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ABSTRACT

MULTILOCUS GENETIC ASSOCIATIONS WITH OBESITY OUTCOMES IN HISPANIC AND
NON-HISPANIC WHITES USING A PRINCIPAL COMPONENTS REGRESSION APPROACH:

THE SAN LUIS VALLEY DIABETES STUDY

Introduction: The overweight and obesity crisis in America has reached alarming
rates with little progress of reversing the trend, despite much effort. Heritability has been
estimated at up to 70%, though it is still unclear how genetics respond to environmental
pressures. Evaluating groups of genes that are known to influence metabolic pathways has
given some insight into the variation we see in body composition and prevalence of
metabolic diseases.

Methods: Data from the San Luis Valley Diabetes Study’s third examination were
utilized (1997-1998, n=837). One hundred seven single nucleotide polymorphisms (SNP)
were selected from 22 genes that have previously been associated with obesity and type 2
diabetes (T2D) in a cohort of Hispanic and non-Hispanic white (NHW) individuals. Genetic
data were reduced to a smaller set of derived factors using principal components analysis
(PC). Associations were determined between factors and obesity outcomes.

Results: Hispanics were more likely to have T2D than NHW (19% vs. 11%). Sample
minor allele frequencies for 100 analyzable SNPs varied between the two groups with the
minor alleles of rs8059937 (A2BP1) and rs6822807 (UCP1) being significantly more
prevalent in Hispanics and rs11724758 (FABP2) and rs2239179 (VDR) significantly more
prevalent in NHWs. SNP variance was redistributed into orthogonal components and 32

were retained for analysis, accounting for 77% of the total variance in genetic data. The
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combined genetic information increased predictive power of increases in body mass index
(BMI) from the study baseline by 5.6% in Hispanics. Genetic data increased predictability
of BMI and waist circumference (WC) in NHWs by 7.5% and 5.1%, respectively. Both
groups had a significant increase in knowledge gained (18%) for the prevalence of T2D
when genetic information was added to the base model. SNPs from UCP1 loaded strongly
onto PC4, which was associated with BMI change in Hispanics and BMI, WC, and T2D in
NHWs. PC7 represented SNPs from RBP4 and FABP2, which was associated with diabetes
status in both groups. All obesity outcomes were associated with PC15 in Hispanics,
symbolizing SNPs on the PPARD and RBP4 genes. NHWs showed additional associations
with components having strong loadings from SNPs on multiple genes, including ADIPOQ,
GC, VDR, PPARG, PPARGC1A, PPARD, UCP2, UCP3, and AlOX15.

Conclusions: When combined together, multilocus genetic data show a larger
influence on obesity outcomes than single polymorphisms alone. Base variations in UCP1,
RBP4, and FABPZ2 gene sequences are associated with change in BMI and diabetes status in

Hispanics and BMI, W(, and diabetes status in NHWs .
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CHAPTER 1

Introduction

The overweight and obesity crisis in America has been escalating for three decades
with little hope of resolution, as only one-third of the US population remain at a healthy
body weight (BMI<25). More alarming, this epidemic has gone global and is indiscriminate
of age, gender, nationality, or socio-economic status (Ogden, Carroll, Kit, & Flegal, 2012;
Flegal, Carroll, Ogden, & Curtin, 2010). The Centers for Disease Control and Prevention has
declared obesity the number one health risk in America, leading to diseases such as type 2
diabetes mellitus (T2D), heart disease, hypertension, and the metabolic syndrome;
overwhelming the health care system, both practically and financially. Despite much effort
to determine the cause, prevention, and treatment of this problem, little progress has been
made, leading researchers to think beyond traditional practices and theories.

By now, it is well understood that excess weight results from an imbalance of
calories consumed versus calories expended. However, it is not clear why some individuals
suffer from this trend of weight gain and its metabolic consequences, while others faced
with the same environmental pressures do not. The answer to this challenging dilemma is
multifactorial, requiring an integrated knowledge of energy balance, genetic predisposition,
environmental influences, and social and cultural behaviors. It is likely that common gene-
environment interactions have become vulnerable to the eat-more, exercise-less pressures
in modern-day society. All things considered, a successful intervention strategy will be
tailored to the risks and weaknesses of individuals’ perceived genetic outcome (Wake et al.,

2009; Hill, 2006; Mitchell, Catenacci, Wyatt, & Hill 2011).



Hispanics are the fasted growing subpopulation in the United States, accounting for
15% of the total US population, and currently have the greatest increase in obesity rates
than any other minority group (National Hispanic Caucus of State Legislators, 2010 Policy
Brief). For adults at least 20 years of age, 76.9% of Hispanic are overweight (25<BMI<30)
with 49.3% of those being obese (BMI1=230), compared to 67.5% and 48.6% respectively for
non-Hispanic whites (NHW). Hispanic women are especially vulnerable, having a 30%
greater chance of being obese than NHW women (43.0% versus 33.0%). Additionally,
Mexican American adults have higher rates in almost every age-group and obesity level
than their Hispanic counterparts for both men and women (Flegal et al., 2010) and Mexican
American children are 1.4 times more likely to be overweight than NHW children (Centers
for Disease Control and Prevention, 2012). Clearly, this epidemic is growing at an
accelerated pace and requires immediate research and intervention for many individuals to
maintain an acceptable quality of life.

As aresult of increased rates of overweight and obesity, Hispanics and particularly
Mexican Americans experience more related morbidities, including T2D. A 2010 report by
the Diabetes Surveillance System indicates there are 12.9 newly diagnosed cases per 1,000
Hispanics each year compared with 7.7 per 1,000 NHW, notwithstanding pre-diabetes and
undiagnosed cases. In addition to higher incidence and prevalence, Hispanics are
contracting the disease at a younger age and are more likely to die from diabetes in their
lifetime. Therefore, a high prevalence of diabetes and other complications of obesity create
stress on the quality of life and economy of the Hispanic community.

In an effort to stifle this burdening disease, researchers are determined to uncover

the root of the problem through genetic studies. By learning about specific gene



contributions as well as environmental interactions, there is optimism towards finding
successful prevention strategies to avoid future crises stemming from obesity and T2D. A
theoretical report by Claude Bouchard advises that genetic variation cannot be dismissed
as a strong determinate of an individual’s predisposition to become obese (Bouchard,
2007). He and others have illustrated through twin and familial studies that body mass
index is highly heritable, suggesting that one’s genetic makeup is a major contributor to
body weight. Similarly, genetic studies are gaining predictive power through identification
of susceptible loci on the propensity towards developing T2D, which could impact the way
we diagnose and treat the disease.

Although genetic contribution to obesity and T2D has been estimated at high
proportions ranging from 40-70%, many studies have failed to reach this level of
predictability (Lyon & Hirschhorn, 2005). One explanation could be that they have not
uncovered key loci or groups of loci with significant influences. With the introduction of
genome-wide association studies (GWAS), many genes have been identified that are
associated with BMI, though a robust combination of genes that explain significant
variation in BMI has yet to be discovered. Therefore, countless new gene combinations are
obtainable for research and may potentially contain greater explanatory power.

Success was seen with the fat mass (FT0) and melanocortin-4 receptor (MC4R)
genes for a genetic explanation of obesity and its metabolic consequences, such as T2D (Li
et al., 2010; Cauchi et al,, 2009). However, little progress has been made with other
potentially relevant gene sequences. This may be partly because many genes have not

been discovered and partly because individual variants have little effect by themselves.



When gene effects are added together, there is potential for much more explanation of the
variability in obesity outcomes.

Peterson et al developed a genetic risk sum score with increasing appearance of 56
risk alleles identified through GWAS, which was significantly associated with BMI in
European- and African-Americans (Peterson et al., 2011). Similarly, Iwata et al proposed a
14-allele genetic risk score and showed its association with T2D in Japanese adults (Iwata
etal., 2012). As these studies are a step in the right direction, their effects have been small
and incomplete, possibly due to the minimal amount of genetic information included.
Therefore, a simplified approach is needed to include substantially more genetic
information that can be summarized into a usable format.

Genetic data alone cannot provide a complete description of obesity risk, but must
be integrated with individual lifestyle and environmental factors. With an abundance of
food available and low motivation for exercise, those with even modest likelihood for
obesity are succumbing to this condition. The current study aims at developing a deeper
understanding of genetics, environment, and their interaction on markers for obesity and

T2D in a heavily Hispanic population.



STATEMENT OF PURPOSE

The purpose of the present study is to determine the aggregate effect of
appropriately selected gene variants on markers for obesity and T2D in an admixed
population of Hispanics and NHW. The genes found to have the most influence on obesity

and T2D are thought to interact with lifestyle and environmental factors.

The following hypotheses will be challenged:

1. Selected loci variants will be grouped into a smaller set of derived factors that
explain a portion of the variance in body mass index (BMI), change in BMI, waist

circumference (WC), and prevalence of T2D.

2. Influential genes will have a combined effect on BMI, change in BMI, WC, and

prevalence of T2D.

3. The variance in BMI, change in BMI, WC, and prevalence of T2D explained by
genetics are tested against demographic variables, including age, gender, ethnicity,

and smoking status.

4. The variance in BMI, change in BMI, WC, and prevalence of T2D explained by

genetics will be tested separately for Hispanics and non-Hispanic whites.



CHAPTER 2

Literature Review

The Obesity Epidemic

In the United States, obesity has become a significant concern over the last several
decades and is now spreading to many regions around the world. The healthcare industry
is already overwhelmed with obesity-related chronic diseases, such as T2D, cardiovascular
disease, hypertension, and the metabolic syndrome; with an expected increase in future
diagnoses. Two-thirds of adults in the U.S. are overweight (25<BMI<30), half being
classified as obese (BMI=30), with an estimated $147 billion spent each year on medical
costs associated with obesity (Ogden et al., 2012; Flegal et al., 2010; Finkelstein, Trogdon,
Cohen, & Dietz, 2009). Sadly, childhood obesity is on the rise with 17% of youth being
obese in 2010, tripling since 1980 (Ogden et al., 2012). Studies show that BMI in
adolescence is a strong indicator of BMI in adulthood where children who are obese are
very likely to become obese adults (Guo & Chumlea, 1999).

The current standard treatment for a diagnosis of overweight or obesity includes
education with an emphasis on healthier eating habits and exercise programs. Though
these efforts are commendable, they are expensive and largely ineffective (Wake et al.,
2009). To properly address the obesity challenge will require a multifactorial approach,
incorporating our knowledge of energy balance, genetic predisposition, environmental
influences, and social and cultural behaviors (Mitchell et al,, 2011). As prevention is the
best approach, an effective way to tackle and potentially reverse this epidemic is for

nutrition scientists to first understand the etiology of the disease and comprehend what is



causing the shift in overall weight status of Americans. The answer may be a common
gene-environment interaction that has become vulnerable to the eat-more, exercise-less
pressures we are facing in today’s society (Hill, 2006). Consequently, researchers are
beginning to focus more resources on alternative methods for obesity treatment and
prevention that incorporate individualized education with specialized programs based on a

combination of factors.

Obesity and T2D in Hispanic populations

Among subpopulations, Hispanics have one of the highest rates of obesity when
compared to NHW with 37.9% and 32.8%, respectively (Flegal et al., 2010). As of 2008,
Hispanics made up approximately 15% of the U.S. population and are experiencing the
greatest increase in prevalence of obesity than any other minority group (National
Hispanic Caucus of State Legislators, 2010 Policy Brief). Further, Mexican Americans are
the most overweight when compared to Cubans and Puerto Ricans within the Hispanic
population. Mexican American women have the greatest disparity with 78% being
overweight or obese compared to 60% of NHW women, while Mexican American children
are 1.4 times more likely to be overweight than NHW children (Centers for Disease Control
and Prevention, 2012). A study analyzing dietary habits of a population in Massachusetts
showed that elderly Hispanics were more likely to consume a diet consistent with higher
BMI and WC than elderly non-Hispanics. The study determined Hispanics who were more
acculturated, or accustomed to American traditions, had a more favorable nutritional

intake compared to those following a conventional Hispanic diet (Lin, Bermudez, & Tucker,



2003). Therefore, cultural influences cannot be overlooked when considering nutrition
and health behaviors in subpopulations.

In 2010, the Diabetes Surveillance System reported an incidence of newly diagnosed
cases of 12.9 per 1,000 Hispanics compared with only 7.7 per 1,000 NHWs. When first
reported in 1997, the median age of diagnosis was almost 11 years younger for Hispanics
than whites, although the gap has narrowed to less than four years difference. These
numbers do not consider undiagnosed cases or pre-diabetes. The Office of Minority Health
reported in 2012 that Hispanics are almost twice as likely to be diagnosed with diabetes
than NHWs and they are 1.5 times more likely to die from diabetes (Centers for Disease
Control and Prevention, 2012). Therefore, obesity and its health complications, especially
diabetes and cardiovascular disease, pose a significant economic burden on the Hispanic
community, spending a disproportionate amount of their income on healthcare costs. In
addition, the higher weight status of this population may lead to discrimination and lost
employment opportunities, which puts even more strain on the social and financial burden

of this community.

Genetic studies in obesity

According to Claude Bouchard of Pennington Biomedical Research Center in Baton
Rouge, LA, there are four main contributors to obesity: built environment (automobiles,
elevators, lack of safe sidewalks), social environment (advertising, events, culture),
behavior (high-fat diet, high sugar intake, TV watching, video games), and biology
(individual genome). He cautions that genetic variation cannot be dismissed as a strong

determinate of an individual’s predisposition to become obese (Bouchard, 2007). This



genetic propensity for increased body weight has been proven in twin and familial studies
on the heritability of BMI. One study published in 1990 by Stunkard et al included 93 pairs
of identical twins who were raised apart from one another. It resulted in an intra-pair
correlation coefficient for BMI of 0.70 and 0.66 for men and women, respectively, which
illustrates a genetic influence cultivated in separate environmental conditions (Stunkard,
Harris, Pedersen, & McClearn, 1990). Another study in which identical male twins were
overfed for a prolonged period of time showed significant similarities in fat mass response
within pairs, with a three-fold increase in variance between pairs compared to within pairs
(Bouchard et al.,, 1990). These results beg the question of how genetics play a role in
energy intake, energy expenditure, and the susceptibility to become fat. Likely factors
would include how efficiently we utilize food for fuel and our physical activity response to
over-nutrition. With childhood obesity on the rise, it is important to address the strong
connection between child and parental body size. Whitaker et al report a 12-fold increase
in risk for child obesity when both parents are obese, attributable to both genetics and
lifestyle factors, independent of demographic representation (sex, age, ethnicity,
socioeconomic status) (Whitaker, Jarvis, Beeken, Boniface, & Wardle, 2010). These data
suggest that a person’s genetics play an integral role in their likelihood of becoming obese.
Thus, if clinicians could integrate DNA into a screening process, then individuals may be
able to assess their risk for greater adiposity and develop more effective prevention
strategies like calorie control and routine exercise.

There is consensus among researchers that genetics play a critical role in
understanding the variation in body weight given that some individuals are thin and some

are fat when exposed to similar environmental factors. The extent of genetic contribution



has been estimated at up to 70%, yet many of these genes, or groups of genes, have not
been discovered (Lyon & Hirschhorn, 2005). With the help of GWAS, it is becoming clear
that obesity traits are the result of a combined effect of many small gene contributions that
alone have very little explanatory power (Fall & Ingelsson, 2012). Whether the combined
effect of individual polymorphic loci is additive or not is still being determined.

Over the past decade, more than 50 single nucleotide polymorphisms (SNPs) have
been recognized as being associated with standard obesity measures, including BMI, WC,
T2D, and cardiovascular disease. Although each locus by itself appears to have limited
explanatory power on the variance in obesity measures, their cumulative effects may
harbor some insight. Li et al found that 12 SNPs identified in a large-scale GWAS as
BCDIN3D, BDNF, ETV5, FTO, GNPDAZ, KCTD15, MC4R, MTCHZ2, NEGR1, SEC16B, SH2B1, and
TMEM18, had modest predictive power for increased risk of overweight and obesity, while
their individual effect sizes were trivial (Li et al., 2010). This gives hope to the possibility of
uncovering a group-wise effect that incorporates clusters of the most influential gene
variants. As single gene mutations provide explanation for only 1-5% of obesity cases,
there is no doubt this is primarily a multi-genetic disorder with many gene groupings yet to
be determined. In a 2003 review by Loos and Bouchard, they give details of possible gene
grouping that target either energy intake or energy expenditure. They also propose four
super-groups depending on one’s genes and environment as 1) genetic obesity, 2) strong
predisposition, 3) slight predisposition, and 4) genetically resistant, which highlights
obesity risk as a scaled disorder rather than a dichotomous outcome (Loos & Bouchard,
2003). Ideally, knowing ones genetic position and risk of obesity will help tailor prevention

strategies by focusing on ways to lessen the magnitude of excess adiposity and curtail its
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manifestation. For example, someone with low satiety signals could learn to measure their
food intake without having to rely on an internal sign to stop eating.

Recent research has even spread into the field of epigenetics, which encompasses a
reversible alteration in gene expression without a change in DNA sequencing (Slomko, Heo,
& Einstein, 2012; Drong, Lindgren, & McCarthy, 2012). In other words, genes may change
the way they respond to a certain event based on a few influential factors. Epigenetics may
eventually be found to contribute far more to BMI variation than genetics. After all, genes
exert their influence by way of the proteins they encode, so it seems likely that variability
in gene expression may be more important than genetic variability. This theory has a
major impact on future hypotheses and though epigenetics is an important new area in

genetic research, it is beyond the scope of this paper.

Genetic studies in T2D

As with obesity, GWAS are helping us better understand the predisposition to
develop T2D. Although family history, age, and weight status, among other factors, have
high predictive power, it is advantageous to know who might be at greater risk for getting
the disease before it begins to manifest. Obtaining genetic information with strong
predictive power can have a significant impact on how we diagnose and treat diabetes,
including pre-diabetes, which could result in a higher quality of life and less money spent
on complications of the disease.

The first breakthrough in identifying loci associated with T2D was made in 2006 as
a variant in transcription factor 7-like 2 (TCF7LZ2). The investigation found a 1.86- and

2.15-fold increase in risk for women and men, respectively, who were homozygous carriers
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of the T-allele (Zhang et al., 2006). Since then, at least 20 individual loci have been
indentified as having a significant and robust association with the disease and many other
loci with loose associations (McCarthy & Zeggini, 2009). Investigators are finding
promising genetic data with strong connections to T2D in both obese and non-obese
populations and these findings extend to multiple ethnic backgrounds. A recent genetic
variation study on an admixed Mexican population found 6 new loci (SLC30A8, HHEX,
CDKNZ2A/2B, IGF2BP2, CDC123/CAMK1D, and KCNQ1) associated with T2D that may be
specific to this ethnic group (Gamboa-Melendez et al., 2012).

As great progress is being made in the identification of genetic variants associated
with T2D, the question remains on what to do with this information for prevention and
treatment of the disease. One cannot change their genes and, contrary to obesity genes,
T2D may not be avoided simply by knowing susceptibility. Further, if someone views
himself or herself as inevitably destined to develop T2D, they may be less prone to engage
in prevention efforts. To complicate things even more, a study stratifying T2D cases by BMI
found that significant gene variants associated with the disease differed between lean and
obese subjects, with lean T2D cases being more susceptible and having more risk alleles
(Perry et al., 2012). However, there is hope that knowing ones susceptibility or nature of
their predisposition can help tailor new drugs and treatment programs for increased
effectiveness and fewer complications.

It goes without saying that many of the genetic findings will be similar for obesity
and T2D in obese populations. While biological and genetic links are being made, McCarthy
points out these links are not always well translated to clinical practices and the greater

discovery of loci within both polygenic diseases makes it even more difficult to formulate a
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comprehensive management plan. This overlap in susceptibility should lead us to a
combined solution for a healthier and better quality of life for these individuals, which

McCarthy has termed ‘personalized medicine’ (McCarthy, 2010).

Genetic studies in Hispanic populations

Genetics do not only set individuals apart, but whole populations as well. Clinical
investigators have found that using genetic markers in the form of allele differences is a
much better indication of ancestry than a self-selected race or ethnicity category (Kosoy et
al., 2009). However, genetic information can be a lot more revealing than just our country
of origin. The Viva La Familia Study was developed between 2000-2004 in Houston, TX to
genetically map childhood obesity and its metabolic consequences in Hispanics (Butte, Cai,
Cole, & Comuzzie, 2006). They found a strong genetic contribution to the high prevalence
of childhood obesity in Mexican-American families with significant heritability for obesity-
related traits. Further, this study employed a GWAS in 815 Hispanic children that localized
novel genetic loci associated with the pathophysiology of childhood obesity (Comuzzie et
al, 2012).

The San Luis Valley Diabetes Study (SLVDS) was initiated in 1984 to determine the
prevalence, risk factors, and complications of T2D in self-reported Hispanics and NHW. It
used a case-control design with participants selected from a rural two-county region of
Southern Colorado. According to the 1980 US census, when initial data collection took
place, the region was 49.4% male, 43.6% Hispanic, and had median annual family income
lower than the Colorado average (Hamman et al., 1989). Participants in the SLVDS control

group were selected from the community using a two-step process, stratified by age, sex,

13



ethnic group, and county to match that of the diabetic group. Of the controls identified,
1351 attended the baseline clinic between 1984 and 1988 and were prospectively followed
for the development of diseases. They were examined again from 1988 to 1992 and a third
time from 1997 to 1998.

Data from the SLVDS have been published previously with many intriguing results.
Nelson et al revealed ethnic differences in insulin sensitivity between Hispanic and NHW
women related to dual-energy X-ray absorptiometry measures of abdominal fat, over and
above waist circumference (Nelson, Bessesen, & Marshall, 2008). Additionally, Rewers et al
discovered a significantly lower prevalence of coronary heart disease in Hispanic men and
women than in NHW for those with T2D or impaired glucose tolerance. They speculate the
reason for a lower rate of heart disease despite the higher rate of T2D is due to unknown
protective factors or competing illnesses (Rewers, Shetterly, Baxter, Marshall, & Hamman,
1992). Damcott et al found a significant interaction between two genes in a biologic
pathway whose variants influence insulin resistance and body composition in male, non-
diabetic SLVDS participants (Damcott et al., 2004). These studies and others have
increased our knowledge of multiple disease states and ethnic differences between

Hispanic and NHW Americans.

Environment and lifestyle modification to genetics

There is no doubt that environmental changes have had a negative impact on body
weight, proven by the recent spike in obesity rates corresponding to an increase in food
availability and convenience factors in the U.S. (Isganaitis & Lustig, 2005). However, as the

majority of people live in this obesigenic environment, we still observe a broad spectrum of
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body weight, leading us to believe there are multiple interactions of environment and
genetics. Strong behavioral factors like overconsumption of macronutrients and physical
inactivity are clear contributors to obesity and T2D, so much that even with a genetic
propensity towards these diseases, control of food intake and energy expenditure can
curtail their development (Temelkova-Kurktscheiv & Stefanov, 2012). Similarly,
individuals with genetic resistance to obesity are still at risk if behavior is not controlled.
Other modifying factors include age, sex, race, ethnicity, and income, with greater
disparities in obesity among women, Mexican-Americans, and low-socioeconomic
populations (Wang & Beydoun, 2007).

As with early detection and prevention of obesity, treatment is equally susceptible
to environmental influences and modifications. In a review by Choquet and Meyre, they
suggest three options for treatment of obesity: lifestyle intervention, pharmacotherapy,
and bariatric surgery (Choquet & Meyre, 2011). With monogenic obesity when one gene
mutation is involved, extreme actions such as gastric banding and bypass techniques may
be inevitable, as mutations and/or loss of function in certain genes demand a mechanical
intervention. However, polygenic overweight and obesity when multiple genes are
involved can benefit from lifestyle modifications and in some cases pharmacotherapy, if
interventions are tailored towards an individual’s obesity origin as well as their unique
environmental modifiers. This has been observed with the FTO gene variant and its
interaction with macronutrient composition (Grau et al., 2009) and moderate intensity
exercise (Mitchell et al., 2010).

As we inch closer to an understanding of genetic contribution to body composition,

nutrition researchers are gaining enthusiasm about the topic. Still, there is much to learn
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before effective improvements can be made in our intervention strategies, ideally targeting
obesity prevention. Early identification of obesigenic traits should not be viewed as an
individual’s body weight destiny, but can assist in formulating an effective prevention
strategy to avoid early onset adiposity. Geneticists agree that, consistent with many
diseases, prevention is the best strategy and though a genetic mapping to uncover this
inherent outcome would be ideal, the best indicators to date are demographic and
environmental factors (Choquet & Meyre, 2011). Additionally, both desire and ethical
considerations should be considered with genetic testing to ensure information is not

misinterpreted or misused.

Genetic composite score

A commonly used analytic procedure to summarize combined effects of allele
frequency data involves a composite sum score incorporating a defined set of genetic
variants. Peterson et al constructed a genetic risk sum score (GRSS) comprised of variants
proven or suggested to have an association with BMI in a group of European- and African-
Americans. In their study, they show a composite sum score was significantly associated
with BMI with an average effect of 10 risk variants resulting in 8 extra pounds for males
and 7 extra pounds for females (Peterson et al,, 2011). Their composite score employs an
additive model, as gene-to-gene interactions have not been suggested previously on genetic
obesity data. A strong statistical association exists between BMI and GRSS, even after
adjustments were made for age, sex, and race, however the GRSS only accounted for an

additional 0.66% of variation in BMI. Similarly, Iwata et al constructed a significant genetic
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sum score consisting of 14 loci known to be associated with diabetes, though only a small
increase in odds of getting the disease (1.26) was detected (Iwata et al., 2012).

Regardless of their limited predictive power, genetic composite scores have
potential for future research in finding groups of alleles that are jointly correlated with
obesity outcomes. Also, they provide further evidence of polygenetic diseases such as
obesity and T2D. A genetic risk score comprised of 29 SNPs was significantly correlated
with BMI in a 4-decade longitudinal study conducted in New Zealand evaluating a birth
cohort through 38 years of age. The study reveals a polygenic risk for obesity, manifesting
early in life and resulting in rapid childhood growth, particularly following adiposity
rebound when a child’s BMI begins to increase. The correlation between risk score and
BMI over 4 decades of life was independent of family history captured by parental BMI
(Belsky, Moffitt, & Houts, 2012). This proves genetic composite scores could be beneficial
in practice if incorporated into child and adult wellness protocols as a form of obesity risk

assessment.

Principal components analysis

Principal components analysis (PCA) is an analytic technique used to find patterns
in data sets with a very large number of explanatory variables. It creates subsets of
variables by grouping them based on correlative properties and then obtains a linear
combination of each group such that the groups are perpendicular, or uncorrelated, with
each other. PCA is useful in exploratory data analysis when wanting to group variables that
have similar descriptive power in order to compress the data set into a few explanatory

groups called ‘factors’ that explain the relevant information in the sample data. Factors are
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chosen based on a hierarchy according to the variance they retain from the full data set
(Jackson, 2004).

Another situation in which PCA is a valuable tool arises when a data set is in
jeopardy of multicollinearity, or when two or more explanatory variables are correlated
with each other. This occurs when variables have overlapping descriptive power and may
result in an unstable model and inaccurate conclusions about the outcome variable. While
multicollinearity may not be an issue when the objective is to predict an outcome, it
becomes highly problematic when explanation is the ultimate goal (Berry & Feldman,
1985). PCA is a remedy for the problems that occur with multicollinearity by creating a
new set of orthogonal variables. However, it is no longer possible to determine the
significance of individual predictors on the outcome variable, as predictors are then
considered as a group (Dohoo, Ducrot, Fourichon, Donald, & Hurnik, 1997). Then again,
with genetic data, in particular SNPs, the individual contribution of each input variable is
trivial and grouped data is more informative. PCA is a powerful filter and reduction tool,
especially in exploratory analysis, by allowing the data to determine its own descriptive
factors.

A practical application of PCA in genetic studies is its use on ancestral data where
individuals of an admixture population are traced to their continent of origin using
differences in allele frequencies to create ancestry informative markers (AIMs). While
previously having to rely on self-identified ethnic affiliation, AIMs have been effective in
population and disease association studies where ethnic background is likely to create an

issue with confounding (Kosoy et al., 2009).
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Single Nucleotide Polymorphism Selections

The ataxin-2 binding protein 1 gene (A2BP1) is a splicing regulator that controls
neuronal excitation in the brain and has been associated with percent body fat in Pima
Indians. Ma et al attempted to replicate this by searching for the same association in
French adults and children, Caucasians, and Native Americans. Though no single variant in
A2BP1 was found to be significantly associated with obesity, their analysis suggest that
variations in the gene may influence obesity and adiposity through the hypothalamic MC4R
pathway (Ma et al., 2010).

Obesity has been described as an inflammatory disease based on the fact that obese
individuals have increased levels of biochemical markers of inflammation. An abundance
of adipose tissue can confuse the endocrine system with over-secretion of adipokines,
causing the release of inflammatory mediators and affecting systemic processes. One
cytokine that plays a major role in stimulating the immune system is interleukin-6 (IL-6). It
is clear that white adipose tissue-derived IL-6 is over-expressed with obesity, resulting in
chronic low-grade inflammation. If the inflammation persists for a long period of time, the
risk for cardiovascular disease and T2D increases (Emanuela et al., 2012). It seems this
process may be viewed as a consequence of obesity and not a cause; however it is possible
that IL-6 is affected by one’s diet, physical activity, and environment prior to development
of the obesity phenotype. Further, the interleukin-6 receptor (IL6R) is expressed in the
hypothalamus of the brain and helps regulate appetite and energy intake (Wallenius et al.,
2002). Variants in the IL6R gene were studied in Pima Indians, a population known for
increased adiposity, and shown to be significantly associated with BMI (Wolford, Colligan,

Gruber, & Bogardus, 2003).
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Adiponectin, C1Q and collagen domain containing (ADIPOQ) is a gene expressed
exclusively in adipose tissue and is involved with metabolic and hormonal processes.
Adiponectin is negatively correlated with amount of adipose tissue and sends hunger
related signals to the brain allowing modification of a persons eating behavior. The gene
was first reported in 1996 to be involved with a signaling function from adipocytes and has
reduced expression in obese humans (Hu, Liang, & Spiegelman, 1996; Emanuela et al.,,
2012). ADIPOQ variant rs1501299 was previously studied in a young Mexican-American
population, but failed to show significance with obesity traits (Duran-Gonzalez et al.,, 2011),
possibly because it was not combined with appropriate co-variants. However, a group
from the Finnish Diabetes Prevention Study was found to have variants rs266729,
rs16861205, rs1501299, rs3821799 and rs6773957 of the ADIPOQ gene that were
significantly associated with body weight (Siitonen et al., 2011). Adiponectin receptor
genes, ADIPOR1 and ADIPORZ, also affect fatty acid catabolism and glucose levels by
activating an AMP-activated kinase-signaling pathway. All three genes and numerous
variants within the genes have been studied extensively for their suspected involvement in
obesity, cardiovascular disease, and T2D.

A gene encoding for an enzyme responsible for lipid peroxidation, arachidonate 15-
lipoxigenase (ALOX15), has been implicated in the pathogenesis of inflammatory disorders,
including obesity. The rs916055 variant of this gene was found to be significantly
associated with fat mass percent in a study of Chinese men and women (Ke et al., 2012).

PPARs are genes encoding for proteins known as peroxisome proliferator-activated
receptors that regulate target genes by increasing or decreasing their transcription. The

receptor has three forms, a, §, and y, which together are expressed in almost all tissues
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throughout the body. In addition, PPARs can change their function based on whether they
bind with a co-activator. This group of receptors is typically activated by fatty acids, either
from diet or adipose tissue, or their metabolites and plays an important role in lipid
homeostasis and adipocyte differentiation. Additionally, transcription of adiponectin is
regulated by PPARYy, affecting a variety of metabolic reactions. Many variants of these
receptor genes have been studies for their interaction with obesity measures. Specifically,
the Pro12Ala variation of PPARy (rs1801282) is associated with obesity in a population of
Mexican Americans where those with at least one risk allele had significantly higher BMI
and WC (Cole et al,, 2000). There is countless research in the area of PPARs and their
potential role in development of obesity and thus all will be included in the present
analysis.

Intracellular fatty acid binding proteins (FABP) participate in the transport of long-
chain fatty acids. The polymorphism Ala54Thr (rs1799883) in its intestinal version has
been studied considerably and found to be associated with obesity measures. Martinez-
Lopez et al noticed differences in response to a moderate-fat diet for those with one or two
mutant alleles of the FABPZ gene in a Mexican population (Martinez-Lopez et al., 2013).
The expression of this protein in adipose tissue is called FABP4 and plays an important role
in maintaining glucose and lipid homeostasis. Circulating levels of FABP4 are higher in
obese children and correlates with BMI, HOMA (an estimate of insulin resistance), and
hsCRP (a marker for inflammation), according to a study performed in Louisville, KY
(Khalyfa et al.,, 2010). Interestingly in the SLVDS, FABP4 was found to interact with PPARy
and have a significant effect on insulin sensitivity and body composition in Hispanic and

NHW males (Damcott et al., 2004). Not only does it utilize the same data set as this one, but
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the SLVDS also highlights the importance of considering multiple genes and their
interactions with each another when exploring the etiology of complex diseases such as
obesity.

The fat mass and obesity associated gene (FTO) was first discovered in 2007 and has
since been the subject of much research, though the exact physiological function of this
gene is still not clear. During this discovery, Frayling et al concluded that the 16% of adults
in his study homozygous for the risk allele were 6.6 pounds heavier and 1.67 times more
likely to be obese than those without the risk allele or heterozygous (Frayling et al., 2007).
FTO variant rs8050136 has been consistently associated with obesity risk in both children
and adults, however differences in ethnicity have not yet been determined (Mei et al.,
2012).

There is speculation that vitamin D deficiency is a main cause of common obesity,
although it is controversial as to which came first when explaining their relationship. In a
study of 108 obese subjects undergoing bariatric surgery, over 70% were deficient in
vitamin D, which could lead to poor calcium metabolism and decreased parathyroid
function (Hultin, Edfeldt, Sundbom, & Hellman, 2010). A relationship in vitamin D binding
protein polymorphisms and obesity was reported for Caucasians, revealing a strong
association between SNP rs17467825 with percent body fat (Jiang et al,, 2007). Similarly,
the vitamin D receptor gene has been studied for its contribution to obesity risk, being
highly interconnected with the vitamin D endocrine system. Specifically, the variant
rs3782905 was associated with both BMI and WC in a random sample of NHW women
(Ochs-Balcom et al.,, 2011). Though individual significances were not found, a study

comparing vitamin D-related genes and BMI in Chinese women included potential variants
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rs17467825,rs222020, rs222029, and rs2298849 in the vitamin D binding protein (GC)
and rs10783219, rs2239179, rs4334089, rs4760648 in the vitamin D receptor (VDR) with
a per-allele p-value for BMI and weight (kg) less than 0.50 and will be replicated in this
study (Dorjgochoo et al,, 2012).

The melanocortin 4-receptor gene (MC4R) is expressed in the hypothalamus and
codes for a protein that binds alpha-malanocyte stimulating hormone, which produces
satiety factors signaling an individual to reduce food intake. Mutations in this gene can
have a profound effect on energy intake and be a risk for early onset obesity. The MC4R-
obesity linkage was first discovered in the late 1990s and has been replicated many times;
including a recent study in Mexican children that highlights the effect of SNP rs17782313
near the MC4R gene (Mejia-Benitez et al., 2013).

Uncoupling proteins (UCP) are distributed in the mitochondria of cells and cause an
inefficient use of energy by separating oxidative phosphorylation from ATP synthesis.
They weaken the membrane potential by creating a channel that transports protons inside
of the inner mitochondrial membrane without producing ATP, also referred to as the
proton leak. The energy potential is dissipated as heat, leading to more nutrients required
for a given energy output. Consequently, low expression of UCPs lead to a more efficient
energy conversion process, thus excess nutrient inputs are stored as fat rather than lost as
heat. We now know these proteins are expressed in various tissues throughout the body,
mainly white and brown adipose tissue and skeletal muscle, and may contribute to a
protective effect against obesity. Polymorphism rs659366 in the UCP2 gene has been
shown to correlate with obesity and fat distribution in Spanish men and women (Martinez-

Hervas et al,, 2012). Further, when the SNP mentioned above was combined with SNP
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rs1800849 in UCP3, the association with obesity was even stronger in a group of Spanish
children and adolescents (Ochoa et al., 2007). Another study confirmed a strong
association in variants of UCP3 and BMI, particularly variant rs2075577, which may
decrease uncoupling activity (van Abeelen et al., 2008). There is evidence that all three
genes encoding for uncoupling proteins, UCP1-3, can potentially explain variations in body
weight among individuals.

Retinol binding protein 4 (RBP4) is found in the plasma of humans and functions to
carry vitamin A from the liver to peripheral tissues. The protein is highly expressed and
secreted by adipocytes with circulating levels being a useful marker for obesity. SNP
rs3758539 is involved in the regulation of RBP4 and has been associated with obesity,
perhaps through its adipogenesis properties (Munkhtulga et al., 2010).

In summary, obesity and T2D are both very complex diseases that encompass many
dimensions, including heredity, environment, culture, lifestyle, and genetics. As we have
pointed out, none of these dimensions can be considered alone, as they are interconnected
and influence one another with a synergistic effect. Therefore, scientists can only hope to
uncover a portion of the variability seen in body composition and metabolic diseases in a

multiethnic population.
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CHAPTER 3

Materials and Methods

Study Participants

The present research is part of the San Luis Valley Diabetes Study (SLVDS), which
was initiated in 1984 to determine the prevalence, risk factors, and complications of T2D in
self-reported Hispanics and NHWs. The SLVDS used a case-control design with
participants selected from a rural two-county region of Southern Colorado. According to
the 1980 US census, when initial data collection took place, the region was 49.4% male,
43.6% Hispanic, and had median annual family income lower than the Colorado average.
Methods for data collection and results of original analyses are described elsewhere
(Hamman et al., 1989). Participants in the SLVDS control group were selected from the
community using a two-step process, stratified by age, sex, ethnic group, and county to
match that of the diabetic group. Of the controls identified, 1351 attended the baseline
clinic between 1984 and 1988 and were followed for an additional decade for prospective
analysis of disease development. They were examined again from 1988 to 1992 and a third
time from 1997 to 1998 (n=837). The current study utilizes data from the third and final
examination in a cross-sectional analysis of multiple gene variants, environmental factors,
and disease status. Informed consent was obtained from all study participants and the

University of Colorado Institutional Review Board approved each study protocol.
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Clinical Measurements

Comparative measurements were collected from study participants using calibrated
equipment and trained personnel. Body mass index was calculated as weight in kilograms
divided by height in meters squared (kg/m?). Participants’ weight was measured with a
balance beam scale calibrated weekly with standard weights. Height was measured
without shoes using a stadiometer to the nearest 0.1 cm. Waist circumference was
assessed at the 10t rib with a steel tape to the nearest 0.1 cm. Diabetic status was
determined from blood glucose levels following an overnight fast of at least 8 hours or at
the 2-h point following a 75 g oral glucose challenge. Samples were collected during an
oral glucose tolerance test (OGTT), pre and 2 hours post a 75 g oral load and analyzed by
the glucose oxidase method. Diagnosis was based on the American Diabetes Association
Standards of Medical Care-2011 as fasting venous plasma glucose = 126 mg/dl or 2-h post-
load glucose = 200 mg/dl. Individuals who were taking insulin or other glucose lowering
medications at the time of the examination were classified as diabetic regardless of their
blood glucose levels. Age was calculated as the participants’ birth date subtracted from the
clinic visit date. Ethnicity and smoking status was assessed through a questionnaire given

at the visit.

Genetic variants

Study participants underwent genotyping to determine the presence of
polymorphisms, which are variations that occur in human DNA found in more than one
percent of the general population. These variants reside at a single base-pair site within

the genome, involving substitutions of A, T, C, or G. The present study uses 384 candidate
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allele variations from 170 gene sequences. SNPs were genotyped by Illumina, Inc (San
Diego, CA) with 1678 DNA samples (1398 genomic DNA samples and 280 whole genomic
amplification samples) in 2009-2010. The genotyping success rate for the whole genomic

samples and whole genomic amplification samples were 98.4% and 93.9%, respectfully.

Single Nucleotide Polymorphism Selections

Selection of SNPs was based on a careful review of current obesity literature related
to each candidate gene. SNP data were recorded as either heterozygous or homozygous for
one of the two alleles. Candidate genes were initially filtered using the HuGE Navigator
(version 2.0), an integrated, searchable knowledge base of genetic associations and human
genome epidemiology, funded by CDC'’s Office of Public Health Genomics (Yu, Gwinn, Clyne,
Yesupriya, & Khoury, 2008). Phenopedia was selected from the home page and obesity was
used as the disease criteria, which resulted in 3,048 publications related to 1,490 different
genes. These genes were cross-referenced with candidate genes from the SLVDS and
investigated for entry into this analysis using literature provided by the search. Genes and
individual SNPs were further investigated using GeneCards, The Human Gene
Compendium, created and maintained by Weizmann Institute of Science (Rebhan, Chalifa-
Caspi, Prilusky, & Lancet, 1997) and Gene, a database provided by the National Center for

Biotechnology Information.

Statistical Analysis
Hardy-Weinberg Equilibrium (HWE) was examined using the goodness-of-fit test.

SNPs were coded as either 0 or 2 for homozygosity and 1 if they were heterozygous where
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direction of risk was not determined. Candidate SNPs were entered into a PCA to establish
patterns in the data where SNP variance was redistributed into factors. Factors were
selected that retain most of the relevant information while decreasing the dimension of the
data set. The selected factors containing SNP data were then analyzed using linear
regression models to estimate their contribution to the variation of BMI, BMI change from
baseline, and WC, while logistic regression was used for prevalence of T2D. A base model
of age, gender, and smoking status was used to control for confounding effects. Regression
models were run separately for Hispanics and NHWs. All analyses were carried out using

SAS 9.3 (Cary, NC).
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CHAPTER 4

Results

Participant Characteristics

Clinical data were collected from 837 participants of the SLVDS 1997-1998
examination. Demographic data were retrieved from the initial 1984-1985 examination,
including the self-reported ethnicity indicator. Table 1 summarizes this information by
gender and ethnicity. There were 353 Hispanics (153 males and 200 females) and 484
NHWs (228 males and 256 females) with an average age of 63.0 years old. During the
1997-1998 examination, Hispanic males were more likely to smoke than Hispanic females
or whites with 22% being current smokers compared to only 11%-13%.

The average participant was overweight (25<BMI<30 kg/m?) with Hispanic females
having the highest average BMI of 28.0 (5.2) kg/m?. Following them were white males with
an average BMI of 27.5 (3.9) kg/m?, while Hispanic males and white females had similar
BMIs of 26.9 (5.4) kg/m?2. Hispanic females also had the greatest increase in BMI from the
baseline examination with a 1.66 unit change, which was comparable to the 1.39 unit
change for white females. On average, both Hispanic and white males had less than a one
unit increase in BMI from baseline. The average WC of Hispanic and white males was 96.1
(9.7) cm and 98.8 (9.5) cm, respectively, while it was 89.1 (11.2) cm and 86.3 (10.7) cm for
Hispanic and white females, respectively. Of the participants who did not have a diagnosis
of diabetes at baseline, 20% of Hispanic females and 17% of Hispanic males were
diagnosed with diabetes in the following 13 years, compared with only 11% of white males

and females.
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Table 1. Participant Characteristics (N=837)
1997-1998 examination

Hispanic NHW

Male Female Male Female

N=153 N=200 N=228 N=256
Age (yrs), mean (sd) 62.9 (12.4) 61.6 (12.4) 63.4 (11.0) 63.9 (11.6)
Smoker, N (%) 34 (22%) 23 (12%) 30 (13%) 27 (11%)
BMI, mean (sd) 26.9 (4.5) 28.0 (5.2) 27.5 (3.9) 26.9 (5.9)
BMI change* 0.84 (2.08) 1.66 (3.07) 0.96 (2.11) 1.39 (3.09)
WC (cm), mean (sd) 96.1 (9.7) 89.1 (11.2) 98.8 (9.5) 86.3 (10.7)
Diabetes (yes), N (%) 26 (17%) 39 (20%) 26 (11%) 27 (11%)

*Change from SLVDS baseline examination (1984-1985)
BMI=body mass index, BMI change=change in BMI from baseline visit to third exam, WC=waist circumference

Genetic data

Genetic data were collected for 741 of the 837 participants (89%), which included
307 Hispanics and 434 NHW. Allele designation was recorded on 384 SNPs from 170
genes. After careful research and review of the literature, 22 of those genes were
previously studied in obesity research, thus all SNPs for those genes were selected for this
analysis, resulting in 107 total SNPs (Table 2). Each participant was classified for each SNP
as being homozygous for its wildtype allele, homozygous for its compliment allele, or
heterozygous with each type of allele. Population allele frequencies were not determined
for this association study. However, minor allele frequencies (MAF) were defined as the
lesser appearing allele within this sample and were calculated separately for Hispanic and
NHW. No data were found for five of the selected SNPs (rs822396, rs4601580, rs2010994,
rs3811787,rs10783219) and no variation occurred in two SNPs (rs2290200 and

rs9823137) resulting in 100 SNPs for analysis.
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The minor alleles for SNP rs8059937 (A2BP1) was 28% and SNP rs6822807 (UCP1)
was 17% more prevalent in Hispanics than whites, accounting for the largest differences in
the sample. Eleven other SNPs had minor alleles with at least 10% higher prevalence and
14 more had 5% higher prevalence in Hispanics than whites. Conversely, two SNPs
rs11724758 (FABP2) and rs2239179 (VDR) had minor alleles that appeared 16% more
often in whites than Hispanics. An additional 6 SNPs had minor alleles that appeared 10%
more often and another 17 appeared 5% more often in whites than Hispanics. All other
SNP alleles were of similar frequencies between Hispanics and whites in this sample. Allele

frequencies were consistent with Hardy-Weinberg expectations (data not shown).

Table 2. Selected SNPs and Sample MAFs (N=741)

SNP Gene Gene Name Chr Sample Sample
Symbol MAF MAF
Hispanic NHW
N=307 N=434

rs8059937 A2BP1 ataxin 2-binding protein 1 16 42.67%  15.09%
rs1501299 ADIPOQ adiponectin 3 3339%  26.15%
rs2241766 ADIPOQ adiponectin 3 15.80% 13.02%
rs266729 ADIPOQ adiponectin 3 26.22%  24.31%
rs3774261 ADIPOQ adiponectin 3 49.35%  39.63%
rs822395 ADIPOQ adiponectin 3 33.71%  39.29%
rs822396 ADIPOQ adiponectin 3

rs7539542 ADIPOR1 adiponectin receptor 1 1 38.27%  28.18%
rs12826079  ADIPOR2 adiponectin receptor 2 12 7.98% 8.87%

rs916055 ALOX15 lipoxygenase-15 17 37.13%  31.87%
rs10006877 FABP2 fatty acid binding protein 2 4 23.62%  32.56%
rs10034661 FABP2 fatty acid binding protein 2 4 29.97%  25.58%
rs11724758 FABP2 fatty acid binding protein 2 4 34.20% 50.00%
rs1397613 FABP2 fatty acid binding protein 2 4 40.07%  42.63%
rs1546503 FABP2 fatty acid binding protein 2 4 26.71%  35.19%
rs1799883 FABP2 fatty acid binding protein 2 4 29.64%  25.58%
rs2290200 FABP4 fatty acid binding protein 4 8 0.00% 0.00%

rs6992708 FABP4 fatty acid binding protein 4 8 29.58%  29.63%
rs8050136 FTO fat mass and obesity associated 16 25.08%  38.23%
rs17467825 GC vitamin D binding protein/Gc-globulin 4 20.36% 27.07%
rs222020 GC vitamin D binding protein/Gc-globulin 4 27.69% 15.44%
rs222029 GC vitamin D binding protein/Gc-globulin 4 2533%  15.67%
rs2298849 GC vitamin D binding protein/Gc-globulin 4 28.43% 19.59%
rs2069824 IL6 interleukin 6 7 10.59% 7.26%

rs1386821 IL6R interleukin-6 receptor 1 10.75% 17.28%
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SNP Gene Gene Name Chr Sample Sample
Symbol MAF MAF
Hispanic NHW
N=307 N=434

rs4075015 IL6R interleukin-6 receptor 1 42.35%  44.34%
rs4329505 IL6R interleukin-6 receptor 1 13.19% 18.89%
rs4601580 IL6R interleukin-6 receptor 1

rs4845625 IL6R interleukin-6 receptor 1 34.20% 38.54%
rs8192284 IL6R interleukin-6 receptor 1 49.02%  41.80%
rs17782313 LOC342784 near melanocortin 4 receptor 18 16.94% 23.39%
rs11090819 PPARA peroxisome proliferator-activated receptora 22 7.33% 6.57%
rs11703495 PPARA peroxisome proliferator-activated receptora 22 9.31% 10.16%
rs12330015 PPARA peroxisome proliferator-activated receptora 22 20.20% 10.94%
rs135538 PPARA peroxisome proliferator-activated receptora 22 44.63%  42.84%
rs135547 PPARA peroxisome proliferator-activated receptora 22 26.22%  31.57%
rs135550 PPARA peroxisome proliferator-activated receptora 22 21.01%  28.46%
rs4253623 PPARA peroxisome proliferator-activated receptora 22 17.43% 15.44%
rs4253655 PPARA peroxisome proliferator-activated receptora 22 14.01% 18.59%
rs4253701 PPARA peroxisome proliferator-activated receptora 22 9.45% 10.60%
rs4253754 PPARA peroxisome proliferator-activated receptora 22 18.63% 19.35%
rs4253755 PPARA peroxisome proliferator-activated receptora 22 7.33% 11.64%
rs4253772 PPARA peroxisome proliferator-activated receptora 22 13.36% 10.83%
rs4823613 PPARA peroxisome proliferator-activated receptora 22 33.88%  25.69%
rs6007662 PPARA peroxisome proliferator-activated receptora 22 24.84%  25.93%
rs8138102 PPARA peroxisome proliferator-activated receptora 22 1857%  22.80%
rs9615264 PPARA peroxisome proliferator-activated receptora 22 4.23% 8.87%
rs2076167 PPARD peroxisome proliferator-activated receptord 6 24.67%  24.31%
rs2076169 PPARD peroxisome proliferator-activated receptord 6 7.68% 12.24%
rs2267665 PPARD peroxisome proliferator-activated receptord 6 14.50%  19.40%
rs6457816 PPARD peroxisome proliferator-activated receptord 6 10.26% 6.81%
rs7744392 PPARD peroxisome proliferator-activated receptord 6 4.56% 4.50%
rs9470001 PPARD peroxisome proliferator-activated receptord 6 9.45% 5.99%
rs1151996 PPARG peroxisome proliferator-activated receptory 3 27.04%  39.70%
rs1175540 PPARG peroxisome proliferator-activated receptory 3 27.32%  37.18%
rs1801282 PPARG peroxisome proliferator-activated receptory 3 12.75% 12.90%
rs3856806 PPARG peroxisome proliferator-activated receptory 3 12.54% 15.13%
rs4684846 PPARG peroxisome proliferator-activated receptory 3 36.48%  25.52%
rs709149 PPARG peroxisome proliferator-activated receptory 3 26.87%  39.98%
rs9823137 PPARG peroxisome proliferator-activated receptory 3 0.00% 0.00%
rs9829551 PPARG peroxisome proliferator-activated receptory 3 2.61% 0.12%
rs12650562 PPARGC1A  PPARG coactivator 1 a 4 34.20%  45.51%
rs1873532 PPARGC1A  PPARG coactivator 1 a 4 33.50%  40.21%
rs2932965 PPARGC1A  PPARG coactivator 1 a 4 15.15%  20.55%
rs2932976 PPARGC1A  PPARG coactivator 1 a 4 41.69% 27.07%
rs2946385 PPARGC1A  PPARG coactivator 1 a 4 36.48%  45.84%
rs3736265 PPARGC1A  PPARG coactivator 1 a 4 8.47% 5.66%
rs3755863 PPARGC1A  PPARG coactivator 1 a 4 3534%  40.21%
rs3774902 PPARGC1A  PPARG coactivator 1 a 4 13.68% 5.66%
rs4361373 PPARGC1A  PPARG coactivator 1 a 4 29.15% 15.78%
rs4619879 PPARGC1A  PPARG coactivator 1 a 4 24.10% 34.76%
rs6838600 PPARGC1A  PPARG coactivator 1 a 4 42.83% 29.68%
rs7657071 PPARGC1A  PPARG coactivator 1 a 4 22.64% 33.87%
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SNP Gene Gene Name Chr Sample Sample
Symbol MAF MAF
Hispanic NHW
N=307 N=434
rs7665116 PPARGC1A  PPARG coactivator 1 a 4 8.99% 11.75%
rs7672915 PPARGC1A  PPARG coactivator 1 a 4 48.69%  45.08%
rs7677000 PPARGC1A  PPARG coactivator 1 a 4 20.92% 14.52%
rs7682765 PPARGC1A  PPARG coactivator 1 o 4 1.31% 7.83%
rs8192678 PPARGC1A  PPARG coactivator 1 a 4 28.10% 34.91%
rs2010994 PPARGC1B  PPARG coactivator 1 § 5
rs2052490 PPARGC1B  PPARG coactivator 1 3 5 12.38% 15.82%
rs741581 PPARGC1B  PPARG coactivator 1 § 5 14.01% 9.91%
rs11187545 RBP4 retinol binding protein 4 10 4.40% 7.37%
rs13376835 RBP4 retinol binding protein 4 10 17.59%  18.55%
rs13376898 RBP4 retinol binding protein 4 10 0.16% 0.00%
rs17484721 RBP4 retinol binding protein 4 10 16.12% 18.36%
rs3758538 RBP4 retinol binding protein 4 10 13.36%  14.50%
rs3758539 RBP4 retinol binding protein 4 10 18.40%  16.94%
rs12502572  UCP1 uncoupling protein 1 4 45.41%  30.65%
rs3811787 UCP1 uncoupling protein 1 4
rs3811790 UCP1 uncoupling protein 1 4 22.77% 13.90%
rs6536991 UCP1 uncoupling protein 1 4 33.06%  22.35%
rs6818140 UCP1 uncoupling protein 1 4 30.78% 17.32%
rs6822807 UCP1 uncoupling protein 1 4 42.67% 25.64%
rs6829571 UCP1 uncoupling protein 1 4 33.53% 21.61%
rs7687015 UCP1 uncoupling protein 1 4 22.64% 12.90%
rs7688743 UCP1 uncoupling protein 1 4 33.82% 19.24%
rs11602906  UCP2 uncoupling protein 2 11 2.93% 6.68%
rs643064 UCP2 uncoupling protein 2 11 13.84% 12.33%
rs655717 UCP2 uncoupling protein 2 11 48.53%  43.20%
rs659366 UCP2 uncoupling protein 2 11 43.81%  36.57%
rs1800849 UCP3 uncoupling protein 2 11 19.54% 23.21%
rs2075577 UCP3 uncoupling protein 2 11 43.32%  47.81%
rs10783219 VDR vitamin D receptor 12
rs2239179 VDR vitamin D receptor 12 30.13%  46.06%
rs3782905 VDR vitamin D receptor 12 24.27%  31.68%
rs4334089 VDR vitamin D receptor 12 19.06%  27.83%
rs4760648 VDR vitamin D receptor 12 42.51% 4447%

Principal Components Analysis (PCA)

Due to the ordinal nature of allele assignment with genetic data and the fact that

PCA is based on Pearson correlations, the SNP data were put through a transformation

process. The PRINQUAL procedure was run in SAS, which uses the method of alternating

least squares to optimize properties of the transformed variables’ correlation matrix. It
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transforms ordinal variables monotonically by scoring the ordered categories so that order
is weakly preserved. This procedure also estimates missing values to optimize the
covariance matrix, using variable means as initial estimates.

The PRINCOMP procedure was run in SAS on the transformed variables to
summarize the SNP data into a smaller set of derived components. This procedure
redistributed the total variance in the SNP frequencies in such a way that the derived
components explain a descending amount of the variance, each component being a linear
combination of the original variables. Additionally, the covariance between each pair of
components is zero, which reduces collinearity and increases stability of the pending
model. The principal axis method was used to extract the components, and this was
followed by a varimax (orthogonal) rotation. One hundred components were derived from
the original 100 SNPs selected for analysis. Using the eigenvalue-one criterion, 32
components contained more information than any single variable alone displaying
eigenvalues greater than 1 (figure 1).

The first component contained 17.2% of the total variance in genetic data, followed
by 6.2% for the second component, and 4.8% for the third. Seventeen SNPs loaded onto
the first component at a level of 0.24 before dropping off to a loading of 0.04. These SNPs
were from loci on the following genes: PPARA, PPARD, PPARG, PPARGC1A, PPARGC1B, FTO,
FABP2, ADIPOR1, UCP1, and VDR. By including the first 32 components, we have accounted
for 77% of the total variation in SNP allele frequencies (figure 2). In comparison, the last
30 components only accounted for 0.57% of the total variation. Therefore, the 100 SNPs
selected for analysis of their association with obesity outcomes was successfully reduced to

32 orthogonal variables without sacrificing accuracy.
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Predicting obesity and diabetes

A base model was established to account for potential confounding factors when
predicting obesity measures and prevalence of T2D. This model included age, gender, and
smoking status. The 32 principal components were added to the base model to measure
added explanatory power accounted for by the genetic information. Each model was
assessed separately for Hispanics and NHWs for the outcomes of BMI, change in BMI from
baseline, WC, and prevalence of diabetes.

Results of the prediction analysis for Hispanics are presented in table 3. The base
model alone accounted for 6.3% of variation seen in BMI measurements. When 32
components of genetic information were added to the base model, only 4.2% of the
variation in BMI was accounted for based on adjusted-R? values. Therefore, predictive
power of BMI in Hispanics was weakened when genetic data were added to the equation.
Similarly, predictive power of WC in Hispanics was weakened from 10.8% to 9.2% when
including genetic data in the linear model. Thus, genetic information did not contribute to
variation in these outcomes, while the models were penalized for 32 additional variables
added. However, 5.5% of predictive power was gained when estimating change in BMI
from baseline to the final examination, increasing from 18.0% to 23.5%. Thus, more than
one-twentieth of the variation in BMI change can be attributed to 100 genetic SNPs
summarized in 32 principal components. For the case of diabetes prevalence, the max-
rescaled Rz went up 17.9 percentage points, increasing from 3.5% to 21.4%, indicating
almost 18% of information is gained by adding genetic data to the model.

Significance of individual components for each obesity and diabetes outcome in

Hispanics is presented in table 4. Although many statistical textbooks use the absolute
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value of 0.40 as a strong loading on any component, this analysis considered 0.30 or
greater to be strong due to the small number of loadings above 0.40. In the Hispanic
population, PC15 was significant for all three obesity outcomes (p=0.0103 for BMI,
p=0.0471 for BMIchg, p=0.0101 for WC) and was the only significant component for BMI
and WC. Two SNPs contributed strongly to PC15, rs2267665 from the PPARD gene and
rs13376898 from the RBP4 gene, with loadings of 0.43 and 0.41, respectively. PC16 was
significant for both BMI change (p=0.0428) and diabetes status (p=0.0298) with a loading
of 0.33 from rs3758538 and 0.31 from rs11187545, both on the RBP4 gene sequence.
Additionally, change in BMI from baseline was significantly associated with PC4
(p=0.0205), which had five strong loadings of greater than 0.30 coming from SNPs on the
UCP1 gene, and PC31 (p=0.0035) with the strongest loadings coming from SNPs on genes
PPARA and PPARGC1B. Lastly, diabetes status was also associated with PC7 (p=0.0410),

which had strong loadings from SNPs on the RBP4 and FABPZ genes.

Table 3. Predicting Obesity and Diabetes in Hispanics

Outcome* Base$ Base + PCs8 Difference % Diff
adj-R? adj-R?

BMI 0.0629 0.0415 -0.0214 -2.14%

BMIchg 0.1796 0.2353 0.0557 5.57%

wC 0.1079 0.0919 -0.0160 -1.60%

Diabetes statust 0.0354 0.2144 0.1790 17.90%

BMI=body mass index, BMIchg=change in BMI from baseline visit to third exam, WC=waist circumference,
PC=principal components.

*General linear models were used for BMI, BMI chg, and WC. Logistic regression model was used for diabetes
status.

§ Base model included age, gender, and smoking status. Base + PC model included base variables plus 32
components.

fMax-rescaled R% was used for comparison.
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Table 4. Components Associated with Obesity Outcomes in Hispanics

absolute value BMI BMIchg WC Diabetes
(loading) status
PC4 p=0.0205
rs12502572 UCP1 0.36
rs7688743 UCP1 0.35
rs6536991 UCP1 0.33
rs6829571 UCP1 0.32
rs7687015 UCP1 0.30
PC7 p=0.0410
rs17484721 RBP4 0.35
rs13376835 RBP4 0.34
rs3758539 RBP4 0.32
rs10034661 FABP2 0.30
rs1799883 FABP2 0.30
PC15 p=0.0103 p=0.0471 p=0.0101
rs2267665 PPARD 0.43
rs13376898 RBP4 0.41
PC16 p=0.0428 p=0.0298
rs3758538 RBP4 0.33
rs11187545 RBP4 0.31
PC31 p=0.0035
rs4253655 PPARA 0.37
rs741581 PPARGC1B 0.33

BMI=body mass index, BMIchg=change in BMI from baseline visit to third exam, WC=waist circumference,
PC=principal component.

Results of regression models for NHWs are summarized in table 5. Looking at only
the base model, 1.7% of variation in BMI is explained, while 12.2% of variation in BMI
change is explained. This indicates that age, gender, and smoking status are descent
predictors of weight change over the 13-year study period. When genetic information is
added, 7.5% and 1.1% more predictive power is added to BMI and BMI change
measurements, respectively. Thus, while the base model is a good predictor of BMI change,
genetic information adds more value to current BMI predictability. Percent of variation
explained in WC is 27.9% with the base model alone and 33.0% with the base plus genetic

data model, demonstrating a 5.1% increase in explanatory power. Similar to Hispanics,
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18.5% information is gained for the status of diabetes in NHW, increasing from 2.7% to
21.2% for the base and full models, respectively.

Ten components were significantly associated with BMI in NHWSs, most notably PC9,
PC23, and PC30 with p-values less than 0.01 (table 6). SNPs that loaded strongly on these
components were related to the ADIPOQ, PPARG, UCP2, UCP3, ALOX15, and VDR genes,
however UCP3 did not have any loadings greater than 0.30. Components with high
representation of the peroxisome proliferator-activated receptors were associated with
BM], including PC2, PC3, PC10, and PC18. The UCP1 gene provided five SNPs that strongly
loaded onto PC4, a component that was significant for BMI, WC, and diabetes status in
NHW. This is in contrast to PC4’s only significance with BMIchg for Hispanics. Change in
BMI from baseline for NHW was associated with only one component of genetic
information, PC28 (p=0.0071), which reported just one strong loading of 0.40 from a SNP
on the vitamin D binding gene. In comparison, Hispanics had four significant components
for the BMIchg outcome. In addition to PC4, WC was associated with PC9, PC10, PC12,
PC23, and PC30, all of which were jointly associated with BMI. This overlap strengthens
the connection between genes loading strongly on those components with obesity, which
include PPARs and UCPs. Lastly, diabetes status was associated with strong loadings from

SNPs on the PPARGC1A, UCP1, RBP4, and FABPZ genes in NHWs in this study.
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Table 5. Predicting Obesity and Diabetes in Non-Hispanic Whites

Outcome* Base$ Base + PCs$ Difference % Diff
adj-R? adj-R?

BMI 0.0172 0.0923 0.0751 7.51%

BMIchg 0.1222 0.1330 0.0108 1.08%

wcC 0.2789 0.3301 0.0512 5.12%

Diabetes statust 0.0269 0.2122 0.1853 18.53%

BMI=body mass index, BMIchg=change in BMI from baseline visit to third exam, WC=waist circumference,
PC=principal components.

*General linear models were used for BMI, BMI chg, and WC. Logistic regression model was used for diabetes
status.

§ Base model included age, gender, and smoking status. Base + PC model included base variables plus 32
components.

fMax-rescaled R% was used for comparison.
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Table 6. Components Associated with Obesity Outcomes in Non-Hispanic Whites

absolute value BMI BMIchg WC Diabetes
(loading) status
PC2 p=0.0353
rs7682765 PPARGC1A 0.392565
rs7665116 PPARGC1A 0.392562
rs2076167 PPARD 0.392528
rs222029 GC 0.392482
rs2076169 PPARD 0.392466
rs7677000 PPARGC1A 0.392449
PC3 p=0.0474 p=0.0456
rs1873532 PPARGC1A 0.387502
rs3755863 PPARGC1A 0.382077
rs12650562 PPARGC1A 0.379946
rs8192678 PPARGC1A 0.364995
PC4 p=0.0297 p=0.0467 p=0.0332
rs12502572 UCP1 0.362761
rs7688743 UCP1 0.346076
rs6536991 UCP1 0.326283
rs6829571 UCP1 0.323687
rs7687015 UCP1 0.304011
PC7 p=0.0180
rs17484721 RBP4 0.346197
rs13376835 RBP4 0.34047
rs3758539 RBP4 0.320776
rs10034661 FABP2 0.303308
rs1799883 FABP2 0.30282
PC9 p=0.0080 p=0.0131
rs3774261 ADIPOQ 0.355404
rs1175540 PPARG 0.325168
rs1501299 ADIPOQ 0.316256
rs709149 PPARG 0.309365
PC10 p=0.0233 p=0.0052
rs709149 PPARG 0.367799
rs1175540 PPARG 0.356077
PC12* p=0.0120 p=0.0050
rs643064 UCP2 0.29657
PC18 p=0.0449
rs7672915 PPARGC1A 0.320308
PC23* p=0.0084 p=0.0019
rs2075577 UCP3 0.266811
PC26 p=0.0353
rs916055 ALOX15 0.405822
rs822395 ADIPOQ 0.374624
PC28 p=0.0071
rs17467825 GC 0.404464
PC30 p=0.0089 p=0.0130
rs916055 ALOX15 0.407087
rs3782905 VDR 0.33833
rs11602906 UCP2 0.314923

*These models did not have any loadings greater than 0.30.
BMI=body mass index, BMIchg=change in BMI from baseline visit to third exam, WC=waist circumference,

PC=principal component.

41



Regression models were examined further, increasing the principal components in
the full model from 32 to 50, with no increase in predictive power. In the same way,
principal components in the full model were reduced from 32 to 15 and still did not prevail
over the 32 component model when accounting for variation is obesity and diabetes

outcome measures (data not shown).
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CHAPTER 5

Discussion

In the current study of SLVDS participants, we attempted to examine genetic links to
variation seen in typical obesity measurements and prevalence of T2D. One hundred seven
loci were selected from 22 gene sequences for their suspected association. We were able to
summarize 77% of the genetic data into 32 individual components. When added to
demographic data, these components added valuable information for determining why we
see such a wide range of obesity and diabetes outcomes.

The percent of variation in obesity measurements explained by our PCA models
were low, ranging from 1% to 33%. However, the added explanatory power from only 100
SNP variants was considerable in relation to the amount of genetic information contained
in the human genome. It can be argued that models with low r-squared values can still be
practical; giving statistically significant results and is good representation of an outcome
despite a large amount of noise present. Given what we know about the complexity in
obesity outcomes, a small r-squared is expected with any predictive model focusing on just
one aspect of the disease, in this case genetics. A study performed by Peterson et al found
that only 4.13% of BMI variance was explained by their genetic risk sum score (GRSS)
model, which was just 0.66% more than the base model. Their analysis included non-
Hispanic European- and African-Americans, 56 SNP variants, and a similar base model to
the one in the present analysis. Thus, our summary form of 100 SNP variants, which added
7.5% explanatory power for BMI in NHWs, surpassed their predictions by a multiple of 11

(Peterson et al,, 2011). A notable difference in their study was the calculation of a genetic
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score reflecting an increased appearance of risk alleles, while our study looked at
associations in obesity measures with condensed information from multiple alleles.
Common SNPs between the two studies are rs8050136 (FT0O) and rs17782313 (near the
MC4R gene). Similarly, the population-based European Prospective Investigation into
Cancer and Nutrition (EPIC) study, conducted by Li et al, found significant effect sizes of
risk alleles from 12 genetic loci on BMI, though their combined effect explained only 0.9%
of BMI variation (Li et al., 2010). The EPIC study also included rs17782313, however no
other SNPs overlaped with those in the present study, including one from the FTO gene.

Genetic data in this study were significant in explaining differences between
Hispanic and NHW susceptibility to T2D. With approximately 18% predictive ability
gained in each group, the genetic information retained in our 32 components was helpful in
estimating an outcome of diabetes in subjects who did not have diabetes at the 1984-1985-
baseline examination. This knowledge could be useful in a clinical setting to implement a
more aggressive prevention strategy through lifestyle modifications. Ideally, knowing
one’s risk of developing T2D could motivate behavior change toward regulating food intake
and increasing moderate exercise to curtail manifestation of the disease. A study
conducted by Iwata et al showed that a genetic risk score composed of 14 SNPs had
significantly stronger association with T2D than any of the single SNPs alone in a Japanese
population (Iwata et al., 2012). They counted the number of risk alleles for each individual
and found the sum to be a useful indicator of early onset diabetes with an odds ratio of 1.26
towards development of the disease. Their analysis incorporated two of the same SNPs as
the present analysis, including rs8050136 (FTO) and rs1801282 (PPARG), indicating a

strong relationship between T2D with fat mass and lipid homeostasis. In the Iwata study,
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these SNPs were only significant when included in a genetic risk score, while in our study
they were recognized when combined with other SNPs within a factor. Another similarity
was their use of age and gender as the primary covariates combined with genetic
information. An important aspect of the Iwata et al study as well as the current study is the
significance of these SNPs in multiple ethnic and racial populations, which have already
been confirmed to be susceptibility loci in those of European origin. This characteristic
makes it possible for clinicians to develop a screening process for T2D, which uses a group
of SNPs that is relevant for all individuals, though their expected results may be different.
One likely reason the genetic data in the present study was better able to predict an
outcome of diabetes than obesity was the fact that the SLVDS was initiated as a diabetes
study and thus had that as their primary outcome of interest. Therefore, when collecting
genetic information, the investigators focused on associations with T2D and its related
complications such as cardiovascular disease. This aspect makes it difficult for anyone
using the same genetic information to assess obesity outcomes. Also, using BMI and related
measurements as a diagnosis of obesity can be inexact and may not reflect body fat in
different types of people. In the TIGER study, researchers point out the scale was created
based on Caucasian men and women and does not account for differences in body
composition between various racial or ethnic groups (Jackson, Ellis, McFarlin, Sailors, &
Bray, 2009). The study found that overweight and obesity was underestimated in Hispanic
women based on the usual BMI cut-offs, resulting in bias conclusions. Conversely, diabetes
status is viewed as having a more concrete diagnosis algorithm that is universal among

different groups and individuals.
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Another possible reason for the perceived greater predictability of diabetes status
over obesity measures is the use of the max-rescaled R? values. The R? value after
modeling a dichotomous outcome such as disease status is not directly comparable to the
R2 value after modeling a continuous variable outcome. Simply speaking, an outcome with
only two possible values does not have the typical variability seen with continuous data,
thus its R? is not equivalent to the percent of variance explained. The max-rescaled R?
value is a transformation of the ratio of two likelihood functions comparing the full-
proposed model with a model containing only an intercept (Menard, 2000). Nonetheless, it
is a measure of good fit and can be interpreted as the amount of information gained when
including predictors into the model in comparison with a null model. While not directly
comparable to the obesity outcome measures, using R? to assess predictability of diabetes
status when genetic data are added to the model is a good assessment of the data’s
usefulness.

Interestingly, SNPs from the FTO and near the MC4R gene did not show association
with obesity outcomes in this analysis, which have both proven to be associated with
obesity in previous studies (Frayling et al., 2007; Mejia-Benitez et al., 2013). Their effect
sizes may be weakened when other genetic data are present that contain all or some of the
same information. It is worth noting that SNP rs8050136 on the FTO gene was included in
the first component, which accounted for 17% of the total variation in SNP data, though
PC1 was not significantly associated with obesity outcomes in either group. However, this
analysis did uncover several potential SNPs to be included in future research of genetics

and obesity, including rs12502572, rs7688743, rs6536991, rs6829571, and rs7687015
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from the UCP1 gene, rs17484721, rs13376835, and rs3758539 from the RBP4 gene, and
rs10034661 and rs1799883 from the FABPZ gene.

This study is an application of the approach suggested by Wang and Abbott on the
use of principal components in genetic association studies (Wang & Abbott, 2008). They
propose a general method for reducing the dimension and collinearity of genetic data,
which is then entered into a regression model to determine association with an outcome.
Although this method is common in other fields, such as econometrics, it has not been
widely employed in disease-related studies. One drawback of condensing genetic data is
that some capability to directly associate a single SNP with the outcome variable is lost.
However, the goal of this study was to assess the effective association of a group of
carefully selected SNPs on each outcome rather than restricting the focus to individual
SNPs, which has proven to be fruitless (Li et al., 2010).

With genetics, particularly SNP data, there is an abundance of information, which
creates a need for condensing or summarizing the data into an appropriate format for
analysis. We have shown that PCA is a practical way of doing this when individual variable
contributions are not desired. Associations can be made between phenotype and a large
group of genetic data. The challenge now lies in the method of choosing an ideal group of
potential SNPs that together will have maximum power of explaining variations in typical
markers for obesity, such as BMI and WC, and T2D. This method allows usage of many
common SNPs within obesity related gene sequences like FTO and PPARG.

Another advantage of this approach over other genetic models is the ability to
include covariates to the regression model. Incorporating demographic and lifestyle data

along with genetics are important for creating a clear picture of complex diseases.
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Additionally, this method does not rely on directionality of the risk allele, allowing
flexibility in choosing groups of SNPs without detailed population statistics. However, risk
direction would be useful in follow-up analyses.

Aside from PCA, unique to this study was its large population of Hispanics. When
looking at the regression models, very different results were seen between Hispanics and
NHWs for both BMI and WC. This proves that genetic information is valuable when
explaining phenotypic variations seen within different populations. The Viva La Familia
Study was developed to genetically map childhood obesity and its metabolic consequences
in Hispanics (Butte et al., 2006). They found a strong genetic contribution to the high
prevalence of childhood obesity in Mexican-American families with significant heritability
for obesity-related traits. This large cohort of overweight and obese Hispanic families
would serve as a great resource for identifying genes or a group of SNPs to include in a
genetic model such as the one in the present study.

A limitation of this study is the omission of lifestyle variables, including energy
intake and physical activity, as well as the lack of availability of more obesity SNP variants.
Future studies should devote more time to identification of genes and individual SNPs
related to weight status through the use of GWAS and current literature. Also, there could
be confounding due to population stratification since allele frequencies can vary across
ethnic groups due to differences in ancestry. This event may explain differences observed
in allele frequencies between Hispanic and NHW for individual SNPs and may be a factor in
differences seen with their effects on obesity and diabetes outcomes. However, substantial
variation in allele frequencies or disease rates across groups was not thought to hinder this

analysis.
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In conclusion, this study presents an effective method for incorporating a large
amount of genetic information into a simplified predictability model. It provides further
information regarding genetic variation as a crucial part of explaining phenotypic and
metabolic differences in Hispanic and NHW populations. With an ideal set of starting
variables, PCA could summarize many SNPs into a few powerful components. When this
group of SNPs is found and if genetic data were readily available, individuals would have a
better understanding of their risks. Further investigation of obesity related SNPs is needed

for future analysis.
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