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ABSTRACT 
 

 

 

FACIES RECONSTRUCTION AND DETRITAL ZIRCON GEOCHRONOLOGY OF THE 

INGLESIDE/CASPER FORMATION 

 

 

 

Mixed siliciclastic-carbonate deposits of the Ingleside/Casper Formation in northern Colorado and 

southeastern Wyoming developed along the flanks of the Ancestral Front Range during the Late Paleozoic. 

This study establishes a sedimentological model for the Ingleside/Casper Formation along with using 

detrital zircon data to identify siliciclastic sediment sources for Late Paleozoic deposits in two Ancestral 

Rocky Mountain basins along the Ancestral Front Range and Uncompahgre Highlands.  

The stratigraphic successions of the Ingleside/Casper Formation display a diverse suite of carbonate and 

siliciclastic lithofacies in close lateral and vertical association with each other. The six different siliciclastic 

facies and their subfacies identified in this study include: (1) cross-bedded sandstone (tabular cross-bedded 

sandstone and trough cross-bedded sandstone), (2) horizontally-bedded sandstone, (3) massive sandstone, 

(4) conglomeratic sandstone, (5) ripple-laminated sandstone (asymmetric current ripples, moderately-

steeply climbing ripples, and gently climbing ripples), and (6) silt-rich siliciclastic mudstone. The three 

different carbonate facies and their subfacies identified in this study include: (1) carbonate mudstone-

wackestone, (2) carbonate packstone (packstone with non-skeletal grains and packstone with bioclasts), 

and (3) carbonate grainstone (grainstone with non-skeletal grains and grainstone with bioclasts). Thinning 

and/or pinching out of carbonate facies accompanied with a gradual increase in siliciclastic sedimentation 

is observed laterally across the study area from north to south. Eight stratigraphic intervals are recognized 

from correlations across a north-south transect of 120 km and each interval displays a lithofacies 

assemblage dominated either by carbonates or siliciclastics. Both carbonate and siliciclastic successions 

display small-scale fining-upward trends, with coarsening-upwards being partially or wholly absent across 

the study area. One of the eight intervals (termed Interval 6) is of significant interest in this study because 
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it displays a unique lithofacies assemblage, with it being the only interval where trough cross-beds of facies 

1B occur. Overall, carbonate units vary in the extent to which they onlap onto siliciclastic strata throughout 

the succession: Intervals 1 to 4 record a successive advance of onlap towards the south, whereas intervals 

5 to 8 record a retreat of onlap and a successive northwards migration of carbonate strata.  

The nine different lithofacies and their subfacies identified in this study represent an array of shallow-

marine paleoenvironments that include foreshore, shoreface, offshore transition, and offshore, and 

terrestrial settings comprising coastal eolian dunes and fluvial systems. Stratigraphic distribution of facies 

suggests that deposition in a shallow-marine environment alternated between dominantly siliciclastic and 

dominantly carbonate, mainly as a result of fluctuations in the input of siliciclastic sediment and its effect 

on carbonate deposition. In a distal direction, both siliciclastic and carbonate facies graded into carbonate 

mudstone that is identified as the most distal setting across all stratigraphic successions studied here. The 

Ingleside/Casper succession is interpreted to consist of two superimposed scales of sea-level fluctuations 

with the small-scale cycles represented by deepening-upwards successions across the study area, and a 

superimposed large-scale sea level curve recorded in the varying onlap of carbonates. The superimposed 

curve shows an overall transgression in the lower part of the succession succeeded by a regression in the 

upper part. Independent of this type of sea-level curve, dry eolian dunes dominated the stratigraphic record 

during Interval 6 and reflect a sharp change in climate to more arid conditions that accompanied the 

exclusive formation of dunes during this time. 

The sedimentological study suggests that deposition of the Casper/Ingleside Formation was governed by 

the two orders of sea-level oscillations and also climate change, both operating on two separate scales. The 

general fall in sea level and increase in aridity in the upper Ingleside/Casper Formation is attributed to the 

onset of a major Gondwanan glaciation phase that culminated during the Pennsylvanian-Permian transition 

which is likely to be located at the very top of this unit. Based on exclusively sedimentological 

considerations, this study therefore suggests that the Ingleside Formation, which is typically assigned a 

Permian age, was most likely deposited during the Late Pennsylvanian. This interpretation is also based on 
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the correlation of the Coloradoan Ingleside Formation to the Casper Formation in Wyoming that contains 

a known Late Pennsylvanian fussuline assemblage.  

This study also presents new detrital zircon U-Pb geochronology data from the type section of the Ingleside 

Formation at Owl Canyon, and the Molas and Hermosa Formations near Molas Lake to understand Late 

Paleozoic sediment provenance and dispersal patterns across Colorado. U-Pb ages on 120-150 zircons were 

determined from each sample using LA-ICPMS, and ages with excessive discordance (>20% discordant or 

<5% reverse discordant) were rejected. All samples contain between 5% and 10% concordant Paleozoic 

aged zircons ranging from 330-490 Ma. Other significant age distribution peaks identified range between 

990-1200 Ma, 1340-1500 Ma, 1600-1800 Ma, and 2500-3500 Ma.  

The wide spread of zircon age populations record a mixed Laurentian derivation comprising local and distal 

sediment sources. Paleozoic-age zircons are interpreted to coincide with high magmatic flux during the 

Taconic and Acadian orogenies in the Appalachian orogen. The diverse components in the U-Pb age data 

suggest that a widespread sand-dispersal system that transported local and distant sediment sources along 

the Ancestral Rockies was operational during the Late Paleozoic. Areas of eolian recycling observed in the 

Ingleside and Molas Formations points towards eolian systems playing an important role in transportation 

of distally-sourced zircons during Late Paleozoic time. Additionally, the U-Pb detrital zircon data indicate 

that a shift from non-marine to marine deposition across the Fountain-Ingleside transition was accompanied 

by a decrease in locally-sourced detrital zircons, most likely marking the cessation of Ancestral Front Range 

uplift. Conversely, the shift from non-marine to marine deposition across the Molas-Hermosa contact was 

accompanied by an increase in locally-sourced detrital zircons, most likely marking the initiation of the 

Uncompahgre uplift.  
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PART 1: FACIES RECONSTRUCTION OF THE INGLESIDE/CASPER FORMATION 
  

INTRODUCTION 
 

 

 

Mixed carbonate-siliciclastic systems are known to be sensitive to allocyclic changes, such as variations in 

sea-level, climate, and tectonics (Wilson, 2008; Schwarz et al., 2016). In most cases, these governing 

parameters are strongly interlinked, and it is difficult to differentiate the effects of each of these variables 

(Blakey and Middleton 1983; Chan and Kocurek 1988). Although mixed carbonate-siliciclastic systems are 

only rarely described in literature (Schwartz et al. 2016; Jordan and Mountney 2012), the few studies that 

center on those sedimentary systems conclude that at least two of these allocyclic controls often go hand in 

hand: sea-level and climate. Previous approaches to understanding these controls in time-equivalent 

successions to the here studied Ingleside Formation suggested that regressions and lowstands are often 

accompanied by arid climate conditions, whereas transgressions and highstands correspond to humid 

climates (Loope, 1984; Heckel, 1994, Blakey, 2004). Jordan and Mountney (2012) use detailed facies 

analyses to reach the same conclusion for the basal Permian Cutler Formation in Utah.  

The present study introduces the sedimentology of the Ingleside and Casper Formations, a mixed carbonate-

siliciclastic succession deposited along the eastern flank of the Front Range of Colorado and Wyoming 

(Figure 7). The Ingleside and Casper successions are characterized by a distinct cyclic architecture of 

alternating carbonate and siliciclastic units several meters to tens of meter-thick (Fig. 8). The age of this 

unit is believed to be lower Permian based on a single finding of one benthic foraminifera (Hoyt and 

Chronic, 1961). The well-developed cyclicity likely resulted from the waxing and waning ice sheets in 

Gondwana (Heckel, 2008; Birgenheier et al., 2009). The sedimentological response to these sea-level 

changes, though, seems to vary significantly across the Laurentian continent depending on the specific 

climate of the region: Utah and Colorado experienced a rather arid climate during the Late Paleozoic, 

whereas humid conditions prevailed in Illinois and Kansas. (Joeckel, 1999; Cecil, 2003; Blanchard et al., 

2016). Consequently, mid-continent cyclothems contain coals and black shales (Heckel 1986), whereas 
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sediments from the western interior of Laurentia are devoid of organic-rich deposits but contain eolianites 

and dune deposits (Jordan and Mountney, 2012).  

The Ingleside Formation along the Front Range of Colorado shows that two of the three variables that 

governed this sedimentary system – sea-level and climate, can be clearly separated, and seem to act on 

different time scales. This mixed carbonate-siliciclastic system is therefore unique in the sense that it does 

not directly link climate to distinct positions of sea-level. Rather, this study demonstrates that several mixed 

carbonate-siliciclastic cycles developed prior to a major change in climate that was independent of cyclic 

short-term sea-level changes. Detailed facies analyses and architecture in this study is based on a total of 

13 lithological sections and 75 petrographic thin sections across a 120 km northeast-southwest transect and 

a 38 km east-west transect. The conclusions drawn enable a better understanding of the sedimentary 

evolution and preservation of this mixed siliciclastic and carbonate shoreline and nearshore system 

deposited along the eastern flank of the Ancestral Rocky Mountains.  
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GEOLOGICAL BACKGROUND 
 

 

 

The intracontinental deformation that resulted in the Ancestral Rocky Mountain (ARM) system of western 

Laurentia is primarily centered on the Pennsylvanian Period. This deformation remains poorly understood 

and has been recognized as part of a large region of intraplate tectonics. Various models invoke stresses 

along the Ouachita-Marathon belt, transpressional regimes along the Sonora margin, and reactivation of 

pre-existing basement faults to explain ARM deformation (Kluth and Coney, 1981; Marshak et al, 2000; 

Dickson and Lawton, 2003; Leary et al., 2017).  

Synchronous with the tectonism, the Late Paleozoic was a time of southern hemisphere glaciation in 

Gondwanaland. The resultant global icehouse conditions and eustatic sea level changes led to deposition of 

cyclic stratal sequences throughout the western United States (Crowell, 1978). Sea level lows at this time 

were primarily characterized by eolian dune deposits over most of the western United States, while sea 

level highs were characterized by cyclic alterations of limestone and shale formations (Heckel, 1986; 

Blakey, 2008). 

In present-day Colorado ARM tectonic uplifts developed during this time include the Apishapa highland, 

Uncompahre highland, and Ancestral Front Range highland (Mallory, 1960; Curtis, 1958). Of these, the 

Ancestral Front Range highland extended from the present-day Sangre de Cristo Mountains in southern 

Colorado to the present-day Sierra Madre in south-central Wyoming (Tweto, 1980; Maughan, 1993).  

Adjacent to the Ancestral Front Range Highland lay a shallow-marine basin wherein the Pennsylvanian 

seas transgressed from the north and east (Blakey, 2008; Curtis, 1958; Williams, 1962; Tenney, 1963). 

Vigorous uplift of the Ancestral Front Range Highland around the Middle Pennsylvanian time resulted in 

extensive erosion of previously deposited Pennsylvanian and Mississippian sediments (Eardley, 1951; De 

Voto, 1980). Great quantities of arkose were deposited in alluvial fans and braided stream systems adjacent 

to the uplift. These deposits, collectively identified as the Fountain Formation, were deposited directly upon 

Precambrian crystalline rocks and thin abruptly towards the northeast (Knight, 1929). The advancing sea 
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during the Late Pennsylvanian resulted in partial marine erosion of the Fountain Formation and subsequent 

deposition of sandstone and interfingering carbonate units of the Casper and Ingleside Formations. The 

entire extent of the Ingleside Formation in Colorado overlies the Fountain Formation. The Casper 

Formation in Wyoming, on the other hand, interfingers with the Fountain Formation up to a point where 

the Fountain Formation thins out. Further north, limestone deposits of the Madison Formation directly 

underlie the Casper Formation (Tenney, 1963).  

Lee (1927) traced the Fountain Formation and overlying Ingleside Formation from Colorado to central 

Wyoming and concluded that the greater part of the Casper Formation is continuous with the Ingleside 

Formation. Agatston (1954), Knight (1929), and Miller and Thomas (1936) suggested that the Fountain 

Formation represented a river system that was deposited in an advancing Pennsylvanian sea and that the 

Fountain and Casper Formations are, in part at least, contemporaneous. Knight also concluded that the 

Ingleside Formation is equivalent to the upper part of the Casper Formation. These studies were initially 

based on sparse fossil data and long distance correlations (Maughan et al., 1961). This relationship was 

later also established based on Wolfcampian fusulinids in the Ingleside Formation (Hoyt et al., 1961) and 

equivalent strata of the Upper Casper Formation, while fusulinids from the Fountain Formation and Lower 

and Middle Casper Formation were found to be older and ranged in age from Virgilian to Missourian 

(Chronic, 1958; Burns and Nestell, 2009). Beveling of the Casper and Ingleside Formations along the flanks 

of the Ancestral Front Range was a result of the uplift and subsequent vigorous erosion at the time 

(Maughan, 1980).   

In Late Pennsylvanian and Early Permian times, the Ancestral Rocky Mountain uplift stabilized and slowly 

declined. Chronic (1958) suggested that this decline was accompanied by a fall in relative sea level and a 

gradual change in climate from humid with alternating semi-arid intervals to more arid conditions. Climate 

at this time resulted in deposition of cross-bedded, eolian sandstones that make up the upper parts of the 

Ingleside and Casper Formations (Maughan et al., 1960).  
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A sharp contact separates the eolian sandstones of the Ingleside and Casper Formations from overlying 

Early Permian age mudstone and very fine-grained sandstone of the Owl Canyon Formation. This contact 

marks a gradual rise in sea level, and the overlying siliciclastic mudstone-dominated deposits are 

representative of a tidal flat complex reflecting renewed sea-level rise (Howe, 1970; Maughan, 1980).   

 

 
 

Figure 1: Location of measured outcrop sections and drill cores. Stars mark outcrop sections and circles 

mark drill core sections.  
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FACIES IDENTIFICATION 
 

 

 

Facies 1: Cross-bedded Sandstone  

Description 

The cross-bedded sandstone facies is composed of calcite-cemented, fine-grained, quartz-rich sandstones 

that are typically normally graded. Open intergranular porosity can be as high as 10%. Thirty-three 

paleocurrent analyses data from the type section at Owl Canyon reveal that the cross-beds dip at shallow 

angles that range between 10ᵒ and 30ᵒ, and the mean dip azimuth is 131 (Figure 2C). This facies typically 

overlies or underlies horizontally-bedded sandstones with gradational or sharp contacts. 

Based on the geometry of the crossbeds, two subfacies have been identified.  

1A. Tabular Cross-bedded Sandstones  

Sets of cross-laminated sands are separated by bounding surfaces and form lenticular or wedge-shaped units 

that are commonly a few centimeters thick. Fine to very fine, well-sorted, and rounded to sub-angular sand 

grains make up the cross-laminated strata. The bounding surfaces are composed of fine to very coarse, 

moderately rounded to angular, poorly-sorted sand grains (Figure 2A). The sandstones are commonly quartz 

arenites, usually comprising less than 1% feldspar and mica particles. In some places, however, this 

subfacies can contain up to 5% muscovite flakes. Rarely, skeletal fragments and carbonate aggregate grains 

occur.  

1B. Trough Cross-bedded Sandstones  

Sets of centimeter- and meter-scale concave upward cross strata occur locally and make up discontinuous 

units of the trough cross-bedded sandstone facies. Typically, this subfacies is composed of well-sorted, 

rounded to sub-angular grains that range in size from coarse silt to fine sand (Figure 2B). In places, the sand 

and silt grains are visibly segregated into fine laminations that are usually between 1mm and 5mm thick. 

Compositionally, the sandstones are quartz-rich with up to 5% feldspar and mica particles. When observed 

in core, the cross laminae within these trough units are thickest along the deepest points of the troughs and 
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continuously thin towards the edges. The fine-grained population is also noted to form darker colored 

laminae than the over- and underlying coarse grained sediments. 

Interpretation: 

The cross-bedded sandstones of Facies 1 indicate deposition in a lower flow regime environment as shown 

by the presence of cross beds in both sub-facies. Internal laminations reflect short fluctuations in energy 

conditions, with the dominance of fining-upward laminae suggesting settling of progressively finer particles 

in decelerating flow conditions. This facies commonly overlies horizontally-bedded sandstones of Facies 2, 

further indicating a decrease of flow velocity from upper to lower flow regime conditions. The inclination 

of the cross beds shows that sediment transport was preferably from the north and west during deposition. 

1A. Tabular Cross-bedded Sandstone. 

The tabular cross-beds of Subfacies 1A are here interpreted to represent dunes formed in a marine 

environment. This environment contained two clearly separate grain populations: the fine, rounded to 

subangular, well-sorted sand reflects a greater transport path and abrasion in comparison to the coarse, 

moderately-rounded to angular, poorly-sorted sand. It seems most likely that the coarse-grained sand 

making up the lower portion of the sandstone laminae represents particles introduced only a short time 

before deposition whereas the fine-grained sand reflects intense reworking and abrasion, either within or 

outside of this sedimentary system. The arrangements of these two populations of grains into single laminae, 

however, also indicates that deposition occurred in pulses of varying energy: relatively high-energy moved 

and laid down the coarse grains, whereas slightly lower energy resulted in deposition of the fine grains. It 

seems reasonable to assume that at least one of the sources of the sediment, likely the coarse-grained sand 

fraction, originated from crystalline basement; this origin is still reflected in the muscovite flakes that 

locally blanket individual bedding planes in Facies 1A.  

1B. Trough cross-bedded Sandstone  

The trough cross-bedded sandstones of subfacies 1B are most likely a result of local dunes formed in an 

eolian environment. Two separate grain size populations are recognized in this subfacies and they were 
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likely deposited by two different processes. Fine sand particles were possibly carried up the stoss side of 

the dune by saltation and creep, while very fine to coarse silt particles were transported by suspension. As 

wind velocity gradually decreased, fine sand particles accumulate in the troughs, followed by silt and very 

fine sand grains settling out of suspension. It is likely that the fine grains fell between the interstices of 

stationary coarse sediments, preventing them being picked up by further airflow (Fryberger and Schenk, 

1988). Sediments thus sheltered from further migration result in the two separate grain populations observed 

in this subfacies. This sequestering of small population of very fine sediments and bimodal grain size 

distribution is characteristic of most eolian depositional systems (Brookfield, 1977; Hunter, 1977; 

Fryberger and Schenk, 1988). The darker color associated with the finer grained sediments in this subfacies 

is most likely due to the presence of clay. 

 

Facies 2: Horizontally-bedded Sandstone 

Description 

The horizontally bedded sandstone facies (Facies 2) is characterized by millimeter- to centimeter-scale 

internal laminations and displays sharp to gradational contacts to over- and underlying beds. Beds of this 

facies generally display a tabular geometry in outcrop and range in thickness from 1-20 cm (Figure 3A). 

Individual laminae of this facies are usually horizontally continuous, composed of moderately sorted fine- 

to very fine-grained, mostly quartz sand, along with quartz and calcite clasts between a few millimeters and 

2 cm in diameter. Laminations are typically only a few grain diameters thick. Most of the laminae display 

a well-defined fining upwards trend. Coarsening upwards are rare and composed of coarse sand to granule-

sized particles of quartz, calcite, and feldspar at the base of each lamina, grading into fine- and very fine-

grained sandstone at the top. Texturally, these sandstones are well sorted. Sets of these sandstones typically 

underlie, and in some places overlie cross-bedded sandstone packages of Facies 1. In places, carbonate 

skeletal fragments and/or aggregate grains occur. Diagenetic carbonate concretions between 1-12 

centimeters thick are also present as prominent features within this facies.  
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Interpretation: 

The laterally persistent plane beds that are characteristic of Facies 2 appear to mark deposition of sand 

sheets under upper flow regime conditions as indicated by the planar laminations. The regularity of the flat 

bedding surfaces and lack of bed irregularities point towards an environment with only gentle topography. 

The flows were depositing sediment in pulses showing varying flow velocities which is reflected in the 

stacking of laminae in this facies; similarly, most of these pulses likely represents decelerating flows which 

resulted in the dominance of fining-upward laminae in Facies 2. Nevertheless, some of the flows must have 

accelerated, too, thereby depositing the rarely occurring coarsening-upwards laminae. Alternatively, shifts 

in boundary shear stress conditions may have resulted in the observed planar laminations (Allen, 1984), 

whereby coarsening upward laminae reflect an increase in shear stress associated with large eddies in the 

flow (Cheel and Middleton, 1986). It is assumed that the lithic and skeletal fragments represent oversize 

clasts that are likely exotic to the environment. The skeletal fragments may have been eroded from laterally 

exposed carbonate deposits, and re-deposited in Facies 2. The lithic fragments, however, most likely 

originated from the Ancestral Rocky Mountains (cf. Dickinson and Lawton, 2003) and were transported as 

bed load in these relatively high-energy flows. 

 

Facies 3: Massive Sandstone 

Description: 

Massive, fine-grained, quartz-rich, well sorted, calcite-cemented sandstones form laterally continuous 

packages of regular thickness, ranging between 1m and 2.5m. They commonly over- or underlie cross-

bedded sandstones (Facies 1) or horizontally bedded sandstones (Facies 2) and are separated from them by 

gradational contacts. In some places, massive sandstone beds are found underlying siliciclastic mudstone 

(Facies 6) units with a sharp or erosional contact in-between. This facies displays fluid escape structures in 

some places and is moderately to heavily bioturbated (Figure 3B).  
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Interpretation: 

Regular geometry and lateral continuity of the massive sandstone indicates that deposition took places on 

regular surfaces under essentially constant physical conditions. The presence of fluid escape structures and 

bioturbation in this facies makes it plausible that sedimentary structures, if originally present, have been 

destroyed by reworking of the sediment by organisms and/or liquefaction. The structureless character of 

this facies therefore is interpreted to be a result of secondary processes. The presence of abundant burrows 

also points to a well oxygenated depositional environment for this facies.  

 

Facies 4: Conglomeratic Sandstone  

Description: 

The conglomeratic sandstones of Facies 4 are typically dark red or purple in color and appear as 

discontinuous lenses with sharp bounding surfaces. This facies typically displays thickness less than 2m 

meters and width less than 3 meters. A concave-up to irregular, erosive base and a convex-up to planar top 

are distinctive characteristics of this facies (Figure 3C).  Laterally, these lenses are no more than 3 meters 

wide and taper out into fine-grained sandstones of Facies 1B or 2. Planar laminations are weakly developed 

or absent, and weak normal grading is observed in some places. Compositionally, this facies consists of 

medium-grained sand, granules, and pebbles less than 0.5 cm in diameter, embedded in a fine-grained sand 

matrix. Sediments are typically poorly sorted, subrounded to angular and include quartz clasts and lithic 

fragments. Subrounded chert nodules, a few millimeters to 2cms in diameter, are observed in some places.  

Interpretation: 

Laterally discontinuous conglomeratic sandstone lenses of Facies 4 reflect irregular pulses of high energy 

conditions during deposition. Poorly sorted, coarse, and dominantly angular grains point to short sediment 

transport paths. It is reasonable to conclude that the Ancestral Rocky Mountains are the primary sediment 

source for this facies. Sediments were likely transported as bed load, eroding and incising into underlying 

fine sand dominated bed (Miall, 1985). This bed load transport developed the concave up to irregular, 
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erosive base characteristic of Facies 4. As gravel and sand deposits aggraded over time, it resulted in the 

convex upward top (c.f. McGowen and Groat, 1971).  Additionally, planar lamination points to deposition 

in an upper flow regime condition, and weak normal grading is indicative of a gradually decelerating flow.  

 

Facies 5: Ripple-Laminated Sandstone 

Description:  

Ripple laminated, fine-grained sandstones occur locally and are observed in association with cross-bedded 

(Facies 1) and horizontally bedded sandstone (Facies 2) or siliciclastic mudstone (Facies 6) units. Based on 

the type and geometry of ripples, three subfacies have been identified: 

5A. Asymmetric Current Ripples:  

Centimeter-scale beds displaying moderately asymmetrical current ripples are found overlying horizontally 

laminated sandstones. Ripple crests are generally broad and rounded and the troughs are narrow. The stoss 

and lee sides display a straight to convex-up profile (Figure 3D). These structures occur as sinuous crests 

or lingoids, and ripple height ranges between 1cm and 3cms.  

5B. Moderately-Steeply Climbing Ripples:  

Moderately-steeply climbing ripples occur in centimeter-scale beds and are observed interbedded with or 

overlying silt-rich siliciclastic mudstones (Facies 6) and separated from them by erosional contacts. 

Composed of fine-grained sand sediment, the climbing ripples display heights ranging between 1cm and 

3cms, and angles of climb between 10ᵒ and 30ᵒ. Distinct lee side laminae are observed in this subfacies, 

while stoss side laminae are wholly or partially absent (Figure 3E). 

5C. Gently Climbing Ripples:  

Gently climbing ripples make up beds that range from a few centimeters to 3m in thickness and are 

composed of medium-grained sand to silt- sized sediments. This subfacies commonly under- or overlies 

trough cross-bedded (Facies 1B) or horizontally bedded (Facies 2) sandstones. Typically, these ripples 

display low angles of climb that range between 0ᵒ and 5ᵒ and ripple heights less than 2mm. In outcrop, these 
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ripples are best described as laterally continuous, with long, parallel to subparallel crests. Internal cross 

laminations are lacking within the ripples that make up this subfacies. In some places, fine-grained laminae 

stand out at greater relief than adjacent coarse-grained laminae (Figure 3F).   

Interpretation: 

5A. Asymmetric Current Ripples:  

A low energy depositional condition is suggested for this facies based on the fine-sand grain size and small 

ripple heights. The general asymmetric profile, rounded crests, narrow troughs, and biconvex flanks of 

these ripples are characteristic of a unidirectional-dominant flow (Dumas et al., 2005). Ripples of this form 

are indicative of a general lower flow regime (Simons et al., 1965), with increasing energy conditions 

evidenced in the tendency of ripple crests to become discontinuous and transition from sinuous to lingoid 

ripples. 

5B. Moderately-Steeply Climbing Ripples:  

The formation and preservation of climbing ripples is an indicator of rapid rates of sedimentation under the 

action of unidirectional currents. Ripples in this subfacies do not display the steep angles of climb 

commonly found in climbing ripples sequences that originate by fall-out from suspension (Ashley, 1982). 

It is likely that these ripples were dominantly developed when bedload transport rates over migrating ripples 

decreased downstream. Bedload transport processes are further evidenced by the lack of grain size 

segregation that is typical of this subfacies and the erosional contacts that separate these ripples from 

underlying beds. Based on depositional energy conditions and the general association of this subfacies with 

siliciclastic mudstones of Facies 6 these ripples are interpreted to have been deposited in shallow marine 

conditions.  

5C. Gently Climbing Ripples:  

Low angles of climb documented in this subfacies indicate deposition on gently-sloping surfaces. Great 

crest lengths are typical of wind ripples and is attributed to the tendency of individual wind ripples to persist 

during long distances of migration (Hunter, 1977). Further, fine-grained individual laminae standing out at 
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greater relief to adjacent coarse-grained laminae are a distinctive feature of eolian sediments known as 

pinstripe laminations. They are presumed to be a result of coarse-grained laminae losing moisture more 

rapidly and weathering more readily, leaving the fine-grained laminae in relief (Fryberger and Schenk, 

1988).  

 

Facies 6: Silt-rich Siliciclastic Mudstone 

Description: 

The siliciclastic mudstone facies (Facies 6) occurs in thin beds, typically as thin as 5-15 centimeters, and 

in some places reaching a thickness of 60 centimeters to a meter. The mudstone beds are distinctively dark 

red in color and, based on correlation, laterally continuous for several kilometers (Figure 4C). Generally, 

structureless mudstones are intercalated with submillimeter thick, subparallel to wavy laminae of fine-

grained sand and silt. The laminae are commonly not well-defined and tend to display irregular lateral 

thicknesses. Locally, millimeter-scale siltstone ripples with mud- and siltstone foresets are observed (Figure 

4B). Minor amounts of bioturbation in the form of vertical or horizontal burrows occurs in this facies locally 

(Figure 4A). Generally, horizontal burrows are submillimeter-scale to 2mm in diameter, unbranched, and 

lenticular shaped. Vertical burrows are indistinct, submillimeter-scale, and cut across the laminations. 

Admixtures of silt and very fine-grained sand comprise anywhere between 20% and 50% of this facies. 

Beds of Facies 6 are commonly found overlying horizontally bedded (Facies 2) or climbing ripple-

laminated sandstones (Facies 5C), and in some places overlie carbonate mudstones of Facies 7.  Sharp or 

erosional contacts separate this facies from overlying and underlying units.  

Interpretation: 

Based on the accumulation of two grain size populations and observed sedimentary structures, the 

deposition of this facies was likely the product of two different processes and energy conditions. Suspension 

settling could be the process by which some, though not all of the mudstones were deposited. Even though 

no unequivocal evidence for this depositional process exists the massive nature of the mudstones may be a 
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result of relatively rapid settling of mudstone floccules from the water column. Nevertheless, bed load 

transport also played a role in depositing this facies: the irregular lateral thickness of mud and silt laminae, 

and the local presence of mud- and siltstone ripples suggest influence of advective flow during deposition 

(cf. Schieber et al., 2007; Egenhoff and Fishman, 2013). Bioturbation further points to an oxygenated 

environment of deposition which is also suggested by its red color. Nevertheless, its intercalation with sand- 

and silt-bearing facies throughout the measured sections, and the presence of sand- and siltstone laminae in 

these mudstones point towards a setting relatively close to the shoreface. The depositional environment 

suggested for this facies was likely below fair weather wave base but within the reach of currents that were 

responsible for the offshore transport and deposition of the sandy and silty laminae. 

 

Facies 7: Carbonate Mudstone 

Description: 

The carbonate mudstone to wackestone facies (Facies7) occurs as meter-thick beds forming units of 

between 2m and 45m in thickness. In some places, randomly oriented skeletal fragments and sand- and silt- 

sized quartz carbonate grains comprise between 5% and 30% of this facies. Horizontal burrows of 

submillimeter-scale diameters occur locally, are infilled with carbonate mud, and comprise 2-5% of this 

facies (Figure 5B). In some places, patches of light and dark micrite are observed. Spherical to subspherical, 

millimeter to centimeter sized, isolated vugs, are irregularly dispersed throughout this facies. These are 

either partially or completely filled with quartz cement or evaporite minerals, or comprise open porosity. 

This facies typically overlies coarse-grained carbonates of facies 8 and 9, horizontally-bedded sandstones 

(Facies 2), and tabular cross-bedded sandstones (Facies 1A). Sandstone units belonging to Facies 1A and 2 

typically overlie this facies. However, in some places, carbonate packstones of Subfacies 8A and 9A are 

also observed as overlying units. Sharp contacts characteristically separate this facies from overlying and 

underlying units (Figure 5A). 
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Interpretation: 

This facies represents a low energy environment which is reflected in the dominance of carbonate mud. It 

was most likely deposited below storm wave base as no clear tempestites are preserved. Nevertheless, some 

of the skeletal fragments may have been broken, partly abraded and concentrated through currents forming 

the wackestones, and these may represent thin storm beds. However, the diffuse bioturbation in these rocks 

has obliterated all original sedimentary fabric, and therefore no clear interpretation of the origin of these 

shell concentrations is possible. It seems plausible that this facies was deposited at a distinct distance from 

the shoreline as only small amounts of siliciclastic debris in the form of quartz grains is present. The quartz 

grains, nevertheless, are significantly larger than the carbonate mud, and are therefore also interpreted as 

originating from the nearshore environment. They were most likely brought into the system by offshore-

directed, storm-induced currents (Wilson et al., 2013).  

This facies is likely highly bioturbated even though clear individual burrows are rarely preserved. The 

bioturbation is reflected in the random orientation of lithoclasts and skeletal fragments (cf. Egenhoff et al., 

2010). Coarse sand-sized quartz grains are embedded in carbonate mud and must have brought into the 

system by high-energy. It is suggested that the quartz grains originally formed laminae before they were 

randomly dispersed in the mud by organisms. The apparent lack of distinct burrow traces is most likely a 

function of a low contrast in color and sediment texture between the burrows and surrounding matrix 

(Berger et al., 1979). However, the light color as well as the likely high bioturbation index inferred from 

grain distribution and orientation of skeletal fragments indicates an overall well-oxygenated depositional 

environment for this facies. The vugs that are characteristic for this facies most likely originated from a 

dissolution event during diagenesis (cf. Clark, 1986). 

 
Facies 8: Carbonate Packstone 

Description: 

Highly variable in bioclast and non-skeletal components, Facies 8 occurs as beds that range in thickness 

from 0.5m to 5m.  Based on the predominant components, two subfacies have been identified: 
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8A: Carbonate Packstones with Non-Skeletal Grains: 

Carbonate packstones observed across the study area dominantly belong to this subfacies. Spherical to 

subspherical, submillimeter-scale ooids comprise up to 25% of this subfacies. They are commonly heavily 

recrystallized and only partly display internal structures. Broken shells, commonly showing a micritic rim, 

occur in varying abundances that range from 5% to 20%. Less prominent grains include oncoids (5-10%), 

and fine-sand sized, angular to subrounded quartz and calcite (1-5%). Heavily micritized, ellipsoidal, 

millimeter-scale aggregate grains composed of lithoclasts and/or bioclast fragments occur locally. All 

skeletal and non-skeletal grains are randomly oriented and show even distributions throughout beds of this 

subfacies. All grains in this subfacies are moderately sorted. As much as 50% of the carbonate packstones 

with non-skeletal grains is composed of carbonate mud (Figure 6A). Typically, this subfacies is overlain 

and underlain by beds of carbonate mud- to wackestones (Facies 7), tabular cross-bedded sandstones 

(Facies 1A), or massive sandstones (Facies 3), and is separated from them by sharp contacts. 

8B: Carbonate Packstones with Bioclasts: 

A diverse assemblage of poorly sorted and randomly oriented skeletal fragments, ranging in size from 

submillimeter-scale to 4mm, and generally occurring in abundances of 30%-40% define subfacies 8B 

(Figure 6B). Bioclasts include brachiopods, gastropods, bryozoans, trilobites, echinoderms, fusulinids, and 

other foraminifera. Rounded to sub-angular, fine sand-sized grains that are predominantly quartz occur in 

small abundances of up to 3%. Carbonate mud makes up 60-70% of this subfacies. Beds of carbonate 

packstones with bioclasts occurs only locally in the study area and display an upward fining into carbonate 

wackestones of Facies 7. This subfacies is generally underlain by massive sandstones (Facies 3) and 

separated from them by a sharp contact. 

Interpretation: 

8A: Carbonate Packstones with Non-Skeletal Grains: 

The diverse assemblage of non-skeletal and skeletal components occurring in this facies is interpreted to 

originate from various depositional environments, most likely reflecting varying energy conditions. 
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Especially the mixing of the dominant carbonate grains with the quartz sand suggests varying origins for 

the grain types in this setting, a siliciclastic environment for the quartz, and a variety of carbonate settings 

for the non-skeletal and skeletal grains. Even more striking, the strongly bimodal distribution of this facies 

with the grains on the coarse end, and the carbonate mud on the fine end, reflect strongly fluctuating energy 

conditions during deposition of this facies. The coarse-grained carbonates and the quartz sand reflect high-

energy deposition with transport mechanisms that most likely involved bedload processes in order to 

transport particles that size. The carbonate mud, in contrast, represents intervals when low energy 

deposition prevailed. It is unclear, though, whether this carbonate mud was transported by suspension 

settling as often suggested for packstones (Lehrmann et al., 2001; Boggs, 2005), or by bedload transport as 

proposed by Schieber et al. (2013). The micritic rim observed around many of the particles is likely a result 

of degradation by microbes destroying the outer laminae of individual particles (Reid et al., 1992). 

8B: Carbonate Packstones with Bioclasts: 

The presence of fragmented skeletal material and subrounded quartz grains indicate that the grain portion 

of these packstones were most likely deposited in a high-energy regime responsible for both breaking the 

shells and rounding the quartz grains. Nevertheless, the poor sorting of the carbonate grains being the 

dominant components of Facies 8B indicates that different energy levels most likely contributed to the 

observed size distribution. The lack of micritic rims around all carbonate grains also suggests that abrasion 

during deposition likely eroded them off if they had been developed around some grains, and that these 

carbonates must have been deposited in an agitated environment. The quartz grains, in contrast, must have 

originated from a nearby siliciclastic environment, and being swept into the packstone depositional setting. 

All of the carbonate and quartz grains are envisioned to have been transported predominantly by bedload 

processes as suggested by their sizes. Nevertheless, the carbonate mud that makes up a significant portion 

of this facies indicates overall low-energy sedimentation which is in stark contrast to the high-energy 

deposition of the grains. It is likely that this mud was either deposited from suspension (cf. Lehrmann et 

al., 2001) or bedload (Schieber et al. 2013), but in case of the latter nevertheless from a much lower-energy 
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current than the ones depositing the grains. The transition from the packstones of Facies 8B to overlying 

wackestones is interpreted to represent an overall decrease in energy and, when occurring in centimeter- to 

decimeter-scale beds, likely shows deposition by waning currents that originated during storms. 

 

Facies 9: Carbonate Grainstone 

Description 

Carbonate grainstones in the study area typically occur in laterally discontinuous packages up to 4m thick. 

Based on the dominance of either non-skeletal carbonate grains or bioclasts, sorting, and grain size, three 

subfacies are identified: 

9A. Oolitic Carbonate Grainstone: 

Oolitic carbonate grainstones make up laterally discontinuous units across the stratigraphic succession and 

range in thickness between 0.5 and 3m. Up to 60% ooids with small admixtures of skeletal fragments and 

sand-sized lithoclasts comprise this subfacies. Ooids are generally spherical to sub-spherical in shape and 

display good to moderate sorting (Figure 6C). The thickness of the cortex varies from greater to less than 

half the diameter of the ooids, and in places superficial ooids (Carozzi 1964) are dominant. Partial or 

complete recrystallization and oomoldic porosity are common and may obliterate the internal texture of this 

facies. Admixtures of skeletal fragments generally make up between 1 and 2% of the facies. Ooids and 

skeletal fragments both tend to display micritic rims around them. Fine sand-sized quartz and carbonate 

grains can comprise up to 5% of this facies. Both inter- and intraparticle pore space is entirely occluded by 

granular and drusy clear calcite cements. Typically, this subfacies is underlain by massive sandstones 

(Facies 3).  Overlying units commonly belong to carbonate mudstones-wackestones facies (Facies 7), 

horizontally-bedded sandstones (Facies 2) or massive sandstone (Facies 3). Contacts are gradational to 

sharp. 

9B. Well- to Moderately-Sorted Fossiliferous Carbonate Grainstone: 

Beds of well- to moderately-sorted fossiliferous carbonate grainstone generally display thicknesses between 

0.5 and 4 m and are laterally discontinuous. A diverse population of well to moderately sorted, 
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submillimeter to millimeter sized, randomly oriented, whole fossils and skeletal fragments (Figure 6D) 

including gastropods, fusulinids, brachiopods, bivalves, bryozoans, algae, and trilobite fragments, make up 

the grains of this facies. Bioclasts typically display heavy micritic rims and comprise between 40% and 

60% of the subfacies. Well to moderately sorted, fine sand-sized grains that are dominantly quartz typically 

comprise as much as 15% of the sediment. This subfacies is commonly underlain by massive sandstones 

(Facies 3) and separated from them by gradational contacts. Overlying units include carbonate mudstones-

wackestones facies (Facies 7), horizontally-bedded sandstones (Facies 2) or massive sandstone (Facies 3) 

and upper contacts are gradational or sharp. 

9C. Poorly-Sorted Fossiliferous Carbonate Grainstone: 

This subfacies shows poor sorting of the fossil and lithoclast components (Figure 6E). A diverse assemblage 

of heavily recrystallized skeletal fragments and whole fossils make up around 50% of the sediment. Fossil 

components range in size from submillimeter-scale to 2cms and include fusulinids, gastropods, 

echinoderms, trilobites, and bivalves. Lithoclasts are dominantly comprised of quartz, along with some 

calcite and feldspar. They display subrounded to angular grains that range from sand- to granule-size and 

comprise up to 25% of the subfacies. Shelter porosity infilled with cement or submillimeter-scale broken 

shells and quartz grains is common. This subfacies is observed at only one stratigraphic section 

located in Laramie (Figure 7A), where it forms a 1.5m thick unit overlying a massive sandstone and 

separated from it by a sharp contact. 

Interpretation: 

9A. Oolitic Carbonate Grainstone: 

The grainstones have most likely been deposited by constant movement as reflected in the regular thickness 

of the ooid laminae, and the fact that the skeletal grains occur exclusively as broken shell fragments. The 

well to moderate sorting of the grains suggest overall constant energy conditions during deposition. The 

environment must have consisted mostly of ooids with only minor amounts of hard parts form skeletal 

organisms that were incorporated in this grainstone. The ooids and skeletal grains were most likely moved 
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exclusively by bed load processes in a constantly agitated environment prior to deposition. However, the 

micritic rims in this subfacies suggest that this ooid environment did experience some quiescence post 

deposition, where borers could alter the outermost rims of all grains, ooids, and skeletal fragments 

(Wilkinson et al., 1985; Margolis and Rex, 1971). 

Nevertheless, the quartz sand grains in this facies argue for some amount of detrital input during deposition, 

likely from a nearby source. Rounded carbonate clasts, in contrast, reflect erosion and reworking, likely of 

previously deposited micritic carbonate sediments. Whether these sediments were eroded within the realm 

of deposition of the ooid grainstone or from a nearby setting remains unclear. 

9B. Well- to Moderately-Sorted Fossiliferous Carbonate Grainstone: 

The wide range of bioclasts and biogens that comprise this subfacies argues for a well oxygenated 

environment of deposition where a variety of organisms could thrive. Nevertheless, the locally moderate 

sorting of the components indicates varying energy conditions during deposition. The thick micritic rims 

around many of the grains also argue for episodic quiet-water conditions that alternated with a high-energy 

environment that is recorded in the lack of micrite in this subfacies. The thinning and swelling of beds 

containing Subfacies 9A deposits reflect deposition in bioclastic and biogenic grainstone shoals of laterally 

varying thickness. These shoals were likely deposited above normal wave base in constantly agitated water 

as indicated by the absence of micrite. Nevertheless, these grainstone shoals must have been in the vicinity 

of a siliciclastic source which accounted for the abundance of quartz grains in this subfacies. The well- to 

moderately-sorted fossiliferous carbonate grainstones did preserve their original mound-like morphology, 

especially when overlain by fine-grained, low-energy deposits such as the carbonate mudstones and 

wackestones, but also when overlain by high-energy, horizontally-bedded upper flow regime sandstones. 

9C. Poorly-Sorted Fossiliferous Carbonate Grainstone: 

The mixture of biogenic grains and siliciclastic detritus reflects deposition of this subfacies at the interface 

of a carbonate and a siliciclastic environment, nevertheless still in a carbonate-dominated realm. This 

subfacies did, however, receive abundant input from a nearby siliciclastic setting, as reflected in the 
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abundance of detrital grains. Nevertheless, the large diversity of fossil-derived grain types in this subfacies 

suggests living conditions were good. The variety of grain sizes present in these grainstones reflects 

strongly fluctuating energy conditions during deposition. A high-energy environment is likely represented 

by the granule-size detrital extra-clasts (and to a lesser extent by the quartz sand) that were brought in from 

an adjacent facies, as well as by the broken nature of several of the grains, and by the lack of micrite. An 

alternating low(er) energy environment is indicated by micritic rims around many of the grains, and by the 

presence of up to sub-millimeter grains throughout this facies. Similar to Subfacies 9B it is suggested that 

the thinning and swelling of beds of this subfacies represents their original shoal-like morphology during 

deposition. 
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Figure 2: (A) Tabular cross-bedded sandstone (Facies 1A) display sets of cross-laminated sands separated 

by bounding surfaces. (B) Trough cross-bedded sandstone (Facies 1B) display fine laminations comprised 

of fine sand and silt grains. (C) Thirty-three paleocurrent analyses from the Ingleside Formation outcrop at 

Owl Canyon show a dominantly S- and E- sediment transportation direction 

 

 

 

 

 

 

 

 

 

 

 

 

A B 

C 



 

23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: (A) Horizontally-bedded sandstone (Facies 2) comprises thin, cm-scale beds (B) Heavy 

bioturbation in massive sandstone (Facies 3) beds. (C) Conglomeratic sandstone (Facies 4) typically display 

irregular, erosive base and planar top (D). Asymmetric ripple-laminated sandstone (Facies 5A) displaying 

straight to convex-up profiles. (E) Moderately-steeply climbing ripples overlying a siliciclastic mudstone 

unit (Facies 6) with stoss side laminae partially preserved. (F) Gently climbing ripples with fine-grain 

laminae in greater relief than coarse grained laminae. 
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Figure 4: (A) Dark red, laterally continuous units of silt-rich siliciclastic mudstone. (B) Facies 6 is 

composed of admixtures of silt and very fine sand that make up irregular laminae. Locally display siltstone 

ripples with mud foresets observed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 (A) Carbonate mudstone (Facies 7) beds are generally separated by a sharp contact from overlying 

and underlying sandstone units. (B) Thin section photomicrographs of carbonate mudstone typically show 

horizontal burrows and light and dark patches of micrite.  
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Figure 6: (A) Facies 8A is moderately sorted and dominantly composed of ooids with some bioclast 

admixtures. (B) Facies 8B shows a diverse bioclast composition, with some lithoclast components. (C) 

Facies 9A is dominantly composed of moderately sorted ooids, components show thin micritic rims. 

Photomicrograph depicts recrystallization of oomoldic porosity. (D) Facies 9B shows a diverse component 

of skeletal fragments that typically display thick micritic rims. (E) Lithoclast and bioclast component of 

Facies 9C are clearly poorly sorted.  

 

A 

B 

C 

D 

E 



 

26 

 

FACIES ARCHITECTURE 
 

 

 

The Ingleside (Colorado) and equivalent Casper (Wyoming) Formations are characterized by an 

intercalation of carbonate and siliciclastic units. Thickness of the stratigraphic sections in our study area 

generally increase from 5 to 105 meters in the southwest-northeast direction and from 60 to 90 meters in 

the west to east direction. In this study, the succession is subdivided into eight stratigraphic intervals with 

each interval displaying a unique lithological assemblage that is either dominated by carbonate facies, 

dominated by siliciclastic facies, or purely carbonate or siliciclastic. Not all intervals are present in each of 

the thirteen measured sections. Twelve of the sections form a north-south transect, covering a distance of 

approximately 120 km (Figure 1). One measured section (Core 1-Upper Ferch) is located 30 km east of this 

transect, allowing a glimpse into a more carbonate-dominated succession. The eight intervals are generally 

characterized by a sharp basal contact from carbonates to siliciclastic, or vice versa. Over the lateral distance 

of 120 km, the north-south transect also reflects a transition from a mixed carbonate-siliciclastic to a purely 

siliciclastic succession with carbonate units thinning and pinching out towards the south. In this study, the 

carbonates are subdivided into dominantly fine-grained (Facies 7) versus dominantly coarse-grained 

(Facies 8 and 9) units. In general, fine-grained carbonates transition laterally into coarse-grained carbonates 

southwards. Fossiliferous carbonate beds grade into coarse-grained carbonate beds composed of non-

skeletal grains in the same direction. The southernmost occurrence of carbonates is in the Bellvue Dome 

section (Figure 7A). 

The basal contact of this unit is often defined by a transition from dark red and purple siliciclastics of the 

underlying Fountain Formation, to the pink- or orange-colored sandstones of the Ingleside/Casper 

Formation.  The contact of the Ingleside and the underlying Fountain Formation varies southward from 

gradational to sharp, and is found to occur at stratigraphically higher parts of the Ingleside Formation further 

south.  
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The eight stratigraphic intervals that can only be recognized in the northern portion of the northeast-

southwest transect are described below. The interval numbers increase upsection, with Interval 1 being the 

oldest, and Interval 8 the youngest.  

Interval 1: At the northernmost section of the study area (Core R114), Interval 1 is composed only of 

fossiliferous carbonates (Facies 8B and F9B) and mud-supported carbonates (Facies 7). Further south, 

tabular cross-bedded sandstones (Facies 1A) define the base of the Ingleside Formation. These are overlain 

by a succession of intercalating units of oolitic carbonates (Facies 8A and F9A) and thin beds of massive 

sandstones (Facies 3). Stratigraphic sections of this interval display a general fining-upwards trend that in 

some places is overlain by a coarsening-upwards trend. Interval 1 pinches out between Owl Canyon and 

Bellvue Dome and cannot be traced further south. 

Interval 2: Interval 2 is dominantly composed of tabular cross-bedded (Facies 1A), horizontally bedded 

(Facies 2), and massive (Facies 3) sandstone beds. Laterally discontinuous, thin units of siliciclastic 

mudstones (Facies 6) are observed in some places. This interval displays a general fining-upwards trend. 

The furthest southward occurrence of Interval 2 is at Owl Canyon.  

Interval 3: Interval 3 displays a carbonate succession that shows a general fining-upwards trend. The base 

of Interval 3 is composed of fossiliferous grainstone beds (Facies 9B and 9C) at the northernmost sections 

(Core R114 and Laramie outcrop), and fossiliferous packstone beds (Facies 8B) further south at Owl 

Canyon. The coarse-grained basal carbonates are in some place overlain by carbonate mudstones (Facies 

7). Similar to underlying intervals, Interval 3 also pinches out at Owl Canyon.   

Interval 4: Fining upward, horizontally bedded (Facies 2) to tabular cross-bedded (Facies 1A) sandstones 

dominate the succession in Interval 4. Thin carbonate beds of mainly carbonate mudstones (Facies 7) 

interfinger with horizontally bedded sandstone units (Facies 2) or thin conglomeratic sandstone units 

(Facies 4) in the northernmost sections (Core R114, Red Mountain, Red Nose) of this interval and are absent 

further south. The southernmost occurrence of Interval 4 is in Bellvue Dome (Figure 7A). 
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Interval 5: Interval 5 contains a higher amount of mud-supported carbonates (Facies 7) than all underlying 

intervals. A general lateral transition is observed throughout this interval, from fine-grained carbonates 

(Facies 7) in the north to coarse-grained carbonates (Facies 8 and 9) in the south. The carbonates transition 

into sandstones of Facies 1A and 2 in the measured section at Bellvue Dome. This interval pinches out 

towards the south, and also marks the southernmost occurrence of carbonates at Bellvue Dome.  

Interval 6: Interval 6 is distinguished from other intervals by its wide lateral extent. This is notably the only 

interval that comprises trough cross-bedded (Facies 1B) and gently climbing ripple-laminated (Facies 5C) 

sandstones. Tabular cross-bedded sandstones (Facies 1A), horizontally bedded sandstones (Facies 2), 

conglomeratic sandstones (Facies 4) and siliciclastic mudstones (Facies 6) also occur prominently in this 

interval. This is the only interval can be traced from the northernmost (Core 18-4) to the southernmost 

(Carter Lake) sections of the study area. 

Interval 7: Fine-grained carbonate mudstones (Facies 7) dominate the succession in Interval 7. In two of 

the measured sections where this interval is observed (Core R114 and Red Nose outcrop), the fine-grained 

carbonates are intercalated with thin sandstone beds belonging to Facies 2 or 3, and are separated from them 

by sharp contacts. The southernmost outcrop of this interval is at Owl Canyon.  

Interval 8: Lithology of Interval 8 is dominated by fossiliferous carbonate grainstone beds (Facies 9B). This 

interval is documented only at the northernmost section (Core 18-4) and does not extend laterally across 

the study area. Thin beds of horizontally bedded (Facies 2) to tabular cross bedded (Facies 1A) sandstones 

interfinger with the fossiliferous carbonate grainstones (Facies 9B) and are separated from them by sharp 

contacts.  

The eight stratigraphic intervals identified based on the northeast-southwest transect are not well-defined 

in the easternmost section of this study (Core 1-Upper Ferch). Based on general trends, Intervals 1 to 4 are 

recognized in Core 1-Upper Ferch (Figure 7B). Nevertheless, the upper 45 meters of this measured section 

is a thick carbonate mudstone unit that cannot be correlated to lithological assemblages observed westward.
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Figure 7A: North-South correlation chart for Ingleside/Casper Formation. Eight broad time intervals are 

identified based on lithological changes across the stratigraphic successions. Dashed lines define the 

transects used to construct 2-D depositional models (Figure 8)
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Figure 7B: West-East correlation chart for Ingleside/Casper Formation. Interval 1-4 are identified in the 

easternmost section (Upper Ferch) based on lithological changes across the stratigraphic sections. Dashed 

lines define the transects used to construct 2-D depositional models (Figure 8) 
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Table 1: Latitude-Longitude of measured sections used for N-S and E-W transects across the study area 

Measured Section Latitude Longitude 

Core R114 41ᵒ35’7.24’’ -105ᵒ50’9.41’’ 

Laramie 41°16'23.57" 105°29'13.34" 

Red Mountain 40°57'37.22" 105°10'23.51" 

Red Nose 40°53'10.91" 105°14'57.81" 

Owl Canyon 40°45'47.01" 105°10'49.03" 

Bellvue Dome 40°37'53.27" 105°10'5.46" 

Inlet Bay 40°30'56.57" 105° 9'49.24" 

Coyote Ride 40°29'23.46" 105° 9'18.65" 

Bobcat Ridge 40°27'39.04" 105°13'2.13" 

Sylvandale 40°25'13.12" 105°13'3.34" 

Carter Lake 40°22'9.57 105°13'3.60" 

Core Upper Ferch-1 40°63'6.52" 104°75'59.13" 
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DEPOSITIONAL MODEL 
 

 

 

The succession of the Ingleside/Casper Formation is interpreted to record deposition from an offshore 

carbonate ramp (Facies 7,8,9) in the distal reaches of this sedimentary system to a sand-dominated 

nearshore environment (Facies 1A,2,5A,5B) that was, in places, fed by small fluvial systems (Facies 4). 

The model, as presented below, is a reflection of the facies succession depicted in the North-South transect 

(Figure 7A) running roughly parallel to the NW-SE-trending Ancestral Front Range Mountains (Kluth and 

Coney, 1981) but nevertheless recording all crucial facies changes that are relevant for this sedimentary 

system. 

The facies architecture shows that the Ingleside/Casper Formation was a mixed carbonate-siliciclastic 

depositional system with dominantly carbonates deposited in the north and east, and siliciclastics in the 

south (Figure 7A). Based on the fossil content of brachiopods and crinoids (Bottjer and Jablonski, 1987; 

Tapanila, 2005), the carbonates represent marine sediments. Sedimentary structures such as cross-bedding 

and ripple marks indicate that the siliciclastics likely reflect both marine as well as terrestrial conditions. 

The increase in the amount of carbonate sediment to the north and east suggests that the marine incursions 

came from this direction, whereas siliciclastic input likely originated from the south.  

The facies architecture shows that this mixed carbonate-siliciclastic ramp system exhibited two very 

different facies successions during transgressions and regressions: during transgressions, following the 

general concept of Vail (1987), little to no siliciclastic input occurred, and sedimentation of carbonates 

prevailed. In contrast, regressions transported plenty of siliciclastic debris towards the shelf, and the 

sedimentary system switched to siliciclastic deposition. Eolian dunes are present exclusively during one 

stratigraphic interval (here termed stratigraphic interval 6, see below), and they are not present during either 

siliciclastic or carbonate deposition in the rest of the succession. 

In the following, the depositional transect will be described from its proximal riverine and foreshore to the 

most distal environment represented by the carbonate mudstones regardless of whether carbonates or 

siliciclastics dominated this sedimentary system.  
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The Terrestrial Setting  

The terrestrial environment is interpreted to show exclusively fluvial facies in all stratigraphic intervals 

except interval 6, which also contains eolian facies.  

The eolian depositional system was likely dominated by small crescent dunes (cf. Scherer, 2000), the 

remnants of which are still present as up to one meter-thick laterally discontinuous beds of trough cross-

bedded sandstones (F1B). It seems most probable that the dunes formed an erg system on the continental 

side of this mixed carbonate-siliciclastic ramp during the duration of interval 6. As the sandstone interpreted 

to be eolian in origin are documented along the entire north-south transect it is likely that for a restricted 

period of time this erg system extended across an area of over 120km in the north-south direction. 

This eolian erg was locally cut by small rivers that likely originated in the Ancestral Rocky Mountains to 

the west of the study area and transported their sandy and gravelly sediment load into the shallow sea in the 

northeast and east. The sediment probably originated in the highlands of the Ancestral Rocky Mountains 

which, considering the coarse grain size, must have been relatively close to the study area. As these gravelly 

sandstone lenses interpreted as fluvial channels are just decimeter-thick it is likely that they were relatively 

shallow (Bridges and Demicco 2008); their width is estimated to be only in the range of tens of meters as 

reflected by the width of the gravelly sandstone lenses in outcrop. Towards the east and north, the channel 

facies pinches out laterally against sandstones interpreted to be shallow-marine in origin. It is therefore 

likely that these fluvial systems were located close to the coast, and represent the distal reaches of streams 

just before entering the sea (cf. McGowen and Groat, 1971).  

 

The Marine Setting  

The interfingering of carbonate and siliciclastic sediments throughout the Ingleside/Casper Formation 

succession shows that both lithologies must have been deposited simultaneously in laterally adjacent but 

still different environments. Nevertheless, sedimentation during the eight stratigraphic intervals was 

dominated by either carbonates or siliciclastic sediments as seen in the predominance of one of these two 
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lithologies in each of the intervals. Even though both environments occur in time-equivalent successions 

and existed likely parallel to each other along the Ingleside/Casper Formation coast (Figure 8), the 

interpretation will be kept separate for a carbonate and a siliciclastic transect. Whether a carbonate or a 

siliciclastic coastline developed in a specific place depended most of all on the local siliciclastic sediment 

input. Close to fluvial systems that shed sand into the marine realm, siliciclastic sedimentary systems 

developed; carbonate deposition prevailed in areas without clastic sediment input. 

 

i. Carbonate Deposition 

The most proximal of the carbonate facies were likely the grainstones reflecting constant water movement 

above normal wave base. The size of the grains in combination with the lack of micrite reflects high-energy 

deposition, likely in oolitic shoals similar to the modern ooid shoals form the Bahama bank (Shinn, 1988; 

Rankey et al., 2006). A shallow-marine setting is also indicated by their interfingering with planar bedded 

and cross-bedded sandstones (Facies 1) that are interpreted as foreshore and shoreface sediments. Similarly, 

a shallow-marine environment is likely indicated by the skeletal grainstones (Facies 9B and 9C) as they – 

similar to the oolitic grainstones - are devoid of micrite, and their grain size indicates constant water 

agitation. Nevertheless, the grain size of most of the skeletal grainstones in the Ingleside/Casper Formation 

varies significantly, suggesting that these sediments were deposited in slightly deeper water than the oolites. 

Anderson (1972) and Holloway (1983) propse a similar position for skeletal grainstones interpreted as being 

deposited as shallow skeletal sand banks and shell shoals. Nevertheless, in places the oolites and the skeletal 

grainstones occur in close association, and likely represent shallow-water shoal complexes similar to 

carbonate sand bodies from modern ramps such as the Persian Gulf (Loreau and Purser, 1973) and Yucatan 

Shelf (Logan et al., 1969). 

Both packstone facies most likely occupied a position seaward of the grainstones, likely in a transitional to 

an uppermost offshore environment. The micrite content in both facies indicates that despite the large 

skeletal grains and ooids that reflect high-energetic conditions, there had to be some tranquil time in order 

to deposit the carbonate mud. The highly bimodal distribution of this facies (grains and carbonate mud) is 
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therefore interpreted to reflect changing high- and low-energy conditions in the transition zone between 

shoreface and offshore. During storms, the ooids and skeletal grains get transported offshore and into an 

area that would normally deposit mud. Nevertheless, likely because of the size of the grains, transport path 

of grains towards offshore remained short, and resulted in the mixing of the grains being deposited during 

storms, and the mud reflecting lower energy, likely fairweather conditions. The sand grains in the packstone 

facies likely reflect a proximity to the nearest siliciclastic environment and probably also indicate offshore 

transport of siliciclastics during high-energy events. The offshore environment is exclusively composed of 

carbonate mudstones (Facies 7), and only locally exhibits wackestones. The carbonate mud could either 

represent settling out of the water column (Flügel, 2004), and/or it was formed by bed load transport as 

described by Schieber et al. (2013) from flume experiments. The wackestones likely represent the only 

traces of storm deposition in these fine-grained carbonate rocks, which is likely a function of the lack of 

coarse carbonate grains in the upper offshore environment of the Ingleside/Casper Formation. 

 

ii. Siliciclastic Deposition 

The Ingleside/Casper succession is exclusively composed of siliciclastic sediment in the south and shows 

a gradual decrease in siliciclastic deposits towards the north and east. It is inferred that siliciclastic 

sediment was likely sourced from the south, presumably from eolian and fluvial systems in the terrestrial 

realm.  

The horizontally-bedded sandstones (Facies 2) are the highest energy deposits of the entire succession and 

therefore likely formed the most proximal of all nearshore siliciclastic facies documented in this study. 

They are interpreted to represent beach/foreshore sedimentation (Sallenger, 1979; Cheel and Middleton, 

1986) at the interface of the terrestrial and the marine realm. These horizontally-bedded sands graded 

seawards into shallow-marine dunes that are interpreted to be deposited in a shoreface environment 

(Sutton, 1969). The fine to medium-grained sand forming these deposits was most likely sourced from 

fluvial systems that delivered sand into the marine environment. Nevertheless, the larger particles such as 

granule-sized grains and coarse-grained sand present in both the foreshore and shoreface sediments have 
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likely been shed onto the shelf from these nearby fluvial systems. The coarse-grained sediments suggest 

that these foreshore and shoreface siliciclastics were likely deposited in close proximity to the small 

deltas delivering this sediment onto the shelf as otherwise marine processes would have completely 

reworked the larger grains.  

The shoreface sandstones most likely graded into an offshore mudstone belt represented by the thin 

siliciclastic mudstone beds of facies 6. They are interpreted to represent deposition below normal wave 

base – deeper water than the shoreface sandstones, but still in relative proximity to the shoreface deposits 

as indicated by their sand and silt content. This environment could be termed the “dirt skirt” of these 

small deltas formed by the rivers draining the Ancestral Rocky Mountains. The mudstone setting is the 

environment that captured much of the fine-grained suspended and intermittently suspended material shed 

into the marine realm from these rivers. Nevertheless, it also reflects deposition from traction currents as 

reflected in its sand and silt content. It is therefore likely that advective flows operated still in this 

offshore realm and may be responsible for the deposition of at least some of the clay-rich sediments, too. 

In a distal direction, the siliciclastic mudstones likely graded into carbonate mudstones, equivalent to the 

ones forming the most distal setting of the carbonate depositional transect. It is envisioned that once the 

suspended sediment such as the clay settled out, or was transported into the offshore environment by 

flows (e.g. as liquid mud, see Ralston et al. 2013), the water cleared, and carbonate deposition set in, an 

environment typical for tropical shallow seas (Schlager, 2016).  

 

Depositional History  

The regular changes from intervals dominated by carbonate lithologies and back to siliciclastics that are 

laterally traceable for many tens of kilometers through northern Colorado and southern Wyoming are most 

likely related to relative changes in sea level, as proposed for time-equivalent late Pennsylvanian to early 

Permian successions elsewhere (Krainer and Lucas, 2004; Jordan and Mountney, 2012; Labaj and Pratt, 

2016). These sea-level fluctuations are envisioned to be triggered by the growing and melting of ice sheets 

in Gondwana (e.g. Fielding et al., 2008) and are therefore considered glacioeustatic in origin.  
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With a few exceptions, the carbonate and siliciclastic successions recognized in this study dominantly 

display deepening-upwards trends, implying that all stratigraphic sections in this study preserve 

transgressive portions of the succession better than regressive parts. It is most likely that the difference in 

preservation is closely linked to the high amplitude sea-level changes, combined with an only gentle relief 

of the study area. During sea-level falls, the potentially exposed regressive part of the succession would be 

more easily eroded than the underlying transgressive portion of each cycle protected by overlying regressive 

strata (Catuneanu, 2002). Nevertheless, evidence of exposure could be easily eroded by any of the 

subsequent transgressions prior to depositing the transgressive part of each cycle.  

Deepening upward trends in both carbonate and siliciclastic successions are interpreted to represent the 

gradual rise of sea level. An increase in detrital sediment influx is identified as the fundamental reason for 

carbonate-dominated deposits being laterally or vertically replaced by siliciclastic dominated sediments. 

The small-scale cycles represented by these deepening-upward successions are superimposed by a larger-

scale sea level curve that is identified based on the extent of the onlap of successive mud-rich carbonates, 

which are here interpreted as the only units that represent true sea-level highstands across the study area. 

The southernmost carbonate mudstone bed is documented at Bellvue Dome, implying that at least one sea 

level highstand, recorded in Interval 5, extended as far south as this location. Highstand deposits recorded 

across all northeast-southwest stratigraphic successions indicate that a gradual large-scale sea level rise 

occurred between Intervals 1 and 5, followed by a sea level fall between Intervals 5-7.  

From the data at hand it is unclear whether any climate fluctuations go hand in hand with these sea-level 

changes, and the sedimentary patterns observed do not call for a climatic driver to explain the lithological 

variations. Nevertheless, interval 6 differs from all other sandstone-dominated units: As it contains 

exclusively siliciclastics interpreted as eolian sediments, developed in a dry eolian system, this unit is 

indeed interpreted to have been caused by a change in overall climate to dryer conditions that allowed for 

the development of the erg system. So while there are no clearly developed cycles of more humid versus 

more arid conditions preserved in the Ingleside/Casper Formation, one interval does reflect a distinct change 

in overall climate in these rocks. 



38 

 

 

LEGEND: 

 

Figure 8: Schematic view of stratigraphic intervals in the Ingleside/Casper Formation. (A) Coarse carbonate 

deposition expands over time through Interval 2 and extends to Owl Canyon. (B) Siliciclastic deposition 

dominates Interval 3 and extends through the NE-SW transect. (C) Fine-carbonate deposition dominates 

Interval 4, dashed blue line represents a diminishing coarse-carbonate depositional environment. (D) Eolian 

and shallow marine sandstone deposition observed across the NE-SW transect of the study area. Brown 

arrows display intermixing of shallow marine and eolian sand 

A B 

C D 
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Legend:  

 
 

 

Figure 9: (A) Schematic depositional model for the Ingleside/Casper Formation display nearshore carbonate 

and siliciclastic facies deposited adjacent to each other. Both nearshore environments grade into fine-

grained carbonates in the distal direction. (B) Schematic depositional model for the Ingleside/Casper 

Formation during Interval 6, when eolian dunes are observed across the study area and carbonate production 

ceases.  
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DISCUSSION 
 

 

 

I. Correlation of Owl Canyon and Core Upper-Ferch 1 sections 

The present study proposes that the type section of the Ingleside Formation at Owl Canyon is largely time-

equivalent to the easternmost section of the study area represented by Core Upper Ferch-1 (Figure 7B). 

This lithological correlation, though lacking biostratigraphic data, shows, at least in the lower part of the 

Ingleside succession, stratigraphic sections that are either dominated by siliciclastics, or by carbonates, and 

are therefore correlated to what has been assigned to Intervals 1-4 throughout the N-S transect. 

Nevertheless, the upper part of the measured section in core Upper-Ferch 1, overlying Interval 4, comprises 

a 47 m-thick homogenous carbonate mudstone (Facies 7) unit that is not subdivided into stratigraphic 

intervals and has little in common with any of the other sections across the study area. This section, 

interpreted to represent the most distal part of the basin fill in the study area, must have been largely cut off 

from sediment supply whereas the lower part of the succession in the Upper-Ferch 1 core did still receive 

some siliciclastic input even though the distance to the shoreline must have been approximately the same 

throughout deposition of the Ingleside/Casper Formation. It is therefore most likely that the main 

siliciclastic source of the unit, the Ancestral Rocky Mountains located in the west and south of the study 

area, ceased to supply sediment far into the basin towards the east. Even though sea-level lowstands, 

especially from high-amplitude glacioeustatic fluctuations produced by the melting and growing of glaciers 

in Gondwana (Crowell, 1978) are likely to have helped distribute sediments far out into the basin it seems 

likely that a change in the source area was ultimately responsible for the observed absence of siliciclastic 

sediments in the upper portion of core Upper-Ferch 1. It is likely that the relief of the Ancestral Rocky 

Mountains was significantly lowered during the time the Ingleside/Casper Formation was deposited, which 

may be directly recorded in the sediment patterns, particularly in how far siliciclastic sediment is 

transported into the basin. Hence, it seems likely that tectonic activity must have subdued towards the end 

of Ingleside/Casper deposition compared the beginning, thereby confirming Ancestral Rocky Mountain 
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uplift times, and the cessation of the uplift as suggested by Dickinson and Lawton (2003). Apart from a 

total lack of siliciclastic sediments, coarse-grained carbonates are also missing in the upper part of the 

succession in the Upper-Ferch 1 core. Together with the missing siliciclastics, the complete absence of 

nearshore facies in this stratigraphic part of the succession (Interval 5-8) implies that sea-level lowstands 

did not impact this easternmost basinal part of the study area. As the transition from Interval 4 to 5 is marked 

by a distinct transgression throughout the study area it is likely that this sea-level rise flooded the foremost 

exposed shelf, and established offshore conditions and the deposition of mostly carbonate mud for much of 

the basin. 

 
II. The Ingleside/Casper Formation Erg System   

This study suggests the presence of a coastal erg system in the Ingleside/Casper Formation for a restricted 

period of time during Interval 6. Based on the small thicknesses and trough cross-bedded nature of the 

eolian units recognized here, the erg system is described as being dominated by small crescentic dunes. 

During this stratigraphically thin interval, eolian units are present throughout the study area, suggesting that 

despite its limited thickness and discontinuous nature, this erg system likely extended through a significant 

part of northeastern Colorado. Nevertheless, due to the lateral discontinuity and limited thickness of eolian 

facies, the scale and character of this erg system remains unclear. In order to clarify the character of the 

eolian systems in the Ingleside/Casper Formation, this suggested erg is compared to eolain systems across 

midcontinent North America (e.g. Kerr and Dott, 1986; Chan and Kocurek, 1986; Kocurek et al., 2000), 

those examples being among the best-studied ergs worldwide.  

Similar to other eolian strata in midcontinent North America, the Ingleside/Casper Formation sediments are 

well sorted and consist of fine- to very fine-grained sandstones, and eolian beds are generally trough cross-

bedded (Facies 1B), or show climbing ripples (Facies 5C). One of the striking characteristics of these eolian 

deposits is the absence of large-scale bedforms, or the superimposition of trough cross-beds by different 

bedforms such as tabular cross-beds which makes it likely that these strata reflect deposition in a compound 

dune field based on the classification of Kerr and Dott (1986). The paleowind direction derived from trough 
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cross-bed foresets at Owl Canyon display a dominantly south- and east-directed sediment transportation 

direction (average direction calculated to be 107ᵒ, Figure 2C). These data suggests that the erg system was 

dominated by offshore, and in places coast-parallel winds. This reconstruction from the Ingleside/Casper 

Formation at Owl Canyon at least partly overlaps with reconstructions for the Late Paleozoic that 

documents paleo-wind directions coming from the northwest (northerlies) and the northeast (easterlies; 

Poole, 1962). The winds are thought to represent seasonal shifts of high pressure cells over what is now the 

central part of North America, and effects of monsoonal circulation (Parrish and Peterson, 1988; Loope et 

al., 2004).  

The dominant wind directions would have allowed eolian sediments to form from marine deposits when 

the wind was coming from the north and east, and therewith towards land. Nevertheless, the differences in 

grain sizes do not directly show a close link between the eolian and the marine environments. The same 

holds true for a periodic flooding of the dune fields (e.g. during storms), or time of high water level. Such 

events are often seen as a significant process for supplying marine sediment to eolian systems (Chan and 

Kocurek, 1986). Nevertheless, deposits from such floods are generally preserved as thick water-lain 

interdune deposits (Ahlbrandt and Fryberger, 1981). The complete absence of interdune deposits in our 

study area, however, supports the idea that either flooding was likely not a common process, or the 

investigated sections were located too far inland to be affected by such floods. As no unequivocal marine 

sediments are documented that are time-equivalent to the eolian sediments, this question has to remain 

open. There is a high likelihood, however, that dominant northerly and easterly wind directions transported 

sand from extensive sand blankets documented across North America during this time (Poole, 1962; 

Blanchard et al., 2016) Another major sediment source that may have yielded the sand which would be in 

agreement with the reconstructed paleo-wind direction is therefore the area of the Ancestral Rocky 

Mountains.  

Considering that probably no floods reached the eolian depositional sites documented in this study during 

interval 6, this eolian erg was most likely characterized by dry conditions and deposited without much or 

any influence from flowing water. This interpretation of a mostly dry system is further corroborated by the 
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absence of deflation surfaces or polygonal surface fractures, typical of wet or damp sand deposition 

(Kocurek and Hunter, 1986). Dry sand is known to display much higher mobility than wet sand (Chan and 

Kocurek, 1986; Wiggs et al., 2004), and near-continuous sediment transportation (Thomas and Wiggs, 

2008). Therefore, the wide lateral extent of this erg throughout the study area may be a direct function of 

this eolian system’s dry nature. 

Another aspect of this eolian system that is rather typical of dry systems but has not been discussed for the 

Ingleside/Casper Formations is the predominance of relatively thin, only meter-thick beds, and the absence 

of large cross-beds, as documented for much of the well-known Jurassic Navajo Sandstone in Utah 

(Freeman and Visher, 1975). Thin beds are thought to reflect low water tables, as the position of the water 

table is seen as the baseline of erosion, and hence preservation of eolian strata (Crabaugh and Kocurek, 

1993). Wet eolian systems such as the Entrada Sandstone in Utah (Kocurek, 1980), in contrast, display 

thick beds of significant lateral continuity. The lateral discontinuity of the Ingleside/Casper Formation beds 

representing this erg system is therefore likely a result of poor preservation, and corroborates the dry nature 

of this dune field.  

 
III. Climatic Implications of the Ingleside/Casper Erg System 

 
This study describes an erg system during one particular time interval (interval 6). This erg is interpreted 

to be a dry eolian system and displays no signs of being influenced by marine waters or groundwater. It is 

therefore suggested that sea level and water table levels during this time were not elevated enough to impact 

eolian dune deposits. In this study, we interpret deposition of the eolian system to record a widespread sea-

level lowstand that can be documented across the north-south transect of the basin. This continuous 

lowstand during interval 6 is further corroborated by the absence of carbonate deposits that would have 

required at least some flooding, or the record of siliciclastic highstand deposits during this time. However, 

apart from a rise in sea level, the position of the water table can also be a function of climate and/or 

tectonism (Kocurek et al., 2001). As three parameters, sea-level, climate, and tectonism could have played 

a role in controlling the water table across the terrestrial part of the study area, especially as sea-level and 
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climate are typically interlinked (Tandon and Gibling, 1994; Smith and Read, 2000). It remains difficult to 

distinctly attribute the apparent cyclicity in the Ingleside/Casper Formation to exclusively one of these 

possible causes. Nevertheless, as the very distinct drawdown of sea-level is coupled with the exclusive 

appearance of eolian strata in interval 6, this portion of the succession most likely reflects a significant 

change in climate. 

Several studies have linked alternating glacial and non-glacial intervals recorded in Gondwana to 

fluctuating climatic conditions during the Pennsylvanian across midcontinent North America (Heckel, 

2008). However, the correlation between types of climate and sea level position remains controversial. Most 

commonly, low-latitude arid climate is proposed to coincide with glacial lowstands, and humid climate 

with interglacial highstands (Rankey, 1997; Olszewski and Patzkowsky, 2003; Soreghan et al., 2007). 

Nevertheless, some authors have suggested a reverse model (Miller et al., 1996; Cecil et al., 2003). The 

mechanism by which sediment supply increases in the present study area remains unclear. However, the 

stratigraphic distribution of wind-derived siliciclastics in Late Paleozoic strata of the Midland Basin (Sur 

et al., 2010) and the Paradox Basin (Soreghan, 1992) suggest a general increase in aridity and sediment 

availability during lowstands. In most successions, shallow water tables in eolian depositional environments 

seem to rise in association with humid conditions, and are therefore associated with highstands (Crabaugh 

and Kocurek, 1993). Indications of humid conditions are generally thought of as preserved deflation surface 

in eolian strata (Kocurek and Lancaster, 1999) -- a record that is absent in the Ingleside/Casper erg system 

studied here.  

It is therefore suggested that arid climatic conditions coupled with sea level lowstands, as observed in the 

Sahara during the Quaternary (Wilson, 1973; Kocurek, 1998), was likely responsible for development of 

the Ingleside/Casper erg system. 

 

IV. Age of the Ingleside Formation  

Traditionally, the Ingleside Formation is interpreted as representing entirely Wolfcampian-age deposits 

(Hoyt, 1962; Maughan et al., 1985). The only age datum for this units stems from a single, well-preserved 
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specimen of Triticites ventricosus from the base of the Ingleside Formation at Owl Canyon that was 

assigned a Wolfcampian age (Hoyt and Chronic, 1961). However, recent developments in fusuline research 

(Langer and Hottinger, 2000; Groves and Hue, 2009) and the Pennsylvanian-Permian transition are not in 

agreement with the traditional stratigraphic interpretation put forward by this study.  

Robust fusulinid data from a large part of the Casper Formation in Wyoming assigns ages of latest Virgilian 

to early Missourian (Latest Pennsylvanian) to limestone strata based on the occurrences of fusuline 

assemblages that include T. ventricosus (Burns and Nestell, 2009). This particular study also uses drill cores 

from a location in the close vicinity of core-R114 considered for the present sedimentological study. Since 

the lower part of the Ingleside Formation is considered as being time-equivalent to at least the southern 

extent of the Casper Formation in Wyoming, it seems reasonable to assign a Virgilian to Missourian age to 

the Ingleside Formation 

Whether the Pennsylvanian-Permian transition lies within the uppermost Ingleside/Casper succession was 

previously unknown, especially since no age data exist from the youngest limestone and sandstone units in 

these successions. Nevertheless, it is suggested here that significant sea-level and climatic signals 

characterizing the Pennsylvanian-Permian transition are also present in the stratigraphic record of the 

Ingleside/Casper Formation.  

Recent studies suggest a dramatic expansion of glacial ice across much of Gondwana spanning the Gzhelian 

– Wolfcampian boundary (Late Pennsylvanian – Early Permian) (Isbell et al., 2003; Fielding et al., 2008). 

This glacial expansion is also supported by stable isotope records from Late Pennsylvanian - Early Permian 

marine carbonates and organic-rich facies around the world (Grossman et al., 2008; Birgenheier et al., 

2010). Carbonate ramps such as the one where the Ingleside/Casper Formation was deposited, are especially 

sensitive indicators of eustatic changes, and also reflect the onset of this major Gonwanan glaciation phase 

during the Late Paleozoic (Heckel, 2008). In many areas across the United States Midcontinent (e.g. 

Permian Basin, Texas, and the Orogrande Basin, New Mexico), earliest Permian (Asselian) strata show a 

gradual overall drop in relative sea-level (Koch and Frank, 2011). It is suggested in this study that the 

carbonate mudstones represent highstand deposits, and their general distribution in the upper portion of the 
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Ingleside/Casper Formation reflects a regression that is culminating in the overlying tidal flat deposits of 

the Owl Canyon Formation (Peterson, 1972), and the eolian deposits of the Lyons Formation (Adams and 

Patton, 1979). 

Additionally, a general trend towards increased aridity in the Latest Pennsylvanian-Early Permian has been 

well-established in recent studies (Tabor and Montaῆez, 2004; Tabor and Poulsen, 2008). A regional shift 

to more arid conditions is observed in the Ingleside/Casper succession in the present study and in other 

studies of the Casper Formation in adjacent Wyoming (Steidtmann, 1974; Ahlbrandt and Fryberger, 1982). 

It is therefore inferred from the present study that the general increase in aridity mirrored especially in the 

upper portion of the Ingleside/Casper Formation records the same changing climatic conditions observed 

across the entire area of equatorial Pangea during the Latest Pennsylvanian-Early Permian. 

 It is unclear whether the uppermost parts of the Ingleside/Casper Formation contain earliest Permian 

deposits. It is, however, reasonable to suggest a Late Pennsylvanian age for most of the Ingleside deposition.  
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CONCLUSIONS 
 

 

 

Measured sections of the Ingleside/Casper Formation investigated in this study extends across an area of 

over 120 km in a north-south direction, and over 35km in an east-west direction from northern Colorado 

into southeastern Wyoming. It consists of an intercalation of carbonates and siliciclastics. The succession 

shows an increase in carbonate lithologies towards the north and east, and south of the Bellvue outcrop near 

Fort Collins, Colorado, the formation consists exclusively of siliciclastics . The succession is subdivided 

into ten facies that include three carbonates and seven siliciclastics. 

The three carbonate facies (Facies 7; Facies 8A and 8B; Facies 9A, 9B, and 9C) are distinguished based on 

dominant carbonate components. They are: (i) carbonate grainstone (carbonate grainstone with non-skeletal 

grains, carbonate grainstone with bioclasts), (ii) carbonate packstone (carbonate packstone with non-

skeletal grains, carbonate packstone with bioclasts), and (iii) carbonate mudstone - wackestone. 

The seven siliciclastic facies (Facies 1A and 1B; Facies 2; Facies 3; Facies 4; Facies 5A, 5B, and 5C; Facies 

6) are identified based on sedimentary structures, grain size, and sorting. They are: (i) cross-bedded 

sandstones (tabular cross-bedded sandstones, (ii) trough cross-bedded sandstones), (iii) horizontally-

bedded sandstones, (iv) massive sandstones, (v) conglomeratic sandstones, (vi) ripple-laminated sandstones 

(asymmetric current ripples, moderately-steeply climbing ripples, gently climbing ripples), and (vii) silt-

rich siliciclastic mudstone. 

Based on the facies, this study divides the Ingleside/Casper Formation into 8 stratigraphic intervals, with 

each interval displaying a distinct lithological assemblage that is either dominated by carbonates, or by 

siliciclastics. Typically, all 8 intervals show fining-upwards trends, and very few coarsening-

upwards trends are observed. 

The Ingleside/Casper Formation is interpreted to represent a mixed carbonate-siliciclastic ramp 

environment that developed along the Ancestral Front Range during the Late Paleozoic. Lateral and vertical 

intergrading of siliciclastic and carbonate facies indicate that the deposition 

alternated between dominantly carbonate and dominantly siliciclastic settings. During deposition in a 
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carbonate-dominated environment, carbonate facies occupied distinct positions on the ramp, with 

carbonate grainstones representing the most proximal facies and carbonate mudstones the most distal 

facies belts.  Siliciclastic deposits are suggested to have dominated the study area during times when 

siliciclastic input into the shallow marine environment was high and largely shut down carbonate 

production in the proximal realm. During dominantly siliciclastic deposition, the foreshore consisted of 

horizontally bedded sandstones, dune deposits dominated in the shoreface environment, and silt-rich 

siliciclastic mudstones were deposited in a low-energy offshore setting. The facies architecture of the 

Ingleside/Casper Formation indicates that both carbonate-dominated and siliciclastic-dominated 

environments graded into carbonate mudstones in the most distal settings. Therefore, carbonate mudstone 

units overlying any other strata are regarded as the only facies transition that records significant increases 

in sea-level, regardless whether the underlying environment was carbonate or siliciclastic. Besides these 

small-scale changes that are recorded eight times in the Ingleside/Casper Formation, the overall trend with 

carbonates showing a more wide-spread distribution in the middle portion of the formation than at the top 

or bottom indicates an overall transgression in the lower part of the unit followed by a regression in the 

upper part.  

The development of an eolian environment exclusively during one interval (Interval 6) across the study 

area suggests an important shift in sea level and climate during the deposition of the Ingleside/Casper 

Formation. It is inferred that for a period of time, a dry eolian system extended across the entire western 

part of the study area. This significant increase in aridity coupled with a sharp sea level drop was mirrored 

in the development of the eolian dunes. It is likely that this basin-wide trend was caused by glacial 

expansion across much of Gondwana immediately prior to the Pennsylvanian-Permian transition. For this 

reason, the Ingleside Formation, traditionally described as Permian in age, is here reassigned to be likely 

Late Pennsylvanian in age. This reassignment is also based on the correlation of the Casper Formation, 

known to be of Late Pennsylvanian age from fussuline data, to the Ingleside Formation.  
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Appendix A: Ingleside/Casper Formation Stratigraphic Sections 
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PART 2: DETRITAL ZIRCON GEOCHRONOLOGY OF THE INGLESIDE 

FORMATION 
 

INTRODUCTION 
 

 

 

U-Pb ages of detrital zircon grains in sandstone are commonly used as a guide to sediment provenance. 

Established detrital zircon reference curves for western North America provide enhanced characterizations 

of the age of magmatic assemblages and a robust means to distinguish the provenance of detrital zircon 

grains that accumulated along western Laurentia (Gehrels and Pecha, 2014). Detrital zircon ages from 

Paleozoic sandstones in the Grand Canyon record a major shift in provenance beginning in the 

Mississippian (Gehrels et al., 2011). This change is defined by the appearance of a significant population 

of Paleozoic-aged zircon grains interpreted to have been shed from the central Appalachian orogen. Distinct 

Paleozoic peaks from detrital zircon ages are well documented in the Mississippian Surprise Canyon 

Formation of the Grand Canyon and generally increase in frequency through younger Pennsylvanian and 

Early Permian strata (Gehrels et al., 2011). 

Other studies have also identified detrital zircon populations shed from the Appalachian orogen in Paleozoic 

sedimentary strata across western United States (Figure 1). The oldest stratigraphic unit in Colorado that 

detects this age population is the Early Pennsylvanian loessite deposits of the Molas Formation in 

southwestern Colorado (Evans and Soreghan, 2015). Paleozoic detrital zircons are also documented in the 

Early Pennsylvanian Amsden Formation in southern Montana and Tensleep Formation in northern 

Wyoming (May et al., 2013), Middle Pennsylvanian Hailey Member of the Wood River Formation in south-

central Idaho (Link et al., 2014), Early Permian Cedar Mesa Member of the Cutler Formation in 

southeastern Utah (Dickinson and Gehrels, 2003; Figure 1). Further east, detrital zircon populations from 

the central Appalachian orogen have been documented in the Cretaceous Dakota Formation in western Iowa 

and eastern Nebraska (Finzel, 2014), Middle Pennsylvanian Warrensburg and Moberly channel sandstones 

in central Missouri (Chapman, 2016), and the Permian Wellington Formation in southern Oklahoma 

(Thomas et al., 2016; Figure 1).   These studies indicate that Appalachian-derived sediment was widely 
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distributed across western United States by the Early Pennsylvanian.  Appalachian detrital zircon 

populations are also widely detected through Early Triassic and Middle Jurassic sandstones along the Front 

Range and in southeastern Colorado (Hagadorn et al., 2016).  

The arrival of Appalachian-sourced zircons across western North America has major paleogeographic 

implications for western Laurentia during Paleozoic time. Transcontinental sediment transport may have 

primarily been driven by major river systems carrying sediment westward from southern and central 

Appalachians (Blakey, 2009; Gehrels et al., 2011; Chapman, 2016). An increasingly arid climate, starting 

in the Middle Pennsylvanian, resulted in strong northeasterly and southeasterly wind systems (Parrish and 

Peterson, 1988; Soreghan et al., 2002) that further transported and reworked Appalachian-sourced 

sediments into local eolian units.  

Various studies recording detrital zircon ages for Paleozoic and Mesozoic sandstones in Colorado 

collectively recognize a broad range of age populations defined by discrete peaks of age-frequency plots, 

reflecting local and transcontinental sediment sources (Duncan et al., 2013; Siddoway and Gehrels, 2014; 

Evans and Soreghan, 2015; Hagadorn et al., 2016). Local sources for Colorado Paleozoic sandstones 

include Yavapai-Mazatzal provinces (1800-1600 Ma) in the basement-cored Ancestral Rockies, Granite-

Rhyolite province (1480-1340 Ma) in the southern midcontinent, and Pikes Peak batholith (1080 Ma) in 

the Ute Pass uplift. More distant sources include Archean basement (3015-2500 Ma) of the Laurentian 

shield, Grenville basement (1300-1000 Ma), Iapetan synrift (760-530 Ma), Peri-Gondwanan terranes (750-

500 Ma); and Taconic (490-440 Ma), Acadian (430-350 Ma), and Alleghanian (330-270 Ma) synorogenic 

rocks. 

The main objective of this study is to compare detrital zircon age populations from potentially time-

equivalent upper Paleozoic Ingleside, Molas, and Hermosa sandstones with published detrital zircon U-Pb 

data from underlying and overlying sedimentary units in order to determine the timing of the arrival of 

exotic Appalachian zircons into two Ancestral Rocky Mountain basins across Colorado. Further, deposition 

of the Ingleside and Hermosa Formations mark a shift from terrestrial to shallow marine environments 

along the Ancestral Front Range and the Uncompahgre uplifts. Our study assesses whether the significant 
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shift in depositional environments across two Ancestral Rocky Mountain uplifts also corresponds with a 

shift in sediment source.  

 

 

Figure 1: Locations of Appalachian-derived grain populations previously identified in Late Paleozoic 

sandstones (May et al., 2013(1) ; Link et al., 2014(2); Holm-Denoma, unpublished(3); Chapman, 2016(4); 

Evans and Soreghan, 2015(5); Dickinson and Gehrels, 2003(6); Gehrels et al., 2011(7); Thomas et al., 2016(8). 

Location of Ingleside Formation analyzed in this study is marked by the star. Location of Molas and 

Hermosa Formations analyzed in this study overlaps location of Evans and Soreghan, 2015(5) ages). Base 

map from http://www.geomapapp.org.  
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GEOLOGICAL BACKGROUND 
 

 

 

The Ancestral Rocky Mountain (ARM) system developed in an intraplate setting and consists of NW-

trending basement-cored uplifts and sedimentary basins extending from Utah and Colorado to Texas. The 

deformation that resulted in the amagmatic ARM uplifts remains poorly understood. Various models invoke 

stresses along the Ouachita-Marathon belt, transpressional convergence along the Sonora margin, and 

reactivation of pre-existing basement faults to explain ARM deformation (Kluth and Coney, 1981; 

Dickinson and Lawton, 2003; Leary et al., 2017; Marshak et al., 2000).  

Uplifts of ARM structures began in early Pennsylvanian and continued into early Permian time (e.g Kluth 

and Coney, 1981; Dickinson and Lawton, 2003). In present day Colorado, ARM uplifts developed during 

this time have been identified as the Ancestral Front Range highland, Apishapa highland, and Uncompahgre 

highland (Figure 2). These uplifted areas were rapidly denuded of older Paleozoic sedimentary rocks, and 

Proterozoic crystalline basement shed sedimentary debris into adjacent lowlands (Blakey, 2009). 

Pennsylvanian-Permian sedimentary rocks subsequently deposited in the low platforms are characterized 

by cyclic stratal sequences and are linked to Gondwanian glaciation in the southern hemisphere (Heckel, 

1986; Blakey, 2008).  

The early Pennsylvanian in western Colorado is characterized by the widespread deposition of the Molas 

Formation, a regolithic to marine deposit developed during a period of extensive subaerial weathering 

(Mallory, 1960). Potentially coeval with Molas deposition, vigorous uplift of the Ancestral Front Range 

highland in eastern Colorado resulted in widespread deposition of coalescing alluvial fans and fluvial 

deposits, collectively identified as the Fountain Formation (Knight, 1929).  

The Ancestral Front Range, Uncompahgre highlands, and adjacent basins most likely reached their 

maximum tectonic expression in the late-middle Pennsylvanian time (Mallory, 1960; Blakey, 2008). 

Marine waters invaded the ARM basins during the middle-late Pennsylvanian, resulting in partial erosion 

of underlying rocks and Pennsylvanian-Permian deposition of the Hermosa and Cutler Formations in the 

Paradox basin, west of the Uncompahgre highland, and the Ingleside and Lyons Formations in the low-
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lying regions east of the Ancestral Front Range Highland.  Late Paleozoic cyclic stratal sequences in both 

basins are characterized by a gradual transition from humid with alternating semi-arid intervals to more 

arid conditions (Blakey, 2009).  

  

 

Figure 2: (A) Paleogeographic reconstruction of North America during the Late Pennsylvanian (Reference: 

Blakey, 2015). (B) Paleogeographic reconstruction of Ancestral Rocky Mountain uplift in Colorado (Halka 

and Chronic, 2014). Stars mark locations of samples analyzed in this study 
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METHODS 
 

 

 

Sandstone samples were collected from the Ingleside Formation, Molas Formation, and Hermosa Formation 

for this study. The Ingleside Formation type-locality outcrop located at Owl Canyon in northern Colorado 

was logged for detailed sedimentological observations and paleocurrent analyses (Figures 2, 3, 4). Two 

representative fine-grained, quartz-rich sandstone samples were collected from the lower and upper portion 

of the Ingleside Formation at this section (Figure 2). A silt-rich sandstone sample from the upper Molas 

Formation and a fine-grained sandstone sample from the lower Hermosa Formation were collected across 

the Molas-Hermosa contact near Molas Lake in southwestern Colorado (Figure 2).  

Zircons were separated using conventional methods that included crushing, lightly panning, sieving below 

300 µm, magnetic separation, and heavy liquid separation. Representative splits of the final zircon yields 

were mounted in epoxy plugs and polished. Cathodoluminescence (CL) images were generated for all four 

samples and the images were used to pick 120+ laser spots in homogeneous portions of crystals in each 

sample (Figure 4, Appendix B).  

U-Pb detrital zircon data reported here were generated at the U.S. Geological Survey (USGS) in Denver 

using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). All ages >1300 Ma are 

reported as 207Pb/206Pb ages, whereas 206Pb/238U ages were used for <1300 Ma grains. Two separate 

discordance filters were used to generate probability-density plots for our data and for calculating 

statistically significant age populations. In Figure 4B and 4D, data with >20% discordance or >5% reverse 

discordance were rejected. In Figure 4A and 4C, data with >30% discordance or >10% reverse discordance 

were rejected. 

Figure 6 displays the results generated in comparing our samples with each other and with other published 

samples from throughout the broader region. Published samples compared here include data from the Lyons 

Formation (Holm-Denoma C., 2016, unpublished), Fountain Formation (Siddoway and Gehrels, 2014), and 

lower Molas Formation (Evans and Soreghan, 2015). A general >20% discordance or <5% reverse 
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discordance is applied to all samples compared in this figure, and all age spectra are normalized so the areas 

under the curve are equivalent, regardless of number of analyses.  
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Figure 3: (A) Generalized stratigraphic column of Northern Colorado. (B) Type section of the Ingleside 

Formation at Owl Canyon displays a mixed carbonate-siliciclastic facies distribution, with inferred shallow 

marine and eolian depositional environments. (C) Thirty-three paleocurrent analyses from the Ingleside 

Formation at Owl Canyon show a dominantly S- and E- sediment transportation direction. (D) Generalized 

stratigraphic column of Southwestern Colorado, stars mark approximate location of samples analyzed for 

Upper Molas and Lower Hermosa Formations.  
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Table 1: UTM coordinates, location, and description for samples analyzed 

 

 

Sample 
Stratigraphic 

Units 
Location UTM Coordinates Sample Description 

   

Grid 

Zon

e 

Easting 
Northin

g 
 

OC-DZ1-

2.8 

Lower 

Ingleside 

Owl Canyon, 

N. CO 
13S 0484790 4512465 

tabular cross-bedded, pink, 

fine-grained sandstone 

overlying a carbonate unit 

and 2.8m above the 

Fountain-Ingleside contact 

OC-DZ2-

56 
Upper Ingleside 

Owl Canyon, 

N. CO 
13S 0485041 4512595 

horizontally-bedded, fine-

grained sandstone, 56m 

above the Fountain-

Ingleside contact 

MP-DZ1 Molas 
Molas Pass, 

SW. CO 
13S 4180618 4180618 

massive, silt-rich, very 

fine-grained sandstone, 

dark red color, (~20m from 

the base of the Molas 

Formation 

MP-DZ2 Hermosa 
Molas Pass, 

SW. CO 
13S 4180740 4180740 

horizontally-bedded, 

medium-grained 

sandstone, gray-brown 

color, overlying a 

carbonate unit and ~4m 

above the Molas-Hermosa 

contact 
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Figure 4: Representative CL images of zircons from prominent age distribution peaks at 330-490 Ma, 515-

700 Ma, 990-1200 Ma, 1600-1800 Ma, 2500-3500 Ma.    
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RESULTS 
 

 

 

I. Description 

 
The detrital zircon U-Pb data collected from the Ingleside, Molas, and Hermosa Formations (Table 1) reveal 

a wide spread of age populations, with prominent age distribution peaks at 330-490 Ma, 515-700 Ma, 990-

1200 Ma, 1340-1500 Ma, 1600-1800 Ma, and 2500-3500 Ma (Figure 5 and 6).  

Detrital zircon data from the Ingleside Formation sandstone are compared to data from the underlying 

Fountain Formation (Siddoway and Gehrels, 2014; Duncan et al., 2013) and overlying Lyons Formation in 

the Colorado Front Range (Holm-Denoma et al., 2016, unpublished) (Figure 7). The youngest population 

of grains recorded (330-490 Ma) is first detected in the Lower Ingleside Formation where Paleozoic-aged 

zircons range between 331 and 448 Ma and make up 10% of the total concordant ages (<20% discordance 

or <5% negative discordance). The Upper Ingleside displays a Paleozoic age population between 376 and 

498 Ma, comprising 5% of the total concordant ages. Results from Lyons Formation sandstone collected 

near Park Creek Reservoir, Colorado (Holm-Denoma et al., 2016, unpublished) show an increase in 

Paleozoic-aged zircons, with U-Pb ages ranging between 330 and 457 Ma and comprising ~14% of the total 

concordant ages. While the Lower Ingleside, Upper Ingleside, and overlying Lyons Formation show similar 

age peaks, they vary significantly from the underlying Fountain Formation. Detrital zircon ages from the 

Fountain Formation near Manitou Springs record a dominant age peak at 1600-1800 Ma, which comprises 

44% of the total concordant ages. Other prominent age peaks in the Fountain Formation are observed at 

990-1200 Ma and 1340-1500 Ma (Siddoway and Gehrels, 2014; Duncan et al., 2013).  

Detrital zircon data collected from the Molas and Hermosa Formation sandstone near the eastern margin of 

the Paradox Basin show age distributions that are similar to the Ingleside and Lyons Formations (Figure 7). 

We also compare our U-Pb ages to data presented by Evans and Soreghan (2015) from two underlying 

Molas loessite samples collected in the same general area in the Paradox Basin (Molas Lake) (Figure 8). 

Paleozoic zircons dated in the Molas Formation sandstone range between 430 and 500 Ma, and comprise 
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10% of the total concordant ages. The overlying Hermosa Formation displays a smaller abundance of 

Paleozoic zircons that range between 415 and 467 Ma, and comprise 4% of the total analyses. Interestingly, 

notable differences are observed between the Molas and Hermosa samples in age peaks that lie between 

990-1200, 1340-1500, and 1600-1800 Ma (Figure 9). The 990-1200 Ma population makes up a dominant 

peak in the Molas Formation analyses, whereas the 1340-1500 Ma and 1600-1800 Ma age peaks increase 

significantly in the Hermosa Formation. It is interesting to note that the two Molas loessite samples dated 

by Evans and Soreghan (2015) display a minor population of younger zircons (between 281-400 Ma) that 

is absent in the overlying Molas and Hermosa sandstone samples from this study. Paleozoic-aged zircons 

in the loessites are more abundant than the overlying Molas and Hermosa samples collected for this study, 

comprising 11% and 17% of the total concordant ages. 

Detrital zircons in the Ingleside, Molas, and Hermosa Formations dominantly record U/Th ratios greater 

than 10, which are compatible with an igneous origin (e.g. Kirkland et al., 2015; Figure 10). A few 

miscellaneous zircons in the 990-1200 Ma and 2500-3500 Ma age populations record U/Th ratios <10, 

suggesting a metamorphic origin.  

Paleocurrent analyses from the Ingleside Formation at Owl Canyon display a dominantly south- and east- 

directed sediment transport direction (Figure 3B). In comparison, the Fountain Formation near Manitou 

Springs, Colorado displays similar south- and east- dominated sediment transport direction in the upper 

sandstone strata and north- and east- dominated paleocurrent directions in the lower sandstone strata (Sweet 

and Soreghan, 2010) 

 

II. Interpretation 

 
Paleozoic sandstones from the Colorado Front Range in north-central Colorado and the eastern Paradox 

Basin in southwestern Colorado display a diversity of age populations that record several different source 

regions. Local zircon sources are primarily reflected in the 1600-1800 Ma age peak that is derived from the 

Yavapai province and 1340-1500 Ma age peak that is may be derived from local igneous units within 

Yavapai province (Whitmeyer and Karlstrom, 2007). The southern Rocky Mountains in general record a 



88 

 

long history of 1800-1400 Ma tectonism, and identifying Proterozoic subprovinces within Colorado has 

been difficult. Reed (1987) identified three Yavapai subprovinces and suggested that the age of the 

subprovinces decreases southward. Closer to the Ingleside and Lyons Formation sample locations, Yavapai 

basement rocks are likely characterized by pluton ages greater than 1750 Ma (Reed, 1987). Closer to the 

Hermosa and Molas Formation sample locations, pluton and metavolcanic ages of 1760-1600 Ma are 

common (Bickford et al., 1986 Bickford et al., 2008). Zircons belonging to these age ranges are interpreted 

to have been supplied from basement rocks that are truly local to our sample locations.  

Extensive Mesoproterozoic magmatism resulted in emplacement of igneous complexes in a belt that 

spanned southwestern Laurentia. Several of these igneous complexes are located close to the outcrops 

analyzed in this study. Specifically, the Sherman Granite pluton (1415-1435 Ma) in north-central Colorado 

and southeastern Wyoming is located ~17 km northwest of the Lyons Formation sample location and ~21 

km northwest of the Ingleside Formation sample location (Nyman et al., 1994; Frost et al., 1999). The 

location of this batholith and its close proximity to our Front Range sandstone outcrops make it a likely 

source for a fraction of Mesoproterozoic zircons in our data. South- and east- directed sediment transport 

directions, as observed from our paleocurrent analyses of the Ingleside Formation, also support the presence 

of local sediment source to the north and west of our study area.  Similarly, the closest Mesoproterozoic 

plutons to the Molas and Hermosa sandstone samples location is ~15 km south in the Needle Mountains, 

where plutonic rocks make up the Electra Lake Gabbro and Eolus Gabbro (1442-1435 Ma) (Gonzales et 

al., 1996). Based on their close proximity, these plutonic rocks are suggested to be a likely source for a 

portion of Mesoproterozoic zircons in the Molas and Hermosa sandstone.  

A wide age peak centered at 990-1200 Ma is interpreted to reflect grains shed directly from the Grenville 

orogeny. Grenvillian basement rocks occupy an elongate belt that were exposed in the Taconic-Acadian 

tectonic belts in northeastern North America and the southeastern flank of Laurentia. Locally derived 

sediment from the Pikes Peak Batholith within the Rocky Mountain Region is suggested as an alternative 

source for a narrow subset of these grains that center on 1100 Ma (Van Schmus and Bickford, 1993). Due 

to its local setting and the presence of narrow U-Pb peaks at ~1100 Ma that superimpose the broader 990-



89 

 

1200 Ma peak, the Pikes Peak Batholith likely did contribute Mesoproterozoic zircons to both sedimentary 

basins studied here. However, the wide range of Grenvillian-age zircons suggest that sediments were also 

derived from other Grenvillian-age provinces outside the Ancestral Rocky Mountain province. The specific 

Grenville terrane that contributed sediments to Ancestral Rocky Mountain basins is unclear. Similar to 

Jurassic eolianites across the Colorado Plateau (Dickinson and Gehrels, 2003), it is suggested that the 

Appalachians were a likely source for Grenville –age zircons. This interpretation corresponds well with the 

inference of an Appalachian derivation for Paleozoic zircons. 

Paleozoic zircons (330-490 Ma) record sediment shed directly from the Taconic-Acadian orogeny along 

the Appalachian orogenic belt. Paleozoic peaks in the Lower and Upper Ingleside can be subdivided into a 

440-490 Ma population corresponding to the Taconic orogeny and a 330-420 Ma population corresponding 

to the Acadian orogeny. In comparison, Paleozoic age populations in the Molas silty-sandstone and 

Hermosa samples display only Taconic-aged zircons.  

Gondwanan and peri-Gondwanan terranes contain zircons dominantly within the age range of 550-850 Ma 

(Wortman et al., 2000) and are a potential source for relatively small 515-700 Ma peaks. A mixture of these 

Neoproterozoic ages with younger Paleozoic grains likely indicate derivation from the Appalachian 

orogenic belt. Peri-Gondwanan terranes embedded within the Appalachians include the Avalone terrane of 

the northern Appalachian, the Carolina terrane of the southern Appalachians, and the Suwannee terrane in 

the Florida peninsula, all of which contain zircons mainly in the age range of 535-635 Ma (Wortman et al., 

2000), but also extending to 765 Ma (Barr, 1993). It is likely that sediments from these terranes were 

transferred to mid-continent North America along the Appalachian-Ouachita orogenic margin in the Late 

Paleozoic (Abati et al., 2010). An alternative source area for a small portion of these grains might be the 

520-540 Ma granites in the Wichita Mountains, where emplacement of synrift igneous magmas along the 

Southern Oklahoma fault system accompanied late stages of rifting of southeastern Laurentia (Thomas et 

al., 2016).  

A minor zircon population between 2500-3500 Ma is present in all the sandstone samples (Figure 3) are 

interpreted to have originated from exposed blocks of Archean cratons or large areas of reworked Archean 
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crust (Corrigan et al., 2005).  Derivation from the nearby Wyoming Archean province, lying directly north 

of the Ancestral Rocky Mountain basin is inferred for this age population for both basins.  

The Front Range outcrops display dominantly local sources for the Fountain Formation originating from 

the Yavapai-Mazatal terranes (1600-1800 Ma), local plutonic sources (1340-1500 Ma), and the Pikes Peak 

Batholith (1100 Ma). More widespread sediment sources are observed for the Ingleside and Lyons 

Formation. Both the Ingleside Formation samples analyzed for this study show similar age peaks and grain 

populations for different sediment sources, with a distinct increase in grains sourced from the Appalachian 

orogen observed in the Lyons Formation.  

The eastern Paradox Basin sandstone samples show an interesting trend with a significant increase in locally 

derived grains (1600-1800 Ma, 1340-1500 Ma) in the Hermosa Formation. Zircon age distributions in the 

underlying Molas Formation show relatively greater age peaks for exotic zircons sourced from the 

Appalachian orogen and Grenville orogen. The Molas loessite samples display a small population of 

Acadian-aged zircons that is absent in the overlying Molas silty-sandstone and Hermosa samples. A general 

comparison between the Molas loessite and the Molas silty-sandstone samples indicates that general 

decrease in abundance of Paleozoic-aged (330-490 Ma) zircons.  
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Figure 5: Map depicting the main age provinces of basement rock in North America (Soreghan and 

Soreghan, 2013). Stars mark locations of samples analyzed for this study.  
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Figure 6: Probability density plots showing U-Pb ages of detrital zircons from fine-grained sandstones from 

the Ingleside Formation. Information on the lower right of the diagram gives number of ages plotted/number 

of ages determined. 
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Figure 7: Probability density plots showing U-Pb ages of detrital zircons from fine-grained sandstones from 

the Molas and Hermosa Formations. Information on the lower right of the diagram gives number of ages 

plotted/number of ages determined. 
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Figure 8: Probability density plots comparing U-Pb ages of detrital zircons from the Ingleside Formation 

analyzed in this study to published data from the underlying Fountain Formation (Siddoway and Gehrels, 

2014) and data from the overlying Lyons Formation (Holm-Denoma, unpublished).  
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Figure 9: Probability density plots comparing U-Pb ages of detrital zircons from the Molas and Hermosa 

Formations analyzed in this study to published data from the underlying Molas loessite (Evans and 

Soreghan, 2015).  
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Figure 10: U/Th ratios for all analyzed samples are dominantly <10
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DISCUSSION 
 

 

 

Detrital zircon data from Late Paleozoic sandstone analyzed here provides new information for tracking of 

sediment dispersal paths. Specifically, this study documents the first appearance of Paleozoic-aged zircons 

along the Front Range in the Ingleside Formation. Our comparison of detrital zircon signatures of the Molas 

and Hermosa Formations also allows us to make significant paleogeographic interpretations. The source of 

sediment for all Paleozoic detrital zircon population (330-490 Ma), a fraction of Neoproterozoic Peri-

Gondwanan-sourced zircons (515-700 Ma), and a fraction of Mesoproterozoic Grenville basement-sourced 

zircons (990-1200 Ma) is identified as the distant Appalachian orogen.  

Similar to detrital zircon age distribution in Pennsylvanian and Lower Permian sandstones of the Grand 

Canyon (Gehrels et al., 2011), U-Pb data from the Ingleside and Lyons Formation document detrital zircons 

formed during the Acadian and Taconic orogenies, but none from the subsequent Pennsylvanian-Permian 

Alleghanian orogeny. An average lag time of 25 million years was documented in Upper Paleozoic strata 

of the Grand Canyon and support the absence of Alleghanian-aged zircons in Pennsylvanian-Early Permian 

sandstones in the Ancestral Rocky Mountains. Additionally, based on data from the Appalachian foreland, 

it is suggested that the rate of erosional unroofing of Alleghanian plutons was not far enough advanced to 

include these zircons in sediments that make up Pennsylvanian and Lower Permian sandstones (Thomas et 

al., 2004). Delayed exhumation of Alleghanian plutons likely resulted in the lack of Alleghanian-age 

zircons in Pennsylvanian-age sandstones in proximal sediments along the length of the Appalachian 

foreland basins (Thomas et al., 2004; Becker et. al., 2005) that are interpreted to characterize the headwaters 

of inferred dispersal paths from the Appalachians to the Grand Canyon (Thomas, 2011). Gehrels et al. 

(2011) suggest that transcontinental rivers from the Appalachians travelled northwestward and then 

southward by prevailing winds from the north, northeast, and northwest (Poole, 1962). These headwaters 

and fluvial systems likely also fed eolian systems prevalent in Ancestral Rocky Mountain provinces at the 

time.  
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A widespread sand-dispersal system that transported local and distant sediments into sedimentary basins 

along the Ancestral Rockies is also evidenced in the diverse components in our detrital zircon age data. 

Mixed detrital zircon signature across time-equivalent sedimentary units likely point towards an extensive 

sand blanket that extended across Colorado during the Late Paleozoic. Areas of significant eolian recycling 

have been documented in the Molas and Hermosa Formations (Evans and Reed, 2007; Jordan and 

Mountney, 2010) and the Ingleside (Figure 3A) and Lyons Formations (Hunter, 1981), while prominent 

marine incursions and relatively small fluvial systems are documented in the Hermosa Formation (Jordan 

and Mountney, 2010), and Ingleside Formation (Figure 3A). Facies distribution along with detrital zircon 

signatures across these sedimentary systems suggest that eolian sands were widespread across Ancestral 

Rocky Mountain Basins during the Paleozoic, and then likely redistributed interregionally through marine 

and fluvial systems in both basins. Similar sediment transportation system has been interpreted for Jurassic 

sandstones of the Colorado Plateau (Dickinson and Gehrels, 2003). In addition, a greater population of 

Taconic-Acadian derived zircons in Molas loessite samples in relation to our Molas sandstone sample is 

interpreted to be a strong indication that wind systems played an important role in the transportation of 

young, distally-sourced zircons during Late Paleozoic time.  

The sandstone samples analyzed from the Ingleside and Hermosa Formation are shallow marine deposits, 

further implying that marine systems played a significant role in reworking exotic zircons into both 

sedimentary basins. Our paleocurrent analyses for dominantly shallow-marine sandstones and some eolian 

sandstones of the Ingleside Formation at Owl Canyon document a prevailing south and east sediment 

transport direction (Figure 3B). However, it is important to note that paleocurrent direction only yield the 

final transportation direction of the sediment and have no necessary local relationship to long-distance 

dispersal from provenance to depositional site (e.g. Thomas, 2011). We interpret our paleocurrent data to 

imply that erg systems located to the north and west of our study area at Owl Canyon were important 

sediment sources for the Ingleside and Lyons Formation and were likely reworked into Ingleside shallow 

marine sandstones by marine currents. The interaction of three independent dispersal processes suggested 



99 

 

here for the presence of Appalachian-derived zircons in Ancestral Rocky Mountain basins illustrates the 

complexities of long-distance sediment transportation during the Late Paleozoic.  

The oldest strata recording Paleozoic-aged zircons in the Grand Canyon is the Upper Mississippian Surprise 

Canyon Formation (Gehrels et al., 2011). The Lower Pennsylvanian Molas Formation loessites of 

southwestern Colorado also record Paleozoic-aged zircons (Evans and Soreghan, 2015). Based on these 

studies it is clear that a sand- dispersal system transporting distant Appalachian-derived zircons was present 

prior to the Ancestral Rocky Mountain uplift. Deposition of the Fountain Formation during the uplift of the 

Ancestral Front Range (Kluth and Coney, 1981) and Hermosa Formation during the uplift of the 

Uncompahgre Highlands (Thomas, 2007) resulted in a dominating supply of clastic sediment from the 

Proterozoic basement. Outwash from the Ancestral Rockies must have overwhelmed transcontinental 

drainage across Colorado and provided local sources of Pennsylvanian-Permian detritus as reflected in the 

age populations of the Fountain and Hermosa Formations. The transition is observed along the Front Range 

from a dominantly local Proterozoic detrital zircon signature in the Fountain Formation to a dominantly 

mixed Laurentian detrital zircon signature in the overlying Ingleside (Figure 6). Cessation of uplift of the 

Ancestral Front Range Highlands and the increased appearance of distal detrital zircons is accompanied by 

the onset of marine sedimentation documented by the Ingleside Formation and the termination of non-

marine sedimentation documented by the underlying Fountain Formation. A subtler transition is observed 

in the eastern Paradox Basin, with both the Molas and the Hermosa Formation displaying a mixed 

Laurentian detrital zircon signature, but an increase in abundance of locally-derived detrital zircons (~1340-

1500 Ma and 1600–1800 Ma) is observed in the Hermosa sandstone. We interpret this increase in 

abundance of locally-derived zircons to also record the initiation of uplift of the Uncompahgre highlands 

during the deposition of the Pennsylvanian Hermosa Formation. Pennsylvanian-age faulting associated with 

Uncompahgre uplift has previously been documented in the Hermosa Formation (Thomas, 2007) and ties 

in well with the detrital zircon signatures of Paradox Basin sandstone analyzed here.  Converse to the 

Ancestral Front Range, initiation of the Uncompahgre uplift is accompanied by cessation of non-marine 
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sedimentation documented by the Molas Formation and the onset of marine sedimentation documented by 

the Hermosa Formation (Evans and Reed, 2007).  
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CONCLUSIONS 
 

 

 

We compare our detrital zircon data from the Ingleside, Molas, and Hermosa Formations with published 

data from other late Paleozoic sandstone units to identify the earliest appearance of Paleozoic-aged zircons 

in sedimentary strata across the Colorado Ancestral Rocky Mountain region. We also compare our data 

with published detrital zircon data from different time slices in the same location to interpret 

paleogeographic implications of U-Pb age populations. The earliest appearance of Paleozoic zircons is 

recorded in the Ingleside Formation along the Front Range in north-central Colorado and increases in 

abundance in the overlying Lyons Formation. The earliest record of Paleozoic zircons along the 

Uncompahgre Highlands in southwestern Colorado is in loessite deposits from the Molas Formation and 

generally decrease in abundance in the overlying silt-rich sandstone deposits of the Upper Molas Formation 

and in the Hermosa Formation.  

We infer that Paleozoic, Peri-Gondwanan, and Grenville-age detrital zircons were primarily sourced from 

the Appalachian orogenic belt and were delivered to their final locations by interaction of several 

independent dispersal paths that include paleorivers, wind systems, and/or marine currents. Additionally, 

we are able to infer the general timing of cessation of Ancestral Front Range uplift and initiation of 

Uncompahgre uplift based on significant shifts in U-Pb age populations in the sedimentary basins flanking 

both highlands. The cessation of Ancestral Rocky Mountain uplift is here identified to coincide with 

decrease in locally-sourced zircon population and increase in distally-sourced zircon population between 

the Fountain and Ingleside Formations. Conversely, the initiation of the Uncompahgre uplift is likely 

reflected in an increase in locally-sourced zircons observed in the Hermosa Formation.  
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APPENDIX A: U-Pb DATA FOR ANALYZED SAMPLES 

 

Table 1- U/Pb data from Sample: OC_2.8_DZ1 

 
Analysis # Final207_23Final207_23Final206_23Final206_23ErrorCorrelaFinalAge206FinalAge206FinalAge208FinalAge208FinalAge207FinalAge207%DISC Preferred A2se FInal_U_Th_FInal_U_Th_Ratio_Int2

OC-2.8-DZ1-027 Output_1_2 0.303 0.025 0.0238 0.0013 0.29489 151.4 8 315.1 9.6 1440 100 89.48611 151.4 8 3.15 0.18

OC-2.8-DZ1-041 Output_1_4 0.391 0.038 0.0363 0.002 0.3641 230 13 301 18 1120 130 79.46429 230 13 0.951 0.038

OC-2.8-DZ1-047 Output_1_4 0.354 0.04 0.0465 0.0027 0.19605 293 17 205 33 380 210 22.89474 293 17 2.141 0.072

OC-2.8-DZ1-088 Output_1_2 0.36 0.021 0.0486 0.001 0.2955 305.8 6.3 320 11 410 100 25.41463 305.8 6.3 0.4734 0.0072

OC-2.8-DZ1-035 Output_1_3 0.393 0.037 0.0491 0.0016 0.80909 308.8 9.6 342 11 429 43 28.01865 308.8 9.6 2.423 0.049

OC-2.8-DZ1-032 Output_1_3 0.451 0.037 0.0493 0.0012 0.84956 310 7.4 407 16 771 36 59.79248 310 7.4 2.764 0.045

OC-2.8-DZ1-077 Output_1_1 0.385 0.026 0.0505 0.0013 0.61952 317.9 8.1 327 15 415 73 23.39759 317.9 8.1 1.685 0.02

OC-2.8-DZ1-120 Output_1_6 0.408 0.02 0.0517 0.0011 0.12475 325.2 6.6 327.8 8.2 532 92 38.87218 325.2 6.6 1.45 0.037

OC-2.8-DZ1-079 Output_1_1 0.405 0.024 0.05179 0.00093 0.001 325.5 5.7 347 14 510 140 36.17647 325.5 5.7 2.34 0.036

OC-2.8-DZ1-055 Output_1_5 0.398 0.037 0.0527 0.0016 0.55273 331 10 331 14 380 110 12.89474 331 10 2.011 0.063

OC-2.8-DZ1-070 Output_1_1 0.373 0.024 0.0536 0.0013 0.084818 336.8 8 339.9 8.3 230 140 -46.4348 336.8 8 1.943 0.027

OC-2.8-DZ1-048 Output_1_4 0.405 0.043 0.0546 0.0011 0.55135 342.8 6.5 343 15 340 140 -0.82353 342.8 6.5 2.676 0.042

OC-2.8-DZ1-025 Output_1_2 0.445 0.043 0.0549 0.0016 0.61837 344 9.8 363 23 470 110 26.80851 344 9.8 1.852 0.047

OC-2.8-DZ1-050 Output_1_5 0.9 0.32 0.0564 0.0037 0.96303 353 23 580 160 1780 520 80.16854 353 23 1.159 0.035

OC-2.8-DZ1-053 Output_1_5 0.506 0.066 0.0597 0.0024 0.80107 374 15 412 26 620 140 39.67742 374 15 1.64 0.1

OC-2.8-DZ1-073 Output_1_1 0.531 0.027 0.0655 0.0019 0.65342 409 11 411 13 619 74 33.92569 409 11 2.332 0.088

OC-2.8-DZ1-092 Output_1_3 0.507 0.03 0.0665 0.002 0.11414 415 12 408 17 440 130 5.681818 415 12 1.654 0.063

OC-2.8-DZ1-072 Output_1_1 0.59 0.026 0.0677 0.0027 0.89765 422 17 493 10 719 44 41.30737 422 17 1.301 0.056

OC-2.8-DZ1-046 Output_1_4 0.539 0.045 0.0678 0.002 0.35612 423 12 446 14 509 78 16.89587 423 12 1.442 0.046

OC-2.8-DZ1-119 Output_1_5 0.518 0.027 0.0684 0.002 0.82423 426 12 432 13 438 57 2.739726 426 12 0.874 0.036

OC-2.8-DZ1-034 Output_1_3 0.523 0.046 0.0684 0.002 0.36053 427 12 427 14 420 120 -1.66667 427 12 1.228 0.015

OC-2.8-DZ1-026 Output_1_2 0.518 0.059 0.0685 0.0015 0.095417 427.3 9.3 431 27 330 180 -29.4848 427.3 9.3 1.272 0.016

OC-2.8-DZ1-006 Output_1_6 0.544 0.046 0.0689 0.0016 0.56574 429.5 9.4 425 12 469 61 8.422175 429.5 9.4 2.097 0.026

OC-2.8-DZ1-063 Output_1_3 0.504 0.029 0.0697 0.0016 0.8087 434.1 9.9 429.5 9.7 360 100 -20.5833 434.1 9.9 1.835 0.042

OC-2.8-DZ1-110 Output_1_5 0.657 0.097 0.0698 0.0024 0.81947 435 14 411 40 830 250 47.59036 435 14 0.438 0.041

OC-2.8-DZ1-103 Output_1_4 0.542 0.022 0.0706 0.0013 0.69069 439.9 8.1 443 14 451 68 2.461197 439.9 8.1 0.7 0.013

OC-2.8-DZ1-001 Output_1_1 0.552 0.054 0.072 0.0013 0.001 448.2 7.5 455 18 460 220 2.565217 448.2 7.5 1.493 0.013

OC-2.8-DZ1-051 Output_1_5 0.658 0.061 0.0742 0.0043 0.86154 461 26 560 11 773 71 40.36223 461 26 1.955 0.066

OC-2.8-DZ1-044 Output_1_4 0.801 0.11 0.0785 0.0029 0.001 487 17 561 36 970 290 49.79381 487 17 2.101 0.059

OC-2.8-DZ1-089 Output_1_2 1.215 0.049 0.0797 0.0026 0.21083 494 16 1170 280 1831 41 73.02021 494 16 8.5 0.39

OC-2.8-DZ1-058 Output_1_5 0.695 0.067 0.0864 0.002 0.71639 534 12 565 39 570 110 6.315789 534 12 2.924 0.022

OC-2.8-DZ1-112 Output_1_5 0.849 0.053 0.0943 0.0029 0.51312 581 17 577 27 840 140 30.83333 581 17 2.889 0.075

OC-2.8-DZ1-022 Output_1_2 0.824 0.075 0.0957 0.0016 0.49092 588.9 9.6 614 18 631 93 6.671949 588.9 9.6 0.335 0.021

OC-2.8-DZ1-109 Output_1_4 0.81 0.038 0.0956 0.002 0.001 589 12 613.6 9.8 650 100 9.384615 589 12 0.934 0.017

OC-2.8-DZ1-019 Output_1_1 0.845 0.074 0.0977 0.0029 0.22635 601 17 587 32 600 120 -0.16667 601 17 2.09 0.018

OC-2.8-DZ1-030 Output_1_3 0.844 0.077 0.0998 0.0026 0.5244 613 15 625 21 633 75 3.159558 613 15 1.291 0.088

OC-2.8-DZ1-024 Output_1_2 0.865 0.083 0.1002 0.0034 0.63843 615 20 611 26 635 98 3.149606 615 20 1.643 0.022

OC-2.8-DZ1-018 Output_1_1 0.851 0.069 0.1005 0.0023 0.71422 617 14 619 19 580 44 -6.37931 617 14 1.1168 0.0073

OC-2.8-DZ1-060 Output_1_6 0.905 0.081 0.1053 0.0027 0.68646 645 16 684 12 695 48 7.194245 645 16 0.823 0.018

OC-2.8-DZ1-080 Output_1_2 0.956 0.082 0.1126 0.0037 0.76912 687 22 679 14 680 120 -1.02941 687 22 0.606 0.023

OC-2.8-DZ1-086 Output_1_2 1.052 0.083 0.1152 0.0052 0.73976 702 30 755 43 878 74 20.04556 702 30 2.84 0.26

OC-2.8-DZ1-029 Output_1_2 1.6 0.17 0.1608 0.0057 0.44989 961 32 999 55 930 130 -3.33333 961 32 0.45 0.028  
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OC-2.8-DZ1-090 Output_1_ 1.66 0.16 0.1617 0.0046 0.044911 966 26 989 49 1060 200 8.867925 966 26 1.398 0.037

OC-2.8-DZ1-117 Output_1_ 1.651 0.078 0.1658 0.0046 0.28979 989 25 1012 50 986 86 -0.30426 989 25 1.747 0.034

OC-2.8-DZ1-111 Output_1_ 1.761 0.079 0.166 0.0069 0.87683 990 38 1025 29 1109 33 10.73039 990 38 1.049 0.058

OC-2.8-DZ1-037 Output_1_ 1.666 0.15 0.1662 0.004 0.43466 991 22 1032 21 963 95 -2.90758 991 22 1.176 0.016

OC-2.8-DZ1-042 Output_1_ 1.72 0.19 0.1662 0.0039 0.72246 991 21 1002 38 1020 140 2.843137 991 21 0.6005 0.0078

OC-2.8-DZ1-074 Output_1_ 1.86 0.13 0.1671 0.0044 0.71362 996 24 1010 29 1251 90 20.38369 996 24 0.729 0.014

OC-2.8-DZ1-095 Output_1_ 1.657 0.11 0.167 0.0044 0.15415 996 24 986 42 990 120 -0.60606 996 24 0.95 0.012

OC-2.8-DZ1-118 Output_1_ 1.703 0.089 0.1683 0.0081 0.44868 1003 44 940 40 1050 100 4.47619 1003 44 3.087 0.081

OC-2.8-DZ1-059 Output_1_ 1.856 0.17 0.1728 0.0038 0.70025 1027 21 1084 11 1132 54 9.275618 1027 21 1.194 0.032

OC-2.8-DZ1-038 Output_1_ 1.82 0.2 0.173 0.0043 0.35287 1028 24 1070 69 1130 120 9.026549 1028 24 1.403 0.088

OC-2.8-DZ1-098 Output_1_ 1.82 0.24 0.1732 0.0074 0.73928 1030 41 1035 68 1120 200 8.035714 1030 41 1.561 0.096

OC-2.8-DZ1-012 Output_1_ 1.812 0.14 0.1744 0.0035 0.21554 1036 19 1039 41 999 51 -3.7037 1036 19 4.777 0.069

OC-2.8-DZ1-076 Output_1_ 1.73 0.12 0.1775 0.003 0.001 1053 16 1073 49 930 100 -13.2258 1053 16 2.02 0.11

OC-2.8-DZ1-054 Output_1_ 1.766 0.17 0.1788 0.0044 0.001 1060 24 1109 55 950 110 -11.5789 1060 24 3.639 0.061

OC-2.8-DZ1-003 Output_1_ 1.91 0.18 0.1801 0.0063 0.54266 1067 34 1088 28 1111 90 3.960396 1067 34 2.261 0.038

OC-2.8-DZ1-115 Output_1_ 1.927 0.08 0.1867 0.0034 0.62696 1104 18 1093 26 1089 33 -1.37741 1104 18 3.039 0.05

OC-2.8-DZ1-094 Output_1_ 2.05 0.14 0.1899 0.0066 0.81339 1120 36 1113 34 1166 81 3.945111 1120 36 2.606 0.064

OC-2.8-DZ1-020 Output_1_ 2.021 0.17 0.1902 0.006 0.75962 1122 33 1108 39 1088 38 -3.125 1122 33 1.917 0.04

OC-2.8-DZ1-097 Output_1_ 1.983 0.1 0.1907 0.004 0.67825 1125 22 1155 28 1061 48 -6.03205 1125 22 2.011 0.031

OC-2.8-DZ1-036 Output_1_ 2.08 0.17 0.1933 0.005 0.78606 1139 27 1182 40 1134 47 -0.44092 1139 27 2.872 0.03

OC-2.8-DZ1-085 Output_1_ 2.116 0.11 0.1986 0.0054 0.56094 1167 29 1142 15 1160 68 -0.60345 1167 29 2.061 0.03

OC-2.8-DZ1-014 Output_1_ 3.24 0.74 0.205 0.022 0.57654 1200 120 1060 250 1680 410 28.57143 1200 120 1.91 0.11

OC-2.8-DZ1-017 Output_1_ 2.377 0.2 0.2059 0.0047 0.84597 1207 26 1234 63 1253 34 3.671189 1207 26 3.351 0.035

OC-2.8-DZ1-107 Output_1_ 2.56 0.16 0.206 0.0084 0.74856 1207 45 1109 56 1423 72 15.1792 1207 45 1.87 0.11

OC-2.8-DZ1-114 Output_1_ 2.34 0.11 0.206 0.0029 0.5472 1207 15 1134 51 1272 70 5.110063 1207 15 3.23 0.17

OC-2.8-DZ1-040 Output_1_ 2.5 0.25 0.2103 0.0037 0.71819 1230 20 1269 27 1300 100 5.384615 1230 20 1.573 0.038

OC-2.8-DZ1-099 Output_1_ 2.32 0.15 0.2103 0.0068 0.68632 1230 36 1312 40 1194 89 -3.01508 1230 36 2.907 0.054

OC-2.8-DZ1-031 Output_1_ 2.49 0.23 0.2105 0.0073 0.52848 1231 39 1241 38 1288 76 4.425466 1231 39 1.272 0.019

OC-2.8-DZ1-010 Output_1_ 2.62 0.23 0.2291 0.0071 0.89491 1330 37 1322 54 1232 51 -7.95455 1232 51 2.691 0.056

OC-2.8-DZ1-009 Output_1_ 2.475 0.21 0.2117 0.0042 0.43201 1238 22 1001 22 1276 62 2.978056 1238 22 1.734 0.031

OC-2.8-DZ1-102 Output_1_ 2.438 0.096 0.2123 0.0056 0.49476 1241 30 1297 43 1275 38 2.666667 1241 30 1.91 0.023

OC-2.8-DZ1-033 Output_1_ 2.52 0.25 0.216 0.011 0.69567 1261 57 1301 42 1263 92 0.158353 1261 57 2.09 0.15

OC-2.8-DZ1-084 Output_1_ 2.404 0.1 0.2164 0.0065 0.50962 1262 35 1267 49 1245 65 -1.36546 1262 35 2.019 0.045

OC-2.8-DZ1-069 Output_1_ 2.81 0.1 0.2219 0.0054 0.76059 1292 29 1269 30 1491 35 13.34675 1292 29 1.907 0.018

OC-2.8-DZ1-104 Output_1_ 2.763 0.12 0.236 0.005 0.031453 1366 26 1424 36 1309 77 -4.35447 1309 77 3.23 0.11

OC-2.8-DZ1-081 Output_1_ 2.777 0.1 0.2346 0.0027 0.78529 1359 14 1356 29 1369 32 0.73046 1369 32 2.709 0.035

OC-2.8-DZ1-075 Output_1_ 2.84 0.21 0.235 0.01 0.22404 1360 54 1425 79 1390 150 2.158273 1390 150 2.723 0.065

OC-2.8-DZ1-064 Output_1_ 3.21 0.16 0.2603 0.0045 0.67442 1491 23 1493 23 1437 42 -3.75783 1437 42 1.645 0.015

OC-2.8-DZ1-061 Output_1_ 3.178 0.14 0.2521 0.0085 0.67568 1449 44 1491 32 1457 53 0.549073 1457 53 4.75 0.31

OC-2.8-DZ1-065 Output_1_ 3.256 0.14 0.2608 0.0061 0.68145 1494 31 1525 47 1469 55 -1.70184 1469 55 1.552 0.034

OC-2.8-DZ1-045 Output_1_ 3.31 0.28 0.2545 0.007 0.89718 1461 36 1503 28 1477 22 1.083277 1477 22 2.34 0.065

OC-2.8-DZ1-013 Output_1_ 3.32 0.3 0.2551 0.0083 0.69605 1464 43 1447 51 1491 46 1.810865 1491 46 0.467 0.028

OC-2.8-DZ1-082 Output_1_ 3.118 0.11 0.2465 0.006 0.86514 1420 31 1410 42 1496 25 5.080214 1496 25 3.501 0.061

OC-2.8-DZ1-023 Output_1_ 3.65 0.32 0.2694 0.0062 0.671 1537 32 1692 47 1542 65 0.324254 1542 65 1.17 0.016

OC-2.8-DZ1-087 Output_1_ 3.74 0.19 0.2818 0.0062 0.46651 1600 31 1537 46 1578 63 -1.39417 1578 63 1.148 0.026

OC-2.8-DZ1-021 Output_1_ 3.578 0.3 0.2586 0.0066 0.64278 1482 34 1512 54 1584 46 6.439394 1584 46 2.36 0.055

OC-2.8-DZ1-071 Output_1_ 3.952 0.16 0.2891 0.0055 0.59882 1637 28 1623 48 1629 27 -0.4911 1629 27 1.266 0.021

OC-2.8-DZ1-057 Output_1_ 3.97 0.35 0.2842 0.0087 0.683 1612 44 1700 37 1641 50 1.767215 1641 50 2.371 0.024

OC-2.8-DZ1-005 Output_1_ 3.74 0.32 0.2605 0.0068 0.70211 1492 35 1401 30 1650 59 9.575758 1650 59 1.529 0.013

OC-2.8-DZ1-078 Output_1_ 3.77 0.16 0.2728 0.0055 0.74624 1555 28 1498 35 1659 38 6.268837 1659 38 1.774 0.021  

OC-2.8-DZ1-101 Output_1_4 3.99 0.21 0.2866 0.0076 0.59498 1624 38 1647 46 1665 55 2.462462 1665 55 2.189 0.02

OC-2.8-DZ1-093 Output_1_3 3.298 0.13 0.2358 0.0038 0.65892 1365 20 1490 35 1666 31 18.06723 1666 31 4.53 0.23

OC-2.8-DZ1-108 Output_1_4 4.13 0.2 0.2908 0.0091 0.896 1645 46 1664 35 1676 26 1.849642 1676 26 2.129 0.015

OC-2.8-DZ1-039 Output_1_3 3.91 0.35 0.2703 0.0085 0.68158 1542 43 1646 52 1677 65 8.050089 1677 65 1.501 0.025

OC-2.8-DZ1-113 Output_1_5 4.068 0.15 0.2877 0.0081 0.69107 1630 40 1650 41 1677 45 2.802624 1677 45 1.54 0.049

OC-2.8-DZ1-028 Output_1_2 4.21 0.37 0.2891 0.009 0.83171 1637 46 1681 55 1680 46 2.559524 1680 46 1.177 0.012

OC-2.8-DZ1-016 Output_1_1 4.79 0.4 0.322 0.0097 0.85087 1797 48 1880 92 1719 36 -4.53752 1719 36 1.145 0.09

OC-2.8-DZ1-100 Output_1_4 4.34 0.19 0.303 0.0076 0.51358 1706 38 1731 70 1722 67 0.929152 1722 67 3.041 0.023

OC-2.8-DZ1-066 Output_1_6 4.5 0.29 0.31 0.014 0.94015 1739 71 1765 30 1729 36 -0.57837 1729 36 3 0.33

OC-2.8-DZ1-043 Output_1_4 4.42 0.4 0.294 0.011 0.84091 1660 57 1853 75 1754 42 5.359179 1754 42 4.52 0.25

OC-2.8-DZ1-096 Output_1_3 4.66 0.19 0.318 0.011 0.44457 1779 54 1726 56 1770 73 -0.50847 1770 73 2.591 0.046

OC-2.8-DZ1-008 Output_1_8 4.52 0.47 0.3 0.017 0.87838 1689 83 1660 100 1793 63 5.800335 1793 63 1.73 0.14

OC-2.8-DZ1-002 Output_1_2 5.07 0.4 0.3215 0.0075 0.79139 1797 37 1779 38 1801 38 0.222099 1801 38 1.566 0.054

OC-2.8-DZ1-004 Output_1_4 8 10 0.261 0.081 0.9998 1470 380 3.60E+03 5.00E+03 1820 690 19.23077 1820 690 2.34 0.13

OC-2.8-DZ1-049 Output_1_4 5.4 0.46 0.336 0.01 0.81487 1866 50 1912 61 1866 36 0 1866 36 1.508 0.021

OC-2.8-DZ1-015 Output_1_1 5.63 0.46 0.3416 0.0085 0.80472 1894 41 1909 53 1877 41 -0.9057 1877 41 2.418 0.015

OC-2.8-DZ1-007 Output_1_7 5.68 0.46 0.339 0.012 0.8562 1879 56 1888 52 1917 31 1.982264 1917 31 1.449 0.017

OC-2.8-DZ1-091 Output_1_3 6.35 0.32 0.366 0.01 0.83418 2009 49 2019 40 2058 40 2.380952 2058 40 0.864 0.013

OC-2.8-DZ1-106 Output_1_4 7.26 0.3 0.3935 0.0079 0.86116 2139 37 2133 44 2145 27 0.27972 2145 27 1.956 0.019

OC-2.8-DZ1-105 Output_1_4 5.84 0.35 0.286 0.013 0.88938 1619 67 1819 57 2321 42 30.24558 2321 42 1.5 0.045

OC-2.8-DZ1-011 Output_1_1 8.49 0.67 0.3549 0.0026 0.36612 1958 13 2030 110 2547 27 23.12525 2547 27 3.55 0.14

OC-2.8-DZ1-067 Output_1_7 11.25 0.66 0.482 0.011 0.72252 2537 50 2501 81 2559 58 0.859711 2559 58 1.253 0.024

OC-2.8-DZ1-068 Output_1_8 11.37 0.46 0.482 0.012 0.79592 2534 52 2546 53 2583 28 1.897019 2583 28 0.719 0.011

OC-2.8-DZ1-052 Output_1_5 8.6 1.4 0.345 0.049 0.99712 1900 240 2430 160 2633 12 27.83897 2633 12 2.2 0.18

OC-2.8-DZ1-062 Output_1_2 8.92 0.5 0.3359 0.006 0.001 1867 29 5020 470 2761 97 32.37957 2761 97 2.083 0.049

OC-2.8-DZ1-116 Output_1_5 14.81 0.67 0.535 0.014 0.8708 2760 60 2794 74 2849 27 3.123903 2849 27 14.72 0.5

OC-2.8-DZ1-056 Output_1_5 11.4 1.6 0.377 0.042 0.99793 2060 200 2340 120 2965 19 30.52277 2965 19 1.737 0.097

OC-2.8-DZ1-083 Output_1_2 17.88 0.96 0.554 0.018 0.95283 2841 74 2870 160 3106 26 8.531874 3106 26 11.8 1
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Table 2: U/Pb data from Sample: OC_56_DZ2 

Analysis Final207_23Final207_23Final206_23Final206_23ErrorCorrelaFinalAge206FinalAge206FinalAge208FinalAge208FinalAge207FinalAge207Perc_DISC Preferred_APreferred_AFInal_U_Th_FInal_U_Th_Ratio_Int2

OC-56-DZ2-001 OC56DZ2_1 1.689 0.075 0.1684 0.0032 0.25277 1003.4 18 959 25 940 110 -7 1003.4 18 1.604 0.017

OC-56-DZ2-002 OC56DZ2_2 2.6 0.11 0.2243 0.0072 0.77256 1304 38 1257 61 1290 89 -1 1290 89 2.707 0.031

OC-56-DZ2-003 OC56DZ2_3 3.83 0.12 0.2676 0.0088 0.95773 1528 45 1514 65 1666 60 8 1666 60 3.201 0.034

OC-56-DZ2-004 OC56DZ2_4 14.59 0.23 0.533 0.016 0.7964 2752 65 2668 68 2813 46 2 2813 46 1.215 0.022

OC-56-DZ2-005 OC56DZ2_5 4.177 0.056 0.2956 0.0073 0.49073 1670 37 1670 55 1664 69 0 1664 69 4.757 0.02

OC-56-DZ2-006 OC56DZ2_6 0.545 0.018 0.0662 0.0019 0.73179 413.1 12 414 14 616 77 33 413.1 12 1.44 0.012

OC-56-DZ2-007 OC56DZ2_7 0.711 0.026 0.0887 0.002 0.4416 548.1 12 545 20 542 110 -1 548.1 12 2.544 0.044

OC-56-DZ2-008 OC56DZ2_8 4.42 0.21 0.3024 0.0092 0.58582 1703 45 1710 34 1754 92 3 1754 92 3.817 0.036

OC-56-DZ2-009 OC56DZ2_9 17.98 0.45 0.577 0.018 0.83936 2938 73 2822 69 3035 52 3 3035 52 1.86 0.019

OC-56-DZ2-010 OC56DZ2_1 2.66 0.26 0.2246 0.0065 0.023799 1306 34 1274 77 1340 210 3 1340 210 1.319 0.029

OC-56-DZ2-011 OC56DZ2_1 0.388 0.018 0.0515 0.0018 0.76884 323.9 11 276 15 416 110 22 323.9 11 1.902 0.025

OC-56-DZ2-012 OC56DZ2_1 3.757 0.069 0.2712 0.0066 0.81184 1547 33 1571 41 1653 62 6 1653 62 1.318 0.071

OC-56-DZ2-013 OC56DZ2_1 1.791 0.09 0.1783 0.0069 0.83237 1057 38 1051 41 1076 100 2 1057 38 2.281 0.068

OC-56-DZ2-014 OC56DZ2_1 10.1 0.32 0.454 0.014 0.84752 2413 62 2426 81 2484 60 3 2484 60 1.827 0.026

OC-56-DZ2-015 OC56DZ2_1 3.91 0.1 0.2856 0.0087 0.79758 1619 44 1618 41 1626 64 0 1626 64 1.01 0.017

OC-56-DZ2-016 OC56DZ2_1 12.21 0.46 0.502 0.018 0.94289 2620 77 2636 80 2598 57 -1 2598 57 2.121 0.023

OC-56-DZ2-017 OC56DZ2_1 4.015 0.084 0.2951 0.0074 0.80293 1667 37 1664 57 1584 66 -5 1584 66 2.3323 0.0099

OC-56-DZ2-018 OC56DZ2_1 0.604 0.029 0.0753 0.002 0.56963 468.3 12 475 19 476 120 2 468.3 12 2.311 0.038

OC-56-DZ2-019 OC56DZ2_1 0.379 0.021 0.05292 0.0013 0.23102 332.4 8 332 13 220 140 -51 332.4 8 2.82 0.11

OC-56-DZ2-020 OC56DZ2_2 3.14 0.16 0.2552 0.0082 0.48353 1465 42 1455 32 1352 100 -8 1352 100 0.8208 0.0084

OC-56-DZ2-021 OC56DZ2_2 2.62 0.11 0.2203 0.0048 0.48708 1284 25 1334 43 1287 94 0 1284 25 3.12 0.1

OC-56-DZ2-022 OC56DZ2_2 1.642 0.074 0.1679 0.0038 0.23756 1000 21 976 37 920 120 -9 1000 21 3.283 0.066

OC-56-DZ2-023 OC56DZ2_2 1.68 0.11 0.1657 0.0053 0.12486 988 29 1002 36 1016 99 3 988 29 0.719 0.017

OC-56-DZ2-024 OC56DZ2_2 0.723 0.034 0.0961 0.0019 0.36678 591.6 11 641 32 370 130 -60 591.6 11 2.784 0.047

OC-56-DZ2-025 OC56DZ2_2 1.626 0.053 0.1684 0.0051 0.52771 1003 28 990 47 921 100 -9 1003 28 3.503 0.047

OC-56-DZ2-026 OC56DZ2_2 1.842 0.069 0.1839 0.0057 0.72062 1088 31 1110 25 958 97 -14 1088 31 2.364 0.054

OC-56-DZ2-027 OC56DZ2_2 3.799 0.088 0.2812 0.0081 0.92308 1597 41 1585 57 1557 60 -3 1557 60 9.18 0.67

OC-56-DZ2-028 OC56DZ2_2 1.98 0.063 0.1879 0.0046 0.82433 1110 25 963 27 1066 77 -4 1110 25 2.255 0.052

OC-56-DZ2-029 OC56DZ2_2 2.92 0.12 0.199 0.0066 0.82693 1170 35 1161 33 1707 73 31 1170 35 1.521 0.024

OC-56-DZ2-030 OC56DZ2_3 0.777 0.027 0.0913 0.0027 0.29857 563 16 540 7.1 668 91 16 563 16 1.004 0.061

OC-56-DZ2-031 OC56DZ2_3 3.77 0.19 0.2557 0.0087 0.001 1467 45 1476 57 1780 130 18 1780 130 0.6605 0.0074

OC-56-DZ2-032 OC56DZ2_3 6.76 0.62 0.233 0.04 0.60588 1340 220 1323 57 2725 66 51 2725 66 2.327 0.066

OC-56-DZ2-033 OC56DZ2_3 3.83 0.14 0.2808 0.0088 0.65127 1595 44 1563 42 1638 79 3 1638 79 1.941 0.026

OC-56-DZ2-034 OC56DZ2_3 11.79 0.24 0.462 0.017 0.75374 2448 73 2469 67 2714 73 10 2714 73 2.139 0.074

OC-56-DZ2-035 OC56DZ2_3 1.836 0.068 0.1724 0.0055 0.57355 1034 24 1049 35 1157 92 11 1034 24 0.891 0.013

OC-56-DZ2-036 OC56DZ2_3 2.219 0.073 0.1953 0.0057 0.8371 1150 31 1175 51 1243 72 7 1150 31 3.697 0.053

OC-56-DZ2-037 OC56DZ2_3 4.31 0.18 0.2874 0.011 0.93002 1628 53 1583 70 1758 66 7 1758 66 2.84 0.042

OC-56-DZ2-038 OC56DZ2_3 1.714 0.093 0.1656 0.0042 0.2095 988 23 1003 25 1068 90 7 988 23 3.011 0.047

OC-56-DZ2-039 OC56DZ2_3 1.669 0.044 0.1661 0.0044 0.63818 991 25 1000 29 979 82 -1 991 25 2.69 0.033

OC-56-DZ2-040 OC56DZ2_4 4.73 0.13 0.2995 0.0087 0.4667 1688 43 1691 52 1846 83 9 1846 83 2.42 0.025

OC-56-DZ2-041 Output_1_1 4.21 0.2 0.294 0.0097 0.73896 1661 48 1664 68 1696 76 2 1696 76 0.929 0.033

OC-56-DZ2-042 Output_1_2 4.48 0.18 0.2812 0.0057 0.84235 1597 29 1514 19 1902 61 16 1902 61 5.461 0.043

OC-56-DZ2-043 Output_1_3 0.501 0.03 0.0626 0.0017 0.66104 391.7 11 376.3 7.9 578 83 32 391.7 11 2.269 0.081

OC-56-DZ2-044 Output_1_4 4.46 0.2 0.3075 0.0089 0.54395 1728 44 1744 67 1718 88 -1 1718 88 2.28 0.025

OC-56-DZ2-045 Output_1_5 2.51 0.16 0.2123 0.0063 0.61476 1241 34 1256 60 1328 100 7 1241 34 2.546 0.038

OC-56-DZ2-046 Output_1_6 5.17 0.22 0.321 0.012 0.78897 1794 56 1469 73 1911 72 6 1911 72 1.357 0.046  
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OC-56-DZ2-048 Output_1_8 3.97 0.16 0.2798 0.0089 0.70976 1590 45 1666 44 1674 68 5 1674 68 4.27 0.11

OC-56-DZ2-049 Output_1_9 2.138 0.098 0.198 0.0062 0.87582 1165 33 1167 28 1155 71 -1 1165 33 1.502 0.013

OC-56-DZ2-050 Output_1_1 2.071 0.1 0.1938 0.0055 0.64739 1142 30 1170 44 1132 85 -1 1142 30 1.735 0.023

OC-56-DZ2-051 Output_1_1 0.449 0.028 0.06 0.0018 0.50933 375.7 11 372 16 370 130 -2 375.7 11 0.7497 0.0093

OC-56-DZ2-052 Output_1_1 4.07 0.19 0.2858 0.009 0.86028 1620 45 1612 51 1655 74 2 1655 74 1.546 0.025

OC-56-DZ2-053 Output_1_1 0.378 0.02 0.0492 0.0014 0.81968 309.5 8.4 304.3 6.3 412 85 25 309.5 8.4 1.3547 0.0085

OC-56-DZ2-054 Output_1_1 3.54 0.25 0.2632 0.0067 0.58629 1506 34 1530 100 1570 120 4 1570 120 3.685 0.098

OC-56-DZ2-055 Output_1_1 3.88 0.2 0.2784 0.0091 0.85942 1583 46 1589 29 1641 72 4 1641 72 1.155 0.013

OC-56-DZ2-056 Output_1_1 0.812 0.072 0.1007 0.0041 0.19476 618 24 607 28 600 150 -3 618 24 1.175 0.031

OC-56-DZ2-057 Output_1_1 1.758 0.11 0.1504 0.004 0.73337 903 23 824 47 1331 80 32 903 23 1.683 0.064

OC-56-DZ2-058 Output_1_1 5.61 0.25 0.3409 0.0099 0.90788 1891 48 1848 54 1941 61 3 1941 61 0.88 0.013

OC-56-DZ2-059 Output_1_1 2.69 0.17 0.2255 0.0089 0.29131 1311 47 1318 47 1340 130 2 1340 130 1.039 0.012

OC-56-DZ2-060 Output_1_2 3.02 0.25 0.2577 0.0066 0.007836 1478 34 1498 49 1300 180 -14 1300 180 1.006 0.01

OC-56-DZ2-061 Output_1_2 4.04 0.18 0.2887 0.01 0.81141 1634 51 1648 45 1646 69 1 1646 69 1.099 0.022

OC-56-DZ2-062 Output_1_2 3.98 0.19 0.2843 0.008 0.77411 1613 40 1569 51 1648 69 2 1648 69 1.719 0.037

OC-56-DZ2-063 Output_1_2 10.2 0.43 0.438 0.012 0.78596 2340 55 2228 59 2525 63 7 2525 63 1.734 0.027

OC-56-DZ2-064 Output_1_2 1.647 0.075 0.1605 0.0036 0.53786 959 20 919 19 1011 72 5 959 20 1.488 0.059

OC-56-DZ2-065 Output_1_2 2.08 0.095 0.1933 0.0057 0.42981 1139 31 1155 61 1141 86 0 1139 31 2.714 0.046

OC-56-DZ2-066 Output_1_2 0.511 0.044 0.067 0.002 0.10893 418.2 12 426 17 400 180 -5 418.2 12 1.49 0.21

OC-56-DZ2-067 Output_1_2 0.835 0.07 0.09885 0.0019 0.001 607.7 11 598 19 640 210 5 607.7 11 0.781 0.015

OC-56-DZ2-068 Output_1_2 2.478 0.1 0.2043 0.0051 0.20957 1198 27 1093 24 1375 78 13 1198 27 0.995 0.013

OC-56-DZ2-069 Output_1_2 3.87 0.21 0.2761 0.0077 0.58458 1572 39 1611 42 1645 95 4 1645 95 1.463 0.028

OC-56-DZ2-070 Output_1_3 3.948 0.14 0.2903 0.01 0.66846 1643 50 1653 34 1615 76 -2 1615 76 1.389 0.042

OC-56-DZ2-071 Output_1_3 1.895 0.1 0.1813 0.0042 0.79891 1074 23 1078 32 1056 84 -2 1074 23 1.876 0.025

OC-56-DZ2-072 Output_1_3 1.606 0.086 0.1574 0.0044 0.78483 942 24 945 34 1029 84 8 942 24 0.743 0.014

OC-56-DZ2-073 Output_1_3 1.705 0.074 0.1698 0.005 0.05397 1011 27 1008 26 999 98 -1 1011 27 2.251 0.028

OC-56-DZ2-074 Output_1_3 4.422 0.18 0.2938 0.01 0.92263 1660 51 1637 79 1760 61 6 1760 61 1.838 0.043

OC-56-DZ2-075 Output_1_3 0.544 0.037 0.0703 0.0029 0.86904 438 17 430 18 443 100 1 438 17 1.278 0.012

OC-56-DZ2-076 Output_1_3 0.915 0.098 0.1045 0.0047 0.001 641 28 631 16 780 190 18 641 28 0.6414 0.0058

OC-56-DZ2-077 Output_1_3 2.659 0.12 0.2237 0.0058 0.77566 1301 31 1262 50 1335 68 3 1335 68 0.475 0.011

OC-56-DZ2-078 Output_1_3 4.3 0.21 0.2978 0.01 0.83697 1680 52 1678 84 1700 71 1 1700 71 4.48 0.07

OC-56-DZ2-079 Output_1_3 1.675 0.1 0.1626 0.0049 0.68049 971 27 954 29 1044 100 7 971 27 0.769 0.011

OC-56-DZ2-080 Output_1_4 1.442 0.07 0.1467 0.0051 0.45994 882 29 858 27 982 85 10 882 29 1.448 0.024

OC-56-DZ2-081 Output_1_4 2.8 0.15 0.2316 0.0063 0.7562 1343 33 1315 59 1359 82 1 1359 82 2.119 0.022

OC-56-DZ2-082 Output_1_1 11.42 0.28 0.465 0.013 0.98702 2460 56 940 21 2642.1 38 7 2642.1 38 7.058 0.063

OC-56-DZ2-083 Output_1_2 17.08 0.42 0.587 0.015 0.84662 2978 61 2762 80 2920 44 -2 2920 44 1.778 0.017

OC-56-DZ2-084 Output_1_3 1.708 0.048 0.1693 0.0045 0.44064 1008 25 940 28 1029 78 2 1008 25 1.182 0.015

OC-56-DZ2-085 Output_1_4 1.79 0.11 0.1738 0.0057 0.25824 1033 31 972 51 1128 94 8 1033 31 1.724 0.014

OC-56-DZ2-086 Output_1_5 0.398 0.035 0.0536 0.0019 0.56236 336 12 345 16 430 130 22 336 12 1.214 0.014

OC-56-DZ2-087 Output_1_6 6.36 0.25 0.3802 0.011 0.871 2077 50 2050 61 2007 56 -3 2007 56 1.849 0.022

OC-56-DZ2-088 Output_1_7 1.612 0.057 0.1581 0.0067 0.93208 946 37 896 23 1038 51 9 946 37 2.66 0.23

OC-56-DZ2-089 Output_1_8 0.723 0.077 0.089 0.0098 0.90447 547 58 579 43 580 130 6 547 58 2.008 0.082

OC-56-DZ2-090 Output_1_9 2.079 0.078 0.1992 0.006 0.80511 1171 33 1122 31 1094 66 -7 1171 33 2.93 0.15

OC-56-DZ2-091 Output_1_1 3.85 0.099 0.2865 0.0076 0.61151 1624 38 1603 33 1583 62 -3 1583 62 1.977 0.037

OC-56-DZ2-092 Output_1_1 0.2506 0.0093 0.02103 0.00049 0.40651 134.2 3.1 152 2 1372 83 90 134.2 3.1 1.53 0.039

OC-56-DZ2-093 Output_1_1 2.79 0.13 0.2404 0.0075 0.80391 1389 39 1428 47 1303 75 -7 1303 75 1.597 0.015

OC-56-DZ2-094 Output_1_1 1.699 0.06 0.1773 0.0043 0.36135 1052 24 1060 38 955 74 -10 1052 24 3.25 0.12

OC-56-DZ2-095 Output_1_1 0.857 0.037 0.1062 0.0032 0.68688 651 19 628 27 602 100 -8 651 19 1.15 0.12  

 

OC-56-DZ2-095 Output_1_1 0.857 0.037 0.1062 0.0032 0.68688 651 19 628 27 602 100 -8 651 19 1.15 0.12

OC-56-DZ2-096 Output_1_1 0.493 0.024 0.0674 0.0017 0.72506 420.5 11 389.2 9.9 353 99 -19 420.5 11 1.389 0.041

OC-56-DZ2-097 Output_1_1 0.396 0.016 0.0557 0.0018 0.28218 350 11 320.3 7.1 290 120 -21 350 11 2.956 0.033

OC-56-DZ2-098 Output_1_1 0.597 0.035 0.0847 0.0036 0.38676 524 21 502 25 350 170 -50 524 21 1.357 0.064

OC-56-DZ2-099 Output_1_1 1.422 0.049 0.1625 0.0032 0.45331 971 18 944 53 761 91 -28 971 18 3.122 0.063

OC-56-DZ2-100 Output_1_1 1.797 0.07 0.1812 0.0061 0.68501 1073 34 1042 36 1035 65 -4 1073 34 1.248 0.013

OC-56-DZ2-101 Output_1_2 4.13 0.45 0.247 0.022 0.94996 1420 110 2140 100 2001 68 29 2001 68 2.08 0.38

OC-56-DZ2-102 Output_1_2 11.43 0.25 0.48 0.014 0.82819 2526 60 2585 53 2575 42 2 2575 42 0.8184 0.004

OC-56-DZ2-103 Output_1_2 4.64 0.13 0.316 0.0067 0.9117 1770 33 1832 52 1731 52 -2 1731 52 2.32 0.14

OC-56-DZ2-104 Output_1_2 2.256 0.084 0.2009 0.0051 0.13441 1180 27 1235 72 1173 110 -1 1180 27 2.117 0.03

OC-56-DZ2-105 Output_1_2 5.08 0.17 0.3329 0.01 0.5791 1852 50 1844 69 1790 82 -3 1790 82 1.029 0.022

OC-56-DZ2-106 Output_1_2 1.784 0.053 0.1727 0.004 0.5696 1027 22 1067 17 1035 70 1 1027 22 1.334 0.025

OC-56-DZ2-107 Output_1_2 4.73 0.1 0.312 0.007 0.589 1750 35 1795 56 1766 58 1 1766 58 4.96 0.12

OC-56-DZ2-108 Output_1_2 0.787 0.091 0.0992 0.0027 0.32243 609 16 639 39 420 260 -45 609 16 1.403 0.018

OC-56-DZ2-109 Output_1_2 3.7 0.11 0.2684 0.0079 0.63209 1532 41 1484 50 1577 50 3 1577 50 1.154 0.017

OC-56-DZ2-110 Output_1_2 4.18 0.13 0.3001 0.0077 0.6535 1692 38 1709 52 1615 64 -5 1615 64 1.192 0.017

OC-56-DZ2-111 Output_1_3 3.27 0.12 0.257 0.01 0.71167 1474 54 1446 57 1432 72 -3 1432 72 1.799 0.064

OC-56-DZ2-112 Output_1_3 13.74 0.43 0.529 0.014 0.56897 2735 59 2744 70 2694 61 -2 2694 61 0.6532 0.0059

OC-56-DZ2-113 Output_1_3 0.891 0.043 0.1064 0.0027 0.3529 652 16 694 25 601 110 -8 652 16 1.424 0.028

OC-56-DZ2-114 Output_1_3 1.955 0.074 0.1817 0.0057 0.001 1076 31 1148 30 1127 110 5 1076 31 1.477 0.025

OC-56-DZ2-115 Output_1_3 2.219 0.077 0.2011 0.0051 0.34806 1181 27 1252 36 1181 87 0 1181 27 5.064 0.049

OC-56-DZ2-116 Output_1_3 4.36 0.14 0.3025 0.0083 0.85573 1704 41 1732 42 1706 48 0 1706 48 1.691 0.024

OC-56-DZ2-117 Output_1_3 5.43 0.19 0.334 0.011 0.91852 1855 55 1889 67 1899 53 2 1899 53 2.154 0.032

OC-56-DZ2-118 Output_1_3 4.81 0.13 0.3196 0.0096 0.84192 1787 47 1815 42 1788 53 0 1788 53 2.85 0.025

OC-56-DZ2-119 Output_1_3 0.642 0.024 0.0803 0.0026 0.75597 498 15 489 12 512 65 3 498 15 1.745 0.015

OC-56-DZ2-120 Output_1_3 1.811 0.053 0.1776 0.0062 0.63844 1054 34 1142 91 1085 86 3 1054 34 5.31 0.18
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Table 3: U/Pb data from Sample: MP_DZ1 

 

Final207_23Final207_23Final206_23Final206_23ErrorCorrelaFinal238_20Final238_20ErrorCorrelaFinalAge206FinalAge206FinalAge206FinalAge208FinalAge208FinalAge207FinalAge207PERC_DISCPreferred_APreferred_AFInal_U_Th_FInal_U_Th_Ratio_Int2SE

MPDZ1-005MPDZ1-006 0.549 0.03 0.0512 0.0015 0.8446 19.53125 0.572205 -0.12023 321.9 6.8 9 636 18 1111 70 71 321.9 9 5.295 0.081

MPDZ1-046MPDZ1-047 0.5339 0.021 0.0539 0.002 0.031885 18.55288 0.688418 0.89443 338 11 12 345 19 962 99 65 338 12 4.02 0.15

MPDZ1-123MPDZ1-124 0.5542 0.013 0.0589 0.0015 0.36408 16.97793 0.432375 0.76112 369.1 9.3 9.2 258 13 863 68 57 369.1 9.2 1.59 0.084

MPDZ1-049MPDZ1-050 0.608 0.038 0.059 0.0015 0.14587 16.94915 0.430911 0.28215 369.6 7.3 9.1 329 15 1030 130 64 369.6 9.1 1.49 0.037

MPDZ1-078MPDZ1-079 0.578 0.021 0.0595 0.0041 -0.76593 16.80672 1.15811 0.98047 372 24 25 307 45 960 190 61 372 25 0.83 0.15

MPDZ1-124MPDZ1-125 0.51 0.02 0.0605 0.0013 0.5994 16.52893 0.355167 -0.10956 378.6 7.9 7.8 384.1 8.3 632 80 40 378.6 7.8 0.747 0.011

MPDZ1-121MPDZ1-122 0.53 0.023 0.06391 0.00096 0.74634 15.647 0.235036 -0.44181 399.3 5.9 5.8 376.5 9.8 572 71 30 399.3 5.8 2.092 0.053

MPDZ1-006MPDZ1-007 0.606 0.099 0.0648 0.0022 0.90521 15.4321 0.523929 -0.80913 405 11 13 367 19 690 170 41 405 13 1.7 0.21

MPDZ1-103MPDZ1-104 0.594 0.026 0.0662 0.0021 0.28841 15.10574 0.479185 0.50116 413 11 12 345 35 768 110 46 413 12 0.99 0.12

MPDZ1-018MPDZ1-019 0.573 0.021 0.06845 0.0014 -0.15265 14.6092 0.2988 0.80055 426.8 5.9 8.4 379 11 612 79 30 426.8 8.4 1.192 0.082

MPDZ1-109MPDZ1-110 0.525 0.019 0.069 0.0017 0.54387 14.49275 0.357068 0.37755 429.9 8 10 435 19 442 67 3 429.9 10 1.988 0.028

MPDZ1-037MPDZ1-038 0.645 0.03 0.0692 0.0017 0.77536 14.45087 0.355007 -0.43804 431.5 8.3 11 556 17 852 74 49 431.5 11 3.46 0.11

MPDZ1-119MPDZ1-120 0.537 0.018 0.0693 0.0017 0.75333 14.43001 0.353983 0.30972 431.8 8 10 436.9 17 454 63 5 431.8 10 1.279 0.091

MPDZ1-076MPDZ1-077 0.55 0.018 0.0715 0.0019 0.5044 13.98601 0.371656 0.41248 445.2 9.1 11 440 20 501 74 11 445.2 11 2.185 0.021

MPDZ1-040MPDZ1-041 0.5752 0.022 0.07186 0.0013 0.053317 13.91595 0.25175 0.63667 447.3 4.4 8 450 11 519 78 14 447.3 8 1.832 0.034

MPDZ1-069MPDZ1-070 0.5655 0.016 0.0727 0.0022 -0.37586 13.75516 0.41625 0.94152 452 11 13 437 19 490 100 8 452 13 2.3 0.35

MPDZ1-091MPDZ1-092 0.574 0.017 0.0731 0.0016 0.60479 13.67989 0.299423 0.1027 454.7 6.7 9.4 463.2 18 502 60 9 454.7 9.4 2.944 0.058

MPDZ1-011MPDZ1-012 0.568 0.025 0.0732 0.0017 0.33388 13.6612 0.317268 0.36296 455.6 7.7 10 451.4 9.6 436 83 -4 455.6 10 1.199 0.024

MPDZ1-058MPDZ1-059 0.578 0.023 0.0738 0.0016 0.69619 13.55014 0.29377 0.22403 459.2 7 9.7 444.2 7.9 502 69 9 459.2 9.7 1.468 0.018

MPDZ1-072MPDZ1-073 0.576 0.018 0.0747 0.0017 0.82106 13.38688 0.304655 0.038951 464.3 7.6 10 452.2 16 457 61 -2 464.3 10 1.352 0.016

MPDZ1-048MPDZ1-049 0.7 0.035 0.0762 0.0018 -0.00068 13.12336 0.310001 0.30223 473.2 8.3 11 506 20 800 95 41 473.2 11 1.479 0.035

MPDZ1-015MPDZ1-016 0.645 0.047 0.0806 0.0019 -0.03734 12.40695 0.292472 0.42189 499.6 9.2 12 457 23 520 170 4 499.6 12 1.538 0.038

MPDZ1-071MPDZ1-072 0.84 0.2 0.082 0.019 0.56201 12.19512 2.825699 0.48665 500 110 110 720 290 970 160 48 500 110 4.69 0.71

MPDZ1-125MPDZ1-126 0.66 0.024 0.0836 0.0015 0.52357 11.96172 0.214624 0.004504 517.8 9 8.9 507 13 503 72 -3 517.8 8.9 1.408 0.022

MPDZ1-029MPDZ1-030 0.69 0.029 0.0842 0.0025 0.25778 11.87648 0.352627 0.63139 521 13 15 522 14 575 81 9 521 15 0.7436 0.0093

MPDZ1-066MPDZ1-067 0.756 0.031 0.0895 0.0025 0.091895 11.17318 0.3121 0.50796 553 12 15 569 40 676 95 18 553 15 3.319 0.097

MPDZ1-082MPDZ1-083 0.877 0.059 0.0919 0.0032 0.26066 10.88139 0.378895 0.18617 567 17 19 387 20 880 140 36 567 19 0.697 0.014

MPDZ1-021MPDZ1-022 0.829 0.034 0.0964 0.0023 0.41743 10.37344 0.247499 0.49534 593 11 14 618 20 709 75 16 593 14 1.52 0.071

MPDZ1-070MPDZ1-071 1.22 0.2 0.102 0.018 0.93311 9.803922 1.730104 0.45835 620 110 110 699 51 1462 85 58 620 110 1.68 0.23

MPDZ1-068MPDZ1-069 0.859 0.024 0.1015 0.0021 0.8457 9.852217 0.203839 0.50781 623.1 8.2 12 573 25 684 55 9 623.1 12 0.767 0.012

MPDZ1-014MPDZ1-015 0.896 0.041 0.1019 0.0022 0.59475 9.813543 0.211872 -0.03603 625.8 9.3 13 644 13 710 80 12 625.8 13 1.131 0.012

MPDZ1-114MPDZ1-115 3.1 0.62 0.1124 0.0076 0.98552 8.896797 0.601563 -0.97504 686 43 44 1950 380 2620 350 74 686 44 1.872 0.084

MPDZ1-084MPDZ1-085 1.64 0.14 0.126 0.018 -0.08534 7.936508 1.133787 0.6966 760 100 100 650 130 1590 300 52 760 100 1.48 0.44

MPDZ1-036MPDZ1-037 1.5 0.11 0.1458 0.0075 -0.62838 6.858711 0.352814 0.81564 877 40 42 465 71 1040 190 16 877 42 0.97 0.18

MPDZ1-060MPDZ1-061 1.642 0.067 0.1504 0.0037 0.84622 6.648936 0.163571 0.12698 903 16 21 733 18 1174 62 23 903 21 2.062 0.045

MPDZ1-056MPDZ1-057 1.566 0.071 0.1508 0.0035 0.17582 6.6313 0.15391 0.39325 905 15 20 609 25 1078 80 16 905 20 1.367 0.051

MPDZ1-052MPDZ1-053 1.665 0.086 0.1511 0.0034 0.28534 6.618134 0.148919 0.092622 910 14 19 885 35 1175 92 23 910 19 1.305 0.021

MPDZ1-013MPDZ1-014 1.485 0.061 0.1529 0.0044 0.22935 6.540222 0.188208 0.58857 917 22 25 904 21 950 73 3 917 25 1.673 0.019

MPDZ1-094MPDZ1-095 1.83 0.16 0.1541 0.004 0.41983 6.489293 0.168444 -0.18428 924 18 22 637 34 1290 140 28 924 22 1.8 0.27

MPDZ1-090MPDZ1-091 1.522 0.07 0.1546 0.0054 0.8276 6.468305 0.225931 0.11292 927 27 30 957 41 952 61 3 927 30 1.75 0.056

MPDZ1-003MPDZ1-004 1.546 0.078 0.1569 0.0033 0.46707 6.373486 0.13405 0.263 940 11 18 900 27 987 81 5 940 18 2.739 0.031

MPDZ1-002MPDZ1-003 1.595 0.084 0.1588 0.0036 0.4409 6.297229 0.142758 -0.07688 950 13 20 874 26 996 89 5 950 20 1.397 0.051   
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MPDZ1-012 MPDZ1_12 1.655 0.074 0.1621 0.0036 0.65695 6.169031 0.137005 -0.02301 968 15 20 981 31 1019 68 5 968 20 2.463 0.037

MPDZ1-054 MPDZ1_54 1.729 0.087 0.1628 0.0046 0.6691 6.142506 0.17356 -0.18677 972 21 25 898 23 1140 85 15 972 25 0.671 0.042

MPDZ1-057 MPDZ1_57 1.977 0.079 0.1643 0.0038 0.050186 6.086427 0.14077 0.68277 980 16 21 828 28 1378 62 29 980 21 1.292 0.037

MPDZ1-079 MPDZ1_19 1.71 0.062 0.1643 0.0035 -0.37748 6.086427 0.129656 0.665 981 13 19 882 50 1061 56 8 981 19 1.74 0.23

MPDZ1-075 MPDZ1_15 1.783 0.086 0.1651 0.004 0.68921 6.056935 0.146746 -0.26683 985 17 22 904 54 1171 74 16 985 22 2.686 0.055

MPDZ1-100 MPDZ1_40 1.654 0.051 0.1653 0.0038 0.23053 6.049607 0.139071 0.60866 986 16 21 996 47 993 74 1 986 21 1.487 0.025

MPDZ1-110 MPDZ1_50 1.71 0.053 0.1661 0.0041 0.56833 6.02047 0.148609 0.50617 990 17 23 1040 43 1060 67 7 990 23 1.197 0.023

MPDZ1-116 MPDZ1_56 1.78 0.069 0.166 0.005 0.95097 6.024096 0.181449 0.47713 990 24 28 728 75 1183 51 16 990 28 1.711 0.04

MPDZ1-089 MPDZ1_29 1.699 0.057 0.1662 0.0039 0.68122 6.016847 0.14119 -0.05749 991 16 22 904 63 1060 57 7 991 22 6.7 2

MPDZ1-105 MPDZ1_45 1.696 0.061 0.1663 0.0051 0.71973 6.013229 0.184411 0.31074 991 25 28 1008 36 1035 63 4 991 28 4.864 0.057

MPDZ1-033 MPDZ1_33 1.706 0.08 0.1664 0.0032 0.31394 6.009615 0.11557 -0.02945 992 11 18 935 45 1053 86 6 992 18 3.59 0.22

MPDZ1-045 MPDZ1_45 1.731 0.068 0.1671 0.0032 0.46249 5.98444 0.114603 0.19429 996 11 18 956 24 1076 59 7 996 18 2.155 0.051

MPDZ1-092 MPDZ1_32 1.714 0.052 0.168 0.0037 0.73978 5.952381 0.131094 0.32345 1001 15 21 1010 37 1046 53 4 1001 21 1.03 0.015

MPDZ1-017 MPDZ1_17 1.738 0.074 0.1691 0.0035 0.5522 5.913661 0.1224 -0.01425 1007 14 20 917 65 1046 71 4 1007 20 2.99 0.25

MPDZ1-019 MPDZ1_19 2.174 0.097 0.1694 0.0048 0.011342 5.903188 0.167269 0.57824 1009 23 27 872 31 1500 84 33 1009 27 0.832 0.014

MPDZ1-026 MPDZ1_26 1.708 0.07 0.1697 0.0035 0.44675 5.892752 0.121536 0.59104 1010 14 19 985 21 1044 68 3 1010 19 2.811 0.038

MPDZ1-042 MPDZ1_42 1.713 0.066 0.1697 0.0039 0.54501 5.892752 0.135426 0.44022 1011 16 22 1006 20 1014 67 0 1011 22 2.942 0.042

MPDZ1-106 MPDZ1_46 1.733 0.069 0.1714 0.0041 0.70643 5.834306 0.13956 0.29198 1020 17 22 1013 47 1050 62 3 1020 22 3.235 0.052

MPDZ1-088 MPDZ1_28 1.771 0.071 0.1717 0.0043 0.63124 5.824112 0.145857 0.008595 1021 19 24 1050 44 1067 71 4 1021 24 1.365 0.027

MPDZ1-007 MPDZ1_7 1.76 0.077 0.1722 0.0044 0.53852 5.807201 0.148384 0.54562 1024 17 24 933 17 1055 64 3 1024 24 1.705 0.029

MPDZ1-055 MPDZ1_55 1.744 0.073 0.1723 0.0033 0.50922 5.803831 0.111159 0.19485 1025 11 18 942 19 1048 69 2 1025 18 1.939 0.018

MPDZ1-122 MPDZ1_2 1.81 0.044 0.1728 0.0028 0.80009 5.787037 0.093771 0.26511 1027 16 16 770 21 1091 45 6 1027 16 4.33 0.32

MPDZ1-009 MPDZ1_9 2.73 0.52 0.1734 0.0056 0.90209 5.767013 0.186247 -0.8444 1031 25 30 1410 240 1680 250 39 1031 30 2.41 0.2

MPDZ1-053 MPDZ1_53 2.48 0.25 0.1737 0.0046 0.31392 5.757052 0.152461 0.00931 1032 21 25 1051 38 1680 170 39 1032 25 0.878 0.028

MPDZ1-102 MPDZ1_42 1.772 0.048 0.1742 0.0037 0.84458 5.740528 0.121929 0.47 1035 14 20 1054 39 1037 51 0 1035 20 1.271 0.014

MPDZ1-104 MPDZ1_44 1.796 0.05 0.1742 0.0038 0.65245 5.740528 0.125224 0.37522 1035 15 21 1047 57 1065 55 3 1035 21 50.5 4.2

MPDZ1-101 MPDZ1_41 1.852 0.058 0.1743 0.0037 0.59543 5.737235 0.121789 0.22957 1036 14 20 895 55 1114 55 7 1036 20 2.03 0.19

MPDZ1-016 MPDZ1_16 1.857 0.073 0.1751 0.0038 0.41973 5.711022 0.12394 0.24361 1040 16 21 1036 19 1106 67 6 1040 21 1.354 0.018

MPDZ1-023 MPDZ1_23 1.896 0.069 0.1759 0.0032 0.39932 5.685048 0.103423 0.53769 1044.7 9.8 17 883 46 1157 63 10 1044.7 17 19.8 1

MPDZ1-074 MPDZ1_14 1.834 0.057 0.1765 0.0037 0.69719 5.665722 0.118772 0.17083 1048 14 20 1040 39 1089 57 4 1048 20 1.547 0.011

MPDZ1-032 MPDZ1_32 3.23 0.5 0.1771 0.0091 0.93506 5.646527 0.290138 -0.86762 1050 47 49 1680 230 2020 200 48 1050 49 2.26 0.15

MPDZ1-047 MPDZ1_47 2.072 0.12 0.1796 0.0055 -0.20674 5.567929 0.17051 0.60232 1065 27 30 1112 42 1270 130 16 1065 30 2.001 0.078

MPDZ1-008 MPDZ1_8 1.914 0.095 0.1805 0.0041 0.23389 5.540166 0.125843 0.28153 1069 15 22 1030 58 1081 92 1 1069 22 2.421 0.025

MPDZ1-059 MPDZ1_59 1.943 0.073 0.1825 0.0042 0.50049 5.479452 0.126103 0.34623 1081 17 23 1047 39 1126 67 4 1081 23 3.13 0.057

MPDZ1-001 MPDZ1_1 1.912 0.079 0.183 0.0042 0.78643 5.464481 0.125414 0.10133 1083 16 23 1056 19 1072 64 -1 1083 23 3.477 0.045

MPDZ1-024 MPDZ1_24 1.996 0.079 0.1829 0.004 0.58296 5.467469 0.119573 0.26175 1083 16 22 983 26 1159 65 7 1083 22 3.391 0.069

MPDZ1-028 MPDZ1_28 1.988 0.072 0.1842 0.0037 0.4558 5.428882 0.109049 0.61519 1090 14 20 1059 15 1146 63 5 1090 20 1.138 0.017

MPDZ1-127 MPDZ1_7 2.01 0.044 0.1857 0.002 0.562 5.38503 0.057997 0.10621 1098 11 11 1124 27 1149 46 4 1098 11 2.897 0.059

MPDZ1-081 MPDZ1_21 2.001 0.059 0.1878 0.004 0.69334 5.324814 0.113415 0.33348 1109 16 22 1113 42 1126 53 2 1109 22 2.362 0.082

MPDZ1-083 MPDZ1_23 1.998 0.06 0.1887 0.004 0.85059 5.299417 0.112335 -0.10637 1114 15 22 1083 52 1119 51 0 1114 22 29.2 1.4

MPDZ1-039 MPDZ1_39 2.05 0.08 0.1921 0.004 0.61443 5.205622 0.108394 0.46473 1133 15 22 1122 25 1148 59 1 1133 22 3.347 0.061

MPDZ1-126 MPDZ1_6 2.77 0.13 0.1925 0.0035 0.76716 5.194805 0.094451 -0.38232 1135 19 19 1216 46 1692 74 33 1135 19 2.018 0.045

MPDZ1-020 MPDZ1_20 2.179 0.081 0.1933 0.0037 0.54456 5.173306 0.099023 0.28152 1139 13 20 1199 39 1234 65 8 1139 20 10.6 0.98

MPDZ1-038 MPDZ1_38 2.128 0.081 0.1936 0.0036 0.5452 5.165289 0.096049 0.4139 1141 11 19 1056 15 1183 58 4 1141 19 1.949 0.042

MPDZ1-085 MPDZ1_25 2.128 0.065 0.1939 0.0044 0.72382 5.157298 0.11703 0.26288 1142 18 24 1099 40 1202 54 5 1142 24 2.605 0.034

MPDZ1-129 MPDZ1_9 2.182 0.048 0.1948 0.0032 0.59993 5.13347 0.084328 0.39661 1147 17 17 689 43 1232 48 7 1147 17 1.77 0.047

MPDZ1-093 MPDZ1_33 2.134 0.059 0.1949 0.0046 0.77035 5.130836 0.121097 0.51183 1148 19 25 1166 44 1180 52 3 1148 25 2.67 0.24

MPDZ1-118 MPDZ1_58 2.157 0.065 0.1952 0.0044 0.75058 5.122951 0.115476 0.20717 1149 17 24 1152 39 1180 54 3 1149 24 1.972 0.024

MPDZ1-041 MPDZ1_41 2.216 0.087 0.1962 0.0037 0.39392 5.09684 0.096118 0.38252 1155 11 20 1119 25 1248 64 7 1155 20 1.795 0.034

MPDZ1-080 MPDZ1_20 2.41 0.17 0.1984 0.0044 0.61902 5.040323 0.111781 -0.4186 1167 17 24 1107 46 1370 110 15 1167 24 1.79 0.18

MPDZ1-030 MPDZ1_30 2.43 0.087 0.2018 0.0036 0.70028 4.955401 0.088402 0.44733 1185 10 19 1045 13 1369 58 13 1185 19 3.173 0.069

MPDZ1-086 MPDZ1_26 2.282 0.093 0.2034 0.0053 0.65528 4.916421 0.128107 0.021355 1194 23 28 1180 49 1219 68 2 1194 28 2.676 0.089

MPDZ1-107 MPDZ1_47 2.263 0.074 0.2038 0.0057 0.69525 4.906771 0.137236 0.23595 1195 25 30 1209 48 1213 62 1 1195 30 1.795 0.029

MPDZ1-034 MPDZ1_34 2.498 0.097 0.2075 0.0041 0.71903 4.819277 0.095224 0.1888 1215 14 22 1070 44 1360 59 11 1215 22 1.99 0.071

MPDZ1-035 MPDZ1_35 2.387 0.093 0.208 0.0049 0.70234 4.807692 0.113258 0.30127 1218 20 26 1161 19 1260 63 3 1218 26 2.652 0.028

MPDZ1-065 MPDZ1_5 2.332 0.068 0.2095 0.0051 0.87732 4.77327 0.116199 0.33041 1226 21 27 1218 50 1229 49 0 1226 27 2.953 0.071

MPDZ1-025 MPDZ1_25 2.481 0.11 0.2099 0.0051 0.67508 4.764173 0.115757 0.00316 1228 21 27 1209 30 1331 71 8 1228 27 1.089 0.014

MPDZ1-067 MPDZ1_7 2.517 0.072 0.2125 0.0048 0.80658 4.705882 0.106298 0.48068 1247 20 27 974 37 1339 50 7 1247 27 1.789 0.02

MPDZ1-099 MPDZ1_39 2.434 0.075 0.214 0.0053 0.5228 4.672897 0.115731 0.49182 1250 22 28 1259 53 1254 63 0 1250 28 1.317 0.015

MPDZ1-073 MPDZ1_13 2.89 0.21 0.2143 0.0047 0.76225 4.666356 0.102342 -0.59659 1252 18 25 1315 73 1590 120 21 1252 25 1.74 0.11

MPDZ1-044 MPDZ1_44 2.472 0.11 0.2146 0.0059 0.59574 4.659832 0.128113 0.22169 1253 26 31 1231 24 1276 74 2 1253 31 1.347 0.018

MPDZ1-051 MPDZ1_51 2.978 0.12 0.216 0.0041 0.39874 4.62963 0.087877 0.38499 1261 13 22 1343 22 1617 62 22 1261 22 1.646 0.044

MPDZ1-004 MPDZ1_4 3.21 0.18 0.2191 0.0067 0.7825 4.564126 0.139569 -0.40251 1277 28 35 1631 61 1733 67 26 1277 35 2.008 0.038

MPDZ1-010 MPDZ1_10 2.862 0.11 0.2368 0.0045 0.57459 4.222973 0.080251 0.49675 1370 13 23 1339 18 1373 58 0 1373 58 2.322 0.023

MPDZ1-087 MPDZ1_27 2.906 0.088 0.2394 0.006 0.84859 4.177109 0.10469 0.19563 1383 25 31 1381 51 1404 49 1 1404 49 1.966 0.023

MPDZ1-061 MPDZ1_1 2.914 0.087 0.2343 0.0059 0.84522 4.268032 0.107475 0.13511 1357 25 31 1289 48 1423 49 5 1423 49 4.25 0.12

MPDZ1-077 MPDZ1_17 2.999 0.086 0.2395 0.0048 0.78404 4.175365 0.083682 0.227 1384 16 25 1363 54 1455 48 5 1455 48 1.591 0.017

MPDZ1-063 MPDZ1_3 3.109 0.092 0.2461 0.0057 0.7238 4.063389 0.094113 0.23365 1418 22 29 1389 58 1456 53 3 1456 53 2.328 0.046

MPDZ1-064 MPDZ1_4 3.006 0.088 0.2389 0.0048 0.67718 4.185852 0.084103 0.070644 1381 16 25 1348 54 1468 50 6 1468 50 2.062 0.033

MPDZ1-077 MPDZ1_17 2.999 0.086 0.2395 0.0048 0.78404 4.175365 0.083682 0.227 1384 16 25 1363 54 1455 48 5 1455 48 1.591 0.017

MPDZ1-063 MPDZ1_3 3.109 0.092 0.2461 0.0057 0.7238 4.063389 0.094113 0.23365 1418 22 29 1389 58 1456 53 3 1456 53 2.328 0.046

MPDZ1-064 MPDZ1_4 3.006 0.088 0.2389 0.0048 0.67718 4.185852 0.084103 0.070644 1381 16 25 1348 54 1468 50 6 1468 50 2.062 0.033

MPDZ1-120 MPDZ1_60 3.234 0.092 0.248 0.0048 0.6882 4.032258 0.078044 0.019494 1428 15 25 1411 49 1496 51 5 1496 51 0.974 0.022

MPDZ1-043 MPDZ1_43 3.136 0.14 0.2355 0.0045 0.098134 4.246285 0.081139 0.44352 1363 14 24 1160 43 1536 77 11 1536 77 0.863 0.033

MPDZ1-031 MPDZ1_31 3.48 0.29 0.254 0.013 0.98391 3.937008 0.2015 -0.92059 1460 62 65 1535 25 1597 83 9 1597 83 2.06 0.29

MPDZ1-113 MPDZ1_53 3.766 0.12 0.271 0.0067 0.87961 3.690037 0.09123 0.39958 1545 26 34 1614 60 1625 48 5 1625 48 1.294 0.051

MPDZ1-095 MPDZ1_35 3.658 0.11 0.2614 0.0068 0.83826 3.825555 0.099517 0.26892 1497 28 35 1135 73 1637 48 9 1637 48 1.33 0.08

MPDZ1-096 MPDZ1_36 4.048 0.12 0.2892 0.0063 0.7888 3.457815 0.075326 0.36668 1638 23 31 1653 64 1663 49 2 1663 49 1.427 0.027

MPDZ1-108 MPDZ1_48 4.363 0.13 0.3009 0.0079 0.816 3.323363 0.087253 0.68455 1696 32 39 1650 58 1715 48 1 1715 48 1.372 0.028

MPDZ1-117 MPDZ1_57 4.516 0.14 0.3074 0.007 0.88355 3.25309 0.074078 -0.04767 1728 25 35 1753 60 1719 48 -1 1719 48 1.404 0.024

MPDZ1-050 MPDZ1_50 4.16 0.19 0.2791 0.0068 0.37889 3.582945 0.087295 0.32157 1587 27 34 1708 38 1760 66 10 1760 66 2.041 0.022

MPDZ1-112 MPDZ1_52 4.481 0.13 0.2973 0.0064 0.80023 3.363606 0.072409 0.27667 1678 22 32 1627 73 1764 47 5 1764 47 1.156 0.056

MPDZ1-128 MPDZ1_8 4.777 0.12 0.3143 0.0054 0.87903 3.181674 0.054664 0.23935 1761 27 26 1782 42 1792 39 2 1792 39 4.19 0.035

MPDZ1-098 MPDZ1_38 4.662 0.13 0.3078 0.0066 0.89073 3.248863 0.069664 0.22287 1730 23 33 1731 69 1799 46 4 1799 46 1.772 0.036

MPDZ1-111 MPDZ1_51 5.75 0.16 0.3478 0.0087 0.71054 2.875216 0.071922 0.57266 1923 32 41 1955 71 1946 49 1 1946 49 1.231 0.034

MPDZ1-027 MPDZ1_27 4.23 0.46 0.238 0.017 0.99599 4.201681 0.30012 -0.92051 1372 86 86 1210 130 2031 69 32 2031 69 3.07 0.12

MPDZ1-097 MPDZ1_37 9.78 0.28 0.44 0.0083 0.17681 2.272727 0.042872 0.4767 2351 22 37 1260 110 2469 51 5 2469 51 1.96 0.17

MPDZ1-062 MPDZ1_2 10.4 0.28 0.4572 0.01 0.85175 2.187227 0.04784 0.36489 2427 33 45 2445 90 2520 43 4 2520 43 2.183 0.044

MPDZ1-022 MPDZ1_22 13.85 0.61 0.4999 0.0095 0.83593 2.0004 0.038015 -0.48086 2613 25 41 2652 36 2820 57 7 2820 57 0.798 0.077

 

 

 

 

 



113 

 

Table 4: U/Pb data from Sample: MP_DZ2 

MPDZ2-066 MPDZ2_6 0.526 0.025 0.0672 0.0016 0.0563 0.0023 0.02078 0.00094 429 17 419.2 9.9 416 13 19 456 92 8 419.2 9.9 2.261 0.038

MPDZ2-119 MPDZ2_59 0.545 0.022 0.0687 0.0017 0.0572 0.0021 0.0219 0.0008 442 14 428.3 10 437.8 7.6 16 492 82 13 428.3 10 1.834 0.035

MPDZ2-030 MPDZ2_30 0.531 0.019 0.0704 0.0018 0.0548 0.0018 0.02236 0.00053 432 12 438.8 11 447 8 10 413 66 -6 438.8 11 2.632 0.048

MPDZ2-103 MPDZ2_43 0.614 0.027 0.0752 0.0025 0.0597 0.0017 0.02558 0.0011 485 17 467 15 510 14 21 591 61 21 467 15 2.49 0.15

MPDZ2-081 MPDZ2_21 0.694 0.024 0.0851 0.0014 0.0589 0.0017 0.02685 0.00096 535.3 14 526.3 8.1 535.4 7.7 19 571 68 8 526.3 8.1 1.604 0.045

MPDZ2-108 MPDZ2_48 0.718 0.027 0.0861 0.0023 0.0616 0.0018 0.0304 0.0013 549 16 532 14 605 17 25 659 61 19 532 14 2.34 0.12

MPDZ2-019 MPDZ2_19 0.82 0.051 0.0899 0.002 0.0677 0.0039 0.02874 0.00094 607 28 555.1 12 573 16 19 840 120 34 555.1 12 3.658 0.059

MPDZ2-093 MPDZ2_33 0.795 0.036 0.0937 0.0038 0.06124 0.0016 0.02568 0.001 593 21 577 23 512 13 21 647 55 11 577 23 2.013 0.039

MPDZ2-141 MPDZ2_21 0.803 0.022 0.0966 0.002 0.0607 0.0019 0.0298 0.00046 598.4 12 594 12 593.5 8.4 9 623 67 5 594 12 2.433 0.036

MPDZ2-035 MPDZ2_35 1.296 0.053 0.1042 0.0033 0.0908 0.0026 0.01447 0.00053 843 23 639 20 290.4 9.6 11 1441 53 56 639 20 3.782 0.092

MPDZ2-151 MPDZ2_31 1.716 0.034 0.1345 0.0022 0.0929 0.0022 0.02208 0.00051 1014.4 13 813 13 441.5 9.8 10 1484 46 45 813 13 4.321 0.071

MPDZ2-110 MPDZ2_50 2.26 0.33 0.1364 0.0096 0.123 0.012 0.0179 0.0054 1179 94 823 54 360 110 110 1960 150 58 823 54 1.906 0.03

MPDZ2-052 MPDZ2_52 1.566 0.049 0.1389 0.0031 0.0809 0.0028 0.02 0.0011 956 19 838 17 400 23 22 1216 66 31 838 17 3.404 0.058

MPDZ2-147 MPDZ2_27 1.398 0.038 0.1463 0.0033 0.0689 0.0019 0.0458 0.0019 888 16 880 19 905 37 37 895 58 2 880 19 5.586 0.081

MPDZ2-088 MPDZ2_28 1.533 0.077 0.1475 0.0067 0.07532 0.002 0.03282 0.0012 942 31 886 38 653 12 24 1076 52 18 886 38 3.32 0.049

MPDZ2-113 MPDZ2_53 1.878 0.1 0.1504 0.0063 0.0914 0.003 0.0194 0.0039 1083 27 903 36 388 77 77 1451 63 38 903 36 1.681 0.044

MPDZ2-129 MPDZ2_9 1.93 0.13 0.151 0.011 0.09199 0.0021 0.0196 0.0024 1086 46 904 59 392 48 47 1473 49 39 904 59 2.848 0.057

MPDZ2-121 MPDZ2_1 1.483 0.048 0.151 0.0049 0.0716 0.0028 0.0474 0.0016 923 20 906 28 936 30 30 967 82 6 906 28 3.17 0.12

MPDZ2-136 MPDZ2_16 1.91 0.15 0.156 0.012 0.0884 0.0022 0.0288 0.0024 1094 46 931 70 574 47 48 1391 46 33 931 70 2.443 0.065

MPDZ2-095 MPDZ2_35 1.497 0.054 0.1558 0.0034 0.0705 0.0022 0.04762 0.0017 929 22 933 19 940 12 32 941 62 1 933 19 1.804 0.083

MPDZ2-107 MPDZ2_47 1.546 0.052 0.1602 0.0031 0.0705 0.002 0.04999 0.0018 948 21 958 18 986 17 35 940 58 -2 958 18 3.003 0.084

MPDZ2-097 MPDZ2_37 1.68 0.057 0.1675 0.0031 0.0729 0.0023 0.0516 0.0026 1000 22 999 17 1016 39 50 1009 64 1 999 17 5.37 0.23

MPDZ2-112 MPDZ2_52 1.669 0.056 0.1678 0.0035 0.0728 0.0023 0.04563 0.0016 997 22 1000 20 902 11 30 1005 64 0 1000 20 3.241 0.084

MPDZ2-118 MPDZ2_58 1.73 0.058 0.1684 0.0031 0.0743 0.0022 0.0519 0.0024 1019 22 1003 17 1023 34 47 1047 61 4 1003 17 2.74 0.04

MPDZ2-073 MPDZ2_13 2.14 0.18 0.171 0.014 0.0903 0.0023 0.0163 0.0018 1152 66 1015 81 327 34 35 1432 47 29 1015 81 1.13 0.019

MPDZ2-061 MPDZ2_1 1.775 0.066 0.1713 0.0044 0.0737 0.003 0.0549 0.0024 1036 25 1019 25 1079 30 46 1025 82 1 1019 25 3.161 0.045

MPDZ2-105 MPDZ2_45 1.72 0.062 0.1723 0.0037 0.073 0.0024 0.0542 0.0022 1016 23 1025 20 1068 27 43 1010 66 -1 1025 20 2.268 0.03

MPDZ2-015 MPDZ2_15 1.733 0.058 0.1734 0.0042 0.07383 0.0021 0.0528 0.0013 1020 22 1030 23 1041 21 25 1036 56 1 1030 23 2.55 0.14

MPDZ2-140 MPDZ2_20 1.757 0.049 0.1733 0.0034 0.0734 0.0018 0.05394 0.00092 1029 18 1030 19 1062 17 18 1024 49 -1 1030 19 0.933 0.031

MPDZ2-071 MPDZ2_11 1.8 0.056 0.1745 0.0042 0.075 0.0021 0.0536 0.0028 1045.1 21 1037 23 1055 42 54 1067 57 3 1037 23 2.39 0.17

MPDZ2-085 MPDZ2_25 1.724 0.061 0.1746 0.0032 0.07259 0.0019 0.0538 0.0019 1017 23 1037 17 1059 17 37 1012 68 -2 1037 17 1.038 0.035

MPDZ2-014 MPDZ2_14 1.807 0.053 0.1771 0.0038 0.07375 0.002 0.05563 0.001 1051 18 1051 21 1094 12 19 1034 55 -2 1051 21 1.417 0.045

MPDZ2-096 MPDZ2_36 2.108 0.097 0.1808 0.0035 0.084 0.0034 0.0543 0.0032 1150 32 1071 19 1068 52 61 1287 78 17 1071 19 2.749 0.036

MPDZ2-051 MPDZ2_51 1.98 0.14 0.1827 0.0096 0.0812 0.0023 0.055 0.01 1101 52 1081 53 1080 200 200 1226 56 12 1081 53 2.644 0.083

MPDZ2-034 MPDZ2_34 1.965 0.073 0.1843 0.0048 0.0783 0.0025 0.0564 0.0016 1107 23 1090 26 1108 26 30 1151 63 5 1090 26 3.221 0.076

MPDZ2-100 MPDZ2_40 2.02 0.068 0.1883 0.0037 0.0779 0.0023 0.06041 0.0021 1122 23 1112 20 1186 15 40 1153 54 4 1112 20 6.322 0.086

MPDZ2-007 MPDZ2_7 2.388 0.061 0.1891 0.0037 0.0917 0.0026 0.0425 0.0024 1241 20 1117 20 841 45 47 1461 52 24 1117 20 3.576 0.053

MPDZ2-122 MPDZ2_2 2.08 0.045 0.1903 0.0046 0.0787 0.0019 0.0595 0.001 1142 15 1123 25 1168 19 20 1163 48 3 1123 25 7.18 0.12

MPDZ2-006 MPDZ2_6 2.081 0.061 0.1898 0.0047 0.0789 0.0026 0.05907 0.0012 1142 20 1125 27 1160 17 23 1166 64 4 1125 27 15.69 0.44

MPDZ2-043 MPDZ2_43 2.011 0.078 0.1919 0.0047 0.0774 0.003 0.0606 0.0025 1118 26 1131 26 1190 45 47 1126 76 0 1131 26 -70 150

MPDZ2-082 MPDZ2_22 2.068 0.073 0.1956 0.0054 0.0765 0.0023 0.0567 0.0023 1138 24 1151 30 1114 26 44 1117 66 -3 1151 30 -10.92 0.47

MPDZ2-084 MPDZ2_24 2.148 0.073 0.1962 0.0037 0.079 0.0023 0.0591 0.0024 1164 24 1155 20 1161 29 46 1171 57 1 1155 20 -8.65 0.31

MPDZ2-067 MPDZ2_7 2.335 0.11 0.197 0.0081 0.08496 0.0022 0.05636 0.0021 1227 32 1158 44 1108 16 40 1314 49 12 1158 44 -2.041 0.075

MPDZ2-131 MPDZ2_11 2.89 0.21 0.198 0.013 0.1089 0.0026 0.0354 0.0021 1397 55 1165 72 703 41 41 1780 44 35 1165 72 -1.994 0.046

MPDZ2-074 MPDZ2_14 2.152 0.081 0.1985 0.0044 0.078 0.0022 0.0579 0.0023 1165 27 1167 24 1137 23 43 1146 54 -2 1167 24 -3.02 0.11

MPDZ2-133 MPDZ2_13 2.479 0.079 0.1989 0.0055 0.08995 0.002 0.0227 0.0013 1270 22 1169 30 454 26 26 1424 43 18 1169 30 -2.876 0.098

MPDZ2-048 MPDZ2_48 2.155 0.062 0.1991 0.0048 0.0787 0.0023 0.0641 0.0014 1166 20 1170 26 1255 23 27 1164 57 -1 1170 26 -1.241 0.016

MPDZ2-080 MPDZ2_20 2.6 0.14 0.2047 0.0099 0.09245 0.0024 0.0455 0.0036 1299 40 1199 53 900 65 70 1476 48 19 1199 53 -0.65 0.11

MPDZ2-009 MPDZ2_9 2.577 0.089 0.206 0.0064 0.09026 0.0024 0.0437 0.0035 1293 25 1207 34 864 66 68 1431 50 16 1207 34 -0.175 0.015

MPDZ2-148 MPDZ2_28 2.293 0.057 0.2062 0.0033 0.0811 0.0019 0.0619 0.0014 1210 18 1208 18 1215 25 26 1222 47 1 1208 18 -0.595 0.031

MPDZ2-094 MPDZ2_34 2.665 0.089 0.2069 0.0051 0.0928 0.0025 0.0387 0.0019 1322 23 1212 27 767 28 37 1484 51 18 1212 27 -0.2476 0.0082

MPDZ2-062 MPDZ2_2 2.38 0.092 0.2081 0.0051 0.082 0.0024 0.0624 0.0024 1240 26 1219 27 1223 24 46 1245 56 2 1219 27 -0.434 0.041

MPDZ2-126 MPDZ2_6 3.07 0.11 0.2124 0.0066 0.10499 0.0023 0.0483 0.0017 1424 29 1241 35 953 32 32 1714 40 28 1241 35 -0.3555 0.0073

MPDZ2-008 MPDZ2_8 2.737 0.096 0.2195 0.0067 0.0901 0.0025 0.0442 0.0015 1338 26 1279 35 875 27 29 1427 52 10 1279 35 -0.3145 0.0037

MPDZ2-023 MPDZ2_23 2.755 0.075 0.2215 0.0047 0.09075 0.0025 0.04 0.0015 1343 20 1290 25 792 26 28 1441 51 10 1290 25 -0.3374 0.007

MPDZ2-086 MPDZ2_26 2.81 0.087 0.2346 0.0047 0.08692 0.0022 0.0707 0.0026 1358 23 1358 25 1380 25 50 1358 48 0 1358 48 2.394 0.038

MPDZ2-123 MPDZ2_3 2.784 0.077 0.2315 0.0044 0.0876 0.0022 0.0701 0.0017 1350 21 1342 23 1369 31 31 1373 49 2 1373 49 1.225 0.023

MPDZ2-137 MPDZ2_17 2.881 0.068 0.2369 0.004 0.0881 0.0022 0.0713 0.0015 1377 18 1370 21 1391 28 29 1383 47 1 1383 47 1.773 0.07

MPDZ2-036 MPDZ2_36 2.769 0.074 0.2308 0.0044 0.08811 0.0024 0.072 0.0015 1347 20 1339 23 1405 22 29 1384 52 3 1384 52 -0.3327 0.0047  
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MPDZ2-126 MPDZ2_6 3.07 0.11 0.2124 0.0066 0.10499 0.0023 0.0483 0.0017 1424 29 1241 35 953 32 32 1714 40 28 1241 35 -0.3555 0.0073

MPDZ2-008 MPDZ2_8 2.737 0.096 0.2195 0.0067 0.0901 0.0025 0.0442 0.0015 1338 26 1279 35 875 27 29 1427 52 10 1279 35 -0.3145 0.0037

MPDZ2-023 MPDZ2_23 2.755 0.075 0.2215 0.0047 0.09075 0.0025 0.04 0.0015 1343 20 1290 25 792 26 28 1441 51 10 1290 25 -0.3374 0.007

MPDZ2-086 MPDZ2_26 2.81 0.087 0.2346 0.0047 0.08692 0.0022 0.0707 0.0026 1358 23 1358 25 1380 25 50 1358 48 0 1358 48 2.394 0.038

MPDZ2-123 MPDZ2_3 2.784 0.077 0.2315 0.0044 0.0876 0.0022 0.0701 0.0017 1350 21 1342 23 1369 31 31 1373 49 2 1373 49 1.225 0.023

MPDZ2-137 MPDZ2_17 2.881 0.068 0.2369 0.004 0.0881 0.0022 0.0713 0.0015 1377 18 1370 21 1391 28 29 1383 47 1 1383 47 1.773 0.07

MPDZ2-036 MPDZ2_36 2.769 0.074 0.2308 0.0044 0.08811 0.0024 0.072 0.0015 1347 20 1339 23 1405 22 29 1384 52 3 1384 52 -0.3327 0.0047

MPDZ2-063 MPDZ2_3 2.978 0.096 0.2436 0.0043 0.0881 0.0023 0.0725 0.0027 1402 25 1405 22 1415 21 50 1384 50 -2 1384 50 2.188 0.093

MPDZ2-016 MPDZ2_16 3.086 0.082 0.2501 0.0046 0.08912 0.0024 0.0734 0.0015 1429 20 1439 24 1431 20 28 1406 51 -2 1406 51 2.665 0.039

MPDZ2-031 MPDZ2_31 3.033 0.09 0.2485 0.0055 0.0896 0.0026 0.0713 0.0039 1416 22 1431 28 1391 69 74 1416 54 -1 1416 54 0.884 0.036

MPDZ2-050 MPDZ2_50 3.062 0.081 0.2487 0.0053 0.0896 0.0025 0.07457 0.0013 1423 20 1432 27 1454 18 25 1416 52 -1 1416 52 2.223 0.05

MPDZ2-022 MPDZ2_22 3.015 0.086 0.2431 0.0055 0.08968 0.0024 0.0744 0.0018 1411 22 1403 28 1451 27 34 1418 50 1 1418 50 2.998 0.065

MPDZ2-127 MPDZ2_7 3.111 0.071 0.2512 0.0043 0.08977 0.002 0.07436 0.00076 1435 18 1445 22 1450 13 14 1420 44 -2 1420 44 4.59 0.33

MPDZ2-077 MPDZ2_17 2.91 0.15 0.2355 0.0098 0.0898 0.0024 0.0601 0.0044 1390 37 1362 52 1178 76 85 1421 50 4 1421 50 1.828 0.024

MPDZ2-143 MPDZ2_23 2.882 0.066 0.2321 0.0039 0.0899 0.0021 0.0504 0.0011 1377 17 1345 20 993 20 21 1422 44 5 1422 44 2.595 0.075

MPDZ2-045 MPDZ2_45 3.039 0.082 0.2466 0.0051 0.08992 0.0024 0.0771 0.0016 1417 20 1421 26 1502 23 30 1423 50 0 1423 50 3.69 0.1

MPDZ2-079 MPDZ2_19 2.958 0.12 0.2389 0.0079 0.08995 0.0023 0.0656 0.0025 1396 33 1380 42 1285 23 47 1424 49 3 1424 49 2.362 0.074

MPDZ2-138 MPDZ2_18 3.011 0.057 0.2427 0.0029 0.08993 0.0019 0.031 0.0022 1410.4 14 1401 15 617 43 44 1424 41 2 1424 41 2.727 0.046

MPDZ2-053 MPDZ2_53 2.997 0.1 0.2434 0.0073 0.09001 0.0025 0.0646 0.0047 1406 26 1404 38 1264 92 90 1425 52 1 1425 52 1.417 0.074

MPDZ2-092 MPDZ2_32 3.103 0.12 0.2484 0.006 0.09 0.0022 0.0743 0.0033 1433 30 1430 31 1448 44 63 1425 48 0 1425 48 1.478 0.075

MPDZ2-076 MPDZ2_16 3.01 0.1 0.2435 0.0054 0.0901 0.0025 0.0632 0.0027 1410 26 1405 28 1238 33 51 1427 52 2 1427 52 1.9 0.072

MPDZ2-027 MPDZ2_27 3.075 0.081 0.2472 0.0058 0.09009 0.0024 0.077 0.0016 1426.2 20 1424 30 1499 20 29 1427 50 0 1427 50 2.704 0.048

MPDZ2-033 MPDZ2_33 3.035 0.096 0.2486 0.0055 0.0901 0.0025 0.0789 0.0022 1416 24 1431 28 1534 35 41 1427 53 0 1427 53 3.099 0.052

MPDZ2-132 MPDZ2_12 3.064 0.066 0.2453 0.0036 0.09014 0.0019 0.0707 0.0011 1423 17 1414 19 1381 20 21 1428 41 1 1428 41 1.865 0.036

MPDZ2-111 MPDZ2_51 3.007 0.094 0.246 0.0036 0.0903 0.0025 0.0753 0.0028 1409 24 1418 19 1468 28 53 1431 52 1 1431 52 4.47 0.078

MPDZ2-142 MPDZ2_22 3.025 0.075 0.2434 0.0035 0.0904 0.0022 0.0704 0.0014 1413 19 1404 18 1376 26 27 1432 45 2 1432 45 2.656 0.085

MPDZ2-012 MPDZ2_12 3.043 0.084 0.2438 0.0047 0.09038 0.0024 0.0744 0.0015 1418 21 1406 25 1450 20 28 1433 51 2 1433 51 0.953 0.021

MPDZ2-117 MPDZ2_57 3.041 0.093 0.2461 0.0041 0.09038 0.0023 0.06251 0.0022 1417.6 24 1418 22 1226 17 42 1433 49 1 1433 49 1.612 0.023

MPDZ2-046 MPDZ2_46 2.972 0.082 0.238 0.0054 0.0904 0.0025 0.0575 0.0014 1400 21 1376 28 1129 22 26 1434 49 4 1434 49 1.75 0.074

MPDZ2-115 MPDZ2_55 3.127 0.1 0.252 0.0047 0.09042 0.0022 0.07607 0.0025 1439 26 1449 24 1481.9 9.3 47 1434 46 -1 1434 46 3.839 0.074

MPDZ2-069 MPDZ2_9 3.004 0.097 0.2391 0.0052 0.0905 0.0025 0.0626 0.0028 1408 25 1382 27 1227 34 52 1435 51 4 1435 51 2.549 0.035

MPDZ2-004 MPDZ2_4 3.016 0.088 0.2432 0.0046 0.0902 0.0027 0.07342 0.0013 1411 22 1403 24 1432 15 24 1436 54 2 1436 54 0.846 0.056

MPDZ2-020 MPDZ2_20 3.15 0.1 0.2519 0.0065 0.09052 0.0025 0.0758 0.0016 1444 25 1448 34 1477 23 31 1436 52 -1 1436 52 1.2 0.06

MPDZ2-116 MPDZ2_56 3.107 0.11 0.2526 0.0065 0.0905 0.0024 0.077 0.0028 1434 27 1452 34 1500 23 52 1436 51 -1 1436 51 2.25 0.036

MPDZ2-010 MPDZ2_10 3.039 0.098 0.2438 0.0073 0.09058 0.0024 0.0754 0.0018 1417 24 1406 38 1470 28 34 1437 50 2 1437 50 1.798 0.064

MPDZ2-058 MPDZ2_58 3.149 0.09 0.2529 0.0048 0.0907 0.0027 0.073 0.0015 1444 22 1454 25 1423 21 28 1440 55 -1 1440 55 4.255 0.083

MPDZ2-130 MPDZ2_10 2.872 0.079 0.2274 0.0047 0.091 0.0022 0.0453 0.0026 1374 21 1321 25 896 51 51 1445 46 9 1445 46 -0.2803 0.0047

MPDZ2-068 MPDZ2_8 3.054 0.1 0.2435 0.0052 0.0911 0.0025 0.07241 0.0025 1421 25 1405 27 1413 15 48 1447 51 3 1447 51 0.954 0.023

MPDZ2-024 MPDZ2_24 3.056 0.087 0.2411 0.006 0.09137 0.0025 0.0764 0.0016 1421 21 1398 33 1487 21 29 1454 51 4 1454 51 7.33 0.15

MPDZ2-099 MPDZ2_39 3.98 0.15 0.2933 0.0068 0.099 0.0028 0.0868 0.0031 1629 31 1658 34 1682 27 58 1603 53 -3 1603 53 1.901 0.038

MPDZ2-044 MPDZ2_44 3.543 0.11 0.2587 0.0056 0.09993 0.0027 0.061 0.0015 1536 24 1483 28 1197 24 28 1622 50 9 1622 50 1.36 0.13

MPDZ2-049 MPDZ2_49 3.961 0.12 0.2911 0.0073 0.1 0.0029 0.0903 0.0021 1630 26 1647 37 1748 35 40 1624 52 -1 1624 52 2.53 0.037

MPDZ2-032 MPDZ2_32 3.795 0.11 0.2777 0.0056 0.10029 0.0027 0.0864 0.0017 1591 22 1580 28 1675 22 32 1633 54 3 1633 54 0.78 0.01

MPDZ2-124 MPDZ2_4 3.953 0.11 0.2847 0.0076 0.1007 0.0026 0.0844 0.0015 1624 24 1615 38 1638 28 29 1636 48 1 1636 48 2.31 0.38

MPDZ2-028 MPDZ2_28 3.744 0.12 0.2732 0.0075 0.1008 0.0032 0.078 0.002 1584 23 1557 38 1517 30 38 1638 57 5 1638 57 3.46 0.14

MPDZ2-078 MPDZ2_18 3.733 0.11 0.2697 0.0047 0.1011 0.0026 0.0772 0.0027 1578.2 25 1539 24 1503 19 51 1644 48 6 1644 48 3.662 0.067

MPDZ2-011 MPDZ2_11 3.922 0.13 0.284 0.0075 0.1009 0.0033 0.0847 0.0026 1622 28 1611 38 1644 42 48 1647 56 2 1647 56 1.362 0.066

MPDZ2-089 MPDZ2_29 3.47 0.14 0.2469 0.0087 0.1025 0.0031 0.0533 0.0029 1519 34 1422 45 1049 46 57 1667 54 15 1667 54 2.589 0.037

MPDZ2-135 MPDZ2_15 3.73 0.2 0.266 0.011 0.1024 0.0023 0.0763 0.005 1573 45 1521 55 1515 93 94 1668 42 9 1668 42 1.924 0.067

MPDZ2-018 MPDZ2_18 4.133 0.11 0.2898 0.0057 0.103 0.0028 0.0855 0.0021 1661 21 1641 29 1658 31 39 1679 51 2 1679 51 2.658 0.033

MPDZ2-064 MPDZ2_4 4.281 0.14 0.3004 0.0057 0.1029 0.0028 0.0878 0.0032 1689 28 1693 28 1700 25 60 1683 54 -1 1683 54 1.434 0.023

MPDZ2-101 MPDZ2_41 4.24 0.14 0.3004 0.0069 0.1034 0.0027 0.0891 0.0035 1681 27 1693 34 1725 39 65 1684 48 -1 1684 48 2.828 0.057

MPDZ2-145 MPDZ2_25 4.224 0.1 0.2938 0.0068 0.1036 0.0027 0.0863 0.0022 1678 20 1660 34 1672 41 42 1688 48 2 1688 48 2.45 0.031

MPDZ2-120 MPDZ2_60 4.133 0.15 0.2868 0.0072 0.1037 0.0027 0.0621 0.0066 1660 30 1625 36 1220 120 130 1690 49 4 1690 49 1.969 0.075

MPDZ2-070 MPDZ2_10 4.334 0.15 0.3007 0.0058 0.1037 0.0031 0.0865 0.0036 1699 29 1695 29 1676 41 67 1690 55 0 1690 55 3.169 0.057

MPDZ2-106 MPDZ2_46 4.26 0.17 0.3027 0.0078 0.1038 0.0029 0.0899 0.0032 1684 33 1714 39 1740 26 59 1692 51 -1 1692 51 0.921 0.013

MPDZ2-059 MPDZ2_59 4.411 0.13 0.3065 0.0075 0.1039 0.003 0.0854 0.0025 1714 24 1723 37 1657 40 46 1694 51 -2 1694 51 1.371 0.096

MPDZ2-013 MPDZ2_13 3.965 0.12 0.2767 0.0057 0.1036 0.0031 0.0609 0.003 1626 24 1575 29 1194 53 56 1695 60 7 1695 60 3.524 0.051

MPDZ2-002 MPDZ2_2 3.94 0.13 0.274 0.0065 0.1041 0.0029 0.0721 0.0019 1621 26 1561 33 1406 30 36 1698 52 8 1698 52 1.637 0.032  

MPDZ2-017 MPDZ2_17 4.403 0.13 0.3054 0.0073 0.1043 0.0032 0.0885 0.0022 1712 24 1718 36 1715 34 42 1700 55 -1 1700 55 1.059 0.093

MPDZ2-149 MPDZ2_29 3.348 0.065 0.2325 0.0032 0.1044 0.0024 0.0296 0.0011 1492.3 15 1347 17 590 22 22 1702 42 21 1702 42 1.796 0.046

MPDZ2-083 MPDZ2_23 4.285 0.14 0.301 0.0072 0.1044 0.0028 0.0903 0.0039 1690 26 1696 36 1747 47 71 1703 50 0 1703 50 1.037 0.029

MPDZ2-042 MPDZ2_42 4.116 0.13 0.2894 0.0059 0.1046 0.0034 0.0877 0.0047 1662 21 1639 30 1699 84 86 1705 58 4 1705 58 0.89 0.18

MPDZ2-040 MPDZ2_40 4.41 0.15 0.3095 0.0073 0.1047 0.0029 0.0939 0.0019 1718 26 1738 36 1814 26 35 1709 49 -2 1709 49 1.658 0.027

MPDZ2-057 MPDZ2_57 4.3 0.13 0.2994 0.0062 0.1048 0.0031 0.09007 0.0016 1693 25 1688 31 1743 18 29 1710 52 1 1710 52 1.501 0.017

MPDZ2-128 MPDZ2_8 3.958 0.08 0.2724 0.0031 0.10505 0.0023 0.0638 0.0014 1625 17 1553 16 1249 26 27 1715 40 9 1715 40 1.375 0.071

MPDZ2-060 MPDZ2_60 4.411 0.12 0.3051 0.0061 0.1052 0.0028 0.0893 0.0016 1714 22 1717 30 1729 21 30 1718 50 0 1718 50 1.315 0.067

MPDZ2-109 MPDZ2_49 4.387 0.13 0.3046 0.0048 0.10554 0.0027 0.0885 0.0033 1709.7 25 1714 24 1714 32 61 1723 46 1 1723 46 2.69 0.047

MPDZ2-001 MPDZ2_1 4.399 0.12 0.3028 0.0062 0.1058 0.0031 0.089 0.0023 1712 22 1705 31 1723 36 43 1728 53 1 1728 53 4.27 0.17

MPDZ2-056 MPDZ2_56 4.5 0.14 0.3092 0.0071 0.10605 0.0029 0.09062 0.0016 1730 26 1736 35 1753 18 29 1732 49 0 1732 49 0.886 0.042

MPDZ2-029 MPDZ2_29 4.44 0.13 0.3054 0.006 0.10611 0.0028 0.093 0.0017 1719 23 1718 30 1798 20 32 1733 48 1 1733 48 1.399 0.07

MPDZ2-150 MPDZ2_30 4.633 0.11 0.3136 0.0064 0.1063 0.0024 0.094 0.0019 1755 20 1758 31 1817 34 35 1736 41 -1 1736 41 1.994 0.05

MPDZ2-075 MPDZ2_15 4.029 0.13 0.2732 0.0052 0.10648 0.0027 0.0348 0.0019 1640 26 1557 27 692 29 37 1740 45 11 1740 45 1.252 0.03

MPDZ2-087 MPDZ2_27 4.489 0.15 0.3072 0.0064 0.1069 0.0028 0.0915 0.0034 1728 29 1727 32 1770 31 63 1747 47 1 1747 47 2.727 0.044

MPDZ2-021 MPDZ2_21 4.25 0.15 0.286 0.0095 0.1075 0.0029 0.0774 0.0028 1683 28 1621 48 1506 47 52 1757 49 8 1757 49 0.902 0.094

MPDZ2-146 MPDZ2_26 5 1.1 0.3 0.0099 0.1088 0.0073 0.112 0.034 1715 58 1691 48 2100 560 550 1760 110 4 1760 110 1.54 0.12

MPDZ2-090 MPDZ2_30 4.727 0.14 0.3218 0.0064 0.10831 0.0027 0.095 0.0034 1775 30 1798 31 1834 28 63 1771 45 -2 1771 45 7.39 0.31

MPDZ2-065 MPDZ2_5 4.43 0.19 0.2942 0.0089 0.109 0.0029 0.0723 0.0048 1715 36 1662 44 1411 78 91 1782 47 7 1782 47 2.96 0.11

MPDZ2-038 MPDZ2_38 4.751 0.14 0.3193 0.0075 0.1093 0.0031 0.0983 0.0024 1776 24 1786 37 1894 37 45 1787 51 0 1787 51 2.777 0.047

MPDZ2-144 MPDZ2_24 3.57 0.29 0.232 0.017 0.1095 0.0026 0.0197 0.0019 1532 66 1360 100 394 38 38 1790 43 24 1790 43 2.113 0.072

MPDZ2-125 MPDZ2_5 4.83 0.14 0.3163 0.0081 0.1097 0.0025 0.0939 0.0017 1794 24 1771 40 1814 30 31 1794 41 1 1794 41 1.2 0.11

MPDZ2-072 MPDZ2_12 5.103 0.17 0.3287 0.0067 0.1127 0.0031 0.0958 0.0036 1836 28 1832 33 1849 31 67 1842 50 1 1842 50 0.9005 0.0087

MPDZ2-037 MPDZ2_37 5.137 0.15 0.3301 0.007 0.1137 0.0031 0.0948 0.0031 1842 24 1845 31 1830 52 58 1858 49 1 1858 49 0.837 0.069

MPDZ2-091 MPDZ2_31 5.41 0.18 0.3425 0.0074 0.1145 0.003 0.0983 0.0036 1886 30 1898 36 1894 34 67 1871 47 -1 1871 47 0.832 0.014

MPDZ2-098 MPDZ2_38 4.57 0.24 0.288 0.013 0.1147 0.0029 0.0435 0.0051 1740 47 1628 67 860 98 99 1875 45 13 1875 45 0.951 0.013

MPDZ2-134 MPDZ2_14 9.8 0.28 0.4421 0.0093 0.161 0.0036 0.1078 0.0042 2420 28 2360 42 2069 75 76 2465 37 4 2465 37 2.114 0.024

MPDZ2-039 MPDZ2_39 10.83 0.28 0.4658 0.0097 0.1705 0.0047 0.1321 0.0026 2508 24 2465 43 2508 33 46 2568 39 4 2568 39 1.79 0.12

MPDZ2-104 MPDZ2_44 12.27 0.39 0.5048 0.01 0.1774 0.0049 0.1434 0.0051 2625 31 2634 44 2709 40 90 2628 46 0 2628 46 2.026 0.069

MPDZ2-054 MPDZ2_54 9.04 0.4 0.368 0.015 0.1786 0.0047 0.1144 0.0021 2339 40 2020 70 2189 28 39 2639 43 23 2639 43 2.159 0.05

MPDZ2-139 MPDZ2_19 13.23 0.35 0.5202 0.0097 0.1837 0.0041 0.1414 0.0016 2695 25 2699 41 2673 25 28 2690 39 0 2690 39 0.858 0.029

MPDZ2-055 MPDZ2_55 13.12 0.36 0.5186 0.012 0.1847 0.005 0.1495 0.0029 2688 25 2693 49 2816 38 51 2695 43 0 2695 43 3.434 0.07

MPDZ2-005 MPDZ2_5 13.55 0.4 0.515 0.012 0.191 0.0052 0.1367 0.0029 2722 29 2676 53 2590 38 51 2750 44 3 2750 44 2.787 0.06

MPDZ2-003 MPDZ2_3 12.64 0.34 0.4799 0.0091 0.1911 0.005 0.1334 0.0031 2652 25 2526 39 2530 40 51 2751 43 8 2751 43 2.959 0.049

MPDZ2-047 MPDZ2_47 17.01 0.46 0.5806 0.011 0.2127 0.0056 0.1635 0.0035 2935 25 2951 46 3060 50 61 2926 42 -1 2926 42 3.053 0.057

MPDZ2-041 MPDZ2_41 17.87 0.51 0.591 0.014 0.2207 0.0058 0.1612 0.0038 2987 24 3005 53 3020 54 66 2986 42 -1 2986 42 1.213 0.018
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APPENDIX B: CATHODOLUMINESCENCE IMAGES OF ANALYZED SAMPLES 

 

Image: CL image with spot numbers 1-60 and their final ages for OC_2.8_DZ1 

(Lower Ingleside) 
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Image: CL image with spot numbers 1-120 and their final ages for OC_56_DZ2 

(Upper Ingleside) 

 

 

 

Image: CL image with spot numbers 1-120 and their final ages for MP_DZ1 (Molas) 
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Image: CL image with spot numbers 1-120 and their final ages for MP_DZ2 

(Hermosa) 


