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ABSTRACT 

 

LITTER REDUCTION BY PRESCRIBED BURNING  

CAN EXTEND DOWNY BROME CONTROL 

 

Downy brome (Bromus tectorum L.) is a highly successful invasive species primarily 

because it fills an open niche in native plant communities.  It also produces large amounts of 

litter over time.  We hypothesized that removing accumulated litter with a prescribed burn before 

applying herbicides would improve herbicide efficacy, extending the duration of control.  In 

January 2012, two downy brome infested sites were burned.  In March 2012, post-emergent 

applications of glyphosate, imazapic, and tebuthiuron were made in a split-plot design.  

Aboveground biomass was collected at 6, 18 and 27 months after treatment (MAT) to evaluate 

treatment effects.  In non-burned areas, all herbicide treatments were similar to the control 27 

MAT; however, burning combined with imazapic or tebuthiuron reduced downy brome biomass 

27 MAT by 81% ± 4.6 SE and 84% ± 19.3 SE, respectively.  Remnant species responded 

positively to burning and herbicide treatments.  Native cool season grass biomass increased after 

burning while native warm season grass biomass increased following tebuthiuron treatments.  

The impact of litter on imazapic and tebuthiuron availability was also evaluated.  Herbicide 

interception increased in a linear relationship with increasing litter.  For every 50 g·m
-2 

increase 

in litter there was a 7% increase in the amount of herbicide intercepted, meaning that 75% of the 

applied herbicide was intercepted by 360 g·m
-2

 of litter.  A simulated rainfall event of 5 mm, 7 

days after application, removed a significant amount of herbicide.  This indicates that at sites 

with surface litter, timely precipitation could be critical for herbicide efficacy; however, when 

burning was used to remove litter and was followed by herbicides with residual soil activity, 
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downy brome control was extended.  Due to downy brome’s relatively short seed viability in the 

soil, extending herbicide efficacy to several years could help to reduce the soil seed bank.   
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INTRODUCTION 

The invasive winter-annual grass, downy brome (Bromus tectorum L.), infests over 22 

million ha in the western United States (Duncan et al. 2004). Rapid range expansion has been 

possible, in part, because there is no native winter-annual grass competitor, allowing downy 

brome to fill a unique, unoccupied niche (Mack 1981; Knapp 1996).  This competitive advantage 

has had devastating ecological impacts; degrading the composition, structure and function of 

rangelands (Devine 1993; Duncan et al. 2004).  Impacts include decreased native plant 

abundance, decreased forage quality, altered nutrient cycling; and increased wildfire frequency, 

and severity (Young et al. 1976; Morrow and Stahlman 1984; D'Antonio and Vitousek 1992; 

Knapp 1996; Young and Allen 1997). 

 Downy brome’s ability to alter wildfire cycles is often cited as a reason it has been able 

to successfully outcompete native perennial grasses and forbs in many arid plant communities 

(Young et al. 1976; Melgoza et al. 1990; Young and Allen 1997).  Seed germination begins in 

the late summer and individuals complete their life cycle by producing seed and senescing before 

many native species break winter dormancy (Young et al. 1969; D'Antonio and Vitousek 1992).  

For the remainder of the growing season, standing, senesced tissue serves as a fine fuel source.  

When wildfires are ignited in dense infestations, the extent and severity of these fires supersedes 

that of historic fires, thus, negatively impacting the native plant community (Brooks 2002; Link 

et al. 2006).  Studies have shown that downy brome recovers to pre-fire levels within two 

seasons after fire, outcompeting desirable species (Young et al. 1976; Melgoza et al. 1990).   

Conversely, fire has been used as a method to control winter annual grasses and stimulate 

the native plant community.  Research shows that a fall or winter-timed burn, conducted when 

most desirable species are dormant, can provide short-term downy brome control by killing 
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seedlings before they produce seed (Brooks 2002; DiTomaso et al. 2006).  Decreased seedling 

survival has been attributed to decreased water availability and increased soil temperature 

fluctuations observed after surface litter is removed (Evans and Young 1970; Adair et al. 2008).  

In addition, burning can stimulate native grasses by removing years of accumulated surface litter 

(Knapp and Seastedt 1986; DiTomaso et al. 2006). Due to downy brome’s ability to recover 

quickly after fires, prescribed burning is not recommended unless it is part of an integrated 

management plan where subsequent techniques are employed (Daubenmire 1968; Keeley and 

McGinnis 2007).   

Perhaps the most common and effective subsequent management technique is the use of 

herbicides.  Glyphosate, imazapic, and tebuthiuron have all shown efficacy in controlling downy 

brome, but the length of control that they provide is variable (Morrow et al. 1977; Beck et al. 

1995; Whitson and Koch 1998; Blumenthal et al. 2006; Davison and Smith 2007; Morris et al. 

2009; Elseroad and Rudd 2011; Mangold et al. 2013).  Long-term control by glyphosate is 

unlikely due to a lack of residual soil activity; however, it’s been reported to reduce downy 

brome during the season of application (Morrow et al. 1977; Beck et al. 1995; Whitson and Koch 

1998).  Due to foliar and residual soil activity, imazapic and tebuthiuron can control downy 

brome for at least two seasons.  Imazapic has provided variable control, ranging from one to 

three seasons, and to our knowledge, only one study has reported control of downy brome by 

tebuthiuron (Davison and Smith 2007; Kyser et al. 2007; Duncan et al. 2009; Morris et al. 2009; 

Elseroad and Rudd 2011).   

When designing a management plan, control is not the only objective.  Ensuring 

management methods do not injure the remnant plant community will aid restoration success and 

prevent downy brome re-invasion (Blumenthal et al. 2006; Elseroad and Rudd 2011).   
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Herbicides can have negative impacts on desirable perennial grasses and forbs if rate and timing 

are not appropriate.  For example, glyphosate can injure remnant plants; however, after a fall-

timed application of 200 g·ha
-1

, minimal injury occurred to western wheatgrass (Pascopyrum 

smithii [Rydb.] À. Löve) and blue grama (Bouteloua gracilis [Willd. Ex Kunth] Lag. Ex 

Griffiths) (Lym and Kirby 1991).  Previous studies have reported western wheatgrass and 

various needlegrass (Nassella spp.) injury after post-emergent (POST) imazapic applications; 

however, native forb tolerance is high (Beran et al. 1999; Shinn and Thill 2004; Kyser et al. 

2007).  Many native forbs are susceptible to tebuthiuron, but previous studies focusing on 

Artemisia L. spp. reduction reported the perennial grass community responded positively and 

both blue grama and western wheatgrass were highly tolerant (Whitson et al. 1988; Blumenthal 

et al. 2006).   

The overall goal of a sequential management plan is to restore ecosystem composition, 

structure and function.  Minimizing injury to the remnant plant community while providing 

adequate control duration can place the plant community on a trajectory towards recovery 

(Masters et al. 1996).  Maximizing the duration of control is especially important when targeting 

downy brome as seed viability is short and under favorable conditions, nearly 100% of seed can 

germinate during one season (Harper et al. 1965; Young et al. 1969; Burnside et al. 1996).  

Strategies that take advantage of this weakness and decrease downy brome seed in the soil seed 

bank by providing control for three or more seasons should be pursued.   

 Recent publications have reported increased duration of downy brome and annual grass 

control when integrating prescribed burning and herbicides (Kyser et al. 2007; Sheley et al. 

2007; Davies and Sheley 2011; Calo et al. 2012).  Following burning with herbicides can 

increase control duration; however, it is unclear exactly why this occurs.  Studies have reported 
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that removing surface litter mechanically or through burning decreases seedling survival (Evans 

and Young 1970; Adair et al. 2008), but other studies have postulated that reducing surface litter 

increases herbicide efficacy by decreasing the amount of herbicide bound to litter (Washburn et 

al. 1999; DiTomaso et al. 2006).  Despite much speculation, no quantitative studies have been 

conducted examining how surface litter interacts with herbicides used to control downy brome.  

We evaluated the effectiveness of integrating burning with glyphosate, imazapic, and tebuthiuron 

for downy brome management and the recovery of the remnant plant community in foothills 

grasslands infested with downy brome.  In addition, we conducted laboratory experiments to 

quantify herbicide interception by litter and the subsequent impact of rainfall on herbicide 

desorption.   
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MATERIALS AND METHODS 

Integrating Prescribed Burning with Herbicides 

Site Description.  The field study was conducted at two sites near Loveland, Colorado 

from January, 2012 to June, 2014.  Both the North and South study sites were located in an 889 

ha Larimer County Property, Devil’s Backbone Open Space (lat 40°28’24”N, long 

105°11’15”W) in foothills grasslands on the western edge of the short-grass steppe.  Elevation 

was approximately 1 700 m and both studies were on southwestern facing slopes.  At the 

beginning of the experiment, downy brome dominated the sites.  A remnant plant community 

composed primarily of western wheatgrass and blue grama still persisted.  The soil was classified 

as a Haplustoll, with cobbly to stony colluvium (USDA-NRCS 2014).  The depth to paralithic 

bedrock is estimated to be between 25 and 100 cm and the soils are well drained with low water 

storage availability (USDA-NRCS 2014).  Composite soil samples were collected from the top 

20 cm of soil at each location and air dried for 24 h before sending subsamples to a private lab 

for analysis (Ward Laboratories, Inc., Kearney, NE).  Soils analysis indicated that the North site 

had slightly higher organic matter (OM) compared to the South site, 3.5% ± 0.1 and 2.9% ± 0.3 

(mean ± SE), respectively.  The pH at both sites was 6.2 ± 0.1 and the cation-exchange capacity 

(CEC, meq·100 g
-1

) was 11.6 ± 0.4.  The soils were classified as loam, with 46% ± 0.7 sand, 

36% ± 0.8 silt and 18% ± 0.4 clay.   

Precipitation data were obtained from a weather station operated by Northern Colorado 

Water Conservancy District.  Average yearly precipitation between 2001 and 2011 was 360 mm 

(NCWCD 2014).  In 2012, a severe drought reduced annual precipitation to 172 mm, half of the 

11-yr average (NCWCD 2014).  Annual precipitation in 2013 was 428 mm due to a significant 

rainfall event resulting in 183 mm of rainfall in September (Fig. 1) (NCWCD 2014).   
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Experimental Design and Measurements.  The experiment was a split-plot design with 

burning as the main plot factor and herbicide treatments as the subplot factor.  At each site, a 

prescribed burn was conducted in January 2012 when downy brome was at the seedling growth 

stage.  In March 2012, six herbicide treatments were applied when downy brome was at the two- 

to three-leaf growth stage (early post-emergent or EPOST).  The herbicides included in this 

study were imazapic (Plateau), tebuthiuron + aminopyralid (Spike 80 DF + Milestone), and 

glyphosate (Rodeo). Herbicide treatment combinations and rates can be found in Table 1.  

Aminopyralid was included in the tebuthiuron treatments as an experimental tank mix.  Due to 

lack of downy brome control by aminopyralid in previous field studies and for the sake of 

brevity, this treatment will be referred to as tebuthiuron (Rinella et al. 2010).  Imazapic 

treatments included 1.3% v·v
-1

 methylated seed oil, while glyphosate and tebuthiuron treatments 

included 0.25% v·v
-1

 non-ionic surfactant.  All treatments were applied to 3 X 9 m plots using a 

CO2 pressurized backpack sprayer with a 3 m spray boom and 6 flat fan 11002VS nozzles 

(TeeJet Tech, Wheaton, IL).  The backpack sprayer was pressurized to 206 kPa and calibrated to 

apply 187 L·ha
-1

. 

 To evaluate treatment effects, biomass was collected 6, 18 and 27 months after treatment 

(MAT).  Biomass was collected by harvesting two randomly placed, 0.5 m
2
 quadrats, on the right 

side of each plot, 6 MAT.  All aboveground biomass was clipped and sorted into the following 

categories: downy brome, western wheatgrass, blue grama, sand dropseed (Sporobolus 

cryptandrus [Torr.] A. Gray), needle and thread (Hesperostipa comata [Trin. & Rupr.] 

Barkworth), green needlegrass (Nassella viridula [Trin.] Barkworth) and native forbs.  In 

addition, surface litter in each quadrat was collected.  The same procedure was repeated 18 

MAT, collecting biomass on the left side of each plot and 27 MAT, downy brome biomass was 
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collected by placing the quadrats in the middle of each plot.  All biomass samples were bagged 

and dried in a 60 C oven for 72 h before obtaining dry weights.   

Herbicide Sorption to Litter  

 Litter Collection.  Litter was collected adjacent to the North study area, outside of the 

prescribed burn area in September, 2012.  Dead vegetation was raked from the soil surface and 

placed in large plastic containers.  These containers were then stored at room temperature (16 C 

to 24 C) and allowed to dry for several months before use.  Litter composition could not be 

identified due to stem decomposition; however, litter was collected from the same plant 

community type in which the field experiment was conducted.  Prior to use in experiments, the 

litter was sieved to remove soil and only shoot segments between 20 and 200 mm in length were 

included. 

Interception.  In all laboratory experiments, 45 X 205 X 205 mm metal pans were used 

to capture herbicide and rainfall.  To quantify herbicide interception by litter, 250 ml of methanol 

were poured into the metal pans and a 5 mm wire mesh screen was placed on top of the pan.  

Litter amounts of 120, 240, and 360 g·m
-2

 were spread evenly on top of the screen (Fig. 2).  To 

determine the total quantity of herbicide applied, a metal pan with an empty screen was included 

as a control.  Imazapic and tebuthiuron were applied at the same rates used in the field study 

(Table 1) with an overhead track spray chamber (DeVries Manufacturing Corp, Hollandale, MN) 

equipped with a single flat fan 8002E nozzle, calibrated to apply 187 L·ha
-1

 at 172 kPa (TeeJet 

Tech).  After herbicide application, a 10 mL aliquot was collected from the herbicide/methanol 

mixture from the bottom of each metal pan and stored at -20 C for analysis.  There were four 

replicates per treatment and the entire experiment was repeated. 
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Desorption.  The largest amount of litter, 360 g·m
-2

, was spread evenly on top of a 

screen and placed over a metal pan containing 250 ml of methanol.  Imazapic and tebuthiuron 

were applied following the same procedure previously described.  After herbicide application, 

the treated litter and screen were removed from the pan and maintained at 10 C with 125 W 

fluorescent light exposure for 11 h·d
-1

.  After a 7 d period, the treated litter (still on the screens) 

was placed over clean pans and we simulated rainfall by applying water using the same overhead 

track spray chamber.  Rainfall amounts of 5 and 15 mm were applied using an 8004E nozzle 

traveling at 1.2 km·h
-1

.  After rainfall, the total water volume captured in the metal pan was 

measured and a 10 mL aliquot of the herbicide/water mixture was collected and stored at -20 C 

for analysis.  Herbicide still sorbed to litter was desorbed by cutting litter into 3 cm segments, 

placing segments in a 950 ml glass jar containing 300 mL of methanol and agitating with a table 

shaker for 8 h.  After agitation, the litter and methanol were poured over a 90 mm filter placed in 

a Buchner funnel and drawn through the filter by a vacuum aspirator.  The litter and filter were 

rinsed with an additional 200 mL of methanol and total methanol volume was recorded to 

account for any evaporation.  Herbicide/methanol samples were stored at -20 C until they were 

analyzed using high-performance liquid chromatography (HPLC).   

HPLC Analysis.   

Interception.  The herbicide interception samples were prepared by evaporating 2 mL of 

the herbicide/methanol sample to dryness, reconstituting in 1 mL of 10% acetonitrile and 0.5% 

phosphoric acid in HPLC grade water (mobile phase 1) and vortexing for 10 s.  Final sample 

preparation is described below. 

Desorption.  The herbicide/water samples collected from the rainfall portion of the 

experiment were prepared by transferring 0.5 mL to a 0.45 µm nylon filter inserted into a 2 mL 
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centrifuge tube.  Tubes were centrifuged at 18 800 X g for 5 min (Sorvel Legend Micro 21, 

Thermo Fisher Scientific, Waltham, MA).  The filtrate was transferred to a 1.5 mL HPLC vial 

and was analyzed by HPLC (Hitachi L-7100, Schaumburg, IL). 

To prepare herbicide/methanol samples from the litter extraction, we filtered 10 mL of 

the methanol extract through a 0.45 µm Teflon filter inserted into a 50 mL centrifuge tube and 

centrifuged at 25 000 X g for 20 m (Sorvall Legend XT Centrifuge, Thermo Fisher Scientific).  

After centrifuging, samples were evaporated to dryness in a Rapid Vap set to 45 C (Labconco, 

Kansas City, MO).  Samples were reconstituted in 1 mL of mobile phase 1, and vortexed for 10 

s.  Final sample preparation followed the method previously described. 

HPLC Analysis.  The herbicide concentration in each prepared sample was determined by 

HPLC coupled with UV detection (Hitachi L-7100).  Herbicides were separated on a Zorbax RX 

C8 4.6 mm X 250 mm column (Agilent Technologies, Santa Clara, CA) by transitioning the 

mobile phase from 10% acetonitrile to 60% acetonitrile over a 20 m period.  The injection 

volume was 500 µL and the UV detector was set at 250 nm.  Imazapic and tebuthiuron were 

detected at retention times of 8.98 and 10.92 min, respectively.  Herbicide concentration was 

determined by comparison to a standard curve ranging between 0.05 and 10 µg·mL
-1

. 

Statistical Analysis 

 Integrating Prescribed Burning with Herbicides.  To determine differences 

between treatments, repeated measures analysis of variance (ANOVA) using the PROC MIXED 

method in SAS 9.3 was used (SAS Institute 2010).  To meet the normality and homoscedasticity 

assumptions of ANOVA, we transformed dry biomass data for each species using either a log (x’ 

= log [x + 1]) or square root transformation ([x’ = x + 0.5]
0.5

).  Downy brome was analyzed 

separately from other species.  All other species were combined into appropriate functional 
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groups (native cool season perennial grasses, native warm season perennial grasses, and native 

forbs).  Factors included in the model were site, burning, herbicide treatment, year and all 

possible interactions.  The random factor was site by burning within block and year was defined 

as the repeated measure.  Interactions and main effects with p-values ≤ 0.05 were considered 

significant.  Significant interactions were further analyzed by Fisher’s Protected LSD tests.  

Means and SE presented in figures are the original, non-transformed data. 

 Imazapic and Tebuthiuron Sorption to Litter.  Interception data were analyzed using 

linear regression in PROC REG and ANOVA was used to analyze sorption data in PROC GLM 

(SAS Institute 2010).  When analyzing interception data, herbicide and litter amount were 

factors.  Herbicide and rainfall amount were factors when analyzing sorption data.  To ensure 

laboratory methods resulted in a high herbicide recovery rates, a mass balance was conducted 

and any experiment with greater than 10% herbicide loss was disregarded. After failing to reject 

the null hypothesis of a Levene’s test that experimental variances are equal, replicated 

experiments were combined.   
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RESULTS 

Integrating Prescribed Burning with Herbicides   

Downy Brome Response.  Three-way interactions of location, burning, and year (P < 

0.0001); location, herbicide treatment, and year (P = 0.0341); and burning, herbicide treatment, 

and year (P = 0.0160) were significant.  The burning, herbicide treatment and year interaction 

specifically refers to our study objectives, and thus is the focus of this section.  Due to the 

burning, herbicide treatment, and year interaction, downy brome biomass for each herbicide 

treatment is displayed according to the three harvest dates; 6, 18, and 27 MAT (Fig 3).  Unless 

specifically stated, mean comparisons refer back to the non-burned control in the same harvest 

date.   

Compared to control plots, all herbicide treatments significantly decreased downy brome 

biomass 6 MAT, regardless of the main plot factor (burned vs non-burned) (Fig. 3).  The 

tebuthiuron alone treatment was the only herbicide treatment for which downy brome biomass in 

the burned plots was lower than the non-burned plots.  With this one exception, there was no 

significant advantage, in terms of herbicide efficacy 6 MAT, from removing surface litter with a 

prescribed burn.  All other herbicide treatments decreased downy brome biomass by at least 92% 

± 1.0. 

By the second harvest (18 MAT), there was a difference in downy brome biomass 

between the burned and non-burned controls, indicating that burning alone could decrease 

downy brome biomass, at least in the short term (Fig. 3).  At this harvest date, glyphosate 

treatments were similar to the control when comparing within burned and non-burned main plots.  

Imazapic and tebuthiuron have residual soil activity, so these treatments were still highly 

effective when compared to the non-burned, control.  Downy brome biomass was lowest in 
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burned areas compared to non-burned areas for the control and all herbicide treatments except 

for tebuthiuron, 18 MAT.  In burned plots, imazapic and tebuthiuron reduced downy brome 

biomass by 96 to 99% ± 4.1; however, the same herbicide treatments were less effective in non-

burned plots, reducing downy brome biomass by only 59 to 85% ± 11.5, 18 MAT. 

The widespread effect of burning that we observed 18 MAT was no longer evident 27 

MAT.  Downy brome biomass was similar in the controls and the glyphosate only plots for 

burned and non-burned treatments, 27 MAT (Fig 3).  In the non-burned areas, all herbicide 

treatments had the same downy brome biomass as the controls, indicating that in this study, 

herbicides alone could be expected to provide only two season of acceptable downy brome 

control.  In the burned main plots, all herbicide treatments, except for glyphosate and tebuthiuron 

+ glyphosate were still providing a reduction in downy brome biomass.  Imazapic and 

tebuthiuron treatments decreased downy brome biomass by 81% ± 4.6 and 84% ± 19.3, 

respectively, in the burned main plots, 27 MAT.  At the end of the three-season evaluation 

period, imazapic and tebuthiuron combined with burning resulted in the greatest reduction in 

downy brome biomass.   

Perennial Grass Response.  The plant community at this location is dominated by native 

cool and warm season perennial grasses.  The cool season grasses were western wheatgrass, 

green needlegrass and needle and thread, with western wheatgrass accounting for over 98% of 

the total desirable cool season grass biomass.  There were two native warm season bunch 

grasses, blue grama and sand dropseed.  Blue grama was the dominant species of this functional 

group, representing 81% of the total warm season grass biomass.   

These two functional groups responded differently to the prescribed burn conducted in 

January of 2012.  Averaged across other factors, burning did not influence warm season grass 
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biomass (P = 0.8743).  Site by year (P = 0.0088) and burning by herbicide treatment (P = 0.0250; 

Fig. 4) interactions affected cool season grass biomass, but no other interactions were significant.  

Cool season grass biomass was lowest in the control subplot of the non-burned main plot and 

there was no difference among herbicide treatments in the burned main plot.   

In contrast, herbicide treatments appeared to cause a shift in warm season grass biomass 

at each site as indicated by a significant herbicide treatment by site interaction (P = 0.0009).  

Warm season grass biomass was slightly greater at the South site compared to the North. At the 

South site, tebuthiuron was the only herbicide treatment with greater warm season grass biomass 

than the control (89 g·m
-2

+ 13.1, vs 65 g·m
-2

 + 11.9, P = 0.0208). At the North site, there was 

more warm season grass biomass in the glyphosate (45.3 g·m
-2

 + 6.4, P = 0.0108), imazapic + 

glyphosate (54 g·m
-2

 + 7.5, P = 0.0009), tebuthiuron (58.1 g·m
-2

 + 7.6, P = 0.0001) and 

tebuthiuron + glyphosate (47 g·m
-2

 + 7.2, P = 0.0088) treatments compared to the control (27 

g·m
-2

 + 5.3).  There were no other significant interactions, including herbicide by burning (P = 

0.1496), indicating that there was no warm season grass biomass reduction when integrating 

these two strategies. 

Native Forb Response.  Native forbs were highly variable so no individual species data 

were collected; however, the dominant species were tarragon (Artemisia dracunculus L.), prairie 

sagewort (Artemisia frigida Willd.), scarlet globemallow (Sphaeralcea coccinea [Nutt.] Rydb.), 

and Cuman ragweed (Ambrosia psilostachya DC.).  Forb biomass was affected by both burning 

and herbicide treatment, as indicated by the interaction of these two factors (P = 0.0031; Fig. 5).  

No other interactions were significant.  All herbicide treatments containing imazapic increased 

forb biomass when burned, and tebuthiuron reduced forb biomass in burned and unburned 

treatments, with the lowest forb biomass occurring in the burned main plots in treatments 
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containing tebuthiuron.  In addition, forb biomass varied by year (P = 0.0014).  Biomass was 

greatest during the second evaluation period, where rainfall was above the 11-year average (Fig. 

1).   

Litter.  Monitoring the quantity of litter during the course of this research was important 

to understand the impact of the prescribed burn on litter and to determine the quantity of litter 

that was present for herbicide interception.  We did not determine the amount of litter 

immediately following the prescribed burn, but six months after the herbicide applications the 

amount of litter in the burned study area was 30 g·m
-2

 ± 5, while in the non-burned study area, 

litter amount was 10-fold greater (300 g·m
-2

 ± 14).  Over the next 12 months (18 MAT), the 

difference between litter amount in the burned and non-burned study area was much smaller.  

The amount of litter in the burned main plot had increased to 47 g·m
-2

 ± 3, while in the non-

burned main plot litter had decreased to 194 g·m
-2

 ± 8.  This decrease in litter was most likely 

due to differences in precipitation.  In 2012, precipitation was half of the 11-year average, 

decreasing total biomass production (Fig. 1).  The drop in litter biomass observed in 2013 is most 

likely due to a lack of vegetative productivity during 2012.   

Herbicide Sorption to Litter  

Interception.  Herbicide interception was similar for imazapic and tebuthiuron 

(P=0.7373).  There was a positive correlation between litter amount and herbicide interception 

for both herbicides (R
2 

= 0.8805, P < 0.0001) (Fig. 6).  At the lowest litter amount, 120 g·m
-2

, 

42.5% ± 1.6 of the herbicide was intercepted by the litter, while at the highest litter amount, 360 

g·m
-2

, 74.6% ± 1.8 of the herbicide was intercepted (Fig. 6).  The highest litter amount was close 

to the amount of litter collected in the field in the non-burned main plot in 2012.  Theoretically, 

our results indicate that only 25% of herbicide is immediately available after herbicide 
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application due to interception and as surface litter increases by 50 g·m
-2

, herbicide interception 

increases by 7%.   

Desorption.  Our results indicate that a significant amount of the herbicide intercepted by 

litter can be removed with a single rainfall event, even 7 days after the initial application.  More 

imazapic desorbed from the litter than tebuthiuron following each rainfall event (P = 0.0001) and 

more herbicide was removed with the larger rainfall amount (P = 0.002).  The interaction 

between herbicide and rainfall amount was not significant (P = 0.7814).  On average, rainfall 

removed 69.5% ± 2.6 and 59.5% ± 2.6 of the intercepted imazapic and tebuthiuron, respectively.  

The herbicide was not tightly bound to the litter and 57.5% ± 2.6 of the intercepted herbicide can 

be removed with as little as 5 mm of rainfall.  However, when the rainfall amount was tripled (15 

mm), only 14.1% ± 2.6 more herbicide was desorbed.  The methanol extractions we conducted to 

establish a mass balance for herbicide recovery suggested that somewhere between 15 and 25% 

of the herbicide is difficult to remove from litter and will be essentially non-available.   
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 DISCUSSION  

Integrating Prescribed Burning with Herbicides 

We found that burning alone decreased downy brome biomass for two seasons (Fig. 3); 

although, the effect of burning was not apparent until the second season due to a severe drought 

that occurred during the first growing season (Fig. 1). Sheley et al. (2007) also noted a decrease 

in winter annual grass biomass when comparing burned and non-burned plots, but due to the 

difficultly of replicating prescribed burns, no statistical analysis was conducted.  There appear to 

be both short-term and long-term impacts associated with burning to decrease litter accumulation 

in downy brome infested sites.  In the short-term, removing litter with a prescribed burn appears 

to favor the native plant community and makes it more difficult for downy brome to germinate 

and establish (Evans and Young 1970; Adair et al. 2008).  On the other hand, numerous studies 

have determined that downy brome infested sites have increased fire frequency that negatively 

impacts the native community and tends to increase the downy brome density (Melgoza et al. 

1990; D'Antonio and Vitousek 1992; DiTomaso et al. 2006).  So a prescribed burn represents the 

first phase of an integrated program using the sequential application of different techniques for 

downy brome control.   

In this study, our sequential techniques were a prescribed burn followed by herbicides.  

Imazapic and tebuthiuron have both foliar and residual soil activity causing decreased downy 

brome biomass for two seasons whether these herbicides were applied alone or used in 

combination with burning.  The importance of soil activity is exemplified by our results using 

glyphosate alone.  Glyphosate is highly effective in controlling downy brome when applied to 

the foliage, but it has no soil activity (Morrow et al. 1977; Beck et al. 1995; Whitson and Koch 

1998; Senseman 2007).  Therefore, downy brome control with glyphosate was only detectable 
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during the first season (Fig. 3) and by 18 MAT downy brome biomass in plots treated with 

glyphosate alone was similar to the control.   

We hypothesized that by using these sequential treatments we could extend downy brome 

control beyond using herbicides alone. Our results suggest herbicides with residual soil activity 

provided no more than two seasons of control when they were not part of an integrated 

management plan and this duration of control is similar to previous reports (Morris et al. 2009; 

Kyser et al. 2013).   

Overall, downy brome biomass was lowest in plots where burning was integrated with 

imazapic and tebuthiuron treatments at the final harvest date (27 MAT), supporting our general 

hypothesis.  Several other studies have reported longer downy brome control when integrating 

burning and herbicides (Kyser et al. 2007; Calo et al. 2012).  In addition, increased herbicide 

efficacy following prescribed burning has also been observed in several studies where 

medusahead (Taeniatherum caput-medusae[L.] Nevski) was the target species (Kyser et al. 

2007; Sheley et al. 2007; Davies and Sheley 2011). 

Burning and herbicide treatments had only minor effects on the remnant plant 

community.  Cool season grass biomass increased in response to burning, while warm season 

grass biomass increased after tebuthiuron treatment (Figs. 4).  While no treatments decreased 

perennial grass biomass in our study, other studies have reported injury to perennial grasses 

following imazapic applications, especially as rate increased (Shinn and Thill 2004; Monaco et 

al. 2005).  In our study, native forb biomass increased when imazapic was applied following a 

burn, but decreased in the tebuthiuron treatments, especially when combined with burning (Fig 

5).  Our results contradict a study evaluating forb response after imazapic application in 

sagebrush dominated sites, where a decrease in forb cover was reported (Davies and Sheley 
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2011).  Several other studies have reported that numerous forbs are tolerant to imazapic (Beran et 

al. 1999; Kyser et al. 2007; Kyser et al. 2013).   

We did confirm that many forbs are susceptible to tebuthiuron.  This was expected since 

most tebuthiuron research has been focused on forb control, especially Artemisa spp. (Whitson et 

al. 1988; Blumenthal et al. 2006).  During the time span of this study, we found no evidence that 

integrating burning and herbicides decreased desirable native perennial grass biomass more than 

either method alone.  Actually, none of the herbicide treatments we studied prevented the 

increase in cool season native perennial grass biomass in response to fire.  Similar studies have 

reported that perennial grasses responded favorably to burning followed by imazapic (Sheley et 

al. 2007; Davies and Sheley 2011).  As a result, land-managers should consider their remnant 

plant community when designing an integrated management plan to minimize injury to the 

native plant community and increase the probability of successful long-term restoration 

(Blumenthal et al. 2006).   

Herbicide Sorption to Litter  

After herbicide desorption by simulated rainfall, 20% of imazapic and 27% of 

tebuthiuron were still sorbed to the litter, suggesting that in the absence of litter, more herbicide 

would reach the soil, extending downy brome control.  Numerous studies have reported longer-

term annual grass control after litter removal compared to paired sites where litter is still present 

(Monaco et al. 2005; Kyser et al. 2007; Sheley et al. 2007; Davies and Sheley 2011; Calo et al. 

2012).  Due to the confounding effects of prescribed burning, such as decreases in soil moisture 

and increased soil temperature fluctuations, these studies only imply that herbicide sorption to 

litter may be decreasing duration of control (Evans and Young 1970).  The results of our sorption 

experiments demonstrate that litter intercepted the vast majority of imazapic and tebuthiuron and 
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that even after a sizeable precipitation event, a significant amount of herbicide remained sorbed 

to the litter.  The amount of litter that we used to measure herbicide interception was similar to 

what we measured at our field sites; however, it does not represent the maximum litter amount 

that has been measured in an annual grass infestation.  There are reports of litter that has 

accumulated up to 885 g m
-2 

(Ogle et al. 2003).  Interception could approach 100% in these 

situations and without a timely rainfall event, downy brome could germinate and establish with 

no herbicide impacts.  The variability in downy brome control provided by imazapic could be the 

result of herbicide interception combined with the lack of timely precipitation (Mangold et al. 

2013).   

Timing and amount of precipitation have been cited as primary reasons restoration efforts 

succeed or fail (Hardegree et al. 2012).  From 2012 to 2014, precipitation varied greatly, 

affecting downy brome and litter biomass (Fig. 1 and 3).  Downy brome biomass was low in 

2012, doubled in 2013, and more than tripled by 2014 (Fig. 3).  In 2012, litter amount was high 

in the non-burned study area, but less than 66% of litter remained in 2013 due to lack of 

precipitation the previous season. Fluctuations in litter and downy brome biomass due to 

precipitation have been reported previously and serve as reminder why generalizing about 

treatment impacts is so difficult (Uresk et al. 1979; Morris et al. 2009; Bansal et al. 2014).  In 

September 2013, the Front Range of Colorado experienced some extreme weather that NOAA 

classified as a 1,000-year rainfall event.  Our field sites received more precipitation during the 

month of September than the total precipitation received for all of 2012 (Fig. 1).  This above 

normal precipitation resulted in a massive downy brome recruitment event and a significant 

increase in downy brome biomass in 2014.  Herbicide treatments not combined with burning 
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were no longer effective; however, herbicide treatments combined with burning were still 

providing a significant reduction in downy brome biomass.   

Integrating burning with herbicides can provide longer and more consistent downy brome 

control; however, there is still much debate around which herbicide rates and timings are most 

efficacious (Kyser et al. 2007; Morris et al. 2009).  Mangold et al. (2013) speculated that abiotic 

factors such a precipitation were responsible for much of the variability in the success of 

imazapic treatments.  The results of our sorption and desorption experiments suggest a plausible 

explanation for why timely rainfall appears to be such a driving factor for success.   

The goal of increasing the duration of control is based on the concept that due to downy 

brome’s short seed viability, providing multiple seasons of control could drive down the soil 

seed bank, increasing long-term management success (Harper et al. 1965; Young et al. 1969; 

Burnside et al. 1996).  There may be unintended consequences associated with the combination 

of burning and herbicides.  Removing litter would make more of the herbicide immediately 

available in the soil solution; therefore, it is possible that desirable remnant or seeded species 

could be injured.  Other studies have reported injury to desirable species as herbicide rate 

increases (Kyser et al. 2007; Morris et al. 2009); however, in our study, native forbs and native 

cool season perennial grasses responded favorably to imazapic while native warm season 

perennial grasses were unaffected (Fig. 4 and 5).  Imazapic and tebuthiuron treatments increased 

cool season perennial grass biomass and tebuthiuron increased warm season perennial grass 

biomass but reduced forb biomass (Fig. 4 and 5).  Nonetheless, caution should be taken when 

determining herbicide application rate, especially at low litter sites.  It is likely that land 

managers will need to determine herbicide and application rate based on individual site 

characteristics and management objectives.   
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MANAGEMENT IMPLICATIONS 

When designing a restoration plan, land managers should consider their current plant 

community and subsequent land management objectives.  In this study, glyphosate was only 

effective in the season following application, while imazapic and tebuthiuron controlled downy 

brome for two seasons in the non-burned study area and for at least three seasons in the burned 

study area.  Using prescribed burning and herbicides in combination, as part of an integrated 

management plan, can cause functional group dynamics to change.  Imazapic may shift the plant 

community by increasing native forb biomass, while tebuthiuron may shift the plant community 

to a grassland favoring warm season grasses with little forb diversity.  Burning while desirable 

species are dormant may improve conditions for native grasses and reduce or eliminate 

conditions that favor downy brome.  Our laboratory studies indicated that herbicides are 

intercepted by surface litter, but a significant amount of herbicide can be desorbed by a single 

precipitation event.  Ultimately, herbicide interception by litter combined with the lack of a 

timely precipitation event may reduce the success of herbicide treatments if not integrated into a 

sequential management plan. 
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Table 1.1: Herbicide treatments, rates, formulations and sources. 

Treatment 

Rate 

(g·ha
-1

) Trade name 

Imazapic 105 ai Plateau
1 

Imazapic + glyphosate 105 ai + 280 ae Plateau
1
 + Rodeo

2 

Tebuthiuron + aminopyralid 420 ai + 91 ae Spike 80 DF
2
 + Milestone

2 

Tebuthiuron + aminopyralid + 

glyphosate 

420 ai + 91 ae + 280 ae Spike 80 DF
2
 + Milestone

2
 + 

Rodeo
2 

Glyphosate 280 ae Rodeo
2 

Control — — 
1
BASF Corp, Research Triangle Park, NC. 

2
Dow Agro Sciences LLC, Indianapolis, IN. 
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Figure 1.1: Monthly precipitation for Loveland, CO during the field experiment is depicted by 

shaded bars.  These values are compared to the 11-year mean, depicted by the line (2001 - 2011).  

* In March, 2012 there was 0 mm precipitation. 
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Figure 1.2:  Three litter amounts were placed on top of a wire mesh screen and placed over a 

metal pan to examine herbicide interception by surface litter (120, 240, and 360 g·m
-2

 from left 

to right).  Surface litter was collected from a downy brome infestation with a remnant native 

plant understory in Devil’s Backbone Open Space, located in Larimer County, CO.   
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Figure 1.3:  Downy brome biomass collected 6, 18 and 27 months after herbicide treatments 

were applied.  Letters indicate differences among herbicide treatments within a burning 

treatment and within the data collection time point (P < 0.05).  Herbicide treatment abbreviations 

and rates are as follows: Gly (glyphosate 208 g·ae·ha
-1

), Ima (imazapic 105 g·ai·ha
-1

), Ima + Gly 

(imazapic 105 g·ai·ha
-1

 + glyphosate 208 g·ae·ha
-1

), Teb (tebuthiuron 420 g·ai·ha
-1

), Teb + Gly 

(tebuthiuron 420 g·ai·ha
-1

 + glyphosate 208 g·ae·ha
-1

).  (Mean [n = 8]) 
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Figure 1.4:  Native perennial cool season grass biomass averaged over the 6 and 18 month after 

herbicide treatment data collection time points.  Different letters indicate differences among 

means (P < 0.05).  Herbicide treatment abbreviations and rates are as follows: Gly (glyphosate 

208 g·ae·ha
-1

), Ima (imazapic 105 g·ai·ha
-1

), Ima + Gly (imazapic 105 g·ai·ha
-1

 + glyphosate 208 

g·ae·ha
-1

), Teb (tebuthiuron 420 g·ai·ha
-1

), Teb + Gly (tebuthiuron 420 g·ai·ha
-1

 + glyphosate 

208 g·ae·ha
-1

).  (Mean [n = 8]) 
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Figure 1.5:  Native forb biomass averaged over the 6 and 18 month after herbicide treatment 

data collection time points.  Different letters indicate differences among means (P < 0.05).  

Herbicide treatment abbreviations and rates are as follows: Gly (glyphosate 208 g·ae·ha
-1

), Ima 

(imazapic 105 g·ai·ha
-1

), Ima + Gly (imazapic 105 g·ai·ha
-1

 + glyphosate 208 g·ae·ha
-1

), Teb 

(tebuthiuron 420 g·ai·ha
-1

), Teb + Gly (tebuthiuron 420 g·ai·ha
-1

 + glyphosate 208 g·ae·ha
-1

).  

(Mean [n = 8]) 
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Figure 1.6:  Data points represent the amount of imazapic and tebuthiuron that was intercepted 

by surface litter, as a percentage of total herbicide applied, at three litter amounts (120, 240, and 

360 g·m
-2

).  The line shows the positive linear relationship between litter amount and the 

percentage of herbicide intercepted by surface litter.  The highest litter amount is similar to the 

amount of surface litter reported within a dense downy brome infestation (Uresk et al. 1979). 

(Means ± SE [n = 16]) 
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Appendix 1: Imazapic and Tebuthiuron Pre-emergent Dose Response Experiment
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The Plateau® label states that downy brome (Bromus tectorum L.) is controlled when 4 

to 6 oz product per acre or 70 to 105 g·ai·ha
-1

 are applied pre-emergent (PRE)(Anonymous 

2011); however, a study evaluating the results of several field studies throughout Montana 

reported PRE as the least efficacious timing (Mangold et al. 2013).  This discrepancy prompted 

us to conduct a PRE dose response greenhouse experiment.  We included tebuthiuron as a 

treatment because, to our knowledge, no studies evaluating tebuthiuron to control downy brome 

PRE have been published.   

Downy brome seed was collected from a rangeland research property owned by Colorado 

State University (CSU) (lat 40°42’36”N, long 105°6’36”W) in July, 2013.  Soil was collected in 

June of 2014 from a CSU agricultural property (Agricultural Research Development & 

Education Center, lat 40°38’60”N, long 105°0’0”W) and passed through a 2.8 mm sieve.  Two 

composite samples were collected from the top 20 cm of soil and air dried for 24 h before 

sending subsamples to a private lab for general analysis (Ward Laboratories, Inc).  Nine seeds 

were planted per pot (8.5 X 8.5 X 7 cm) and covered with 1 cm of sieved soil.  Herbicide was 

applied to pots after planting using an overhead track spray chamber (DeVries Manufacturing 

Corp) with a single flat fan 8002E nozzle (TeeJet, Tech), calibrated to apply 187 L·ha
-1

 at 172 

kPa (TeeJet, Tech).  Imazapic was applied at 0, 2, 3, 7, 14, 26, 53, 105, and 210 g·ai·ha
-1

, while 

tebuthiuron was applied at 0, 13, 26, 53, 105, 210, 420, 841, and 1680 g·ai·ha
-1

. Herbicide was 

incorporated by applying 10 mm rainfall using an 8004E nozzle (TeeJet Tech) traveling at 1.2 

km·h
-1 

(TeeJet Tech).  Treated pots were transferred to a growth chamber and watered twice 

daily.  The growth chamber was set at 20 C with a 12 h photoperiod supplied by photosynthetic 

photon flux (PPF) of 400 µmol·m
-2

·s
-1

 (Cenviron E-15, Pembina, ND).  Twenty-eight DAT all 

plants within each pot were counted and shoot biomass was collected.  The fresh tissue was 
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weighed and then dried in a 60 C oven for 24 h to determine dry weights.  The experiment was a 

completely randomized design, each pot was a separate treatment and each treatment was 

replicated three times.  The entire experiment was repeated.   

Data were analyzed using an ANOVA model and nonlinear regression model in PROC 

GLM and PROC NLIN (SAS Institute 2010).  An ANOVA was conducted to ensure that 

herbicide dose was a predictor of dry biomass before conducting a logistic analysis with dose as 

a predictor of the relative dry biomass as percentage of control (Seefeldt et al. 1995).  Regression 

models were used to determine the dose at which 50% growth reduction (GR50) occurs.  The 

model was constructed using equation one. 

        (    )                             [1] 

Soil analysis indicated that the pH was 7.6, OM was 2.4%, and CEC (meq 100 g
-1

) was 

36.7.  The soil was classified as clay, with 32% sand, 25% silt and 43% clay.  The GR50 for 

imazapic was 3 g·ai·ha
-1

 or 3% of the dose applied in the field study.  Based on the dose 

response curve, we are 95% confident that this dose will cause a growth reduction in total 

biomass between 45 to 58% following a PRE application (Fig. 2.1).  Tebuthiuron does not 

appear to be as biologically active as imazapic.  The GR50 for tebuthiuron was calculated at 57 

g·ai·ha
-1

 with a 95% CI ranging from 42 to 61% (Fig. 2.1).  At the highest herbicide dose for 

tebuthiuron a 100% reduction in biomass occurred; however, for imazapic, 4% of biomass was 

remaining 28 DAT, even at the highest dose of herbicide.  The GR50 for imazapic and 

tebuthiuron were most accurately predicted by equation two and three, respectively.   

             (    )              [2] 

             (    )              [3] 
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These GR50 values are much lower than recommended field rates.  Although we are 

confident that the tested biotype can be successfully controlled with PRE applications of both 

herbicides, other studies have reported PRE as the least efficacious timing (Mangold et al. 2013).  

Before determining management implications based on our greenhouse dose response 

experiment, we believe differences between biotypes should be examined.   
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Figure A1.1:  Response of downy brome dry weight to various imazapic (A) and tebuthiuron (B) 

doses, 28 days after treatment.  Treatments were applied pre-emergent and conducted in the 

greenhouse.  Means are expressed as a percentage of the control mean. All curves were 

calculated using the logistic equation:        (    )   .  GR50 values were calculated to 

be 3 g·ai·ha
-1

 for imazapic (A) and 57 g·ai·ha
-1

 for tebuthiuron (B).  The horizontal line 

represents the GR50. (Mean ± SE [n = 6]).   
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Appendix 2: Imazapic and Tebuthiuron Litter Interception Experiment 
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Our conclusions from Chapter 1 suggest that herbicide is intercepted on surface litter, and 

remains sorbed until a precipitation event occurs; however, due to persistent drought, land 

managers may not have the opportunity to apply herbicides before a timely precipitation event.  

We conducted a greenhouse study to determine the impact of interception on herbicide efficacy 

when a precipitation event does not rinse the herbicide from the litter after a pre-emergent (PRE) 

application.  We hypothesized that as litter amount and herbicide interception increased, 

herbicide efficacy would decrease. 

Downy brome seed source and soil collection followed the protocols outlined in 

Appendix 1.  (For soil analysis results, see Appendix 1).  Pots (26 X 26 X 6 cm) were filled with 

field soil that had been mixed with 10 g of 19 – 6 - 12 osmocote fertilizer (The Scott’s Company, 

Marysville, OH) before sowing 6 rows of 5 seeds each.  Seeds were then covered with 

approximately 1 cm of field soil.  Before herbicide application, litter was spread evenly over the 

soil surface.  For litter collection and preparation methods please refer to Chapter 1, “Herbicide 

Sorption to Litter.”  Five litter amounts (55, 122, 256, 390, 524 g·m
-2

) were included in this 

experiment.  Litter amounts were hypothesized to intercept approximately 20, 40, 60, 80 and 

100% of the applied herbicide as determined using the equation displayed in Chapter 1, Figure 6.  

To confirm the actual percentage of herbicide intercepted by these litter amounts, we followed 

the “Herbicide Sorption to Litter: Interception” and “Herbicide Sorption to Litter: High-

performance Liquid Chromatography Analysis” protocols from Chapter 1.  After litter 

placement, herbicides were applied using an overhead track spray chamber (DeVries 

Manufacturing Corp) with a single flat fan 8002E nozzle (TeeJet Tech), calibrated to apply 187 

L·ha
-1

 at 172 kPa.  Application rates were 105 g·ai·ha
-1

 and 210 g·ai·ha
-1

 for imazapic and 

tebuthiuron, respectively.  Ten minutes after herbicide application, litter was removed from the 
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soil surface.  After litter removal, pots received 5 mm of simulated rainfall, using the same spray 

chamber with an 8004E nozzle traveling at 1.2 km·h
-1 

(TeeJet Tech) to incorporate herbicide not 

intercepted by litter and stimulate seed germination.  Pots were then transferred to the 

greenhouse and sub-irrigated as needed to maintain plant growth.  The greenhouse had a 12 h 

day length, maintained by overhead, 400-watt, sodium halide lamps and temperature varied 

between 24 and 18 C throughout the experiment.  Plants remained in the greenhouse for 28 d 

before shoot biomass was collected.  Biomass samples were dried at 60 C for 72 h before dry 

weight was determined.  Interception data and biomass data were analyzed using PROC REG 

and PROC NLIN, respectively (SAS Institute 2010).   

Confirming the results of our previous interception experiment (Chapter 1, Fig. 6), the 

percentage of herbicide intercepted by litter had a positive, linear relationship to litter amount 

(R
2
 = 0.8830) (Fig. 3.1).  Additionally, we found no difference between the interception of 

imazapic or tebuthiuron (p = 0.7322).  At the highest litter amount, 525 g·m
-2

, only 88% of 

herbicide was intercepted by the litter.  Based on the linear regression equation determined by 

the previous interception experiment, we had expected this litter amount to intercept 

approximately 100% of the herbicide.  We believe that this inconsistency is due to a flaw in our 

experimental design.  The manner in which we placed litter over both the pots and metal pan 

allowed a small amount of herbicide to enter around the edges of each sprayed metal pan.   

Downy brome susceptibility to imazapic and tebuthiuron was most accurately predicted 

by equation one and two, respectively (Fig 3.1).  

                 (             )         [2]  

                  (             )       [3] 
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Based on the interception experiment, 12% of the herbicide was not intercepted by litter 

at the highest amount and applied directly to the soil surface.  This amount was higher than the 

GR50 for imazapic and close to the GR50 for tebuthiuron, as determined in Appendix 1.  During 

data collection it was apparent that downy brome seedling in high litter treatments were showing 

symptoms of herbicide injury and that herbicide efficacy was only marginally affected by litter 

amount.  The population of downy brome used in these experiments appears to be highly 

susceptible to low doses of imazapic and tebuthiuron, when applied PRE.  Determining whether 

these herbicides are more readily absorbed by shoots or roots may help determine whether a PRE 

or POST application timing is most efficacious.  In addition, it is possible that downy brome 

biotypes may have varying susceptibility to both of these herbicides.  Future studies evaluating 

individual biotype sensitivity to these herbicides could be beneficial to determine if different 

biotypes have various sensitivities to these herbicides. 
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Figure A2.1:  The left axis shows the response of downy brome dry weight to imazapic and 

tebuthiuron when application occurred over various litter amounts, 28 days after treatment.  

Treatments were applied pre-emergent and litter was removed after application.  The right axis 

shows the amount of imazapic and tebuthiuron that was intercepted by surface litter, as a 

percentage of total applied herbicide.  Litter amounts for both axes included 55, 122, 256, 390 

and 524 g·m
-2

.  The line shows the positive linear relationship between litter amount and 

percentage of herbicide intercept.  Means are expressed as a percentage of the control mean. 

Imazapic and tebuthiuron curves were calculated using the exponential equation:    

  (             ) and the linear equation representing herbicide interception was calculated using 

the equation:     (             )   (Mean ± SE [n = 4]).   
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