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Abstract

We present experimental evidence showing that the contribution of bound electrons to the index

of refraction can significantly affect soft x-ray laser interferograms of laser-created plasmas. We

report picosecond resolution soft x-ray laser interferograms of Al laser-created plasmas that late

in their evolution display negative fringe shifts in the plasma periphery. Simulated density maps

show that this results from the dominant contribution of low charge ions to the index of refraction.

If neglected, the presence of significant densities of low charge ions in laser-created plasmas may

result in the overestimation of the measured electron density for most materials.

PACS numbers: 07.60.La (Interferometers), 42.87.Bg (Phase shifting Interferometers), 52.50.Jm (Plasma

Heating by Laser beams)
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I. INTRODUCTION

Soft x-ray laser interferometry is a powerful new plasma diagnostics tool that is rapidly

maturing. Several groups have produced results in recent years, using different interferometer

schemes [1–4]. The advantages of using soft x-ray lasers for measuring electron densities in

high density plasmas have been discussed in the literature [1]. They consist of significantly

reduced refraction and free-free absorption that allow the measurement of larger and denser

plasmas. Following the demonstrations of soft x-ray laser interferometry with laboratory size

soft x-ray lasers, the development of compact discharge-pumped soft x-ray lasers has allowed

the implementation of soft x-ray plasma interferometry in a table-top set up [2, 4, 5]. The

recent demonstration of picosecond soft x-ray laser interferometry techniques [6, 7], with

which plasma motion blurring can be reduced, allows the diagnostics of large scale laser-

created plasmas at very small distances from the target surface.

The correct interpretation of the interferograms is key to obtaining an accurate represen-

tation of the electron density distribution. Since high density plasmas generated by intense

laser beams tend to be highly ionized, the spatial distribution of the free electrons is usually

obtained assuming that their contribution to the fringe shift is much larger than that of the

bound electrons. This assumption, which has been utilized to analyze all soft x-ray laser

interferometry studies of laser-created plasmas realized to date, is valid for hot plasmas but

can fail as the plasma cools down and the mean degree of ionization of the plasma decreases.

In this paper we present interferometry data obtained with a picosecond 14.7 nm (84.4

eV) laser probe that shows clear evidence of the dominant contribution of bound electron s

to the index of refraction in the late stages of the evolution of an Al plasma created by a

high power laser. The interferograms show that at late times in the plasma evolution the

fringes in the periphery of the plasma region irradiated by the heating laser bend toward

the target (negative fringe shifts), as opposed to away from the target, as occurs at earlier

times. Similar negative fringe shifts were also recently observed in an independently realized

Al laser-created plasma soft x-ray laser interferometry experiment at 13.9 nm, but the results

were not analyzed in detail[8]. Analysis of our data done with the assistance of hydrodynamic

model simulations indicates that late in the plasma evolution the contribution of bound

electrons dominates the index of refraction, causing the observed negative fringe shifts in

the periphery regions of the plasma.
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In phase shift interferometry the number of fringe shifts, given by Nf = 1
λ

∫ L

0
(1− η)dl, is

negative when the index of refraction (η) of the plasma is greater than 1. The contribution

of the free electrons to the plasma index of refraction is always less than 1, as determined

by η = (1 − ne/ncrit)
1
2 where ncrit = 5 × 1024cm−3 is the critical density for λ = 14.7

nm. This suggests that the contribution from bound electrons to the index of refraction,

in the region where negative fringe shifts are obseved, is dominant and to be greater than

one. Of all the elements with atomic number less than 55, Al is the only one that has a

negative f 0
1 real scattering factor at λ=14.7 nm, due to the close proximity of the L shell

resonances to the 84.4 eV photon energy. This negative scattering factor that translates

into a contribution to the index of refraction greater than one (η = 1− nareλ2

2π
f 0

1 where na is

the atom density and re is the classical electron radius) suggests that when the density of

neutral and low charged Al atoms is sufficiently high the fringes will shift toward the target.

It is expected that at this wavelength, this effect will only be present in Al plasmas. In

fact, the effect was not observed in interferograms of plasmas we generated with very similar

laser heating conditions using several other target materials (Ti, Cr, Pd, Mo, Au). Figure

1 shows a comparison of Interferograms for Al, Ti and Pd, all obtained at approximately

the same time in the plasma evolution, ≈ 3 ns after the peak of the heating laser pulse.

The Al interferogram shows negative fringe shifts on the periphery of the plasma while the

interferograms corresponding to Ti and Pd show only positive fringe shifts.

In such cases in which the bound electrons make a significant contribution to the index of

refraction, the electron density cannot be obtained directly from the interferometry data of

a single interferogram, and more sophisticated techniques have to be used to deconvolve the

contributions of free and bound electrons. In the probing of low electron density plasmas with

optical lasers, two-color interferometry has been widely used to separate the contribution of

free and bound electrons [? ]. However, this technique has not yet been used at soft x-ray

laser wavelengths where its implementation is difficult. Instead we analyze the contribution

of bound and free electrons by making use of hydrodynamic simulations.

II. EXPERIMENT RESULTS AND ANALYSIS

The experiment was performed using a transient 14.7 nm Ni-like Pd soft x-ray laser [9]

combined with an amplitude division diffraction grating interferometer (DGI)[2]. The inter-
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ferometer is set in a skewed Mach-Zehnder configuration, with the principal distinguishing

characteristic being the use of diffraction gratings as beam splitters. This results in a very

robust scheme that can be adapted to operate at different soft x-ray wavelengths by choosing

the proper grating’s parameters. The DGI design produces interferograms with very good

visibility over a large field of view, as first demonstrated with a 46.9 nm capillary discharge

soft x-ray laser [2]. The Ni-like Pd soft x-ray laser used in this experiment produced laser

pulses of few 10’s of µJ with a typical duration in the range of 4.5 - 5.2 ps [10]. It was

pumped by a sequence of a 600 ps FWHM, 2 J long pulse and a 13 ps FWHM (please

confirm), 5 J short pulse generated by the COMET chirped pulse amplification laser [9].

The short pulse was delivered onto the target using a traveling wave line focus configura-

tion. The resulting short duration of the soft x-ray laser pulse permits the acquisition of

“snap-shots” of rapidly evolving plasmas, overcoming the blurring of interference fringes

that occurs when the electron density profile changes significantly during the duration of

the probe pulse. The picosecond soft x-ray laser interferometry set up is described in more

detail in a recent paper [7].

Figure 2 shows a series of interferograms of an expanding Al plasma. The plasma was

created by focusing a 600 ps, 3 J, 1054 nm laser into a 3.1 mm long × 12 µm wide line

focus on a 1 mm long flat Al target. The target was positioned for the plasma to intercept

one of the arms of the interferometer, and the timing between the heating and probe beams

was measured using a fast photodiode. The two frames corresponding to the earlier time of

the plasma evolution (0 and 0.8 ns) show a rapid lateral expansion of the plasma together

with the formation of an on-axis density depression. At these times the fringes shift away

from the target, even in the central region of the plasma where the on-axis depression is

observed. This two-dimensional feature was first observed in soft x-ray laser interferograms

of laser-created Cu plasmas obtained with a 46.9 nm capillary discharge soft x-ray laser

[11, 12]. Hydrodynamic simulations of those experiments with the code LASNEX [13] showed

that the electron density minimum in the central region of the plasma is the result of

pressure equilibrium between the irradiated plasma region and the low temperature side-

lobes, created by plasma-radiation induced ablation of the surrounding target region. A

detailed discussion on the processes responsible for the formation of the side-lobes and the

central density depression are discussed in recent works [11, 12].

The last two frames in Fig. 2 show a plasma in which the region close to the target
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presents increased absorption, an indication of a colder plasma. Also the fringes at the

periphery of the plasma shift toward the target, something that requires a total index of

refraction greater than 1. We computed the real component of the index of refraction

for the different ions that might be present in the plasma (Add the scattering factor

calculation paragraph). Table 1. lists the computed “effective” f1 (Is there a better

name for this?) values for Ali - Alxiv, that include the contribution of ions and free

electrons, can be used to calculate the total plasma index of refraction η = (1 − nZf1

ncrit
)

1
2 ,

where nZ is the density of ions with charge Z. All ions with charge up to Z=5 are computed

to make a significant negative contribution to the index of refraction which corresponds to

“effective” f1 factors that differ from the number of free electrons corresponding to the ion.

The negative values of f1 for Ali-Aliv in Table 1 suggest that the negative fringe shifts

observed at the late times are due to the presence of a relatively high densities of these low

charge atoms. To confirm this interpretation, the LASNEX hydrocode was used to compute

the ion density and electron density distributions. The simulations were conducted using

the measured temporal and spatial profiles of the plasma heating beam, and the results were

used in combination with the f1 factors of table 1 to synthesize interferograms that could

be compared to those in Fig. 2. Figures 3 and 4 show the LASNEX computed electron

density (lineouts), the corresponding electron temperature maps (Fig. 3), and the average

ion charge distributions (Fig. 4). The electron density distributions measured during the

early expansion 0 ns and 0.8 ns delay in Fig 2, including the lateral expansion and on-axis

depression, are well reproduced by the code. This indicates that the assumption that the

free electrons dominate the contribution to the index of refraction is valid at the early times,

as is expected from the fact that at those times the plasma is hot and only highly ionized

species are present.

At later times, corresponding to the last two frames of Fig. 2, the simulations show that

the degree of ionization in the plasma periphery decreases as the plasma cools, resulting in

significant concentrations of Alii-Aliv ions present. In this case the LASNEX simulation

results were used to synthesize the interferograms that are shown in Fig 5. These syn-

thetic interferograms were calculated taking into account the contributions to the index of

refraction from free electrons and Al ions using the “effective” f1 factors of Table 1. and

the electron density and ion density distributions computed with LASNEX. The calculated

interferogram corresponding to 0.8 ns delay shows the central density depression and the
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lateral expansion observed in the measurements, and the late interferograms (1.7 and 3.2 ns)

show the observed negative fringe shifts in the periphery of the plasma, in good agreement

with the experiment. The onset of the negative fringe shifts occurs earlier in the computed

interferograms (0.5 ns after the peak of the laser pulse) than in the experiments (1.2 ns),

which might be indicative of a discrepancy in the recombination rate. The results illus-

trate that the combination of soft x-ray laser interferometry measurements can provide very

valuable information to validate plasma simulation codes.

It can be expected that interferograms of the late stages of the evolution of many other

laser-created plasmas involving the use of other materials will also be significantly affected

by the contribution of bound electrons. However, the relative contribution of bound electron

scattering is not always clearly evident in soft x-ray interferograms because at these wave-

lengths the free and bound electrons often contribute with the same sign to the phase delay,

resulting in an apparently denser plasma. The results presented herein highlight the impor-

tance of taking into account the contribution of bound electrons to the index of refraction

in the interpretation of soft x-ray laser interferograms.

III. CONCLUSIONS

We have probed Al laser-crated plasmas with 14.7 nm soft x-ray laser interferometry, and

observed negative fringe shifts in the periphery of the plasma at late times in the plasma

evolution. The phenomenon, that was observed to occur only in Al plasmas, is attributed to

the dominant contribution of bound electrons to the index of refraction. This interpretation

is supported by the results of hydrodynamic simulations that predict the existence of large

concentrations of low charged ions at the time and location of the negative fringe shifts.

Synthesized interferograms calculated based on the computed electron and ion distributions

are in good agreement with the experiment. The contribution of the low charge ions to

the plasma’s index of refraction is particularly evident in the Al plasmas because of the

fact that at this wavelength (14.7 nm) the contribution of free and bound electrons to the

fringe shifts have opposite signs. This is in contrast with most other elements, for which

the contribution of bound electrons to the fringe shift is in the same direction to that of

free electrons, and if neglected can result in an undetectable overestimation of the electron

density when the degree of ionization of the plasma is low. The results show that soft x-ray
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plasma interferometry constitutes a powerful tool for the study of dense plasmas and the

validation of plasma simulation codes.
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Figure captions

1. Comparison of interferograms obtained 3 - 3.2 ns after the peak of the heating laser

pulse for three different materials, at similar heating conditions (3 J lasing). Negative

fringe shifts are only present in the Al plasmas.

2. Sequence of soft x-ray laser (λ = 14.7 nm) interferograms of Al line focus plasmas. The

plasmas were generated by a 3 J heating beam focused to a 12 µm × 1 mm line focus.

The times are measured respect to the peak of the 600 ps heating pulse. Negative

fringe shifts in the periphery of the plasma and close to the target are observed for

the last two frames.

3. Sequence of simulated electron density and electron temperature maps computed using

the LASNEX code for the irradiation conditions used to obtain the interferograms of

Fig. 2.

4. Sequence of simulated electron density and mean ionization distribution maps com-

puted using the LASNEX code for the irradiation conditions used to obtain the inter-

ferograms of Fig. 1.

5. Synthesized interferograms computed using the calculated electron and ion densities

from Fig 3.
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Aluminum fringe reversal/Tex-version/Figure 1.jpg

FIG. 1: Comparison of interferograms obtained 3 - 3.2 ns after the peak of the heating laser pulse

for three different materials, at similar heating conditions (3 J lasing). Negative fringe shifts are

only present in the Al plasmas.
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Aluminum fringe reversal/Tex-version/Figure 2.jpg

FIG. 2: Sequence of soft x-ray laser (λ = 14.7 nm) interferograms of Al line focus plasmas. The

plasmas were generated by a 3 J heating beam focused to a 12 µm × 1 mm line focus. The times

are measured respect to the peak of the 600 ps heating pulse. Negative fringe shifts in the periphery

of the plasma and close to the target are observed for the last two frames.
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Aluminum fringe reversal/Tex-version/Figure 3.jpg

FIG. 3: Sequence of simulated electron density and electron temperature maps computed using

the LASNEX code for the irradiation conditions used to obtain the interferograms of Fig. 2.
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Aluminum fringe reversal/Tex-version/Figure 4.jpg

FIG. 4: Sequence of simulated electron density and mean ionization distribution maps computed

using the LASNEX code for the irradiation conditions used to obtain the interferograms of Fig. 1.
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Aluminum fringe reversal/Tex-version/Figure 5.jpg

FIG. 5: Synthesized interferograms computed using the calculated electron and ion densities from

Fig 3.
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TABLE I: Computed “effective” real scattering factora for Al at 84.4 eV.

Ion species “Effective” f1

Neutral (Al i) -0.85

Ion 1 (Al ii) -4.19

Ion 2 (Al iii) -3.54

Ion 3 (Al iv) -1.80

Ion 4 (Al v) 0.84

Ion 5 (Al vi) 3.54

Ion 6 (Al vii) 5.30

Ion 7 (Al viii) 6.73

Ion 8 (Al ix) 8

Ion 9 (Al x) 9.18

Ion 10 (Al xi) 10

Ion 11 (Al xii) 11

Ion 12 (Al xiii) 12

Ion 13 (Al iv) 13

aThe index of refraction η = (1− nzf1
ncrit

)
1
2 , where nz is the density of ions with ions with charge z and ncrit

is the critical plasma density.
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