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ABSTRACT 

 

 

 

RANDOMIZED HIERARCHICAL SEMI-SEPARABLE STRUCTURES FOR PARALLEL  

DIRECT DOUBLE-HIGHER-ORDER METHOD OF MOMENTS  

 

 

 

As technology grows more and more rapidly, the need for large-scale electromagnetics 

modelling arises.  This includes software that can handle very large problems and simulate them 

quickly.  The goal of this research is to introduce some randomized techniques to existing methods 

to increase the speed and efficiency of Computational Electromagnetics (CEM) simulations.   

A particularly effective existing method is the Surface Integral Equation (SIE) formulation 

of the Method of Moments (MoM) using Double Higher Order (DHO) modelling.  The advantage 

of this method is that it can typically model geometries with fewer unknowns, but the disadvantage 

is that the system matrix is fully dense.  In order to counter this drawback, we utilize Hierarchical 

Semi-separable Structures (HSS), a data-sparse representation that expresses the off-diagonal 

blocks of the matrix in terms of low rank approximations.  This improves both the speed and 

memory efficiency of the DHO-MoM-SIE. 

Of the three steps of HSS (construction, factorization, and solving), the one with the most 

computational cost is construction, with a complexity of ܱሺܰݎଶሻ, where ܰ is the size of the matrix 

and ݎ is maximum rank of the off-diagonal blocks.  This step can be improved by constructing the 

HSS form with Randomized Sampling (RS).  If a vector can be applied to the system matrix in ܱሺܰଵ.ହሻ time, which we accomplish by means of the Fast Multipole Method (FMM) then the HSS 

construction time is reduced to ܱሺݎଶܰଵ.ହሻ.  This work presents the theory of the above methods.  

Numerical validation will also be presented.   
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CHAPTER 1: INTRODUCTION 

 

 

 

A. Background 

 Although Maxwell’s Equations have been around for nearly a century and a half [1], the 

real challenge is solving them.  Unfortunately, analytical solutions for electromagnetic scattering 

only exist for very simple shapes exhibiting a high degree of symmetry, such as perfect spheres 

[2].  Yet problems that involve electromagnetics, such as antenna design, radar, satellite 

communication, and optics rarely have such symmetries.   

The field of Computational Electromagnetics (CEM) solves Maxwell’s Equations 

approximately by employing a myriad of numerical methods.  These methods can consist of 

procedures such as the discretization of the object into smaller, simpler objects; discretizing time; 

applying boundary conditions; approximating derivatives with differences or integrals with 

summations; etc [3].   

 Frequency-domain CEM methods can be classified into two broad categories [4]: Integral 

Equation (IE) methods [5-9] and (Partial) Differential Equation (PDE or DE) methods [10-11].  

Each class has its strengths and weaknesses: PDE methods, such as the Finite Element Method 

(FEM), produce sparse system matrices, but require discretization of the empty space around the 

object, whereas IE methods such as the Method of Moments (MoM) discretizes only the object 

itself, but does not, in general, have any sparsity pattern [5].  The method that we examine in this 

work is the Method of Moments, and as such we will be concerned with overcoming the challenges 

of solving a fully dense system of linear equations. 
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The fully dense system matrix is not a problem for small problem sizes.  However, since 

the matrix solving step has a computational complexity of ܱሺܰଷሻ for an ܰ×ܰ matrix, for very 

large problems the computational cost becomes prohibitively high [12].  A particularly effective 

strategy of countering this weakness is known as Hierarchical Semi-Separable Structures (HSS) 

[13].  This involves making low-rank approximations to the off-diagonal blocks of the system 

matrix by expressing them as a product of orthonormal and triangular matrices via a modified 

version of the well-known QR decomposition.  With this structure in place, the solving complexity 

decreases drastically to ܱሺܰݎሻ where ݎ is the maximum rank of the off-diagonal block [14].  The 

tradeoff is that the HSS compression step is ܱሺܰݎଶሻ.  This is the new bottleneck of the MoM-HSS 

process, and hence the overall complexity of the method is ܱሺܰݎଶሻ.    

 The goal of this research is to modify an existing MoM solver that uses HSS in order to 

decrease the overall complexity.  We aim to employ the technique of Randomized Sampling (RS) 

in order to do so [15-17].  This technique rapidly speeds up the HSS compression step.  It can 

decrease the complexity to ܱሺݎଶܰሻ.  The method entails “sampling” the columns of the system 

matrix before the QR-like decomposition by multiplying by a series of random, Gaussian vectors. 

The speedup of this method is dependent on being able to perform a faster matrix-vector 

multiplication than the classical ܱሺܰଶሻ for dense matrices.  So, we pre-fill the matrix using the 

Fast Multipole Method (FMM) which allows for ܱሺܰଵ.ହሻ matrix-vector multiplications [18-23].  

FMM algorithms involve approximating the interaction between collections of particles (in our 

case, basis functions) that are very far away from each other with the interaction between 

equivalent, aggregated sources.  As a result, the sections of the system matrix corresponding to 

well-separated basis functions are expressed as the outer product between vectors.  Without HSS 

or RS, this method is typically used in conjunction with an iterative solver in order to exploit the 
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fast multiply, although there is some recent work on developing FMM codes that solve the matrix 

directly [24-25]. 

 

B. Organization  

 The first few chapters of this thesis detail the theoretical aspects of the various components 

of the method.  Chapter 2 of this thesis will cover the central component of the method, the Method 

of Moments with the Surface Integral Equations (SIE) formulation.  Double-Higher-Order (DHO) 

modelling will also be discussed.  Chapter 3 briefly outlines the HSS theory, including the matrix 

structure, the compression step, and a comparison between the complexities of its associated 

algorithms. Chapter 4 will detail the RS process and its benefit to HSS.  Chapter 5 will cover the 

steps in FMM method.   

 Chapter 6 will present numerical results.  Agreement with analytical results and classical 

MoM results will be demonstrated.  Additionally, an empirical measurement of the complexity 

and scalability will be presented.  Finally, Chapter 7 will summarize the findings of the thesis as 

well as suggesting some directions of future study. 
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CHAPTER 2: THE METHOD OF MOMENTS 

 

 

 

One of the most common techniques used to analyze frequency-domain CEM problems is 

the Method of Moments (MoM, sometimes referred to as the Boundary Element Method, BEM) 

with the Surface Integral Equations (SIE) formulation.  We employ this method to numerically 

solve for the electromagnetic scattering from an arbitrary conducting body.  The method can be 

modified very slightly to be made to analyze homogenous or piecewise inhomogeneous dielectric 

bodies as well, but this work will only consider metallic structures.  See [26] for more detail on 

the SIE formulation that includes dielectric bodies.   

The MoM formulation can be summarized as such [3]: the method starts by discretizing 

the input object or surface that is being analyzed into small, two-dimensional patches.  A boundary 

condition relates the incident electric field (also an input to the method) to the electric field that is 

scattered from this object.  The scattered field can in turn be expressed as integrals of the currents 

on the surface of the object (hence, SIE), which are defined locally on each patch in terms of basis 

functions with unknown weights.   

In order to turn the single boundary condition equation with many unknown weights (an 

underdetermined problem) into a system of many equations, the technique of Galerkin testing is 

employed.  During this step, we take the inner product between the boundary equation with each 

of the basis functions to produce a linear system of equations.   

We employ Double Higher Order (DHO) modelling: using higher order geometric 

elements and higher order polynomial basis and testing functions.  This approach allows for the 

analysis of large structures with fewer unknowns than typical methods that use low order 

geometric modelling and basis functions.  
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A. Surface Integral Equations 

 This section presents a brief overview of the MoM with SIE formulation.  Suppose a 

metallic structure is excited by an impinging time-harmonic wave with field intensity �௜௡� and 

frequency ߱.  Surface currents �ௌ will be induced on the surface of the conductor, which will then 

re-radiate a scattered field �௦��௧.  We model the metallic surface with Perfect Electric Conductor 

(PEC) which is a non-physical material with infinite conductivity.  In that case, the incident and 

scattered fields must satisfy the following boundary condition on the surface of the conductor, ܵ: 

ቀ�௧�௡�௜௡� + �௧�௡�௦��௧ ሺ�ௌሻቁ|௥אௌ = Ͳ 

Or equivalently: 

�௧�௡�௦��௧ ሺ�ௌሻ|௥אௌ = −ሺ�௧�௡�௜௡� ሻ|௥אௌ 

The dependence of the scattered electric field on the surface current density can be seen by 

first expressing the electric field in terms of the electric scalar potential Φ and the magnetic vector 

potential �:  

�ሺ�ௌሻ = −݆߱� −  Φ׏

and then expressing the potentials in equation (1.3) in terms of the surface current density: 

� = ଴ߤ ∫ �ௌ݃ ݀ܵௌ         and        Φ = ݆߱�଴ ∫ ሺ׏ௌௌ ∙ �ௌሻ ݃݀ܵ 

where ߤ and � are the permeability and permittivity of free space, respectively, ݆ is the imaginary 

unit equal to √−ͳ, and g is the Green’s function for an unbounded homogenous medium given by: 

(2.4) 

(2.1) 

(2.2) 

(2.3) 
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݃ = ݁−௝�√��ோͶ�ܴ  

 The surface S is discretized into smaller patches (also commonly referred to as “elements”) 

that are typically some kind of triangular or quadrilateral shape.  This will be referred to as the 

“meshing” step.  We then express the unknown surface current density on each patch as a weighted 

sum of predetermined basis functions, �௜: 
�ௌ = ∑ ܽ௜�௜ሺ�ሻ�

௜=ଵ  

where ܽ௜ are the unknown weighting coefficients and ܰ is the number of basis functions that we 

are using to describe the surface current density.  

 This leaves us with ܰ unknowns but only one equation, (2.2).  So, the system is “tested” 

in which we multiply both sides of equation (2.2) by a testing function (or weighting function) and 

integrate over the domain of the testing function, ܵ௪:   

∫ ௌೢݓ ௌሻ݀ܵ௪ܬ௦��௧ሺܧ = − ∫ ௜௡�݀ܵ௪ௌೢܧݓ  

The most common choice for the testing functions are the basis functions themselves, in 

which case it is referred to as “Galerkin” testing.  Combining equations (2.2) through (2.7) and 

applying some vector identities, we obtain the following expression for the ݅th testing equation: 

(2.5) 

(2.6) 

(2.7) 
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ߤ݆߱− ∫ ∫ (�௜ ∙ ∑ ܽ௜�௜ሺ�ሻ�
௜=ଵ ) ݃݀ܵ݀ ௜ܵௌ + ݆߱� ∫ ∫ ቌሺ׏ ∙ �௜ሻ ∙ (∑ ܽ௜׏ ∙ �௜ሺ�ሻ�

௜=ଵ )ቍ ݃݀ܵ݀ ௜ܵௌௌ೔ௌ೔
= − ∫ �௜ܧ௜௡�݀ ௜ܵௌ೔  

With some assumptions on the above integrals, the summations can be exchanged with 

the integrations, resulting in the following MoM system equation: 

[ܼ]{ܽ} = {ܸ} 

where [Z], an ܰ×ܰ matrix, is referred to as the “Galerkin impedance matrix” or “system matrix” 

whose entries are given by: 

ܼ௜௝ = ߤ݆߱− ∫ ∫ (�௜ ∙ �௝)݃ ݀ ௝ܵ݀ ௜ܵௌೕ + ݆߱� ∫ ∫ ቀሺ׏ ∙ �௜ሻ ∙ ׏) ∙ �௝)ቁ ݃ ݀ ௝ܵ݀ ௜ܵௌೕௌ೔ௌ೔  

{a}, an ܰ×1 vector, contains the unknown weighting coefficients from equation (2.6) and is 

referred to as the “unknowns” or “currents” vector, and {V}, an ܰ×1 vector, is referred to as the 

“excitation” vector and is calculated as: 

௜ܸ = − ∫ �௜ܧ௜௡�݀ ௜ܵௌ೔  

B. Double Higher Order 

In the meshing step above, the structure is generally subdivided into smaller, simple shapes 

such as flat triangles or flat quadrilaterals.  These linear geometric approximations are limited in 

how well they can model the surface.  In our meshing, we use curved elements that are defined by 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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a series of interpolation nodes, �௞௟, and then interpolated by Lagrange polynomials, ܮ௞.  The 

elements can by described analytically by the following parametric equation: 

�ሺݑ, ሻݒ = ∑ ∑ �௞௟ܮ௞ሺݑሻܮ௟ሺݒሻ௄ೡ
௟=଴

௄ೠ
௞=଴ ,       − ͳ ൑ ,ݑ ݒ ൑ ͳ 

 Additionally, the basis functions are commonly chosen to be low order (linear or constant), 

resulting in few unknowns per element.  The downside is that the structure must be discretized 

into a larger number of elements.  Moreover, the lower order approach is restricted in the current 

patterns it can produce.  For those reasons, we utilize higher order basis functions, where the 

surface current density is approximated as: 

�ௌሺݑ, ሻݒ = ∑ ∑ ܽ௨,௠௡�௨,௠௡�ೡ−ଵ
௡=଴ ሺݑ, ሻ�ೠݒ

௠=଴ + ∑ ∑ ܽ௩,௠௡�௩,௠௡�ೡ
௡=଴ ሺݑ, ሻ�ೠ−ଵݒ

௠=଴  

and the basis functions are given by  

�௨,௠௡ሺݑ, ሻݒ = ௠ܲሺݑሻݒ௡ܬሺݑ, ሻݒ �௨ሺݑ,  ሻݒ

�௩,௠௡ሺݑ, ሻݒ = ௡ܲሺݑሻݒ௠ܬሺݑ, ሻݒ �௩ሺݑ,  ሻݒ

௞ܲሺݑሻ = ݂ሺݔሻ = { ͳ − ,ݑ ݇ = Ͳͳ + ,ݑ ݇ = ͳݑ௞ − ͳ, ݇ ൒ ʹ, ௞ݑ݊݁ݒ݁ − ,ݑ ݇ ൒ ͵, ݀݀݋   
where the unitary vectors �௨ and �௩ and the Jacobian ܬ are given in terms of � from equation 

(2.12) by 

�௨ሺݑ, ሻݒ = ߲�ሺݑ, ݑሻ߲ݒ ,           �௩ = ߲�ሺݑ, ݒሻ߲ݒ ,         and           

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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,ݑሺܬ ሻݒ = |�௨ሺݑ, ,ݑሻ×�௩ሺݒ  |ሻݒ
  Note that our basis functions in (2.14) and (2.15) are not orthogonal.  This means that the 

system   

  

(2.18) 
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CHAPTER 3: HIERARCHICAL SEMI-SEPERABLE STRUCTURES  

 

 

 

A. HSS Preliminaries 

 In this chapter, the definitions and algorithms associated with Hierarchical Semi-separable 

Structures (HSS) will be discussed [13].  HSS is a matrix representation that expresses a matrix in 

terms of low-rank approximations to off-diagonal blocks in a hierarchical manner, very similar to 

Hackbusch’s H-Matrices [27-29].  There are numerous advantages to using HSS such as memory 

efficiency and computational speedup, and it is especially applicable to CEM problems due the 

asymptotic behavior of the Green’s function.  Furthermore, since HSS is an algebraic method, it 

can easily be implemented in existing solvers.   

 The initial step of constructing an HSS representation of an ݊݊ݔ matrix ܣ is to partition the 

row indices (or equivalently, the column indices) into 2k-1 disjoint subsets ݈௜: 
⋃ ݈௜ଶೖ−భ

ଵ = ܵ            and         ݈௜ ∩ ௝݈ = ∅, ݅ ≠ ݆ 

ܵ = {ͳ,ʹ,͵, … , ݊} 

where ݊ is the size of matrix ܣ, and k is the HSS level.  These sets are then arranged as the leaves 

in a proper binary tree where the leaf nodes are ݈௜ and each non-leaf node is the union of its two 

children.  The tree is then “post-ordered” such that the right child of the nth node is the (n-1)th 

node.  An example of a 4-level post-ordered HSS tree can be seen in figure 3.1. 

(3.1) 
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B. Rank-revealing QR decomposition 

Before we proceed with the details of the construction of the HSS matrix, the rank-

revealing QR (RRQR) decomposition must be discussed.  This factorization method is based on 

the Gram-Schmidt process, similar to the well-known QR decomposition, but whereas QR desires 

an exact factorization ܣ = ܳܶ, the goal of the RRQR is instead to find an approximate 

factorization ܣ ≈ ܳܶ.  In the case of the QR decomposition of a matrix ܣ of size ܯ×ܰ, the factor 

sizes are ݎ×ܯ and ݎ×ܰ for Q and T, respectively, where ݎ is the rank of matrix ܣ.  In contrast, 

the factors from RRQR are of size ݎ×ܯ� and ݎ�×ܰ for Q and T, where ݎ� is referred to as the 

approximate rank or “�-rank” of matrix ܣ.  This process will allow us to express the off-diagonal 

blocks of a matrix in terms of low-rank approximate factorizations. 

The procedure for the RRQR with an ܯ×ܰ input matrix ܣ and input tolerance � is as 

follows: 

Figure 3.1: An example of a post-ordered, four-level HSS tree 
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1. Find the column of ܣ with the largest Euclidian norm.  We call this the ݆th column, ௝ܽ 

2. Swap the ݅th column, ܽ௜, with ௝ܽ (where ݅ is the iteration counter) 

3. Normalize ܽ௜ to produce ܽ̂௜. Store the norm of ܽ௜ as the ݅th diagonal entry of T: ݐ௜௜ =‖ܽ௜‖ଶ; and the normalized column ܽ̂௜ as the ݅th column of Q: ݍ௜ = ܽ̂௜.  If ݐ௜௜ ൑  ,ଵଵݐ�

then the procedure terminates and the �-rank of ܣ is said to be ݎ� = ሺ݅ − ͳሻ 

4. Calculate the remaining elements of the ݅th row of T by projecting ܽ௜ onto the 

columns of ݐ :ܣ� = ௜+ଵ ܽ௜+ଶܽ]�ݍ … ܽ�] 
5. Update the matrix A as ܣ = ܣ −  �௜ݐ௜ݍ

There are a few features of the RRQR factorization that are worth noting.  As a 

consequence of using the Gram-Schmidt orthogonalization, the columns of ܳ are orthonormal, so ܳ�ܳ =  Additionally, the matrix ܶ is upper triangular.  These are facts that are exploited later  .ܫ

in the HSS factorization step [13]. 

 

C. HSS construction 

 The HSS form is generated recursively through a series of RRQR decompositions.  At the 

leaf level of the HSS tree, the diagonal blocks, ܦ௜, are extracted and saved as dense blocks:  

௜ܦ =  ௧೔×௧೔ܣ
where × denotes the Cartesian product between the two index sets.  Then, the remainder of each 

block-row is extracted and factorized using a RRQR decomposition (covered in the previous 

section) in a process referred to as “row compression”: 

௧೔×ሺௌ\௧೔ሻܣ ≈ ௜ܷ ௧̂೔×ሺௌ\௧೔ሻோܣ   

(3.2) 

(3.3) 



13 

 

Here, the notation ܵ\ݐ௜ refers to the set difference between the full index set ܵ and the leaf index 

set ݐ௜ so that ܣ௧೔×ௌ\௧೔ is the off-diagonal block row corresponding to the row index set ݐ௜.  The 

matrix on the right-hand-side of the equation ܣோ denotes the matrix ܣ after it has undergone Row 

compression.  Note also that the post-QR row index set has been replaced with ̂ݐ௜ to indicate that 

there is a different index set corresponding to the new matrix ܣோ.  These two factors, ܷ ௜ and ܣ௧೔×ௌ\௧೔ோ  

are stored, and the original matrix ܣ is discarded at the end of the leaf-level row compression step.  

An example of a leaf-level row-compression step can be seen in figure 3.2. 

 

 Once the leaf-level nodes have undergone row compression, the rest of the tree is traversed 

in a bottom-up fashion.  At each non-leaf node ݅, the off-diagonal block is constructed by 

concatenating the appropriate section of each of the generators of its children and subsequently 

factorized using the RRQR decomposition:  

Figure 3.2: An example of leaf-level HSS compression. (a) the block-row is separated into the diagonal 

block, ܦଵ, and the off-diagonal, ܣ௧భ×ሺௌ\௧భሻ.  (b) the diagonal block is stored, and the off-diagonal block 

undergoes RRQR. (c) after RRQR, the factors ଵܷ and ܣ௧̂భ×ሺௌ\௧భሻோ  are stored and the original off-diagonal 

block is discarded. 

(a)                                                    (b)                (c) 
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௧̂�మ×ሺௌ\௧೔ሻோܣ௧̂�భ×ሺௌ\௧೔ሻோܣ) ) ≈ (ܴ�ଵܴ�ଶ) ௧̂೔×ሺௌ\௧೔ሻோܣ  

where the subscript ܿͳ ܽ݊݀ ܿʹ refer to node ݅’s left and right children, respectively.  Note that, 

although the two generators that node ݅ inherits are already row compressed, there may be some 

additional rank-deficiency in the concatenated matrix, so this step is necessary.  The portions of ܣோ that are not forwarded are kept by the children nodes: 

௧�భ×௧�మܣ ≈ �ܷଵ ܣ௧̂�భ×௧�మோ ௧�మ×௧�భܣ       ݀݊ܽ        ≈ �ܷଶ ܣ௧̂�మ×௧�భோ  

An illustration of the forwarding and row compression process for non-leaf nodes can be seen in 

figure 3.3 

Once row compression has been completed up to the root level, the HSS form undergoes 

an analogous “column compression” process.  First, at each node, a new index set ݐ௜̅ is defined 

which contains the indices of the rows chosen for the basis in the row-compression RRQR step.   

(3.4) 

(3.5) 
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At the leaf level, column compression is done with another RRQR:  

ሺௌ̂\௧̂೔ሻ×௧೔ோܣ ≈ ሺௌ̂\௧̂೔ሻ×௧̃೔ோ஼ܣ ௜ܸ� 

where ܵ̂ is the union of all row-compressed index sets, ̂ݐ௜, and ܣோ஼ is the matrix after it has 

undergone both row and column compressions.  The generators ܣ௧̅೔×௧̃೔ோ஼  and ௜ܸ� are then stored.  Just 

(3.6) 

(c)

(a)           (b)

Figure 3.3: An example of non-leaf-level HSS compression, where red represents a final generator and 

blue indicates that the matrix will go through some additional compression (a) the node inherits the 

generators of its children  (b) the off-diagonal block for this node is constructed from the ܣோ generators 

of its two children c1 and c2, and the remainder is kept by the children. (c) After performing RRQR on 

this concatenated block, the generators ܴ and ܣோ are stored.  Note that this is a depiction of a 3-level 

HSS tree, and if it was a four-level or higher tree, the ܣோ generator would not be final. 
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as in the row compression step, each non-leaf node inherits the generators of its children and then 

undergoes an RRQR decomposition: 

ቀܣሺௌ̂\௧̂೔ሻ×௧̃�భோ஼ ሺௌ̂\௧̂೔ሻ×௧̃�మோ஼ܣ  ቁ ≈ ሺௌ̂\௧̂೔ሻ×௧̃೔ோ஼ܣ ( �ܹଵ�ܹଶ)�
 

Note the notational difference between ݐ௜ (original index sets, no accent), ̂ݐ௜ (row index set after 

row compression, hat), and ̃ݐ௜ (column index set after column compression, tilde).  The final 

generator ܤ is obtained for each child node as the portions of A that are not forwarded to the parent 

node: 

௜�ܤ = ௧̂�భ×௧̃�మܣ     and     ܤ�ଶ =  ௧̂�మ×௧̃�భܣ

 The task of computing the HSS factorization has been shown to have an asymptotic 

complexity of ܱሺܰݎଶሻ where ܰ is the size of the matrix and ݎ is the maximum �-rank of an off-

diagonal block [31].   

 

D. HSS Factorization 

 Once the HSS form has been constructed, the next step is to perform a ULV factorization 

on the HSS form in preparation for matrix solving.  Finally, the system is solved by starting at the 

most compressed (root) level and eliminating downward through the HSS tree.  This matrix Since 

this work focuses primarily on the matrix filling and compression stages of the MoM process, the 

factorization and solving algorithms of HSS will be omitted, and the reader can consult [13] for 

further detail.   

(3.7) 

(3.8) 
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 The HSS ULV factorization step has been shown to have an asymptotic complexity of ܱሺݎଶܰሻ and the solving step ܱሺܰݎሻ where ܰ  is the size of the system matrix and ݎ is the maximum �-rank encountered when producing the HSS form.  As ݎ is bounded by ܰ, and in practice is 

typically much smaller than ܰ, the computational bottleneck of the overall HSS process lies in the 

compression step, with a complexity of ܱሺܰݎଶሻ.  While this is still significantly better than the ܱሺܰଷሻ complexity of a solution using classical Gaussian elimination, it is not as fast as some 

iterative methods which can have a complexity of ܱሺܰଶሻ [31].  Hence, the focus of this research 

has been modifying the compression step in an attempt to speed up the HSS construction step. 
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CHAPTER 4: RANDOMIZED SAMPLING 

  

 

 

This chapter discusses the approach of Randomized Sampling (RS), pioneered by P. G. 

Martinsson in [15-17].  This approach aims to reduce the computational complexity of the HSS 

construction step by analyzing only a small, randomly sampled subset of a matrix instead of the 

whole matrix.  This chapter also introduces a matrix decomposition method known as Interpolative 

Decomposition (ID) which integrates with Randomized Sampling better than the traditional RRQR 

decomposition.   

 

A. Interpolative Decomposition  

 Interpolative Decomposition is a matrix factorization procedure that is very similar to 

RRQR that was presented in Chapter 3.  The goal is to obtain a factorization for a matrix ܣ in the 

following form  

ܣ = :ሺܣ ,  ܺ ሻܬ

where ܬ is a set of column indices and ܣሺ: ,    .[32] ܬ indexed by ܣ ሻ denotes a collection of the columns ofܬ

As one can see, the main difference between the RRQR and ID is the column space basis 

matrix of the factorization.  The matrix that supplies the basis for the column space in RRQR (the 

“Q” matrix) is a normalized, orthogonalized basis that does not necessarily share any columns in 

common with the original matrix.  On the other hand, in ID, the matrix that forms the basis for the 

column space for ܣ  is extracted directly from the original matrix ܣ.  So, while ID loses the property 

(4.1) 
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of orthonormality, it saves on time of performing the additional computations required to produce 

the ܶ matrix in the RRQR decomposition.   

 The procedure for performing an ID of an ܯ×ܰ matrix ܣ is as follows. 

1. Find the column of ܣ with the largest Euclidian norm.  We call this the ݆th column, ௝ܽ 

2. Record the value ݆ in a list of indices ܬ and then swap the ݅th column, ܽ௜, with ௝ܽ 

3. Normalize ܽ௜ to produce ܽ̂௜. Store the norm of ܽ௜ as the ݅th diagonal entry of T: ݐ௜௜ =‖ܽ௜‖ଶ.  If ݐ௜௜ ൑ �ݎ is said to be ܣ ଵଵ, then the procedure terminates and the �-rank ofݐ� = ሺ݅ − ͳሻ 

4. Calculate the remaining elements of the ݅th row of T by projecting ܽ௜ onto the 

columns of ݐ :ܣ� = ܽ̂�[ܽ௜+ଵ ܽ௜+ଶ … ܽ�] 
5. Update the matrix A as ܣ = ܣ − ܽ̂௜ݐ௜� 

6. Repeat steps 1 through 5 until desired accuracy is achieved or matrix columns are 

exhausted.  Up to this point, the process is essentially equivalent to an RRQR. 

7. Partition the ܶ matrix into [ ଵܶ ଶܶ] where ଵܶ is an ݎ×ݎ matrix formed by the columns 

of ܶ indexed by ܬ and ଶܶ is the leftover columns.  Produce the matrix factor ܺ as ܺ ௥ ଵܶ−ଵܫ]= ଶܶ] where ܫ௥ is the ݎ×ݎ identity matrix.   

8. Extract the ݎ columns of ܣ corresponding to the columns indexed by ܬ to obtain the 

second factor, ܣሺ: , ܣ ሻ.  The factorization is nowܬ ≈ :ሺܣ ,  ሻܺܬ

 

B. Randomized Sampling  

In the case of very large electromagnetics problems, the matrices for which we must 

compute an RRQR decomposition or ID become very large even though they may only be subsets 
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of the entire system matrix.  More importantly, the size of the matrix is oftentimes much larger 

than the (approximate) rank-reduced factorization.  Therefore, it is desirable to find a method that 

expedites the matrix decomposition step by using prior knowledge of the �-rank deficiency. 

Consider the following naïve attempt at solving this problem: we could simply extract the 

first ݎ columns of the matrix ܣ and perform a decomposition on those columns to obtain an 

approximate basis for the column space.  Better yet, we could take the ݎ columns with the largest 

norms and use those columns for the decomposition.  Unfortunately, the problem with the above 

approach is that the columns are not guaranteed to be linearly independent.   

The above reasoning gives rise to the RS algorithm.  Instead of using a subset of the 

columns of ܣ as the input to the matrix decomposition, we use a series of sampling vectors, ߱௜ 
whose entries are independently drawn from a Gaussian distribution.  Each matrix-vector product ߱ܣ௜ will yield a vector that is a randomly weighted linear combination of the columns of ܣ.  By 

successively sampling the matrix in this manner, we obtain a collection of vectors that are in the 

column space of ܣ, but with the added benefit of being much less likely to have linear dependence.  

Hence, if we use this new collection of vectors as the input for a matrix decomposition, it will 

produce an approximate basis for the column space.   

The RS algorithm is detailed below: 

1. Generate a sampling vector ߱௜ of length ܰ (the number of columns in A) whose 

entries are randomly chosen from a Gaussian distribution.  Make ݎ such vectors and 

concatenate them in the matrix Ω. 

2. Form the matrix product ܣௌ =  Ω (the subscript “S” refers to the “sampling” that hasܣ

been done on the matrix) 
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3. Perform an interpolative decomposition on ܣௌ� to obtain the factors ܬ and ܺ such that ܣௌ� = :ௌ�ሺܣ , ௌܣ ሻܺ or equivalentlyܬ = ,ܬௌሺܣ�ܺ : ሻ = ,ܬሺܣ�ܺ : ሻΩ. 

4. Hence, the factorization for ܣ is ܣ = ,ܬሺܣ�ܺ : ሻ 

 

Several points should be noted.  Firstly, the matrix ܣ is rarely exactly rank ݎ, and as such 

the span of the ݎ columns of matrix ܣௌ may not match the range of the original matrix ܣ.  To 

diminish this effect, an “oversampling” parameter, ݌, is chosen (usually about 10) and instead of 

generating  ݎ random samples of the columns, we generate ݎ +  random samples.  If we preform ݌

ID on the oversampled matrix, we will obtain a factorization where the first ݎ basis vectors that 

we choose are likely to be the dominant ݎ columns of ܣ. 

As this process relies on randomly generated numbers, it has some probability of failure.  

In [16], it has been shown that the factorization produced by the above algorithm will satisfy ‖ܣ − ,ܬሺܣ�ܺ : ሻ‖ ൑ [ͳ + ͳͳ√ݎ + ,ܯ}min√ ݌ ܰ}] �௥+ଵ 

where �௥+ଵ is the (1+ݎ)th largest singular value of ܣ with a probability that depends only on the 

oversampling parameter, p, and does not depend on ܰ or ܯ or any other property of ܣ.  In [16], it 

was shown that the failure of producing the desired factorization in equation (4.2) is  

6 ∙  ௣−݌

The superexponential convergence of the failure probability is one of the major advantages to 

using the RS algorithm: the probabilistic aspect is basically negligible for an appropriate choice of 

p.   

 Lastly, the rank, ݎ, is rarely known prior to performing the RS/ID process.  Hence, the 

number of sampling vectors ݎ +  is not known.  The strategy that we have employed in the context ݌

(4.2) 

(4.3) 
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of HSS is to do a full (with min{ܯ, ܰ} sampling vectors) RS/ID decomposition during the first 

block compression in the HSS tree, record the resulting �-rank, ݎଵ, and use ݎଵ +  sampling vectors ݌

for the remaining compressions. 
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CHAPTER 5: THE FAST MULTIPOLE METHOD 

 

 

 

Regarded as one of the Top 10 Algorithms of the 20th century [33], the Fast Multipole 

Method (FMM, also known as the Fast Multipole Approximation, FMA) is a technique that allows 

for the rapid computation of long-range interactions [20].  It does so by calculating interactions 

between well-separated groups of unknowns instead of calculating every Galerkin impedance from 

equation (2.10).  This is analogous to sending letter through the postal system, where letters are 

collected at post offices (aggregation), transported in bulk (translation), and then distributed to 

individual recipients (disaggregation).   

The strength of FMM lies in its ability to perform matrix-vector multiplications (MVM) 

with the system matrix in ܱሺ݊ଵ.ହ ሻ time, as opposed to the classical ܱሺ݊ଶሻ time, where ݊ is the 

dimension of the square matrix.  This merit is commonly used in tandem with iterative solving 

methods where the system matrix must be serially applied to a vector, i.e. Krylov subspace 

methods [34].  In this work, however, the fast MVM of FMM is used instead to rapidly sample 

sub blocks of the system matrix for the RS algorithm presented in the previous chapter.   

 

A. FMM Geometrical Preprocessing 

 FMM seeks to reduce computation time and memory usage by grouping the unknowns, 

classifying the pairs of groups as “Near-Field” interactions or “Far-Field” interactions, then filling 

the appropriate section of the matrix with the appropriate method.  The first step in the process is 

to collect the elements (and thus the unknowns) into groups, called “domains.”  Typically, the 
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space that contains the unknowns is uniformly gridded into volumetric cells and the collection of 

elements that fall within one of these cells becomes an FMM domain.   

 Next, for each pair of domains, the distance between the centers of the cells is calculated, 

and by comparing the distance to some predetermined threshold (in terms of the wavelength of the 

excitation, usually about 2 to 5ߣ) the interaction is either classified as “near-field” (if the distance 

is smaller than the threshold) or as “far-field” (if the distance is greater than the threshold).   

 

B. Green’s Function Expansion 

Before proceeding with the matrix filling procedure, we must present the major 

mathematical tool for the FMM approximation.  The approximation arises from the following 

expansion of the Green’s function from equation (2.10) using Gegenbauer’s Addition Theorem 

[35]:  

݁௝௞|�−�′||� − �′| = ݁௝௞|�+�d||� + �d| = ݆Ͷ݇� ∫ ݁௝�∙�d ∑ ݆௟ሺʹ݈ + ͳሻℎ௟ሺଵሻሺ݇|�|ሻ ௟ܲሺ�̂ ∙ �̂ሻ௅
௟=଴ ݀݇̂ 

where j is the imaginary unit, ݆ = √−ͳ, ݇  is the wavenumber of the incident plane wave excitation, �̂ is the integration variable over all possible directions on a sphere, and the functions ℎሺଵሻand ܲ 

are spherical Hankel functions of the first kind and Legendre polynomials, respectively.  The 

relationship between the position vectors � and �′and displacement vectors � and �d can be seen 

in figure 5.1. 

(5.1) 
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 Note that, in order for the equality in equation (5.1) to hold true, the series must be summed 

to infinity, ܮ → ∞.  This is obviously not numerically possible, so we instead truncate the sum at 

some finite ܮ.  It has been shown in [36] that to have a relative truncation error less than ͳͲ−�, the 

series should be truncated at: 

ܮ = ܦ݇ + ͳ.ͺ�ଶଷሺ݇ܦሻଵଷ   
where D is the largest value of �d, which will be taken to be the size of the discretization cells of 

the FMM domain grouping step.   

 Note that the expression for the Gegenbauer’s Addition Theorem has no explicit 

dependence on � or �′.  As such, the main advantage to using this expansion is the ability to 

decouple the integrals for calculating the Galerkin impedances from equation (2.10) into three 

parts: the basis integral, the testing integral, and the Green’s function integral.  This will allow us 

Figure 5.1 A diagram showing the conversion from positions � and �′ to 

displacements � and �d 

(5.2) 
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to essentially “pre-factorize” sections of the impedance matrix by expressing them as 

multiplication between vectors, as will be shown in the following section. 

 

C. FMM Near-Field and Far-Field Interactions 

 Once the elements have been grouped and each pair of domains has been classified as either 

near-field or far-field, the matrix is ready to be filled.  The sections of the system matrix 

corresponding to near-field interactions are filled densely by calculating the Galerkin impedances 

using equation (2.10).  These parts of the matrix are the same as if they had been computed in the 

MoM-SIE formulation of Chapter 2.   
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Figure 5.2 FMM near-field matrix filling.  Instead of calculating the interaction between every pair 

of basis functions (black circles), FMM calculates interactions between well-separated groups.  The 

first step of the FMM process, aggregation, involves calculating an equivalent source (red circle) at 

the center of the source domain (right).  Then, in the translation step, the effect of that equivalent 

source on an equivalent testing point in the testing domain (left). Lastly, disaggregation distributes 

the equivalent testing onto the basis functions in the testing domain. 
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 On the other hand, the matrix blocks corresponding to far field interactions are not filled 

explicitly, but instead approximated as a series of outer products between vectors.  We first present 

the physical interpretation of FMM.  Suppose we wish to calculate testing on the unknowns in 

FMM domain ݉ due to sources in domain ݉′.  The first step is to collect the source unknowns to 

the center of domain ݉′.  This step, referred to as “aggregation,” is analogous to collecting letters 

at a post office in the postal service analogy from above.  It is performed by computing only the 

integral over the basis unknown in equation (2.10), with a phase term from equation (5.1).  This 

can be represented as four row-vectors: three vectors for the three components of the first vector-

valued integral, referred to as �� and one row-vector for the second, divergence integral, �஽. The 

four row-vectors are horizontally concatenated and kept in the matrix � whose elements are given 

by: 

ܴ�,௝∗ ሺ�ሻ = ∫ �௝ሺ�ሻௌೕ ∙ ݁−௝�∙ሺ��′−�ሻ݀ଶ� 

ܴ஽,௝∗ ሺ�ሻ = ∫ ቀ׏ ∙ �௝ሺ�ሻቁௌೕ ∙ ݁−௝�∙ሺ��′−�ሻ݀ଶ� 

where �௠′ is the center of source FMM domain, ݉ ′.  These vectors are computed for various values 

of � corresponding to the spherical integration directions of expression in equation (5.1). 

The next step is translation, where the effect of the equivalent source term at the center of 

domain ݉ ′ is calculated on an equivalent testing point at the center of domain ݉.  In our post office 

analogy, this would be similar to the mass transportation of letter, e.g. between cities.  Here, we 

utilize the multipole expansion of the Green’s function from section B: 

(5.3) 

(5.4) 
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௅ܶሺ�, �௠௠′ሻ = ∑ሺ−݆ሻ௟ሺʹ݈ + ͳሻℎ௟ሺଵሻሺ݇|�௠௠′|ሻ ௟ܲሺ�̂ ∙ �̂௠௠′ሻ௅
௟=଴   

Where �௠௠′  is the distance between the two FMM domains: 

� = �௠ − �௠′ 
 Lastly, the third step, disaggregation, consists of distributing the field influence on the 

domain center to the rest of the group.  This is done by computing only the testing half of the 

integrals in equation (2.10).  We store these in the vector �, which itself is a concatenation of the 

vector �� and �஽, the vector integral and the divergence integral summands on the Galerkin 

impedance.  Due to reciprocity, this step appears very similar to the aggregation step.  The 

corresponding part of the postal analogy is delivering mail to individual recipients in a different 

city.  The entries of �� and �஽ are given by 

௜ሺ݇ሻ,�ܥ = ∫ �௜ሺ�ሻௌ೔ ∙ ݁−௝�∙ሺ��−�ሻ݀ଶ� 

஽,௜ሺ݇ሻܥ = ∫ ׏) ∙ �௜ሺ�ሻ)ௌ೔ ∙ ݁−௝�∙ሺ��−�ሻ݀ଶ� 

 Once the factors from the aggregation, translation, and disaggregation steps have been 

computed, the submatrix that encompasses the basis functions from FMM domain ݉′ and the 

testing functions from FMM domain ݉ can be numerically computed as such: 

ܼ௜௝ = ௜(�௣),�ܥ�ߢ]∑ ௅ܶሺ�௣, �௠௠′ሻܴ�,௝(�௣) + ஽,௜(�௣)ܥ஽ߢ ௅ܶሺ�௣, �௠௠′ሻܴ஽,௝(�௣)]�
௣=ଵ  

where ߢ� and ߢ஽ are the scaling coefficients from equation (2.4): 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 



30 

 

�ߢ = ஽ߢ      and     ߤ݆߱− = ݆߱� 

and ܲ  is the total number of Gauss-Legendre integration points over the sphere in order to compute 

the integral from equation (5.1). 

 

 

 

 

  

(5.10) 
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CHAPTER 6: NUMERICAL RESULTS 

 

 

 

In this chapter, a number of numerical examples will be presented.  We aim to demonstrate 

the agreement in the scattering patterns with solutions from other sources, such as an “MoM-only” 

code that does not employ any of the approximations discussed in this work (HSS, RS, FMM) and 

analytical solutions.  Furthermore, we show an empirical measurement of the complexity of the 

MoM-HSS-RS-FMM method as compared to regular MoM-HSS with respect to the size of the 

system matrix.   

 

A. Cube array  

The first geometry that will be analyzed is a small array of cubes.  This is one of the 

simplest geometries that can be generated using quadrilateral patches.  It serves as a basic test case 

that shows that the method is working properly, and no critical error was made in the 

implementation.   

The model consists of nine identical cubes each with edge length 1ߣ, where lambda is the 

free-space wavelength of the excitation.  The cubes are arranged in a three-by-three grid as can be 

seen in figure 6.1 and are excited by a theta-polarized incident plane wave at 300MHz (1=ߣ meter).  

This setup also allows us to test the FMM near/far field matrix filling since parts of the cube array 

are well-separated.   
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The bistatic radar cross section (RCS) of the cubes array is calculated from [37] as:  

�ሺ�, �ሻ = lim௥→∞ Ͷ�ݎଶ ቆ|�௦��௧ሺݎ, �, �ሻ||�௜௡�| ቇଶ
 

where � is the polar angle (measured from the positive z-axis) and � is the azimuthal angle.  This 

is a measure of how much power is scattered in each direction.  “Bistatic” here means that the 

(6.1) 

Figure 6.1 An array of cubes.  The wavelength ߣ is 1 meter (f=300MHz) 
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direction of excitation and measurement direction are not necessarily the same.  A cut along � =ͻͲ௢ (the xy-plane) of the RCS can be seen in figure 6.2. 

 

 In this plot, we compare the technique to a standard MoM solver that is running the same 

model but employing none of the approximations of the MoM-HSS-RS-FMM method.  We see 

good agreement between the two solutions. 

 

B. Sphere 

The next example is a metallic sphere with diameter 6.67ߣ. This example was chosen to 

demonstrate agreement between the MoM-HSS-RS-FMM method and theory, since analytical 

solutions exist for spheres via the MIE series [2].  The sphere was modelled with 225 elements 

and 24,300 unknowns and excited by a �-polarized plane wave.  Bistatic RCS cuts can be seen in 

figure 6.3a and 6.3b. 

Figure 6.2 Bistatic RCS for the cube array, � = ͻͲ௢. 
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Figure 6.3 (a) Bistatic RCS of a PEC Sphere, � = ͻͲ௢. (b) Bistatic RCS of a PEC Sphere, � = Ͳ. 
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We can see relatively good agreement in both of these angular sweeps.  However, the effect 

of the various approximations in MoM-HSS-RS-FMM can be seen in the slight discrepancy 

between the sharp peaks of the RCS pattern. 

 

C. Complexity  

Lastly, the complexity was empirically determined by running a sphere array with different 

levels of discretization and timing each run with a fixed maximum rank, ݎ.  The times were plotted 

against the size of the problem (in terms of unknowns) on a log-log plot, and the slope, ݉, of that 

line will give us the coefficient of the polynomial complexity ܱሺܰ௠ሻ.  The sphere array was run 

using both MoM-HSS (figure 6.4) and MoM-HSS-RS-FMM (figure 6.5) with problem sizes 

ranging from 7,000 to 93,000. 
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 From these results, we can see that the measured complexity of MoM-HSS is 

approximately ܱ ሺܰଶ.ଵ଴7ሻ which is very close to the theoretical ܱ ሺܰݎଶሻ.  The measured complexity 

of MoM-HSS-RS-FMM was ܱሺܰଵ.ଷସሻ which is actually slightly better than the expected ܱሺݎଶܰଵ.ହሻ.   

Figure 6.4 complexity of MoM-HSS 

Figure 6.5 Complexity of MoM-HSS-RS-FMM 
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CHAPTER 7: CONCLUSIONS 

 

 

 

A. Summary 

The MoM is a powerful method of analyzing the electromagnetic scattering of arbitrary 

bodies.  The main weakness of the MoM, the non-sparsity of its matrix, can be overcome using 

the matrix structure HSS.  Although this speeds up computation, the method has a bottleneck in 

its construction step.  To combat this issue, we have introduced the method of RS.  This method 

utilizes randomized methods to quickly compute the many matrix factorizations that are necessary 

for the HSS construction step.  The speedup of the RS procedure requires a method of performing 

fast matrix-vector multiplications, for which we have introduced FMM.  FMM expresses sections 

of the matrix implicitly as a series of pre-factorized vector outer products.  This work has presented 

the integration of RS and FMM into pre-existing MoM-HSS software to make MoM-HSS-RS-

FMM. 

The newly developed method has been compared against both analytical solutions and 

solutions from pure MoM software.  In both cases, there was significant agreement in the solutions.  

Additionally, the complexity of MoM-HSS-RS-FMM was compared to that of the previous MoM-

HSS method.  The complexity was found to be significantly better in the MoM-HSS-RS-FMM 

case. 

  

B. Future Work 

 There are many directions that future research could take to improve the current method.  

The most prudent continuation of this research is to change the FMM matrix filling into Multi-



38 

 

Level FMM (MLFMM) [38].  The MLFMM is very similar to FMM except whereas FMM only 

has one iteration of grouping the unknowns into domains, MLFMM has multiple levels of groups 

of varying fineness that are hierarchically defined.  This method can increase the speed of the 

matrix-vector multiplication from FMM’s ܱሺܰଵ.ହሻ to ܱሺܰ log ܰሻ and can thus speed up the 

compression step from the current method’s ܱሺݎଶܰଵ.ହሻ to ܱሺݎଶܰሻ.   

 Another worthwhile modification is the Null Field Method (NFM), which can improve 

accuracy of MoM-HSS-RS-FMM [39-40].  This method involves changing the local basis 

functions of MoM, which are defined over patches, into global basis functions, that are defined 

over groups of patches.  This effectively causes a change of basis in the system matrix in order to 

introduce blocks in the system matrix that are identically zero.  NFM focuses on increasing the 

accuracy of HSS by minimizing the amount of information that is lost during the compression step. 
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LIST OF ABBREVIATIONS  

 

 

 

BEM: Boundary Element Method 

CEM: Computational Electromagnetics 

DHO: Double Higher Order  

FEM: Finite Element Method 

FMA/FMM: Fast Multipole Approximation/Method 

HSS: Hierarchical Semi-Separable Structures 

ID: Interpolative Decomposition  

IE: Integral Equation 

MoM: Method of Moments 

PDE: Partial Differential Equation  

PEC: Perfect Electric Conductor  

RCS: Radar Cross-Section 

RS: Randomized Sampling  

SIE: Surface Integral Equations 

 

 


