 2020 – 11 Jul 2023.  Shown are (a) regional BSS, (b) fractional coverage of 
observations for each probability category: marginal (5-15%), slight (15-40%), moderate (40-
70%), and high (>70%), (c) regional area under the ROC curve, and (d) ROC curve, showing 
HRRR2021 RF (red), NSSL-WRF RF (blue), GEFS RF (purple), and WPC ERO (green).   
 

4.3.2. FFaIR 2022 

In 2022, FFaIR was virtually held from 21 Jun – 22 Jul 2022 (Trojniak and Correia 

2022), and featured a continued focus on evaluation of prototypes of the RRFS.  The FFaIR 2022 

period was characterized by a relative dearth of large-scale excessive rainfall events.  In 

particular, there were relatively few mesoscale convective systems (MCSs), which are normally 

a major contributor to excessive rainfall over central and eastern portions of the CONUS.  The 

NAM was relatively active during 2022, although many of the excessive rainfall events 

associated with the NAM occurred after the formal FFaIR period.  Significant flash flooding 
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events during FFaIR 2022 included training convective elements in southern West Virginia and 

western Virginia during 12-13 Jul, and training cells in southern Kentucky / northern Tennessee 

during 21-22 Jul.   

The HRRR2022 version was designed to address some of the concerns raised in FFaIR 

2021 (Table 6).  The training period was extended from two years to three years, to include the 

active 2021 NAM season.  HRRR2022 also incorporated the OPT_AVG spatial averaging 

approach of Hill and Schumacher (2021).   

Once again, during FFaIR 2022, the HRRR-based RF, HRRR2022, received poor 

subjective ratings.  Figure 37 shows subjective ratings from the FFaIR 2022 participants.  

Participants noted that HRRR2022 “struggled to forecast an excessive rainfall risk, but when it 

did, the marginal risk areas were too large and noisy.”  It was also noted that the offshore risk 

areas were distracting and made the forecasts difficult to look at.   

Figure 38 shows objective validation of the HRRR2022 RF for a 2022-2023 evaluation 

period.  Comparing Fig. 36 with Fig. 38, it is evident that the HRRR2022 RF exhibits improved 

forecasts compared to the HRRR2021 RF.  On the CONUS scale, HRRR2022 performs 

comparably to the NSSL-WRF in terms of BSS (Fig. 38a).  The HRRR2022 continues to 

underforecast excessive rainfall probabilities compared to the other systems (Fig. 38b), and has 

inferior forecast sharpness compared to the NSSL-WRF RF (Fig. 38c,d).  Notably, HRRR2022 

exhibits similar BSS to the NSSL-WRF in the SW region (Fig. 38a), reflecting the improvements 

incorporated in the HRRR2022 version.   
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Fig. 37. Summary of subjective scores of the various RFs evaluated by FFaIR 2022 
participants during 21 Jun – 23 Jul 2022.  The HRRR2022 RF is labeled as “HRRR”.  The blue 
boxes indicate RFs that are initialized from 1200 UTC model data.  Figure is from Trojniak and 
Correia (2022).   
 

4.3.3. FFaIR 2023 

The 2023 incarnation of FFaIR was somewhat modified from prior years.  For the first 

time, the experiment was held in a hybrid format, and was extended to a longer time period, 

extending from 5 Jun – 11 Aug 2023 (Trojniak and Correia 2023), with three weeks off during 3-

7, 17-21, and 24-29 Jul.  Because the experiment only ended recently, final objective and 

subjective verification results are not yet available, so we present here our own objective 

evaluation of the HRRR2023 version of the HRRR-based RF.     

The HRRR2023 RF was designed to address some noted problems with the HRRR2022 
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Fig. 38. As in Fig. 36, but showing HRRR2022 RF, and for the period 20 Apr 2022 – 11 
Jul 2023.   

 

RF.  In particular, the training period was revised to extend from 1 Apr 2020 – 31 Mar 2023, and 

to include only HRRRv4.  In addition, based on the results of sensitivity experiments described 

in chapter 3, the predictor assembly procedure was modified to use a spatial maximum or 

minimum of all nearby 3-km gridpoints for storm attribute predictor fields, and a spatial mean 

for environmental predictor fields.  The predictor time step was also shortened from three hours 

to one hour.  Finally, offshore probabilities were masked out, following the recommendation 

from FFaIR 2022.   

Figure 39 shows quantitative evaluation of the HRRR2023 version for the period in 

which it has been running.  On the CONUS scale, the HRRR2023 version exhibits a slightly  
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Fig. 39. As in Fig. 36, but showing HRRR2023 RF, and for the period 27 May – 9 Oct 
2023. 

 

higher BSS than the NSSL-WRF RF, which is an improvement over the HRRR2022 version 

(Fig. 39a).  In terms of reliability (Fig. 39b), the HRRR2023 RF has a more optimal fractional 

coverage of UFVS events in the marginal and slight risk categories compared to the HRRR2022 

RF (cf. Fig. 38b).  The HRRR2023 RF also, for the first time, exhibits a comparable degree of 

resolution to the NSSL-WRF RF (Fig. 39c,d).  Note that the relatively short period of evaluation 

means that excessive rainfall events were hardly observed in the PCST region, so it is difficult to 

draw any conclusions about the HRRR2023 RF performance in this region.   

To summarize the various versions of the HRRR-based RF, Fig. 40 shows the three 

versions compared for the ~four-month period for which all three RFs are available.  Focusing  
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Fig. 40. Comparison of three versions of the HRRR-based RF with WPC ERO during 27 
May – 9 Oct 2023.  Shown are (a) regional BSS, (b) fractional coverage of observations for each 
probability category: marginal (5-15%), slight (15-40%), moderate (40-70%), and high (>70%) 
for the CONUS, (c) regional area under the ROC curve, and (d) fractional coverage of 
observations for each probability category: marginal (5-15%), slight (15-40%), moderate (40-
70%), and high (>70%) for the SW region. 
 

on the CONUS-wide BSS (Fig. 40a, rightmost set of bars), we see the steady increase in skill of 

each year’s HRRR-based RF, with each year statistically significantly better than the last.  This 

year-over-year improvement is also seen in some of the individual regions, including the NE, 

MDWST, SGP, and ROCK regions.  In terms of reliability, we also see a year-over-year 

improvement in the SW (Fig. 40d), manifested most notably as a decrease in underprediction 

bias for the slight risk category (second set of bars).  In terms of resolution, the regional area  



 108 

under the ROC curve also exhibits a year-over-year improvement (Fig. 40c), both regionally and 

on the CONUS scale, with the HRRR2023 RF having the highest resolution in all regions.   

Interestingly, the largest exception to the BSS improvements outlined above is in the SW 

region.  In this region, and for this short time period, the HRRR2023 RF exhibits a lower BSS 

than the HRRR2022 RF (second set of bars in Fig. 40a).  Figure 40d shows the reliability of the 

different HRRR-based RFs in the SW region for this period, in terms of the fractional coverage 

of events in each of the WPC risk categories.  As is evident in Fig. 40d, the HRRR-based RF in 

this region has exhibited a shift from underprediction of excessive rainfall risk with the 

HRRR2021 RF, to a more reliable prediction of risk with the HRRR2023 RF; however, for the 

marginal risk category (5-15% probability), the HRRR2023 RF verifies near the lower 

probability bound (5%; nearly an overprediction).  As documented by Gallo et al. (2016), the 

area under the ROC curve tends to reward overpredictions, leading to a net increase in area under 

the ROC curve in this region; the HRRR2023 RF actually exhibits superior AUC to the WPC 

ERO (Fig. 40c, second set of bars).  But for BSS (Fig. 40a), the overprediction is penalized such 

that the HRRR2023 RF has lower BSS than the HRRR2022 RF in the SW region. 

Given results described in chapter 3 exploring the impact of the spatial predictor 

assembly approach used in the HRRR2023 RF, as well as the shorter predictor time step, the 

question arises whether these results are representative of the RF performance overall.  The 

NAM season of 2023, encapsulated by this time period, was quite unusual, with a dearth of 

overall classic NAM excessive rainfall events during most of the season, but a major event with 

the landfall of Hurricane Hilary in California on 20 Aug 2023.  Figure 41 shows a time series of 

BSS for the SW region during the 27 May – 15 Sep 2023 period.  BSS is calculated from 

forecasts aggregated over week-long periods, going from Friday to Thursday of each week.  The  
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Fig. 41. Weekly time series of Brier Skill Score in the SW region during summer 2023, 
comparing the HRRR2021, HRRR2022, and HRRR2023 RFs.  Solid lines are the BSS, with the 
shading indicating the 95% confidence interval.   

 

breadth of the confidence intervals is inversely proportional to the number of UFVS events 

during each week-long period; it is evident that the first half of the evaluation period featured 

relatively few excessive rainfall events in the SW region.  Starting in mid to late July, the BSS of 

the HRRR2023 RF drops to near zero for several weeks, and is notably lower than the BSS of 

either the HRRR2021 or HRRR2022 RFs.  Excessive rainfall related to Hurricane Hilary took 

place during 19-21 Aug, and is captured in the second-to-last weekly point in the time series; all 

the RFs had relatively higher scores during this week, but the HRRR2023 RF still had the lowest 

BSS.  The final week in the time series, 26 Aug – 1 Sep, featured a NAM surge and fairly 
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widespread excessive rainfall in the SW region; for this week, the HRRR2023 RF had the 

highest BSS.   

Figure 42 shows some example forecasts from the three RFs.  The forecasts appear 

broadly consistent with the results shown in Fig. 41: each subsequent year’s HRRR-based RF 

version predicts higher probabilities of excessive rainfall in the SW region.  For the Hurricane 

Hilary event on 20-21 Aug 2023 (Fig. 42a-c), the HRRR2021 RF predicts excessive rainfall 

probabilities that appear too low (10-25% in most of the regions that ended up experiencing 

widespread excessive rainfall).  These probabilities are increased in the HRRR2022 RF, and 

increased further in the HRRR2023 RF, but with the introduction of some false alarm area,  

particularly in the eastern portion of the risk area (Arizona and southwestern Utah).  For this 

case, based on the BSS time series shown in Fig. 41, it appears that the penalty from the 

HRRR2023 RF false alarm outweighed the benefit of higher probabilities where excessive 

rainfall was observed.   

The case of 24-25 Aug 2023 is shown in Figs. 42d-f; in this case, the HRRR2021 RF 

forecasted probabilities of less than 5% throughout the SW region.  The HRRR2022 RF had a 

small area of 5-10% probability in the Four Corners region.  But the HRRR2023 RF did a much 

better job highlighting the true risk area, with a region of 15-20% probabilities near the Four 

Corners and a 10-15% risk area extending northeastward into western Colorado.  A final case, 1-

2 Sep 2023, is shown in Fig. 42g-i; major flash flooding occurred in Las Vegas, Nevada, on this 

day.  Again, the HRRR2023 RF has the highest probabilities (>25% in southern Arizona and far 

southeastern California), which appeared appropriate on this day.  Also, interestingly, the 

HRRR2023 RF had a much more successful forecast in Florida on this day.   
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Fig. 42. RF forecasts of probability of excessive rainfall for (a-c) 12 UTC 20 Aug – 12 
UTC 21 Aug 2023, (d-f) 12 UTC 24 Aug – 12 UTC 25 Aug 2023, and (g-i) 12 UTC 1 Sep – 12 
UTC 2 Sep 2023.  Shown are (left column) HRRR2021, (middle column) HRRR2022, and (right 
column) HRRR2023 RFs.  Note that the color scheme is different from the operational WPC 
ERO risk category convention.  UFVS events occurring during each 24-h period are overlaid on 
the forecasts.      
 

To summarize, these preliminary results on the HRRR2023 RF suggest that the new 

system may have an overprediction bias in the SW; however, the unusual nature of the NAM 

season during 2023, in addition to the relatively short period of evaluation, suggest that 

additional verification is needed to obtain more robust results.   

4.4. Discussion and Conclusions 

In this article, we have described the first RF for excessive rainfall prediction based on an 

operational CAM, the HRRR.  Training RFs using operational models leads to some unique 

challenges, which we explore using sensitivity experiments.  Without the availability of a “re-

forecast” dataset, such as that used for the GEFS-based system (Herman and Schumacher 
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2018a), time periods with a frozen model configuration are relatively short in duration for 

training an RF to predict rare events.  We explore the impacts of this reality through testing the 

effects of an extended training period which mixes HRRR versions, and through testing the 

impact of applying an RF trained on HRRRv3 to the operational HRRRv4.  Overall, our results 

suggest that there is a forecast degradation associated with a mismatch between the model 

version used in training versus that used for the daily application.  We also find that extending 

the training period from two to three years does lead to statistically significant forecast benefit, 

with more benefit seen in the SW and PCST regions.     

Applying a HRRR-based RF trained on the 00 UTC simulations to HRRR simulations 

initialized at different times does lead to a forecast degradation, although the degree of 

degradation varies by region of the CONUS.  Interestingly, we find slightly improved forecasts 

in the southern CONUS when applying the 00 UTC RF to the 12 UTC daily HRRR simulations.  

Future work should clearly explore the value of re-training the HRRR-based RF using the 06 and 

12 UTC simulations.   

A separate experiment exploring the impact of including an additional predictor based on 

the gridded FFG for each day reveals statistically significant improvement to BSS when FFG is 

included.  Including FFG as an additional predictor allows the RF to forecast higher probabilities 

of excessive rainfall more frequently, which leads to a bulk improvement in BSS.  This 

experiment can be thought of as a first step towards integrating hydrologic predictors into RF-

based excessive rainfall predictions.   

We provide an evaluation of three versions of the HRRR-based RF demonstrated at the 

annual FFaIR experiment during 2021-23.  Overall, each year’s HRRR-based RF has improved 

upon the previous year’s system, with quantitative forecast improvements seen in terms of BSS, 
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forecast reliability, and resolution.  Comparison with other CSU RFs reveals that the HRRR-

based system is competitive with that based on the NSSL-WRF, but both CAM-based RFs are 

inferior to the WPC ERO and to the GEFS-based RF.   

For our summer 2023 evaluation period, we found some interesting version-to-version 

differences in performance in the SW region.  In particular, the HRRR2023 RF, despite having a 

strictly HRRRv4 based training period, using spatial aggregation of predictors across all HRRR 

gridpoints, and using a shorter predictor time step, exhibited a lower BSS in the SW region than 

the earlier versions of the HRRR-based RF.  Examination of the verification revealed that the 

lower BSS was due to an overprediction bias, especially for the lower risk categories.  A weekly 

time series of BSS between the different RF versions revealed variability in the BSS of the 

HRRR2023 version, with lower BSS during most of the NAM season from mid-July to mid-

August.  However, the unusual nature of the 2023 NAM season, with relatively few excessive 

rainfall events during most of the season except for the exceptional few days surrounding the 

arrival of Hurricane Hilary, brings into question the representativeness of these results.  Further 

verification is needed to definitively evaluate the HRRR2023 version.   

These results help to highlight several promising areas of future work.  The beneficial 

impact of using the UFVS to define events for training an RF increases the importance of further 

refining the UFVS.  The existence of heavy snowfall events in the UFVS in the western US is a 

continuing challenge for verification of both operational and ML-based excessive rainfall 

predictions; some of the higher skill seen in the RF-based systems compared to the WPC ERO in 

the PCST region is due to these events (see, for example, Fig. 30a).   

The improved RF skill stemming from use of FFG as an additional predictor raises the 

question of what other additional predictors could be brought into an RF framework?  We have 
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explored only the 6-h FFG in this work; it is possible that additional benefit could be gained 

from using other durations, perhaps varying by region.  Also, we have not explored varying the 

meteorological predictor fields from HRRR; it may be that other HRRR fields, or combinations 

of fields, could provide valuable information for predicting excessive rainfall.  For example, one 

could envision an integrated water vapor flux predictor, or a warm advection predictor which is 

constructed from 925-hPa winds and the horizontal temperature gradient.  Future work should 

explore the incorporation of information from additional predictors, in tandem with taking 

advantage of increasingly sophisticated deterministic and ensemble modeling systems, to 

improve the tools available to forecasters for predicting the occurrence of excessive rainfall.   
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CHAPTER 6: CONCLUSIONS 
 
 
 

Flash flooding is a critical societal problem, and will remain one for the foreseeable 

future.  It is important to evaluate current tools available for accurate prediction of excessive 

rainfall, for time scales ranging from the next couple of hours to sub-seasonal forecasts, as well 

as to advance the skill of available tools.   

As described in chapter 2, there are many outstanding issues with existing QPE with 

regards to how well they represent excessive rainfall leading to flash flooding.  Other work has 

validated QPE against high-quality, independent observations (e.g., Nelson et al. 2016; Cocks et 

al. 2016); in this work, we follow the approach of Herman and Schumacher (2018c) to evaluate 

the correspondence of QPE exceedances of various thresholds with observed flash flooding 

events.  We find that dramatic uncertainty persists among the various available QPE datasets, 

even in relatively well-observed regions.  In agreement with previous studies, there is greater 

correspondence between FFRs and QPE exceedances in the eastern CONUS than in the western 

CONUS.  Stage IV QPE has the best correspondence with observed FFRs in almost all regions 

of the CONUS, and 6-h duration QPE exceedances correspond better with FFRs than 1-h 

duration QPE exceedances everywhere except in the western CONUS.  Overall, FFG is the best 

threshold for correspondence with FFRs, which is an encouraging result highlighting the value of 

the FFG dataset.   

Evaluating HRRR QPF in this same framework reveals generally inferior correspondence 

to FFRs in most regions, which is an expected result.  However, in some regions of the coverage 

with sparse rain gauges and poor radar coverage, such as the SW region, HRRR 1-h QPF 
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exceedances actually correspond better with FFRs than any QPE exceedances, suggesting that 

model forecasts should play a role in QPE in poorly-observed regions.   

Since prediction of excessive rainfall remains so challenging, it is important to advance 

the skill of tools available to operational forecasters.  In the remainder of this work, we describe 

an RF based on predictors from the deterministic HRRR model.  Sensitivity experiments with 

this RF complement recent work on RFs using predictors from global and high-resolution 

ensembles.  In chapter 3, we described sensitivity experiments exploring the spatial aggregation 

of predictors (how best to reduce the dimensionality of high-resolution predictor information), as 

well as the predictor time step, and use of a “poor man’s ensemble” of predictor information 

constructed from time-lagged HRRR initializations.  We find that it is important to consider 

information from every high-resolution predictor grid point, and we find best performance when 

using a spatial maximum or minimum for “storm attribute” type predictors.  We find minimal 

impact of using a shorter (1-h) time step compared to a longer (3-h) time step.  The spatial 

aggregation of predictor information benefits forecasts most in cases of small-scale precipitation 

maxima, reflecting the importance of providing the RF with an accurate representation of the 

magnitude of the expected precipitation.   

Calculation of feature contributions using the tree interpreter software sheds some light 

on the reasons for improved forecasts from the spatial aggregation experiment.  In particular, 

taking a spatial maximum of the QPF predictor allows that predictor to make larger positive 

contributions to the resulting excessive rainfall forecast compared to considering the QPF 

predictor information only at sparse input grid points.   

Use of time-lagged ensemble predictor information from HRRR allows us to explore 

whether the inclusion of ensemble information is an important factor in RF performance for 
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excessive rainfall prediction.  We find a statistically significant improvement in HRRR-based RF 

predictions when we include time-lagged ensemble predictor information.  Note that the time-

lagged ensemble of the 0000, 0600, and 1200 UTC HRRR initializations is far from a formally 

designed ensemble, and likely does not provide the quality of predictor information as could be 

contained in a formal CAM ensemble; use of predictors from a formal CAM ensemble is left for 

future work, but would likely mirror successes with RFs predicting severe convective hazards 

based on the High Resolution Ensemble Forecast (HREF) system (Loken et al. 2020) or the 

Warn on Forecast System (WoFS; Clark and Loken 2022).   

In chapter 4, we described a number of additional sensitivity experiments, exploring the 

impact of a version mismatch between the RF trained on the HRRRv3 and applied to the 

HRRRv4 for daily forecasts, the impact of a training length extension from two to three years, 

the impact of applying the RF trained on the 0000 UTC HRRR initialization to other HRRR 

initializations, and the impact of including an additional predictor based on Flash Flood 

Guidance (FFG).  We find only a small degradation in forecast skill when there is a mismatch in 

HRRR version, but improved forecasts when using an extended training period; the latter 

experiment is complicated by the fact that the three-year training period included both HRRRv3 

and HRRRv4.   Use of the RF trained on the 0000 UTC HRRR initialization to issue forecasts 

based on the 0600 and 1200 UTC HRRR initializations also shows somewhat mixed results.  In 

all regions but the NGP and MDWST, results are consistent across two different versions of the 

HRRR-based RF.  Skill generally decreases with increasing initialization time difference in the 

eastern CONUS, but is improved relative to a consistent initialization time when the 0000 UTC 

RF is applied to the 1200 UTC HRRR initialization.  In the NGP and MDWST, we found 
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dramatically degraded skill when applying the 0000 UTC RF to the 1200 UTC initialization with 

an earlier version of the HRRR-based RF, but not with a later version of the HRRR-based RF.   

Finally, we evaluate three versions of the HRRR-based RF which were examined in 

realtime at the Flash Flood and Intense Rainfall (FFaIR) experiment.  On the CONUS scale, we 

find statistically significant skill improvements with each subsequent year’s HRRR-based RF, 

which reflects the knowledge gained from many of the sensitivity experiments described earlier.  

Evaluation of the most recent version of the HRRR-based RF is somewhat challenging due to the 

short period of record, but we find that the HRRR2023 version exhibits degraded BSS in the SW 

region.  This is counter-intuitive due to the incorporation of the spatial aggregation approach and 

finer time step described in chapter 3.  Further investigation reveals that the lower BSS stems 

from an overprediction of risk at the lower probability ranges (i.e., marginal risk predictions that 

are too numerous and spatially extensive).  Future work should continue to investigate the 

reasons for this overprediction, and the associated meteorological situations.   

Several other important avenues for future investigation are suggested by our findings.  In 

particular, additional work examining the impact of operational model upgrades could be 

informative.  The results shown here are not necessarily representative of other model upgrades, 

and there could be an important dependence on the nature of associated data assimilation and 

model changes.  In addition, a cleaner comparison of training period length is needed, in which 

fixed model versions are used for training.  Future work could explore how the forecast impacts 

of initialization time mismatch (e.g., applying an RF trained on the 0000 UTC HRRR to other 

HRRR initializations) are associated with the variability in raw model performance across 

initialization times.  It would also be interesting to directly re-train an RF based on the 0600 and 
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1200 UTC HRRR initializations, although the latter may have limited operational utility due to 

the forecast latency.   

The fundamental question remains: why are the CAM-based RFs still inferior to the 

GEFS-based RF?  Is it because of the higher signal to noise ratio?  Is it due to the fundamental 

challenge of predicting convective organization?  Is it the lack of formal ensemble information?  

In the next few years, a formal ensemble based on the next-generation Rapid Refresh Forecast 

System (RRFS) will become operational in the US, providing rich opportunities for post-

processing and machine learning.  An additional opportunity coming in the RRFS era is the 

extension of convection allowing grid spacing beyond the CONUS to cover all of North 

America, Hawaii, and even the Arctic, raising the possibility of RF-based predictions of 

hazardous weather outside of CONUS.  Of course, the challenge will be the availability of 

datasets of observed events for constructing a target vector.  As more sophisticated modeling 

tools reach operations, RF systems, as well as more advanced ML approaches, will be able to 

take advantage of new products to provide improved forecasts for high-impact weather events, 

including excessive rainfall, which promises to remain a major societal challenge in the coming 

decades.   
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