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ABSTRACT 

 

 

 

CHARACTERIZING 30-YEARS OF CONIFER REGENERATION PATTERNS IN HIGH-SEVERITY 

WILDFIRES: A SNOW-COVER REMOTE SENSING APPROACH 

 

 

 

The number of large, high-severity wildfires has been increasing across the Western 

United States. It is not fully understood how wildfire intensification may impact conifer forests 

of the West, whose resilience is dependent on successful seedling regeneration. It is important 

to understand how conifer-dominated forests are able to recolonize high-severity burn patches 

and subsequently respond to shifting disturbance regimes. The goal of our research is to 

characterize patterns of conifer recolonization within high-severity burn patches over a 30-year 

study period. We investigate 34 high-severity wildfire complexes that occurred between 1988 

and 1991 in conifer-dominated ecosystems of the northern Rocky Mountains. Composite snow-

cover Landsat imagery was utilized to isolate conifer-specific vegetation by diminishing spectral 

contributions from soil and deciduous vegetation. Conifer regeneration was determined to be 

detectable by Landsat 11-19 years post-fire across forest types and at >10% canopy cover using 

snow-cover imagery. The trajectory of snow-cover Landsat NDVI was utilized to project future 

recovery time to pre-fire conifer vegetation levels for lodgepole pine (29.5 years), Douglas-fir 

(36.9 years), and fir-spruce forests (48.7 years). The presence of conifer regeneration was then 

modeled at 3-year intervals post-fire to characterize the progression of recolonization. Conifer 

recolonization analysis showed that 65% of the total high-severity burn area was reforested after 
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30 years. Across all high-severity patches, median patch recolonization was 100% within 

lodgepole pine, 91.1% within Douglas-fir, and 41.3% within fir-spruce. Patch fragmentation 

occurred across all size classes and forest types, with the majority of the remaining unforested 

area in Douglas fir (76%), lodgepole pine (61%), and fir-spruce (50%) transitioning to smaller 

unforested patch size classes. While we identified overall patterns of conifer resilience, high-

severity burn patches with lower likelihoods of 30-year conifer recovery had lower edge-

densities, drier climates, steeper slopes, higher elevations, and fir-spruce forests. These findings 

have implications for climate change resilience and may be applied to support forest restoration 

decision-making following high-severity wildfire. Future analyses should be conducted using 

snow-cover remote sensing imagery to identify patterns of post-disturbance conifer recovery 

over a wider spatial and temporal extent. 
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CHAPTER 1: CHARACTERIZING 30-YEARS OF CONIFER REGENERATION PATTERNS IN HIGH-

SEVERITY WILDFIRES: A SNOW-COVER REMOTE SENSING APPROACH 

 

 

 

1.1 Introduction 

There has been an increasing number of large wildfires occurring across the Western 

United States, with rising trends in the size, extent, and duration of fire events since the 1980s 

(Dennison et al., 2014; Jolly et al., 2015; Picotte et al., 2016). Wildfire intensification has been 

linked to climatic shifts resulting in warming temperatures, earlier spring snowmelts, and 

summer moisture deficits (Littell et al., 2009; Westerling et al., 2006). The Northern Rocky 

Mountains, specifically, have seen the greatest rise in wildfire activity, accounting for 60 percent 

of the increased frequency of large wildfire events across the West between 1970 and 2003 

(Westerling et al., 2006). In this region, wildfire is anticipated to continue increasing in size and 

frequency, resulting from lengthening fire seasons, shortened fire return intervals, and drier fuel 

moistures (Morgan et al., 2008; Riley & Loehman, 2016; Westerling et al., 2011). The Northern 

Rockies have also seen changes to wildfire severity, with trends towards wildfires burning greater 

areas at high-severity and increasing average severity between 1984 and 2017 (Parks & 

Abatzoglou, 2020; Picotte et al., 2016). High-severity wildfire is driven primarily by available live 

fuels in combination with weather, climate, and topography (Birch et al., 2015; Dillon et al., 2011; 

Keyser & Westerling, 2017; Parks et al., 2018a). It is anticipated that increasing wildfire size and 

area burned at high-severity may reduce fire heterogeneity to create larger, more simply-shaped, 

high-severity burn patches (Harvey et al., 2016c).  
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Wildfire intensification has many wide-ranging impacts on both the environment and 

society. Wildfire imposes a large economic burden, costing billions of dollars annually from 

intervention and mitigation efforts, losses to timber and agricultural markets, and impacts on 

affected local communities (Bayham et al., 2022; Thomas et al., 2017). Furthermore, wildfire 

imposes social costs from loss of recreation opportunities and cultural connections to natural 

areas (Englin et al., 1996; Gellman et al., 2022; Vukomanovic & Steelman, 2019). Ecologically, 

high-severity fire significantly disrupts regional hydrology by increasing runoff, sedimentation, 

and flooding (Ice et al., 2004; Shakesby & Doerr, 2006). Soil resources are also impacted by fire 

effects, altering physical, chemical, and biological properties and processes (Certini, 2005; Ice et 

al., 2004). The loss of forest cover from high-severity burning has implications for many wildlife 

species, impacting biodiversity and habitat suitability (Fontaine & Kennedy, 2012; Steel et al., 

2022). Forest loss from high-severity fire also results in increased carbon emissions and reduces 

the ability for forest ecosystems to sequester carbon (Loehman, 2020; Sommers et al., 2014). 

While fire is an important fixture in the disturbance regimes of the Northern Rocky 

Mountains, it is unclear how increasing occurrence of high-severity events will impact forest 

resilience. The forests of the Northern Rockies have historically followed a mixed- to high-severity 

fire regime, with intensity varying across the elevational gradient that drives species dominance 

(Gruell, 1985; Schoennagel et al., 2004). The ability for the conifer-dominated forests of the 

Northern Rocky Mountains to effectively recolonize high-severity patches may be constrained if 

short-interval reburning precludes sufficient seed source generation (Stevens-Rumann & 

Morgan, 2016; Turner et al., 2019; Westerling et al., 2011). Increasing prevalence of larger and 

more simply shaped high-severity patches may also limit recovery by reducing access to seed 
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sources (Harvey et al., 2016b; Kemp et al., 2016), as conifer seed dispersal is largely limited 

beyond 100 m from patch edges in Northern Rocky Mountain forests (Kemp et al., 2016). Seedling 

recruitment may face additional challenges with less-favorable conditions for regeneration 

success following climate change (Stevens-Rumann et al., 2018). Given the documented 

limitations on post-fire regeneration, lower elevation trailing-edge ponderosa pine (Pinus 

ponderosa) and Douglas-fir (Pseudotsuga menziesii) forests and high-elevation subalpine forests 

have been identified as showing potentially reduced resilience to wildfire intensification (Davis 

et al., 2019; Donato et al., 2016; Harvey et al., 2016c; Kemp et al., 2019a; Parks et al., 2019; Turner 

et al., 2019). 

Given the rise of high-severity wildfires and subsequent constraints on conifer 

regeneration, it is important to characterize how different forests in the Northern Rocky 

Mountains recolonize high-severity burn patches. Regeneration dynamics post-fire are a 

fundamental component to inform how disturbance regime changes may impact forest recovery 

and have significant implications for forest management. Post-fire regeneration is typically 

described by plot or transect-based field studies assessing seed dispersal distances, seedling 

densities, and spatial arrangement of regeneration through case studies at relatively small spatial 

extents (Chambers et al., 2016; Kashian et al., 2004; Kemp et al., 2016; Owen et al., 2017). Field 

studies have provided valuable information on forest recovery patterns following high-severity 

burns but can be limited in scope given sampling constraints. The cost of field surveys generally 

precludes comprehensive assessment of every fire or region, acquiring repeated measurements, 

or fully characterizing large areas. Given the significance of wildfire intensification, developing 
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additional data sources should be prioritized to sufficiently evaluate patterns of forest 

recolonization at the landscape scale. 

Remote sensing has proven to be an incredibly important tool in monitoring fire effects 

and recovery, with the ability to conduct repeated monitoring over extensive areas (Szpakowski 

& Jensen, 2019). The Landsat program has been a valuable resource for post-fire monitoring with 

over 50 years of consistent, freely available moderate-resolution satellite imagery. While there 

have been notable technological advances in relevant satellite spatial (e.g. Sentinel, IKONOS) and 

spectral resolution (e.g. ASTER, AVIRIS), Landsat remains one of the most widely used tools to 

monitor post-fire recovery given its accessibility and availability (Chuvieco et al., 2020; 

Szpakowski & Jensen, 2019). In typical post-fire remote sensing assessments, recovery is 

measured as a return to pre-fire growing-season vegetation greenness with spectral indices such 

as the Normalized-Difference Vegetation Index (NDVI) (Szpakowski & Jensen, 2019; White et al., 

1996). While growing-season NDVI is a useful measure of vegetation density and greenness, it is 

not sensitive to what type of vegetation is specifically present. The lack of specificity in growing-

season NDVI may overestimate rates of forest recovery by conflating the presence of vegetation 

with the reestablishment of coniferous tree cover (Bright et al., 2019; Kiel & Turner, 2022; 

Vanderhoof & Hawbaker, 2018). 

Several remote sensing analyses have found success utilizing alternate season imagery to 

differentiate between forest vegetation types (Dymond et al., 2002; Townsend & Walsh, 2001; 

Wang et al., 2022; Wolter et al., 1995). Using snow-cover winter imagery has been shown to 

specifically improve the discrimination of evergreen conifer (hereafter conifer) tree presence 

from other vegetation (Vanderhoof et al., 2021; Wolter et al., 2008). Furthermore, snow-cover 
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imagery may reduce issues surrounding NDVI saturation at high vegetation densities by reducing 

overall NDVI spectral reflectance (Sellers, 1985). By using snow as a physical and phenological 

filter, spectral contributions of vegetation greenness from deciduous or herbaceous vegetation 

and low-lying evergreen ground cover are diminished. Snow-cover imagery has been successfully 

utilized to measure post-fire NDVI recovery trends (Vanderhoof et al., 2021; Vanderhoof & 

Hawbaker, 2018), but has not yet been applied to identify spatial patterns of conifer 

recolonization. Modeling the presence and absence of conifer regeneration over time using 

snow-cover imagery can create a more detailed picture of post-fire recovery that includes 

patterns of growth and proportions of burn patches reforested by conifer species. Pixel-based 

binary classification can be used to describe post-fire dynamics typically only achieved with field 

studies, but with the larger temporal and spatial scales of Landsat.  

Our research aims to outline the application of snow-cover Landsat imagery to assess 

conifer regeneration patterns following high-severity wildfire in the Northern Rocky Mountains. 

We will focus on one of the largest series of high-severity events that occurred in the region 

following the 1988-1990 North American Drought (Trenberth et al., 1988). Dry conditions led to 

a series of numerous, high-severity wildfires in 1988 and following years, that include the year of 

largest mean fire size and 7 of the 38 extreme fire events occurring in the Northern Rocky 

Mountains and Great Basin between 1984 and 2009 (Lannom et al., 2014). Our study will focus 

on high-severity fires occurring between 1988 and 1991 to examine post-fire regeneration 

patterns between several conifer-dominated forest types over a 30-year recovery period in the 

Northern Rocky Mountains. Our research objectives were to: 
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1. Evaluate the ability of Landsat and snow-cover remote sensing to detect conifer regeneration 

following high-severity wildfire.  

2. Characterize conifer recolonization patterns and estimate recovery timelines following high-

severity wildfire across forest types within the Northern Rocky Mountains.  

3. Identify site characteristics of high-severity burn patches that may impact the likelihood of 

successful conifer recovery 30-years post-fire in the Northern Rocky Mountains.  

1.2 Methods 

1.2.1 Study Area 

The study area was defined as the US Northern Rocky Mountains, comprised of four, 

conifer-dominated EPA Level-III Ecoregion groups: Canadian Rockies, Northern Rockies, Middle 

Rockies, and Idaho Batholith (Omernik & Griffith, 2014). The four ecoregions encompass portions 

of Idaho, Montana, Wyoming, and Washington states (Figure 1.1). At higher elevations, the 

forests of our study area are comprised of subalpine forests dominated by subalpine fir (Abies 

lasiocarpa) and Engelmann spruce (Picea engelmannii) commonly associated with lodgepole pine 

(Pinus contorta) and whitebark pine (Pinus albicaulis). Lower to mid-elevation mixed-conifer 

forests are comprised primarily of Douglas-fir alongside western larch (Larix occidentalis), grand 

fir (Abies grandis var. idahoensis), ponderosa pine, limber pine (Pinus flexilis), lodgepole pine, and 

quaking aspen (Populus tremuloides) (Daubenmire, 1943). 
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Figure 1.1. Study area map of the 34 high-severity fire events used in our analysis, with fire 

extents highlighted in black. The dashed boundary line indicates the combined area of the US 

portion of the EPA Level-III Ecoregion groups Canadian Rockies, Northern Rockies, Middle 

Rockies, and Idaho Batholith. Dominant forest type groups are shown in shades of green.  

 

Our study specifically focuses on 34 high-severity wildfire complexes totaling 890,000 ha 

that burned between 1988 and 1991. Mean event elevation ranged between 1000 and 3000 m. 

Forest types were defined as the dominant conifer vegetation type in each fire perimeter 

according to the US Forest Service (USFS) National Forest Type Group dataset (Ruefenacht et al., 

2008). Eleven events were dominated by fir-spruce-mountain hemlock, nine by lodgepole pine, 

and fourteen by Douglas-fir. The Landsat imagery for these fire events underwent a series of 

spectral analysis using pre- and post-burn growing season and snow-covered imagery to 

characterize high-severity burn patches and their patterns of conifer recolonization (Figure 1.2). 
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 Figure 1.2. Diagram showing the methodological workflow followed by our study. Includes initial data acquisition sources, data processing steps, 

and final study results.
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1.2.2 Fire Selection 

Candidate fires were identified from the Monitoring Trends in Burn Severity (MTBS) 

thematic burn severity and fire perimeter datasets (Eidenshink et al., 2007). Fires were chosen 

between 1988-1991 to allow for analysis of regeneration over a 30-year post-fire window and to 

ensure a sufficient record of pre-fire Landsat imagery. To focus on the forested regions of the 

Northern Rocky Mountains, the dataset was filtered to the bounds of the US portions of the EPA 

Level-III Ecoregion groups Canadian Rockies, Northern Rockies, Middle Rockies, and Idaho 

Batholith (Omernik & Griffith, 2014). To increase the likelihood that fires occurred specifically 

within coniferous forests, further filtering was applied using the US Forest Service’s National 

Forest Type Group dataset (Ruefenacht et al., 2008). Relevant forest type groups included 

Douglas-fir, ponderosa pine, fir-spruce-mountain hemlock (hereafter fir-spruce), and lodgepole 

pine. Fires were assessed for the relative proportion comprised by each coniferous forest type 

and removed from analysis if they did not contain at least 25% of a forest type of interest. Final 

filtering was applied to select fires that had at least 200 ha of high-severity burning as defined by 

MTBS. Selecting fires with adequate high-severity burning was important to make relevant 

comparisons between patch sizes and forest types. Ponderosa pine was excluded from further 

analysis after evaluating fire size requirements, as there were very limited high-severity events 

within ponderosa pine forests that occurred in our study region and time period.  

Fires were then evaluated to ensure they would exhibit patterns of natural regeneration. 

Areas were removed from analysis if they showed evidence of notable human activity or 

silvicultural management, such as road systems, buildings, planting rows, or fire lines during 

visual inspection of high-resolution satellite imagery. Where applicable, fire perimeters were 
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cross-referenced with the USDA Forest Service Forest Activity Tracking System (FACTS) dataset 

of reforestation activities to remove areas of known planting or regeneration site preparation on 

federal lands. Areas of reburning were also excluded from analysis after comparison to the MTBS 

fire perimeter dataset. Fire selection criteria resulted in a final dataset of 34 large, high-severity 

wildfire complexes, corresponding to 47 MTBS-defined events, within the Northern Rockies in 

1988-1991 (Appendix 1). 

1.2.3 Identification of High-Severity Burn Patches 

Although MTBS data were used to initially identify high-severity fire events, the reliance 

on analyst interpretation to determine severity thresholds from dNBR is known to cause fine-

scale issues when comparing multiple fires (Kolden et al., 2015; Sparks et al., 2014). Our focus on 

historic fire events, where precise burn severity field data were often limited for classification, 

adds additional challenge to achieve accurate dNBR severity thresholds (Miller & Thode, 2007). 

Consequently, our study identified high-severity burn patches within the selected fires utilizing 

the Relativized difference Normalized Burn Ratio (RdNBR) (Miller & Thode, 2007). The RdNBR 

index is based on the Normalized Burn Ratio (NBR), which quantifies burn severity as the 

difference between the near-infrared (NIR) and short-wave infrared (SWIR) wavelengths 

(Equation 1; Key & Benson, 2006). SWIR and NIR are particularly sensitive to the presence of 

vegetation and burned areas, which lend themselves to evaluating post-fire landscapes (White 

et al., 1996). Burn severity measures are typically calculated by differencing NBR values before 

and after a fire event, with larger dNBR values corresponding to more severe fire effects 

(Szpakowski & Jensen, 2019). RdNBR has been shown to have improved success over dNBR at 

categorizing burn severity across heterogeneous forests, as it normalizes severity by pre-fire 
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vegetation condition (Equation 2; Cansler & McKenzie, 2012; Miller et al., 2009; Pelletier et al., 

2021). Relativized burn severity has been shown to have the greatest improvements relative to 

dNBR at identifying high-severity burning, as the measure more accurately corresponds to the 

total loss of vegetation (Miller & Thode, 2007). As our research focuses on high-severity patches 

in multiple, historic fires across a wide geographic range, RdNBR was identified as the preferred 

method. 

                         𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁−𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁                                                                                      (Equation 1) 

 

                𝑁𝑁𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝��𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗0.001�                                                                                                     (Equation 2) 

High-severity patches were delineated by adapting the approach used in Parks et al. 

2018b to calculate RdNBR while accounting for phenological differences between image time 

points. Pre- and post-fire imagery were calculated from the mean annual composite of growing 

season (day 152-273) Landsat 5 Thematic Mapper (TM) Surface Reflectance imagery for one year 

preceding and following each fire event. Utilizing annual composites to calculate burn severity 

has been shown to improve classification accuracy relative to singular pre- and post-fire scenes 

by standardizing imagery, removing the necessity of analyst image selection, and reducing 

potential errors from reliance on a singular image (Parks et al., 2018b). To account for any 

potential phenological differences between the two time points, a dNBR offset adjustment was 

calculated from the mean dNBR value for all unburned pixels within a 180 m buffer of the fire 

perimeter. The dNBR offset value was then subtracted from all fire dNBR values to spectrally 

standardize the two pre- and post-fire image composites (Parks et al., 2018b). High-severity pixels 
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were identified from RdNBR values greater than 640, a threshold that has been found to align 

with 95% or greater tree mortality in field-collected data of similar forests (Haffey et al., 2018; 

Hanson & Odion, 2014; Miller & Thode, 2007). 

The patchMorph tool in the patchwoRk package (Girvetz & Greco, 2007) of the R 

statistical program (R Core Team, 2021) was applied to the RdNBR rasters to delineate individual 

high-severity patches using 3-cell (90 m) spur and gap thresholds (Collins & Stephens, 2010). 

Focal filtering has been shown to improve burn severity classification, reduce pixelation, and 

create more ecologically relevant patches (Miller et al., 2012; Pelletier et al., 2021; Stevens et al., 

2018). High-severity patches were removed from our analysis if they were not at least 2.25 ha, 

or the equivalent of 25 Landsat pixels at 30 m resolution. Finally, patches were assigned to their 

majority forest type group as defined by the US Forest Service’s National Forest Type Group 

dataset (Ruefenacht et al., 2008). Our patch identification process let to a final dataset of 3,850 

high-severity burn patches for analysis. 

1.2.4 Snow-cover Landsat Imagery 

Snow-cover imagery was assembled from Google Earth Engine (GEE) Landsat 5, 7, and 8 

Surface Reflectance data to accommodate the full analysis timeframe. Images taken between 

December and April were included to ensure sufficient availability of image dates for each winter 

season, given the challenge of seasonal cloud cover in the region. For each individual image date, 

several spectral indices associated with vegetation, moisture, snow-cover, and burn severity 

were calculated: the Normalized Difference Vegetation Index (NDVI; Tucker, 1979), the Enhanced 

Vegetation Index (EVI; Huete et al., 2002), the Normalized Difference Water Index (NDWI; Gao, 
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1996), the Normalized Burn Ratio (NBR; García & Caselles, 1991), the Normalized Burn Ratio 2 

(NBR2; Key & Benson, 2006), the Normalized Difference Snow Index (NDSI; Hall & Riggs, 2010), 

and the Normalized Difference Forested Snow Index (NDFSI; Wang et al., 2015) (Appendix 2). 

All selected images were processed to ensure included pixels were representative of true 

snow-cover conditions. Each image was masked utilizing Landsat’s QA pixel bands to exclude 

pixels containing cloud, cloud shadow, or bodies of water. While the study area is regularly snow-

covered within the winter months (December-April), a snow masking process was applied to 

increase the likelihood that pixels contained snow. Our selected spectral measures of snow-

cover, NDSI and NDFSI, were both employed to identify pixels containing snow-cover as NDSI has 

greater accuracy in unforested areas and NDFSI has improved performance within coniferous 

forests (Wang et al., 2015). Pixels were retained for analysis if they had NDFSI or NDSI values 

greater than 0.4, thresholds that are indicative of the presence of snow (Hall et al., 1995; Wang 

et al., 2015). Finally, annual composite images were created for each fire event and winter season 

(December-April) by calculating the median pixel values from masked images. Our process of 

image selection and compositing resulted in an annual series of 13-band images, including six 

spectral bands and seven derived indices, for each winter season between 1984 and 2022 for 

each fire event.  

1.2.5 Modelling Snow-Cover dNDVI Trajectory 

For each winter season evaluated, the mean snow-cover NDVI value was calculated for 

each high-severity patch. To determine the relative change in NDVI, snow-cover dNDVI was 

computed by differencing the annual snow-cover NDVI values from the mean pre-fire snow-cover 
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NDVI. For each forest type group, we used a piecewise generalized linear regression using the 

segmented package in R (Muggeo, 2008) to explain the variation in dNDVI through time. 

Piecewise regression was employed to identify when a positive dNDVI slope occurred post-fire, 

signifying detectable increases in greenness that are assumed to represent coniferous 

regeneration in the snow-cover imagery. The model was set to identify one breakpoint, using 

years post-fire as a predictor of dNDVI. Linear trends from the piecewise regressions were used 

to characterize post-fire dNDVI recovery slopes and estimate recovery timelines within each 

forest type.  

1.2.6 Modelling Conifer Presence and Absence 

To characterize spatial patterns of conifer recolonization, a Random Forest classification 

model was utilized with the snow-cover Landsat composites to classify all pixels within high-

severity burn patches as present or absent of conifer tree species through time. Random Forest 

classifiers are non-parametric and work well with the classification of remotely sensed imagery 

as they do not rely on normally distributed data and are less susceptible to overfitting (Belgiu & 

Drăgu, 2016). Model training data were distributed across high-severity patches, with 100 

training points allocated to each of the 47 named MTBS fire events (n = 4,700). Sample points 

were stratified across patches with equal weighting between north and south aspects and patch 

exterior and interior, where interior was defined conservatively as ≥150 m from patch edges. 

Stratification by aspect was implemented to account for potential spectral differences from solar 

angle. Stratification by patch interior and exterior was utilized to increase the likelihood of the 

post-fire training data to include more equivalent proportions of regenerating conifer presence 

and absence. Points were randomly selected within each strata with a minimum of 30 m spacing 
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to avoid any potential pixel overlap. Training points were then intersected with a 30 m fishnet 

grid aligned with the Landsat pixels and visually categorized as either present or absent of 

conifers utilizing a combination of the most recently available National Agricultural Imagery 

Program (NAIP) and high-resolution imagery available in GEE. Several late-season NAIP data 

collection years provided at least one snow-cover image for most fire events, which provided 

useful comparisons of deciduous and coniferous vegetation. A mean composite from three 

annual snow-cover Landsat composites (2018-2020) was used to train the Random Forest model 

to accommodate the range of image dates used for training point classification. Using multiple 

years helps ensure data availability and account for potential variation in annual snow-cover and 

depth. Furthermore, this range of years is most representative of intact forest structure and 

capture the widest range of forested conditions on the landscape. Pixel values for all 13 spectral 

predictors were extracted for each intersecting training data point. 

The Random Forest model was developed with the R package randomForest (Liaw & 

Wiener, 2002) to predict conifer presence or absence across all high-severity burn patches. The 

model used the 13 spectral predictors from the training data points to predict conifer presence-

absence. The number of predictors tried at each split (mtry) was set at three and the number of 

trees evaluated (ntrees) was 500. Following model creation, independent validation of the 2018-

2020 prediction was conducted using 20 points per MTBS event, with 10 points stratified 

proportionally by predicted area of presence-absence and 5 additional points allocated to each 

class to ensure a sufficient minimum validation sample size (Olofsson et al., 2014). The 

performance of the classification was evaluated in a confusion matrix comparing the actual target 

classes against those predicted by the model. For each misclassified validation point, the percent 
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of conifer cover was estimated by counting the proportion of conifer containing NAIP pixels 

within the Landsat fishnet to characterize a threshold of conifer regeneration detectability. Once 

validated, the model was applied through time to describe the proportion of conifer presence 

and absence at several timesteps. The snow-cover Landsat imagery was aggregated into 10 

timepoints by taking the mean value of the annual composites at three-year intervals. The model 

was employed to predict conifer presence or absence for each timestep, resulting in 10 conifer 

presence-absence rasters spanning the 30-year recovery period following each fire event. 

1.2.7 Landscape and Patch-level Recolonization 

To assess landscape-level patterns of recovery, the initial area of high-severity burn 

patches was compared to the area of conifer-present (hereafter forested) and conifer-absent 

(hereafter unforested) patches 30-years post-fire. Forested and unforested patches were created 

from contiguous areas of each class from the 30-year timepoint presence-absence prediction 

raster. Fragmentation was assessed by intersecting forested and unforested patches with the 

initial high-severity area for each high-severity burn patch. The proportion of conifer presence 

and absence pixels were assessed for each high-severity patch through time to evaluate the 

distribution of patch-level recovery for smaller-scale ecological and management implications.  

1.2.8 Spatial Patterns of Recolonization 

To assess patterns of recolonization, the Landscape Expansion Index (LEI) was employed 

(Liu et al., 2010). Typically utilized in analyses of urban development, LEI is a metric to 

characterize spatial patterns of growth. LEI characterizes types and rates of expansion by 

evaluating the composition of the landscape surrounding areas of new development through 
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time. As forest recolonization of burn patches relies on similar principles to that of urban 

development, with dependence on existing structure to expand, LEI lends itself well to evaluate 

forest recovery. To our knowledge, our research represents the first use of LEI to characterize 

forest growth outside of an urban setting. Our application of LEI illustrates forest expansion 

patterns by analyzing the percentage of forested pixels that surround patches of newly detected 

forest growth (Figure 1.3). Higher values (>50%) of surrounding forest cover indicate patterns of 

infilling, as the area surrounding the new detection is already predominately forested. Lower 

values (<50%) indicate patterns of edge expansion, where less than half of the surrounding area 

is forested (Liu et al., 2010). LEI of 0% represents “leap-frogging”, where none of the area 

surrounding the new forest detection is forested, indicative of long-distance seed dispersal or 

growth from serotinous cones. Over time, changes in LEI can be used to document the 

progression of high-severity patch recolonization as expansion patterns shift from edge 

expansion to infilling. 

To calculate LEI, patches of new conifer detection were identified by differencing the 

conifer presence-absence rasters at each consecutive timepoint. Each polygon of new conifer 

detection was buffered at 100 m, our estimated potential seed dispersal distance. Pixel values 

from the previous timestep were extracted from the buffered ring areas to determine the 

proportion of area previously forested. The total area and number of instances were evaluated 

for each expansion type (infill, edge-expansion, leapfrog) to determine the relative contributions 

of each to post-fire recovery. For each forest type, the Area Weighted Mean Expansion Index 

(AWMEI) was calculated from all LEI values to describe large-scale patterns of expansion (Liu et 

al., 2010). 
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Figure 1.3. Theoretical figure describing the three patterns of expansion using the Landscape 

Expansion Index (Liu et al., 2010). For each example, the area of the newly detected conifer-

present patch is highlighted in black with the associated surrounding 100 m buffer zone. The 

underlying conifer presence-absence raster represents the cover present at the previous analysis 

timepoint. (A) Infilling shows that > 50% of the newly detected patch buffer zone was forested in 

the previous timestep. (B) Edge expansion shows that < 50% of the newly detected patch buffer 

zone was forested in the previous timestep. (C) Leapfrog shows that none of the area within the 

newly detected patch buffer zone was forested in the previous timestep. 

 

1.2.9 Identifying Characteristics of Recovery 

Patch-level characteristics were assessed to evaluate what factors lead to successful 

recovery 30 years post-fire. Recovery success was defined as a patch reaching 80% recolonization 

by conifers to correspond with a threshold of near-intact forest structure described in other 

recovery studies and to balance the distribution of recovery levels across our study area (Viana-

Soto et al., 2022; White et al., 2017). A generalized linear logistic regression model was created 

using the R package rms (Harrell Jr, 2013) to predict 80% patch recovery as a binary value. A suite 

of predictors variables was selected to characterize biological and environmental controls on 

forest recovery. Forest type was used as a categorical predictor to account for inherent 

differences in forest recovery timelines. Patch area and area-to-perimeter ratio were included to 

describe the importance of patch size and edge-density. Climatic variables Snow Water 
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Equivalent (SWE) and Climate Water Deficit (DEF) were calculated from the mean patch value 

from TerraClimate data (Abatzoglou et al., 2018) in a 3-year window (1985-1987) before the fire 

events occurred. The influence of topographic variables was assessed from the mean patch slope, 

aspect, and elevation taken from the elevatr R package (Hollister et al., 2021). From the full 

model, odds-ratios were calculated for each predictor to assess the relative change in likelihood 

for a patch to achieve 80% conifer recovery. The change in odds-ratios across the interquartile 

range for each predictor was also calculated to provide more relevant comparisons on the 

relative impact of each predictor across the study area.  

1.3 Results 

1.3.1. High-severity Burn Patch Distribution 

Following the high-severity burn patch identification process, a final dataset of 3,850 high-

severity burn patches was created (Table 1.1). Most (51.8%) of the high-severity burn patches 

were within lodgepole pine, 36.8% within fir-spruce, and 11.3% within Douglas-fir. By area, 

lodgepole pine represented 71.6%, fir-spruce 22.2% and Douglas-fir 6.3%. Across all forest types, 

relatively small (<50 ha) patches accounted for the majority (87%) of the total number of patches, 

however only represented 10.8% of the total area burned at high-severity. Douglas-fir and fir-

spruce had more similar distributions of patch number and area between the size classes, while 

lodgepole pine had a much larger proportion of area (69%) within the largest (>1000 ha) size 

class. 
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Table 1.1 Distribution of the number and area of high-severity burn patches evaluated within the 

study area. Patches are arranged by forest type groups Douglas-fir, fir-spruce, and lodgepole pine 

and by patch size class.  

Forest Type Group 

0-50 ha 50-100 ha 100-500 ha 500-1000 ha 1000 ha+ 

 Area (ha) n Area (ha) n Area (ha) n Area (ha) n Area (ha) n 

Douglas-fir 3,633 387 1,778 25 4,891 21 1,457 2 5,886 3 

Fir-spruce 11,308 1,246 4,593 67 17,857 82 12,422 16 16,225 7 

Lodgepole pine 15,509 1,725 7,756 112 22,590 109 16,768 24 139,421 23 

 

1.3.2 Snow-Cover dNDVI Recovery and Detection 

The piecewise generalized linear regression described overall patterns of snow-cover 

vegetation greenness following the fire events (Figure 1.4). Douglas-fir and lodgepole pine had 

adjusted R2 values of 0.96 and 0.90 respectively, while fir-spruce showed greater variability along 

the trendline with an R2 of 0.58. All three forest types saw similar reductions in dNDVI following 

the fire event in year zero, with model intercepts between -0.162 and -0.193. Initial dNDVI slopes 

were slightly negative for all forest types before the breakpoint, varying between -0.0032 and -

0.0013, although was only significant for fir-spruce. The segmented model breakpoints (hereafter 

detection points) differed with forest type, with a time to detection of 11.5 years for Douglas-fir, 

14.6 years for lodgepole pine, and 19.4 years for fir-spruce (Figure 1.4). Post-detection slopes 

were all positive, with the highest seen in lodgepole pine with 0.0124, followed by 0.0082 in 

Douglas-fir and 0.0076 in fir-spruce. If future dNDVI trends continue to follow the linear post-

detection slope, the estimated recovery time to pre-fire snow-cover NDVI values for the average 

high-severity patch would be 29.5 years in lodgepole pine, 36.9 years in Douglas-fir, and 48.7 

years in fir-spruce. 
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Figure 1.4. Piecewise generalized linear regression of snow-cover dNDVI through time, 

comparing Douglas-fir, lodgepole pine, and fir-spruce forest type groups. High-severity patches 

have been relativized by pre-fire condition and plotted through time relative to fire event year.  

 

1.3.3 Conifer Presence-Absence Model Performance  

The presence-absence Random Forest model had an initial estimated out-of-bag error 

rate of 12.0%. The variables of highest importance to the model were the spectral indices NDVI, 

NDWI, NBR2, and NBR. Accuracy assessment through independent validation showed an overall 

accuracy rate of 83.2%, with 98.8% accuracy at classifying conifer presence and 58.9% accuracy 

at classifying conifer absence (Table 1.2). Within the absence misclassifications, where conifer 

trees were present in the reference class but were incorrectly classified as absent, we found that 

the majority (72%) of misclassified validation pixels had less than 10% cover of coniferous trees. 



22 

   

A 10% forest cover corresponds to the USFS Forest Inventory and Analysis (FIA) and Food and 

Agriculture Organization (FAO) of the United Nations definitions of forested, indicating that the 

preponderance of false negatives occurred where conifer trees were present within an 

unforested condition. The overall difference in class-level accuracies we documented indicates 

that our classification of conifer presence may be more conservative than what is present on the 

landscape. 

Table 1.2. Conifer presence-absence Random Forest model error matrix from independent 

validation expressed in terms of proportion of total area represented by each class. Total (Wi) 

represents the mapped area proportions and Ui characterizes the user’s accuracy of each class.  

Map Classification 
Reference Class 

Conifer Presence Conifer Absence Total (Wi) Ui 

Conifer Presence 0.650 0.008 0.658 0.988 

Conifer Absence 0.140 0.202 0.342 0.589 

 

1.3.4 Patch Fragmentation and Conifer Recolonization 

The landscape-level fragmentation analysis described overall patterns of conifer recovery 

between forest types for the full study area. Across the 308,000 ha of high-severity burn patches, 

65% (202,000 ha) were recolonized by conifers 30 years post-fire (Figure 1.5). The proportion 

recolonized differed between forest types with 72% of lodgepole pine, 77% of Douglas-fir and 

44% of fir-spruce patches reforested. Between patch size classes, patches smaller than 100 ha 

were 70% reoccupied and patches larger than 100 ha were 65-68% reoccupied. Fragmentation 

of the high-severity burn patches into smaller unforested patches occurred across all forest types 

and patch size classes after 30 years (Figure 1.5). Douglas-fir exhibited the greatest 

fragmentation, with 76% of the unforested area transitioning to smaller patch size classes and 
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no remaining area in patch sizes larger than 500 ha. Fragmentation within lodgepole pine and fir-

spruce patches followed at 61% and 50%, respectively.  

 

Figure 1.5. Alluvial plot showing fragmentation of the total patch area through time within each 

forest type. The total area of the initial high-severity burn patches, arranged by size class, is 

plotted on the left of each figure. The total area of reforestation and remaining unforested 

patches, by size class, are plotted on the right of each figure. Flowlines represent how much area 

from each initial high-severity burn patch size class has moved into the different divisions after 

30-years. 

 

The patch-level analysis showed the distribution of conifer recolonization across the 

3,850 high-severity burn patches (Figure 1.6). Douglas-fir and lodgepole pine patches followed 

similar recovery trajectories, with median patch occupancy of 91.1% and 100%, respectively, 

after 30 years (Figure 1.6). The distribution of patch-level occupancy was more compact in 

lodgepole pine with an interquartile range of 9.8% compared to 46.3% in Douglas-fir. Fir-spruce 

patches overall had a slower rate of recovery, achieving a median occupancy of 41.3% after 30 

years and exhibited the highest degree of variation across patches, with an interquartile range of 

62.3%. 
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Figure 1.6. Boxplot distributions of the proportion of conifer occupancy within patches over 3-

year analysis time windows for each forest type group. Trend lines represent locally weighted 

running line smoother of median occupancy and associated 95% confidence intervals.  

 

The LEI analysis characterized the expansion patterns between the three forest types. The 

total reforested area was distributed by the proportion detected at each timepoint post-fire with 

each forest type. Detection of lodgepole pine occurred in a large pulse, peaking at the 19–21-

year timepoint (Figure 1.7a). Douglas-fir had a similar, but slightly more extended pattern, with 

new detection of forested areas greatest at the 10–15-year timepoints. Fir-spruce patterns 

differed, with steadily increasing conifer detection over time, with the greatest amount of new 

detection at the 25–27-year timepoint.  

All forest types showed positive trends in AWMEI, matching the predicted recolonization 

patterns (Figure 1.7b). Overall AWMEI slopes were greatest in lodgepole pine (4.21), indicating a 

more rapid transition from recovery patterns of edge expansion to infill. Douglas-fir (2.57) and 

fir-spruce (1.89) slopes were more similar.  
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Assessment of the recolonized area by expansion type showed no differences between 

forest types for both edge-expansion and infill. Leapfrogging was a more dominant growth 

pattern within lodgepole pine than any other forest type across all timepoints. In lodgepole pine, 

new growth due to leapfrogging appeared in a pulse beginning at, and most notable in the 10–

12-year timepoint. At its peak, leapfrogging represented 6% of the total number and 4% of the 

total area of new conifer detection. Leapfrogging was also present in Douglas-fir and fir-spruce; 

however, proportions were never larger than 2% of instances at any timepoint and appeared at 

irregular intervals through time. 

 

Figure 1.7. Comparison of post-fire conifer expansion patterns between forest type groups (a) 

Percent of the total area recolonized by conifers detected at each analysis timepoint for each 

forest type group (b) Area Weighted Mean Expansion Index through time for each forest type 

group. Horizontal line represents the division between growth by expansion (<50) and growth by 

infill (>50). 
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1.3.5 Evaluation of Patch Recovery 

The odds-ratios from the generalized linear logistic regression outlined structural, 

environmental, and biological factors leading to increased likelihood of a patch achieving 80% 

conifer recovery 30 years post-fire (Table 1.3). Forest type group had a significant effect on 

determining recovery, with lodgepole pine and Douglas-fir patches respectively associated with 

a 5.76- and 2.74-times greater likelihood of patch recovery relative to fir-spruce. The two climate 

variables showed reduced likelihood of recovery within drier sites, with increasing evaporative 

demand (DEF) and decreasing snowpack (SWE) significantly associated with lower recovery 

probabilities. In terms of patch structure, increasing patch area-to-perimeter ratio showed 

significant reductions in probability of recovery, while patch size did not have a significant effect. 

Increases in the topographic factors of elevation and slope were associated with reduced 

recovery, while aspect was not identified as a significant predictor.  

Comparing the relative change in odds across the interquartile range for each continuous 

predictor variable can be used to show the relative importance of each within the study area. 

Topographic variables had the largest odds-ratio magnitude, associated with a 64% and 71% 

reduction in the likelihood of conifer recovery across the interquartile range of the data. The 

other significant predictors showed 17% increase in recovery odds across SWE, 9% reduction in 

recovery odds across DEF, and 14% reduction in recovery odds across area-to-perimeter ratio. 
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Table 1.3 Odds-ratios from the generalized linear logistic regression model of conifer recovery. Odds-ratios greater than one indicate 

an increased likelihood of reaching 80% recovery 30 years post-fire, where values less than one indicate a reduced likelihood of 

recovery. Continuous predictors show the odds-ratio as the change in recovery likelihood for a one unit increase of that predictor. The 

interquartile range (IQR) odds-ratio shows the change in odds of conifer recovery across the interquartile range of that variable to 

provide more relevant comparisons between predictors across the study area. Categorical predictors show the relative difference in 

odds between each pairwise comparison, with the same odds reported for both ratios. 

Predictors Effects 

Type Variable Variable IQR Odds-Ratio Odds-Ratio 95% CI IQR Odds-Ratio IQR Odds-Ratio 95% CI p 

Forest Type Douglas-Fir : Fir-Spruce - 2.10 [1.505, 2.940] 2.10 [1.505, 2.940] <0.0001 

Forest Type Lodgepole Pine : Fir-Spruce - 5.76 [4.766, 6.958] 5.76 [4.766, 6.958] <0.0001 

Forest Type Lodgepole Pine : Douglas-Fir - 2.74 [1.970, 3.804] 2.74 [1.970, 3.804] <0.0001 

Climate Climatic Water Deficit (mm) 17.77-22.02 0.98 [0.956, 0.999] 0.91 [0.825, 0.996] <0.05 

Climate Snow Water Equivalent (mm) 66.48-89.79 1.01 [1.000, 1.013] 1.17 [1.001, 1.360] <0.05 

Patch Patch Area (ha) 3.42-18.02 1.00 [0.999, 1.000] 1.00 [0.997, 1.000] >0.05 

Patch Area to Perimeter Ratio (ha/m) 30.27-51.64 0.99 [0.989, 0.997] 0.86 [0.795, 0.932] <0.0005 

Topography Elevation (m) 2267-2596 1.00 [0.997, 0.997] 0.36 [0.316, 0.412] <0.0001 

Topography Slope (degrees) 6.48-19.05 0.91 [0.893, 0.918] 0.29 [0.242, 0.340] <0.0001 

Topography Aspect (degrees) -0.047-0.045 0.84 [0.329, 2.147] 0.98 [0.902, 1.073] >0.05 
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1.4 Discussion 

1.4.1 Trends of Snow-cover dNDVI Recovery  

Snow-cover NDVI was proven to be an effective methodology to assess overall trends in 

post-fire conifer recovery, similar to previous studies (Vanderhoof et al., 2021). Piecewise 

regression of post-fire dNDVI allowed us to successfully estimate snow-cover Landsat conifer 

detection and recovery timelines for each forest type. Estimated dNDVI detection points and 

recovery slopes generally align with our expectations given the ecologies of the different forest 

ecosystems. 

The 11-19 years immediately following the fire event showed slightly negative snow-

cover dNDVI slopes, likely due to continued post-fire mortality and spectral changes from 

standing dead trees. While most trees are killed directly by wildfire, mortality may continue for 

several years due to increased abiotic stressors, insect infestations, or excessive fire injuries 

(Hood & Varner, 2019). Snags may also persist on the landscape for several years post-fire, and 

slightly alter spectral values as they eventually fall (Russell et al., 2006). Fir-spruce may have seen 

a longer period of negative slope due to increased post-fire mortality from greater sensitivity to 

fire-injury (DeNitto et al., 2000) or greater snag longevity found in thinner-barked species such 

as Engelmann spruce and subalpine fir (Everett et al., 2000). Dominant fir-spruce tree species are 

estimated to have the majority of snags persist >25 years following wildfire, compared to 15 years 

in Douglas-fir and lodgepole pine (Everett et al., 2000).  

The differences in model breakpoints between forest types are presumed to result largely 

from the different regeneration mechanisms and timelines for the dominant species. Lodgepole 
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pine typically demonstrates a singular regeneration pulse in the year following a fire event, as 

the heating of serotinous cones causes seeds to be released en masse, with decreasing rates of 

further establishment through 5 years post-fire (Harvey et al., 2016c). Conversely, Douglas-fir, 

subalpine fir, and Engelmann spruce have more protracted stand initiation, dependent on 

dispersal by wind and gravity from residual live trees, with seedling establishment peaking at 4-

6 years post-fire. Seedling growth rates also differ between species, with the average number of 

years to reach breast height in the Northern Rockies the fastest at 7 years in lodgepole pine, 

followed by 11 years in Douglas-fir, 12 years in Engelmann spruce, and up to 18 years for 

subalpine fir (Ferguson & Carlson, 2010). Growth rates particularly impact detectability when 

using snow-cover imagery, as greater accumulated snow depth will increase the time required 

for conifer seedlings to grow above the snow and reach a detectable height. As annual snow 

depth accumulation increases with elevation (Grundstein & Mote, 2010), we would anticipate a 

greater lag in detection time in higher elevation forests. Differences in establishment timelines, 

growth characteristics, and snow-cover predictably resulted in variation in snow-cover dNDVI 

detection times. The slower establishment time and growth rate of fir-spruce species, typically 

found at higher-elevations with greater snow-cover, lead to the longest time to detection at 19.4 

years. Detection was sooner within lodgepole pine (14.6 years) with faster growth rates and 

establishment times as well as within Douglas-fir (11.5 years) which is typically found at lower 

elevations with relatively faster growth rates.  

The snow-cover dNDVI recovery trendlines showed overall patterns of conifer resilience 

following high-severity wildfire, with all forest types progressing towards pre-fire snow-cover 

NDVI values following detection. The growth rates and establishment characteristics of lodgepole 
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pine, Douglas-fir, Engelmann spruce, and subalpine fir are important to determine positive post-

detection dNDVI recovery slopes. Lodgepole pine exhibits the greatest post-detection slope, 

aligning with its characteristics of rapid growth and seedling establishment. The dNDVI slopes for 

Douglas-fir and fir-spruce are more similar, given their relatively protracted seedling 

establishment and growth. Projecting the post-detection slopes into the future, we were able to 

estimate the average number of years required to return to pre-fire snow-cover NDVI values. 

Estimated recovery time varied fairly widely, with the earliest at 29.5 years in lodgepole pine, 

36.9 years for Douglas-fir, and 48.7 years for fir-spruce. Our estimates of recovery time are longer 

than other similar studies evaluating returns to pre-fire spectral indices in the growing season 

(Bright et al., 2019), likely from the snow-cover imagery excluding deciduous vegetation. Other 

snow-cover estimates of recovery have found similar discrepancies; assessment over a wider 

range of burn severities and forest types showed that growing-season estimates of pre-fire NDVI 

recovery were approximately 5 times faster than that of snow-cover estimates (Vanderhoof et 

al., 2021).  

1.4.2 Evaluating Snow-cover Landsat Detectability  

Snow-cover imagery was proven to be a successful technique to classify conifer presence 

and absence. Despite the moderate 30 m resolution of Landsat, we were able to detect the 

presence of conifer-specific vegetation at forested levels of cover with >98% accuracy. While our 

methods were unsuccessful at detecting low (<10%) conifer cover, this implies that our 

classification of conifer presence is analogous to a more conservative definition of forested rather 

than the simple presence of individual conifer trees. Other studies have similarly utilized a 10% 

cover threshold to define forest recovery based on satellite detectability limits and definitions of 
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forested cover (Bartels et al., 2016; White et al., 2018; Zhao et al., 2016). While variable across 

study system, analyses of fractional pixel vegetation cover have found similar thresholds of 

detectability for Landsat (Negrón-Juárez et al., 2011; Sankey & Glenn, 2011; Williams & Raymond, 

2002).  

The ability to evaluate conifer recovery though a pixel-based approach is a powerful tool 

to characterize post-disturbance spatial dynamics through time and across broad extents. 

Employing snow-cover Landsat imagery to classify conifer presence has enabled long-term 

assessment of post-fire recovery patterns across 34 wildfire events, totaling 308,000 ha of high-

severity burn patches. The capacity to quantitatively measure forest recovery across such a wide 

spatial and temporal extent is incredibly valuable to track post-fire regrowth. While some of the 

fire events used in our analysis, such as the Yellowstone fires, have received a lot of attention 

and research, others are not even named events within MTBS. Understanding post-fire stand 

development is increasingly important given the rise of wildfire activity and intensity, and 

methods to quantify recovery patterns at a large scale should continue to be developed and 

adopted. 

Spatially representing forest regrowth following fire has the potential to inform other 

aspects of ecological recovery. Given the large impact high-severity fire has on soil and water 

resources (Ice et al., 2004; Shakesby & Doerr, 2006), the spatial arrangement of forest growth 

following fire may be used to help predict hydrological responses following high-severity events. 

Forest spatial arrangement has further implications for post-fire wildlife habitat suitability and 

management for species sensitive to high-severity fire. Furthermore, our methods may be 
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applied to provide better post-fire evaluations of forest growth for carbon sequestration and 

timber management. 

1.4.3 Patterns of Conifer Recolonization  

The patterns of high-severity patch fragmentation and recolonization we identified match 

with the trends seen in snow-cover dNDVI as well as our expectations given the ecologies of our 

studied forest systems. Recolonization of large, high-severity patches is a process first 

constrained by seed dispersal distance and second by the time required for recolonizing trees to 

reach reproductive maturity (Gill et al., 2021; Kemp et al., 2016). Several successive generations 

of seedling recruitment, growth, and dispersal may be required to recolonize isolated patch 

interiors. Therefore, recolonization of high-severity burn patches is likely to occur at different 

intervals based on the biologies of the dominant conifer species. In addition to serotinous cones, 

lodgepole pine reaches reproductive maturity sooner than the other dominant species, 

producing viable seed after 5-15 years, as opposed to 12-15 years in Douglas-fir, 15-40 years in 

Engelmann spruce and 20 years subalpine fir (Hood et al., 2018). While seed dispersal has been 

found to be exceedingly constrained beyond 100 m from patch edges in similar forest systems 

(Gill et al., 2021; Kemp et al., 2016), the ability for individual species to disperse by wind and 

gravity is much further for Douglas-fir, subalpine fir, and Engelmann spruce than lodgepole pine 

(Hood et al., 2018). Dispersal constraints, alongside aforementioned species growth rates and 

seedling establishment times, constrain high-severity patch recolonization.  

The results of the patch fragmentation analysis show that the majority of the total area 

burned at high-severity (65%) has returned to a forested condition 30-years post-fire. 
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Recolonization was much greater within Douglas-fir (77%) and lodgepole pine (72%) forests 

relative to fir-spruce (44%). Across patch size classes, we saw significant proportions (67%) of 

large (>500ha) high-severity burn patches, that are of the greatest concern for management, 

fragment into smaller unforested patches or were successfully reforested. The remainder of 

these large, unforested patches primarily persist in fir-spruce and lodgepole pine. The lodgepole 

pine persistence is likely due to the sheer size of burn patches that occurred within the 

Yellowstone fires, some as large as 23,000 ha. Large patches within lodgepole pine have 

fragmented and reforested rapidly when considering their size, but some large fragments still 

exist. The larger patches within fir-spruce are more likely a result of the slower growth rate, 

establishment time, and time to maturity of subalpine fir and Engelmann spruce limiting 

recolonization. While slower recovery of fir-spruce is expected given regeneration constraints, it 

does signify potentially reduced resilience to increasing high-severity wildfire events.  

Comparing the patch-level recolonization analysis to the landscape-level trends shows 

that the majority of the remaining unforested area persists in fewer, large patches for Douglas-

fir and lodgepole pine. This pattern is the most extreme in lodgepole pine, where the median 

patch is 100% forested yet 28% of the total area remains unforested. As fir-spruce showed more 

equivalent levels of recovery across all patch size classes, the patch-level distributions did not 

vary greatly from the landscape-level recovery. The wide occupancy distribution of fir-spruce and 

Douglas-fir patches shows that an extensive range of recovery conditions are prevalent across 

the landscape. The range of patch-level recolonization we documented indicates that lodgepole 

pine is more successfully recovering following high-severity fire across the full range of study 
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conditions in the Northern Rockies, where fir-spruce and Douglas-fir may be more locally 

constrained by environmental conditions. 

The patterns of landscape and patch-level recovery we documented are explained and 

supported by the LEI and AWMEI trends across forest types. The AWMEI slopes are the greatest 

in lodgepole pine, indicating that these forests most effectively transition from patterns of edge 

expansion to infill. With faster establishment, growth, and dispersal rates, lodgepole pine is well-

equipped to quickly recolonize high-severity burn patches. These characteristics are likely greatly 

enhanced by serotinous cones that provide rapid seedling regeneration and increase amount of 

growth due to leapfrogging. The regeneration pulse from serotinous cones is identifiable in the 

LEI analysis, with a large amount of new growth from leapfrogging detected around 10 years 

post-fire. While leapfrogging represents a relatively small proportion of total recolonization, it is 

capable of a disproportionate effect on recolonization speed. Leapfrog patches of forest growth 

may act as seed source islands and enable recolonization of patch interiors much sooner than if 

they were limited to dispersal from parent trees on patch edges. This also aligns with the high 

rate of fragmentation seen in lodgepole pine, as expansion is occurring from seed sources within 

patch interiors as well as patch edges. In contrast, the AMWEI slopes also reflect the slower rate 

of encroachment within fir-spruce. Slower establishment, growth, and dispersal constrain the 

ability of Engelmann spruce and subalpine fir to encroach into patch interiors, evidenced by the 

relatively shallow AMWEI slope. Expansion limitations within fir-spruce forests are likely 

responsible for the larger proportions of unforested area and reduced fragmentation we 

documented within fir-spruce forests.  
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1.4.4 Characteristics of Recovered Patches and Implications for Resilience 

While our analyses documented overall patterns of conifer resilience, we identified areas 

within the Northern Rockies that had reduced likelihoods of conifer recovery after 30 years. 

Predictably, our odds-ratio analysis identified fir-spruce as having reduced likelihood of recovery 

relative to Douglas-fir and lodgepole pine. Slower growth, seed production, and establishment 

constrained fir-spruce recolonization and limited recovery at 30-years post-fire. Our 

characterization of slower post-fire recolonization within fir-spruce forests generally aligns with 

other field-based post-fire assessments (Harvey et al., 2016a; Stevens-Rumann et al., 2018). 

Slower post-fire recovery of fir-spruce forests has historically maintained resilience with a fire 

regime of infrequent (>200yr), high-severity events (Schoennagel et al., 2004). Increasing wildfire 

extent and shortening return intervals within subalpine forests may, however, pose challenges 

for future forest recovery (Gill et al., 2021; Harvey et al., 2016b; Stevens-Rumann & Morgan, 

2016). 

Our recovery odds analysis also identified that high-severity patches located in drier 

climates, with lower snowpack and higher evaporative demand, had reduced recovery likelihoods 

of conifer recovery. This finding aligns with other studies across the Western United States that 

have shown limited seedling regeneration in hotter and drier conditions (Harvey et al., 2016a; 

Kemp et al., 2019b; Stevens-Rumann et al., 2018). Again, while our research has documented 

patterns of conifer resilience in the Northern Rockies, these results suggest increasingly 

unsuccessful long-term conifer recovery as climate conditions become more adverse to seedling 

success.  
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We found that patch configuration, rather than patch size, was significant in determining 

post-fire recovery likelihood. Larger, contiguous areas burned at high-severity with a more 

heterogeneous, high-edge density configuration would predictably provide greater access to 

seed sources than a comparably smaller, homogenous, low-edge density burn patch. The 

importance of high-edge density we documented aligns with prior field-based research showing 

that heterogeneity has been important in maintaining post-fire resilience in the Northern Rocky 

Mountains (Clark-Wolf et al., 2022; Kemp et al., 2016; Kiel & Turner, 2022). Fires specifically used 

in our analysis exhibited notable heterogeneity, which has been suggested to have supported 

their successful post-fire recovery (Schoennagel et al., 2008; Turner et al., 1999). With predicted 

declines in the heterogeneity of burn severity in the Northern Rockies (Harvey et al., 2016b) our 

findings would also suggest that conifer resilience to high-severity wildfire may be reduced in the 

future. We suggest that, where appropriate, management efforts be directed towards high-

severity burn patches meeting characteristics we found to be associated with reduced conifer 

recovery.  

1.4.5 Limitations and Future Directions 

While snow-cover Landsat was proven to be successful for our applications, we identified 

several limitations and opportunities for future use. As regular winter snow-cover is required to 

successfully employ these methods, areas with sparse or irregular snow may encounter 

challenges acquiring sufficient images for analysis. Additionally, snow-cover Landsat imagery 

would be best utilized in longer-term assessments of post-fire recovery, given the identified lag 

in conifer detection time. As we were not successful at identifying conifer presence at less than  
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10% conifer cover and would anticipate difficulties with detectability when applying our 

classification methods to low-density conifer systems. Higher spatial resolution satellites could 

conceivably be employed to increase forest detection within areas of low tree cover. If a smaller 

suite of fires or analysis timepoints were being considered, analysts could additionally select 

image dates to correspond to lower snow-depths or time since snow event to further improve 

detection. The conifer detectability thresholds and detectability lags due to snow-cover we 

identified should be considered when interpreting the results of our analyses.  

While our study was successful at characterizing conifer recolonization, snow-cover 

remote sensing methods alone are not able to characterize all aspects of post-fire forest 

recovery. Unaided, snow-cover imagery cannot evaluate the recovery of deciduous conifer (i.e. 

Larix spp) or broadleaf tree species. Employing growing-season imagery alongside snow-cover 

imagery may offer opportunities to evaluate both evergreen conifer and deciduous forest 

components (Vanderhoof et al., 2021). As our methods were focused on identifying a return of 

conifer presence, they were not able to characterize post-fire forest structure or composition. 

Studies have had success using Landsat in combination with LiDAR to measure both forest 

spectral and structural recovery (Bolton et al., 2015; McCarley et al., 2017; Szpakowski & Jensen, 

2019; Viana-Soto et al., 2022; Wulder et al., 2009). Others have paired moderate resolution 

imagery with field collected data, such as the FIA, to identify forest composition across broad 

spatial scales (Obata et al., 2021; Ruefenacht et al., 2008; Song et al., 2007; Thapa et al., 2020; 

Tinkham et al., 2018). Similar approaches could be utilized in concert with snow-cover Landsat 

imagery to evaluate post-fire forest composition and structure.  
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Further research into conifer recovery patterns should be pursued across a wider range 

of time periods and regions of the Western United States. The methods we utilized should be 

adapted to other conifer-dominated forest ecosystems to similarly compare recovery trends 

following disturbance events. Analyses should be prioritized in areas with limited long-term field 

studies or at increased risk of regeneration failure. Comparing recovery trends to more recent 

fire events would help identify changes to resilience under changing climate and understand 

implications for increased high-severity wildfire events. 

1.5 Conclusion 

Our study found that snow-cover Landsat imagery can be successfully utilized to evaluate 

conifer-specific regeneration following high-severity fire. Consistent with previous research, we 

found that snow-cover NDVI is an effective method to track post-fire conifer regeneration at a 

landscape scale, produce ecologically consistent results, and avoid confusion with herbaceous 

vegetation that can occur when using growing-season imagery. Our study is the first to utilize 

remotely-sensed snow-cover imagery to spatially model the presence of conifer regeneration 

and outline the detectability limits of these techniques. Greater than 98% detection accuracy was 

achieved for identifying conifer regeneration presence in a Landsat pixel, with the preponderance 

of misclassified conifer-absent pixels having <10% regeneration cover. Such high model reliability 

suggests that snow-cover remote sensing can be used to provide a clearer picture of post-fire 

regeneration dynamics and better evaluate post-fire forest recovery. 

Conifer regeneration modelling with snow-cover imagery provided opportunities to 

describe conifer recolonization and fragmentation of high-severity burn patches at the landscape 
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and patch-level. We were able to quantify spatial patterns of expansion with the first known 

utilization of the Landscape Expansion Index to characterize how conifers reoccupy high-severity 

burn patches. Our research has constructed a more detailed picture of long-term post-fire forest 

recovery for lodgepole pine, Douglas-fir, and fir-spruce forests in the Northern Rocky Mountains, 

demonstrating differences in the rate and mechanism of conifer recolonization. 

Finally, we were able to use our conifer regeneration models to identify high-severity burn 

patches with reduced likelihoods of conifer recovery in the Northern Rocky Mountains. Analysis 

identified climate, topography, patch characteristics, and forest types associated with reduced 

recovery. Given ecological implications of wildfire intensification, identifying site conditions that 

are at risk of reduced conifer resilience is imperative. 
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Appendices 

Appendix 1. List of the 34 high-severity wildfire events used in our analysis. 

Fire ID MTBS ID MTBS Name Year Ecoregion 
Dominant Conifer 

Forest Type 

Area 

(acres) 

High Severity 

% 

Fire_1_1988 

WY4463411003119880709 

WY4473710995419880709 

WY4491210990219880711 

MIST 

CLOVERMIST 

CLOVER 

1988 
Middle 

Rockies 
Fir-spruce 342,005 27.3% 

Fire_2_1988 

MT4507511010219880619 

WY4499211096519880625 

WY4470811082119880722 

WY4509511033019880815  

STORM CREEK 

FAN 

NORTH FORK 

HELLROARING 

1988 
Middle 

Rockies 
Lodgepole pine 777,690 27.6% 

Fire_3_1988 

WY4422111042119880623 

WY4438611053919880623 

WY4434411052419880623 

WY4430211056619880701 

WY4412411002019880711 

WY4419311073119880712 

WY4408111047019880820 

SNAKE 

SHOSHONE 

REDSHONE COMPLEX 

RED 

MINK 

FALLS 

HUCK 

1988 
Middle 

Rockies 
Lodgepole pine 448,911 21.1% 

Fire_4_1988 
MT4605911433119880722 

MT4604211426919880906 

ROCK CREEK 

LITTLE ROCK CREEK 
1988 

Idaho 

Batholith 
Douglas-fir 5,651 16.1% 

Fire_7_1988 MT4724011275119880625 CANYON CREEK 1988 
Middle 

Rockies 
Lodgepole pine 167,870 50.4% 

Fire_9_1988 ID4482611469819880705 MCCARTE RIDGE 1988 
Idaho 

Batholith 
Douglas-fir 8,312 16.7% 

Fire_10_1988 MT4781311293519880711 GATES PARK 1988 
Canadian 

Rockies 
Lodgepole pine 42,492 52.5% 

Fire_11_1988 ID4527011497119880711 SLIVER CREEK 1988 
Idaho 

Batholith 
Fir-spruce 45,075 42.7% 



61 

   

Fire ID MTBS ID MTBS Name Year Ecoregion 
Dominant Conifer 

Forest Type 

Area 

(acres) 

High Severity 

% 

Fire_12_1988 MT4795610858219880722 MONUMENT 1988 
Middle 

Rockies 
Lodgepole pine 5,633 24.1% 

Fire_13_1988 ID4409711540519880726 WILLIS GULCH 1988 
Idaho 

Batholith 
Douglas-fir 4,962 24.8% 

Fire_14_1988 MT4643911179319880809 CANYON CREEK 1988 
Middle 

Rockies 
Douglas-fir 35,864 46.5% 

Fire_15_1988 ID4612911474719880811 FREEMAN TRAIL 1988 
Idaho 

Batholith 
Fir-spruce 19,499 28.5% 

Fire_16_1988 MT4609711438119880814 SOUTH LOST HORSE 1988 
Idaho 

Batholith 
Fir-spruce 5,626 9.1% 

Fire_18_1988 WY4431210701519880814 LOST 1988 
Middle 

Rockies 
Lodgepole pine 13,108 48.0% 

Fire_19_1988 MT4612811450619880816 UPPER BEAR 1988 
Idaho 

Batholith 
Fir-spruce 7,241 26.7% 

Fire_20_1988 MT4635311433619880817 TOTEM PEAK 1988 
Idaho 

Batholith 
Fir-spruce 6,559 12.8% 

Fire_22_1988 WY4291010958419880821 FAYETTE 1988 
Middle 

Rockies 
Lodgepole pine 29,233 16.0% 

Fire_23_1988 MT4701411039419880824 IRON CLAIM 1988 
Middle 

Rockies 
Douglas-fir 1,363 41.0% 

Fire_25_1988 WA4843511857519880825 S.17MILE1 1988 
Northern 

Rockies 
Douglas-fir 8,089 25.4% 

Fire_26_1988 MT4643311337819880825 COMBINATION 1988 
Middle 

Rockies 
Douglas-fir 8,588 56.0% 

Fire_28_1988 WA4855511850019880825 WHITE MOUNTAIN 1988 
Northern 

Rockies 
Douglas-fir 21,854 25.1% 

Fire_29_1988 MT4878711426219880906 RED BENCH 1988 
Canadian 

Rockies 
Douglas-fir 33,844 26.5% 
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Fire ID MTBS ID MTBS Name Year Ecoregion 
Dominant Conifer 

Forest Type 

Area 

(acres) 

High Severity 

% 

Fire_31_1988 ID4444911338919880907 LITTLE LOST 1988 
Middle 

Rockies 
Douglas-fir 6,282 46.9% 

Fire_32_1989 
ID4472811582819890726 

ID4475711573919890726 

NEEDLES SOUTH 

DOLLAR CREEK 
1989 

Idaho 

Batholith 
Fir-spruce 13,334 15.2% 

Fire_33_1989 WY4259410907119890704 ANNS 1989 
Middle 

Rockies 
Lodgepole pine 3,298 36.7% 

Fire_35_1989 ID4409211552419890726 SMOKEY CREEK 1989 
Idaho 

Batholith 
Douglas-fir 47,680 2.4% 

Fire_38_1989 ID4468911558619890726 LUNCH CREEK 1989 
Idaho 

Batholith 
Fir-spruce 7,443 28.5% 

Fire_41_1989 ID4523011574819890726 STEAMBOAT 1989 
Idaho 

Batholith 
Fir-spruce 1,615 48.6% 

Fire_42_1989 ID4472811552619890727 HORN CREEK 1989 
Idaho 

Batholith 
Lodgepole pine 2,488 33.3% 

Fire_48_1990 MT4696611179819901113 BEARTOOTH COMPLEX 1990 
Middle 

Rockies 
Douglas-fir 13,461 18.8% 

Fire_49_1991 MT4525511054919910716 THOMPSON CREEK 1991 
Middle 

Rockies 
Douglas-fir 6,978 31.2% 

Fire_50_1991 ID4483111393719910825 MCKIM 1991 
Middle 

Rockies 
Douglas-fir 3,097 17.6% 

Fire_51_1991 WY4361311022619911015 DRY COTTONWOOD 1991 
Middle 

Rockies 
Fir-spruce 6,995 13.5% 

Fire_54_1991 MT4863211580519911016 UNNAMED 1991 
Northern 

Rockies 
Fir-spruce 2,478 51.2% 
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Appendix 2. Spectral indices used in conifer presence-absence Random Forest model creation. 

Indices Name Equation Purpose Citation 

NBR 
Normalized 

Burn Ratio 
𝑁𝑁𝑁𝑁𝑁𝑁 =  

𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁2𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁2
 

Burn 

Severity 

(García & 

Caselles, 

1991) 

RdNBR 

Relativized 

Difference 

Normalized 

Burn Ratio 

𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝��𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 0.001�  Burn 

Severity 

(Miller & 

Thode, 

2007) 

NDVI 

Normalized 

Difference 

Vegetation 

Index 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑁𝑁 Vegetation 

(Tucker, 

1979) 

EVI 

Enhanced 

Vegetation 

Index 

𝑅𝑅𝑁𝑁𝑁𝑁 =  2.5 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 6 ∗ 𝑁𝑁𝑅𝑅𝑁𝑁 − 7.5 ∗ 𝑁𝑁𝐵𝐵𝐵𝐵𝑅𝑅 + 1
 Vegetation 

(Huete et 

al., 2002) 

NDWI 

Normalized 

Difference 

Water Index 

𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁 =  
𝐺𝐺𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁 −𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁 +𝑁𝑁𝑁𝑁𝑁𝑁 Moisture (Gao, 1996) 

NBR2 
Normalized 

Burn Ratio 2 
𝑁𝑁𝑁𝑁𝑁𝑁2 =  

𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1 − 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1 + 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁2
 

Burn 

Severity 

(Key & 

Benson, 

2006) 

NDSI 

Normalized 

Difference 

Snow Index 

𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁 =  
𝐺𝐺𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1𝐺𝐺𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1

 Snow 
(Hall & 

Riggs, 2010) 

NDFSI 

Normalized 

Difference 

Forest Snow 

Index 

𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁 =  
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1

 Snow 
(Wang et 

al., 2015) 

 


