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Wiener Filters in Canonical Coordinates for
Transform Coding, Filtering, and Quantizing

Louis L. Scharf,Fellow, IEEE, and John K. Thomas

Abstract—Canonical correlations are used to decompose the
Wiener filter into a whitening transform coder, a canonical filter,
and a coloring transform decoder. The outputs of the whitening
transform coder are called canonical coordinates; these are the
coordinates that are reduced in rank and quantized in our
finite-precision version of the Gauss–Markov theorem. Canonical
correlations are, in fact, cosines of the canonical angles between
a source vector and a measurement vector. They produce new
formulas for error covariance, spectral flatness, and entropy.

Index Terms—Adaptive filtering, canonical coordinates, canon-
ical correlations, quantizing, transform coding, Wiener filters.

I. INTRODUCTION

CANONICAL correlations were introduced by Hotelling
[1], [2] and further developed by Anderson [3]. They are

now a standard topic in texts on multivariate analysis [4], [5].
Canonical correlations are closely related tocoherency spectra,
and these spectra have engaged the interest of acousticians
and others for decades. In this paper, we take a fresh look at
canonical correlations, in a filtering context, and discover that
they provide a natural decomposition of the Wiener filter. In
this decomposition, the singular value decomposition (SVD)
of a coherence matrixplays a central role: The right singular
vectors are used in a whitening transform coder to produce
canonical coordinatesof the measurement vector; the diagonal
singular value matrix is used as acanonical Wiener filterto
estimate the canonical source coordinates from the canonical
measurement coordinates; and the left singular vectors are used
in a coloring transform decoder to reconstruct the estimate of
the source. The canonical source coordinates and the canonical
measurement coordinates are white, but their cross correlation
is the diagonal singular value matrix of the SVD, which is
also called thecanonical correlation matrix.

The Wiener filter is reduced in rank by purging subdominant
canonical measurement coordinates that have smallsquared-
canonical correlationwith the canonical source coordinates.
Quantizing is done by independently quantizing the canonical
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measurement coordinates to produce a quantized Wiener filter
or a quantized Gauss–Markov theorem.

The abstract motivation for studying canonical correlations
is that they provide a minimal description of the correlation
between a source vector and a measurement vector. Canonical
correlations are also cosines of canonical angles; therefore,
some very illuminating geometrical insights are gained from a
study of Wiener filters in canonical coordinates. The concrete
motivation for studying canonical correlations is that they are
the variables that determine how a Wiener filter can be reduced
in rank and quantized for a finite-precision implementation.

Canonical correlations decompose formulas for error co-
variance, spectral flatness, and entropy, and they produce
geometrical interpretations of all three. These decompositions
show that canonical correlations play the role of direction
cosines between random vectors, lending new insights into
old formulas. All of these finite-dimensional results generalize
to cyclic time series and to wide-sense stationary time series.
Finally, experimental training data may be used in place of
second-order information to produce formulas for adaptive
Wiener filters inadaptivecanonical coordinates.

II. PRELIMINARY OBSERVATIONS

Let us begin our discussion of canonical coordinates by
revisiting an old problem in linear prediction. The zero-
mean random vector

has covariance matrix

(1)

The determinant of may be written as

(2)

where is the error variance for estimating the scalar
from the vector . This error variance may be written

as

(3)

(4)

We call thesquared coherencebetween the scalar
and the vector because it may be written as the product

(5)

(6)
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The vector is the coherence between and ,
or the cross correlation between the white random scalar

and the white random vector :

(7)

This basic idea may be iterated to write as

(8)

(9)

where is the squared coherence between the scalar
and the vector . This formula for

is the Gram determinant, with each prediction error
variance written in terms of squared coherence. It provides a
fine-grained resolution ofentropyandspectral flatness:

(10)

(11)

Therefore, entropy is near its maximum, and spectral flatness
is near 1 when the squared coherences betweenand
are near zero for all.

The sequence of Wiener filters that underlies this decompo-
sition of is

(12)

which is a decomposition of the filter into a whitener
, a coherence filter , and a colorer .

This idea is fundamental.

III. CANONICAL CORRELATIONS IN A FILTERING CONTEXT

The context for our further development of canonical cor-
relations is illustrated in Fig. 1. The source vector
and the measurement vector are generated by Mother
Nature. Father Nature views only the measurement vector,
and from it, he must estimate Mother Nature’s source vector

. This problem is meaningful because the zero-mean random
vectors and share the covariance matrix :

(13)

Fig. 1. Filtering problem.

(a)

(b)

(c)

Fig. 2. Wiener filter in various coordinate systems.

A. Standard Coordinates

The linear MMSE estimator of from is , and
the corresponding (orthogonal) error is . In standard
coordinates, the Wiener filter and the error covariance
matrix are

(14)

(15)

We shall call Fig. 2(a) the Wiener filter in standard coordi-
nates.

The linear transformation

(16)

resolves the source vector and the measurement vector
into orthogonal vectors and , with respective covariances

and

(17)

This is one of the Schur decompositions of . From this
formula, it follows that may be written as

(18)

(19)
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B. Coherence Coordinates

The coherence matrixmeasures the cross-correlation be-
tween thewhite vectors and :

(20)

Using coherence, we can refine the Wiener filter and its
corresponding error covariance matrix as

(21)

(22)

We shall call the matrix the squared coherence
matrix.

The corresponding Wiener filter, in coherence coordinates,
is illustrated in Fig. 2(b). It resolves the source vectorand
the measurement vector into the error vector and the
estimate in three stages. The first stage whitens bothand

to produce the coherence coordinatesand , the second
stage filters with the coherence filter to produce the
estimator error and the estimator , and the third stage
colors these to produce and . We shall call this the Wiener
filter in coherence coordinates.

The refined linear transformation from to is

(23)

The corresponding refinement for the covariance matrix for
and is

(24)

The diagonal structure of this covariance matrix shows that
the estimator error and the measurement, in coherence
coordinates, are also uncorrelated, providing an orthogonal
decomposition of the coherence coordinateinto the estimator

and the error . It also shows that the covariance matrix
for the error in coherence coordinates is .
The formula for is now

(25)

(26)

C. Canonical Coordinates

We achieve one more level of refinement by replacing the
coherence matrix by its SVD:

(27)

(28)

diag (29)

We shall call the orthogonal matrices and transform
coders, the matrix the canonical correlation matrix, and
the matrix the squared canonical correlation matrix.
The canonical correlation matrix is the cross correlation
between the white vector and the white vector

:

(30)

The Wiener filter and error covariance matrix in these
canonical coordinates are

(31)

(32)

The corresponding Wiener filter, in canonical coordinates, is
illustrated in Fig. 2(c). It resolves the source vectorand
the measurement vector into the error vector and the
estimator in five stages. The first stage whitens bothand

to produce the coherence coordinatesand , the second
stage transforms the coherence coordinatesand into the
canonical coordinates and , the third stage filters with
the canonical filter to produce the estimator and the
estimator error , the fourth stage transforms and into
the coherence coordinatesand , and the fifth stage colors
these to produce and . We shall call this the Wiener filter
in canonical coordinates.

The refined linear transformation from to is

(33)

The corresponding refinement of the covariance matrix for
and is

(34)

The diagonal structure of this covariance matrix shows that
the estimator error and the measurement are also un-
correlated, meaning that the estimatorand the error
orthogonally decompose the canonical coordinate. It also
shows that the covariance matrix for the error in canonical
coordinates is . The formula for
is now

(35)

(36)

This formula shows that the squared canonical correlations
are objects of fundamental importance for filtering. We

pursue this point in Section IV.
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IV. FILTERING FORMULAS IN CANONICAL COORDINATES

We summarize as follows. The Wiener filter incanonical
coordinatesreplaces the source and measurement vectors in
standard coordinates with source and measurement vectors
in canonical coordinates. In these coordinates, the source
and measurement are white but diagonally cross correlated
according to the canonical correlation matrix. This canon-
ical correlation matrix is also the Wiener filter for estimating
the canonical source coordinates from the canonical mea-
surement coordinates. The error covariance matrix associated
with Wiener filtering in these canonical coordinates is just

.
Recall that the canonical correlations are defined as

(37)

(38)

so that each canonical correlation measures the cosine
of the angle between two unit variance random variables: one
drawn from the canonical source coordinates and one drawn
from the canonical measurement coordinates. For this reason,
we call the squared canonical correlations direction
cosines. By making the canonical variables diagonally cor-
related, we have uncoupled the measurement of one direction
cosine from the measurement of another.

A. Linear Dependence

We think of the Hadamard ratio as a
measure of linear dependence of the variablesand . Using
the results of (8) and (35), we may write the Hadamard ratio
as the product

(39)

This formula tells us that what matters is theintradependence
within as measured by its direction cosines, thein-
tradependence within as measured by its direction cosines,
and theinterdependence betweenand as measured by the
direction cosines between and . These latter direction
cosines are measured in canonical coordinates, much as
principal angles between subspaces are measured in something
akin to canonical coordinates. They are scale invariant.

B. Relative Filtering Errors

The prior error covariance for the message vectoris ,
and the posterior error covariance for the error is

. The volumes of the concentration ellipses associated with
these covariances are proportional to and .

The relative volumes depend only on the direction cosines
:

(40)

C. Entropy and Rate

The entropyof the random vector is

(41)

Normally, we write this entropy as the conditional entropy of
given , plus the entropy of . The conditional entropy, or

equivocation,is therefore

(42)

and the direction cosines determine howbrings information
about to reduce its entropy from its prior value of .
The second term on the right-hand side of this equation is
the negative ofrate in canonical coordinates. Thus, the rate
at which brings information about is determined by the
direction cosines or squared canonical correlations between
the source and the measurement.

V. RANK REDUCTION FOR TRANSFORM

CODING, FILTERING, AND QUANTIZING

The Wiener filter in canonical coordinates is a filterbank
idea. That is, the measurement is decomposed into canonical
coordinates that bring information about the canonical coordi-
nates of the source. It is also a spread-spectrum idea because
the canonical coordinates are white. The question of rank
reduction and bit allocation for finite-precision Wiener filtering
or, equivalently, for source coding from noisy measurements is
clarified in canonical coordinates. The problem is to quantize
the canonical coordinates so that the trace of the error
covariance matrix is minimized. The error covariance
matrix and its trace are

(43)

tr (44)

where the are the energies of the “impulse responses”
for the coloring (or synthesizing) transform decoder:

(45)

If the canonical measurement coordinates that are weakly
correlated with the canonical source coordinates are purged



SCHARF AND THOMAS: WIENER FILTERS IN CANONICAL COORDINATES FOR TRANSFORM CODING, FILTERING, AND QUANTIZING 651

and the remaining are uniformly quantized withbits, then
the resulting error covariance matrix for estimating the source
vector from the reduced-rank and quantized canonical mea-
surement vector is

tr

(46)

In this latter form, we observe that tr consists of three
terms: the infinite-precision filtering error, the bias-squared
introduced by rank reduction, and the variance introduced by
quantizing. The trick is to properly balance the second and
third. To this end, we will consider the rate-distortion problem

tr under constraint

(47)
Using the standard procedure for minimizing with constraint
(see, for example, [9] and [10]), we obtain the solution

(48)

(49)

(50)

(51)

These formulas generalize the formulas of [9] by providing a
solution to the problem of uniformly quantizing the Wiener
filter or quantizing the Gauss–Markov theorem. They may be
interpreted as follows.

If the bit rate is specified, then the slicing level
is adjusted to achieve it. The slicing level determines the
bit allocation , the rank , and the minimum achievable
distortion . Conversely, if the distortion is specified, is
adjusted to achieve it. This determines, , and the minimum
rate . These formulas are illustrated in Fig. 3 for the idealized
case where the are unity. The components of distortion
illustrate the tradeoff between bias and variance.

(a) (b)

(c) (d)

Fig. 3. Components of distortion. (a) Squared canonical correlation. (b)
Infinite-precision distortion. (c) Extra components of distortion due to rank
reduction and quantizing. (d) Finite-precision distortion.

VI. CANONICAL TIME SERIES

If and are jointly stationary random vectors whose
dimensions increase without bound (that is, they are stationary
time series), then all of the correlation matrices in these formu-
las are infinite Toeplitz matrices with Fourier representations

(52)
Furthermore, if the time series are not perfectly predictable
(that is, the power spectra and satisfy the Sz̈ego
conditions), then and may be spectrally
factored as

(53)

where the filters and are minimum phase, meaning
that , , , and are causal and stable
filters. Then, the various square roots in the filtering fomulas
have the Fourier representations

(54a)

(54b)

(54c)

The SVD representation for becomes a Fourier represen-
tation; therefore

(55)
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(a)

(b)

Fig. 4. Canonical Wiener filter in (a) frequency and (b) time domains.

where

coherence spectrum;
spectral mask diag ;

and Fourier matrices.

That is, the coherence spectrum is the Fourier representation
for the coherence matrix, and thesquared coherence spectrum
is the representation for the squared coherence matrix:

(56)

(57)

With these results, we summarize the filtering fomulas in
canonical time series coordinates as

(58)

(59)

This equation for shows it to be a product of spectral
masks, as illustrated in Fig. 4(a). Alternatively, is the
frequency response of the Wiener filter , and
is its error spectrum. This filter is illustrated in Fig. 4(b). If
the filter is constrained to be causal, then the coherence filter

is replaced by the causal filter

(60)

A. Error Variance, Spectral Flatness, and Entropy

The Toeplitz matrix has the error variance on its
diagonal. Therefore, this variance is

(61)

This formula shows the error spectrum to be the product of
the source spectrum and an error spectrum, where the latter is
determined by the squared coherence spectrum.

The spectral flatness of the error spectrum is

(62)

which is the ratio of prediction error variance to prior variance.
The equivocation of given is

(63)

The negative of the second term is the rate at whichbrings
information about , and it is determined by the squared
coherence spectrum.

B. Quantizing

It is a straightforward exercise to reduce rank and quantize
according to

b/Hz (64)

(65)

(66)

(67)

These formulas are the asymptotic versions of the finite-
dimensional formulas. Their interpretation is the same as
illustrated in Fig. 3, with index replaced by frequency.

VII. A DAPTIVE CANONICAL COORDINATES

The story of adaptive canonical correlations may be told as
follows. Assume that the covariance matrix is unknown.
In place of it, we have independent snapshots of
assembled into the matrix

(68)
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Then, is a crude estimate of the covariance of:

(69)

From the estimated covariance matrix , we may determine
the adaptive Wiener filter that minimizes

tr tr (70)

which is the sum of squared errors between the experimental
source vectors and the experimental estimates . The
solution is

(71)

(72)

No explicit identification or equalization of the channel model
takes place. Of course, is what we would
mean by thechannel modelfor generating , but
there is no need to explicitly estimate it. If the filter is to be
reduced in rank and quantized, then will be resolved into
adaptive canonical coordinates according to

(73)

(74)

(75)

Therefore, the estimated covariance matrix , which is con-
structed from snapshots of themeasurementand thesource, is
used to determine the estimated coherence matrix, which
is SVD’d to produce the adaptive Wiener filter in canonical
coordinates. In these coordinates, the adaptive canonical filter

may be reduced in rank, and the canonical vectormay
be quantized.

These results solve the problem of designing least sum of
squares adaptive filters for transform coding, filtering, and
quantizing. They may also be used to experimentally test
for linear independence by testing the experimental direction
cosines .

VIII. C ONCLUSIONS

Canonical correlations produce insightful forms for old,
familiar filtering formulas. They illustrate that canonical
measurement coordinates are the natural coordinates to use
when solving reduced-rank and quantized filtering problems.
Squared canonical correlations determine which canonical
measurement coordinates bring enough information to be
retained and quantized. Typically, the canonical measurement
coordinates would be computed at the transmitter using
the whitener and orthogonal transform coder, reduced in
dimension by purging those with small squared canonical
correlation, and then quantized with variable bit allocations
for transmission or storage. At the receiver, these quantized
variables would be decoded with an orthogonal transform
decoder and colored to produce the estimated source vector.

This might be called a noise-rejecting quantizer [12] because
the quantizer is designed to filter out noise and produce a low-
variance quantized estimate of the source vector. The results
clarify the low-rank filters studied in [8] and [11]. This scheme
can be made data adaptive by constructing the estimated
correlation matrix for the source and measurement vectors
from experimental data and proceeding as if the estimated
covariance matrix were the true one. This procedure solves
the least squares problem of minimizing the sum of squared
errors between the filtered experimental measurements and the
experimental source vectors, generalizing the rank reduction
and bit allocation problems studied in [9] to the case where
experimental data, and not second-order information, is given.
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