THESIS

FACIES RECONSTRUCTION AND DETRITAL ZIRCON GEOCHRONOLOGY OF THE INGLESIDE/CASPER FORMATION

Submitted by
Kajal Nair
Department of Geosciences

In partial fulfillment of the requirements
For the Degree of Master of Science
Colorado State University
Fort Collins, Colorado
Spring 2018

Master's Committee:

Advisor: Sven Egenhoff
Co-Advisor: John Singleton
Monique Rocca

Copyright by Kajal Nair 2018
All Rights Reserved

Abstract

\section*{FACIES RECONSTRUCTION AND DETRITAL ZIRCON GEOCHRONOLOGY OF THE INGLESIDE/CASPER FORMATION}

Mixed siliciclastic-carbonate deposits of the Ingleside/Casper Formation in northern Colorado and southeastern Wyoming developed along the flanks of the Ancestral Front Range during the Late Paleozoic. This study establishes a sedimentological model for the Ingleside/Casper Formation along with using detrital zircon data to identify siliciclastic sediment sources for Late Paleozoic deposits in two Ancestral Rocky Mountain basins along the Ancestral Front Range and Uncompahgre Highlands.

The stratigraphic successions of the Ingleside/Casper Formation display a diverse suite of carbonate and siliciclastic lithofacies in close lateral and vertical association with each other. The six different siliciclastic facies and their subfacies identified in this study include: (1) cross-bedded sandstone (tabular cross-bedded sandstone and trough cross-bedded sandstone), (2) horizontally-bedded sandstone, (3) massive sandstone, (4) conglomeratic sandstone, (5) ripple-laminated sandstone (asymmetric current ripples, moderatelysteeply climbing ripples, and gently climbing ripples), and (6) silt-rich siliciclastic mudstone. The three different carbonate facies and their subfacies identified in this study include: (1) carbonate mudstonewackestone, (2) carbonate packstone (packstone with non-skeletal grains and packstone with bioclasts), and (3) carbonate grainstone (grainstone with non-skeletal grains and grainstone with bioclasts). Thinning and/or pinching out of carbonate facies accompanied with a gradual increase in siliciclastic sedimentation is observed laterally across the study area from north to south. Eight stratigraphic intervals are recognized from correlations across a north-south transect of 120 km and each interval displays a lithofacies assemblage dominated either by carbonates or siliciclastics. Both carbonate and siliciclastic successions display small-scale fining-upward trends, with coarsening-upwards being partially or wholly absent across the study area. One of the eight intervals (termed Interval 6) is of significant interest in this study because
it displays a unique lithofacies assemblage, with it being the only interval where trough cross-beds of facies 1B occur. Overall, carbonate units vary in the extent to which they onlap onto siliciclastic strata throughout the succession: Intervals 1 to 4 record a successive advance of onlap towards the south, whereas intervals 5 to 8 record a retreat of onlap and a successive northwards migration of carbonate strata.

The nine different lithofacies and their subfacies identified in this study represent an array of shallowmarine paleoenvironments that include foreshore, shoreface, offshore transition, and offshore, and terrestrial settings comprising coastal eolian dunes and fluvial systems. Stratigraphic distribution of facies suggests that deposition in a shallow-marine environment alternated between dominantly siliciclastic and dominantly carbonate, mainly as a result of fluctuations in the input of siliciclastic sediment and its effect on carbonate deposition. In a distal direction, both siliciclastic and carbonate facies graded into carbonate mudstone that is identified as the most distal setting across all stratigraphic successions studied here. The Ingleside/Casper succession is interpreted to consist of two superimposed scales of sea-level fluctuations with the small-scale cycles represented by deepening-upwards successions across the study area, and a superimposed large-scale sea level curve recorded in the varying onlap of carbonates. The superimposed curve shows an overall transgression in the lower part of the succession succeeded by a regression in the upper part. Independent of this type of sea-level curve, dry eolian dunes dominated the stratigraphic record during Interval 6 and reflect a sharp change in climate to more arid conditions that accompanied the exclusive formation of dunes during this time.

The sedimentological study suggests that deposition of the Casper/Ingleside Formation was governed by the two orders of sea-level oscillations and also climate change, both operating on two separate scales. The general fall in sea level and increase in aridity in the upper Ingleside/Casper Formation is attributed to the onset of a major Gondwanan glaciation phase that culminated during the Pennsylvanian-Permian transition which is likely to be located at the very top of this unit. Based on exclusively sedimentological considerations, this study therefore suggests that the Ingleside Formation, which is typically assigned a Permian age, was most likely deposited during the Late Pennsylvanian. This interpretation is also based on
the correlation of the Coloradoan Ingleside Formation to the Casper Formation in Wyoming that contains a known Late Pennsylvanian fussuline assemblage.

This study also presents new detrital zircon U-Pb geochronology data from the type section of the Ingleside Formation at Owl Canyon, and the Molas and Hermosa Formations near Molas Lake to understand Late Paleozoic sediment provenance and dispersal patterns across Colorado. U-Pb ages on 120-150 zircons were determined from each sample using LA-ICPMS, and ages with excessive discordance ($>20 \%$ discordant or $<5 \%$ reverse discordant) were rejected. All samples contain between 5\% and 10% concordant Paleozoic aged zircons ranging from $330-490 \mathrm{Ma}$. Other significant age distribution peaks identified range between 990-1200 Ma, 1340-1500 Ma, 1600-1800 Ma, and 2500-3500 Ma.

The wide spread of zircon age populations record a mixed Laurentian derivation comprising local and distal sediment sources. Paleozoic-age zircons are interpreted to coincide with high magmatic flux during the Taconic and Acadian orogenies in the Appalachian orogen. The diverse components in the $\mathrm{U}-\mathrm{Pb}$ age data suggest that a widespread sand-dispersal system that transported local and distant sediment sources along the Ancestral Rockies was operational during the Late Paleozoic. Areas of eolian recycling observed in the Ingleside and Molas Formations points towards eolian systems playing an important role in transportation of distally-sourced zircons during Late Paleozoic time. Additionally, the U-Pb detrital zircon data indicate that a shift from non-marine to marine deposition across the Fountain-Ingleside transition was accompanied by a decrease in locally-sourced detrital zircons, most likely marking the cessation of Ancestral Front Range uplift. Conversely, the shift from non-marine to marine deposition across the Molas-Hermosa contact was accompanied by an increase in locally-sourced detrital zircons, most likely marking the initiation of the Uncompahgre uplift.

ACKNOWLEDGEMENTS

I am thankful to Sven Egenhoff and John Singleton for encouraging me to constantly push boundaries throughout the research and writing of this thesis. Tireless discussions with and edits from both of them have made this thesis a work that I am proud of.

I would like to acknowledge the Central Minerals Resources team and the Core Research Center at USGS, Denver for their part in assisting me with data that makes up a substantial part of this thesis and for answering my endless questions. A special mention also goes out to CSU alumnus, Scott Larson, for providing me with his maps of the Front Range, making the fieldwork process significantly easier. I have learned over the course of two years that it takes a village to research and write a thesis and I would like to thank friends and peers at CSU for being mine. A very warm thank you to Andy Auer, Evan Strickland, and Kathryn Schuller for being supremely enthusiastic field assistants and to Nikki Seymour for all her help while I was still learning the particulars of zircon geochronology.

Finally, a very special thank you to my family for their patience and humor through it all.

TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLEDGEMENTS v
PART 1: FACIES RECONSTRUCTION OF THE INGLESIDE/CASPER FORMATION 1
INTRODUCTION 1
GEOLOGICAL BACKGROUND 3
FACIES IDENTIFICATION 6
FACIES ARCHITECTURE 26
DEPOSITIONAL MODEL 32
DISCUSSION 41
CONCLUSIONS 48
REFERENCES 50
APPENDIX A: INGLESIDE/CASPER FORMATION STRATIGRAPHIC SECTIONS 61
PART 2: DETRITAL ZIRCON GEOCHRONOLOGY OF THE INGLESIDE FORMATION 75
INTRODUCTION 75
GEOLOGICAL BACKGROUND 78
METHODS 80
RESULTS 86
DISCUSSION 97
CONCLUSIONS 101
REFERENCES 102

PART 1: FACIES RECONSTRUCTION OF THE INGLESIDE/CASPER FORMATION INTRODUCTION

Mixed carbonate-siliciclastic systems are known to be sensitive to allocyclic changes, such as variations in sea-level, climate, and tectonics (Wilson, 2008; Schwarz et al., 2016). In most cases, these governing parameters are strongly interlinked, and it is difficult to differentiate the effects of each of these variables (Blakey and Middleton 1983; Chan and Kocurek 1988). Although mixed carbonate-siliciclastic systems are only rarely described in literature (Schwartz et al. 2016; Jordan and Mountney 2012), the few studies that center on those sedimentary systems conclude that at least two of these allocyclic controls often go hand in hand: sea-level and climate. Previous approaches to understanding these controls in time-equivalent successions to the here studied Ingleside Formation suggested that regressions and lowstands are often accompanied by arid climate conditions, whereas transgressions and highstands correspond to humid climates (Loope, 1984; Heckel, 1994, Blakey, 2004). Jordan and Mountney (2012) use detailed facies analyses to reach the same conclusion for the basal Permian Cutler Formation in Utah.

The present study introduces the sedimentology of the Ingleside and Casper Formations, a mixed carbonatesiliciclastic succession deposited along the eastern flank of the Front Range of Colorado and Wyoming (Figure 7). The Ingleside and Casper successions are characterized by a distinct cyclic architecture of alternating carbonate and siliciclastic units several meters to tens of meter-thick (Fig. 8). The age of this unit is believed to be lower Permian based on a single finding of one benthic foraminifera (Hoyt and Chronic, 1961). The well-developed cyclicity likely resulted from the waxing and waning ice sheets in Gondwana (Heckel, 2008; Birgenheier et al., 2009). The sedimentological response to these sea-level changes, though, seems to vary significantly across the Laurentian continent depending on the specific climate of the region: Utah and Colorado experienced a rather arid climate during the Late Paleozoic, whereas humid conditions prevailed in Illinois and Kansas. (Joeckel, 1999; Cecil, 2003; Blanchard et al., 2016). Consequently, mid-continent cyclothems contain coals and black shales (Heckel 1986), whereas
sediments from the western interior of Laurentia are devoid of organic-rich deposits but contain eolianites and dune deposits (Jordan and Mountney, 2012).

The Ingleside Formation along the Front Range of Colorado shows that two of the three variables that governed this sedimentary system - sea-level and climate, can be clearly separated, and seem to act on different time scales. This mixed carbonate-siliciclastic system is therefore unique in the sense that it does not directly link climate to distinct positions of sea-level. Rather, this study demonstrates that several mixed carbonate-siliciclastic cycles developed prior to a major change in climate that was independent of cyclic short-term sea-level changes. Detailed facies analyses and architecture in this study is based on a total of 13 lithological sections and 75 petrographic thin sections across a 120 km northeast-southwest transect and a 38 km east-west transect. The conclusions drawn enable a better understanding of the sedimentary evolution and preservation of this mixed siliciclastic and carbonate shoreline and nearshore system deposited along the eastern flank of the Ancestral Rocky Mountains.

GEOLOGICAL BACKGROUND

The intracontinental deformation that resulted in the Ancestral Rocky Mountain (ARM) system of western Laurentia is primarily centered on the Pennsylvanian Period. This deformation remains poorly understood and has been recognized as part of a large region of intraplate tectonics. Various models invoke stresses along the Ouachita-Marathon belt, transpressional regimes along the Sonora margin, and reactivation of pre-existing basement faults to explain ARM deformation (Kluth and Coney, 1981; Marshak et al, 2000; Dickson and Lawton, 2003; Leary et al., 2017).

Synchronous with the tectonism, the Late Paleozoic was a time of southern hemisphere glaciation in Gondwanaland. The resultant global icehouse conditions and eustatic sea level changes led to deposition of cyclic stratal sequences throughout the western United States (Crowell, 1978). Sea level lows at this time were primarily characterized by eolian dune deposits over most of the western United States, while sea level highs were characterized by cyclic alterations of limestone and shale formations (Heckel, 1986; Blakey, 2008).

In present-day Colorado ARM tectonic uplifts developed during this time include the Apishapa highland, Uncompahre highland, and Ancestral Front Range highland (Mallory, 1960; Curtis, 1958). Of these, the Ancestral Front Range highland extended from the present-day Sangre de Cristo Mountains in southern Colorado to the present-day Sierra Madre in south-central Wyoming (Tweto, 1980; Maughan, 1993).

Adjacent to the Ancestral Front Range Highland lay a shallow-marine basin wherein the Pennsylvanian seas transgressed from the north and east (Blakey, 2008; Curtis, 1958; Williams, 1962; Tenney, 1963). Vigorous uplift of the Ancestral Front Range Highland around the Middle Pennsylvanian time resulted in extensive erosion of previously deposited Pennsylvanian and Mississippian sediments (Eardley, 1951; De Voto, 1980). Great quantities of arkose were deposited in alluvial fans and braided stream systems adjacent to the uplift. These deposits, collectively identified as the Fountain Formation, were deposited directly upon Precambrian crystalline rocks and thin abruptly towards the northeast (Knight, 1929). The advancing sea
during the Late Pennsylvanian resulted in partial marine erosion of the Fountain Formation and subsequent deposition of sandstone and interfingering carbonate units of the Casper and Ingleside Formations. The entire extent of the Ingleside Formation in Colorado overlies the Fountain Formation. The Casper Formation in Wyoming, on the other hand, interfingers with the Fountain Formation up to a point where the Fountain Formation thins out. Further north, limestone deposits of the Madison Formation directly underlie the Casper Formation (Tenney, 1963).

Lee (1927) traced the Fountain Formation and overlying Ingleside Formation from Colorado to central Wyoming and concluded that the greater part of the Casper Formation is continuous with the Ingleside Formation. Agatston (1954), Knight (1929), and Miller and Thomas (1936) suggested that the Fountain Formation represented a river system that was deposited in an advancing Pennsylvanian sea and that the Fountain and Casper Formations are, in part at least, contemporaneous. Knight also concluded that the Ingleside Formation is equivalent to the upper part of the Casper Formation. These studies were initially based on sparse fossil data and long distance correlations (Maughan et al., 1961). This relationship was later also established based on Wolfcampian fusulinids in the Ingleside Formation (Hoyt et al., 1961) and equivalent strata of the Upper Casper Formation, while fusulinids from the Fountain Formation and Lower and Middle Casper Formation were found to be older and ranged in age from Virgilian to Missourian (Chronic, 1958; Burns and Nestell, 2009). Beveling of the Casper and Ingleside Formations along the flanks of the Ancestral Front Range was a result of the uplift and subsequent vigorous erosion at the time (Maughan, 1980).

In Late Pennsylvanian and Early Permian times, the Ancestral Rocky Mountain uplift stabilized and slowly declined. Chronic (1958) suggested that this decline was accompanied by a fall in relative sea level and a gradual change in climate from humid with alternating semi-arid intervals to more arid conditions. Climate at this time resulted in deposition of cross-bedded, eolian sandstones that make up the upper parts of the Ingleside and Casper Formations (Maughan et al., 1960).

A sharp contact separates the eolian sandstones of the Ingleside and Casper Formations from overlying Early Permian age mudstone and very fine-grained sandstone of the Owl Canyon Formation. This contact marks a gradual rise in sea level, and the overlying siliciclastic mudstone-dominated deposits are representative of a tidal flat complex reflecting renewed sea-level rise (Howe, 1970; Maughan, 1980).

Figure 1: Location of measured outcrop sections and drill cores. Stars mark outcrop sections and circles mark drill core sections.

FACIES IDENTIFICATION

Facies 1: Cross-bedded Sandstone

Description

The cross-bedded sandstone facies is composed of calcite-cemented, fine-grained, quartz-rich sandstones that are typically normally graded. Open intergranular porosity can be as high as 10%. Thirty-three paleocurrent analyses data from the type section at Owl Canyon reveal that the cross-beds dip at shallow angles that range between 10° and 30°, and the mean dip azimuth is 131° (Figure 2C). This facies typically overlies or underlies horizontally-bedded sandstones with gradational or sharp contacts.

Based on the geometry of the crossbeds, two subfacies have been identified.

1A. Tabular Cross-bedded Sandstones

Sets of cross-laminated sands are separated by bounding surfaces and form lenticular or wedge-shaped units that are commonly a few centimeters thick. Fine to very fine, well-sorted, and rounded to sub-angular sand grains make up the cross-laminated strata. The bounding surfaces are composed of fine to very coarse, moderately rounded to angular, poorly-sorted sand grains (Figure 2A). The sandstones are commonly quartz arenites, usually comprising less than 1% feldspar and mica particles. In some places, however, this subfacies can contain up to 5% muscovite flakes. Rarely, skeletal fragments and carbonate aggregate grains occur.

1B. Trough Cross-bedded Sandstones

Sets of centimeter- and meter-scale concave upward cross strata occur locally and make up discontinuous units of the trough cross-bedded sandstone facies. Typically, this subfacies is composed of well-sorted, rounded to sub-angular grains that range in size from coarse silt to fine sand (Figure 2B). In places, the sand and silt grains are visibly segregated into fine laminations that are usually between 1 mm and 5 mm thick. Compositionally, the sandstones are quartz-rich with up to 5% feldspar and mica particles. When observed in core, the cross laminae within these trough units are thickest along the deepest points of the troughs and
continuously thin towards the edges. The fine-grained population is also noted to form darker colored laminae than the over- and underlying coarse grained sediments.

Interpretation:

The cross-bedded sandstones of Facies 1 indicate deposition in a lower flow regime environment as shown by the presence of cross beds in both sub-facies. Internal laminations reflect short fluctuations in energy conditions, with the dominance of fining-upward laminae suggesting settling of progressively finer particles in decelerating flow conditions. This facies commonly overlies horizontally-bedded sandstones of Facies 2, further indicating a decrease of flow velocity from upper to lower flow regime conditions. The inclination of the cross beds shows that sediment transport was preferably from the north and west during deposition.

1A. Tabular Cross-bedded Sandstone.

The tabular cross-beds of Subfacies 1A are here interpreted to represent dunes formed in a marine environment. This environment contained two clearly separate grain populations: the fine, rounded to subangular, well-sorted sand reflects a greater transport path and abrasion in comparison to the coarse, moderately-rounded to angular, poorly-sorted sand. It seems most likely that the coarse-grained sand making up the lower portion of the sandstone laminae represents particles introduced only a short time before deposition whereas the fine-grained sand reflects intense reworking and abrasion, either within or outside of this sedimentary system. The arrangements of these two populations of grains into single laminae, however, also indicates that deposition occurred in pulses of varying energy: relatively high-energy moved and laid down the coarse grains, whereas slightly lower energy resulted in deposition of the fine grains. It seems reasonable to assume that at least one of the sources of the sediment, likely the coarse-grained sand fraction, originated from crystalline basement; this origin is still reflected in the muscovite flakes that locally blanket individual bedding planes in Facies 1A.

1B. Trough cross-bedded Sandstone

The trough cross-bedded sandstones of subfacies 1B are most likely a result of local dunes formed in an eolian environment. Two separate grain size populations are recognized in this subfacies and they were
likely deposited by two different processes. Fine sand particles were possibly carried up the stoss side of the dune by saltation and creep, while very fine to coarse silt particles were transported by suspension. As wind velocity gradually decreased, fine sand particles accumulate in the troughs, followed by silt and very fine sand grains settling out of suspension. It is likely that the fine grains fell between the interstices of stationary coarse sediments, preventing them being picked up by further airflow (Fryberger and Schenk, 1988). Sediments thus sheltered from further migration result in the two separate grain populations observed in this subfacies. This sequestering of small population of very fine sediments and bimodal grain size distribution is characteristic of most eolian depositional systems (Brookfield, 1977; Hunter, 1977; Fryberger and Schenk, 1988). The darker color associated with the finer grained sediments in this subfacies is most likely due to the presence of clay.

Facies 2: Horizontally-bedded Sandstone

Description

The horizontally bedded sandstone facies (Facies 2) is characterized by millimeter- to centimeter-scale internal laminations and displays sharp to gradational contacts to over- and underlying beds. Beds of this facies generally display a tabular geometry in outcrop and range in thickness from 1-20 cm (Figure 3A). Individual laminae of this facies are usually horizontally continuous, composed of moderately sorted fineto very fine-grained, mostly quartz sand, along with quartz and calcite clasts between a few millimeters and 2 cm in diameter. Laminations are typically only a few grain diameters thick. Most of the laminae display a well-defined fining upwards trend. Coarsening upwards are rare and composed of coarse sand to granulesized particles of quartz, calcite, and feldspar at the base of each lamina, grading into fine- and very finegrained sandstone at the top. Texturally, these sandstones are well sorted. Sets of these sandstones typically underlie, and in some places overlie cross-bedded sandstone packages of Facies 1. In places, carbonate skeletal fragments and/or aggregate grains occur. Diagenetic carbonate concretions between 1-12 centimeters thick are also present as prominent features within this facies.

Interpretation:

The laterally persistent plane beds that are characteristic of Facies 2 appear to mark deposition of sand sheets under upper flow regime conditions as indicated by the planar laminations. The regularity of the flat bedding surfaces and lack of bed irregularities point towards an environment with only gentle topography. The flows were depositing sediment in pulses showing varying flow velocities which is reflected in the stacking of laminae in this facies; similarly, most of these pulses likely represents decelerating flows which resulted in the dominance of fining-upward laminae in Facies 2. Nevertheless, some of the flows must have accelerated, too, thereby depositing the rarely occurring coarsening-upwards laminae. Alternatively, shifts in boundary shear stress conditions may have resulted in the observed planar laminations (Allen, 1984), whereby coarsening upward laminae reflect an increase in shear stress associated with large eddies in the flow (Cheel and Middleton, 1986). It is assumed that the lithic and skeletal fragments represent oversize clasts that are likely exotic to the environment. The skeletal fragments may have been eroded from laterally exposed carbonate deposits, and re-deposited in Facies 2. The lithic fragments, however, most likely originated from the Ancestral Rocky Mountains (cf. Dickinson and Lawton, 2003) and were transported as bed load in these relatively high-energy flows.

Facies 3: Massive Sandstone

Description:

Massive, fine-grained, quartz-rich, well sorted, calcite-cemented sandstones form laterally continuous packages of regular thickness, ranging between 1 m and 2.5 m . They commonly over- or underlie crossbedded sandstones (Facies 1) or horizontally bedded sandstones (Facies 2) and are separated from them by gradational contacts. In some places, massive sandstone beds are found underlying siliciclastic mudstone (Facies 6) units with a sharp or erosional contact in-between. This facies displays fluid escape structures in some places and is moderately to heavily bioturbated (Figure 3B).

Interpretation:

Regular geometry and lateral continuity of the massive sandstone indicates that deposition took places on regular surfaces under essentially constant physical conditions. The presence of fluid escape structures and bioturbation in this facies makes it plausible that sedimentary structures, if originally present, have been destroyed by reworking of the sediment by organisms and/or liquefaction. The structureless character of this facies therefore is interpreted to be a result of secondary processes. The presence of abundant burrows also points to a well oxygenated depositional environment for this facies.

Facies 4: Conglomeratic Sandstone

Description:

The conglomeratic sandstones of Facies 4 are typically dark red or purple in color and appear as discontinuous lenses with sharp bounding surfaces. This facies typically displays thickness less than 2 m meters and width less than 3 meters. A concave-up to irregular, erosive base and a convex-up to planar top are distinctive characteristics of this facies (Figure 3C). Laterally, these lenses are no more than 3 meters wide and taper out into fine-grained sandstones of Facies 1B or 2. Planar laminations are weakly developed or absent, and weak normal grading is observed in some places. Compositionally, this facies consists of medium-grained sand, granules, and pebbles less than 0.5 cm in diameter, embedded in a fine-grained sand matrix. Sediments are typically poorly sorted, subrounded to angular and include quartz clasts and lithic fragments. Subrounded chert nodules, a few millimeters to 2 cms in diameter, are observed in some places.

Interpretation:

Laterally discontinuous conglomeratic sandstone lenses of Facies 4 reflect irregular pulses of high energy conditions during deposition. Poorly sorted, coarse, and dominantly angular grains point to short sediment transport paths. It is reasonable to conclude that the Ancestral Rocky Mountains are the primary sediment source for this facies. Sediments were likely transported as bed load, eroding and incising into underlying fine sand dominated bed (Miall, 1985). This bed load transport developed the concave up to irregular,
erosive base characteristic of Facies 4. As gravel and sand deposits aggraded over time, it resulted in the convex upward top (c.f. McGowen and Groat, 1971). Additionally, planar lamination points to deposition in an upper flow regime condition, and weak normal grading is indicative of a gradually decelerating flow.

Facies 5: Ripple-Laminated Sandstone

Description:

Ripple laminated, fine-grained sandstones occur locally and are observed in association with cross-bedded (Facies 1) and horizontally bedded sandstone (Facies 2) or siliciclastic mudstone (Facies 6) units. Based on the type and geometry of ripples, three subfacies have been identified:

5A. Asymmetric Current Ripples:

Centimeter-scale beds displaying moderately asymmetrical current ripples are found overlying horizontally laminated sandstones. Ripple crests are generally broad and rounded and the troughs are narrow. The stoss and lee sides display a straight to convex-up profile (Figure 3D). These structures occur as sinuous crests or lingoids, and ripple height ranges between 1 cm and 3 cms .

5B. Moderately-Steeply Climbing Ripples:

Moderately-steeply climbing ripples occur in centimeter-scale beds and are observed interbedded with or overlying silt-rich siliciclastic mudstones (Facies 6) and separated from them by erosional contacts. Composed of fine-grained sand sediment, the climbing ripples display heights ranging between 1 cm and 3 cms , and angles of climb between 10° and 30°. Distinct lee side laminae are observed in this subfacies, while stoss side laminae are wholly or partially absent (Figure 3E).

5C. Gently Climbing Ripples:

Gently climbing ripples make up beds that range from a few centimeters to 3 m in thickness and are composed of medium-grained sand to silt- sized sediments. This subfacies commonly under- or overlies trough cross-bedded (Facies 1B) or horizontally bedded (Facies 2) sandstones. Typically, these ripples display low angles of climb that range between 0° and 5° and ripple heights less than 2 mm . In outcrop, these
ripples are best described as laterally continuous, with long, parallel to subparallel crests. Internal cross laminations are lacking within the ripples that make up this subfacies. In some places, fine-grained laminae stand out at greater relief than adjacent coarse-grained laminae (Figure 3F).

Interpretation:

5A. Asymmetric Current Ripples:

A low energy depositional condition is suggested for this facies based on the fine-sand grain size and small ripple heights. The general asymmetric profile, rounded crests, narrow troughs, and biconvex flanks of these ripples are characteristic of a unidirectional-dominant flow (Dumas et al., 2005). Ripples of this form are indicative of a general lower flow regime (Simons et al., 1965), with increasing energy conditions evidenced in the tendency of ripple crests to become discontinuous and transition from sinuous to lingoid ripples.

5B. Moderately-Steeply Climbing Ripples:

The formation and preservation of climbing ripples is an indicator of rapid rates of sedimentation under the action of unidirectional currents. Ripples in this subfacies do not display the steep angles of climb commonly found in climbing ripples sequences that originate by fall-out from suspension (Ashley, 1982). It is likely that these ripples were dominantly developed when bedload transport rates over migrating ripples decreased downstream. Bedload transport processes are further evidenced by the lack of grain size segregation that is typical of this subfacies and the erosional contacts that separate these ripples from underlying beds. Based on depositional energy conditions and the general association of this subfacies with siliciclastic mudstones of Facies 6 these ripples are interpreted to have been deposited in shallow marine conditions

5C. Gently Climbing Ripples:

Low angles of climb documented in this subfacies indicate deposition on gently-sloping surfaces. Great crest lengths are typical of wind ripples and is attributed to the tendency of individual wind ripples to persist during long distances of migration (Hunter, 1977). Further, fine-grained individual laminae standing out at
greater relief to adjacent coarse-grained laminae are a distinctive feature of eolian sediments known as pinstripe laminations. They are presumed to be a result of coarse-grained laminae losing moisture more rapidly and weathering more readily, leaving the fine-grained laminae in relief (Fryberger and Schenk, 1988).

Facies 6: Silt-rich Siliciclastic Mudstone

Description:

The siliciclastic mudstone facies (Facies 6) occurs in thin beds, typically as thin as 5-15 centimeters, and in some places reaching a thickness of 60 centimeters to a meter. The mudstone beds are distinctively dark red in color and, based on correlation, laterally continuous for several kilometers (Figure 4C). Generally, structureless mudstones are intercalated with submillimeter thick, subparallel to wavy laminae of finegrained sand and silt. The laminae are commonly not well-defined and tend to display irregular lateral thicknesses. Locally, millimeter-scale siltstone ripples with mud- and siltstone foresets are observed (Figure 4B). Minor amounts of bioturbation in the form of vertical or horizontal burrows occurs in this facies locally (Figure 4A). Generally, horizontal burrows are submillimeter-scale to 2 mm in diameter, unbranched, and lenticular shaped. Vertical burrows are indistinct, submillimeter-scale, and cut across the laminations. Admixtures of silt and very fine-grained sand comprise anywhere between 20% and 50% of this facies. Beds of Facies 6 are commonly found overlying horizontally bedded (Facies 2) or climbing ripplelaminated sandstones (Facies 5C), and in some places overlie carbonate mudstones of Facies 7. Sharp or erosional contacts separate this facies from overlying and underlying units.

Interpretation:

Based on the accumulation of two grain size populations and observed sedimentary structures, the deposition of this facies was likely the product of two different processes and energy conditions. Suspension settling could be the process by which some, though not all of the mudstones were deposited. Even though no unequivocal evidence for this depositional process exists the massive nature of the mudstones may be a
result of relatively rapid settling of mudstone floccules from the water column. Nevertheless, bed load transport also played a role in depositing this facies: the irregular lateral thickness of mud and silt laminae, and the local presence of mud- and siltstone ripples suggest influence of advective flow during deposition (cf. Schieber et al., 2007; Egenhoff and Fishman, 2013). Bioturbation further points to an oxygenated environment of deposition which is also suggested by its red color. Nevertheless, its intercalation with sandand silt-bearing facies throughout the measured sections, and the presence of sand- and siltstone laminae in these mudstones point towards a setting relatively close to the shoreface. The depositional environment suggested for this facies was likely below fair weather wave base but within the reach of currents that were responsible for the offshore transport and deposition of the sandy and silty laminae.

Facies 7: Carbonate Mudstone

Description:

The carbonate mudstone to wackestone facies (Facies7) occurs as meter-thick beds forming units of between 2 m and 45 m in thickness. In some places, randomly oriented skeletal fragments and sand- and siltsized quartz carbonate grains comprise between 5% and 30% of this facies. Horizontal burrows of submillimeter-scale diameters occur locally, are infilled with carbonate mud, and comprise $2-5 \%$ of this facies (Figure 5B). In some places, patches of light and dark micrite are observed. Spherical to subspherical, millimeter to centimeter sized, isolated vugs, are irregularly dispersed throughout this facies. These are either partially or completely filled with quartz cement or evaporite minerals, or comprise open porosity. This facies typically overlies coarse-grained carbonates of facies 8 and 9 , horizontally-bedded sandstones (Facies 2), and tabular cross-bedded sandstones (Facies 1A). Sandstone units belonging to Facies 1A and 2 typically overlie this facies. However, in some places, carbonate packstones of Subfacies 8A and 9A are also observed as overlying units. Sharp contacts characteristically separate this facies from overlying and underlying units (Figure 5A).

Interpretation:

This facies represents a low energy environment which is reflected in the dominance of carbonate mud. It was most likely deposited below storm wave base as no clear tempestites are preserved. Nevertheless, some of the skeletal fragments may have been broken, partly abraded and concentrated through currents forming the wackestones, and these may represent thin storm beds. However, the diffuse bioturbation in these rocks has obliterated all original sedimentary fabric, and therefore no clear interpretation of the origin of these shell concentrations is possible. It seems plausible that this facies was deposited at a distinct distance from the shoreline as only small amounts of siliciclastic debris in the form of quartz grains is present. The quartz grains, nevertheless, are significantly larger than the carbonate mud, and are therefore also interpreted as originating from the nearshore environment. They were most likely brought into the system by offshoredirected, storm-induced currents (Wilson et al., 2013).

This facies is likely highly bioturbated even though clear individual burrows are rarely preserved. The bioturbation is reflected in the random orientation of lithoclasts and skeletal fragments (cf. Egenhoff et al., 2010). Coarse sand-sized quartz grains are embedded in carbonate mud and must have brought into the system by high-energy. It is suggested that the quartz grains originally formed laminae before they were randomly dispersed in the mud by organisms. The apparent lack of distinct burrow traces is most likely a function of a low contrast in color and sediment texture between the burrows and surrounding matrix (Berger et al., 1979). However, the light color as well as the likely high bioturbation index inferred from grain distribution and orientation of skeletal fragments indicates an overall well-oxygenated depositional environment for this facies. The vugs that are characteristic for this facies most likely originated from a dissolution event during diagenesis (cf. Clark, 1986).

Facies 8: Carbonate Packstone

Description:

Highly variable in bioclast and non-skeletal components, Facies 8 occurs as beds that range in thickness from 0.5 m to 5 m . Based on the predominant components, two subfacies have been identified:

8A: Carbonate Packstones with Non-Skeletal Grains:

Carbonate packstones observed across the study area dominantly belong to this subfacies. Spherical to subspherical, submillimeter-scale ooids comprise up to 25% of this subfacies. They are commonly heavily recrystallized and only partly display internal structures. Broken shells, commonly showing a micritic rim, occur in varying abundances that range from 5% to 20%. Less prominent grains include oncoids (5-10\%), and fine-sand sized, angular to subrounded quartz and calcite (1-5\%). Heavily micritized, ellipsoidal, millimeter-scale aggregate grains composed of lithoclasts and/or bioclast fragments occur locally. All skeletal and non-skeletal grains are randomly oriented and show even distributions throughout beds of this subfacies. All grains in this subfacies are moderately sorted. As much as 50% of the carbonate packstones with non-skeletal grains is composed of carbonate mud (Figure 6A). Typically, this subfacies is overlain and underlain by beds of carbonate mud- to wackestones (Facies 7), tabular cross-bedded sandstones (Facies 1A), or massive sandstones (Facies 3), and is separated from them by sharp contacts.

8B: Carbonate Packstones with Bioclasts:

A diverse assemblage of poorly sorted and randomly oriented skeletal fragments, ranging in size from submillimeter-scale to 4 mm , and generally occurring in abundances of $30 \%-40 \%$ define subfacies 8 B (Figure 6B). Bioclasts include brachiopods, gastropods, bryozoans, trilobites, echinoderms, fusulinids, and other foraminifera. Rounded to sub-angular, fine sand-sized grains that are predominantly quartz occur in small abundances of up to 3%. Carbonate mud makes up $60-70 \%$ of this subfacies. Beds of carbonate packstones with bioclasts occurs only locally in the study area and display an upward fining into carbonate wackestones of Facies 7. This subfacies is generally underlain by massive sandstones (Facies 3) and separated from them by a sharp contact.

Interpretation:

8A: Carbonate Packstones with Non-Skeletal Grains:

The diverse assemblage of non-skeletal and skeletal components occurring in this facies is interpreted to originate from various depositional environments, most likely reflecting varying energy conditions.

Especially the mixing of the dominant carbonate grains with the quartz sand suggests varying origins for the grain types in this setting, a siliciclastic environment for the quartz, and a variety of carbonate settings for the non-skeletal and skeletal grains. Even more striking, the strongly bimodal distribution of this facies with the grains on the coarse end, and the carbonate mud on the fine end, reflect strongly fluctuating energy conditions during deposition of this facies. The coarse-grained carbonates and the quartz sand reflect highenergy deposition with transport mechanisms that most likely involved bedload processes in order to transport particles that size. The carbonate mud, in contrast, represents intervals when low energy deposition prevailed. It is unclear, though, whether this carbonate mud was transported by suspension settling as often suggested for packstones (Lehrmann et al., 2001; Boggs, 2005), or by bedload transport as proposed by Schieber et al. (2013). The micritic rim observed around many of the particles is likely a result of degradation by microbes destroying the outer laminae of individual particles (Reid et al., 1992).

8B: Carbonate Packstones with Bioclasts:

The presence of fragmented skeletal material and subrounded quartz grains indicate that the grain portion of these packstones were most likely deposited in a high-energy regime responsible for both breaking the shells and rounding the quartz grains. Nevertheless, the poor sorting of the carbonate grains being the dominant components of Facies 8B indicates that different energy levels most likely contributed to the observed size distribution. The lack of micritic rims around all carbonate grains also suggests that abrasion during deposition likely eroded them off if they had been developed around some grains, and that these carbonates must have been deposited in an agitated environment. The quartz grains, in contrast, must have originated from a nearby siliciclastic environment, and being swept into the packstone depositional setting. All of the carbonate and quartz grains are envisioned to have been transported predominantly by bedload processes as suggested by their sizes. Nevertheless, the carbonate mud that makes up a significant portion of this facies indicates overall low-energy sedimentation which is in stark contrast to the high-energy deposition of the grains. It is likely that this mud was either deposited from suspension (cf. Lehrmann et al., 2001) or bedload (Schieber et al. 2013), but in case of the latter nevertheless from a much lower-energy
current than the ones depositing the grains. The transition from the packstones of Facies 8B to overlying wackestones is interpreted to represent an overall decrease in energy and, when occurring in centimeter- to decimeter-scale beds, likely shows deposition by waning currents that originated during storms.

Facies 9: Carbonate Grainstone

Description

Carbonate grainstones in the study area typically occur in laterally discontinuous packages up to 4 m thick. Based on the dominance of either non-skeletal carbonate grains or bioclasts, sorting, and grain size, three subfacies are identified:

9A. Oolitic Carbonate Grainstone:

Oolitic carbonate grainstones make up laterally discontinuous units across the stratigraphic succession and range in thickness between 0.5 and 3 m . Up to 60% ooids with small admixtures of skeletal fragments and sand-sized lithoclasts comprise this subfacies. Ooids are generally spherical to sub-spherical in shape and display good to moderate sorting (Figure 6C). The thickness of the cortex varies from greater to less than half the diameter of the ooids, and in places superficial ooids (Carozzi 1964) are dominant. Partial or complete recrystallization and oomoldic porosity are common and may obliterate the internal texture of this facies. Admixtures of skeletal fragments generally make up between 1 and 2% of the facies. Ooids and skeletal fragments both tend to display micritic rims around them. Fine sand-sized quartz and carbonate grains can comprise up to 5% of this facies. Both inter- and intraparticle pore space is entirely occluded by granular and drusy clear calcite cements. Typically, this subfacies is underlain by massive sandstones (Facies 3). Overlying units commonly belong to carbonate mudstones-wackestones facies (Facies 7), horizontally-bedded sandstones (Facies 2) or massive sandstone (Facies 3). Contacts are gradational to sharp.

9B. Well- to Moderately-Sorted Fossiliferous Carbonate Grainstone:

Beds of well- to moderately-sorted fossiliferous carbonate grainstone generally display thicknesses between 0.5 and 4 m and are laterally discontinuous. A diverse population of well to moderately sorted,
submillimeter to millimeter sized, randomly oriented, whole fossils and skeletal fragments (Figure 6D) including gastropods, fusulinids, brachiopods, bivalves, bryozoans, algae, and trilobite fragments, make up the grains of this facies. Bioclasts typically display heavy micritic rims and comprise between 40% and 60% of the subfacies. Well to moderately sorted, fine sand-sized grains that are dominantly quartz typically comprise as much as 15% of the sediment. This subfacies is commonly underlain by massive sandstones (Facies 3) and separated from them by gradational contacts. Overlying units include carbonate mudstoneswackestones facies (Facies 7), horizontally-bedded sandstones (Facies 2) or massive sandstone (Facies 3) and upper contacts are gradational or sharp.

9C. Poorly-Sorted Fossiliferous Carbonate Grainstone:

This subfacies shows poor sorting of the fossil and lithoclast components (Figure 6E). A diverse assemblage of heavily recrystallized skeletal fragments and whole fossils make up around 50% of the sediment. Fossil components range in size from submillimeter-scale to 2 cms and include fusulinids, gastropods, echinoderms, trilobites, and bivalves. Lithoclasts are dominantly comprised of quartz, along with some calcite and feldspar. They display subrounded to angular grains that range from sand- to granule-size and comprise up to 25% of the subfacies. Shelter porosity infilled with cement or submillimeter-scale broken shells and quartz grains is common. This subfacies is observed at only one stratigraphic section located in Laramie (Figure 7A), where it forms a 1.5 m thick unit overlying a massive sandstone and separated from it by a sharp contact.

Interpretation:

9A. Oolitic Carbonate Grainstone:

The grainstones have most likely been deposited by constant movement as reflected in the regular thickness of the ooid laminae, and the fact that the skeletal grains occur exclusively as broken shell fragments. The well to moderate sorting of the grains suggest overall constant energy conditions during deposition. The environment must have consisted mostly of ooids with only minor amounts of hard parts form skeletal organisms that were incorporated in this grainstone. The ooids and skeletal grains were most likely moved
exclusively by bed load processes in a constantly agitated environment prior to deposition. However, the micritic rims in this subfacies suggest that this ooid environment did experience some quiescence post deposition, where borers could alter the outermost rims of all grains, ooids, and skeletal fragments (Wilkinson et al., 1985; Margolis and Rex, 1971).

Nevertheless, the quartz sand grains in this facies argue for some amount of detrital input during deposition, likely from a nearby source. Rounded carbonate clasts, in contrast, reflect erosion and reworking, likely of previously deposited micritic carbonate sediments. Whether these sediments were eroded within the realm of deposition of the ooid grainstone or from a nearby setting remains unclear.

9B. Well- to Moderately-Sorted Fossiliferous Carbonate Grainstone:

The wide range of bioclasts and biogens that comprise this subfacies argues for a well oxygenated environment of deposition where a variety of organisms could thrive. Nevertheless, the locally moderate sorting of the components indicates varying energy conditions during deposition. The thick micritic rims around many of the grains also argue for episodic quiet-water conditions that alternated with a high-energy environment that is recorded in the lack of micrite in this subfacies. The thinning and swelling of beds containing Subfacies 9A deposits reflect deposition in bioclastic and biogenic grainstone shoals of laterally varying thickness. These shoals were likely deposited above normal wave base in constantly agitated water as indicated by the absence of micrite. Nevertheless, these grainstone shoals must have been in the vicinity of a siliciclastic source which accounted for the abundance of quartz grains in this subfacies. The well- to moderately-sorted fossiliferous carbonate grainstones did preserve their original mound-like morphology, especially when overlain by fine-grained, low-energy deposits such as the carbonate mudstones and wackestones, but also when overlain by high-energy, horizontally-bedded upper flow regime sandstones.

9C. Poorly-Sorted Fossiliferous Carbonate Grainstone:

The mixture of biogenic grains and siliciclastic detritus reflects deposition of this subfacies at the interface of a carbonate and a siliciclastic environment, nevertheless still in a carbonate-dominated realm. This subfacies did, however, receive abundant input from a nearby siliciclastic setting, as reflected in the
abundance of detrital grains. Nevertheless, the large diversity of fossil-derived grain types in this subfacies suggests living conditions were good. The variety of grain sizes present in these grainstones reflects strongly fluctuating energy conditions during deposition. A high-energy environment is likely represented by the granule-size detrital extra-clasts (and to a lesser extent by the quartz sand) that were brought in from an adjacent facies, as well as by the broken nature of several of the grains, and by the lack of micrite. An alternating low(er) energy environment is indicated by micritic rims around many of the grains, and by the presence of up to sub-millimeter grains throughout this facies. Similar to Subfacies 9B it is suggested that the thinning and swelling of beds of this subfacies represents their original shoal-like morphology during deposition.

Figure 2: (A) Tabular cross-bedded sandstone (Facies 1A) display sets of cross-laminated sands separated by bounding surfaces. (B) Trough cross-bedded sandstone (Facies 1B) display fine laminations comprised of fine sand and silt grains. (C) Thirty-three paleocurrent analyses from the Ingleside Formation outcrop at Owl Canyon show a dominantly S- and E- sediment transportation direction

Figure 3: (A) Horizontally-bedded sandstone (Facies 2) comprises thin, cm-scale beds (B) Heavy bioturbation in massive sandstone (Facies 3) beds. (C) Conglomeratic sandstone (Facies 4) typically display irregular, erosive base and planar top (D). Asymmetric ripple-laminated sandstone (Facies 5A) displaying straight to convex-up profiles. (E) Moderately-steeply climbing ripples overlying a siliciclastic mudstone unit (Facies 6) with stoss side laminae partially preserved. (F) Gently climbing ripples with fine-grain laminae in greater relief than coarse grained laminae.

Figure 4: (A) Dark red, laterally continuous units of silt-rich siliciclastic mudstone. (B) Facies 6 is composed of admixtures of silt and very fine sand that make up irregular laminae. Locally display siltstone ripples with mud foresets observed.

Figure 5 (A) Carbonate mudstone (Facies 7) beds are generally separated by a sharp contact from overlying and underlying sandstone units. (B) Thin section photomicrographs of carbonate mudstone typically show horizontal burrows and light and dark patches of micrite.

Figure 6: (A) Facies 8A is moderately sorted and dominantly composed of ooids with some bioclast admixtures. (B) Facies 8B shows a diverse bioclast composition, with some lithoclast components. (C) Facies 9A is dominantly composed of moderately sorted ooids, components show thin micritic rims. Photomicrograph depicts recrystallization of oomoldic porosity. (D) Facies 9B shows a diverse component of skeletal fragments that typically display thick micritic rims. (E) Lithoclast and bioclast component of Facies 9C are clearly poorly sorted.

FACIES ARCHITECTURE

The Ingleside (Colorado) and equivalent Casper (Wyoming) Formations are characterized by an intercalation of carbonate and siliciclastic units. Thickness of the stratigraphic sections in our study area generally increase from 5 to 105 meters in the southwest-northeast direction and from 60 to 90 meters in the west to east direction. In this study, the succession is subdivided into eight stratigraphic intervals with each interval displaying a unique lithological assemblage that is either dominated by carbonate facies, dominated by siliciclastic facies, or purely carbonate or siliciclastic. Not all intervals are present in each of the thirteen measured sections. Twelve of the sections form a north-south transect, covering a distance of approximately 120 km (Figure 1). One measured section (Core 1-Upper Ferch) is located 30 km east of this transect, allowing a glimpse into a more carbonate-dominated succession. The eight intervals are generally characterized by a sharp basal contact from carbonates to siliciclastic, or vice versa. Over the lateral distance of 120 km , the north-south transect also reflects a transition from a mixed carbonate-siliciclastic to a purely siliciclastic succession with carbonate units thinning and pinching out towards the south. In this study, the carbonates are subdivided into dominantly fine-grained (Facies 7) versus dominantly coarse-grained (Facies 8 and 9) units. In general, fine-grained carbonates transition laterally into coarse-grained carbonates southwards. Fossiliferous carbonate beds grade into coarse-grained carbonate beds composed of nonskeletal grains in the same direction. The southernmost occurrence of carbonates is in the Bellvue Dome section (Figure 7A).

The basal contact of this unit is often defined by a transition from dark red and purple siliciclastics of the underlying Fountain Formation, to the pink- or orange-colored sandstones of the Ingleside/Casper Formation. The contact of the Ingleside and the underlying Fountain Formation varies southward from gradational to sharp, and is found to occur at stratigraphically higher parts of the Ingleside Formation further south.

The eight stratigraphic intervals that can only be recognized in the northern portion of the northeastsouthwest transect are described below. The interval numbers increase upsection, with Interval 1 being the oldest, and Interval 8 the youngest.

Interval 1: At the northernmost section of the study area (Core R114), Interval 1 is composed only of fossiliferous carbonates (Facies 8B and F9B) and mud-supported carbonates (Facies 7). Further south, tabular cross-bedded sandstones (Facies 1A) define the base of the Ingleside Formation. These are overlain by a succession of intercalating units of oolitic carbonates (Facies 8A and F9A) and thin beds of massive sandstones (Facies 3). Stratigraphic sections of this interval display a general fining-upwards trend that in some places is overlain by a coarsening-upwards trend. Interval 1 pinches out between Owl Canyon and Bellvue Dome and cannot be traced further south.

Interval 2: Interval 2 is dominantly composed of tabular cross-bedded (Facies 1A), horizontally bedded (Facies 2), and massive (Facies 3) sandstone beds. Laterally discontinuous, thin units of siliciclastic mudstones (Facies 6) are observed in some places. This interval displays a general fining-upwards trend. The furthest southward occurrence of Interval 2 is at Owl Canyon.

Interval 3: Interval 3 displays a carbonate succession that shows a general fining-upwards trend. The base of Interval 3 is composed of fossiliferous grainstone beds (Facies 9B and 9C) at the northernmost sections (Core R114 and Laramie outcrop), and fossiliferous packstone beds (Facies 8B) further south at Owl Canyon. The coarse-grained basal carbonates are in some place overlain by carbonate mudstones (Facies 7). Similar to underlying intervals, Interval 3 also pinches out at Owl Canyon.

Interval 4: Fining upward, horizontally bedded (Facies 2) to tabular cross-bedded (Facies 1A) sandstones dominate the succession in Interval 4. Thin carbonate beds of mainly carbonate mudstones (Facies 7) interfinger with horizontally bedded sandstone units (Facies 2) or thin conglomeratic sandstone units (Facies 4) in the northernmost sections (Core R114, Red Mountain, Red Nose) of this interval and are absent further south. The southernmost occurrence of Interval 4 is in Bellvue Dome (Figure 7A).

Interval 5: Interval 5 contains a higher amount of mud-supported carbonates (Facies 7) than all underlying intervals. A general lateral transition is observed throughout this interval, from fine-grained carbonates (Facies 7) in the north to coarse-grained carbonates (Facies 8 and 9) in the south. The carbonates transition into sandstones of Facies 1A and 2 in the measured section at Bellvue Dome. This interval pinches out towards the south, and also marks the southernmost occurrence of carbonates at Bellvue Dome.

Interval 6: Interval 6 is distinguished from other intervals by its wide lateral extent. This is notably the only interval that comprises trough cross-bedded (Facies 1B) and gently climbing ripple-laminated (Facies 5C) sandstones. Tabular cross-bedded sandstones (Facies 1A), horizontally bedded sandstones (Facies 2), conglomeratic sandstones (Facies 4) and siliciclastic mudstones (Facies 6) also occur prominently in this interval. This is the only interval can be traced from the northernmost (Core 18-4) to the southernmost (Carter Lake) sections of the study area.

Interval 7: Fine-grained carbonate mudstones (Facies 7) dominate the succession in Interval 7. In two of the measured sections where this interval is observed (Core R114 and Red Nose outcrop), the fine-grained carbonates are intercalated with thin sandstone beds belonging to Facies 2 or 3, and are separated from them by sharp contacts. The southernmost outcrop of this interval is at Owl Canyon.

Interval 8: Lithology of Interval 8 is dominated by fossiliferous carbonate grainstone beds (Facies 9B). This interval is documented only at the northernmost section (Core 18-4) and does not extend laterally across the study area. Thin beds of horizontally bedded (Facies 2) to tabular cross bedded (Facies 1A) sandstones interfinger with the fossiliferous carbonate grainstones (Facies 9B) and are separated from them by sharp contacts.

The eight stratigraphic intervals identified based on the northeast-southwest transect are not well-defined in the easternmost section of this study (Core 1-Upper Ferch). Based on general trends, Intervals 1 to 4 are recognized in Core 1-Upper Ferch (Figure 7B). Nevertheless, the upper 45 meters of this measured section is a thick carbonate mudstone unit that cannot be correlated to lithological assemblages observed westward.

Figure 7A: North-South correlation chart for Ingleside/Casper Formation. Eight broad time intervals are identified based on lithological changes across the stratigraphic successions. Dashed lines define the transects used to construct 2-D depositional models (Figure 8)

Figure 7B: West-East correlation chart for Ingleside/Casper Formation. Interval 1-4 are identified in the easternmost section (Upper Ferch) based on lithological changes across the stratigraphic sections. Dashed lines define the transects used to construct 2-D depositional models (Figure 8)

Table 1: Latitude-Longitude of measured sections used for N-S and E-W transects across the study area

Measured Section	Latitude	Longitude
Core R114	$41^{\circ} 35^{\prime} 7.24^{\prime \prime}$	$-105^{\circ} 50^{\prime} 9.41^{\prime \prime}$
Laramie	$41^{\circ} 16^{\prime} 23.57^{\prime \prime}$	$105^{\circ} 29^{\prime} 13.34^{\prime \prime}$
Red Mountain	$40^{\circ} 57^{\prime} 37.22^{\prime \prime}$	$105^{\circ} 10^{\prime} 23.51^{\prime \prime}$
Red Nose	$40^{\circ} 53^{\prime} 10.91^{\prime \prime}$	$105^{\circ} 14^{\prime} 57.1^{\prime \prime}$
Owl Canyon	$40^{\circ} 45^{\prime} 47.01^{\prime \prime}$	$105^{\circ} 10^{\prime} 49.03^{\prime \prime}$
Bellvue Dome	$40^{\circ} 37^{\prime} 53.27^{\prime \prime}$	$105^{\circ} 10^{\prime} 5.46^{\prime \prime}$
Inlet Bay	$40^{\circ} 30^{\prime} 56.57^{\prime \prime}$	$105^{\circ} 9^{\prime} 49.24^{\prime \prime}$
Coyote Ride	$40^{\circ} 29^{\prime} 23.46^{\prime \prime}$	$105^{\circ} 9^{\prime} 18.65^{\prime \prime}$
Bobcat Ridge	$40^{\circ} 27^{\prime} 39.04^{\prime \prime}$	$105^{\circ} 13^{\prime} 2.13^{\prime \prime}$
Sylvandale	$40^{\circ} 25^{\prime} 13.12^{\prime \prime}$	$105^{\circ} 13^{\prime} 3.34^{\prime \prime}$
Carter Lake	$40^{\circ} 22^{\prime} 9.57$	$105^{\circ} 13^{\prime} 3.60^{\prime \prime}$
Core Upper Ferch-1	$40^{\circ} 63^{\prime} 6.52^{\prime \prime}$	$104^{\circ} 75^{\prime} 59.13^{\prime \prime}$

DEPOSITIONAL MODEL

The succession of the Ingleside/Casper Formation is interpreted to record deposition from an offshore carbonate ramp (Facies 7,8,9) in the distal reaches of this sedimentary system to a sand-dominated nearshore environment (Facies 1A, 2,5A,5B) that was, in places, fed by small fluvial systems (Facies 4). The model, as presented below, is a reflection of the facies succession depicted in the North-South transect (Figure 7A) running roughly parallel to the NW-SE-trending Ancestral Front Range Mountains (Kluth and Coney, 1981) but nevertheless recording all crucial facies changes that are relevant for this sedimentary system.

The facies architecture shows that the Ingleside/Casper Formation was a mixed carbonate-siliciclastic depositional system with dominantly carbonates deposited in the north and east, and siliciclastics in the south (Figure 7A). Based on the fossil content of brachiopods and crinoids (Bottjer and Jablonski, 1987; Tapanila, 2005), the carbonates represent marine sediments. Sedimentary structures such as cross-bedding and ripple marks indicate that the siliciclastics likely reflect both marine as well as terrestrial conditions. The increase in the amount of carbonate sediment to the north and east suggests that the marine incursions came from this direction, whereas siliciclastic input likely originated from the south.

The facies architecture shows that this mixed carbonate-siliciclastic ramp system exhibited two very different facies successions during transgressions and regressions: during transgressions, following the general concept of Vail (1987), little to no siliciclastic input occurred, and sedimentation of carbonates prevailed. In contrast, regressions transported plenty of siliciclastic debris towards the shelf, and the sedimentary system switched to siliciclastic deposition. Eolian dunes are present exclusively during one stratigraphic interval (here termed stratigraphic interval 6, see below), and they are not present during either siliciclastic or carbonate deposition in the rest of the succession.

In the following, the depositional transect will be described from its proximal riverine and foreshore to the most distal environment represented by the carbonate mudstones regardless of whether carbonates or siliciclastics dominated this sedimentary system.

The Terrestrial Setting

The terrestrial environment is interpreted to show exclusively fluvial facies in all stratigraphic intervals except interval 6, which also contains eolian facies.

The eolian depositional system was likely dominated by small crescent dunes (cf. Scherer, 2000), the remnants of which are still present as up to one meter-thick laterally discontinuous beds of trough crossbedded sandstones (F1B). It seems most probable that the dunes formed an erg system on the continental side of this mixed carbonate-siliciclastic ramp during the duration of interval 6. As the sandstone interpreted to be eolian in origin are documented along the entire north-south transect it is likely that for a restricted period of time this erg system extended across an area of over 120km in the north-south direction.

This eolian erg was locally cut by small rivers that likely originated in the Ancestral Rocky Mountains to the west of the study area and transported their sandy and gravelly sediment load into the shallow sea in the northeast and east. The sediment probably originated in the highlands of the Ancestral Rocky Mountains which, considering the coarse grain size, must have been relatively close to the study area. As these gravelly sandstone lenses interpreted as fluvial channels are just decimeter-thick it is likely that they were relatively shallow (Bridges and Demicco 2008); their width is estimated to be only in the range of tens of meters as reflected by the width of the gravelly sandstone lenses in outcrop. Towards the east and north, the channel facies pinches out laterally against sandstones interpreted to be shallow-marine in origin. It is therefore likely that these fluvial systems were located close to the coast, and represent the distal reaches of streams just before entering the sea (cf. McGowen and Groat, 1971).

The Marine Setting

The interfingering of carbonate and siliciclastic sediments throughout the Ingleside/Casper Formation succession shows that both lithologies must have been deposited simultaneously in laterally adjacent but still different environments. Nevertheless, sedimentation during the eight stratigraphic intervals was dominated by either carbonates or siliciclastic sediments as seen in the predominance of one of these two
lithologies in each of the intervals. Even though both environments occur in time-equivalent successions and existed likely parallel to each other along the Ingleside/Casper Formation coast (Figure 8), the interpretation will be kept separate for a carbonate and a siliciclastic transect. Whether a carbonate or a siliciclastic coastline developed in a specific place depended most of all on the local siliciclastic sediment input. Close to fluvial systems that shed sand into the marine realm, siliciclastic sedimentary systems developed; carbonate deposition prevailed in areas without clastic sediment input.

i. Carbonate Deposition

The most proximal of the carbonate facies were likely the grainstones reflecting constant water movement above normal wave base. The size of the grains in combination with the lack of micrite reflects high-energy deposition, likely in oolitic shoals similar to the modern ooid shoals form the Bahama bank (Shinn, 1988; Rankey et al., 2006). A shallow-marine setting is also indicated by their interfingering with planar bedded and cross-bedded sandstones (Facies 1) that are interpreted as foreshore and shoreface sediments. Similarly, a shallow-marine environment is likely indicated by the skeletal grainstones (Facies 9B and 9C) as they similar to the oolitic grainstones - are devoid of micrite, and their grain size indicates constant water agitation. Nevertheless, the grain size of most of the skeletal grainstones in the Ingleside/Casper Formation varies significantly, suggesting that these sediments were deposited in slightly deeper water than the oolites. Anderson (1972) and Holloway (1983) propse a similar position for skeletal grainstones interpreted as being deposited as shallow skeletal sand banks and shell shoals. Nevertheless, in places the oolites and the skeletal grainstones occur in close association, and likely represent shallow-water shoal complexes similar to carbonate sand bodies from modern ramps such as the Persian Gulf (Loreau and Purser, 1973) and Yucatan Shelf (Logan et al., 1969).

Both packstone facies most likely occupied a position seaward of the grainstones, likely in a transitional to an uppermost offshore environment. The micrite content in both facies indicates that despite the large skeletal grains and ooids that reflect high-energetic conditions, there had to be some tranquil time in order to deposit the carbonate mud. The highly bimodal distribution of this facies (grains and carbonate mud) is
therefore interpreted to reflect changing high- and low-energy conditions in the transition zone between shoreface and offshore. During storms, the ooids and skeletal grains get transported offshore and into an area that would normally deposit mud. Nevertheless, likely because of the size of the grains, transport path of grains towards offshore remained short, and resulted in the mixing of the grains being deposited during storms, and the mud reflecting lower energy, likely fairweather conditions. The sand grains in the packstone facies likely reflect a proximity to the nearest siliciclastic environment and probably also indicate offshore transport of siliciclastics during high-energy events. The offshore environment is exclusively composed of carbonate mudstones (Facies 7), and only locally exhibits wackestones. The carbonate mud could either represent settling out of the water column (Flügel, 2004), and/or it was formed by bed load transport as described by Schieber et al. (2013) from flume experiments. The wackestones likely represent the only traces of storm deposition in these fine-grained carbonate rocks, which is likely a function of the lack of coarse carbonate grains in the upper offshore environment of the Ingleside/Casper Formation.

ii. Siliciclastic Deposition

The Ingleside/Casper succession is exclusively composed of siliciclastic sediment in the south and shows a gradual decrease in siliciclastic deposits towards the north and east. It is inferred that siliciclastic sediment was likely sourced from the south, presumably from eolian and fluvial systems in the terrestrial realm.

The horizontally-bedded sandstones (Facies 2) are the highest energy deposits of the entire succession and therefore likely formed the most proximal of all nearshore siliciclastic facies documented in this study. They are interpreted to represent beach/foreshore sedimentation (Sallenger, 1979; Cheel and Middleton, 1986) at the interface of the terrestrial and the marine realm. These horizontally-bedded sands graded seawards into shallow-marine dunes that are interpreted to be deposited in a shoreface environment (Sutton, 1969). The fine to medium-grained sand forming these deposits was most likely sourced from fluvial systems that delivered sand into the marine environment. Nevertheless, the larger particles such as granule-sized grains and coarse-grained sand present in both the foreshore and shoreface sediments have
likely been shed onto the shelf from these nearby fluvial systems. The coarse-grained sediments suggest that these foreshore and shoreface siliciclastics were likely deposited in close proximity to the small deltas delivering this sediment onto the shelf as otherwise marine processes would have completely reworked the larger grains.

The shoreface sandstones most likely graded into an offshore mudstone belt represented by the thin siliciclastic mudstone beds of facies 6 . They are interpreted to represent deposition below normal wave base - deeper water than the shoreface sandstones, but still in relative proximity to the shoreface deposits as indicated by their sand and silt content. This environment could be termed the "dirt skirt" of these small deltas formed by the rivers draining the Ancestral Rocky Mountains. The mudstone setting is the environment that captured much of the fine-grained suspended and intermittently suspended material shed into the marine realm from these rivers. Nevertheless, it also reflects deposition from traction currents as reflected in its sand and silt content. It is therefore likely that advective flows operated still in this offshore realm and may be responsible for the deposition of at least some of the clay-rich sediments, too. In a distal direction, the siliciclastic mudstones likely graded into carbonate mudstones, equivalent to the ones forming the most distal setting of the carbonate depositional transect. It is envisioned that once the suspended sediment such as the clay settled out, or was transported into the offshore environment by flows (e.g. as liquid mud, see Ralston et al. 2013), the water cleared, and carbonate deposition set in, an environment typical for tropical shallow seas (Schlager, 2016).

Depositional History

The regular changes from intervals dominated by carbonate lithologies and back to siliciclastics that are laterally traceable for many tens of kilometers through northern Colorado and southern Wyoming are most likely related to relative changes in sea level, as proposed for time-equivalent late Pennsylvanian to early Permian successions elsewhere (Krainer and Lucas, 2004; Jordan and Mountney, 2012; Labaj and Pratt, 2016). These sea-level fluctuations are envisioned to be triggered by the growing and melting of ice sheets in Gondwana (e.g. Fielding et al., 2008) and are therefore considered glacioeustatic in origin.

With a few exceptions, the carbonate and siliciclastic successions recognized in this study dominantly display deepening-upwards trends, implying that all stratigraphic sections in this study preserve transgressive portions of the succession better than regressive parts. It is most likely that the difference in preservation is closely linked to the high amplitude sea-level changes, combined with an only gentle relief of the study area. During sea-level falls, the potentially exposed regressive part of the succession would be more easily eroded than the underlying transgressive portion of each cycle protected by overlying regressive strata (Catuneanu, 2002). Nevertheless, evidence of exposure could be easily eroded by any of the subsequent transgressions prior to depositing the transgressive part of each cycle.

Deepening upward trends in both carbonate and siliciclastic successions are interpreted to represent the gradual rise of sea level. An increase in detrital sediment influx is identified as the fundamental reason for carbonate-dominated deposits being laterally or vertically replaced by siliciclastic dominated sediments. The small-scale cycles represented by these deepening-upward successions are superimposed by a largerscale sea level curve that is identified based on the extent of the onlap of successive mud-rich carbonates, which are here interpreted as the only units that represent true sea-level highstands across the study area. The southernmost carbonate mudstone bed is documented at Bellvue Dome, implying that at least one sea level highstand, recorded in Interval 5, extended as far south as this location. Highstand deposits recorded across all northeast-southwest stratigraphic successions indicate that a gradual large-scale sea level rise occurred between Intervals 1 and 5, followed by a sea level fall between Intervals 5-7.

From the data at hand it is unclear whether any climate fluctuations go hand in hand with these sea-level changes, and the sedimentary patterns observed do not call for a climatic driver to explain the lithological variations. Nevertheless, interval 6 differs from all other sandstone-dominated units: As it contains exclusively siliciclastics interpreted as eolian sediments, developed in a dry eolian system, this unit is indeed interpreted to have been caused by a change in overall climate to dryer conditions that allowed for the development of the erg system. So while there are no clearly developed cycles of more humid versus more arid conditions preserved in the Ingleside/Casper Formation, one interval does reflect a distinct change in overall climate in these rocks.

LEGEND:

	Ancestral Front Range	measured outcrop sections
	Fluvial Deposits	measured core sections
\square	Shallow Marine Sandstones	field observations
\square	Eolian sandstones	
	Coarse-grained carbonates	
	Fine-grained carbonates	

Figure 8: Schematic view of stratigraphic intervals in the Ingleside/Casper Formation. (A) Coarse carbonate deposition expands over time through Interval 2 and extends to Owl Canyon. (B) Siliciclastic deposition dominates Interval 3 and extends through the NE-SW transect. (C) Fine-carbonate deposition dominates Interval 4, dashed blue line represents a diminishing coarse-carbonate depositional environment. (D) Eolian and shallow marine sandstone deposition observed across the NE-SW transect of the study area. Brown arrows display intermixing of shallow marine and eolian sand

Legend:

	siliciclastic shelf deposits		carbonate shelf deposits
	trough cross-bedded sandstone		oolitic carbonate grainstone
	horizontally bedded sandstone		fossiliferous carbonate grainstone
	tabular cross-bedded sandstone		carbonate packstone
	siliciclastic mudstone		carbonate mudstone-wackestone
	mixing zone		

Figure 9: (A) Schematic depositional model for the Ingleside/Casper Formation display nearshore carbonate and siliciclastic facies deposited adjacent to each other. Both nearshore environments grade into finegrained carbonates in the distal direction. (B) Schematic depositional model for the Ingleside/Casper Formation during Interval 6, when eolian dunes are observed across the study area and carbonate production ceases.

DISCUSSION

I. Correlation of Owl Canyon and Core Upper-Ferch 1 sections

The present study proposes that the type section of the Ingleside Formation at Owl Canyon is largely timeequivalent to the easternmost section of the study area represented by Core Upper Ferch-1 (Figure 7B). This lithological correlation, though lacking biostratigraphic data, shows, at least in the lower part of the Ingleside succession, stratigraphic sections that are either dominated by siliciclastics, or by carbonates, and are therefore correlated to what has been assigned to Intervals 1-4 throughout the N-S transect. Nevertheless, the upper part of the measured section in core Upper-Ferch 1, overlying Interval 4, comprises a 47 m-thick homogenous carbonate mudstone (Facies 7) unit that is not subdivided into stratigraphic intervals and has little in common with any of the other sections across the study area. This section, interpreted to represent the most distal part of the basin fill in the study area, must have been largely cut off from sediment supply whereas the lower part of the succession in the Upper-Ferch 1 core did still receive some siliciclastic input even though the distance to the shoreline must have been approximately the same throughout deposition of the Ingleside/Casper Formation. It is therefore most likely that the main siliciclastic source of the unit, the Ancestral Rocky Mountains located in the west and south of the study area, ceased to supply sediment far into the basin towards the east. Even though sea-level lowstands, especially from high-amplitude glacioeustatic fluctuations produced by the melting and growing of glaciers in Gondwana (Crowell, 1978) are likely to have helped distribute sediments far out into the basin it seems likely that a change in the source area was ultimately responsible for the observed absence of siliciclastic sediments in the upper portion of core Upper-Ferch 1. It is likely that the relief of the Ancestral Rocky Mountains was significantly lowered during the time the Ingleside/Casper Formation was deposited, which may be directly recorded in the sediment patterns, particularly in how far siliciclastic sediment is transported into the basin. Hence, it seems likely that tectonic activity must have subdued towards the end of Ingleside/Casper deposition compared the beginning, thereby confirming Ancestral Rocky Mountain
uplift times, and the cessation of the uplift as suggested by Dickinson and Lawton (2003). Apart from a total lack of siliciclastic sediments, coarse-grained carbonates are also missing in the upper part of the succession in the Upper-Ferch 1 core. Together with the missing siliciclastics, the complete absence of nearshore facies in this stratigraphic part of the succession (Interval 5-8) implies that sea-level lowstands did not impact this easternmost basinal part of the study area. As the transition from Interval 4 to 5 is marked by a distinct transgression throughout the study area it is likely that this sea-level rise flooded the foremost exposed shelf, and established offshore conditions and the deposition of mostly carbonate mud for much of the basin.

II. The Ingleside/Casper Formation Erg System

This study suggests the presence of a coastal erg system in the Ingleside/Casper Formation for a restricted period of time during Interval 6. Based on the small thicknesses and trough cross-bedded nature of the eolian units recognized here, the erg system is described as being dominated by small crescentic dunes. During this stratigraphically thin interval, eolian units are present throughout the study area, suggesting that despite its limited thickness and discontinuous nature, this erg system likely extended through a significant part of northeastern Colorado. Nevertheless, due to the lateral discontinuity and limited thickness of eolian facies, the scale and character of this erg system remains unclear. In order to clarify the character of the eolian systems in the Ingleside/Casper Formation, this suggested erg is compared to eolain systems across midcontinent North America (e.g. Kerr and Dott, 1986; Chan and Kocurek, 1986; Kocurek et al., 2000), those examples being among the best-studied ergs worldwide.

Similar to other eolian strata in midcontinent North America, the Ingleside/Casper Formation sediments are well sorted and consist of fine- to very fine-grained sandstones, and eolian beds are generally trough crossbedded (Facies 1B), or show climbing ripples (Facies 5C). One of the striking characteristics of these eolian deposits is the absence of large-scale bedforms, or the superimposition of trough cross-beds by different bedforms such as tabular cross-beds which makes it likely that these strata reflect deposition in a compound dune field based on the classification of Kerr and Dott (1986). The paleowind direction derived from trough
cross-bed foresets at Owl Canyon display a dominantly south- and east-directed sediment transportation direction (average direction calculated to be 107°, Figure 2 C). These data suggests that the erg system was dominated by offshore, and in places coast-parallel winds. This reconstruction from the Ingleside/Casper Formation at Owl Canyon at least partly overlaps with reconstructions for the Late Paleozoic that documents paleo-wind directions coming from the northwest (northerlies) and the northeast (easterlies; Poole, 1962). The winds are thought to represent seasonal shifts of high pressure cells over what is now the central part of North America, and effects of monsoonal circulation (Parrish and Peterson, 1988; Loope et al., 2004).

The dominant wind directions would have allowed eolian sediments to form from marine deposits when the wind was coming from the north and east, and therewith towards land. Nevertheless, the differences in grain sizes do not directly show a close link between the eolian and the marine environments. The same holds true for a periodic flooding of the dune fields (e.g. during storms), or time of high water level. Such events are often seen as a significant process for supplying marine sediment to eolian systems (Chan and Kocurek, 1986). Nevertheless, deposits from such floods are generally preserved as thick water-lain interdune deposits (Ahlbrandt and Fryberger, 1981). The complete absence of interdune deposits in our study area, however, supports the idea that either flooding was likely not a common process, or the investigated sections were located too far inland to be affected by such floods. As no unequivocal marine sediments are documented that are time-equivalent to the eolian sediments, this question has to remain open. There is a high likelihood, however, that dominant northerly and easterly wind directions transported sand from extensive sand blankets documented across North America during this time (Poole, 1962; Blanchard et al., 2016) Another major sediment source that may have yielded the sand which would be in agreement with the reconstructed paleo-wind direction is therefore the area of the Ancestral Rocky Mountains.

Considering that probably no floods reached the eolian depositional sites documented in this study during interval 6, this eolian erg was most likely characterized by dry conditions and deposited without much or any influence from flowing water. This interpretation of a mostly dry system is further corroborated by the
absence of deflation surfaces or polygonal surface fractures, typical of wet or damp sand deposition (Kocurek and Hunter, 1986). Dry sand is known to display much higher mobility than wet sand (Chan and Kocurek, 1986; Wiggs et al., 2004), and near-continuous sediment transportation (Thomas and Wiggs, 2008). Therefore, the wide lateral extent of this erg throughout the study area may be a direct function of this eolian system's dry nature.

Another aspect of this eolian system that is rather typical of dry systems but has not been discussed for the Ingleside/Casper Formations is the predominance of relatively thin, only meter-thick beds, and the absence of large cross-beds, as documented for much of the well-known Jurassic Navajo Sandstone in Utah (Freeman and Visher, 1975). Thin beds are thought to reflect low water tables, as the position of the water table is seen as the baseline of erosion, and hence preservation of eolian strata (Crabaugh and Kocurek, 1993). Wet eolian systems such as the Entrada Sandstone in Utah (Kocurek, 1980), in contrast, display thick beds of significant lateral continuity. The lateral discontinuity of the Ingleside/Casper Formation beds representing this erg system is therefore likely a result of poor preservation, and corroborates the dry nature of this dune field.

III. Climatic Implications of the Ingleside/Casper Erg System

This study describes an erg system during one particular time interval (interval 6). This erg is interpreted to be a dry eolian system and displays no signs of being influenced by marine waters or groundwater. It is therefore suggested that sea level and water table levels during this time were not elevated enough to impact eolian dune deposits. In this study, we interpret deposition of the eolian system to record a widespread sealevel lowstand that can be documented across the north-south transect of the basin. This continuous lowstand during interval 6 is further corroborated by the absence of carbonate deposits that would have required at least some flooding, or the record of siliciclastic highstand deposits during this time. However, apart from a rise in sea level, the position of the water table can also be a function of climate and/or tectonism (Kocurek et al., 2001). As three parameters, sea-level, climate, and tectonism could have played a role in controlling the water table across the terrestrial part of the study area, especially as sea-level and
climate are typically interlinked (Tandon and Gibling, 1994; Smith and Read, 2000). It remains difficult to distinctly attribute the apparent cyclicity in the Ingleside/Casper Formation to exclusively one of these possible causes. Nevertheless, as the very distinct drawdown of sea-level is coupled with the exclusive appearance of eolian strata in interval 6 , this portion of the succession most likely reflects a significant change in climate.

Several studies have linked alternating glacial and non-glacial intervals recorded in Gondwana to fluctuating climatic conditions during the Pennsylvanian across midcontinent North America (Heckel, 2008). However, the correlation between types of climate and sea level position remains controversial. Most commonly, low-latitude arid climate is proposed to coincide with glacial lowstands, and humid climate with interglacial highstands (Rankey, 1997; Olszewski and Patzkowsky, 2003; Soreghan et al., 2007). Nevertheless, some authors have suggested a reverse model (Miller et al., 1996; Cecil et al., 2003). The mechanism by which sediment supply increases in the present study area remains unclear. However, the stratigraphic distribution of wind-derived siliciclastics in Late Paleozoic strata of the Midland Basin (Sur et al., 2010) and the Paradox Basin (Soreghan, 1992) suggest a general increase in aridity and sediment availability during lowstands. In most successions, shallow water tables in eolian depositional environments seem to rise in association with humid conditions, and are therefore associated with highstands (Crabaugh and Kocurek, 1993). Indications of humid conditions are generally thought of as preserved deflation surface in eolian strata (Kocurek and Lancaster, 1999) -- a record that is absent in the Ingleside/Casper erg system studied here.

It is therefore suggested that arid climatic conditions coupled with sea level lowstands, as observed in the Sahara during the Quaternary (Wilson, 1973; Kocurek, 1998), was likely responsible for development of the Ingleside/Casper erg system.

IV. Age of the Ingleside Formation

Traditionally, the Ingleside Formation is interpreted as representing entirely Wolfcampian-age deposits (Hoyt, 1962; Maughan et al., 1985). The only age datum for this units stems from a single, well-preserved
specimen of Triticites ventricosus from the base of the Ingleside Formation at Owl Canyon that was assigned a Wolfcampian age (Hoyt and Chronic, 1961). However, recent developments in fusuline research (Langer and Hottinger, 2000; Groves and Hue, 2009) and the Pennsylvanian-Permian transition are not in agreement with the traditional stratigraphic interpretation put forward by this study.

Robust fusulinid data from a large part of the Casper Formation in Wyoming assigns ages of latest Virgilian to early Missourian (Latest Pennsylvanian) to limestone strata based on the occurrences of fusuline assemblages that include T. ventricosus (Burns and Nestell, 2009). This particular study also uses drill cores from a location in the close vicinity of core-R114 considered for the present sedimentological study. Since the lower part of the Ingleside Formation is considered as being time-equivalent to at least the southern extent of the Casper Formation in Wyoming, it seems reasonable to assign a Virgilian to Missourian age to the Ingleside Formation

Whether the Pennsylvanian-Permian transition lies within the uppermost Ingleside/Casper succession was previously unknown, especially since no age data exist from the youngest limestone and sandstone units in these successions. Nevertheless, it is suggested here that significant sea-level and climatic signals characterizing the Pennsylvanian-Permian transition are also present in the stratigraphic record of the Ingleside/Casper Formation.

Recent studies suggest a dramatic expansion of glacial ice across much of Gondwana spanning the Gzhelian - Wolfcampian boundary (Late Pennsylvanian - Early Permian) (Isbell et al., 2003; Fielding et al., 2008). This glacial expansion is also supported by stable isotope records from Late Pennsylvanian - Early Permian marine carbonates and organic-rich facies around the world (Grossman et al., 2008; Birgenheier et al., 2010). Carbonate ramps such as the one where the Ingleside/Casper Formation was deposited, are especially sensitive indicators of eustatic changes, and also reflect the onset of this major Gonwanan glaciation phase during the Late Paleozoic (Heckel, 2008). In many areas across the United States Midcontinent (e.g. Permian Basin, Texas, and the Orogrande Basin, New Mexico), earliest Permian (Asselian) strata show a gradual overall drop in relative sea-level (Koch and Frank, 2011). It is suggested in this study that the carbonate mudstones represent highstand deposits, and their general distribution in the upper portion of the

Ingleside/Casper Formation reflects a regression that is culminating in the overlying tidal flat deposits of the Owl Canyon Formation (Peterson, 1972), and the eolian deposits of the Lyons Formation (Adams and Patton, 1979).

Additionally, a general trend towards increased aridity in the Latest Pennsylvanian-Early Permian has been well-established in recent studies (Tabor and Montañez, 2004; Tabor and Poulsen, 2008). A regional shift to more arid conditions is observed in the Ingleside/Casper succession in the present study and in other studies of the Casper Formation in adjacent Wyoming (Steidtmann, 1974; Ahlbrandt and Fryberger, 1982). It is therefore inferred from the present study that the general increase in aridity mirrored especially in the upper portion of the Ingleside/Casper Formation records the same changing climatic conditions observed across the entire area of equatorial Pangea during the Latest Pennsylvanian-Early Permian.

It is unclear whether the uppermost parts of the Ingleside/Casper Formation contain earliest Permian deposits. It is, however, reasonable to suggest a Late Pennsylvanian age for most of the Ingleside deposition.

CONCLUSIONS

Measured sections of the Ingleside/Casper Formation investigated in this study extends across an area of over 120 km in a north-south direction, and over 35 km in an east-west direction from northern Colorado into southeastern Wyoming. It consists of an intercalation of carbonates and siliciclastics. The succession shows an increase in carbonate lithologies towards the north and east, and south of the Bellvue outcrop near Fort Collins, Colorado, the formation consists exclusively of siliciclastics . The succession is subdivided into ten facies that include three carbonates and seven siliciclastics.

The three carbonate facies (Facies 7; Facies 8A and 8B; Facies 9A, 9B, and 9C) are distinguished based on dominant carbonate components. They are: (i) carbonate grainstone (carbonate grainstone with non-skeletal grains, carbonate grainstone with bioclasts), (ii) carbonate packstone (carbonate packstone with nonskeletal grains, carbonate packstone with bioclasts), and (iii) carbonate mudstone - wackestone.

The seven siliciclastic facies (Facies 1A and 1B; Facies 2; Facies 3; Facies 4; Facies 5A, 5B, and 5C; Facies 6) are identified based on sedimentary structures, grain size, and sorting. They are: (i) cross-bedded sandstones (tabular cross-bedded sandstones, (ii) trough cross-bedded sandstones), (iii) horizontallybedded sandstones, (iv) massive sandstones, (v) conglomeratic sandstones, (vi) ripple-laminated sandstones (asymmetric current ripples, moderately-steeply climbing ripples, gently climbing ripples), and (vii) siltrich siliciclastic mudstone.

Based on the facies, this study divides the Ingleside/Casper Formation into 8 stratigraphic intervals, with each interval displaying a distinct lithological assemblage that is either dominated by carbonates, or by siliciclastics. Typically, all 8 intervals show fining-upwards trends, and very few coarseningupwards trends are observed.

The Ingleside/Casper Formation is interpreted to represent a mixed carbonate-siliciclastic ramp environment that developed along the Ancestral Front Range during the Late Paleozoic. Lateral and vertical intergrading of siliciclastic and carbonate facies indicate that the deposition alternated between dominantly carbonate and dominantly siliciclastic settings. During deposition in a
carbonate-dominated environment, carbonate facies occupied distinct positions on the ramp, with carbonate grainstones representing the most proximal facies and carbonate mudstones the most distal facies belts. Siliciclastic deposits are suggested to have dominated the study area during times when siliciclastic input into the shallow marine environment was high and largely shut down carbonate production in the proximal realm. During dominantly siliciclastic deposition, the foreshore consisted of horizontally bedded sandstones, dune deposits dominated in the shoreface environment, and silt-rich siliciclastic mudstones were deposited in a low-energy offshore setting. The facies architecture of the Ingleside/Casper Formation indicates that both carbonate-dominated and siliciclastic-dominated environments graded into carbonate mudstones in the most distal settings. Therefore, carbonate mudstone units overlying any other strata are regarded as the only facies transition that records significant increases in sea-level, regardless whether the underlying environment was carbonate or siliciclastic. Besides these small-scale changes that are recorded eight times in the Ingleside/Casper Formation, the overall trend with carbonates showing a more wide-spread distribution in the middle portion of the formation than at the top or bottom indicates an overall transgression in the lower part of the unit followed by a regression in the upper part.

The development of an eolian environment exclusively during one interval (Interval 6) across the study area suggests an important shift in sea level and climate during the deposition of the Ingleside/Casper Formation. It is inferred that for a period of time, a dry eolian system extended across the entire western part of the study area. This significant increase in aridity coupled with a sharp sea level drop was mirrored in the development of the eolian dunes. It is likely that this basin-wide trend was caused by glacial expansion across much of Gondwana immediately prior to the Pennsylvanian-Permian transition. For this reason, the Ingleside Formation, traditionally described as Permian in age, is here reassigned to be likely Late Pennsylvanian in age. This reassignment is also based on the correlation of the Casper Formation, known to be of Late Pennsylvanian age from fussuline data, to the Ingleside Formation.

REFERENCES

Adams, J., and J. Patton, 1979, Sebkha-dune deposition in the Lyons Formation (Permian), northern Front Range, Colorado: Mountain Geologist, v. 16, p. 47-57.

Agatston, R. S., 1954, Pennsylvanian and Lower Permian of Northern and eastern Wyoming: Bulletin of the American Association of Petroleum Geologists, v. 38, p. 508-583.

Ahlbrandt, T. S., and S. G. Fryberger, 1981, Sedimentary features and significance of interdune deposits: Special Publication - Society of Economic Paleontologists and Mineralogists, p. 293-314.

Algeo, T. J., and P. H. Heckel, 2008, The Late Pennsylvanian Midcontinent Sea of North America; a review: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, p. 205-221, doi: 10.1016/j.palaeo.2008.03.049

Allen, J. R. L., 1972, Instability of an upper-phase plane bed; a test of Bagnold's criterion: Sedimentary Geology, v. 8, p. 309-316.

Allen, J. R. L., 1982, Sedimentary structures, their character and physical basis; I: Netherlands, Elsevier Sci. Publ. Co. : Amsterdam, Netherlands.

Allen, J. R. L., 1984, Parallel lamination developed from upper stage plane beds; a model based on the larger coherent structures of the turbulent boundary layer: Sedimentary Geology, v. 39, p. 227-242.

Anderson, E. J., 1972, Sedimentary structure assemblages in transgressive and regressive calcarenites: International Geological Congress, Abstracts--Congres Geologique Internationale, Resumes, v. 24, p. 179-179.

Berger, W. H., A. A. Ekdale, and P. P. Bryant, 1979, Selective preservation of burrows in deep-sea carbonates: Marine Geology, v. 32, p. 205-230.

Bigarella, J. J., 1972, Eolian environments; their characteristics, recognition, and importance: Special Publication - Society of Economic Paleontologists and Mineralogists, v. 16, p. 12-62.

Birgenheier, L. P., C. R. Fielding, M. C. Rygel, T. D. Frank, and J. Roberts, 2009, Evidence for dynamic climate change on sub-10 (super 6) -year scales from the late Paleozoic glacial record, Tamworth

Belt, New South Wales, Australia: Journal of Sedimentary Research, v. 79, p. 56-82, doi: 10.2110/jsr. 2009.013

Birgenheier, L. P., T. D. Frank, C. R. Fielding, and M. C. Rygel, 2010, Coupled carbon isotopic and sedimentological records from the Permian system of eastern Australia reveal the response of atmospheric carbon dioxide to glacial growth and decay during the late Palaeozoic ice age: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 286, p. 178-193, doi: 10.1016/j.palaeo.2010.01.008

Blakey, R. C., 2008, Pennsylvanian-Jurassic sedimentary basins of the Colorado Plateau and Southern Rocky Mountains Sedimentary basins of the world, v. 5: Netherlands, Elsevier : Amsterdam, Netherlands, p. 245-296, doi: 10.1016/S1874-5997(08)00007-5

Blakey, R. C., and E. N. Eastwood, 2004, From outcrop to paleogeography; reconstructing the Permian Hermit Formation and related rocks, Colorado Plateau: Abstracts with Programs - Geological Society of America, v. 36, p. 402-402.

Blakey, R. C., and L. T. Middleton, 1983, Permian shoreline eolian complex in central Arizona; dune changes in response to cyclic sea level changes Developments in sedimentology, v. 38: Netherlands, Elsevier Sci. Publ. Co. : Amsterdam, Netherlands, p. 551-581.

Blanchard, S., C. R. Fielding, T. D. Frank, J. E. Barrick, and S. Lokier, 2016, Sequence stratigraphic framework for mixed aeolian, peritidal and marine environments; insights from the Pennsylvanian subtropical record of western Pangaea: Sedimentology, v. 63, p. 1929-1970, doi: 10.1111/sed. 12285

Boggs, S., Jr., 1987, Principles of sedimentology and stratigraphy: United States, Merrill Publ. Co. : Columbus, OH, United States, 688p

Bottjer, D. J., M. L. Droser, and D. Jablonski, 1987, Bathymetric trends in the history of trace fossils: Field Trip Guidebook - Pacific Section, Society of Economic Paleontologists and Mineralogists, v. 52, p. 57-65.

Bridge, J. S., and R. V. Demicco, 2008, Earth surface processes, landforms and sediment deposits: United

Kingdom, Cambridge University Press : Cambridge, United Kingdom.
Brookfield, M. E., 1977, The origin of bounding surfaces in ancient aeolian sandstones: Sedimentology, v. 24, p. 303-332.

Burchette, T. P., and V. P. Wright, 1992, Carbonate ramp depositional systems: Sedimentary Geology, v. 79, p. 3-57.

Burns, D. M., and M. K. Nestell, 2009, Using fusulinids to evaluate the periodicity of cycles in a sequence stratigraphic section of Pennsylvanian-Permian strata and to suggest possible support for lowfrequency Milankovitch perturbations; Casper Formation, southeastern Wyoming: Special Publication - Society for Sedimentary Geology, v. 93, p. 253-267.

Carozzi, A. V., 1964, Complex ooids from Triassic lake deposit, Virginia: American Journal of Science, v. 262, p. 231-241.

Cecil, C. B., F. T. Dulong, R. R. West, R. G. Stamm, B. R. Wardlaw, and N. T. Edgar, 2003, Climate controls on the stratigraphy of a Middle Pennsylvanian cyclothem in North America: Special Publication - Society for Sedimentary Geology, v. 77, p. 151-180.

Chan, M. A., and G. Kocurek, 1988, Complexities in eolian and marine interactions; processes and eustatic controls on erg development: Sedimentary Geology, v. 56, p. 283-300.

Cheel, R. J., and G. V. Middleton, 1986a, Horizontal laminae formed under upper flow regime plane bed conditions: Journal of Geology, v. 94, p. 489-504.

Cheel, R. J., and G. V. Middleton, 1986b, Horizontal laminae formed under upper flow regime plane bed conditions: Journal of Geology, v. 94, p. 489-504.

Clark, D. N., 1986, The distribution of porosity in Zechstein carbonates: Geological Society Special Publications, v. 23, p. 121-149.

Crabaugh, M., and G. Kocurek, 1993, Entrada Sandstone; an example of a wet aeolian system: Geological Society Special Publications, v. 72, p. 103-126.

Crowell, J. C., 1978, Gondwanan glaciation, cyclothems, continental positioning, and climate change: American Journal of Science, v. 278, p. 1345-1372.

Curtis, B. F., 1958, Pennsylvanian paleotectonics of Colorado and adjacent areas: United States, Rocky Mt. Assoc. Geol. : Denver, Colorado, United States, p. 9-12.

Dahanayake, K., 1978, Sequential position and environmental significance of different types of oncoids:
Sedimentary Geology, v. 20, p. 301-316.
De Voto, R. H., 1980, Pennsylvanian stratigraphy and history of Colorado: United States, Rocky Mount. Assoc. Geol. : Denver, CO, United States, p. 71-101.

Dickinson, W. R., and T. F. Lawton, 2003, Sequential intercontinental suturing as the ultimate control for Pennsylvanian ancestral Rocky Mountains deformation: Geology [Boulder], v. 31, p. 609-612.

Dumas, S., R. W. C. Arnott, and J. B. Southard, 2005, Experiments on oscillatory-flow and combined-flow bed forms; implications for interpreting parts of the shallow-marine sedimentary record: Journal of Sedimentary Research, v. 75, p. 501-513, doi: 10.2110/jsr.2005.039

Eardley, A. J., 1951, Structural geology of North America.
Egenhoff, S., C. Cassle, J. Maletz, A. M. Frisk, J. O. R. Ebbestad, and K. Stuebner, 2010, Sedimentology and sequence stratigraphy of a pronounced Early Ordovician sea-level fall on Baltica; the Bjorkasholmen Formation in Norway and Sweden: Sedimentary Geology, v. 224, p. 1-14, doi: 10.1016/j.sedgeo.2009.12.003

Egenhoff, S. O., and N. S. Fishman, 2013, Traces in the dark-sedimentary processes and facies gradients in the upper shale member of the Upper Devonian-Lower Mississippian Bakken Formation, Williston Basin, North Dakota, U.S.A: Journal of Sedimentary Research, v. 83, p. 803-824, doi: 10.2110/jsr. 2013.60

Fielding, C. R., T. D. Frank, and J. L. Isbell, 2008, The late Paleozoic ice age; a review of current understanding and synthesis of global climate patterns: Special Paper - Geological Society of America, v. 441, p. 343-354, doi: 10.1130/2008.2441(24)

Flügel, E., 2004, Microfacies of carbonate rocks; analysis, interpretation and application: Germany, Springer : Berlin, Federal Republic of Germany, 975p

Freeman, W. E., and G. S. Visher, 1975, Stratigraphic analysis of the Navajo Sandstone: Journal of

Sedimentary Petrology, v. 45, p. 651-668.
Fryberger, S. G., and C. J. Schenk, 1988, Pin stripe lamination; a distinctive feature of modern and ancient eolian sediments: Sedimentary Geology, v. 55, p. 1-15.

Grossman, E. L., T. E. Yancey, T. E. Jones, P. Bruckschen, B. Chuvashov, S. J. Mazzullo, and H.-s. Mii, 2008, Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous; the isotopic record from low latitudes: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, p. 222233, doi: 10.1016/j.palaeo.2008.03.053

Heckel, P. H., 1972, Recognition of ancient shallow marine environments: Special Publication - Society of Economic Paleontologists and Mineralogists, v. 16, p. 226-286.

Heckel, P. H., 1986, Sea-level curve for Pennsylvanian eustatic marine transgressive-regressive depositional cycles along Midcontinent outcrop belt, North America: Geology [Boulder], v. 14, p. 330-334.

Heckel, P. H., 2008, Pennsylvanian cyclothems in Midcontinent North America as far-field effects of waxing and waning of Gondwana ice sheets: Special Paper - Geological Society of America, v. 441, p. 275-289, doi: 10.1130/2008.2441(19)

Holloway, S., 1983, The shell-detrital calcirudites of the Forest Marble Formation (Bathonian) of Southwest England: Proceedings of the Geologists' Association, v. 94, p. 259-266.

Howe, D. M., 1970, Post-Casper-Ingleside unconformity and related sediments of southeastern Wyoming and northcentral Colorado, United States.

Hoyt, J. H., and B. J. Chronic, Jr., 1961, Wolfcampian fusulinid from Ingleside Formation, Owl Canyon, Colorado: Journal of Paleontology, v. 35, p. 1089-1089.

Hunter, R. E., 1981, Stratification styles in eolian sandstones; some Pennsylvanian to Jurassic examples from the Western Interior U.S.A: Special Publication - Society of Economic Paleontologists and Mineralogists, p. 315-329.

Isbell, J. L., M. F. Miller, K. L. Wolfe, and P. A. Lenaker, 2003, Timing of late Paleozoic glaciation in Gondwana; was glaciation responsible for the development of Northern Hemisphere cyclothems?:

Special Paper - Geological Society of America, v. 370, p. 5-24.
Joeckel, R. M., 1999, Paleosol in Galesburg Formation (Kansas City Group, Upper Pennsylvanian), northern Midcontinent, U.S.A.; evidence for climate change and mechanisms of marine transgression: Journal of Sedimentary Research, v. 69, p. 720-737.

Jordan, O. D., and N. P. Mountney, 2010, Styles of interaction between aeolian, fluvial and shallow marine environments in the Pennsylvanian to Permian lower Cutler beds, south-east Utah, USA: Sedimentology, v. 57, p. 1357-1385, doi: 10.1111/j.1365-3091.2010.01148.x

Jordan, O. D., and N. P. Mountney, 2012, Sequence stratigraphic evolution and cyclicity of an ancient coastal desert system; the Pennsylvanian-Permian lower Cutler beds, Paradox Basin, Utah, U.S.A: Journal of Sedimentary Research, v. 82, p. 755-780, doi: 10.2110/jsr.2012.54

Kerr, D. R., E. H. Konopka, R. H. Dott, Jr., and S. G. Driese, 1986, Late Carboniferous (Pennsylvanian) eustasy and siliciclastic-carbonate sedimentation, Northern Rocky Mountains, United States: Australia, Bureau of Mineral Resources, Geol. and Geophys. : Canberra, Australia, p. 161-161.

Kluth, C. F., and P. J. Coney, 1981, Plate tectonics of the ancestral Rocky Mountains: Geology [Boulder], v. 9, p. 10-15.

Knight, S. H., 1929, The Fountain and the Casper formations of the Laramie Basin; a study on genesis of sediments: Wyoming Univ. Pub. Sci. Geology, v. 1, p. 1-82.

Koch, J. T., and T. D. Frank, 2011, The Pennsylvanian-Permian transition in the low-latitude carbonate record and the onset of major Gondwanan glaciation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 308, p. 362-372, doi: 10.1016/j.palaeo.2011.05.041

Kocurek, G., and R. E. Hunter, 1986, Origin of polygonal fractures in sand, uppermost Navajo and Page sandstones, Page, Arizona: Journal of Sedimentary Petrology, v. 56, p. 895-904.

Kocurek, G., N. I. Robinson, and J. M. Sharp, 2001, The response of the water table in coastal aeolian systems to changes in sea level: Sedimentary Geology, v. 139, p. 1-13.

Kocurek, G. A., 1980, Significance of bounding surfaces, interdune deposits, and dune stratification types in ancient erg reconstruction, United States.

Krainer, K., and S. G. Lucas, 2004, The Upper Pennsylvanian Red Tanks Member of the Bursum Formation at Carrizo Arroyo, central New Mexico; transition from shallow marine to nonmarine facies: Bulletin - New Mexico Museum of Natural History and Science, v. 25, p. 53-70.

Labaj, M. A., and B. R. Pratt, 2016, Depositional dynamics in a mixed carbonate-siliciclastic system; Middle-Upper Cambrian Abrigo Formation, southeastern Arizona, U.S.A: Journal of Sedimentary Research, v. 86, p. 11-37.

Leary, R. J., P. Umhoefer, M. E. Smith, and N. Riggs, 2017, A three-sided orogen; a new tectonic model for ancestral Rocky Mountain uplift and basin development: Geology [Boulder], v. Pre-Issue Publication, doi: 10.1130/G39041.1

Lee, W. T., 1927, Correlation of geologic formations between east-central Colorado, central Wyoming, and southern Montana, United States, U. S. Geological Survey : Reston, VA, United States.

Lehrmann, D. J., Y. Wan, J. Wei, Y. Yu, and J. Xiao, 2001, Lower Triassic peritidal cyclic limestone; an example of anachronistic carbonate facies from the Great Bank of Guizhou, Nanpanjiang Basin, Guizhou Province, South China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 173, p. 103-123.

Logan, B. W., 1969, Carbonate sediments and reefs, Yucatan shelf, Mexico: Memoir - American Association of Petroleum Geologists, p. 1-198.

Loope, D. B., 1984, Eolian origin of upper Paleozoic sandstones, southeastern Utah: Journal of Sedimentary Petrology, v. 54, p. 563-580.

Loreau, J. P., and B. H. Purser, 1973, Distribution and ultrastructure of Holocene ooids in the Persian Gulf: Kingston Geological Review, v. 73, p. 8-8.

Mallory, W. W., 1960, Outline of Pennsylvanian stratigraphy of Colorado: United States, Rocky Mtn. Assoc. Geologists: Denver, CO, United States, p. 23-33.

Margolis, S., and R. W. Rex, 1971, Endolithic algae and micrite envelope formation in Bahamian oolites as revealed by scanning electron microscopy: Geological Society of America Bulletin, v. 82, p. 843-851.

Marshak, S., K. E. Karlstrom, and J. M. Timmons, 2000, Inversion of Proterozoic extensional faults; an explanation for the pattern of Laramide and ancestral Rockies intracratonic deformation, United States: Geology [Boulder], v. 28, p. 735-738, doi: 10.1130/0091-7613(2000)028

Maughan, E. K., 1993, The ancestral Rocky Mountains in Wyoming: Memoir - Geological Survey of Wyoming, v. 5, p. 188-207.

McGowen, J. H., and C. G. Groat, 1971, Van Horn sandstone, west Texas; an alluvial fan model for mineral exploration, United States, University of Texas at Austin, Bureau of Economic Geology : Austin, TX, United States.

McKee, E. D., 1966, Structures of dunes at White Sands National Monument, New Mexico (and a comparison with structures of dunes from other selected areas), International, Blackwell: OxfordBoston, International.

Miall, A. D., 1985, Architectural-element analysis; a new method of facies analysis applied to fluvial deposits: SEPM Short Course, v. 19, p. 33-81.

Miller, A. K., and H. D. Thomas, 1936, The Casper Formation (Pennsylvanian) of Wyoming and its cephalopod fauna: Journal of Paleontology, v. 10, p. 715-738.

Olszewski, T. D., and M. E. Patzkowsky, 2003, From cyclothems to sequences; the record of eustasy and climate on an icehouse epeiric platform (Pennsylvanian-Permian, North American Midcontinent): Journal of Sedimentary Research, v. 73, p. 15-30.

Parrish, J. T., and F. Peterson, 1988, Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the Western United States; a comparison: Sedimentary Geology, v. 56, p. 261-282.

Ralston, D. K., W. R. Geyer, P. A. Traykovski, and N. J. Nidzieko, 2013, Effects of estuarine and fluvial processes on sediment transport over deltaic tidal flats: Continental Shelf Research, v. 60, p. S40s57.

Rankey, E. C., S. L. Reeder, W. L. Watney, and A. P. Byrnes, 2006, Spatial trend metrics of ooid shoal complexes, Bahamas; implications for reservoir characterization and prediction: Papers presented
at the Gulf Coast Section, Society of Economic Paleontologists and Mineralogists Foundation Annual Bob F. Perkins Research Conference, v. 26, p. 849-873.

Scherer, C. M. S., 2000, Eolian dunes of the Botucatu Formation (Cretaceous) in southernmost Brazil; morphology and origin: Sedimentary Geology, v. 137, p. 63-84.

Schieber, J., J. Southard, and K. Thaisen, 2007, Accretion of mudstone beds from migrating floccule ripples: Science, v. 318, p. 1760-1763, doi: 10.1126/science. 1147001

Schieber, J., J. B. Southard, P. Kissling, B. Rossman, and R. Ginsburg, 2013, Experimental deposition of carbonate mud from moving suspensions; importance of flocculation and implications for modern and ancient carbonate mud deposition: Journal of Sedimentary Research, v. 83, p. 1025-1031, doi: 10.2110/jsr. 2013.77

Schlager, W., 2000, Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate systems: Geological Society Special Publications, v. 178, p. 217-227.

Schwarz, E., G. D. Veiga, G. A. Trentini, and L. A. Spalletti, 2016, Climatically versus eustatically controlled, sediment-supply-driven cycles; carbonate-siliciclastic, high-frequency sequences in the Valanginian of the Neuquen Basin (Argentina): Journal of Sedimentary Research, v. 86, p. 312335, doi: 10.2110/jsr.2016.21

Shinn, E. A., 1988, The geology of the Florida Keys: Oceanus [Woods Hole], v. 31, p. 46-53.
Simons, D. B., E. V. Richardson, and C. F. Nordin, Jr., 1965, Bedload equation for ripples and dunes, United States, U. S. Geological Survey : Reston, VA, United States, p. H1-h9.

Smith, L. B., Jr., and J. F. Read, 2000a, Rapid onset of late Paleozoic glaciation on Gondwana; evidence from Upper Mississippian strata of the Midcontinent, United States: Geology [Boulder], v. 28, p. 279-282.

Smith, L. B., Jr., and J. F. Read, 2000b, Rapid onset of late Paleozoic glaciation on Gondwana; evidence from Upper Mississippian strata of the Midcontinent, United States: Geology [Boulder], v. 28, p. 279-282.

Soreghan, G. S., 1992, Preservation and paleoclimatic significance of eolian dust in the ancestral Rocky

Mountains province: Geology [Boulder], v. 20, p. 1111-1114.
Soreghan, G. S., D. E. Sweet, K. R. Marra, C. F. Eble, M. J. Soreghan, R. D. Elmore, S. A. Kaplan, and M. D. Blum, 2007, An exhumed late Paleozoic canyon in the Rocky Mountains: Journal of Geology, v. 115, p. 473-481, doi: $10.1086 / 518075$

Sur, S., G. S. Soreghan, M. J. Soreghan, W. Yang, and A. H. Saller, 2010, A record of glacial aridity and Milankovitch-scale fluctuations in atmospheric dust from the Pennsylvanian tropics: Journal of Sedimentary Research, v. 80, p. 1046-1067, doi: 10.2110/jsr.2010.091

Tabor, N. J., and I. P. Montanez, 2004, Morphology and distribution of fossil soils in the PermoPennsylvanian Wichita and Bowie Groups, north-central Texas, USA; implications for western equatorial Pangean palaeoclimate during icehouse-greenhouse transition: Sedimentology, v. 51, p. 851-884, doi: 10.1111/j.1365-3091.2004.00655.x

Tabor, N. J., and C. J. Poulsen, 2008, Palaeoclimate across the Late Pennsylvanian-Early Permian tropical palaeolatitudes; a review of climate indicators, their distribution, and relation to palaeophysiographic climate factors: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, p. 293-310, doi: 10.1016/j.palaeo.2008.03.052

Tandon, S. K., and M. R. Gibling, 1994, Calcrete and coal in Late Carboniferous cyclothems of Nova Scotia, Canada; climate and sea-level changes linked: Geology [Boulder], v. 22, p. 755-758.

Tapanila, L., 2005, Palaeoecology and diversity of endosymbionts in Palaeozoic marine invertebrates; trace fossil evidence: Lethaia, v. 38, p. 89-99.

Tenney, C. S., 1966, Pennsylvanian and Lower Permian deposition in Wyoming and adjacent areas: Bulletin of the American Association of Petroleum Geologists, v. 50, p. 227-250.

Tweto, O., 1980, Summary of Laramide Orogeny in Colorado: United States, Rocky Mount. Assoc. Geol.: Denver, CO, United States, p. 129-134.

Vail, P. R., 1987, Seismic stratigraphy interpretation using sequence stratigraphy; Part 1, Seismic stratigraphy interpretation procedure: AAPG Studies in Geology, v. 27, p. 1-10.

Wilkinson, B. H., R. M. Owen, and A. R. Carroll, 1985, Submarine hydrothermal weathering, global
eustasy, and carbonate polymorphism in Phanerozoic marine oolites: Journal of Sedimentary Petrology, v. 55, p. 171-183.

Williams, J. S., 1962, Pennsylvanian System in central and northern Rocky Mountains, United States, p. 159-187.

Wilson, M. E. J., 2008, Global and regional influences on equatorial shallow-marine carbonates during the Cenozoic: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 265, p. 262-274.

Wilson, M. E. J., E. C. Eewah, S. Dorobek, and P. Lunt, 2013, Onshore to offshore trends in carbonate sequence development, diagenesis and reservoir quality across a land-attached shelf in SE Asia: Marine and Petroleum Geology, v. 45, p. 349-376, doi: 10.1016/j.marpetgeo.2013.03.011

Appendix A: Ingleside/Casper Formation Stratigraphic Sections

Section: Carter Lake Location: Carter Lake Reservoir
Outcrop Analyst: Kajal Nair
County, State: Larimer, Colorado

Section: Sylvandale
Location: Sylvandale Ranch
County, State: Larimer, Colorado

Section: Coyote Ridge
Outcrop Analyst: Kajal Nair
Location: Coyote Ridge
Date: 05/2016
County, State: Larimer, Colorado

Section: Coyote Ridge Location: Coyote Ridge
County, State: Larimer, Colorado

Location: Inlet Bay
County, State: Larimer, Colorado

Outcrop Analyst: Kajal Nair
Date: 05/2016

Section: Bellvue Location: Bellvue
County, State: Larimer, Colorado

Section: Owl Canyon 1
Outcrop Analyst: Kajal Nair
Date: 06/2016
County, State: Larimer, Colorado

Section: Owl Canyon 1
Outcrop Analyst: Kajal Nair
Date: 06/2016
County, State: Larimer, Colorado

Section: Red Nose
Outcrop Analyst: Kajal Nair
Date: 05/2016
County, State: Larimer, Colorado

Location: Laramie
Outcrop Analyst: Kajal Nair
County, State: Laramie, Wyoming

Section: R114 Well Name: 18-4
Stratigraphic Interval: Casper Formation
County, State: Albany, Wyoming

Section: Upper Ferch Well Name: 1-UPRR FERCH Stratigraphic Interval: Ingleside Formation County, State: Weld, Colorado

PART 2: DETRITAL ZIRCON GEOCHRONOLOGY OF THE INGLESIDE FORMATION
 INTRODUCTION

U- Pb ages of detrital zircon grains in sandstone are commonly used as a guide to sediment provenance. Established detrital zircon reference curves for western North America provide enhanced characterizations of the age of magmatic assemblages and a robust means to distinguish the provenance of detrital zircon grains that accumulated along western Laurentia (Gehrels and Pecha, 2014). Detrital zircon ages from Paleozoic sandstones in the Grand Canyon record a major shift in provenance beginning in the Mississippian (Gehrels et al., 2011). This change is defined by the appearance of a significant population of Paleozoic-aged zircon grains interpreted to have been shed from the central Appalachian orogen. Distinct Paleozoic peaks from detrital zircon ages are well documented in the Mississippian Surprise Canyon Formation of the Grand Canyon and generally increase in frequency through younger Pennsylvanian and Early Permian strata (Gehrels et al., 2011).

Other studies have also identified detrital zircon populations shed from the Appalachian orogen in Paleozoic sedimentary strata across western United States (Figure 1). The oldest stratigraphic unit in Colorado that detects this age population is the Early Pennsylvanian loessite deposits of the Molas Formation in southwestern Colorado (Evans and Soreghan, 2015). Paleozoic detrital zircons are also documented in the Early Pennsylvanian Amsden Formation in southern Montana and Tensleep Formation in northern Wyoming (May et al., 2013), Middle Pennsylvanian Hailey Member of the Wood River Formation in southcentral Idaho (Link et al., 2014), Early Permian Cedar Mesa Member of the Cutler Formation in southeastern Utah (Dickinson and Gehrels, 2003; Figure 1). Further east, detrital zircon populations from the central Appalachian orogen have been documented in the Cretaceous Dakota Formation in western Iowa and eastern Nebraska (Finzel, 2014), Middle Pennsylvanian Warrensburg and Moberly channel sandstones in central Missouri (Chapman, 2016), and the Permian Wellington Formation in southern Oklahoma (Thomas et al., 2016; Figure 1). These studies indicate that Appalachian-derived sediment was widely
distributed across western United States by the Early Pennsylvanian. Appalachian detrital zircon populations are also widely detected through Early Triassic and Middle Jurassic sandstones along the Front Range and in southeastern Colorado (Hagadorn et al., 2016).

The arrival of Appalachian-sourced zircons across western North America has major paleogeographic implications for western Laurentia during Paleozoic time. Transcontinental sediment transport may have primarily been driven by major river systems carrying sediment westward from southern and central Appalachians (Blakey, 2009; Gehrels et al., 2011; Chapman, 2016). An increasingly arid climate, starting in the Middle Pennsylvanian, resulted in strong northeasterly and southeasterly wind systems (Parrish and Peterson, 1988; Soreghan et al., 2002) that further transported and reworked Appalachian-sourced sediments into local eolian units.

Various studies recording detrital zircon ages for Paleozoic and Mesozoic sandstones in Colorado collectively recognize a broad range of age populations defined by discrete peaks of age-frequency plots, reflecting local and transcontinental sediment sources (Duncan et al., 2013; Siddoway and Gehrels, 2014; Evans and Soreghan, 2015; Hagadorn et al., 2016). Local sources for Colorado Paleozoic sandstones include Yavapai-Mazatzal provinces (1800-1600 Ma) in the basement-cored Ancestral Rockies, GraniteRhyolite province (1480-1340 Ma) in the southern midcontinent, and Pikes Peak batholith (1080 Ma) in the Ute Pass uplift. More distant sources include Archean basement (3015-2500 Ma) of the Laurentian shield, Grenville basement (1300-1000 Ma), Iapetan synrift (760-530 Ma), Peri-Gondwanan terranes (750500 Ma); and Taconic (490-440 Ma), Acadian (430-350 Ma), and Alleghanian (330-270 Ma) synorogenic rocks.

The main objective of this study is to compare detrital zircon age populations from potentially timeequivalent upper Paleozoic Ingleside, Molas, and Hermosa sandstones with published detrital zircon U-Pb data from underlying and overlying sedimentary units in order to determine the timing of the arrival of exotic Appalachian zircons into two Ancestral Rocky Mountain basins across Colorado. Further, deposition of the Ingleside and Hermosa Formations mark a shift from terrestrial to shallow marine environments along the Ancestral Front Range and the Uncompahgre uplifts. Our study assesses whether the significant
shift in depositional environments across two Ancestral Rocky Mountain uplifts also corresponds with a shift in sediment source.

Figure 1: Locations of Appalachian-derived grain populations previously identified in Late Paleozoic sandstones (May et al., 2013 ${ }^{(1)}$; Link et al., 2014 ${ }^{(2)}$; Holm-Denoma, unpublished ${ }^{(3)}$; Chapman, 2016 ${ }^{(4)}$; Evans and Soreghan, 2015(5); Dickinson and Gehrels, 2003 ${ }^{(6)}$; Gehrels et al., 2011 ${ }^{(7)}$; Thomas et al., 2016 ${ }^{(8)}$. Location of Ingleside Formation analyzed in this study is marked by the star. Location of Molas and Hermosa Formations analyzed in this study overlaps location of Evans and Soreghan, 2015 ${ }^{(5)}$ ages). Base map from http://www.geomapapp.org.

GEOLOGICAL BACKGROUND

The Ancestral Rocky Mountain (ARM) system developed in an intraplate setting and consists of NWtrending basement-cored uplifts and sedimentary basins extending from Utah and Colorado to Texas. The deformation that resulted in the amagmatic ARM uplifts remains poorly understood. Various models invoke stresses along the Ouachita-Marathon belt, transpressional convergence along the Sonora margin, and reactivation of pre-existing basement faults to explain ARM deformation (Kluth and Coney, 1981; Dickinson and Lawton, 2003; Leary et al., 2017; Marshak et al., 2000).

Uplifts of ARM structures began in early Pennsylvanian and continued into early Permian time (e.g Kluth and Coney, 1981; Dickinson and Lawton, 2003). In present day Colorado, ARM uplifts developed during this time have been identified as the Ancestral Front Range highland, Apishapa highland, and Uncompahgre highland (Figure 2). These uplifted areas were rapidly denuded of older Paleozoic sedimentary rocks, and Proterozoic crystalline basement shed sedimentary debris into adjacent lowlands (Blakey, 2009). Pennsylvanian-Permian sedimentary rocks subsequently deposited in the low platforms are characterized by cyclic stratal sequences and are linked to Gondwanian glaciation in the southern hemisphere (Heckel, 1986; Blakey, 2008).

The early Pennsylvanian in western Colorado is characterized by the widespread deposition of the Molas Formation, a regolithic to marine deposit developed during a period of extensive subaerial weathering (Mallory, 1960). Potentially coeval with Molas deposition, vigorous uplift of the Ancestral Front Range highland in eastern Colorado resulted in widespread deposition of coalescing alluvial fans and fluvial deposits, collectively identified as the Fountain Formation (Knight, 1929).

The Ancestral Front Range, Uncompahgre highlands, and adjacent basins most likely reached their maximum tectonic expression in the late-middle Pennsylvanian time (Mallory, 1960; Blakey, 2008). Marine waters invaded the ARM basins during the middle-late Pennsylvanian, resulting in partial erosion of underlying rocks and Pennsylvanian-Permian deposition of the Hermosa and Cutler Formations in the Paradox basin, west of the Uncompahgre highland, and the Ingleside and Lyons Formations in the low-
lying regions east of the Ancestral Front Range Highland. Late Paleozoic cyclic stratal sequences in both basins are characterized by a gradual transition from humid with alternating semi-arid intervals to more arid conditions (Blakey, 2009).

Figure 2: (A) Paleogeographic reconstruction of North America during the Late Pennsylvanian (Reference: Blakey, 2015). (B) Paleogeographic reconstruction of Ancestral Rocky Mountain uplift in Colorado (Halka and Chronic, 2014). Stars mark locations of samples analyzed in this study

METHODS

Sandstone samples were collected from the Ingleside Formation, Molas Formation, and Hermosa Formation for this study. The Ingleside Formation type-locality outcrop located at Owl Canyon in northern Colorado was logged for detailed sedimentological observations and paleocurrent analyses (Figures 2, 3, 4). Two representative fine-grained, quartz-rich sandstone samples were collected from the lower and upper portion of the Ingleside Formation at this section (Figure 2). A silt-rich sandstone sample from the upper Molas Formation and a fine-grained sandstone sample from the lower Hermosa Formation were collected across the Molas-Hermosa contact near Molas Lake in southwestern Colorado (Figure 2).

Zircons were separated using conventional methods that included crushing, lightly panning, sieving below $300 \mu \mathrm{~m}$, magnetic separation, and heavy liquid separation. Representative splits of the final zircon yields were mounted in epoxy plugs and polished. Cathodoluminescence (CL) images were generated for all four samples and the images were used to pick 120+ laser spots in homogeneous portions of crystals in each sample (Figure 4, Appendix B).

U-Pb detrital zircon data reported here were generated at the U.S. Geological Survey (USGS) in Denver using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). All ages $>1300 \mathrm{Ma}$ are reported as ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ages, whereas ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ ages were used for $<1300 \mathrm{Ma}$ grains. Two separate discordance filters were used to generate probability-density plots for our data and for calculating statistically significant age populations. In Figure 4B and 4D, data with $>20 \%$ discordance or $>5 \%$ reverse discordance were rejected. In Figure 4A and 4C, data with $>30 \%$ discordance or $>10 \%$ reverse discordance were rejected.

Figure 6 displays the results generated in comparing our samples with each other and with other published samples from throughout the broader region. Published samples compared here include data from the Lyons Formation (Holm-Denoma C., 2016, unpublished), Fountain Formation (Siddoway and Gehrels, 2014), and lower Molas Formation (Evans and Soreghan, 2015). A general $>20 \%$ discordance or $<5 \%$ reverse
discordance is applied to all samples compared in this figure, and all age spectra are normalized so the areas under the curve are equivalent, regardless of number of analyses.

LEGEND:
SILICICLASTIC FACIES

	CRoss-bedded sandstone
	HORIZONTALLY-BEDDED SANDSTONE
	MASSIVE SANDSTONE
	CONGLOMERATIC SANDSTO
	SILICICLASTIC MUDSTONE
INFERRED DEPOSITIONAL ENVIRONMENTS	
EOLIAN SILICICLASTIC DEPOSITS	
Shallow marine deposits	
OFFSHO	EE CARBONATE DEPOSITS

CARBONATE FACIES

Figure 3: (A) Generalized stratigraphic column of Northern Colorado. (B) Type section of the Ingleside Formation at Owl Canyon displays a mixed carbonate-siliciclastic facies distribution, with inferred shallow marine and eolian depositional environments. (C) Thirty-three paleocurrent analyses from the Ingleside Formation at Owl Canyon show a dominantly S- and E- sediment transportation direction. (D) Generalized stratigraphic column of Southwestern Colorado, stars mark approximate location of samples analyzed for Upper Molas and Lower Hermosa Formations.

Table 1: UTM coordinates, location, and description for samples analyzed

Sample	Stratigraphic Units	Location	UTM Coordinates			Sample Description
			Grid Zon e	Easting	Northin g	
$\begin{array}{\|l} \hline \text { OC-DZ1- } \\ 2.8 \end{array}$	Lower Ingleside	Owl Canyon, N. CO	13S	0484790	4512465	tabular cross-bedded, pink, fine-grained sandstone overlying a carbonate unit and 2.8 m above the Fountain-Ingleside contact
$\begin{array}{\|l} \hline \text { OC-DZ2- } \\ 56 \end{array}$	Upper Ingleside	Owl Canyon, N. CO	13S	0485041	4512595	horizontally-bedded, finegrained sandstone, 56 m above the FountainIngleside contact
MP-DZ1	Molas	$\begin{aligned} & \text { Molas Pass, } \\ & \text { SW. CO } \end{aligned}$	13S	4180618	4180618	massive, silt-rich, very fine-grained sandstone, dark red color, $(\sim 20 \mathrm{~m}$ from the base of the Molas Formation
MP-DZ2	Hermosa	$\begin{aligned} & \text { Molas Pass, } \\ & \text { SW. CO } \end{aligned}$	13S	4180740	4180740	horizontally-bedded, medium-grained sandstone, gray-brown color, overlying a carbonate unit and $\sim 4 \mathrm{~m}$ above the Molas-Hermosa contact

Figure 4: Representative CL images of zircons from prominent age distribution peaks at 330-490 Ma, 515$700 \mathrm{Ma}, 990-1200 \mathrm{Ma}, 1600-1800 \mathrm{Ma}, 2500-3500 \mathrm{Ma}$.

RESULTS

I. Description

The detrital zircon U-Pb data collected from the Ingleside, Molas, and Hermosa Formations (Table 1) reveal a wide spread of age populations, with prominent age distribution peaks at $330-490 \mathrm{Ma}, 515-700 \mathrm{Ma}, 990-$ $1200 \mathrm{Ma}, 1340-1500 \mathrm{Ma}, 1600-1800 \mathrm{Ma}$, and $2500-3500 \mathrm{Ma}$ (Figure 5 and 6).

Detrital zircon data from the Ingleside Formation sandstone are compared to data from the underlying Fountain Formation (Siddoway and Gehrels, 2014; Duncan et al., 2013) and overlying Lyons Formation in the Colorado Front Range (Holm-Denoma et al., 2016, unpublished) (Figure 7). The youngest population of grains recorded (330-490 Ma) is first detected in the Lower Ingleside Formation where Paleozoic-aged zircons range between 331 and 448 Ma and make up 10% of the total concordant ages ($<20 \%$ discordance or $<5 \%$ negative discordance). The Upper Ingleside displays a Paleozoic age population between 376 and 498 Ma , comprising 5\% of the total concordant ages. Results from Lyons Formation sandstone collected near Park Creek Reservoir, Colorado (Holm-Denoma et al., 2016, unpublished) show an increase in Paleozoic-aged zircons, with U-Pb ages ranging between 330 and 457 Ma and comprising $\sim 14 \%$ of the total concordant ages. While the Lower Ingleside, Upper Ingleside, and overlying Lyons Formation show similar age peaks, they vary significantly from the underlying Fountain Formation. Detrital zircon ages from the Fountain Formation near Manitou Springs record a dominant age peak at $1600-1800$ Ma, which comprises 44% of the total concordant ages. Other prominent age peaks in the Fountain Formation are observed at 990-1200 Ma and 1340-1500 Ma (Siddoway and Gehrels, 2014; Duncan et al., 2013).

Detrital zircon data collected from the Molas and Hermosa Formation sandstone near the eastern margin of the Paradox Basin show age distributions that are similar to the Ingleside and Lyons Formations (Figure 7). We also compare our U-Pb ages to data presented by Evans and Soreghan (2015) from two underlying Molas loessite samples collected in the same general area in the Paradox Basin (Molas Lake) (Figure 8). Paleozoic zircons dated in the Molas Formation sandstone range between 430 and 500 Ma , and comprise
10% of the total concordant ages. The overlying Hermosa Formation displays a smaller abundance of Paleozoic zircons that range between 415 and 467 Ma , and comprise 4% of the total analyses. Interestingly, notable differences are observed between the Molas and Hermosa samples in age peaks that lie between 990-1200, 1340-1500, and 1600-1800 Ma (Figure 9). The 990-1200 Ma population makes up a dominant peak in the Molas Formation analyses, whereas the 1340-1500 Ma and 1600-1800 Ma age peaks increase significantly in the Hermosa Formation. It is interesting to note that the two Molas loessite samples dated by Evans and Soreghan (2015) display a minor population of younger zircons (between 281-400 Ma) that is absent in the overlying Molas and Hermosa sandstone samples from this study. Paleozoic-aged zircons in the loessites are more abundant than the overlying Molas and Hermosa samples collected for this study, comprising 11% and 17% of the total concordant ages.

Detrital zircons in the Ingleside, Molas, and Hermosa Formations dominantly record U/Th ratios greater than 10, which are compatible with an igneous origin (e.g. Kirkland et al., 2015; Figure 10). A few miscellaneous zircons in the $990-1200 \mathrm{Ma}$ and $2500-3500 \mathrm{Ma}$ age populations record U / Th ratios <10, suggesting a metamorphic origin.

Paleocurrent analyses from the Ingleside Formation at Owl Canyon display a dominantly south- and eastdirected sediment transport direction (Figure 3B). In comparison, the Fountain Formation near Manitou Springs, Colorado displays similar south- and east- dominated sediment transport direction in the upper sandstone strata and north- and east- dominated paleocurrent directions in the lower sandstone strata (Sweet and Soreghan, 2010)

II. Interpretation

Paleozoic sandstones from the Colorado Front Range in north-central Colorado and the eastern Paradox Basin in southwestern Colorado display a diversity of age populations that record several different source regions. Local zircon sources are primarily reflected in the 1600-1800 Ma age peak that is derived from the Yavapai province and 1340-1500 Ma age peak that is may be derived from local igneous units within Yavapai province (Whitmeyer and Karlstrom, 2007). The southern Rocky Mountains in general record a
long history of 1800-1400 Ma tectonism, and identifying Proterozoic subprovinces within Colorado has been difficult. Reed (1987) identified three Yavapai subprovinces and suggested that the age of the subprovinces decreases southward. Closer to the Ingleside and Lyons Formation sample locations, Yavapai basement rocks are likely characterized by pluton ages greater than 1750 Ma (Reed, 1987). Closer to the Hermosa and Molas Formation sample locations, pluton and metavolcanic ages of 1760-1600 Ma are common (Bickford et al., 1986 Bickford et al., 2008). Zircons belonging to these age ranges are interpreted to have been supplied from basement rocks that are truly local to our sample locations.

Extensive Mesoproterozoic magmatism resulted in emplacement of igneous complexes in a belt that spanned southwestern Laurentia. Several of these igneous complexes are located close to the outcrops analyzed in this study. Specifically, the Sherman Granite pluton (1415-1435 Ma) in north-central Colorado and southeastern Wyoming is located $\sim 17 \mathrm{~km}$ northwest of the Lyons Formation sample location and ~ 21 km northwest of the Ingleside Formation sample location (Nyman et al., 1994; Frost et al., 1999). The location of this batholith and its close proximity to our Front Range sandstone outcrops make it a likely source for a fraction of Mesoproterozoic zircons in our data. South- and east- directed sediment transport directions, as observed from our paleocurrent analyses of the Ingleside Formation, also support the presence of local sediment source to the north and west of our study area. Similarly, the closest Mesoproterozoic plutons to the Molas and Hermosa sandstone samples location is $\sim 15 \mathrm{~km}$ south in the Needle Mountains, where plutonic rocks make up the Electra Lake Gabbro and Eolus Gabbro (1442-1435 Ma) (Gonzales et al., 1996). Based on their close proximity, these plutonic rocks are suggested to be a likely source for a portion of Mesoproterozoic zircons in the Molas and Hermosa sandstone.

A wide age peak centered at $990-1200 \mathrm{Ma}$ is interpreted to reflect grains shed directly from the Grenville orogeny. Grenvillian basement rocks occupy an elongate belt that were exposed in the Taconic-Acadian tectonic belts in northeastern North America and the southeastern flank of Laurentia. Locally derived sediment from the Pikes Peak Batholith within the Rocky Mountain Region is suggested as an alternative source for a narrow subset of these grains that center on 1100 Ma (Van Schmus and Bickford, 1993). Due to its local setting and the presence of narrow U-Pb peaks at ~ 1100 Ma that superimpose the broader 990-

1200 Ma peak, the Pikes Peak Batholith likely did contribute Mesoproterozoic zircons to both sedimentary basins studied here. However, the wide range of Grenvillian-age zircons suggest that sediments were also derived from other Grenvillian-age provinces outside the Ancestral Rocky Mountain province. The specific Grenville terrane that contributed sediments to Ancestral Rocky Mountain basins is unclear. Similar to Jurassic eolianites across the Colorado Plateau (Dickinson and Gehrels, 2003), it is suggested that the Appalachians were a likely source for Grenville -age zircons. This interpretation corresponds well with the inference of an Appalachian derivation for Paleozoic zircons.

Paleozoic zircons ($330-490 \mathrm{Ma}$) record sediment shed directly from the Taconic-Acadian orogeny along the Appalachian orogenic belt. Paleozoic peaks in the Lower and Upper Ingleside can be subdivided into a 440-490 Ma population corresponding to the Taconic orogeny and a 330-420 Ma population corresponding to the Acadian orogeny. In comparison, Paleozoic age populations in the Molas silty-sandstone and Hermosa samples display only Taconic-aged zircons.

Gondwanan and peri-Gondwanan terranes contain zircons dominantly within the age range of 550-850 Ma (Wortman et al., 2000) and are a potential source for relatively small 515-700 Ma peaks. A mixture of these Neoproterozoic ages with younger Paleozoic grains likely indicate derivation from the Appalachian orogenic belt. Peri-Gondwanan terranes embedded within the Appalachians include the Avalone terrane of the northern Appalachian, the Carolina terrane of the southern Appalachians, and the Suwannee terrane in the Florida peninsula, all of which contain zircons mainly in the age range of 535-635 Ma (Wortman et al., 2000), but also extending to 765 Ma (Barr, 1993). It is likely that sediments from these terranes were transferred to mid-continent North America along the Appalachian-Ouachita orogenic margin in the Late Paleozoic (Abati et al., 2010). An alternative source area for a small portion of these grains might be the 520-540 Ma granites in the Wichita Mountains, where emplacement of synrift igneous magmas along the Southern Oklahoma fault system accompanied late stages of rifting of southeastern Laurentia (Thomas et al., 2016).

A minor zircon population between $2500-3500 \mathrm{Ma}$ is present in all the sandstone samples (Figure 3) are interpreted to have originated from exposed blocks of Archean cratons or large areas of reworked Archean
crust (Corrigan et al., 2005). Derivation from the nearby Wyoming Archean province, lying directly north of the Ancestral Rocky Mountain basin is inferred for this age population for both basins.

The Front Range outcrops display dominantly local sources for the Fountain Formation originating from the Yavapai-Mazatal terranes (1600-1800 Ma), local plutonic sources (1340-1500 Ma), and the Pikes Peak Batholith (1100 Ma). More widespread sediment sources are observed for the Ingleside and Lyons Formation. Both the Ingleside Formation samples analyzed for this study show similar age peaks and grain populations for different sediment sources, with a distinct increase in grains sourced from the Appalachian orogen observed in the Lyons Formation.

The eastern Paradox Basin sandstone samples show an interesting trend with a significant increase in locally derived grains ($1600-1800 \mathrm{Ma}, 1340-1500 \mathrm{Ma}$) in the Hermosa Formation. Zircon age distributions in the underlying Molas Formation show relatively greater age peaks for exotic zircons sourced from the Appalachian orogen and Grenville orogen. The Molas loessite samples display a small population of Acadian-aged zircons that is absent in the overlying Molas silty-sandstone and Hermosa samples. A general comparison between the Molas loessite and the Molas silty-sandstone samples indicates that general decrease in abundance of Paleozoic-aged (330-490 Ma) zircons.

Figure 5: Map depicting the main age provinces of basement rock in North America (Soreghan and Soreghan, 2013). Stars mark locations of samples analyzed for this study.

Figure 6: Probability density plots showing U-Pb ages of detrital zircons from fine-grained sandstones from the Ingleside Formation. Information on the lower right of the diagram gives number of ages plotted/number of ages determined.

Figure 7: Probability density plots showing U-Pb ages of detrital zircons from fine-grained sandstones from the Molas and Hermosa Formations. Information on the lower right of the diagram gives number of ages plotted/number of ages determined.

Figure 8: Probability density plots comparing U-Pb ages of detrital zircons from the Ingleside Formation analyzed in this study to published data from the underlying Fountain Formation (Siddoway and Gehrels, 2014) and data from the overlying Lyons Formation (Holm-Denoma, unpublished).

Figure 9: Probability density plots comparing U-Pb ages of detrital zircons from the Molas and Hermosa Formations analyzed in this study to published data from the underlying Molas loessite (Evans and Soreghan, 2015).

Figure 10: $\mathrm{U} /$ Th ratios for all analyzed samples are dominantly <10

DISCUSSION

Detrital zircon data from Late Paleozoic sandstone analyzed here provides new information for tracking of sediment dispersal paths. Specifically, this study documents the first appearance of Paleozoic-aged zircons along the Front Range in the Ingleside Formation. Our comparison of detrital zircon signatures of the Molas and Hermosa Formations also allows us to make significant paleogeographic interpretations. The source of sediment for all Paleozoic detrital zircon population (330-490 Ma), a fraction of Neoproterozoic Peri-Gondwanan-sourced zircons (515-700 Ma), and a fraction of Mesoproterozoic Grenville basement-sourced zircons (990-1200 Ma) is identified as the distant Appalachian orogen.

Similar to detrital zircon age distribution in Pennsylvanian and Lower Permian sandstones of the Grand Canyon (Gehrels et al., 2011), U-Pb data from the Ingleside and Lyons Formation document detrital zircons formed during the Acadian and Taconic orogenies, but none from the subsequent Pennsylvanian-Permian Alleghanian orogeny. An average lag time of 25 million years was documented in Upper Paleozoic strata of the Grand Canyon and support the absence of Alleghanian-aged zircons in Pennsylvanian-Early Permian sandstones in the Ancestral Rocky Mountains. Additionally, based on data from the Appalachian foreland, it is suggested that the rate of erosional unroofing of Alleghanian plutons was not far enough advanced to include these zircons in sediments that make up Pennsylvanian and Lower Permian sandstones (Thomas et al., 2004). Delayed exhumation of Alleghanian plutons likely resulted in the lack of Alleghanian-age zircons in Pennsylvanian-age sandstones in proximal sediments along the length of the Appalachian foreland basins (Thomas et al., 2004; Becker et. al., 2005) that are interpreted to characterize the headwaters of inferred dispersal paths from the Appalachians to the Grand Canyon (Thomas, 2011). Gehrels et al. (2011) suggest that transcontinental rivers from the Appalachians travelled northwestward and then southward by prevailing winds from the north, northeast, and northwest (Poole, 1962). These headwaters and fluvial systems likely also fed eolian systems prevalent in Ancestral Rocky Mountain provinces at the time.

A widespread sand-dispersal system that transported local and distant sediments into sedimentary basins along the Ancestral Rockies is also evidenced in the diverse components in our detrital zircon age data. Mixed detrital zircon signature across time-equivalent sedimentary units likely point towards an extensive sand blanket that extended across Colorado during the Late Paleozoic. Areas of significant eolian recycling have been documented in the Molas and Hermosa Formations (Evans and Reed, 2007; Jordan and Mountney, 2010) and the Ingleside (Figure 3A) and Lyons Formations (Hunter, 1981), while prominent marine incursions and relatively small fluvial systems are documented in the Hermosa Formation (Jordan and Mountney, 2010), and Ingleside Formation (Figure 3A). Facies distribution along with detrital zircon signatures across these sedimentary systems suggest that eolian sands were widespread across Ancestral Rocky Mountain Basins during the Paleozoic, and then likely redistributed interregionally through marine and fluvial systems in both basins. Similar sediment transportation system has been interpreted for Jurassic sandstones of the Colorado Plateau (Dickinson and Gehrels, 2003). In addition, a greater population of Taconic-Acadian derived zircons in Molas loessite samples in relation to our Molas sandstone sample is interpreted to be a strong indication that wind systems played an important role in the transportation of young, distally-sourced zircons during Late Paleozoic time.

The sandstone samples analyzed from the Ingleside and Hermosa Formation are shallow marine deposits, further implying that marine systems played a significant role in reworking exotic zircons into both sedimentary basins. Our paleocurrent analyses for dominantly shallow-marine sandstones and some eolian sandstones of the Ingleside Formation at Owl Canyon document a prevailing south and east sediment transport direction (Figure 3B). However, it is important to note that paleocurrent direction only yield the final transportation direction of the sediment and have no necessary local relationship to long-distance dispersal from provenance to depositional site (e.g. Thomas, 2011). We interpret our paleocurrent data to imply that erg systems located to the north and west of our study area at Owl Canyon were important sediment sources for the Ingleside and Lyons Formation and were likely reworked into Ingleside shallow marine sandstones by marine currents. The interaction of three independent dispersal processes suggested
here for the presence of Appalachian-derived zircons in Ancestral Rocky Mountain basins illustrates the complexities of long-distance sediment transportation during the Late Paleozoic.

The oldest strata recording Paleozoic-aged zircons in the Grand Canyon is the Upper Mississippian Surprise Canyon Formation (Gehrels et al., 2011). The Lower Pennsylvanian Molas Formation loessites of southwestern Colorado also record Paleozoic-aged zircons (Evans and Soreghan, 2015). Based on these studies it is clear that a sand- dispersal system transporting distant Appalachian-derived zircons was present prior to the Ancestral Rocky Mountain uplift. Deposition of the Fountain Formation during the uplift of the Ancestral Front Range (Kluth and Coney, 1981) and Hermosa Formation during the uplift of the Uncompahgre Highlands (Thomas, 2007) resulted in a dominating supply of clastic sediment from the Proterozoic basement. Outwash from the Ancestral Rockies must have overwhelmed transcontinental drainage across Colorado and provided local sources of Pennsylvanian-Permian detritus as reflected in the age populations of the Fountain and Hermosa Formations. The transition is observed along the Front Range from a dominantly local Proterozoic detrital zircon signature in the Fountain Formation to a dominantly mixed Laurentian detrital zircon signature in the overlying Ingleside (Figure 6). Cessation of uplift of the Ancestral Front Range Highlands and the increased appearance of distal detrital zircons is accompanied by the onset of marine sedimentation documented by the Ingleside Formation and the termination of nonmarine sedimentation documented by the underlying Fountain Formation. A subtler transition is observed in the eastern Paradox Basin, with both the Molas and the Hermosa Formation displaying a mixed Laurentian detrital zircon signature, but an increase in abundance of locally-derived detrital zircons (~13401500 Ma and $1600-1800 \mathrm{Ma}$) is observed in the Hermosa sandstone. We interpret this increase in abundance of locally-derived zircons to also record the initiation of uplift of the Uncompahgre highlands during the deposition of the Pennsylvanian Hermosa Formation. Pennsylvanian-age faulting associated with Uncompahgre uplift has previously been documented in the Hermosa Formation (Thomas, 2007) and ties in well with the detrital zircon signatures of Paradox Basin sandstone analyzed here. Converse to the Ancestral Front Range, initiation of the Uncompahgre uplift is accompanied by cessation of non-marine
sedimentation documented by the Molas Formation and the onset of marine sedimentation documented by the Hermosa Formation (Evans and Reed, 2007).

CONCLUSIONS

We compare our detrital zircon data from the Ingleside, Molas, and Hermosa Formations with published data from other late Paleozoic sandstone units to identify the earliest appearance of Paleozoic-aged zircons in sedimentary strata across the Colorado Ancestral Rocky Mountain region. We also compare our data with published detrital zircon data from different time slices in the same location to interpret paleogeographic implications of $\mathrm{U}-\mathrm{Pb}$ age populations. The earliest appearance of Paleozoic zircons is recorded in the Ingleside Formation along the Front Range in north-central Colorado and increases in abundance in the overlying Lyons Formation. The earliest record of Paleozoic zircons along the Uncompahgre Highlands in southwestern Colorado is in loessite deposits from the Molas Formation and generally decrease in abundance in the overlying silt-rich sandstone deposits of the Upper Molas Formation and in the Hermosa Formation.

We infer that Paleozoic, Peri-Gondwanan, and Grenville-age detrital zircons were primarily sourced from the Appalachian orogenic belt and were delivered to their final locations by interaction of several independent dispersal paths that include paleorivers, wind systems, and/or marine currents. Additionally, we are able to infer the general timing of cessation of Ancestral Front Range uplift and initiation of Uncompahgre uplift based on significant shifts in U-Pb age populations in the sedimentary basins flanking both highlands. The cessation of Ancestral Rocky Mountain uplift is here identified to coincide with decrease in locally-sourced zircon population and increase in distally-sourced zircon population between the Fountain and Ingleside Formations. Conversely, the initiation of the Uncompahgre uplift is likely reflected in an increase in locally-sourced zircons observed in the Hermosa Formation.

REFERENCES

Abati, J., A. M. Aghzer, A. Gerdes, and N. Ennih, 2010, Detrital zircon ages of Neoproterozoic sequences of the Moroccan Anti-Atlas belt: Precambrian Research, v. 181, p. 115-128, DOI: https://doi.org/10.1016/j.precamres.2010.05.018

Barr, S. M., M. L. Bevier, C. E. White, and R. Doig, 1993, Magmatic history of the Caledonia (Avalon) Terrane of southern New Brunswick based on U-Pb (zircon) geochronology, Canada, New Brunswick Natural Resources and Energy: Fredericton, NB, Canada, p. 10-17.

Becker, T. P., W. A. Thomas, S. D. Samson, and G. E. Gehrels, 2005, Detrital zircon evidence of Laurentian crustal dominance in the Lower Pennsylvanian deposits of the Alleghanian clastic wedge in eastern North America: Sedimentary Geology, v. 182, p. 59-86, DOI: https://doi.org/10.1016/j.sedgeo.2005.07.014

Blakey, R. C., 2008, Pennsylvanian-Jurassic sedimentary basins of the Colorado Plateau and Southern Rocky Mountains Sedimentary basins of the world, v. 5: Netherlands, Elsevier : Amsterdam, Netherlands, p. 245-296, DOI: https://doi.org/10.1016/S1874-5997(08)00007-5

Chapman, A. D., 2016, Detrital zircon geochronology of the Warrensburg-Moberly Channel sandstone, central Missouri; a paleoriver that connected the Appalachian Orogen to Grand Canyon and adjacent depocenters?: Abstracts with Programs - Geological Society of America, v. 48, p. 52.

Corrigan, D., 2005, Proterozoic crustal growth of Laurentia; insights from Lithoprobe: Abstracts with Programs - Geological Society of America, v. 37, p. 494-494.

Crowell, J. C., 1978, Gondwanan glaciation, cyclothems, continental positioning, and climate change: American Journal of Science, v. 278, p. 1345-1372.

Dickinson, W. R., and G. E. Gehrels, 2003, U-Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA; paleogeographic implications: Sedimentary Geology, v. 163, p. 29-66, DOI: https://doi.org/10.1016/S0037-0738(03)00158-1

Dickinson, W. R., and G. E. Gehrels, 2009, Use of U-Pb ages of detrital zircons to infer maximum
depositional ages of strata; a test against a Colorado Plateau Mesozoic database: Earth and Planetary Science Letters, v. 288, p. 115-125, DOI: https://doi.org/10.1016/j.epsl.2009.09.013

Dickinson, W. R., and T. F. Lawton, 2003, Sequential intercontinental suturing as the ultimate control for Pennsylvanian ancestral Rocky Mountains deformation: Geology [Boulder], v. 31, p. 609-612

Duncan, C. R., A. E. Hoisington, and D. P. Hawkins, 2013, Insights into the late Paleozoic geology of an ancestral Rocky Mountain range from detrital zircons in the Fountain Formation, Manitou Springs, Colorado: Abstracts with Programs - Geological Society of America, v. 45, p. 38-38.

Evans, J. E., and J. M. Reed, 2007, Integrated loessite-paleokarst depositional system, Early Pennsylvanian Molas Formation, Paradox Basin, southwestern Colorado, U.S.A: Sedimentary Geology, v. 195, p. 161-181, DOI: https://doi.org/10.1016/j.sedgeo.2006.07.010

Evans, J. E., and M. Soreghan, 2015a, Long-distance sediment transport and episodic resedimentation of Pennsylvanian dust (eolian silt) in cave passages of the Mississippian Leadville Limestone, southwestern Colorado, USA: Special Paper - Geological Society of America, v. 516, p. 263-283.

Evans, J. E., and M. Soreghan, 2015b, Long-distance sediment transport and episodic resedimentation of Pennsylvanian dust (eolian silt) in cave passages of the Mississippian Leadville Limestone, southwestern Colorado, USA: Special Paper - Geological Society of America, v. 516, p. 263-283.

Frost, C. D., B. R. Frost, K. R. Chamberlain, and B. R. Edwards, 1999, Petrogenesis of the 1.43 Ga Sherman Batholith, SE Wyoming, USA; a reducted, rapakivi-type anorogenic granite: Journal of Petrology, v. 40, p. 1771-1802.

Gehrels, G., and M. Pecha, 2013, Detrital zircon U-Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America: Geosphere, v. 10, p. 4965, DOI: https://doi.org/10.1130/GES00889.1

Gehrels, G. E., R. Blakey, K. E. Karlstrom, J. M. Timmons, B. Dickinson, and M. Pecha, 2011, Detrital zircon U-Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona: Lithosphere, v. 3, p. 183-200, DOI: https://doi.org/10.1130/L121.1

Gonzales, D. A., K. E. Karlstrom, and G. S. Siek, 1996, Syncontractional crustal anatexis and deformation
during emplacement of approximately 1435 Ma plutons, western Needle Mountains, Colorado: Journal of Geology, v. 104, p. 215-223.

Hagadorn, J. W., K. R. Whiteley, B. L. Lahey, C. M. Henderson, and C. S. Holm-Denoma, 2016, The Permian-Triassic transition in Colorado: Field Guide [Geological Society of America], v. 44, p. 7392.

Heckel, P. H., 1986, Sea-level curve for Pennsylvanian eustatic marine transgressive-regressive depositional cycles along Midcontinent outcrop belt, North America: Geology [Boulder], v. 14, p. 330-334.

Hunter, R. E., 1981, Stratification styles in eolian sandstones; some Pennsylvanian to Jurassic examples from the Western Interior U.S.A: Special Publication - Society of Economic Paleontologists and Mineralogists, p. 315-329.

Jordan, O. D., and N. P. Mountney, 2010, Styles of interaction between aeolian, fluvial and shallow marine environments in the Pennsylvanian to Permian lower Cutler beds, south-east Utah, USA: Sedimentology, v. 57, p. 1357-1385, DOI: 10.1111/j.1365-3091.2010.01148.x

Kirkland, C. L., R. H. Smithies, R. J. M. Taylor, N. Evans, and B. McDonald, 2015, Zircon Th/U ratios in magmatic environs: Lithos [Oslo], v. 212-215, p. 397-414.

Kluth, C. F., and P. J. Coney, 1981, Plate tectonics of the ancestral Rocky Mountains: Geology [Boulder], v. 9, p. 10-15.

Knight, S. H., 1929, The fountain and the Casper formations of the Laramie Basin; a study on genesis of sediments: Wyoming Univ. Pub. Sci. Geology, v. 1, p. 1-82.

Leary, R. J., P. Umhoefer, M. E. Smith, and N. Riggs, 2017, A three-sided orogen; a new tectonic model for ancestral Rocky Mountain uplift and basin development: Geology [Boulder], v. Pre-Issue Publication, DOI: https://doi.org/10.1130/G39041.1

Link, P. K., R. C. Mahon, L. P. Beranek, E. A. Campbell-Stone, and R. Lynds, 2014, Detrital zircon provenance of Pennsylvanian to Permian sandstones from the Wyoming Craton and Wood River basin, Idaho, U.S.A: Rocky Mountain Geology, v. 49, p. 115-136.

Mallory, W. W., 1960, Outline of Pennsylvanian stratigraphy of Colorado: United States, Rocky Mtn. Assoc. Geologists : Denver, CO, United States, p. 23-33.

Marshak, S., K. E. Karlstrom, and J. M. Timmons, 2000, Inversion of Proterozoic extensional faults; an explanation for the pattern of Laramide and ancestral Rockies intracratonic deformation, United States: Geology [Boulder], v. 28, p. 735-738.

May, S. R., G. G. Gray, L. L. Summa, N. R. Stewart, G. E. Gehrels, and M. E. Pecha, 2013, Detrital zircon geochronology from the Bighorn Basin, Wyoming, USA; implications for tectonostratigraphic evolution and paleogeography: Geological Society of America Bulletin, v. 125, p. 1403-1422, DOI: https://doi.org/10.1130/B30824.1

Nyman, M. W., K. E. Karlstrom, E. Kirby, and C. M. Graubard, 1994, Mesoproterozoic contractional orogeny in western North America; evidence from ca. 1.4 Ga plutons: Geology [Boulder], v. 22, p. 901-904.

Parrish, J. T., and F. Peterson, 1988, Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the Western United States; a comparison: Sedimentary Geology, v. 56, p. 261-282.

Poole, F. G., 1962, Wind directions in late Paleozoic to middle Mesozoic time on the Colorado Plateau; Article 163, United States, U. S. Geological Survey : Reston, VA, United States, p. D147-d151.

Smith Siddoway, C., and G. E. Gehrels, 2014, Basement-hosted sandstone injectites of Colorado; a vestige of the Neoproterozoic revealed through detrital zircon provenance analysis: Lithosphere, v. 6, p. 403-408, DOI: https://doi.org/10.1130/L390.1

Soreghan, M. J., G. S. Soreghan, and M. A. Hamilton, 2002, Paleowinds inferred from detrital-zircon geochronology of upper Paleozoic loessite, western equatorial Pangea: Geology [Boulder], v. 30, p. 695-698, DOI: https://doi.org/10.1130/0091-7613(2002)030

Sweet, D. E., and G. S. Soreghan, 2010, Late Paleozoic tectonics and paleogeography of the ancestral Front Range; structural, stratigraphic, and sedimentologic evidence from the Fountain Formation (Manitou Springs, Colorado): Geological Society of America Bulletin, v. 122, p. 575-594, DOI:
https://doi.org/10.1130/B26554.1
Thomas, W. A., 2011, Detrital-zircon geochronology and sedimentary provenance: Lithosphere, v. 3, p. 304-308, DOI: https://doi.org/10.1130/RF.L001.1

Thomas, W. A., T. P. Becker, S. D. Samson, and M. A. Hamilton, 2004, Detrital zircon evidence of a recycled orogenic foreland provenance for Alleghanian clastic-wedge sandstones: Journal of Geology, v. 112, p. 23-37.

Thomas, W. A., G. E. Gehrels, and M. C. Romero, 2016, Detrital zircons from crystalline rocks along the southern Oklahoma fault system, Wichita and Arbuckle Mountains, USA: Geosphere [Boulder, CO], v. 12, p. 1224-1234.

Van Schmus, W. R., M. E. Bickford, and K. C. Condie, 1993, Early Proterozoic transcontinental orogenic belts in the United States: Abstracts with Programs - Geological Society of America, v. 25, p. 4444.

Whitmeyer, S. J., and K. E. Karlstrom, 2007, Tectonic model for the Proterozoic growth of North America: Geosphere, v. 3, p. 220-259, DOI: https://doi.org/10.1130/GES00055.1

Wortman, G. L., S. D. Samson, and J. P. Hibbard, 2000, Precise U-Pb zircon constraints on the earliest magmatic history of the Carolina Terrane: Journal of Geology, v. 108, p. 321-338.

APPENDIX A: U-Pb DATA FOR ANALYZED SAMPLES

Table 1- U/Pb data from Sample: OC_2.8_DZ1

Analysis \#		Final207_2	\Final207_2	Final206	Final206	EerrorCorr	FinalAge	nalAge2	nalAge	nalAge2	nalAge2	nalAge 2%	DISC	Preferred 2		FInal_U_T	FInal_U_Th_Ratio_In
OG-2.8-DZ1-027	Qutput_ 1	0.303	0.025	0.0238	0.0013	0.29489	151.4	- 8	315.4	9.6	7440	100	89.48614	151.4	- 8	3.15	0.18
OC-2.8-DZ1-041	Qutpu_1-	0.394	0.038	0.0363	0.002	0.3641	230	13	301	18	1120	130	79.46429	230	13	0.951	0.038
-6-2.8-DZ1-047	Qutpu_1-	0.354	0.04	0.0465	0.0027	0.19605	293	17	205	33	380	210	22.89474	293	17	2.147	0.072
-6-2.8-DZ1-088	Qutpu_1-	0.36	0.024	0.0486	0.004	0.2955	305.8	6.3	320	14	410	100	25.41463	305.8	6.3	0.4734	0.0072
OG-2.8-DZ1-035	Qutput_1-	0.393	0.037	0.0494	0.0016	0.80909	308.8	9.6	342	41	429	43	28.01865	308.8	9.6	2.423	0.049
-0,2.8-DZ1-032	Qutpu_1-	0.451	0.037	0.0493	0.0012	0.84956	310	7.4	407	16	774	36	58.79248	310	7.4	2.764	0.045
OG-2.8-DZ1-077	Qutpu_1-	0.385	0.026	0.0505	0.0013	0.61952	317.9	8.4	327	15	415	73	23.39759	317.9	8.4	1.685	0.02
OG-2.8-DZ1-120	Qutpu_1-	0.408	0.02	0.0517	0.0014	0.12475	325.2	6.6	327.8	8.2	532	92	38.87218	325.2	6.6	4.45	0.037
-6-2.8-DZ1-079	Qutpu_1-	0.405	0.024	0.05179	0.00093	0.001	325.5	5.7	347	14	510	140	36.17647	325.5	5.7	2.34	0.036
OC-2.8-DZ1-055	Output_1.	0.398	0.037	0.0527	0.0016	0.55273	331	10	331	14	380	110	12.89474	331	10	2.011	0.063
OC-2.8-DZ1-070	Qutpu_1-	0.373	0.024	0.0536	0.0013	0.084818	336.8	- 8	339.9	8.3	230	140	-46.4348	336.8	- 8	1.943	0.027
OC-2.8-DZ1-048	Output_1.	0.405	0.043	0.0546	0.0011	0.55135	342.8	6.5	343	15	340	140	-0.82353	342.8	6.5	2.676	0.042
DG-2.8-DZ1-025	Quput-1=	0.445	0.043	0.0549	0.0016	0.61837	344	2.8	363	23	470	110	26.80854	344	2.8	4.852	0.047
OG-2.8-DZ1-050	Qutpu_1=	0.9	0.32	0.0564	0.0037	0.96303	353	${ }^{23}$	580	160	1780	520	80.16854	353	${ }^{23}$	1.159	0.035
OG-2.8-DZ1-053	Qutput_1-	0.506	0.068	0.0597	0.0024	0.80107	374	15	412	26	620	140	39.67742	374	45	4.64	0.4
OC-2.8-DZ1-073	Qutput_ 1	0.534	0.027	0.0655	0.0019	0.65342	409	11	411	13	619	74	33.92569	409	11	2.332	0.088
OC-2.8-DZ1-092	Output_1.	0.507	0.03	0.0665	0.002	0.11414	415	12	408	17	440	130	5.681818	415	12	1.654	0.063
OG-2.8-DZ1-072	Qutpu_1-	0.59	0.026	0.0677	0.0027	0.89765	422	17	493	10	719	44	41.30737	422	17	1.301	0.056
OC-2.8-DZ1-046	Output_1.	0.539	0.045	0.0678	0.002	0.35612	423	12	446	14	509	78	16.89587	423	12	1.442	0.046
OC-2.8-DZ1-119	Output_1.	0.518	0.027	0.0684	0.002	0.82423	426	12	432	13	438	57	2.739726	426	12	0.874	0.036
OC-2.8-DZ1-034	Output_1.	0.523	0.046	0.0684	0.002	0.36053	427	12	427	14	420	120	-1.66667	427	12	1.228	0.015
OC-2.8-DZ1-026	Qutput1=	0.518	0.059	0.0685	0.0015	0.095417	427.3	9.3	431	27	330	180	-29.4848	427.3	9.3	1.272	0.016
OC-2.8-DZ1-006	Output_1.	0.544	0.046	0.0689	0.0016	0.56574	429.5	9.4	425	12	469	61	8.422175	429.5	9.4	2.097	0.026
OG-2.8-DZ1-063	Qutpu_1-	0.504	0.028	0.0697	0.0016	0.8087	434.4	9.9	429.5	9.7	360	100	-20.5833	434.4	9.9	4.835	0.042
OG-2.8-DZ1-110	Qutpu_1	0.657	0.097	0.0698	0.0024	0.81947	435	44	414	40	830	250	47.59036	435	14	0.438	0.044
OC-2.8-DZ1-103	Output_1.	0.542	0.022	0.0706	0.0013	0.69069	439.9	8.1	443	14	451	68	2.461197	439.9	8.1	0.7	0.013
OC-2.8-DZ1-001	Output_1	0.552	0.054	0.072	0.0013	0.001	448.2	7.5	455	18	460	220	2.565217	448.2	7.5	1.493	0.013
OG-2.8-DZ1-054	Qutpu_1-	0.658	0.064	0.0742	0.0043	0.86154	464	26	560	41	773	74	40.36223	461	26	1.955	0.066
OC-2.8-DZ1.044	Qutputi_	0.801	0.11	0.0785	0.0029	0.001	487	17	561	36	970	290	49.79381	487	17	2.101	0.059
OC-2.8-DZ1-089	Qutput_1	1.215	0.049	0.0797	0.0026	0.21083	494	16	1170	280	1834	41	73.02024	494	16	8.5	0.39
OC-2.8-DZ1-058	Output_1.	0.695	0.067	0.0864	0.002	0.71639	534	12	565	39	570	110	6.315789	534	12	2.924	0.022
OC-2.8-DZ1-112	Qutput_1	0.849	0.053	0.0943	0.0029	0.51312	581	17	577	27	840	140	30.83333	581	17	2.889	0.075
OC-2.8-DZ1-022	Output_1.	0.824	0.075	0.0957	0.0016	0.49092	588.9	9.6	614	18	631	93	6.671949	588.9	9.6	0.335	0.021
OC-2.8-DZ1-109	Output_1.	0.81	0.038	0.0956	0.002	0.001	589	12	613.6	9.8	650	100	9.384615	589	12	0.934	0.017
OC-2.8-DZ1-019	Output_1.	0.845	0.074	0.0977	0.0029	0.22635	601	17	587	32	600	120	-0.16667	601	17	2.09	0.018
OC-2.8-DZ1-030	Output_1	0.844	0.077	0.0998	0.0026	0.5244	613	15	625	21	633	75	3.159558	613	15	1.291	0.088
OC-2.8-DZ1-024	Output_1.	0.865	0.083	0.1002	0.0034	0.63843	615	20	611	26	635	98	3.149606	615	20	1.643	0.022
OG-2.8-DZ1-018	Qutpu_1-	0.851	0.069	0.1005	0.0023	0.71422	617	14	619	48	580	44	-6.37931	617	14	1.1168	0.0073
OC-2.8-DZ1-060	Output_1.	0.905	0.081	0.1053	0.0027	0.68646	645	16	684	12	695	48	7.194245	645	16	0.823	0.018
OC-2.8-DZ1-080	Output_1.	0.956	0.082	0.1126	0.0037	0.76912	687	22	679	14	680	120	-1.02941	687	22	0.606	0.023
OC-2.8-DZ1-086	Qutput1 1 -	1.052	0.083	0.1152	0.0052	0.73976	702	30	755	43	878	74	20.04556	702	30	2.84	0.26
OC-2.8-DZ1-029	Output_1.	1.6	0.17	0.1608	0.0057	0.44989	961	32	999	55	930	130	-3.33333	961	32	0.45	0.028

OC-2.8-DZ1-090	Output_1	1.66	0.16	0.1617	0.0046	0.044911	966	26	989	49	1060	200	8.867925	966	26	1.398	0.037
OC-2.8-DZ1-117	Output_1	1.651	0.078	0.1658	0.0046	0.28979	989	25	1012	50	986	86	-0.30426	989	25	1.747	0.034
OC-2.8-DZ1-111	Output_1	1.761	0.079	0.166	0.0069	0.87683	990	38	1025	29	1109	33	10.73039	990	38	1.049	0.058
OC-2.8-DZ1-037	Output_1	1.666	0.15	0.1662	0.004	0.43466	991	22	1032	21	963	95	-2.90758	991	22	1.176	0.016
OC-2.8-DZ1-042	Output_1	1.72	0.19	0.1662	0.0039	0.72246	991	21	1002	38	1020	140	2.843137	991	21	0.6005	0.0078
OC-2.8-DZ1-074	Quput_1	1.86	0.13	0.1671	0.0044	0.71362	996	24	1010	29	1251	90	20.38369	996	24	0.729	0.014
OC-2.8-DZ1-095	Output_1	1.657	0.11	0.167	0.0044	0.15415	996	24	986	42	990	120	-0.60606	996	24	0.95	0.012
OC-2.8-DZ1-118	Output_1	1.703	0.089	0.1683	0.0081	0.44868	1003	44	940	40	1050	100	4.47619	1003	44	3.087	0.081
OC-2.8-DZ1-059	Output_1	1.856	0.17	0.1728	0.0038	0.70025	1027	21	1084	11	1132	54	9.275618	1027	21	1.194	0.032
OC-2.8-DZ1-038	Output_1	1.82	0.2	0.173	0.0043	0.35287	1028	24	1070	69	1130	120	9.026549	1028	24	1.403	0.088
OC-2.8-DZ1-098	Output_1	1.82	0.24	0.1732	0.0074	0.73928	1030	41	1035	68	1120	200	8.035714	1030	41	1.561	0.096
OC-2.8-DZ1-012	Output_1	1.812	0.14	0.1744	0.0035	0.21554	1036	19	1039	41	999	51	-3.7037	1036	19	4.777	0.069
OG-2.8-DZ1-076	Qutput_1	1.73	0.12	0.1775	0.003	0.001	1053	16	1073	49	930	100	-13.2258	1053	16	2.02	0.11
OG-2.8-DZ1-054	Qutput_1	1.766	0.17	0.1788	0.0044	0.001	1060	24	1109	55	950	110	-11.5789	1060	24	3.639	0.064
OC-2.8-DZ1-003	Output_1	1.91	0.18	0.1801	0.0063	0.54266	1067	34	1088	28	1111	90	3.960396	1067	34	2.261	0.038
OC-2.8-DZ1-115	Output_1	1.927	0.08	0.1867	0.0034	0.62696	1104	18	1093	26	1089	33	-1.37741	1104	18	3.039	0.05
OC-2.8-DZ1-094	Output_1	2.05	0.14	0.1899	0.0066	0.81339	1120	36	1113	34	1166	81	3.945111	1120	36	2.606	0.064
OC-2.8-DZ1-020	Output_1	2.021	0.17	0.1902	0.006	0.75962	1122	33	1108	39	1088	38	-3.125	1122	33	1.917	0.04
OC-2.8-DZ1-097	Output_1	1.983	0.1	0.1907	0.004	0.67825	1125	22	1155	28	1061	48	-6.03205	1125	22	2.011	0.031
OC-2.8-DZ1-036	Output_1	2.08	0.17	0.1933	0.005	0.78606	1139	27	1182	40	1134	47	-0.44092	1139	27	2.872	0.03
OC-2.8-DZ1-085	Output_1	2.116	0.11	0.1986	0.0054	0.56094	1167	29	1142	15	1160	68	-0.60345	1167	29	2.061	0.03
OC-2.8-DZ1-014	Qutput_1	3.24	0.74	0.205	0.022	0.57654	1200	120	1060	250	1680	410	28.57143	1200	120	1.91	0.11
OC-2.8-DZ1-017	Output_1	2.377	0.2	0.2059	0.0047	0.84597	1207	26	1234	63	1253	34	3.671189	1207	26	3.351	0.035
OC-2.8-DZ1-107	Output_1	2.56	0.16	0.206	0.0084	0.74856	1207	45	1109	56	1423	72	15.1792	1207	45	1.87	0.11
OC-2.8-DZ1-114	Output_1	2.34	0.11	0.206	0.0029	0.5472	1207	15	1134	51	1272	70	5.110063	1207	15	3.23	0.17
OC-2.8-DZ1-040	Output_1	2.5	0.25	0.2103	0.0037	0.71819	1230	20	1269	27	1300	100	5.384615	1230	20	1.573	0.038
OC-2.8-DZ1-099	Output_1	2.32	0.15	0.2103	0.0068	0.68632	1230	36	1312	40	1194	89	-3.01508	1230	36	2.907	0.054
OC-2.8-DZ1-031	Output_1	2.49	0.23	0.2105	0.0073	0.52848	1231	39	1241	38	1288	76	4.425466	1231	39	1.272	0.019
OC-2.8-DZ1-010	Qutput_1	2.62	0.23	0.2291	0.0071	0.89491	1330	37	1322	54	1232	51	-7.95455	1232	51	2.691	0.056
OC-2.8-DZ1-009	Output_1	2.475	0.21	0.2117	0.0042	0.43201	1238	22	1001	22	1276	62	2.978056	1238	22	1.734	0.031
OC-2.8-DZ1-102	Output_1	2.438	0.096	0.2123	0.0056	0.49476	1241	30	1297	43	1275	38	2.666667	1241	30	1.91	0.023
OC-2.8-DZ1-033	Output_1	2.52	0.25	0.216	0.011	0.69567	1261	57	1301	42	1263	92	0.158353	1261	57	2.09	0.15
OC-2.8-DZ1-084	Output_1	2.404	0.1	0.2164	0.0065	0.50962	1262	35	1267	49	1245	65	-1.36546	1262	35	2.019	0.045
OC-2.8-DZ1-069	Output_1	2.81	0.1	0.2219	0.0054	0.76059	1292	29	1269	30	1491	35	13.34675	1292	29	1.907	0.018
OC-2.8-DZ1-104	Output_1	2.763	0.12	0.236	0.005	0.031453	1366	26	1424	36	1309	77	-4.35447	1309	77	3.23	0.11
OC-2.8-DZ1-081	Output_1	2.777	0.1	0.2346	0.0027	0.78529	1359	14	1356	29	1369	32	0.73046	1369	32	2.709	0.035
OC-2.8-DZ1-075	Output_1	2.84	0.21	0.235	0.01	0.22404	1360	54	1425	79	1390	150	2.158273	1390	150	2.723	0.065
OC-2.8-DZ1-064	Output_1	3.21	0.16	0.2603	0.0045	0.67442	1491	23	1493	23	1437	42	-3.75783	1437	42	1.645	0.015
OC-2.8-DZ1-061	Output_1	3.178	0.14	0.2521	0.0085	0.67568	1449	44	1491	32	1457	53	0.549073	1457	53	4.75	0.31
OC-2.8-DZ1-065	Output_1	3.256	0.14	0.2608	0.0061	0.68145	1494	31	1525	47	1469	55	-1.70184	1469	55	1.552	0.034
OC-2.8-DZ1-045	Output_1	3.31	0.28	0.2545	0.007	0.89718	1461	36	1503	28	1477	22	1.083277	1477	22	2.34	0.065
OC-2.8-DZ1-013	Output_1	3.32	0.3	0.2551	0.0083	0.69605	1464	43	1447	51	1491	46	1.810865	1491	46	0.467	0.028
OC-2.8-DZ1-082	Output_1	3.118	0.11	0.2465	0.006	0.86514	1420	31	1410	42	1496	25	5.080214	1496	25	3.501	0.061
OC-2.8-DZ1-023	Output_1	3.65	0.32	0.2694	0.0062	0.671	1537	32	1692	47	1542	65	0.324254	1542	65	1.17	0.016
OC-2.8-DZ1-087	Output_1	3.74	0.19	0.2818	0.0062	0.46651	1600	31	1537	46	1578	63	-1.39417	1578	63	1.148	0.026
OC-2.8-DZ1-021	Output_1	3.578	0.3	0.2586	0.0066	0.64278	1482	34	1512	54	1584	46	6.439394	1584	46	2.36	0.055
OC-2.8-DZ1-071	Output_1	3.952	0.16	0.2891	0.0055	0.59882	1637	28	1623	48	1629	27	-0.4911	1629	27	1.266	0.021
OC-2.8-DZ1-057	Output_1	3.97	0.35	0.2842	0.0087	0.683	1612	44	1700	37	1641	50	1.767215	1641	50	2.371	0.024
OC-2.8-DZ1-005	Output_1	3.74	0.32	0.2605	0.0068	0.70211	1492	35	1401	30	1650	59	9.575758	1650	59	1.529	0.013
OC-2.8-DZ1-078	Output_1	3.77	0.16	0.2728	0.0055	0.74624	1555	28	1498	35	1659	38	6.268837	1659	38	1.774	0.021

OC-2.8-DZ1-101	Output_1.	3.99	0.21	0.2866	0.0076	0.59498	1624	38	1647	46	1665	55	2.462462	1665	55	2.189	0.02
OC-2.8-DZ1-093	Qutput1-	3.298	0.13	0.2358	0.0038	0.65892	1365	20	1490	35	1666	31	18.06723	1666	31	4.53	0.23
OC-2.8-DZ1-108	Output_1.	4.13	0.2	0.2908	0.0091	0.896	1645	46	1664	35	1676	26	1.849642	1676	26	2.129	0.015
OC-2.8-DZ1-039	Output_1.	3.91	0.35	0.2703	0.0085	0.68158	1542	43	1646	52	1677	65	8.050089	1677	65	1.501	0.025
OC-2.8-DZ1-113	Output_1.	4.068	0.15	0.2877	0.0081	0.69107	1630	40	1650	41	1677	45	2.802624	1677	45	1.54	0.049
OC-2.8-DZ1-028	Output_1.	4.21	0.37	0.2891	0.009	0.83171	1637	46	1681	55	1680	46	2.559524	1680	46	1.177	0.012
OC-2.8-DZ1-016	Output_1.	4.79	0.4	0.322	0.0097	0.85087	1797	48	1880	92	1719	36	-4.53752	1719	36	1.145	0.09
OC-2.8-DZ1-100	Output_1.	4.34	0.19	0.303	0.0076	0.51358	1706	38	1731	70	1722	67	0.929152	1722	67	3.041	0.023
OC-2.8-DZ1-066	Output_1.	4.5	0.29	0.31	0.014	0.94015	1739	71	1765	30	1729	36	-0.57837	1729	36	3	0.33
OC-2.8-DZ1-043	Output_1.	4.42	0.4	0.294	0.011	0.84091	1660	57	1853	75	1754	42	5.359179	1754	42	4.52	0.25
OC-2.8-DZ1-096	Output_1.	4.66	0.19	0.318	0.011	0.44457	1779	54	1726	56	1770	73	-0.50847	1770	73	2.591	0.046
OC-2.8-DZ1-008	Output_1.	4.52	0.47	0.3	0.017	0.87838	1689	83	1660	100	1793	63	5.800335	1793	63	1.73	0.14
OC-2.8-DZ1-002	Output_1.	5.07	0.4	0.3215	0.0075	0.79139	1797	37	1779	38	1801	38	0.222099	1801	38	1.566	0.054
OC-2.8-DZ1-004	Qutput-1	8	10	0.261	0.081	0.9998	1470	380	3.60E 103	$5.00 \mathrm{E}_{103}$	1820	690	19.23077	1820	690	2.34	0.13
OC-2.8-DZ1-049	Output_1.	5.4	0.46	0.336	0.01	0.81487	1866	50	1912	61	1866	36	0	1866	36	1.508	0.021
OC-2.8-DZ1-015	Output_1.	5.63	0.46	0.3416	0.0085	0.80472	1894	41	1909	53	1877	41	-0.9057	1877	41	2.418	0.015
OC-2.8-DZ1-007	Output_1.	5.68	0.46	0.339	0.012	0.8562	1879	56	1888	52	1917	31	1.982264	1917	31	1.449	0.017
OC-2.8-DZ1-091	Output_1.	6.35	0.32	0.366	0.01	0.83418	2009	49	2019	40	2058	40	2.380952	2058	40	0.864	0.013
OC-2.8-DZ1-106	Output_1.	7.26	0.3	0.3935	0.0079	0.86116	2139	37	2133	44	2145	27	0.27972	2145	27	1.956	0.019
OC-2.8-DZ1-105	Qu_-	5.84	0.35	0.286	0.013	0.88938	1619	67	4818	57	2321	42	30.24558	2321	42	1.5	0.045
OC-2.8-DZ1-011	Qutput-1	8.49	0.67	0.3549	0.0026	0.36612	1958	13	2030	110	2547	27	23.12525	2547	27	3.55	0.14
OC-2.8-DZ1-067	Output_1.	11.25	0.66	0.482	0.011	0.72252	2537	50	2501	81	2559	58	0.859711	2559	58	1.253	0.024
OC-2.8-DZ1-068	Output_1.	11.37	0.46	0.482	0.012	0.79592	2534	52	2546	53	2583	28	1.897019	2583	28	0.719	0.011
OC-2.8-DZ1-052	Qutpu_1-	8.6	1.4	0.345	0.049	0.99712	1900	240	2430	160	2633	12	27.83897	2633	12	2.2	0.18
OC-2.8-DZ1-062	Qutput1 1	8.92	0.5	0.3359	0.006	0.001	1867	29	5020	470	2761	97	32.37957	2761	97	2.083	0.049
OC-2.8-DZ1-116	Output_1.	14.81	0.67	0.535	0.014	0.8708	2760	60	2794	74	2849	27	3.123903	2849	27	14.72	0.5
OG-2.8-DZ1-056	Qutput1-	11.4	1.6	0.377	0.042	0.99793	2060	200	2340	120	2965	19	30.52277	2965	19	1.737	0.097
OC-2.8-DZ1-083	Output_1.	17.88	0.96	0.554	0.018	0.95283	2841	74	2870	160	3106	26	8.531874	3106	26	11.8	1

Table 2: U/Pb data from Sample: OC_56_DZ2

Analysis		Final207_2	Pinal207_:	:Final206_2	2Final206_:	ErrorCorre	FinalAge 2	FinalAge2	FinalAge2	FinalAge 2	FinalAge 2	FinalAge2	Perc_DISC	Preferred.	Preferred	FInal_U_T	FInal_U_Th_Ratio_In
OC-56-DZ2-001	OC56DZ2_	1.689	0.075	0.1684	0.0032	0.25277	1003.4	18	959	25	940	110	-7	1003.4	18	1.604	0.017
OC-56-DZ2-002	OC56DZ2	2.6	0.11	0.2243	0.0072	0.77256	1304	38	1257	61	1290	89	-1	1290	89	2.707	0.031
OC-56-DZ2-003	OC56DZ2_	3.83	0.12	0.2676	0.0088	0.95773	1528	45	1514	65	1666	60	8	1666	60	3.201	0.034
OC-56-DZ2-004	OC56DZ2	14.59	0.23	0.533	0.016	0.7964	2752	65	2668	68	2813	46	2	2813	46	1.215	0.022
OC-56-DZ2-005	OC56DZ2_	4.177	0.056	0.2956	0.0073	0.49073	1670	37	1670	55	1664	69	0	1664	69	4.757	0.02
OC-56-DZ2-006	OG56DZ2	0.545	0.018	0.0662	0.0019	0.73179	413.1	12	414	14	616	77	33	413.1	12	1.44	0.012
OC-56-DZ2-007	OC56DZ2_	0.711	0.026	0.0887	0.002	0.4416	548.1	12	545	20	542	110	-1	548.1	12	2.544	0.044
OC-56-DZ2-008	OC56DZ2	4.42	0.21	0.3024	0.0092	0.58582	1703	45	1710	34	1754	92	3	1754	92	3.817	0.036
OC-56-DZ2-009	OC56DZ2_	17.98	0.45	0.577	0.018	0.83936	2938	73	2822	69	3035	52	3	3035	52	1.86	0.019
OC-56-DZ2-010	OC56DZ2_	2.66	0.26	0.2246	0.0065	0.023799	1306	34	1274	77	1340	210	- 3	1340	210	1.319	0.029
OC-56-DZ2-011	OC56DZ2_	0.388	0.018	0.0515	0.0018	0.76884	323.9	11	276	15	416	110	22	323.9	11	1.902	0.025
OC-56-DZ2-012	OC56DZ2	3.757	0.069	0.2712	0.0066	0.81184	1547	33	1571	41	1653	62	- 6	1653	62	1.318	0.071
OC-56-DZ2-013	OC56DZ2_	1.791	0.09	0.1783	0.0069	0.83237	1057	38	1051	41	1076	100	- 2	1057	38	2.281	0.068
OC-56-DZ2-014	OC56DZ2	10.1	0.32	0.454	0.014	0.84752	2413	62	2426	81	2484	60	3	2484	60	1.827	0.026
OC-56-DZ2-015	OC56DZ2_	3.91	0.1	0.2856	0.0087	0.79758	1619	44	1618	41	1626	64	0	1626	64	1.01	0.017
OC-56-DZ2-016	OC56DZ2	12.21	0.46	0.502	0.018	0.94289	2620	77	2636	80	2598	57	-1	2598	57	2.121	0.023
OC-56-DZ2-017	OC56DZ2_	4.015	0.084	0.2951	0.0074	0.80293	1667	37	1664	57	1584	66	-5	1584	66	2.3323	0.0099
OC-56-DZ2-018	OC56DZ2	0.604	0.029	0.0753	0.002	0.56963	468.3	12	475	19	476	120	2	468.3	12	2.311	0.038
OC-56-DZ2-019	OC56DZ2	0.379	0.021	0.05292	0.0013	0.23102	332.4	- 8	332	13	220	140	-51	332.4	- 8	2.82	0.11
OC-56-DZ2-020	OC56DZ2	3.14	0.16	0.2552	0.0082	0.48353	1465	42	1455	32	1352	100	-8	1352	100	0.8208	0.0084
OC-56-DZ2-021	OC56DZ2_	2.62	0.11	0.2203	0.0048	0.48708	1284	25	1334	43	1287	94	0	1284	25	3.12	0.1
OC-56-DZ2-022	OC56DZ2	1.642	0.074	0.1679	0.0038	0.23756	1000	21	976	37	920	120	-9	1000	21	3.283	0.066
OC-56-DZ2-023	OC56DZ2_	1.68	0.11	0.1657	0.0053	0.12486	988	29	1002	36	1016	99	3	988	29	0.719	0.017
OC-56-Dz2-024	0656072	0.723	0.034	0.0961	0.0019	0.36678	591.6	11	641	32	370	130	-60	591.6	11	2.784	0.047
OC-56-DZ2-025	OC56DZ2_	1.626	0.053	0.1684	0.0051	0.52771	1003	28	990	47	921	100	-9	1003	28	3.503	0.047
OC-56-DZ2-026	0656Dz2	1.842	0.069	0.1839	0.0057	0.72062	1088	31	1110	25	958	97	-14	1088	34	2.364	0.054
OC-56-DZ2-027	OC56Dz2_	3.799	0.088	0.2812	0.0081	0.92308	1597	41	1585	57	1557	60	-3	1557	60	9.18	0.67
OC-56-DZ2-028	OC56DZ2_	1.98	0.063	0.1879	0.0046	0.82433	1110	25	963	27	1066	77	-4	1110	25	2.255	0.052
OC-56-DZ2-029	OG56072	2.92	0.12	0.199	0.0066	0.82693	1170	35	1164	33	1707	73	31	1170	35	1.521	0.024
OC-56-DZ2-030	0056072	0.777	0.027	0.0913	0.0027	0.29857	563	16	540	7.4	668	91	16	563	16	1.004	0.061
0C-56-DZ2-031	0656072	3.77	0.19	0.2557	0.0087	0.001	1467	45	1476	57	1780	130	18	1780	130	0.6605	0.0074
0c-56-Dz2-032	0656072	6.76	0.62	0.233	0.04	0.60588	1340	220	1323	57	2725	66	51	2725	66	2.327	0.066
OC-56-DZ2-033	OC56DZ2_	3.83	0.14	0.2808	0.0088	0.65127	1595	44	1563	42	1638	79	3	1638	79	1.941	0.026
OC-56-DZ2-034	OC56DZ2	11.79	0.24	0.462	0.017	0.75374	2448	73	2469	67	2714	73	10	2714	73	2.139	0.074
OC-56-DZ2-035	OC56DZ2_	1.836	0.068	0.1724	0.0055	0.57355	1034	24	1049	35	1157	92	11	1034	24	0.891	0.013
OC-56-DZ2-036	OC56DZ2_	2.219	0.073	0.1953	0.0057	0.8371	1150	31	1175	51	1243	72	7	1150	31	3.697	0.053
OC-56-DZ2-037	OC56DZ2	4.31	0.18	0.2874	0.011	0.93002	1628	53	1583	70	1758	66	-7	1758	66	2.84	0.042
OC-56-DZ2-038	OC56Dz2_	1.714	0.093	0.1656	0.0042	0.2095	988	23	1003	25	1068	90	7	988	23	3.011	0.047
OC-56-DZ2-039	OC56DZ2	1.669	0.044	0.1661	0.0044	0.63818	991	25	1000	29	979	82	-1	991	25	2.69	0.033
OC-56-DZ2-040	OC56DZ2_	4.73	0.13	0.2995	0.0087	0.4667	1688	43	1691	52	1846	83	9	1846	83	2.42	0.025
OC-56-DZ2-041	Output_1.	4.21	0.2	0.294	0.0097	0.73896	1661	48	1664	68	1696	76	2	1696	76	0.929	0.033
0656-072-042	-	4.48	0.18	0.2812	0.0057	0.84235	7507	29	4514	48	4002	64	46	4002	64	5.461	0.043
OC-56-DZ2-043	Qutput_1	0.501	0.03	0.0626	0.0017	0.66104	391.7	14	376.3	7.9	578	83	32	391.7	11	2.269	0.081
OC-56-DZ2-044	Output_1.	4.46	0.2	0.3075	0.0089	0.54395	1728	44	1744	67	1718	88	-1	1718	88	2.28	0.025
OC-56-DZ2-045	Output_1.	2.51	0.16	0.2123	0.0063	0.61476	1241	34	1256	60	1328	100	7	1241	34	2.546	0.038
OC-56-DZ2-046	Output_1.	5.17	0.22	0.321	0.012	0.78897	1794	56	1469	73	1911	72	- 6	1911	72	1.357	0.046

OC-56-DZ2-048	Output_1.	3.97	0.16	0.2798	0.0089	0.70976	1590	45	1666	44	1674	68	5	1674	68	4.27	0.11
OC-56-DZ2-049	Output_1	2.138	0.098	0.198	0.0062	0.87582	1165	33	1167	28	1155	71	-1	1165	33	1.502	0.013
OC-56-DZ2-050	Output_1.	2.071	0.1	0.1938	0.0055	0.64739	1142	30	1170	44	1132	85	-1	1142	30	1.735	0.023
OC-56-DZ2-051	Output_1.	0.449	0.028	0.06	0.0018	0.50933	375.7	11	372	16	370	130	-2	375.7	11	0.7497	0.0093
OC-56-DZ2-052	Output_1.	4.07	0.19	0.2858	0.009	0.86028	1620	45	1612	51	1655	74	2	1655	74	1.546	0.025
0656-072-053	- 1	0.378	0.02	0.0492	0.0014	0.81068	30.5	8.4	304.3	6.3	412	85	25	30.5	8.4	1.3547	0.0085
OC-56-DZ2-054	Output_1.	3.54	0.25	0.2632	0.0067	0.58629	1506	34	1530	100	1570	120	4	1570	120	3.685	0.098
OC-56-DZ2-055	Output_1.	3.88	0.2	0.2784	0.0091	0.85942	1583	46	1589	29	1641	72	4	1641	72	1.155	0.013
OC-56-DZ2-056	Output_1.	0.812	0.072	0.1007	0.0041	0.19476	618	24	607	28	600	150	-3	618	24	1.175	0.031
OC-56-DZ2-057	Quput_-	1.758	0.11	0.1504	0.004	0.73337	903	23	82	47	1331	80	32	903	23	1.683	0.064
OC-56-DZ2-058	Output_1.	5.61	0.25	0.3409	0.0099	0.90788	1891	48	1848	54	1941	61	3	1941	61	0.88	0.013
OC-56-DZ2-059	Output_1.	2.69	0.17	0.2255	0.0089	0.29131	1311	47	1318	47	1340	130	2	1340	130	1.039	0.012
OG-56-DZ2-060	Oupu_1-	3.02	0.25	0.2577	0.0066	0.007836	1478	34	4498	49	1300	480	44	4300	480	1.006	0.01
OC-56-DZ2-061	Output_1.	4.04	0.18	0.2887	0.01	0.81141	1634	51	1648	45	1646	69	1	1646	69	1.099	0.022
OC-56-DZ2-062	Output_1.	3.98	0.19	0.2843	0.008	0.77411	1613	40	1569	51	1648	69	2	1648	69	1.719	0.037
OC-56-DZ2-063	Output_1.	10.2	0.43	0.438	0.012	0.78596	2340	55	2228	59	2525	63	7	2525	63	1.734	0.027
OC-56-DZ2-064	Output_1	1.647	0.075	0.1605	0.0036	0.53786	959	20	919	19	1011	72	5	959	20	1.488	0.059
OC-56-DZ2-065	Output_1.	2.08	0.095	0.1933	0.0057	0.42981	1139	31	1155	61	1141	86	0	1139	31	2.714	0.046
OC-56-DZ2-066	Output_1.	0.511	0.044	0.067	0.002	0.10893	418.2	12	426	17	400	180	-5	418.2	12	1.49	0.21
OC-56-DZ2-067	Output_1.	0.835	0.07	0.09885	0.0019	0.001	607.7	11	598	19	640	210	5	607.7	11	0.781	0.015
OC-56-DZ2-068	Output_1.	2.478	0.1	0.2043	0.0051	0.20957	1198	27	1093	24	1375	78	13	1198	27	0.995	0.013
OC-56-DZ2-069	Output_1.	3.87	0.21	0.2761	0.0077	0.58458	1572	39	1611	42	1645	95	4	1645	95	1.463	0.028
OC-56-DZ2-070	Output_1.	3.948	0.14	0.2903	0.01	0.66846	1643	50	1653	34	1615	76	-2	1615	76	1.389	0.042
OC-56-DZ2-071	Output_1.	1.895	0.1	0.1813	0.0042	0.79891	1074	23	1078	32	1056	84	-2	1074	23	1.876	0.025
OC-56-DZ2-072	Output_1.	1.606	0.086	0.1574	0.0044	0.78483	942	24	945	34	1029	84	8	942	24	0.743	0.014
OC-56-DZ2-073	Output_1.	1.705	0.074	0.1698	0.005	0.05397	1011	27	1008	26	999	98	-1	1011	27	2.251	0.028
OC-56-DZ2-074	Output_1.	4.422	0.18	0.2938	0.01	0.92263	1660	51	1637	79	1760	61	6	1760	61	1.838	0.043
OC-56-DZ2-075	Output_1.	0.544	0.037	0.0703	0.0029	0.86904	438	17	430	18	443	100	1	438	17	1.278	0.012
OC-56-DZ2-076	Qutpu_1	0.915	0.098	0.1045	0.0047	0.001	644	28	631	16	780	190	18	644	28	0.6414	0.0058
OC-56-DZ2-077	Output_1.	2.659	0.12	0.2237	0.0058	0.77566	1301	31	1262	50	1335	68	3	1335	68	0.475	0.011
OC-56-DZ2-078	Output_1.	4.3	0.21	0.2978	0.01	0.83697	1680	52	1678	84	1700	71	1	1700	71	4.48	0.07
OC-56-DZ2-079	Output_1.	1.675	0.1	0.1626	0.0049	0.68049	971	27	954	29	1044	100	7	971	27	0.769	0.011
OC-56-DZ2-080	Output_1.	1.442	0.07	0.1467	0.0051	0.45994	882	29	858	27	982	85	10	882	29	1.448	0.024
OC-56-DZ2-081	Output_1.	2.8	0.15	0.2316	0.0063	0.7562	1343	33	1315	59	1359	82	1	1359	82	2.119	0.022
OC-56-DZ2-082	Output_1.	11.42	0.28	0.465	0.013	0.98702	2460	56	940	21	2642.1	38	7	2642.1	38	7.058	0.063
OC-56-DZ2-083	Output_1.	17.08	0.42	0.587	0.015	0.84662	2978	61	2762	80	2920	44	-2	2920	44	1.778	0.017
OC-56-DZ2-084	Output_1.	1.708	0.048	0.1693	0.0045	0.44064	1008	25	940	28	1029	78	2	1008	25	1.182	0.015
OC-56-DZ2-085	Output_1.	1.79	0.11	0.1738	0.0057	0.25824	1033	31	972	51	1128	94	8	1033	31	1.724	0.014
OC-56-DZ2-086	Output_1.	0.398	0.035	0.0536	0.0019	0.56236	336	12	345	16	430	130	22	336	12	1.214	0.014
OC-56-DZ2-087	Output_1.	6.36	0.25	0.3802	0.011	0.871	2077	50	2050	61	2007	56	-3	2007	56	1.849	0.022
OC-56-DZ2-088	Output_1.	1.612	0.057	0.1581	0.0067	0.93208	946	37	896	23	1038	51	9	946	37	2.66	0.23
OC-56-DZ2-089	Output_1.	0.723	0.077	0.089	0.0098	0.90447	547	58	579	43	580	130	6	547	58	2.008	0.082
OC-56-DZ2-090	Output_1	2.079	0.078	0.1992	0.006	0.80511	1171	33	1122	31	1094	66	-7	1171	33	2.93	0.15
OC-56-DZ2-091	Output_1.	3.85	0.099	0.2865	0.0076	0.61151	1624	38	1603	33	1583	62	-3	1583	62	1.977	0.037
OC-56-D72-092	Output_1	0.2506	0.0093	0.02103	0.00049	0.40651	134.2	3.1	152	2	1372	83	9	134.2	3.1	1.53	0.039
OC-56-DZ2-093	Output_1.	2.79	0.13	0.2404	0.0075	0.80391	1389	39	1428	47	1303	75	-7	1303	75	1.597	0.015
OC-56-DZ2-094	Output_1.	1.699	0.06	0.1773	0.0043	0.36135	1052	24	1060	38	955	74	-10	1052	24	3.25	0.12
OC-56-DZ2-095	Output_1.	0.857	0.037	0.1062	0.0032	0.68688	651	19	628	27	602	100	-8	651	19	1.15	0.12

OC-56-DZ2-095	Output_1.	0.857	0.037	0.1062	0.0032	0.68688	651	19	628	27	602	100	-8	651	19	1.15	0.12
OC-56-DZ2-096	Output_1.	0.493	0.024	0.0674	0.0017	0.72506	420.5	11	389.2	9.9	353	99	-19	420.5	11	1.389	0.041
OC-56-DZ2-097	Output_1.	0.396	0.016	0.0557	0.0018	0.28218	350	11	320.3	7.1	290	120	-21	350	11	2.956	0.033
OG-56-DZ2-098	Qutput_1-	0.597	0.035	0.0847	0.0036	0.38676	524	24	502	25	350	170	-50	524	24	1.357	0.064
OC-56-DZ2-099	Qutput-1	1.422	0.049	0.1625	0.0032	0.45331	974	18	944	53	761	91	-28	971	18	3.122	0.063
OC-56-DZ2-100	Output_1.	1.797	0.07	0.1812	0.0061	0.68501	1073	34	1042	36	1035	65	-4	1073	34	1.248	0.013
OG-56-DZ2-101	Qutput-1-1	4.13	0.45	0.247	0.022	0.94996	4420	110	2140	100	2004	68	29	2004	68	2.08	0.38
OC-56-DZ2-102	Output_1	11.43	0.25	0.48	0.014	0.82819	2526	60	2585	53	2575	42	2	2575	42	0.8184	0.004
OC-56-DZ2-103	Output_1.	4.64	0.13	0.316	0.0067	0.9117	1770	33	1832	52	1731	52	-2	1731	52	2.32	0.14
OC-56-DZ2-104	Output_1.	2.256	0.084	0.2009	0.0051	0.13441	1180	27	1235	72	1173	110	-1	1180	27	2.117	0.03
OC-56-DZ2-105	Output_1.	5.08	0.17	0.3329	0.01	0.5791	1852	50	1844	69	1790	82	-3	1790	82	1.029	0.022
OC-56-DZ2-106	Output_1.	1.784	0.053	0.1727	0.004	0.5696	1027	22	1067	17	1035	70	1	1027	22	1.334	0.025
OC-56-DZ2-107	Output_1.	4.73	0.1	0.312	0.007	0.589	1750	35	1795	56	1766	58	1	1766	58	4.96	0.12
OG-56-DZ2-108	Qutput_1-	0.787	0.094	0.0992	0.0027	0.32243	609	46	639	39	420	260	-45	609	16	1.403	0.018
OC-56-DZ2-109	Output_1.	3.7	0.11	0.2684	0.0079	0.63209	1532	41	1484	50	1577	50	3	1577	50	1.154	0.017
OC-56-DZ2-110	Output_1.	4.18	0.13	0.3001	0.0077	0.6535	1692	38	1709	52	1615	64	-5	1615	64	1.192	0.017
OC-56-DZ2-111	Output_1.	3.27	0.12	0.257	0.01	0.71167	1474	54	1446	57	1432	72	-3	1432	72	1.799	0.064
OC-56-DZ2-112	Output_1	13.74	0.43	0.529	0.014	0.56897	2735	59	2744	70	2694	61	-2	2694	61	0.6532	0.0059
OC-56-DZ2-113	Output_1.	0.891	0.043	0.1064	0.0027	0.3529	652	16	694	25	601	110	-8	652	16	1.424	0.028
OC-56-DZ2-114	Output_1.	1.955	0.074	0.1817	0.0057	0.001	1076	31	1148	30	1127	110	5	1076	31	1.477	0.025
OC-56-DZ2-115	Output_1.	2.219	0.077	0.2011	0.0051	0.34806	1181	27	1252	36	1181	87	0	1181	27	5.064	0.049
OC-56-DZ2-116	Output_1.	4.36	0.14	0.3025	0.0083	0.85573	1704	41	1732	42	1706	48	0	1706	48	1.691	0.024
OC-56-DZ2-117	Output_1.	5.43	0.19	0.334	0.011	0.91852	1855	55	1889	67	1899	53	2	1899	53	2.154	0.032
OC-56-DZ2-118	Output_1.	4.81	0.13	0.3196	0.0096	0.84192	1787	47	1815	42	1788	53	0	1788	53	2.85	0.025
OC-56-DZ2-119	Output_1.	0.642	0.024	0.0803	0.0026	0.75597	498	15	489	12	512	65	3	498	15	1.745	0.015
OC-56-DZ2-120	Output_1.	1.811	0.053	0.1776	0.0062	0.63844	1054	34	1142	91	1085	86	3	1054	34	5.31	0.18

Table 3: U / Pb data from Sample: MP_DZ1

Table 4: U/Pb data from Sample: MP_DZ2

APPENDIX B: CATHODOLUMINESCENCE IMAGES OF ANALYZED SAMPLES

Image: CL image with spot numbers 1-60 and their final ages for OC_2.8_DZ1 (Lower Ingleside)

Image: CL image with spot numbers 1-120 and their final ages for OC_56_DZ2 (Upper Ingleside)

Image: CL image with spot numbers 1-120 and their final ages for MP_DZ1 (Molas)

Image: CL image with spot numbers 1-120 and their final ages for MP_DZ2 (Hermosa)

