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I. INTRODUCTION 

Turbulence is the most important factor controlling the suspension 

of sediments in streams. The turbulent motion of a flowing fluid 

results from vortex filaments formed continuously by the shearing action 

of the fluid. In their analysis, eddies are commonly replaced by a 

Rankine combined vortex which is essentially a rotational vortex core 

surrounded by a free vortex zone. 

As opposed to flow in homogeneous fluids, the flow characteristics 

in a water-sediment mixture are obscured by the presence of solid 

particles. The motion of sediment particles in a vortex differs from 

the circular motion of fluid particles due to the difference in density 

between fluid and solid particles. 

This research report presents a theoretical analysis of forces 

exerted on solid particles in a Rankine combined vortex. Fundamental 

concepts of velocity and pressure distribution in a vortex are intro-

duced in Chapter II. The analysis of forces exerted on particles is 

detailed in Chapter III to define the acceleration components and the 

limit velocity of small particles in a vortex. The diffusion equation 

is introduced in Chapter IV to determine the steady-state sediment 

concentration profile while the rate of energy dissipation is treated in 

Chapter V. An experimental investigation is presented in Chapter VI. 
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II. VELOCITY AND PRESSURE DISTRIBUTION IN A RANKINE COMBINED VORTEX 

Fundamental properties of the Rankine combined vortex to be used in 

the following theoretical analysis are presented in this chapter. For a 

more complete treatment of vortex motion, the interested reader is 

referred to Lamb (1932), Prandtl and Tietjens (1934), Sedov ( 1959), 

Rouse and Hsu (1951), Rouse (1966), Fortier (1967), Happel and Brenner 

(1973) and Daily and Harleman (1973). 

The mathematical concept of vorticity is known as a vector quantity 

w having three orthogonal components, each of which is expressible in 

terms of transverse gradients of the velocity vector. The vorticity w 

is equal to twice the angular velocity n of a fluid element and the 

product of vorticity by the cross-sectional area defines the circulation 

r which is constant along a vortex filament. As schematized in Fig. 1 

the Rankine combined vortex is composed of a forced vortex core of 

finite radius r and constant vorticity w surrounded by a free 
0 

vortex of constant circulation 2 r = 2nf2r . 
0 

In the following analysis, 

the vortex rotates around a vertical axis such that the fluid motion is 

in an horizontal plane. 

2.1 Free Vortex Zone 

In the free vortex zone the flow is irrotational with constant 

circulation. The velocity varies inversely with the radius to satisfy 

the requirement of constant circulation and the boundary condition of 

no motion at infinity: 

r 
u = 2nr (1) 

in which u is the tangential velocity at a distance r from the 

vortex filament. The Bernoulli theorem for a steady irrotational flow 

of an inviscid incompressible fluid is: 
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Figure 1. Velocity and pressure distribution in a 
Rankine combined vortex. 



2 u p + p ~ = constant 2 

4 

(2) 

in which p is the mass density of fluid; and p is the pressure. The 

pressure distribution in a free vortex is obtained as follows from 

Eqs. 1 and 2 after taking the constant equal to the pressure at r = oo: 

2 
u 

Poo - p = p 2 = r2 
p 

8 2 2 n r 
(3) 

Energy is dissipated through viscous action while the Benoulli sum along 

different stream lines remains constant. 

2.2 Forced Vortex Core 

In an homogeneous fluid, the forced vortex flow is rotational 

without any viscous energy dissipation though the Bernoulli sum between 

different streamlines is not constant. The velocity varies linearly 

with the radius (u = Or) and the Bernoulli sum is not constant. The 

pressure gradient is balanced by the centrifugal acceleration: 

and the pressure distribution is: 

2 
=~ 2 

02 2 
=~ 2 

(4) 

(5) 

in which p
0 

is the pressure at the center of the vortex. Since the 

term pu2/2 represents the kinetic energy per unit volume, its integral 

over the area of motion yields the kinetic energy Ek per unit length. 

The total kinetic energy of the combined vortex is: 

r2 r2 
= p 16n + P 4n Qn r 

r 
0 

(6) 
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The first term of Eq. 6 gives the kinetic energy of the forced vortex 

core, while the second term represents the kinetic energy of the free 

vortex which increases without limit in an infinite mass of fluid. 
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III. FORCE EQUILIBRIUM OF A PARTICLE IN A VORTEX 

The velocity and pressure distributions described in Chapter II 

allows us to define the forces exerted on sediment particles in a vor-

tex. The following analysis is focused on the motion of a small par-

ticle of diameter ds and specific mass ps located at distance r 

from the center of a forced vortex. The symbol v is used to describe 

the velocity of a particle while u designates the fluid velocity. 

3.1 Motion of a Particle in an Inviscid Fluid 

The motion of solid particles in an inviscid fluid is investigated 

in this section. The relative magnitude of pressure and centrifugal 

forces defines the acceleration of solid particles in a forced and a 

free vortex. 

3.1.1 Forced Vortex 

In a forced vortex the pressure gradient is balanced by the 

centrifugal acceleration given by Eq. 4. The pressure force F exerted p 

on a small particle (d << r) toward the center of the vortex is: s 

F = ~ p d3 r,,2 
p 6 s r . 

The magnitude of the centrifugal force F c 

(7) 

depends on the 

tangential velocity of the sediment particle v t and the radius of 

curvature. Assuming that the radius of curvature is equal to the dis-

tance r from the center of the vortex, the centrifugal force is equal 

to: 

F c 

In an inviscid fluid, the radial acceleration a 
r 

(8) 

of the sediment 

particle is given by the difference between centrifugal and pressure 

forces divided by the mass of the particle: 
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a = r r (9) 

This relationship demonstrates that fluid particles moving with the 

fluid (v t = u = Or) are in equilibrium since for that case a = 0. r 

Another interesting situation arises when v = 0 t 
for which case an 

acceleration proportional to o2 r is exerted on the particle toward the 

center of the vortex. When = u and Ps > p, Eq. 9 transforms to: 

a = (1 - Q_) o2 r when Vt = u = Or (10) r PS 

a = - Q_ o2 r when Vt = 0 (11) r PS 

These equations are only valid for inviscid fluids. 

3.1.2 Free Vortex 

The motion of a particle in a free vortex can be derived using a 

similar procedure. The pressure gradient from Eqs. 1 and 2 is: 

~= or p 
r2 

4 2 3 n r 
(12) 

The pressure force exerted on the particle toward the lower values 

of pressure reduces to: 

n r2 (drs)3 F = - p 
P 6 4n2 

(13) 

The centrifugal force given by Eq. 8 counterbalances the pressure 

force and the corresponding acceleration is: 

a = r r 
r2 

4 2 3 n r 
(14) 

The radial acceleration vanishes when the velocity of buoyant 

particles (ps = p) equals the velocity of the fluid. The particles 
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denser than the fluid are accelerated outward when their tangential 

velocity is the same as the fluid. On the other hand, a particle at 

rest is attracted toward the center of the vortex filament. The 

corresponding relationships are: 

(1 e_) r2 
a = -r PS 4 2 3 n r 

when vt = u = z.k (15) 

- e_ r2 
a = r PS 4 2 3 n r 

when = 0 (16) 

These equations based on centrifugal and pressure forces exerted on 

particles are valid only for inviscid fluids. 

3.2 Motion of a Particle in a Viscous Fluid 

A more realistic description of the motion of a sediment particle 

in a vortex is given when the viscous forces are included in the analy-

sis. The velocity components of a particle in the radial v r 
and 

tangential vt directions are assumed to differ from the fluid velocity 

u as shown in Fig. 2. The velocity of the particle re la ti ve to the 

fluid v' is equal to: 

v' = Jv; + (vt - u)
2 (17) 

and the angle 
-1 tµ = tan v /v t between the two relative velocity 

components is defined as shown in Fig. 2. 

The friction force exerted on the particle is function of the 

relative velocity v' , the Reynolds number of the particle 

the surface area and the drag coefficient CD: 

Re' = v' d Iv, s 

(18) 
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Vr 

Fig. 2. Relative velocity of a solid particle in a vortex. 
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The two components in the radial and transversal directions of the 

acceleration vector are: 

6 FV 
sin lV a = vr 7t d3 PS s 

(19) 

6 FV 
avt = cos lV 

PS 7t d3 
s 

(20) 

The resulting force equilibrium per unit mass in the radial 

direction for both forced and free vortex are given from subtracting the 

viscous component (Eq. 19) from the previous relationships Eqs. 9 and 14 

while the components in the transversal are derived from Eq. 20. 

In the forced vortex zone (r < r ): 
- 0 

2 
Vt - e_ rlr 3 p 

CD 
v a = - 4 p r r PS s 

3 p v' 2 
at = - 4 p- CD d cos ~ 

s s 

In the free vortex zone (r > r ): 
0 

2 
r2 Vt e_ l e_ c a = r r PS 4 2 3 4 p D n r s 

- l e_ 
,2 v cos lV at = CD d 4 p s s 

3.3 Acceleration of Small Particles 

,2 sin lV 
d s 

v ,2 sin lV 
d s 

(21) 

(22) 

(23) 

(24) 

When the Reynolds number of the particle (Re' = v'd /v) is small, s 

the friction forces exerted on the particle are predominantly viscous 

and the drag coefficient CD is inversely proportional to the Reynolds 

number: 



24 
CD = Re' 

= 24 'J 
v'd s 
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(25) 

The flow around the particle is laminar and the relative velocity 

of the particle v' cancels out in Eqs. 21 and 23 to give the accelera-

tion components as a function of the total velocity components only. 

In the forced vortex zone (r < r ): 
- 0 

2 
Vt .e_ n2r -

v 
a = 18 PJ __£ 

r r PS PS d2 
s 

pv (vt - Or) 
at = - 18 

PS d2 
s 

In the free vortex zone (r > r ): 
0 

2 
r2 Vt v .e_ = --- - r 18 pv a r r PS 4 2 3 PS d2 n r s 

pv (v - f /2nr) 
18 t 

at = - PS d2 
s 

Equations 27 and 29 indicate that when the ratio 

(26) 

(27) 

(28) 

(29) 

is very 

large the tangential acceleration term becomes dominant until the 

velocity of the particle reaches the velocity of the fluid. Therefore, 

the tangential velocity of small particles should always remain close to 

the equilibrium condition (vt = u). 

The radial acceleration in viscous fluids when 

Eqs. 26 and 28 to give for the forced vortex (r < r ): 
- 0 

and for the free vortex (r > r ): 
0 

simplifies 

(30) 
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r2 
a = (1 - .e_) 4n2 3 - 18 ~ 

r ps r ps 
(31) 

3.4 Limit Velocity of Small Particles 

Equilibrium condition in the radial direction for vt = u occurs 

when the acceleration component a equals 0. 
r 

The limit velocities v' 
e 

of the particles in the forced vortex is obtained from Eq. 30: 

and Eq. 31 gives for the free vortex 

v' = e 
1 
18 

In both cases, the ratio 

d 2 
s 

v' /u e 

r ~ r 
0 

r ~ r 
0 

(32) 

(33) 

of the limit velocity to the 

velocity of the fluid is function of the Reynolds number of the fluid 

Re defined as 

Re = 

v' e 
u = 

u d s 
\) 

(34) 

(35) 

From this relationship, the limit radial velocity of the particle 

is proportional to P d and u and decreases as the viscosity v s' s 

and the radius r increase. 
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IV. SEDIMENT CONCENTRATION PROFILE IN A VORTEX 

In a viscous fluid, sediment particles gradually reach the fluid 

velocity and particles heavier than the fluid are ejected outside of 

the vortex co re . Therefore the concentration of particles decreases 

toward the center, thus creating a concentration gradient across the 

vortex. A diffusion process proportional to this gradient induces the 

transport solid particles toward the regions of lower concentration. 

Equilibrium conditions are reached when the flux of sediment particles 

due to centrifugal force is balanced by the diffusion flux in the 

opposite direction. This condition can be mathematically described as 

follows: 

v' c dC 0 - e = e dr (36) 

dC v' e dr or = c e (37) 

in which C is the sediment concentration by volume and e is the 

diffusion coefficient. 

After substituting Eq. 33 into Eq. 37, the concentration profile in 

the free vortex zone is described by the following integral: 

J 
dC = .!___ 
c 18 

r 2 d2 
s dr 

4 2 3 ve n r 
r > r 

0 
(38) 

With the boundary condition at infinity C = C
00

, the integration of 

Eq. 38 gives: 

= 
d2 2 

~] r~ 
r r 

0 

(39) 
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A parameter a describing the distribution of sediments is defined as 

follows: 

r2 
144n2ev 

After substituting a into Eq. 39, one obtains: 

- a 
2 r 
0 

2 r 
r > r 

0 

The boundary condition at r = r 
0 

is: 

c 

This 

r 
0 -a = e 

relationship shows that when a > O, 

(40) 

(41) 

(42) 

or > p the 

concentration at r = r is smaller than the concentration at infinity 
0 

while the converse is also true when ps < p. 

In the forced vortex core the concentration profiles are derived 

from the substitution of Eq. 32 into Eq. 37: 

dC = .!_ (ps Q2d 2 -~ + r dr r < r c 18 p 0 
(43) 

Using r = 2nOr2 and integrating Eq. 43 gives: 
0 

c [(~s 1) Q2d2 l 2 2 s 2 r r .tin - = 
36v f: r o r~ = a c 2 0 r 

0 

(44) 

With the boundary condition at r = r
0

, Eqs. 42 and 44 are combined 

to yield the following two relationships for the sediment concentration 

in a forced vortex: 



c = e 
Cex> 

15 

r < r 
0 

(45) 

The concentration profiles in a Rankine combined vortex with 

various a values are shown in Fig. 3 as a function of r/r . 
0 

These 

relationships are valid for small particles in the laminar viscous flow 

regime under steady-state conditions of motion. 

It is concluded from this analysis that the concentration is 

constant when a = 0 which correspond to infinitely small particles or 

the case of neutrally buoyant particles p = p. s The curves for a > 0 

indicate a decrease in concentration toward the center of the eddy while 

the concentration in the eddy filament increases toward the center when 

p < p. s 

C /C . 
0 00 

Interestingly the ratio C /C is equal to the square root of r oo 
0 



2.0 

8 u 
' u 

0 

- Ps - I r2 ( ds )2 
a - ( p ) 1441'EV ro 

-

a= 0.25 

2 3 
r I r0 

Figure 3. Steady-state sediment concentration profile in a Rankine combined vortex. 

....... 

°' 



17 

V. ENERGY DISSIPATION COMPONENT DUE TO MOTION OF PARTICLES IN A VORTEX 

The rate of energy expenditure e of one particle moving at a 

different velocity than the fluid is function of the density of the 

fluid, the kinematic viscosity v, the relative velocity v' and the 

particle size d . s The rate of energy expenditure corresponds to the 

product of the friction force acting on the particle (3npvv' d ) by its s 

relative velocity v' ' as follows: 

e = 3n p v v' 2 d ( 46) s 

In a water-sediment mixture the number of particles per volume L3 

is function of the concentration by volume C and the size of the 

particles as follows: 

c = (47) 

or d = L 3f6e s .j fin (48) 

When the concentration is uniform throughout the vortex, the rate 

of energy dissipation E = ne due to the motion of n solid particles 

per unit length perpendicular to the plan of vortex motion is given by: 

(49) 

This equation simply states that the rate of energy dissipation is 

proportional to the viscosity, the relative velocity of the particles, 

the number of particles and the concentration. At a given concentra-

tion, the number of particles is function of the particle size and as 

was demonstrated previously, small particles tend to move at the same 
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velocity as the fluid. Another important remark concerns the 

nonuniformity of the concentration profile when a 1 0. In the follow-

ing attempt to define the rate of energy dissipation not only the varia-

ti on of concentration along the distance from the filament center is 

considered but the steady-state condition of motion in the vortex is 

included using the limit velocities of particles. The total rate of 

energy dissipation when the limit velocity is given by Eq. 32 or 33 with 

a steady-state sediment concentration (Eqs. 41 and 45) is obtained by 

integration along the radius r. The rate of energy dissipation E per 

unit length 12 is equal to the product of e from Eq. 46 by the number 

n of particles from Eq. 47 in which 1 2 corresponds to the integral of 

the surface 2nrdr from 0 to infinity as follows: 

00 

E = J 18 p v C 2nr , 2 
.__~~~- v dr 

d2 e 
(SO) 

0 s 

This integral can be subdivided into two integrals since the 

velocit~of the fluid follows different relationships for the forced and 

the free vortex. In the forced vortex zone, from Eqs. 45 and 32: 

r a(~! -2)[~ rB 2n (~s _ 1) d Q2:2ds]2 
E 

p 'J c s rdr , = e for d2 00 r (51) 

0 s 

1 a(:; - 2) (:Jd (:J ' c [( ) Qd2 r I E 
pv 00 PS s 0.2r4 = 64n T p- - 1 v- e for 0 

0 s 

(52) 
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2 (p r 4 4 d E = 64n I p ~ - 1 n r C ~ (53) for for p o oo v 

1 ea(~! -2) 3 
in which I = (~J d(~J (54) for 

0 

The integral I has been evaluated for different a values for 

using Simpons's rule with 20 intervals. The results of this integration 

are summarized in Table 1 for different values of a. The rate of 

energy dissipation is proportional to 2 c d I v. 
00 s 

Table 1. Numerical integration of the rate of energy dissipation in the 
forced vortex core. 

-10 
-5 
-2 
-1 
-0.5 
-0.25 

0 
0.25 
0.50 
1.0 
2.0 
5.0 

10.0 

2.42 x 106 
422.6 
4.053 
0.9762 
0.490 
0.3495 
0.250 
0.179 
0.129 
0.068 
0.019 
0.00!6 
2x10 

The rate of energy dissipation in the core of the vortex becomes 

increasingly small as a increases since the sediment particles with 

p > p are ejected outside of the core in the free vortex zone. On the s 
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other hand, when a is negative, the particles lighter than the fluid 

dissipate more energy in the core of the vortex. 

In the free vortex zone, the rate of energy dissipation is: 

2 r 
00 

0 

d;r r dr , 
-a 

[ ~ (:s _ 1) f 18 pv;n C
00

e 
2 r2 

E r = free d 4n2r 3v r s 
(SS) 

0 

2 4 d2 

E = ~ I pCoo (pps - i) ~ 4s free n3 free v r (S6) 
0 

in which 
oo (r )2 

I = f (ro)S e-a ro d(!._) 
free 1 r r

0 

(57) 

The integral I free in Eq. S7 was evaluated numerically using a 

Gauss-Legendre quadrature method with six points. The values of the 

integral are summarized in Table 2 for different values of the parameter 

a. It is observed from the integral that the rate of energy dissipation 

vanishes as a becomes increasingly large. 

The total energy dissipation relationship is equal to the sum of 

the two components in the forced vortex zone and the free vortex zone 

with the use of the fundamental relationship 2 r = 2nnr 
0 

the total rate 

of energy dissipation given from the sum of Eqs. S3 and S6 is equal to: 

E = E + E for free = 64n(If +If ) or ree (S8) 

the integrals I and for !free are plotted in Fig. 4 as a function of 

a. This analysis shows that the rate of energy expenditure component 
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Table 2. Numerical integration of the rate of energy dissipation in the 
free vortex zone. 

-10 
-5 
-2 
-1 
-0.50 
-0.25 

0 
0.25 
0.50 
1.00 
2.0 
5.0 

10.0 

I free 

981.4 
11. 9 
1.05 
0.50 
0.35 
0.29 
0.25 
0.21 
0.180 
0.132 
0.074 
0.019 
0.005 

due to the motion of small particles in a Rankine combined vortex 

increases with sediment concentration and the particle size, and is 

inversely proportional to the viscosity. 
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VI. EXPERIMENTAL INVESTIGATION 

Laboratory experiments were conducted at the Engineering Research 

Center to determine the sediment concentration profile in a vortex for 

validation of the theoretical profiles derived in Section IV. 

A water sediment mixture composed of fine sediments (0.0053 < d < s 

0. 0074) was used for the experiments at a concentration of 50 g/L. A 

vortex was induced in three liters of the mixture with a 3" long mag-

netic stirring bar. Cross-sectional water surface profiles were mea-

sured and 30 ml samples were pipetted at several locations across the 

vortex to define the sediment concentration profile. The sediment 

concentration by weight was measured using a scale accurate to the 

nearest 1/10 of a milligram. 

The data and their analysis are summarized in Appendix I. The 

circulation r' the angular velocity n and the velocity u 
0 

at the 

radius of the core r are obtained from the surface profile data. The 
0 

coefficients a and C are then evaluated from the sediment concen-oo 

tration data after Eqs. 41 and 45 are linearized as follows: 

Qn C = !n C
00 

- a 

and 

( rr0 )2 for r > r 
0 

for r < r 
0 

(59) 

(60) 

In Figure 5, two sediment concentration profiles measured in this 

preliminary experimental study are compared with the theoretical rela-

tionships derived in Section IV (Eqs. 41 and 45). In both cases, the 

agreement is excellent and it is concluded that when p > p, the s 

sediment concentration decreases toward the center of a vortex. The 
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sediment concentration profile as defined from Chapter IV depends on 

three major factors: diffusion, friction and centrifugal force on small 

particles. 



26 

VII. SUMMARY AND CONCLUSIONS 

This report describes fundamental properties of the motion of 

sediment particles in a vortex. The similarities of motion for both the 

forced vortex and the free vortex are apparent and similar relation-

ships for the motion of solid particles should be applicable to any 

vortex flow condition between pure rotational flow and pure irrotational 

flow. 

The principal conclusions of this analysis on the force equilibrium 

of a particle in a Rankine combined vortex can be summarized as follows: 

1) A particle at rest in the vortex is accelerated toward the center 

of the vortex. 

2) The tangential velocity of small particles reaches rapidly the 

velocity of the fluid. 

3) As the particles reach the tangential velocity of the fluid, the 

denser particles are ejected outside of the eddy and lighter 

particles move toward the center and the limit velocity in the 

radial direction is given by Eq. 35. 

4) Steady-state sediment concentration profiles are defined from the 

limit radial velocity and the diffusion equation. The concentra-

tion profiles are shown in Fig. 3 using nondimensional scales. 

This theory based on pressure, centrifugal and friction forces, and 

diffusion is in good agreement with the measured sediment 

concentration profiles from this experiment (Fig. 5). 
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The relative concentration C /C is equal to the square root of r oo 
0 

the relative concentration C /C at the centerline of the vortex 
0 00 

filament. 

6) The rate of energy dissipation by particles moving at a different 

velocity than that of the fluid is proportional to the viscosity, 

the square of the relative velocity of the particle, the concentra-

tion of sediments and the number of sediment particles. The rate 

of energy dissipation at a given velocity and concentration is 

inversely proportional to the particle size. 
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APPENDIX I 

ANALYSIS OF EXPERIMENTAL DATA 
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Two experiments A and B were conducted at the Engineering 

Research Center. The data collected in those experiments are presented 

in Tables A-1 and A-2. The pressure data p/y were plotted as a 

function of 1/r2 in Figure A-1 to define the circulation in the free 

vortex zone from the slope of the straight line fitted through the data 

at lower values of 1/r: 

= 
r2 

2 2 Bgn r 
(A-1) 

The radius r is best determined from the sediment concentration 
0 

profiles or from the velocity u 
0 

as follows: 

When 

then 

and 

Eq. A-2 

defined 

r 
0 

n = 

is used, 

from 

= r 
2nu 

u 
0 

r 
0 

u 
0 

0 

the radius 

and f: 

(A-2) 

r and the angular velocity n are 
0 

(A-3) 

(A-4) 

The equations for sediment concentration are linearized using the 

following procedure: 

• In the free vortex zone, from Eq. 41, 

r > r 
0 

(A-5) 

which is a linear relationship when Qn C is plotted as a 

function of x = 
by -1 < x < 0. 

2 (r /r) . The free vortex zone is represented 
0 
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Table A-1. Data Summary - Experiment A 

Distance Free Surf ace 
from Center Elevation w sed w. c 

E mixture w r 
cm cm g g g/L 

-7.20 4.7 1. 6159 31.5652 51.19 
-6.20 1.5402 30.7621 50.06 
-5.20 1. 5432 31.1106 49.60 
-4.20 1. 5127 31. 2306 48.43 
-3.20 4.4 1. 4582 30.6222 47.61 
-2.20 4.2 1. 3182 30.2730 43.54 
-1.20 3.5 1.2265 33.4187 36.70 
-0.20 0.0 0.3731 30.2924 12.31 
0.80 2.6 0.9129 30.6786 29.75 
1.80 3.3 1.2669 32.3407 39.17 
2.80 4.3 
7.80 4.6 
1.80 1.2486 30.4220 41.04 
0.80 0. 7763 30.6766 25.31 

-0.20 0 .5451 31. 7527 17.17 
-1.20 1.1981 30.3124 39.53 
-2.20 1.4284 30.3984 46.99 
-3.20 1.4426 30. 8132 46.82 
-4.20 1.5599 31. 2832 49.86 
-5.20 1.6729 32.4291 51.59 
-6.20 1. 655 7 31.8087 52.05 
-7.20 1.6929 35.3152 47.94 
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Table A-2. Data Summary - Experiment B 

Distance Free Surf ace 
from Center Elevation w sed w. c 

R E mixture w 

cm cm g g g/L 

8.0 8.4 
6.5 1.4426 30.5868 47.16 
6.0 8.2 
5.0 7.8 
4.5 1.3965 30.0300 46.50 
4.0 7.4 
3.5 1.3864 30.0149 46.19 
3.0 6.4 
2.5 5.4 1.3082 30.7652 42.52 
2.0 4.6 1.2880 31. 2790 41.18 
1.5 3.8 1.0845 29.9024 36.27 
1.0 3.2 0.8505 29.6094 28.72 
0.5 0.4 0.6237 28.1552 22.16 
0.0 0.0 0.6169 28.1195 21.94 

-0.5 1.0 0.6397 29.1375 21.95 
-1.0 2.6 0.7869 28.7656 27.36 
-1.5 3.4 1.0324 29. 6077 34.87 
-2.0 4.8 1.3002 31. 2927 41.55 
-2.5 1. 2783 29.2355 43.72 
-3.0 6.6 
-3.5 1.4623 30.5686 47.84 
-4.0 7.4 
-4.5 1. 4838 29.9539 49.54 
-5.0 8.0 
-6.5 1.5452 30.8910 50.02 
-7.0 8.4 



10 • Data from Experiment A 

o Data from Experiment B 

8 

6' ' r = 1229 cm 2 /s 

~1~ I \ (J..) 
(J..) 

~ 
I 

4 
I • / ------- 0 

• 21- '-.,,/ 

f" = 410 cm 2 /s 

0 ~ 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

I I r 2 

Figure A-1. Evaluation of the circulation f from Experiments A and B. 
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• In the forced vortex core, from Eq. 45, 

r < r 
0 

(A-6) 

which is a linear relationship when ln C is plotted as a 

function of x = (r/r ) 2 - 2. 
0 

The forced vortex core is repre-

sented by -2 < x < - 1. 

Examples are given in Figures A-2 and A-3 for experiments A and B. 

Two linear relationships are found for both the forced vortex core and 

the free vortex zone. It is shown in Figure A-4 for experiment B that a 

linear relationship valid for both zones is obtained when the appropri-

ate value of r is selected. 
0 

For experiment B, the value r = 1.4 cm 
0 

is shown to give excellent agreement with the experimental data. 

The values of a are determined from the slope of the lines in 

Figures A-2 and A-4. The diffusion coefficient e is then computed 

from Eq. 40 when the values of p , v and d are known. For both s s 

cases A and B the parameters are summarized in Table A-3. 

Table A-3. Summary of Experimental Parameters 

Parameters Experiment A Experiment B 

u 68 cm/s 140 cm/s 
0 

r 0.96 cm 1. 40 cm 
0 

0 71/s 100/s 

r 2 410 cm /s 1230 2 cm /s 

a 0.55 0.41 

P/P 2.73 2.73 

d 0.0064 mm 0.0064 mm s 
2 2 v 0.01 cm /s 0.01 cm /s 

1.67 2 2 e cm /s 9.4 cm /s 
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