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Abstract

Heterogeneous computing (HC) environments com-
posed of interconnected machines with varied computa-
tional capabilities are well suited to meet the computa-
tional demands of large, diverse groups of tasks. The
problem of mapping (defined as matching and schedul-
ing) these tasks onto the machines of a distributed HC
environment has been shown, in general, to be NP-
complete. Therefore, the development of heuristic tech-
niques to find near-optimal solutions is required. In
the HC environment investigated, tasks had deadlines,
priorities, multiple versions, and may be composed of
communicating subtasks. The best static (off-line) tech-
niques from some previous studies were adapted and
applied to this mapping problem: a genetic algorithm
(GA), a GENITOR-style algorithm, and a greedy Min-
min technique. Simulation studies compared the per-
formance of these heuristics in several overloaded sce-
narios, i.e., not all tasks executed. The performance
measure used was a sum of weighted priorities of tasks
that completed before their deadline, adjusted based on
the version of the task used. It is shown that for the
cases studied here, the GENITOR technique found the
best results, but the faster Min-min approach also per-
formed very well.

1. Introduction

Mixed-machine heterogeneous computing (HC) en-
vironments utilize a distributed suite of different ma-
chines, interconnected with high-speed links, to per-
form different computationally intensive tasks with di-
verse computational requirements (e.g., [2, 20, 22]).
Such an environment coordinates the execution of tasks
on machines within the system to exploit different
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capabilities (e.g., clock speeds, instruction sets, and
memory sizes) and achieve increased performance. An
HC system could also be part of a larger computational
grid [14].

The act of assigning (matching) each task to a ma-
chine and ordering (scheduling) the execution of the
tasks on each machine is key to coordinating and ex-
ploiting an HC system to its fullest extent. This match-
ing and scheduling is known as mapping [8]. The
general mapping problem has been shown to be NP-
complete (e.g., [9, 16]).

In this study, tasks may be atomic or decompos-
able. Atomic tasks have no internal communications.
Decomposable tasks consist of two or more commu-
nicating subtasks. Subtasks have data dependencies,
but can be mapped to different machines. Tasks also
have deadlines, priorities, and multiple versions. These
additional task characteristics are common in military
environments (e.g., [1, 10, 29]); however, they also add
to the complexity of the HC mapping problem.

Three static (off-line) techniques were selected,
adapted, and applied to this mapping problem: a
greedy method (Min-min), an evolutionary method (a
standard genetic algorithm (GA)), and the GENITOR
approach [30]. The former two methods were also con-
sidered in a previous study and performed well [6]. This
simulation study makes the following contributions:

• A new HC paradigm was used. Tasks had dead-
lines, priorities, multiple versions, and may have
had subtasks. Multiple overloaded scenarios were
considered, i.e., not all tasks met their deadline.

• Several heuristics were developed, adapted, and
applied to this version of the mapping problem.

• Customized chromosome structures and opera-
tions were developed for the GA and GENITOR.

• The results show that GENITOR found the best
solutions, but Min-min performed very competi-
tively, and ran in less time.

Section 2 describes the details of the HC environ-
ment. The mapping heuristics are defined in Section
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3. In Section 4, the results from the simulation studies
are examined. Section 5 summarizes this research.

2. HC Environment

Static mapping is performed when tasks are mapped
in an off-line planning phase, e.g., planning the map-
ping for tomorrow in a production environment. Static
mapping is also used in “what-if” predictive stud-
ies, e.g., justifying a new machine purchase a priori.
The development of heuristic techniques to find near-
optimal mappings is an active area of research, e.g.,
[6, 7, 13, 19, 28, 29, 31].

The static mapping heuristics in this study were
evaluated using simulation experiments. It was as-
sumed that an estimate of the execution time for each
task on each machine was known a priori and contained
within an ETC (expected time to compute) matrix
[3, 4]. This is a common assumption when studying
mapping heuristics (e.g., [18, 23]); approaches for do-
ing this estimation are discussed in [20, 22].

Each task ti had one of four possible weighted
priorities, pi. Two different priority scenarios were in-
vestigated, high-weighted priorities, pi ∈ {1, 4, 16, 64},
and low-weighted priorities, pi ∈ {1, 2, 4, 8}. Each
value was equally likely to be assigned, where 64 or
8 represented the most important tasks.

This research assumed an oversubscribed system,
i.e., not all tasks could finish by their deadline. To
model this, let the arrival time for task ti be denoted
ai, and let the deadline for task ti be denoted di. To
simulate different levels of oversubscription, two differ-
ent arrival rates were used, based on a Poisson distri-
bution [17]. For high-arrival rates, the average arrival
rate was 0.150 tasks per (arbitrary) unit of time and
for moderate-arrival rates the average was 0.075.

Deadlines were assigned to each task as follows.
First, for task ti, the median execution time of the
task, medi, for all machines was found. Next, each
task ti was randomly assigned a deadline factor, δi,
where δi ∈ {1, 2, 3, 4} (each value was equally likely
to be assigned). Finally, the deadline for task ti, di,
was assigned as di = (δi×medi) + ai. All the subtasks
within a task had just one deadline and one arrival time
– those assigned to the task. A deadline achievement
function, Di, was also defined. Based on the mapping
used, Di = 1 if ti finished at or before di, otherwise
Di = 0.

In this work, each task had three versions. At most
one version of any task was executed, with version vk

always preferred over version vk+1, but also requiring
more execution time. Each version of a task (or sub-
task) had the same dependencies, priority, and dead-

line. The execution time for each task (or subtask) and
the user preference for that version (defined shortly)
were the only parameters that varied among different
versions.

The estimated execution time for task ti,
on machine mj , using version vk is denoted
ETC(i, j, k). Thus, based on the previous as-
sumption, ETC(i, j, 0) > ETC(i, j, 1) > ETC(i, j, 2).
The HC environment in the simulation study had
M = 8 machines and V = 3 versions. To generate
simulated execution times for version v0 of each task
in the ETC matrix, the coefficient-of-variation-based
(CVB) method from [3] was used with means of 1000,
and coefficients of variation of 0.6. Times for version
vk+1 of ti are randomly assigned values of 50% to
90% of ETC(i, j, k). These parameters were based on
previous research, experience in the field, and feedback
from colleagues.

Task versions of lower preference were considered
because, with their reduced execution times, they
might have been the only version possible to execute.
Let rik be the normalized user-defined preference for
version vk of task ti, and let U(w, x) be a uniform ran-
dom (floating point) number greater than w and less
than x. For the simulation studies: ri0 = 1 (most pre-
ferred), ri1 = ri0 × U(0, 1) (medially preferred), and
ri2 = ri1 × U(0, 1) (least preferred). All subtasks of a
task were required to use the same version.

The size and structure of the subtasks within a de-
composable task were generated randomly, with be-
tween two and five subtasks per task, each with a max-
imum fanout of two. Subtask data transfer times were
also generated using the CVB method [3], taking 5% to
12% of the average subtask execution time. The ma-
chines were assumed to be connected via a high-speed
network hub (one input and one output port); subtask
data transfers were scheduled and not multiplexed.

Atomic tasks and subtasks are called m-tasks (map-
pable tasks). The number of m-tasks to map in the
simulation study was T = 2000, divided randomly
into approximately 1000 atomic m-tasks and 1000 sub-
tasks. Thus, there were approximately 1000 atomic
tasks and 285 decomposable tasks. For evaluation pur-
poses, there were Teval ≈ 1285 tasks. More details
about the generation of the HC environment are in [7].

To rate the quality of the mappings produced by
the heuristics, a post-mapping evaluation function, E,
was used. Assume that if any version of task ti com-
pleted, it was version vk (k may differ for different
tasks). Then, let E be defined as

E =
Teval−1

∑

i=0

(Di × pi × rik). (1)
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Higher E values represent better mappings. Based on
the definitions of di and rik, the upper bound (UB) of
E is UB =

∑Teval−1
i=0 pi.

To determine Di above, the task’s completion time
had to be determined. An m-task could note begin
executing until after its arrival time (and after all input
data had been received, if necessary). Let the machine
availability, mav(i, j, k), be the earliest time (after m-
task ti’s arrival time) at which machine mj (1) was not
reserved, (2) could receive all subtask input data, and
(3) was available for a long enough interval to execute
version vk of ti. Then, the completion time of m-task
ti, version vk, on machine mj , denoted ct(i, j, k), is
ct(i, j, k) = mav(i, j, k) + ETC(i, j, k).

In addition to the upper bound, UB, a second,
tighter upper bound, TUB was also used. TUB is
based on the concept of value per unit time of task
ti, V Ti = max(0≤j<M, 0≤k<V ) (pi× rik)/ETC(i, j, k).
TUB sorted the tasks by V Ti, and then allocated time
for tasks with the highest V Ti first. By considering the
most valuable tasks first, an upper bound was achieved.
Let ε be the arrival time of the last arriving task, and
the end of the simulation interval. TUB did not assign
tasks to machines, but they were allocated time from
0 to E = M × ε, based on the execution time of the
machine and version in V Ti. If a task was allocated
time, then Di = 1 for E. To achieve this upper bound,
TUB was based on unrealistic assumptions, e.g., there
were no subtask communications and all di = E .

3. Mapping Heuristics

3.1. Greedy Mapping Heuristics

As an approximate lower bound, consider a greedy
FIFO technique, referred to as the Minimum Current
Fitness (MCF) technique. MCF considered m-tasks for
mapping in ascending order of arrival time; it mapped
m-tasks to the machine that could complete the best
(lowest) version possible by that task’s deadline. If no
machine/version combination could complete the m-
task before its deadline, the task was not mapped.

A two-phase greedy technique, Min-min, performed
well in many situations (e.g., [6, 16, 19, 31]). The Min-
min heuristic was adapted and applied to this mapping
problem. To describe Min-min, it is useful to define fi,
the task fitness for m-task ti, fi = −(Di × pi × rik),
where ti is executed using version vk. The task fitness
fi represents the negative of the contribution of each
task to E.

Let U be the set of all unmapped m-tasks. Let
UP ⊂ U consist of all unmapped subtasks whose pre-
decessors have been mapped and all unmapped atomic

tasks. The first phase of Min-min found the best ma-
chine (i.e., minimum fi) for each m-task in UP , and
then stored these m-task/machine pairs in the set CT .
The m-tasks within CT are referred to as candidate
tasks. If two machines gave the same best fi, the one
with the minimum completion time was used.

Phase two of Min-min selected the candidate task
with the minimum fi over all CT , and mapped this
m-task to its corresponding machine. If two candidate
tasks had the same minimum fi, the one with the min-
imum execution time was used. This task was then re-
moved from U . Phases one and two were repeated un-
til all m-tasks were mapped (or removed because they
could not meet their deadline). Several other variations
of the Min-min heuristic were also investigated [7].

3.2. Generational Genetic Algorithm

The steps of a general genetic algorithm (GA) are in
Figure 1. One iteration of the loop in Figure 1 is con-
sidered one generation, i.e., life-cycle. The approach
described in this subsection will be referred to as a
generational GA, as it may replace the entire popula-
tion at each generation [15]. This is in contrast to a
steady-state GA [25], where one member of the popu-
lation is replaced at a time, e.g., GENITOR, presented
in the next subsection.

initial population generation;

evaluation;

while (stopping criteria not met)

selection;

crossover;

mutation;

evaluation;

end while

output best solution;

Figure 1. General GA procedure, based on [24].

In GAs, a chromosome is used to represent a solu-
tion to the given problem (in this case, a mapping).
The chromosome structure implemented for this study
was composed of two data structures, the mapping
table and the version vector. Figure 2 shows an exam-
ple of this chromosome structure. The mapping table
stored matching, scheduling, and subtask dependency
information. In the version vector, if V [i] = k, then
version vk was used for task ti. The GA used a popu-
lation size, P , of 100 chromosomes.

The mapping table is a dynamic array structure;
each row could change in length as necessary. The num-
ber of rows was M . Each column, or index position,
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chromosome - mapping table
m-tasks

s32

t4
s50

s51

t6

t0
t1
t2

s30

s31

m0 t0
m1 t1

index

0 4

m2 t2

s30 s50

s31

s51

t4
s32

t6

321

machines

t3

t5 t0tasks t1 t2 t3 t4
version 0 0 2 1 0

t5 t6
0 1

chromosome - version vector
subtasks

Figure 2. Example chromosome structure for a
seven-task, three-machine mapping.

represented the order in which the m-tasks on each
machine were to be considered for scheduling (but not
necessarily the order in which they executed). Empty
positions were used to maintain subtask dependencies.

A task in row mj of the mapping table was matched
to machine mj . To obey data dependency constraints,
a subtask’s ancestors always have a lower index in the
same or different row, and a subtask’s descendents have
a higher index.

Scheduling information was indirectly represented
by the columns of the mapping table. The m-tasks
were considered for actual scheduling on the machines
(and network, if necessary) beginning from index 0,
machine m0, and then going top to bottom, left to
right. That is, for column i, m-tasks were considered
in order from m0 to mM−1, then m-tasks in column i+1
were considered, and so on. The m-task positions in the
actual schedule (computed whenever the chromosome
was evaluated) could differ from their positions in the
mapping table (e.g., because of different arrival times).

Initial population generation. The initial pop-
ulation was generated using one chromosome that was
the Min-min mapping and 99 random solutions (valid
mappings). The GA executed a minimum of four times,
and conditionally up to eight times, unless the same
overall best solution was found again. The overall best
mapping found was used as the final solution.

Evaluation. A chromosome’s fitness refers to the
quality of the solution, i.e., mapping, in the chromo-
some. A higher quality solution has a higher fitness
value. The fitness function used was E.

Selection. After evaluation, selection occurs.
Stochastic universal sampling (SUS) [5] was used for
the selection phase of the GA. Chromosomes in the
population were sorted (ranked) based on their fitness
value. If ci was the ith chromosome in the population,
then c0 was the most fit chromosome, and cP−1 was

the least fit (ties were broken arbitrarily).
Each chromosome was then allocated a sector of a

roulette wheel. The size of the sector is based on the
fitness, i.e., more fit chromosomes will have larger sec-
tors. Let Ai be the angle of the sector for chromosome
ci. Then A0 (the sector for the most fit chromosome)
has the largest angle, and AP−1 (the sector for the least
fit chromosome) has the smallest angle. Let R, the ra-
tio of two adjacent sector angles, be a constant (greater
than 1). Then R = Ai

Ai+1
with 0 ≤ i < P − 1. Given

R, the angles for each sector can be explicitly stated in
terms of the smallest sector Ai = R(P−1)−iAP−1 where
0 ≤ i < P − 1. The sum of all angles for the roulette
wheel, normalized to one, can then be computed as

P−1
∑

i=0

Ai = R(P−1)AP−1

P−1
∑

i=0

1
Ri = 1, (2)

with Ai = 1
Ri A0. The value used for R was R = 1 +

1/P . For P = 100, this approximately gives the ratio
of 1.5 between the best sector and median sector in the
roulette wheel, as was used in [27, 30].

SUS then generated P pointers around the circum-
ference of the roulette wheel, each 1/P apart. (Recall
the angles around the roulette wheel were normalized
to one, and P × (1/P ) = 1.) The chromosomes rep-
resented by the sectors on which pointers landed were
then included in the next generation. The first pointer
was generated from a random (floating point) number
between 0 and 1/P , inclusive, x ∈ U [0, 1/P ]. This
simulates a spin of the roulette wheel, where x was a
random distance around the circumference of the first
sector. Starting from x, the additional P − 1 pointers
were then placed, each 1/P apart.

Elitism, which guarantees that the the best solution
found by the GA always remains in the population,
was also employed [12]. Therefore, the quality of the
solutions found was monotonically non-decreasing.

Crossover. Crossover combines elements of two
parent chromosomes to generate a new offspring chro-
mosome. To reduce the execution time of the GA, but
not limit the range of possible offspring, a modification
called gyre crossover was implemented. It is a form
of single offspring crossover [21]. A brood of size B is
a group of chromosomes selected from the entire pop-
ulation at random that was used for breeding. Each
chromosome could be selected only once. Next, a ran-
dom segment in each chromosome was selected. Then,
in a gyral fashion, each member of the brood imposed
the selected portion of itself on its neighbor chromo-
some in the brood. The result was B new offspring
that replaced the parents in the population.

Let Pc be the probability of crossover for each chro-
mosome. Then, the initial step of each crossover pro-

0-7695-1573-8/02/$17.00 (C) 2002 IEEE



Figure 3. Example of scheduling crossover.

cedure was to process the entire population, and for
each chromosome generate a random (floating point)
number x ∈ U [0, 1]. If x ≤ Pc, that chromosome was
part of a brood. If x > Pc, that chromosome was not
in this particular crossover procedure. Each crossover
procedure, i.e., matching, scheduling, and versions, se-
lected chromosomes independently. Based on results
from [27] and initial testing, Pc = 0.5 was used. Brood
sizes of B = 10 were used.

The first crossover operation was matching
crossover. The procedure selected one machine queue
in one chromosome of the brood at random. Then, for
the m-tasks in that queue, the same m-tasks were found
in the partner chromosome. The m-tasks in the part-
ner chromosome were then moved so that they had the
same matching as the first chromosome. If there were
conflicts, a new (initially empty) column was inserted.

The next crossover procedure, scheduling crossover,
is illustrated in Figure 3. First, two adjacent parents
from the brood were selected to create an offspring
together. Then, a random cut for both parents was
selected, dividing both chromosomes into a head and
tail. Offspring 0 was initialized with a copy of parent 0.
Then, the tasks in the head of offspring 0 were deleted.
Tasks were extracted from the head of parent 1, and
while maintaining their scheduling, were placed into
the head of offspring 0 using the matching from parent
0. Extra tasks were replaced as appropriate (e.g., t6 in
Figure 3). Thus, the matching information of parent 0
was preserved, but the scheduling information from the
head of parent 1 was imposed. This procedure works
because a valid subtask ordering was maintained at
all times. This example represents one simple case of
scheduling crossover; other cases are discussed in [7].
These crossover procedures are similar to schemes in
[11, 26].

For version crossover, a gyre crossover of version
vectors was used. In each parent, two crossover points
were selected at random, and the middle segments were
imposed on neighbors in a gyral fashion.

Mutation. After all three crossover procedures
were completed, the mutation procedures were per-
formed. Let Pm be the probability of mutation for each
chromosome. Based on results from [27] and initial
testing, Pm = 0.5 was used. Then, similar to crossover,
the initial step of each mutation procedure was to pro-
cess the entire population (which had been changed by
the three types of crossover), and for each chromosome
generate a random (floating point) number x ∈ U [0, 1].
If x ≤ Pm, that chromosome was mutated. Each mu-
tation procedure, i.e., matching, scheduling, and ver-
sions, selected chromosomes independently.

The method used to perform a matching mutation
first selected a target m-task at random. Next, a new
machine to which the target m-task was matched was
selected at random. Finally, the contents of the two
designated mapping table positions (within the same
column) were exchanged.

The method used to perform a scheduling mutation
only affected the ordering of tasks on a single machine.
The first step selected a target m-task. Next, the valid
range for the target m-task was determined. The valid
range is the set of index positions to which the target
m-task can be moved and not violate any dependency
constraints [27]. Next, a new position from within the
valid range was selected at random, and the contents
of these two positions were exchanged. The procedures
defined for matching mutations and scheduling muta-
tions are similar to the order-based mutation reported
in [21, 26].

For a version mutation, a random task was selected.
Then a new, different value for that task’s version was
randomly generated.

Stopping Criteria. Four stopping criteria were
used for the generational GA. The GA was stopped as
soon as one of these conditions was met: (1) 1000 gen-
erations had been computed, (2) the elite chromosome
had not changed for 150 generations [27], (3) all chro-
mosomes had converged to the same mapping, or (4)
the elite chromosome represented the TUB solution.

3.3. GENITOR-Based Mapping Heuristic

GENITOR is a steady-state genetic search algo-
rithm that has been shown to work well for several
problem domains, including job shop scheduling and
parameter optimization (e.g., [28, 30]). A typical
GENITOR-style GA would be implemented as follows.
First, an initial population is generated and evaluated,
as it was with the generational GA. Next, the entire
population is sorted (ranked) by each chromosome’s
fitness value, and stored in this sorted order. Then, a
special function is used to select two chromosomes to
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act as parents. The two parents perform a crossover,
and a (single) new offspring is generated. This offspring
is then evaluated, and must immediately compete for
inclusion in the population. If the offspring has a higher
fitness than the poorest member of the population, the
offspring is inserted in sorted order in the population,
and the poorest chromosome is removed. Otherwise,
the offspring is discarded. This would continue until a
stopping condition is reached.

The special function for selecting parents is a bias
function, used to provide a specific selective pressure
[30]. For example, a bias of 1.5 implies that the top
ranked chromosome in the population is 1.5 times more
likely to be selected for a crossover than the median
chromosome. Elitism is implicitly implemented by al-
ways removing the poorest chromosome.

In this study, instead of individual pairs performing
crossover, broods of size B = 10 were used, to take
advantage of gyre crossover and remain consistent with
the generational GA. A linear bias of 1.5 was used to
select ten chromosomes for crossover. The same three
crossovers from the generational GA were used.

After each type of crossover, the offspring were con-
sidered for that same type of mutation. For example,
after a brood underwent a matching crossover, each
new offspring was considered for matching mutation.
A probability of mutation of Pm = 0.5 was used. After
(possibly) being mutated, the new offspring were eval-
uated and considered for insertion into the population.
The fitness of each chromosome was evaluated using E.

The stopping conditions for the GENITOR-style
GA were: (1) 100,000 total offspring, (2) 15,000 off-
spring with no change in the upper 50% of the popu-
lation, (3) the TUB was found, or (4) all chromosomes
converged to the same solution. Condition (1) was
based on a stopping condition from [30] and condition
(2) approximated the no change in elite condition from
the generational GA. Similar to the generational GA,
between four and eight runs for each ETC matrix were
performed. Although GENITOR is a steady-state GA,
the GENITOR-style GA implemented in this study was
not a true steady-state GA. The use of broods intro-
duced a generational component.

4. Results from Simulation Studies

Three different HC mapping test case scenarios were
examined: (1) high-priority weighting and high-arrival
rate, (2) high-priority weighting and moderate-arrival
rate, and (3) low-priority weighting and high-arrival
rate. Each result reported is the average of 50 different
trials, with T = 2000 m-tasks, M = 8 machines, and
V = 3 versions. The 95% confidence interval for each
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Figure 4. Comparison of heuristics for high-
priority weighting and low-priority weighting.

heuristic is shown at the top of each bar [17], GENI-
TOR is abbreviated as GEN.

The average execution time on a single trial for MCF
was 2 minutes, whereas Min-min took, on average, 23
minutes. The GA and GENITOR heuristics were de-
signed with similar stopping conditions; so both aver-
aged 12 hours per trial. Timings are from Pentium III
700 MHz processors with 512 MB RAM and 256 KB
L2-cache, running Linux RedHat version 6.2.

The left side of Figure 4 shows the results for
the high-priority weighting, high-arrival rate scenario.
MCF performed the poorest, achieving only 20% of the
performance of Min-min. Min-min performed well and
achieved 62% of TUB. GA was able to improve the ini-
tial Min-min seeded mappings by 2%, achieving 64%
of TUB. GENITOR did the best of all the mapping
heuristics, finding mappings that were 5% higher than
Min-min and achieving 67% of TUB.

The right side of Figure 4 shows the average per-
formance that MCF, Min-min, GA, and GENITOR
achieved for the low-priority weighting, high-arrival
rate scenario. In general, the results were similar to
the high-priority weighting, high-arrival rate scenario.

The right side of Figure 5 shows the results for the
high-priority weighting, moderate-arrival rate scenario.
The lower arrival rate presented an easier mapping
problem than the other scenarios. Thus, each heuristic
performed better at the slower arrival rate. For exam-
ple, on the right side of Figure 5, Min-min is 76% of
TUB, and GENITOR is 82% of TUB. Compare this
with 62% and 67%, respectively, for the high-priority
weighting, high-arrival rate case.

The stopping conditions encountered by each of the
GA and GENITOR did not vary much among the dif-
ferent scenarios. For the GENITOR experiments, the
most common stopping condition was reaching 100,000
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Figure 5. Comparison of heuristics for high and
moderate arrival rates.

total offspring, occurring for 99% of all runs (the other
1% was no change in the upper 50% of the popula-
tion). For GA, the most common stopping condition
was 150 generations with no change in elite, occurring
for 85% of all runs. The other 15% of these GA runs
encountered the stopping condition of 1000 total gen-
erations. GA and GENITOR used an average of 6.9
and 7.2 initial populations, respectively.

In the previous experiments, a mapping that can
achieve the UB or TUB was impossible to create. Thus,
another set of experiments is introduced, based on a
non-overloaded, contrived set of data, where the opti-
mal solution was known, and the heuristics’ best solu-
tions could be compared to optimal solutions.

For this contrived class of mapping problems, the
optimal mapping had the following properties. Each
task was able to execute its most preferred version.
Each task was able to meet its deadline. All subtasks
in a task had the same best machine (so there were no
inter-machine communications). This achievable opti-
mal solution represents a perfect packing of tasks to
machines in the HC environment. The arrival rate of
tasks was much slower, to allow for the perfect pack-
ing solution. This set of experiments used the average
of 25 ETC matrices with high priorities, 512 m-tasks,
and 8 machines.

For these experiments, Min-min performed very
well. On average, Min-min achieved 94.5% of the opti-
mal solution. GA came slightly closer (94.6%), and
GENITOR came the closest, 95.0% of the optimal.
While not a mathematical proof, this would indicate
that the heuristics may have performed similarly in the
overloaded experiments because they came close to the
(unknown) optimal solution.

Other experiments conducted during this research
investigated the use of intron and exon chromosome

regions, weighted evaluation functions, stochastic ver-
sions of MCF and Min-min, and other arrival rates and
priority weights. More details are in [7].

5. Summary

This paper presented a new paradigm for an HC en-
vironment, where tasks had deadlines, priorities, mul-
tiple versions, and subtasks. Two upper bounds, two
greedy heuristics, and two kinds of genetic algorithms
were implemented and compared.

It was shown that the Min-min approach performed
very well, achieving 59% to 76% of the performance
of TUB. The generational GA approach, seeded with
Min-min, improved these mappings by only 2% to 3%,
achieving 61% to 78% of TUB’s value. The GENITOR
approach, also seeded with Min-min, found the best
mappings with an improvement of 6% to 8% over Min-
min, achieving 67% to 82% of TUB’s performance.

The heuristics were then examined against achiev-
able optimal solutions. Min-min, GENITOR, and GA
were all within 5.5% of known optimal solutions in
these cases.

This study presented one implementation and ap-
plication of GAs for the HC mapping problem (many
others are possible). In situations where a high quality
assignment of machines to tasks is critical, their use is
justified. However, the faster Min-min heuristic also
provided very good results.
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