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ABSTRACT OF DISSERTATION

LAGRANGIAN MIXING AND TRANSPORT IN HURRICANES

This study examines the role of transport and mixing in the dynamics of tropical cyclones

from a mathematical viewpoint and their implications for intensity. While this topic has

seen extensive study, much of it has lacked the mathematical rigor allowed by a new class of

Lagrangian techniques, which allow the study of particle transport through time-dependent

flows. Lagrangian coherent structures (LCS’s) are time-dependent boundaries which parti-

tion the flow into distinct regions, controlling the systematic transport of material between

regions. In this study, the mathematics of Lagrangian transport is developed, and adapted

to several tropical cyclone models. Three models are utilized to study mixing; the ax-

isymmetric model of Rotunno and Emanuel (1987), the nondivergent barotropic 2D model

of Schubert et al. (1999), and the 3D Penn State-NCAR mesoscale model (MM5). For

the study of mixing on the axisymmetric model, a new class of mixing rates is proposed

which vary in initial time and integration time, and it is shown that mixing events precede

changes in intensity. For the nondivergent barotropic model, orthogonal flow separation re-

veals coherent structures that are persistant through strong shear, and mixing is quantified

through the shear during mesovortex interaction. The extension of the orthogonal sepa-

ration methods to 3D provides a method for decomposing Lagrangian hyperbolicity from

shear. The method is applied to the MM5 model to find the Lagrangian eye-eyewall inter-

face (LEEI), which is responsible for dictating transport between the two regions. A new

ridge extraction algorithm is used to extract the 2D manifolds of the 3D Lagrangian fields.

By extending and automating this algorithm across varying initial time, a time-dependent

and spatially smooth representation of the LEEI in terms of Fourier descriptors and radial

basis functions is computed. The dynamics of the time-dependent LEEI indicate that the

higher wavenumber asymmetries vanish, but the lower wavenumber asymmetries remain,

quantifying the degree of axisymmetry in the storm from a transport perspective. The last

study applies the new 3D techniques to an intensifying storm by studying the interaction

iii



of vortical hot towers (VHT’s). VHT’s are shown to not only be coherent structures, but

to be associated with hyperbolic LCS’s which play an important role in their interaction

and in the formation of an eyewall. The length of the LCS’s indicate that the VHT’s have

impact on a broad range that affects environmental flow into the primary vortex.

Blake Rutherford
Department of Mathematics

Colorado State University
Fort Collins, Colorado 80523

Spring 2010
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Chapter 1

Introduction

The study of the tropical cyclone (TC) dynamics is a topic that is very important to

society, since the destruction caused by these storms has a huge cost and impacts many

people. TC’s have tremendous impact on global shipping, and on the lives of residents

of coastal communities, where damage from high winds and storm surges have enormous

economic and social consequences. The related areas of storm tracking, intensification, and

storm formation all share the benefits from additional knowledge of the storms, and more

directed future research may help each of these areas.

There have been many studies in atmospheric science about hurricanes, which have led

to a greater understanding of them. Many of the studies have focused on tracking and

prediction, while other studies have focused on the structure, physics, and thermodynamics

of the heat engine that drives the storms. The area of intensification has also seen exten-

sive work from researchers, but a lack of plane flights and data measurements has limited

knowledge of this process. While these are generally considered separate areas of hurricane

research, advances in understanding storm structure lead to better prediction of intensity

and tracking.

1.1 Cyclogenesis

The study of cyclogenesis, or the transition from a tropical depression to a tropical cyclone,

is important for many reasons. Understanding a storm in its early stages and determining

whether it will intensify allows cost savings and efficiency in other research by providing the

locations for field data measurements, which are limited in availability. More and earlier

data would certainly be of use for storm tracking and prediction.

1
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A key theory in the study of cyclogenesis was recently proposed by [DMW09] and termed

marsupial theory. This study basically asserts that tropical storms are more likely to tran-

sition into hurricanes if the warm core of the storm is protected from outside environmental

influences, enabling an upscale organization within a warm core to occur. Flow dividing

streamlines are proposed as the mechanism that prohibits the interaction of the core with

outside air masses, which deprive the storm of energy and moisture. The concept of a

dividing streamline provides a connection between the fields of meteorology and dynamical

systems, where invariant manifolds have seen extensive study. While the study offers a sim-

ple explanation for the neccessary conditions for tropical cyclogenesis, marsupial theory is

unproven due to the fact that the structures observed in the developing storms are seen from

an Eulerian view, which lacks the ability to make inferences about the very complex time-

dependent flows that characterize hurricanes. The structures that dictate the transport of

material through the time-dependent flow of a hurricane can be validated by Lagrangian

methods, and may help to validate marsupial theory.

1.2 Models

Since storm data is difficult to obtain, the use of models is very common in meteorology.

Models have several advantages over real data, including smaller data sets, the ability to

control parameters, and a reduction in the dimension of the data.

Interest in the dynamics of hurricanes has motivated the use of dimensionally reduced

models, which limit the complexity of the flow geometry, and perhaps as important, the size

of the data sets. There are many 2-dimensional models that are used in both research and

prediction. Notably, the axisymmetric model of [RE87] produces an axisymmetric vortex

and provides wind and thermodynamic data in the radial and vertical directions. Also, the

planar model of [SMT+99], and studied by [KS01] and [KE01], provides a 2D nondivergent

flow to study vortex evolution and interaction, and is important for its simplicity in viewing

a polygonal eyewall formation.

Though more complex, a number of 3D models have been developed. For this study,

the fifth generation Penn State/NCAR mesoscale model (MM5), described by [GDS95] and

[Dud93], will be used for the generation of 3D velocity and thermodynamic variables.
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1.3 Lagrangian mixing

In the different studies of hurricanes, the mathematical sophistication is at a limited level

with respect to the time variation of the flow. Almost every study of hurricanes views

properties of the storm at a fixed time, and the data from that time is used to make

inferences about the entire system, see [SMT+99]. This is known as a Eulerian reference

frame. Since hurricanes show significant temporal variation, a moving reference frame, or

Lagrangian frame is more useful for examining structures within a time-dependent system.

The field of Lagrangian dynamics has only recently (in the last 20 years) seen significant

advances, likely because time-dependent fluid flows require massive amounts of data to

completely analyze. The use of powerful computers has allowed the study of Lagrangian

dynamics, and has driven the theory in recent years.

There are two primary influences on the field of Lagrangian dynamics. The work of

Stephen Wiggins and George Haller both appeared in about 1997, and took different paths

to understanding fluid mixing in time-dependent velocity fields. Wiggins took the approach

of extending the ideas of a hyperbolic fixed point and manifolds to a time-dependent flow,

while Haller took the approach of directly computing the manifolds, which led to efficient

algorithms for manifold detection.

The work of Wiggins centered on the idea of a distinguished hyperbolic trajectory (DHT)

for time-dependent flows, [MW98]. Analagous to a hyperbolic fixed point for steady flows,

the DHT was shown to have stable and unstable manifolds that remain invariant to particle

transport and partition the flow. Time-dependence of the velocity field allows intersections

of the manifolds. Lobes form between adjacent intersection points and are bounded by a

segment of the stable and unstable manifold. The study of lobe dynamics completely char-

acterized the transport of fluid for velocity fields with bounded aperiodic time-dependence,

and may characterize mixing in geophysical flows [CW00] and [MW98] if the velocity field

has sufficiently bounded temporal and spatial variation. Algorithms used to detect DHT’s,

[ISW02], are often numerically stable in flows with general but bounded time dependence.

Applications of lobe dynamics to fluid motion across a jet is studied by [RMPJ99] and

[DW96].

The work of Haller is mostly devoted to understanding hyperbolic separation through the

behavior of nearby trajectories, [HP97], [Hal00], and [Hal01a]. The definition of finite-time

Lyapunov exponents (FTLE’s) as a measure of Lagrangian flow separation led to efficient al-
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gorithms for direct computation of manifolds for time-varying velocity fields, [Lek03, LL04].

FTLE’s measure the relative separation as a grid of trajectories is integrated. Regions with

high FTLE values, or ridges of the FTLE field are the finite-time manifolds. The work of

Haller has been extended and many properties of the FTLE’s proven, such as invariance

of the manifolds, and robustness of the method under velocity errors and approximations

[Hal02]. This work has transformed the field of computational fluid dynamics with appli-

cations to a variety of fluid flows, including oceanographic, atmospheric, and aerodynamic

flows.

The methods of Haller have led to many similar methods, including finite-size Lya-

punov exponents (FSLE’s) [KL02, GRH07], total instability time, and relative dispersion,

[HMG01]. The varying methods have contrasting advantages and disadvantages for flows

with different aspect ratios, temporal variation, or divergence.

The work of Haller motivated the use of statistical methods to characterize mixing. The

work of Antonsen [AJFOGL96], and related work by [ABC+97], [VHG02], and [VTSG03]

have used the statistical distributions of the Lagrangian fields developed by Haller.

A key part of the class of methods developed by Haller is the ability to extract ridges from

scalar fields to view manifolds. Ideas from differential geometry have been used by Mathur

et al. [MHP+07] and Shadden [Sha06] to extract ridges. Additional studies in visualization

of coherent structures have been done by [GGTH07], [GRH07], and [TMH+09]. The link

between image processing and dynamical systems is still very new and will certainly be a

topic of much future research.

Though the applications of Haller’s work are very impressive given their relative age,

few studies have applied any of the methods to atmospheric flows. There are basically

three reasons why this is the case. Atmospheric data sets are generally very large, and

the computing power neccessary for a detailed Lagrangian analysis has not been readily

available. There is also a lack of interdisciplinary research between atmospheric scientists

and mathematicians. A key reason, which will be addressed here, is that the methods have

deficiencies when applied to sheared flows, which are often present in atmospheric flows,

and are ubiquitous within tropical cyclones.
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1.4 Contents

This study is an attempt to merge the fields of dynamical systems, image processing, and

atmospheric science to gain a greater understanding of the mechanisms of transport and

mixing in hurricanes. Because of the difficulty in separating the mathematical and atmo-

spheric work involved in this study, the organization will be first divided along the separate

atmospheric results. New mathematical ideas are presented in each study, and will be ad-

dressed along with their physical meaning for hurricanes. Chapter 2 will be used to discuss

the preliminary atmospheric ideas and the body of atmospheric literature devoted to mixing

and transport in tropical cyclones. Chapter 3 will introduce the preliminary mathematical

ideas from dynamical systems in a very general time-dependent setting, and will introduce

the key ideas of Wiggins and Haller. Some basic ideas from differential geometry and image

processing that will be useful for the visualization of structures will also be included.

The next five chapters will be separate studies of the mechanisms of hurricane mixing.

These studies have all resulted in submitted refereed papers. Work on all of these studies

has been done with the help of coauthors. In particular, Gerhard Dangelmayr has helped

extensively in each work, and has ensured the mathematical quality of the studies, and

with the writing of results. His help has been crucial in the formulation of many of the

ideas. Michael Kirby has also helped on the mathematical parts of some studies. The

atmospheric aspects of this paper have come from the ideas of research generated by col-

laboration with Michael Montgomery, Wayne Schubert, and John Persing. Their work on

the atmospheric implications and interpretation of the mathematical results have greatly

aided in the combining of these separate fields.

The atmospheric studies begin in Chapter 4 with a study on the mechanisms of mixing

in an axisymmetric hurricane model. The model is a 2D representation of a hurricane with

vertical and radial wind fields. Methods of Antonsen [AJFOGL96] and Huber [HMG01]

are extended to a difficult domain and over varying initial time to compute time-varying

mixing rates. The rates are then correlated to measures of intensity to show that eye-eyewall

mixing correlates to intensity and precedes fluctuations in intensity, suggesting that local

eye bouyancy is responsible for changes in intensity. Results from this study have been

published in Atmospheric Chemistry and Physics Discussions, [RDP+09] and are under

review for publication in Atmospheric Chemistry and Physics.

Chapter 5 is the study of radial mixing on a 2D nondivergent barotropic model, which
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exhibits high shear and forms a polygonal eyewall before a breakdown into a monopole. The

methods of [HI03] are used, and extended to detect hyperbolic lines that persist through

shear. The conclusions that coherent structures can persist through shear becomes impor-

tant for many aspects of hurricane research, while the methods used in this study motivate

the ideas that are used in the 3D studies. Results from this study have been published in

Atmospheric Chemistry and Physics, see [RDP+10].

In Chapter 6, the 2D shear decomposition is extended to 3D, and the methods applied to

the 3D MM5 model. A Lagrangian eye-eyewall interface is found that provides a definition

of the eye-eyewall boundary in relation to particle transport. A maximal persistent shearing

surface is found to reside outside the eye-eyewall interface. The surfaces are extracted with

a surface extraction algorithm that is built on ridge extraction algorithms. Results from

this study have been submitted to Quarterly Journal of the Royal Meteorological Society,

see [RD09].

An extension of the fields from Section 6 to varying initial time provide a time-varying

eye-eyewall boundary, in Chater 7. An algorithm based on the Fourier descriptors of the

Lagrangian fields is developed to automate the surface extraction algorithm across varying

initial time. The dynamics of the time-dependent structures are then studied, along with a

method for data reduction and inferences on the axisymmetric nature of the storm. Results

from this study are in preparation for publication.

Chapter 8 deals with the application of the new mathematical methods to an intensifying

hurricane, and the structures involved in vortical hot tower interaction are observed and

classified. Their relation to environmental structures ties together many important theories

from atmospheric science in a rigorous mathematical framework. Results from this study

are in preparation for publication.

Concluding remarks and an outlook for future studies are given in Chapter 9.



Chapter 2

Tropical Cyclones

The atmospheric studies in this work are motivated by work on hurricanes that suggests

that mixing and transport are important in the evolution and formation of hurricanes.

Because the scope of the word mixing is very broad, specific definitions of mixing must be

used in the different contexts. At a basic level, differential advection, or the transport of

trajectories, must be differentiated from turbulent diffusion, which is nearer to true mixing.

In fact, advective mixing boundaries are important for prohibiting transport. Measuring

diffusive mixing can be seen as quantifying the degree of uncertainty within a system, while

advective mixing reduces the complexity on certain spatio-temporal scales. Another way of

viewing the advective and diffusive processes is by the time scale that governs the mixing.

Advection takes place on a short time scale, and is affected by the local flow geometry,

whereas diffusion is a property that is generally more representative of an entire system in

the limit of long times.

This study is generally concerned with advective mixing, which is equivalent to the

location and classification of storm boundaries and structures, such as an eyewall or rainband

formation. Lagrangian methods may be used to find structures within the time-dependent

velacity fields of hurricanes. The location of eye-eyewall structures has been addressed

by many studies on hurricane models, see e.g. [SMT+99, KE01, LH82, Mur86], and in

observations of real storms, where structures similar to those in the models such as polygonal

eyewalls have been observed in Hurricanes Hugo (1989), [BM91], and Gilbert,[BW92].

7
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2.1 Structure

Many studies apply directly storm structure, which concerns the interaction and location

of separate storm regions. The eye and eyewall make up the inner core of the hurricane,

where the maximal vorticity and winds are located in the eyewall, which surrounds the still

dry air of the eye. The heaviest moisture is located outside of the eyewall in rainbands.

A low-level inflow is the greatest source of fuel for the storm, while the material that rises

through the eyewall exits the storm through an upper level outflow. Additional structures

that may be considered include outside air masses that may interact with the core.

Larger scale environmental studies provide the neccessary conditions for storm develop-

ment, including studies by Roll, [Rol65], and Smagorinsky, [Sma63], which provide a view of

the tropical atmosphere and ocean interactions. Studies involving the interaction of storms

with environmental flow were the subject of [FR99] and [FR01].

2.1.1 Eye-eyewall structure

A considerable number of studies have considered eye-eyewall structure, [Ema97, Bra02], or

thermodynamics of the inner core, [BE98, BE97]. Structural and thermodynamic properties

play a key role in the transport of material and energy between the inner core regions.

2.1.2 Wave disturbances and shear

Shear is a factor that is present in all vortices, and is marked by the sliding of layers of

particles across each other. The sliding induces wave disturbances called Rossby waves to

form. The growing disturbances can lead to transport across shearing regions, and may be

responsible for the formation of polygonal eyewall structures. There have been many studies

in hurricanes that have dealt with Rossby waves, including [ME98] and [ML97] which show

the importance of Rossby waves in the formation of asymmetries.

2.1.3 Symmetry and asymmetry

A dominant wavenumber Rossby wave disturbance can sometimes occur in the vortex, which

can be seen as a structural deformation of the vortex as a polygonal vortex boundary. For an

intensifying storm, many wavenumber disturbances are present, including high wavenum-

bers. As the storm intensifies, the high wavenumber asymmetries vanish first, leaving the

low wavenumber asymmetries. The behavior of the low wavenumber asymmetries is impor-
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tant for the evolution of the inner core, [RMMJG99], and has implications for maximum

intensity and tracking, [SIM95].

2.1.4 Mixing

There are two main classes of interaction that we consider in this study, the inner core

mixing between the eye and eyewall, and large scale environmental interaction. The time

scales for the two types of behavior are quite different, and are generally addressed by

different methods and time scales, see e.g. [RH97].

Inner core mixing is believed to have an impact on hurricane intensity through energy

transfer. The heat exchange between the regions and induced convection, [BE98, Ema97],

is seen as one path to intensification. Inner core mixing is the topic of studies by [ZY02]

and [SMZ05], which promotes local buoyancy and its role in enhancing the overall energy

as a reason for intensification. Local buoyancy in the eye can transition to the eyewall,

providing fuel to the updraft, [Bra02]. The thermodynamic properties of the eye have

been discussed in [Wil01]. A Lagrangian view of eye-eyewall transport was the subject of

[CPMB07] and showed that trajectory transport between all inner core regions does occur.

The implications of eye-eyewall mixing on hurricane intensity have been studied by [PM03]

and [MBAB06]. Inner core interaction with the environment was studied by [ENB94].

The role of wave instabilities also play a role in inner core mixing. Vortex Rossby

waves generated by shear instabilities may induce transport across regions, [ME98]. Wave

interaction in the inner core has also been studied by [CY01] and [CBY03].

2.1.5 Intensity

The interaction of a storm with the environment is also important for the TC lifecycle, as

the introduction of additional air masses may certainly impact the storm, [RMB05]. For

example, the introduction of a second air mass representing vertical wind shear will weaken

the storm, [RMN09]. Other studies have focused on the role of environmental features and

their interaction with the inner core, see for example [FR99, FR01]. The maximum intensity

of hurricanes has been studied by [PM03] and [RE87].
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2.1.6 Formation

Cyclogenesis occurs during the early stages in the TC lifecycle as a storm gains energy

and vorticity, often originating from regions of deep convection, [FJ69]. Both convective

heating, [HJLB09], and Rossby waves, [ME98], play a role in intensification. However, there

are two main paths to cyclogenesis that have seen recent interest, the interaction of vortical

hot towers (VHT’s), and wind induced surface heat exchange (WISHE).

VHT’s are localized convective structures with high vorticity, that are observed during

TC intensification [HMD04] in tropical atmospheres by [FJ69] and [RMB05]. The interac-

tion of the structures is shown to have an effect on intensification by the mixing of vorticity,

entropy, and angular momentum through their interaction and by providing local buoyancy

to the storm, [MNCS06].

The role of WISHE in TC intensification is investigated in the studies of [SMN09] and

[MNSP09]. The specific heat of ocean water carries more energy than the air, and is

supposed to increase the overall energy within a storm by an exchange of energy into the

low-level atmosphere.

Additional studies in the intensification of TC’s are conducted with model data, includ-

ing [MVD02] and [NSM08]. The use of a reduced dimensional model for predictability was

studied by [SS08].

2.2 Gaps between atmospheric science and mathematics

While many studies examine the thermodynamic and vorticity mixing, the true nature of

mixing within time-dependent flows requires new Lagrangian techniques. So far, there has

been little collaboration between dynamical systems and hurricane researchers, which has

limited the use of the new methods in meteorological applications. There are three main

areas where ideas from mathematics could aid future meteorological results, the use of time-

dependent trajectory analysis, the implications of time-dependent structures on transport,

and the use of fully 3D techniques.

2.2.1 Fixed time assumptions

In autonomous flows, the streamlines of the velocity field partition the flow. Under the

assumption that the velocity field is steady, the concept of a flow dividing manifold is
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identical to that of a general trajectory. There are many atmospheric studies which utilize

phase diagrams from a steady velocity field to portray the motion of trajectories within the

unsteady flow. For example, the study of [DMW09] shows the structures that protect the

inner core during formation from outside air masses as streamlines from a steady velocity

field. The ideas from this study provide an extremely important theory in the formation of

hurricanes, but many of the results could be further validated with the use of more rigorous

mathematics.

2.2.2 Eulerian measures

Many atmospheric studies use Eulerian assumptions in analyzing mixing. The studies of

[SMT+99], [KS01], and [KE01], investigate mixing in a nondivergent barotropic model by

viewing the mixing of vorticity, which is nearly conserved. Particle separation is analyzed

through the Eulerian measure of the Okubo-Weiss criterion. Trajectory computations in-

dicate that the time-scale on which trajectories follow the Okubo-Weiss criterion is only a

few minutes. A Lagrangian version of the Okubo-Weiss criterion has been shown to provide

a better indication of particle separation for time-dependent flows, but many of the current

Lagrangian methods even show improvements over the Lagrangian Okubo-Weiss criterion,

and are more suitable for the hurricane models, but have not been applied before this study.

[DMW09] showed structures that are involved in the interaction between the inner core and

environmental flow, but it is still unclear if the structures can exist in the time-dependent

velocity field.

2.2.3 Reduced dimension representation

Many atmospheric studies have utilized reduced dimensional models, notably the studies of

[SMT+99] and [KE01] which used the nondivergent barotropic model to study polygonal

eyewall formation. While the reduced dimensions are very useful for analyzing shear and

Rossby-wave disturbances, which occur dominantly in the horizontal plane along lines of

shear, it becomes neccessary to investigate 3D structures within real storms due to the

influences of heating and convection.

Many of the studies in Lagrangian mixing are presented first in a 2D setting, and

then extended to 3D. There are many reasons why most Lagrangian fluid studies have not

used fully 3D velocity fields. The algorithms are not as easy to implement, and require
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substantially more computing power in 3D. Also, the manifolds in a 3D setting become

2D, which greatly adds to the complexity. Lastly, visualization of 3D structures is a very

challenging task, and is itself an area of active research.

2.2.4 Lack of collaboration

Lagrangian methods have been used in some atmospheric studies, but have thus far been

limited due to the lack of collaboration between atmospheric scientists and mathematicians,

and the size of atmospheric data sets. So far, the studies of [KL02], [JL01], [HMG01], and

[TMH+09] have been the most noted applications of Lagrangian techniques to atmospheric

studies. Currently, few mathematicians have access to atmospheric data sets, though a

greater focus on interdisciplinary research will certainly improve accessibility.



Chapter 3

Lagrangian Mixing Preliminaries

Mixing is a term that is subject to broad interpretation. In atmospheric dynamics, mixing

of physical quantities such as temperature and moisture is often studied. In this study, the

interest is on the interaction of particle trajectories, which are solutions of the differential

equation associated with a velocity field u(x, t).

ẋ = u(x, t) (3.1)

with the initial condition

x(0) = x0. (3.2)

Trajectories are advected under the time T flow map

x0 7→ φt0+T
t0

(x0) = x(t0 + T ). (3.3)

The evolution of trajectories under this map will be important for the study of the dynamics

of both 2D and 3D velocity fields. To begin the discussion of flow boundaries and stability,

we assume that the velocity field is 2D.

3.1 Steady flows

A flow is steady if it has no time dependence,

ẋ = u(x). (3.4)

A point xf is called a fixed point of u if u(xf ) = 0, that is xf is held constant under the flow

map. The local flow is governed by the Jacobian ∇u(x). The eigenvalues of the Jacobian

13
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determine the stability of xf . If the eigenvalues of the Jacobian are of opposite signs, then

a fixed point is said to be hyperbolic.

Associated with hyperbolic fixed points are 1-dimensional sets, which are solutions of

(3.4), that are exponentially attracted or repelled from the fixed point. The attracting set

is called the stable manifold, while the unstable set is called the unstable manifold. Note

that the only intersection of the stable and unstable manifolds is at the hyperbolic fixed

point. The manifolds partition the flow, that is trajectories do not cross the manifolds.

3.2 Time-periodic flows

If the flow is time-periodic, u(x, t+ p) = u(x, t), the fixed point of the Poincare return map

emits stable and unstable manifolds, whose transverse intersections form enclosed regions

called lobes. The movement of lobes governs the transport of traectories.

3.3 Time-dependent flows

3.3.1 Hyperbolicity and DHTs

Assume a velocity field over a finite time interval is given by

d

dt
x(t) = u(x, t), t ∈ [t0, tL] (3.5)

Hyperbolicity is a linear property since the characteristics of a hyperbolic trajectory are

determined from the linearized velocity field

d

dt
ξ =

du

dx
(x(t), t)ξ, t ∈ [t0, tL] (3.6)

To define hyperbolicity, we define exponential dichotemy, which means the nearby trajec-

tories seperate at an exponential rate. Let X(t, t0) be the fundamental matrix solution to

the linearized system (3.6), i.e. the matrix where columns that are linearly independent

solutions of the linear system:

·
x= A(t)x, (3.7)

where A(t) = du
dx (x(t), t) is an n× n matrix continuous in t.

Def. 1 Exponential Dichotemy

The linearized system is said to have exponential dichotemy on [t0, tL] if there exists a



15

projection matrix P , i.e. P 2 = P and positive constants K, L, α, and β such that

|X(t)PX−1(s)| ≤ Ke−α(t−s), s ≤ t <∞ (3.8)

|X(t)QX−1(s)| ≤ Le−β(s−t), s ≥ t > −∞ (3.9)

where Q = I − P and I is the indentity matrix.

We now look at what it means for a trajectory to be hyperbolic. Let xh(t) be a trajectory

of (3.5). Then xh(t) is said to be hyperbolic if the linearized system given by (3.6) has

exponential dichotemy over the time interval (t0, tL).

For a given velocity field, there can be an infinite number of hyperbolic trajectories.

A DHT or distinguished hyperbolic trajectory is the trajectory that does not experience

exponential growth or decay as t→∞.

3.3.2 Nonlinear flows

Let the velocity field have the form

d

dt
y = Dy + g(NL)(y, t) (3.10)

where D ∈ R
n×n is a constant diagonal matrix which gives a time independent part, and

g(NL)(y, t) ∈ R
n is the time-dependent nonlinear part.

Def. 2 DHT

A trajectory xdht(t) is a DHT for (3.10) if it satisfies:

1. It is hyperbolic

2. There exists a region R in the phase space such that the DHT remains in R for

all time, and all other trajectories starting in R leave R in finite time either forward or

backward.

3. It is not contained in the chaotic invariant set created by the intersections of stable

and unstable manifolds of another hyperbolic trajectory.

Generally, DHT may not be unique. Instead, associated with a particular DHT is a

region R in which no other DHT’s can exist. The region R has significance for the stable

and unstable mainfolds as well. Points that are on the unstable manifold leave R forward

in time, while points on the stable manifold leave R backward in time and points that are

not on either manifold or the DHT leave R both forward and backward in time.
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3.3.3 General time dependence

A DHT can also be defined in terms of the general velocity field given by (3.5). Assume there

is an invertible coordinate change from x to y such that (3.5) is transformed into (3.10),

and let ydht(t) satisfy the properties of Definition 2. Then ydht(t) is a DHT of (3.10),

and ydht(t) corresponds to a trajectory xdht(t) which is a DHT of (3.5). The coordinate

change and algorithms for computing DHT’s are provided by [MW98], while algorithms

for computing the stable and unstable manifold of a hyperbolic trajectory are given by

[ISW02, MSWI03, MSW04]. The methods have been applied to geophysical flows with

aperiodic time dependence by [DW96, CW00, RMPJ99, Wig05, PH99]. Because the velocity

fields in TC’s have very strong time dependence, the algorithms often fail, but the studies

still provide the theoretical framework for advective mixing in time-dependent flows.

In the case that a velocity field has aperiodic time dependence, there are in general no

hyperbolic fixed points. However, at a fixed time t, the velocity field may show instantaneous

stagnation points (ISP’s), denoted xsp(t), which are fixed points of the velocity field at fixed

time t. If the time dependence is small, then there may be a point xdht(t), related to xsp(t),

which is a particle trajectory that maintains hyperbolic stability. The hyperbolic trajectory

emits stable and unstable manifolds which are time-dependent, and may have intersections

at points other than at the hyperbolic trajectory.

Wiggins introduced lobe dynamics as a method for measuring the flux across boundaries.

A separatrix is a flow boundary formed by continuous segments of stable and unstable

manifolds. Lobes are enclosed regions formed by a single segment of a stable and unstable

manifold, and adjacent intersection points. As the manifold segments evolve, the separatrix

may be deformed, and lobes may pass across the separatrix boundary. Since the lobes are

invariant, the material contained within the lobe remains in the lobe, and is transported

across the boundary.

3.4 Alternative methods for time-dependent flows

In flows with general time-dependence, the velocity field may not show persistent ISP’s, so

DHT’s related to ISP’s may not exist, or the numerical algorithms of [MW98] and [ISW02]

may not converge. In this case, the manifolds of hyperbolic trajectories may exist, and

may still form a tangle that is responsible for the transport of trajectories. The difference

between flows with general time-dependence and steady flows is that the manifolds of time-
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dependent flows are of finite length, since they can be computed over only finite time.

A class of scalar field methods was developed by Haller and coauthors, [Hal01a, HY00,

HP97], which compute the relative separation of sets of nearby trajectories seeded on a

uniform grid and integrated for finite times. In this approach the manifolds are seen as

ridges of the scalar fields. Many variations of the scalar field methods exist and show

similar stretching properties.

3.4.1 FTLE’s

Haller defined the finite-time Lyapunov exponents (FTLE’s), [Hal01a], as a means for de-

termining trajectory separation. The closely related direct Lyapunov exponent (DLE) was

defined by [HP97, HY00]. The field of FTLE’s measures maximal stretching [SLM05].

Consider an infinitesimal perturbation x′
0 of the point x0. After a time T, the perturbation

becomes

x′(t0 + T ) = φt0+T
t0

(x0 + x′
0
)− φt0+T

t0
(x0) (3.11)

=
dφt0+T

t0
(x0)

dx0
x′

0 +O(
∥∥x′

0

∥∥2
). (3.12)

To find the magnitude of the growth rate of the perturbation, we drop the O(‖x′
0‖

2) term

and take the Euclidean norm

∥∥x′(t0 + T )
∥∥ =

√
〈x′

0,∆x′
0〉 (3.13)

where the matrix

∆ =
dφt0+T

t0
(x0)∗

dx0

dφt0+T
t0

(x0)

dx0

(3.14)

(the asterisk denotes the transpose of a matrix or vector) is symmetric and gives a finite

time representation of the Cauchy-Green deformation tensor. If ‖x′
0‖ is held constant, the

maximal expansion occurs when x′
0 is aligned with the eigenvector corresponding to the

largest eigenvalue, λmax(∆), of ∆,

max
x
′

0

∥∥x′(t0 + T )
∥∥ =

√
λmax(∆)‖x′

0‖

= exp (σt0+T
t0

(x′
0)|T |)‖x

′
0‖,

where

σt0+T
t0

(x0) =
1

2 |T |
log λmax(∆) (3.15)
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is the largest finite time Lyapunov exponent for the integration time T at the point x0 at

initial time t0. The FTLE is computed forward (T > 0) and backward (T < 0) in time,

which allows detection of forward time repelling and attracting material lines, respectively.

An initial grid of seeded trajectories can be advected to give a scalar field of FTLE

values dependent on initial-time. High FTLE values correspond to large separation of tra-

jectories. Ridges of FTLE fields are defined as Lagrangian coherent structures (LCS’s) and

are shown to be invariant by [SLM05], and may form separatrices which govern transport.

The extraction of all ridges from a time varying FTLE field is still a difficult problem, but

the structures are often obvious from visual inspection. FTLE’s are easily computed and

have shown important flow boundaries in many time-dependent geophysical flows, see e.g.

[SIJ08], [JW02], and [dFHG04].

For computation of the FTLE field, the flow gradient
dφ

t0+T

t0
(x0)

dx0
can be calculated on a

uniform grid of trajectories

Many of the efforts in dynamical systems for ridge extraction hinge on the ideas of

gradient climbing. Given a scalar field φ(x), trajectories of the gradient dynamcal system

ẋ = ∇φ(x), (3.16)

evolve towards ridges of φ before they are attracted by local maxima along slow mani-

folds. An alternative formulation of the gradient dynamical system was given by [MHP+07].

Points converge onto ridges through gradient climbing, which makes it useful for visualiza-

tion of ridges in 2D. However, the points evolved from a set of initial conditions are not

ordered, making it difficult to measure transport, and eventually they cluster around max-

imal values instead of residing on the ridge. Criteria to stop gradient climbing yield some

improvement, but do not solve the clustering problem for noisy scalar fields. Multiple ridges

within a field, which is common for discretely defined turbulent flows, pose additional chal-

lenges to gradient climbing. Scale space ridges, [Lin98], offer an automated alternative,

but the method has the shortcoming of not providing exact ridges. The ridge extraction

problem is still an area of active research and vital for accurately quantifying transport.

Volume rendering methods compute level surfaces to visualize ridges, however the sur-

faces obtained are often crude approximations to a true ridge. Advanced methods of surface

extraction are used in the analysis of MRI’s and ultrasound data by researchers in medical

imaging, see e.g. [TPGB00], but the adaptation to time-varying fields and the collaboration

between researchers in computer imaging and dynamical systems is still lacking.



19

Since Lagrangian fields depend on an initial time, time variation leads to a series of

scalar fields containing manifolds. Identifying ridges across sets of images must also be

considered as a part of the ridge extraction process. In 2D, ultrasound techniques show

promise, as do hierarchal clustering algorithms.

3.5 Convergence

Because of the large number of trajectory integrations required to produce scalar fields,

especially over a moving time frame, covergence of the Lagrangian methods deserves con-

sideration. [HI03] provide an orthogonal version of FTLE’s and suggest faster convergence

than FTLE’s. [KL02] computed FSLE’s for the stratospheric polar vortex and suggest that

the convergence of FSLE’s may be faster than FTLE’s for atmospheric or other divergent

flows. Studies by [GGTH07] and [TCH10] show that improvements in the FTLE algo-

rithm may be achieved by refining the grid mesh during integrations, or by predefining the

directions of initial separation based on velocity data information.

Though the manifolds are of finite length for time-dependent fields, using less model data

and shorter integration times produce fewer ridges in the case of high time-dependence,

which may allow easier interpretation of outputs. Thus, resolving ridges under shorter

integration times is also an important issue for consideration.

3.6 Shear

All of the previously discussed Lagrangian methods assume that the manifolds have hyper-

bolic stability. Hyperbolic separation occurs in a direction not aligned with the Lagrangian

velocity, while shear separation occurs in the direction of the Lagrangian velocity. Several

studies have viewed transport through shear, including [Sam92] and [DW96], which com-

puted transport across jets in flows with small time-dependence. [Hal01a] and [Hal05] offer

partitions of the domain into hyperbolic, elliptic, or parabolic stability.

The effect of shear is different from that of hyperbolicity by its effects on a vector aligned

orthogonal to the Lagrangian velocity. Hyperbolic stretching lengthens the vector in the

direction orthogonal to the Lagrangian velocity, while shear involves a rotation of the vec-

tor toward the Lagrangian velocity direction. A decomposition of shear from hyperbolicity

through the solutions of a transformed variational equation was done by [HI03]. The exis-
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tence of hyperbolic structures that persist through shear is important for tropical cyclone

dynamics, and is a main focus of this study.

Other studies have attempted to distinguish hyperbolicity from shear. McIntyre, [McI80],

provided the notion of a generalized Lagrangian mean as a method of subtracting the shear

from the velocity fields, but the methods are computationally difficult and may not be

suitable for dominant shear.

3.7 Vortices

Vortices are structures commonly seen in hurricanes on many scales, from the storm as a

whole to mesoscale VHT’s during intensification, as well as small vortices that are shed dur-

ing Rossby wave disturbances. Dynamically, vortices have elliptic or neutral stability. The

eigenvalues associated with the orthogonal separation are small, as is the degree of rotation

of a normal vector. Haller [Hal05] provides Lagrangian stability for vortices. Several addi-

tional papers are devoted to the dynamics of vortices, [Tru54, Saf81, Sha92, SL92], and their

entrainment of particles, [DG04, ECL02, CK94], which plays a key role in intensification,

[DMW09]. The study of vortices has been extended to the Lagrangian frame by [SDM06].

Interaction between vortices is crucial to the interaction of VHT’s, and has been studied by

[Pro99, SL02, YM02, VT80], while vortex crystals have been studied by [FCFD95].



Chapter 4

Lagrangian mixing in an

axisymmetric hurricane model

4.1 Summary

This chapter discusses the extension of established Lagrangian mixing measures to make

them applicable to data extracted from a 2D axisymmetric hurricane simulation. Because

of the non-steady and unbounded characteristics of the simulation, the previous measures

are extended to a moving frame approach to create time-dependent mixing rates that are

dependent upon the initial time of particle integration, and are computed for nonlocal re-

gions. The global measures of mixing derived from finite-time Lyapunov exponents, relative

dispersion, and a measured mixing rate are applied to distinct regions representing different

characteristic feautures within the model. It is shown that these time-dependent mixing

rates exhibit correlations with maximal tangential winds during a quasi-steady state, es-

tablishing a connection between mixing and hurricane intensity.

4.2 Background and overview

The question of the interaction between different characteristic regions of a hurricane, in par-

ticular the eye, eyewall, and near-core, is considered of fundamental importance in the study

of structure and intensity, [FR99], [FR01], [KE01], [KS01], [SMT+99], [Wil01]. In partic-

ular, mixing in the lower troposphere at the eye-eyewall interface, [CPMB07], [MBAB06],

[PM03], has been proposed to play an important role for intensification. The proposed

mechanisms are either direct and mechanical or indirect and thermodynamic. Direct and

21
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mechanical mechanisms reduce intensity as air with low absolute angular momentum from

the eye is stirred to the radius of maximum winds (RMW). Indirect and thermodynamic

mechanisms stir air with high entropy from the eye to the eyewall that will generate en-

hanced local buoyancy, [SMZ05], [Bra02], [ZY02], leading to an enhanced energetic cycle

for the hurricane as a whole (e.g. as a modified heat cycle). Maximum tangential winds

(found in the eyewall generally at z ≈ 1 km) will be used here as the principal measure of

intensity.

Mixing in hurricanes is often viewed in an Eulerian manner, based on the instantaneous

velocity fields. If the velocity fields are time varying, the Eulerian structures may not

be representative of the actual particle motion. In recent work in fluid dynamics, time

dependent Lagrangian hyperbolic invariant manifolds have been studied that partition the

domain into distinct regions and are visualized as ridges of Lagrangian scalar fields, [HP97],

[Hal02], [Hal00], [HY00], see Chapter 5 for a recent application to a 2D hurricane-like

vortex model. Most of these studies are for time-varying 2D velocity fields in closed and

bounded domains. An extension of the use of these methods to the 3D case is given by

[GRH07]. In this chapter we investigate a 2D flow that is more complicated because the

domain is unbounded and there is an inflow and outflow. Lagrangian structures associated

with boundaries have been identified by [Hal04] and [SH08], and generally differ from the

Eulerian separation points.

Statistical measures of Lagrangian mixing have been applied to 2D fluid models by

[VTSG03] and [AJFOGL96], but the mixing characteristics are time-dependent only in the

sense that they vary with the integration time. While this is sufficient for steady or periodic

velocity fields, in general time-varying velocity fields there is also a significant dependence on

the initial time at which the trajectories are seeded. This holds for all statistical measures

used so far, including relative dispersion, which has been used to diagnose atmospheric

mixing by [HMG01] in a limited way in a global circulation problem.

In this chapter we apply Lagrangian techniques to study mixing in the axisymmetric

hurricane model of [RE87]. The model of the hurricane shows the principal structures

of 3D hurricanes (e.g., eye, eyewall updraft, near-surface inflow, and outflow jet), while

resolving the 2D velocity fields in the radial and vertical directions. The advantages of

axisymmetric models are that the size of the problem is reduced and the geometry is simpler.

The structures found to be characteristic for the mixing processes within an axisymmetric
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model may, with caution, be extended to give clues about mixing within 3D models or

reality. The model of [RE87] yields time-dependent 2D velocity fields that show complex

spatial and temporal variation about a quasi-steady state, leading to a variety of dynamically

interesting, time-dependent structures . The fluid is not incompressible, which is assumed in

the derivation of many measures of mixing, and the domain is unbounded, which presents

a challenge in the implementation of many techniques currently used to compute such

measures. The temporal complexity of the velocity fields makes the extraction of coherent

structures difficult, as structures may have very short times of existence.

Given the complexity and time-dependent nature of the velocity field in the Rotunno and

Emanuel model, it is neccessary to develop a hybrid (local-global) approach to measuring

mixing rates. Local Eulerian flow structures are generally not valuable for characterizing

mixing in the entire flow if the structures do not exist in a coherent manner. However,

global measures of mixing are not suitable for this model either, because much of the mixing

occurs around the eyewall updraft region, which is where the maximum winds occur. Outer

environment and eye behavior are very separate processes from the mixing that occurs in

and around the updraft, hence diagnosing the mixing for the entire domain from a single

measure is not reasonable. Most current methods are either local or global.

Local methods established in the Lagrangian frame study particular features such as

hyperbolic trajectories and their stable and unstable manifolds, and track the effects of

these features. Global measures attempt to define a rate of mixing that is representative

of the entire system. In the axisymmetric hurricane model used in this study, the strong

time dependence makes structures too complicated to distinguish after several minutes, and

their mixing properties are lost. To diagnose mixing in a domain that has distinct mixing

regions, which have little interaction with other regions, we adapt both local and global

mixing diagnostics to quantify mixing between nonlocal regions. The nonlocality of the

regions requires extracting mixing measures from ensembles of trajectories, which makes

these measures statistical in nature.

Our approach to solving the hurricane mixing problem will be guided by considering

time and space dependence of mixing processes. The dynamically distinct regions of hur-

ricanes (e.g., the eye, the eyewall, near-core, etc.) require that the space dependence of

mixing properties follows a regional approach. The domain is partitioned into regions, and

a mixing rate is calculated for each region, giving a spatial dependence to the mixing rates.
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For general time dependence, not only variations in the integration time, but also varia-

tions in the initial time have to be used to define the mixing rates. The result is a time

series of mixing rates computed for each spatial region. The initial time-dependent mixing

rates are then compared with measures of intensity to establish correlations between these

characteristic quantities. The correlation analysis shows that the mixing rates computed

for some of the regions are sigificantly correlated with the maximum tangential winds.

A mixing rate is a measure of how quickly an initial tracer in a fluid becomes ho-

mogenized. The homogenization process has been studied for autonomous or time-periodic

velocity fields in bounded and closed domains, and gives a mixing rate for the entire system.

This rate can be compared to other rates derived from measures of advection or diffusion.

The time dependence of the axisymmetric model makes diffusion very difficult to measure

because the filamentation that occurs with a diffusive process undergoes bifurcations as soon

as the filaments develop. Advective measures of mixing converge fast in integration time

making them more suitable for this model. Since this follows from particle trajectories, the

associated mixing rates are Lagrangian in nature, and measure the interaction of features

that move with the flow.

The outline of the chapter is as follows. Section 4.3 gives an overview of current La-

grangian mixing rates. In Section 4.4 we describe the characteristics of the axisymmetric

model that is used for this study. The adaptation of current methods to make them applica-

ble to our non-steady and open fluid-flow problem, along with the numerical methods used

is described in Section 4.5. The results of our study are presented in Sections 4.6-4.9. In

Section 4.6 we show and discuss the Lagrangian scalar fields. Section 4.7 gives a Lagrangian

characterization of the eye-eyewall interaction, and Section 4.8 shows how the Lagrangian

structures are related to low and high intensity steady state approximations. In Section

4.9, we analyze correlations between measures of intensity and mixing rates. A discussion

and conclusions are given in Section 4.10.

4.3 Overview of current Lagrangian methods

Lagrangian mixing measures have advantages over Eulerian measures for their applicability

to time dependent fluid flows. For time dependent flows, trajectories may cross Eularian

boundaries, and diverge from instantaneous features of the flow. Lagrangian techniques

capture the total separation of trajectories and provide structures that are invariant under
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the flow. The current methods can generally be classified as either local and global. The

local techniques quantify the local rate of stretching of an initial area element. Places with

the highest stretching give time dependent manifolds, which are invariant and determine the

local transport properties by following the manifolds through the flow. These techniques

are useful for incompressible flows where the velocity field varies slowly both in space and

time. Some of the local techniques currently in use are finite-time Lyapunov exponents,

[Hal00], [Hal02], [HP97] and direct Lyapunov exponents, [HY00]. Distinguished hyperbolic

trajectories have been studied by [Hal01a], [ISW02], and [SIJ08]. Finite-size Lyapunov

exponents have been used by [ABC+97], [dFHG04], and [GRH07], and applied in a study

of [KL02] to the stratospheric polar vortex. Relative dispersion was studied by [HMG01]

to diagnose transport in the troposphere.

Global Lagrangian techniques provide representative mixing characteristics of an en-

tire domain, without exact extraction of structures, and are statistical in nature. Global

mixing measures have been applied to flows in bounded domains with no dominant flow

characteristics, and with with no general time dependence. The global measures are related

to the homogenization of a tracer within the domain, and are usually extensions of local

measures to the entire domain. The measured mixing rate determines how fast the tracer

is homogenized, [VTSG03]. Another global mixing rate is defined through the distribution

of the values of finite-time Lyapunov exponents, and is an extension of the local measure

of advection to the entire domain, see [AJFOGL96].

4.3.1 Measured mixing rate (MMR)

The mixing rate of a system can be measured by calculating the rate at which an initial

tracer becomes homogenized by the flow. Let

x0 7→ φt
t0(x0) (4.1)

be the flow map from time t0 to time t associated with a 2D non-steady velocity field v(x, t),

that is, the solution of ẋ = v(x, t) with initial condition x(t0) = x0. If an initial tracer is

planted uniformly over a subdomain at time t0 and evolved, then the variance of the tracer

concentration should decay over time as the tracer fills the entire domain. If ρ0(x) is the

initial tracer density at time t0, and ρ(t, t0,x) = ρ0(φ
t0
t (x)) the tracer density at time t, then

the variance Σρ(t, t0) of ρ should decay exponentially over time and thus can be modeled
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by

Σρ(t, t0) = A0e
−r|t−t0| +A1. (4.2)

The relaxation constant r is called the measured mixing rate (MMR), [VTSG03]. The

use of |t − t0| accounts for both forward and backward time integration, which allows

comparison to other Lagrangian methods utilizing forward and backward integration times.

It is assumed here that r is representative of the entire system, and the initial tracer profile

is not important in a long enough integration time, since the positions of fluid particles in a

closed domain eventually become indistinguishable with respect to their initial conditions.

For the non-autonomous axisymmetric model, we make this rate space and time dependent

by varying the initial spatial region R in which trajectories are seeded, as well as the initial

time t0.

For R we choose regions in the eye, eyewall updraft, and the boundary layer inflow,

which are representative of particular features of the flow. These regions have very different

mixing properties, and different associated mixing rates. Since the fluid in this model

does not eventually become homogenized, the mixing rate is a measure of how trajectories

characteristic of a certain feature disperse, e.g. become advected through a jet. Trajectories

that enter the eyewall updraft exit the domain through the upper level outflow jet, so there

are many trajectories that exit the domain in finite time, and there are large regions of

the domain that trajectories from the core will not enter. To accomodate this trajectory

behavior, a finite-time version of the mixing rate is used here. Trajectories are advected

for an integration time such that they remain within the spatial domain. The mixing rate

r(R, t0) then approximates the long time scalar variance decay by the homogenization over

a short time. We note that for flows that do not eventually reach a homogenized state,

the degree of homogenization, A1/(A0 + A1), can be a relevant measure of mixing. This

measure is different from the rate r of homogenization in that it measures how clustered

the set remains as it is advected.

Finite-time Lyapunov exponents have been introduced in Chapter 3.4.1. While the

exact extraction of LCS’s as ridges of the FTLE-field is generally not possible, FTLE’s still

give the total separation of trajectories within a region, and the statistical distribution of

FTLE values allows definition of global mixing rates. [AJFOGL96] have shown that for

autonomous or time-periodic velocity fields in closed and bounded domains, the variance of
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a tracer coincides with the quantity

G(t, t0) =

∫
σ(1/2)e−σtP (σ, t, t0)dσ, (4.3)

where P (σ, t, t0) is the probability distribution function of the FTLE values. For non-steady

velocity fields in open domains this coincidence cannot be expected, but still the function

G(t) may show a similar exponential decay like the tracer variance. Thus, assuming that

G(t) has the form

G(t) = A′
0e

−r′|t−t0| +A′
1, (4.4)

we can solve numerically for r′ to obtain a predicted FTLE mixing rate (FMR), [AJFOGL96].

This rate is meant to measure the advective mixing processes determined by initial trajec-

tory separation, and does not account for the diffusive processes that govern the long time

mixing. However, the integration time, T , used must be sufficiently long so that the FTLE’s

resolve LCS’s, and performing integrations in a moving time frame within a finite time range

imposes an upper bound on T . The optimal integration time will be discussed in more detail

in Section 4.5.

The FMR method was originally designed for closed bounded domains and steady or

time-periodic velocity fields, see [VTSG03] for an application to a time-periodic velocity

field with chaotic trjectories. Since the axisymmetric model has general time dependence,

and important mixing properties are localized in time and space, we adapt this measure

to include initial time dependence and initial space dependence. The resulting time series

of mixing rates are then compared to the time series of the measured mixing rates, and to

measures of intensity.

4.3.2 Relative dispersion (RD)

Relative dispersion is based on the average displacement of an ensemble of initially prox-

imate trajectories from a mean particle position, [HMG01]. When an ensemble is taken

to be a well defined set of trajectories, relative dispersion can differentiate between sets of

initial conditions that have different mixing properties. For a set R with an ensemble of

initial conditions x0 ∈ R, the root mean squared (RMS) displacement of the ensemble of

trajectories seeded at time t0 in R is defined as

σ(t) = 〈‖x(t)− x(t)‖2〉
1

2 , (4.5)
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where 〈.〉 denotes the average over the set, and x is the mean particle position. The relative

dispersion K(t) is defined by

K(t) =
1

2

d

dt
σ2(t), (4.6)

and σ(t) has either a power law relationship for t→ t0, [HMG01],

σ(t) ∝ |t− t0|
γ , (4.7)

or an exponential relationship for large t− t0,

σ(t) ∝ exp (γ|t− t0|). (4.8)

For an initial set the relative dispersion is dependent on the time scales at which mixing

occurs. For a given integration time T = t− t0, we consider the relative dispersion (RD) as

a function of an initial set R, and the initial time t0, K(R, t0).

4.3.3 Relative dispersion from FTLE’s (FRD)

While FTLE’s and relative dispersion are similar measures of trajectory separation, the

FMR is not directly comparable to the RD in their given forms. To allow a comparison

between the FTLE mixing rate and relative dispersion, we define the RMS displacement of

an ensemble of trajectories in the direction of maximal expansion through the FTLE values

by

Dt
t0(R) =

〈
exp(2σt

t0(x)|t− t0|)
〉1/2

(4.9)

∝ |t− t0|
γ′

, (4.10)

which gives a power γ′ for t → t0. The FTLE based relative dispersion (FRD) is then

defined by

Kf (t) =
1

2

dD2

dt
(t), (4.11)

and is, for the integration time T = t − t0, considered as a function of the region R and

t0, similar to the RD. The FRD can be considered as an average stretching factor for an

ensemble of trajectories.

4.4 Model overview

The axisymmetric, nonhydrostatic, cloud-resolving hurricane model of [RE87] is integrated

on a staggered C grid using a fixed radial (3.75 km) and fixed vertical (312.5 m) grid
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spacing at one-fourth the originally published grid spacing. Ice physics are not simulated

and explicit convection is employed using a fixed precipitation fall speed of 7 ms−1. Subgrid-

scale turbulence is parameterized using a modified [Sma63] formulation with horizontal

mixing length of 750 m. Radiation is simply represented by Newtonian relaxation to the

initial basic state potential temperature profile with a cooling rate capped at 2 K day−1.

A sponge layer is provided above the model tropopause. Surface fluxes of momentum and

enthalpy are conducted with a bulk aerodynamic formulation with the ratio of drag and

enthalpy coefficients set to unity and the drag allowed to vary with wind speed by Deacon’s

formula, [Rol65]. The initial sounding is that of 4x run by [PM03]. Data output is at a

two-minute interval starting with a time (day 13) when a quasi-steady intensity (≈ 85 m

s−1) is reached for the simulation.

The (u,w)-flow (in the radial/vertical plane of motion) (shown in Fig. 4.1 at t =

400 min.) has several dominant characteristics which are often separated by lines of high

shearing. The main feature is the axisymmetric eyewall. It appears as a slanted, vertically

oriented structure that separates from the sea surface at approximately r=20 km, and goes

upward to a maximum height of z=15 km. Inside of the eyewall is the eye which has very

slow velocities. The eyewall updraft takes trajectories upward and is separated from the eye

by a line of high vertical shearing. The boundary layer inflow is the main source of material

that enters into the updraft. As material moves through the updraft, it enters the upper

level outflow, where it goes outward and leaves the domain. There is also a midlevel inflow

that brings material inward. This inflow is not as strong as the boundary layer inflow,

and trajectories that enter through this inflow mix into the updraft through a tangle of

hyperbolic manifolds.

4.5 Numerical methods

Mixing rates are computed by adapting the techniques from Section 4.2 to seeded sets of

trajectories. Trajectories are advected in radius and height through a fourth order Runge-

Kutta method. Since the locations of seeded particles do not become eventually homog-

enized throughout the entire domain and some trajectories leave the domain, the initial

locations of particles become important.

Trajectories are seeded into initial boxes, which are representative regions for different

aspects of the flow (Fig. 4.2). The boxes are placed in the low level inner core region of the
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Figure 4.1: Velocity fields at t=400 min. Radial velocity field (a) and vertical velocity field

(b) with boxes used for computing mixing rates in the lower left of each image.
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Figure 4.2: Locations of boxes in the lower inner core.

hurricane. The boxes approximately split the eye and eyewall updraft (Fig. 4.1(b)), with

two boxes in the vertical direction used to distinguish boundary layer properties from other

low level properties. The split between the eye and eyewall updraft boxes in the radial

direction is placed at the approximate location of the 1 m/s vertical wind contour. Two

additional boxes are placed outside the eyewall to capture the processes in the boundary

layer inflow for the lower box, and hyperbolic convective processes in the near-core for the

upper box.

Trajectories are seeded in the initial boxes at a resolution of 64 times model resolution in

the radial direction and 8 times in the vertical direction, giving 256 by 50 total trajectories

for each box. The same resolution of trajectories is used for the computation of the FTLE

fields, which gives a balance between clear ridges and computational expense.

The MMR requires the computation of a trajectory density, which is measured for a

given box as the ratio of the number of trajectories in the box at a given time divided

by the total number of initial trajectories starting in the given seed box. For counting

the number of final trajectories, we have divided the entire domain into a 8 vertical by 20

horizontal grid of boxes of the same size as the six representative boxes, allowing trajectory

movement into a domain of 16 km height by 300 km radius. The variance is then computed

from the density in all final boxes.

For a fixed initial time, the mixing rates from the concentration and from FTLE fields

both follow an exponential decay as a function of integration time. The mixing rate limit

A1 is determined by taking the minimum concentration variance over the finite integration

time, and the initial value A0+A1 is the initial variance. The MMR r is found by taking the



32

log of the time-series Σρ(t)−A1, where A1 is 90% of the minimum value of Σρ(t), and the

slope of the linear function is found using a linear least-squares best fit. The concentration

variance Σρ, log Σρ(t, t0), and the standard deviation of the error for the best fit over the

time interval (t0, t0 + T ) are shown in Fig. 4.3 as functions of T .

For the FMR, the initial value A′
0 +A′

1 is determined by the initial FTLE distribution,

while the limit A′
1 is again determined by taking 90% of the minimum value of G(T ) over

the integration times. The mixing rate r′ is determined in the same manner as the MMR

(Fig. 4.4).

The relative dispersion K(t, t0, R) is computed for the initial sets given by the six initial

boxes. Because of the aspect ratio of the atmosphere, radial dispersion will factor more

strongly into the K measure than vertical dispersion. The FRD is computed from the

FTLE values in the six initial boxes to compute an effective RMS displacement. By varying

initial time, time-series of mixing rates can be compared to time-series of maximum winds

(shown below). The integration time is also varied to view the short and long time aspects

of the dispersion.

4.6 Lagrangian fields

The Lagrangian fields were calculated for a variety of integration times to capture short and

long time mixing processes. Lines of high FTLE values in both the forward and backward

time fields mark a transition region between the eye and eyewall (Figs. 4.5,4.6). The

FTLE’s do not distinguish well between stretching and shear because they are computed

over a finite time. Moreover, the eigenvalues of the symmetric tensor dφ
dx are associated with

directions varying along trajectories, whereas shear in particular is associated with distance

growth in the direction tangential to trajectories. Trajectories originating in the eyewall

updraft reach a radius of 140 km in the outflow in 120 minutes, where the outflow jet1

governs the mixing, and the low level effects cannot be seen.

There are several factors to consider in the choice of integration time. The integration

time must be chosen long enough so that the LCS’s are resolved, and so that the decay

functions Σρ(t0, T ) and G(t0, T ) begin to show an exponential decay. Since the methods aim

1 The cores of jets show low mixing regions (blue) in the FTLE field as there is very little relative

advection of neighboring trajectories there. Jets are bounded by high shear regions, which lead to large

relative advection (red) and large FTLE values.
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Figure 4.3: Concentration variance Σρ(t, t0) (a), log(Σρ(t, t0) − A1) (b), and relative error

(c) plotted versus integration time T for the 6 mixing boxes with trajectories seeded at

t0 = 400 min. Other initial times give similar decay structure but different quantitative

details.
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integration time T for the 6 mixing boxes with trajectories seeded at t0 = 400 min. Other

initial times give similar decay structure but different quantitative details.
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to capture advective mixing properties, integration time must be chosen short enough so

that diffusion is not dominant. Diffusion dominates advection over long integration times, as

manifolds lengthen and become indistinguishable (Fig. 4.7). In addition, the strong time

dependence of the velocity field causes the wrapping of manifolds into a tangle, which makes

the identification of contigous manifold segments more difficult (Fig. 4.7), and requires

a more dense trajetory seeding. Thus a longer integration time imposes computational

limitations by requiring more (and longer) trajectory computations.

Dominant flow features such as inflow, outflow and updraft jets govern much of the

trajectory movement. High separation often occurs when nearby trajectories split and one

enters a jet. LCS’s that are strongly hyperbolic cannot exist near a dominant jet, making

shearing LCS’s vital for characterizing mixing. Fast trajectory flights enable shearing LCS’s

to be resolved more quickly than hyperbolic LCS’s, promoting a shorter integration time.

4.7 Eye-eyewall interaction

An Eulerian eye-eyewall boundary at low z-levels may be defined as the spatial location

that separates the strong upward motion of the eyewall from the weak vertical motion of the

eye, e.g. a representative contour of the vertical velocity field, however the strong variation

of the velocity field in space and time make such a structure discontinuous in time. From a

Lagrangian point of view, the eye-eyewall boundary at low z-levels can naturally be defined

as the place where there is greatest separation of trajectories, with neighboring trajectories

residing in the slow velocity region of the eye and the fast velocity region of the eyewall.

This boundary is revealed as a distinguished LCS in the backward FTLE field that persists

over all initial times and for integration times of 20 min. and above, see Figures 4.8,4.9 (the

LCS is marked in Figure 4.9(b)).

The LCS aligns upward from the sea-surface at about r=15 km and extends vertically

to a height of about 4 km, with nearly the same slope radially outwards for all initial times.

It is aligned horizontally and located slightly above the sea-surface for r > 15 km. Since

this LCS appears as a ridge of the backward time FTLE fields, it is attracting. Although it

is found from only a 20 minutes integration time, it is invariant for much longer times, and

persists over the complete period of analysis of the quasi-steady state intensity. In Figure

4.8(a) and (b), the positions of trajectories seeded on a uniform grid at 400 minutes are

displayed after 20 and 60 minutes, superimposed on the backward FTLE fields at initial
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Figure 4.5: Forward (a) and backward (b) time FTLE fields integrated 20 minutes with an

initial time of 400 minutes.
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Figure 4.6: Forward (a) and backward (b) time FTLE fields integrated 20 minutes with an

initial time of 420 minutes.
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Figure 4.7: Ridge of forward time FTLE field at initial time of 400 minutes integrated 20

(a), 60 (b), and 120 (c) minutes
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Figure 4.8: Backward time FTLE field integrated T = −20 min. for initial times of 420

minutes (a) and 460 minutes (b). The red dots mark the positions at time t = t0 of

trajectories seeded on a uniform grid at 400 min.
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times of t0 = 420 and 460 minutes, respectively. The figures show that trajectories in

the eye have little movement relative to the LCS, while updraft trajectories show strong

movement transverse to the LCS. This transverse motion makes the ridge Lagrangian with

nearby trajectories quickly leaving it.

In Figure 4.9 we show both the forward and backward FTLE fields at t0 = 400 minutes,

with the 1 m/s Eulerian vertical wind contour superimposed, which may be considered as

an Eulerian eye-eyewall boundary. At this time the wind contour is aligned along the LCS;

at other times (not shown) it is aligned across the LCS. Seeding trajectories along the LCS

(not shown) reveals that trajectories travel transverse to the LCS without crossing, but may

cross the Eulerian wind contour.

4.8 Steady state approximations

The velocity fields reside in a quasi-steady state for a period of several hours, between about

400-800 minutes. During this time period of 400 minutes the maximum tangential winds

remain in a range of 75 to 88 m/s, where they oscillate rapidly, but in an aperiodic nature.

Aside from the differences in intensity, the velocity fields show structural differences in the

periods of high maximum tangential winds and lower maximum tangential winds.

The model gives strong time dependent velocity fields, even in a relatively steady state

of intensity, leading to different structures for different initial times. The presence of a

secondary convective region outside of the main updraft changes the structures associated

with the updraft, and is important for changes in the eyewall near-core flux.

In atmospheric studies, Eulerian velocity fields are often used to approximate time-

dependent flows, [DMW09]. The idea is that Eulerian markers, such as instantaneous

stagnation points, may indicate dynamical structures such as hyperbolic trajectories. Al-

though the time-dependence of this model is too high to infer Lagrangian behavior from

Eulerian stagnation points, we make Eulerian approximations associated with high and low

wind speeds, and relate them to short-time effects. We compute two composite-averaged

velocity fields from the quasi-steady state period, refered to as strong and weak composites

(Fig. 4.10), which are representative of the phases with strong and weak maximum tan-

gential winds, respectively. The strong (weak) composite is computed by averaging over

the instantaneous velocity fields that generate maximum tangential winds at the highest

20% (lowest 20%) of maximum tangential winds over the time interval of 400-800 minutes.
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Figure 4.9: Forward (a) and backward (b) time FTLE fields at t0 = 400 minutes with 1

m/s vertical wind contour. The persistent LCS is marked in (b).
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The vertical component of the strong composite shows a single strong updraft, while the

vertical wind field of the weak composite shows a dual updraft structure, but with weaker

updraft velocities. The radial velocity fields show a more defined outflow jet for the strong

composite.

The composite fields can be considered as autonomous velocity fields. The forward and

backward FTLE fields for an autonomous velocity field correspond to finite-time, and thus

shorter in length, versions of the unstable and stable manifolds of hyperbolic fixed points.

Since the velocity field maintains high or low velocities for only a few minutes, invariant

structures can only be resolved over a similarly short integration time. Short time structures

of the autonomous velocity field can be viewed as markers for finite-time coherent struc-

tures of the full velocity fields. The manifolds of the composite velocity fields yield very

different structures, not only in the size of the FTLE values, but also in the location and

orientation. The outflow jet takes a straighter path in the strong composite FTLE field. At

the boundary layer, the weak composite FTLE field shows high values where the boundary

layer inflow meets the eyewall updraft, allowing fewer trajectories to enter the eyewall. The

secondary updraft at 35 km takes some of the boundary layer trajectories through a re-

gion with several LCS’s in the forward and backward FTLE fields of both composite fields

(Fig 4.11), and moves them upward into the region just outside of the eyewall, before a

downdraft takes them inward to the eyewall updraft. Mixing rates for the composite fields

(Tables 4.1-4.4) provide a comparison of the mixing in our six initial seed boxes, and for

weak and strong maximum tangential winds. All of the mixing rates are generally higher

for the strong composite field, for both forward and backward integrations, showing that

higher intensity coincides with greater mixing. The FMR and MMR are comparable and

are generally of the same order, with the FMR showing higher values in more regions. The

FRD and RD are comparable, with the FRD giving higher values in the boundary-layer in-

flow region due to the presence of a series of LCS’s that cause trajectories to be transported

into the eyewall updraft, or recirculation within an eddy that forms during low velocity

times in the near-core region.

The eye has little trajectory movement, and therefore little relative separation, yielding

low mixing rates for all measures. The updraft jet has little separation even with long

trajectory flights over short time intervals, and also gives low mixing rates. The highest

mixing rates occur at the boundary-layer inflow, where separation from the sea surface
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Figure 4.10: Weak composite radial (a) and vertical (b) velocity fields, and strong composite

radial (c) and vertical (d) velocity fields.
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Figure 4.11: Weak composite forward (a) and backward (b) FTLE fields, and strong

composite forward (c) and backward (d) FTLE fields, integrated for 20 minutes.
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and transport of some trajectories into the updraft give a high separation of trajectories.

The near-core has hyperbolic characteristics as a transition between a single eyewall and a

secondary region of convection occurs, but higher mixing rates are not indicative of higher

eyewall velocities, but of more hyperbolic mixing characteristics in this region.

Table 4.1: Mixing rates of strong composite velocity field for six initial boxes with 20

minutes forward integration time. For each region the mixing rates are MMR (top left),

FMR (top right), RD (bottom left), and FRD (bottom right).

.0878 .0267

.0369 .1655

.0479 .0200

.0609 .1700

.0641 .0884

.2284 .0097

eye updraft near-core

.0488 .0224

.0264 .1683

.0638 .1288

.0811 .1852

.0878 1.147

.2183 .5303

low-level eye updraft BL inflow

Table 4.2: Mixing rates of strong composite velocity field for six initial boxes with 20

minutes backward integration time. For each region the mixing rates are MMR (top left),

FMR (top right), RD (bottom left), and FRD (bottom right).

.0460 .0175

.0294 .1692

.0519 .0279

.0509 .1750

.0629 .0930

.1380 .2621

eye updraft near-core

.0553 .0400

.0181 .1666

.0718 .1567

.0482 .1833

.0770 .6421

.1849 .2837

low-level eye lower eyewall BL inflow

4.9 Time series analysis

The dependence of the mixing rates on the initial time gives time series that can be analyzed

to establish correlations between different quantities. The MMR, FMR and RD were all

computed for different integration times for the sequence of initial times.

For a quasi steady-state hurricane, the connection between intensity and mixing rates
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Table 4.3: Mixing rates of weak composite velocity field for six initial boxes with 20 minutes

forward integration time. For each region the mixing rates are MMR (top left), FMR (top

right), RD (bottom left), and FRD (bottom right).

.0286 .0184

.0322 .1368

.0274 .0103

.0466 .1452

.0381 .3446

.0841 .3084

eye updraft near-core

.0281 .0135

.0209 .1406

.1361 .1288

.0625 .1996

.0574 16.33

.1277 2.929

low-level eye updraft BL inflow

Table 4.4: Mixing rates of weak composite velocity field for six initial boxes with 20 minutes

backward integration time. For each region the mixing rates are MMR (top left), FMR (top

right), RD (bottom left), and FRD (bottom right).

.0262 .0089

.0265 .1435

.0307 .0201

.0517 .1589

.0360 .3275

.0945 .4513

eye updraft near-core

.0329 .0359

.0113 .1367

.1361 .1288

.0625 .1996

.0499 2.295

.1080 .8242

low-level eye updraft BL inflow

is not obvious, especially when the rates are determined by an integration time that lasts

longer than a complete period from high to low maximum winds, where the mixing rate

value is assigned to the initial time of integration.

The FMR is fit to an exponential decay function, but the curve of the FTLE distribution

function does not show a decay for t−t0 ≤ 10 minutes, Figure 4.4 (a). After 10 minutes, the

FMR can be computed by fitting an exponential decay curve to the remaining data, Figure

4.4 (b). The optimal integration time varies for each box, and for initial times. The mixing

functions best fit exponential functions at integration times between 20 and 80 minutes, see

Fig. 4.3(c) for the error made in the best fit of the MMR.

In [VTSG03], the MMR has been compared to the FTLE mixing rates for closed domains

in time periodic velocity fields, with the FTLE rate being measured at 10 times higher than

the measured mixing rate. By allowing initial trajectories to be dispersed into the domain
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without exiting the domain, the FMR and MMR can be considered as short-time versions

of mixing rates within a closed domain. For short time intervals, different initial conditions

can lead to significant differences in the mixing rates, as neighboring boxes can show mixing

rates differing by a factor of 10. However, rates in the same box are mostly within a factor

of 2, and the FMR is not always higher. The differences in the variations of the mixing

rates found by [VTSG03] and in our study are likely due to our restriction on integration

time and due to the nonclosedness of our domain. The relative dispersion is similar to the

FTLE’s for an initial box in that it tracks the cumulative separation of trajectories over

an integration time. The RD, Figure 4.12 (a), and FRD, Figure 4.12 (b) are fit to both a

power law (12) and exponential (13) for integration times of 20 minutes to 120 minutes. For

integration times of 20 minutes to 40 minutes, the RMS displacement, in km, most closely

fits the power law, as a portion of the initial set is advected into the updraft, while other

trajectories become temporarily entrained within finite time hyperbolic manifolds that are

in the near-core above the inflow. These trajectories soon mix into the updraft, and the

dispersion fits an exponential function more closely at integration times above 40 minutes.

The reason for the change between the power law and the exponential regime at 40 minutes

is likely that the trajectories in the updraft have reached the upper level outflow jet at this

time period.

The differences in mixing rates across different boxes for a variety of integration times

indicate that the initial boxes do divide the domain into dynamically distinct regions with

different mixing properties. In particular, the eye has relatively small trajectory movements

compared to the other regions, and all mixing rates are lower in this region. The time de-

pendent mixing rates can be tested for corrrelation against each of the extrema of the u,

v, and w winds. All of the mixing rates give higher values when there is higher averaged

trajectory separation over a time interval of integration, but the winds are given instan-

taneously. High particle velocities and velocity gradients at an initial time would indicate

high initial separation, but may not correlate to high Lagrangian rates assigned to the same

initial time. The structural differences in the strong and weak composite FTLE fields (Fig.

4.11) indicate that different mixing properties and different structures in the wind fields

may coincide with differences in intensity. Correlations of mixing rates to a time lag of

maximum winds can indicate the existence of structures which precede or be an effect of

higher intensity. Lagrangian structures are an effect of the (u,w)-velocity field from previous
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Figure 4.12: Log-log plots of the RMS displacement versus integration time T for RD (a),

and FRD (b).
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Figure 4.13: Autocorrelations of maximal tangential winds (blue), maximal outflow winds

(red), and maximal updraft winds (black).

times in a backward time integration, or future times in a forward time integration. High

or low instantaneous winds cannot be seen as neccessarily showing the structures that exist

from the maximal and minimal averaged autonomous fields, due to the unsteady nature

of the velocity fields. The instantaneous winds may be related to the effect of Lagrangian

structures appearing over a series of initial times.

Correlation of mixing rates to maximum tangential winds

The maximum tangential winds are taken here as the main indicator of intensity. The

azimuthal velocity component is not used for computing trajectories, but is coupled to the

radial and vertical velocity component through a system of PDE’s. The tangential wind is

not periodic, but oscillates between relatively high and relatively low values.

Autocorrelation values of maximal tangential winds for time lags above 6 minutes, com-

puted within the quasi-steady time window, are always below .5 (Fig. 4.13), showing little

predictability within the velocity fields during this time window. Correlations of maximal

wind values of the separate velocity components to each other are even less than .2.

The correlations of mixing rates to maximum tangential winds (some correlations above

.7) is far greater than to the extrema of radial (correlations below .5) or vertical (correlations

below .4) winds.

The oscillations of the maximum tangential winds occur over time intervals of between

20 and 40 minutes. A 40 minutes integration time is below the period of two oscillations,
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and is the maximum integration time that yields significant correlation of mixing rates to

maximum tangential winds. The rates converge to an exponential or power law after a

short time interval, and begin to show correlation after an integration time of 10 minutes.

The best fit to the power law for relative dispersion occurs for integration times of 18 to 40

minutes, long enough to resolve structures but less than the period of 2 oscillations.

The mixing rates are functions of initial time for each of the six boxes. The different

initial boxes give very different mixing rates, with higher mixing rates occuring in the boxes

that have the highest velocities. The boundary layer inflow and eyewall updraft boxes show

the highest correlations to maximum tangential winds (Figs. 4.14,4.15), for both forward

and backward integration time.

Trajectories can be integrated forward or backward in time, giving Lagrangian fields (i.e.

MMR, FMR, RD, FRD) that show attracting structures (forward integration), or repelling

structures (backward integration). For correlating a Lagrangian quantity to intensity, the

forward time integration gives Lagrangian fields that result from future velocities, while

backward time integration gives fields that result from past velocities. The wind field at an

initial time is predicted by the backward time field at that time, and predicts the forward

time field at that initial time. Backward time integration showed higher correlation with

the wind fields than forward time integration for most boxes with high correlation.

Correlating the Lagrangian fields to a time lag (Lagrangian fields trailing velocities) or

lead (velocities trailing Lagrangian fields) of the velocity field shows how the Lagrangian

structures and maximum winds are predictive of each other (Figs. 4.14,4.15). Predicting

hurricane intensity (on admittedly very short time scales) by mixing rates can be accom-

plished by showing a correlation between a backward time integration lag, since a function

of previous information would correlate to future information.

RD and FRD show similar high correlation to maximum tangential winds, suggesting

that both quantities are similar for predictability. The correlation for both measures is

higher for a backward time integration and for the Lagrangian field lagged against the max-

imum wind, which suggests that the Lagrangian measures are predictive of the maximum

winds. Higher separation and mixing rates backward in time from the eyewall updraft are

caused from a larger source of material that enters the updraft forward in time. The struc-

tures that are repelling backward in time are attracting forward in time, thus the higher

mixing rates are likely also due to the presence of a stronger updraft jet. The autonomous
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field from the highest averaged velocities shows a very strong updraft jet, while the low ve-

locities show a weaker updraft jet that is not as efficient in advecting all entering trajectories

into the outflow.

Though RD and the FRD produce similar correlations to maximal tangential winds,

especially for backward time integrations from the eyewall updraft, the RD gives slightly

stronger results. This shows that total separation is important, and using the separation

in the direction of maximal exapnsion does not give any additional advantage. Though

the relative dispersion has higher correlation to maximal winds, the FTLE fields still have

the advantage of studying the entrainment of trajectories, and viewing LCS’s. Both mea-

sures show a higher correlation at 20 minutes and the correlation begins to diminish at

an integration time of 40 minutes. The RD is useful for both forward and backward time

integration (Figs. 4.14,4.16), while the FRD is useful only for backward time integration

(Figs. 4.14,4.15). The MMR does not show correlation as high as the other rates, but

shows some correlation for the shortest integration time of 20 minutes (Fig. 4.15). The

MMR is dependent on the final position of trajectories, and not only on the separation of

trajectories. Over longer integration times, this could make the MMR more sensitive to

movement caused by gravity waves.

The FRD shows negative correlation of -.6684 to maximal inflow winds for the boundary

layer inflow box with a forward time integration of 20 minutes and a 4 minutes time lag,

which shows that enhanced mixing is correlated with the enhancement of the BL inflow

(a negative of the extreme minimum of the u field). The boundary layer inflow has more

hyperbolic mixing characteristics than the other regions, which may make FTLE’s better

suited as a mixing measure in this region. This is the only region where the FRD shows

higher correlation than the RD. The eyewall updraft box also shows negative correlation

from FTLE’s with a forward time integration.

While higher velocities are generally associated with higher mixing rates, the presence

of hyperbolic structures may allow or inhibit transport, which may precede or trail higher

intensities. A lead or lag of mixing rates to velocities is then appropriate to capture the

hyperbolic effects. In many cases, the correlation improved when the Lagrangian rates

were lagged against the maximum winds. The Lagrangian structures are then predictive

of maximum tangential winds. Correlation of 0.6 or higher is present for a lag of up to 10

minutes, which is about half of a period of oscillation of the maximum tangential winds.
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Figure 4.14: Correlations of mixing rates for the BL inflow box lagged by t to maximal

tangential winds with (a) 20 min. and (b) 30 min. integration time for FMR (red), FRD

(black), MMR (blue), and RD (green). Filled circles indicate correlation above a 99%

confidence threshold, while open circles indicate correlations above 95% but below 99%

confidence.
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Figure 4.15: Correlations of mixing rates for the BL inflow box (a) and eyewall updraft box

(b) lagged by t to maximal tangential winds with 20 min. backward integration time for

FMR (red), FRD (black), MMR (blue), and RD (green). Filled circles indicate correlation

above a 99% confidence threshold, while open circles indicate correlations above 95% but

below 99% confidence.
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Figure 4.16: (a) Normalized relative dispersion for 20 minutes backward integration (blue),

and maximum tangential winds delayed 4 minutes (red). (b) Relative dispersion for 20

minutes backward integration time against maximum tangential winds, with linear best fit

and norm of residuals.
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The highest correlations occur for 2 to 6 minutes lags, which means that the initial time of

integration for the Lagrangian fields is at a time where the maximum tangential winds are

increasing, but before the local maximum occurs.

4.10 Concluding remarks

Lagrangian mixing for the complex velocity fields of the axisymmetric hurricane model of

[RE87] has been studied. The inner core region was shown to have Lagrangian structures

that vary over time, and play a prominent role for mixing in the region, which is related to

hurricane intensity. We have produced mixing rates that correlate to maximum winds, and

can be used for a short time prediction of the maximum winds. The mixing rates computed

in our study are an extension of mixing rates of [AJFOGL96] and [HMG01] established

for closed regions or time-periodic velocity fields. In particular, our rates depend on initial

time, integration time, time lag, and two spatial coordinates. Various measures of maximal

Eularian intensity have been extracted from the u, w, and v wind fields, and compared to

the time-dependent mixing rates. A correlation analysis showed that the rates have highest

correlation to the maximum tangential winds. The conclusions drawn are that episodes of

enhanced mixing between the low-level eye and eyewall preceed short-time enhancements

of intensity, and thus favor the interpretation that new local generation of buoyancy at the

eyewall lead to enhanced thermodynamic cycling of the hurricane heat engine. In principle,

the mixing could have been responsive of short-term fluctuations of intensity in response

to enhanced flow gradients, or mixing could have directly spun down tangential winds

through angular momentum mixing, but since mixing precedes such episodes, neither of

these explanations can be favored by the present results. Further work will use a canonical

correlation analysis to find correlations between the mixing rates as well as the maximal

winds. The methods presented here will also be extended to a three-dimensional hurricane

model.



Chapter 5

Advective mixing in a nondivergent

barotropic hurricane model

5.1 Summary

This chapter studies Lagrangian mixing in a two-dimensional barotropic model for hurricane-

like vortices. Since such flows show high shearing in the radial direction, particle separa-

tion across shear-lines is diagnosed through a Lagrangian field, referred to as R-field, that

measures trajectory separation orthogonal to the Lagrangian velocity. The shear-lines are

identified with the level-contours of another Lagrangian field, referred to as S-field, that

measures the average shear-strength along a trajectory. Other fields used for model diagnos-

tics are the Lagrangian field of finite-time Lyapunov exponents (FTLE-field), the Eulerian

Q-field, and the angular velocity field. Because of the high shearing, the FTLE-field is not

a suitable indicator for advective mixing, and in particular does not exhibit ridges mark-

ing the location of finite-time stable and unstable manifolds. The FTLE-field is similar in

structure to the radial derivative of the angular velocity. In contrast, persisting ridges and

valleys can be clearly recognized in the R-field, and their propagation speed indicates that

transport across shear-lines is caused by Rossby waves. A radial mixing rate derived from

the R-field gives a time-dependent measure of flux across the shear-lines. On the other hand,

a measured mixing rate across the shear-lines, which counts trajectory crossings, confirms

the results from the R-field mixing rate, and shows high mixing in the eyewall region after

the formation of a polygonal eyewall, which continues until the vortex breaks down. The

location of the R-field ridges elucidates the role of radial mixing for the interaction and

56
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breakdown of the mesovortices shown by the model.

5.2 Background and overview

Several recent studies [FR99, FR01, MBAB06, HS09] are devoted to the mixing of fluid

from different regions of a hurricane, which is considered as a fundamental mechanism that

is intimately related to hurricane intensity. A complete understanding of these mixing pro-

cesses, in particular the eye-eyewall mixing [CPMB07, MBAB06, Wil01], is expected to

significantly enhance our understanding of the physical mechanisms sustaining the hurri-

cane. Since mixing is based on particle motion, the Lagrangian frame of reference provides

the most natural framework in which it can be diagnosed. Much progress has been made

in recent years in the study of Lagrangian mixing in two-dimensional incompressible flows

[HP97, HY00, Hal01b, SH08, Hal02, SLM05], resulting in a number of different, though

related diagnostics, most of which are based on concepts from dynamical systems theory.

For applications of Lagrangian techniques to atmospheric models, see [JL01] and [HMG01].

Much insight into specific aspects of mixing in hurricanes can be gained from the study

of simplified two-dimensional models. Basically there are two classes of such models: Ax-

isymmetric models, most notably the model of [RE87], and planar models such as the model

of [KS01] and [SMT+99]. In this chapter we apply Lagrangian techniques to analyze mixing

in the planar, nondivergent barotropic model of [KS01]. Our analysis confirms a study of

[KE01] which illustrates that significant eye-eyewall mixing occurs during polygonal eye-

wall transitions. Lagrangian mixing in the axisymmetric model introduced in [RE87] is

investigated in Chapter 4. For another discussion of axisymmetric mixing, see [WD06].

The model studied in this chapter provides a two-dimensional representation of a hurri-

cane that initiates with an annular ring of enhanced vorticity, and then undergoes a vortex

breakdown resulting in a monopolar end state. During the breakdown, a polygonal eyewall

occurs, which forms four elliptical pools of high vorticity. Mixing of potential vorticity,

which in this model is proportional to relative vorticity, can be visualized using Eulerian

diagnostic measures of instantaneous particle separation. A commonly used Eulerian di-

agnostic is the so called Q-field, derived from the Jacobian of the Eulerian velocity field.

According to the Okubo-Weiss criterion [SMT+99], positive values of this field indicate

instantaneous particle separation, whereas negative values indicate contraction. For our

model, the Q field shows that regions of high relative vorticity gradient are also places
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where high trajectory separation and mixing occurs.

While Eulerian measures of mixing can only diagnose instantaneous particle separation,

Lagrangian techniques utilize a moving frame approach along trajectories and compute mea-

sures for the average separation over a finite integration time. This approach is particularly

useful in time-dependent velocity fields, where trajectories may cross Eulerian streamlines

[DMW09]. Much of the recent work in Lagrangian mixing has extended the ideas of hy-

perbolicity for steady flows to time dependent velocity fields [Hal01a, HP97, HY00, Hal00,

MW98], generalizing the concept of stable and unstable manifolds of an equilibrium to the

stable and unstable manifolds of a hyperbolic trajectory. These manifolds are referred to as

Lagrangian coherent structures (LCS’s). Even in two-dimensional flows, time-dependence

can give rise to multiple intersections of these manifolds, leading to a partition of the flow

into invariant regions (lobes), and to mixing through the lobe dynamics [MW98, CW00].

Efficient visualization of LCS’s is accomplished through the construction of Lagrangian

scalar fields, which measure separation of nearby trajectories. Current Lagrangian methods

utilize a variety of fields, including finite-time Lyapunov exponents [HP97, HY00, Hal00,

Hal04], finite-size Lyapunov exponents [KL02, GRH07], and relative dispersion [HMG01].

Each of these methods defines a scalar field and the LCS’s as maximal ridges of that field.

To study Lagrangian mixing in our model, we compute particle trajectories from the

numerically calculated, time-varying velocity field. The Lagrangian diagnostic fields are

functions of the initial time and position at which the trajectories are seeded. A compar-

ison of these fields with the Okubo-Weiss criterion indicates that high particle separation

predicted from theQ-field typically does not coincide with Lagrangian hyperbolic structures,

however the Lagrangian Q-field, formed by integrating Q-values along particle trajectories,

shows a greater relation to other Lagrangian fields.

An important feature of the particle trajectories calculated from our model is that they

show an almost circular motion, combined with high shearing in the radial direction. The

problem caused by this high shear is that trajectory separation and mixing occur without

the entrainment of trajectories, as the mixing is largely diffusive. A key question that we

aim to answer is whether coherent structures that play a role in the systematic transport

of trajectories can persist through high shear.

Distinct regions of trajectories with similar properties become more difficult to distin-

guish through the use of scalar fields which measure only distance, such as the field of
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finite-time Lyapunov exponents (FTLE-field). In fact, the FTLE-field computed from our

model does not show distinguished ridges characteristic of hyperbolic mixing. Instead, the

structure of the FTLE-field is very similar to the structure of the radial derivative of the

angular velocity, indicating that the FTLE-field is dominated by the shear and not by

hyperbolic mixing.

In order to separate shear from hyperbolic mixing we follow the approach used in [HI03],

and decompose the separation of trajectories in the directions along and normal to the

Lagrangian velocity. This approach allows us to identify two Lagrangian fields: The R-field,

which is a diagnostic for hyperbolic mixing normal to the Lagrangian velocity, and the S-

field, which is a measure of shearing, and is used to define shear-lines by its level-contours.

In contrast to the FTLE-field, the R-field shows distinct ridges and valleys observable as

coherent structures. The evolution of these structures provides a mechanism for mixing

through the eyewall, and their speed indicates that this mixing is caused by Rossby waves.

The structures are particularly distinct after polygonal eyewall formation, and they persist

until the vortex breaks down, in regions where the Okubo-Weiss criterion predicts pools of

high separation associated with the formation of pools of high vorticity.

We note that another approach to diagnosing mixing in the presence of shear is based

on subtracting a mean shear from the flow. This approach was introduced by [AM78]

using a generalized Lagrangian mean for nonlinear waves, and was subsequently developed

further and refined to a modified Lagrangian mean to quantify and distinguish stirring from

irreversible mixing, see [McI80] and [Dun80].

The time-dependence of our velocity field leads to time-dependent shear-lines, and re-

gions of high orthogonal (hyperbolic) separation lead to sets of trajectories that are mixed

through the shear-lines. We quantify this mixing by introducing measured (via trajectory

counting) and predicted (from the R-field) mixing rates. In addition, we study radial mix-

ing rates defined by angular averages of the FTLE-field, the S-field, and the R-field. The

mixing rates defined through the former two fields are characteristic of shearing and give

spuriously a false sense of mixing during the initial phase of the model, where “true mixing”

occurs after the polygonal eyewall formation.

In previous work on the same model, [HS09] have applied the Lagrangian-Eulerian

hybrid method of effective diffusion [Nak96, SH03]. Here diffusive mixing properties are

computed based on the increasing lengths of the vorticity contours, with the computations
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initialized at the initial time of the model. The resulting mixing rate is a function of an

effective radius and the integration time, and shows similar structures as our mixing rates.

Our methods depart from those of [HS09] in that we utilize a moving time window,

which attributes mixing to short-time advective events. Rather than determining contour

lengths, we study transport across contours of the S-field. The resulting mixing rates are

completely determined by the given velocity field, that is, they do not depend on a chosen

initial profile of the tracer distribution.

The outline of the chapter is as follows. We begin, in Section 5.3, with an overview

of the nondivergent barotropic model, and of the numerical methods used to compute the

velocity field and the particle trajectories. In Section 5.4 we introduce the scalar fields

utilized for diagnosing mixing and shear: The Eulerian Q-field, the Lagrangian Q-field, the

angular velocity field, the Lagrangian FTLE-field, the R-field, and the S-field. The latter

two fields are extracted from the transformed variational system introduced in [HI03]. The

main results of the chapter are presented in Sections 5.5-5.7. In Section 5.5 we study the

behavior of the three Lagrangian fields for a fixed initial time of 6 hours, after a polygonal

eyewall has formed, and for different integration times. The ridge, valley, and edge structures

observed in the R-field are identified with coherent structures and invariant sets relative to

the shearing. In Section 5.6 we fix the integration time to 1 hour and study the diagnostic

fields for varying initial times. The structures observed in these fields are related to different

mixing processes occurring during the three main phases of the model: crystalization in

which polygonal eyewall features form and develop filamentation, vortex interaction and

merger which destroy the symmertry, and final collapse into a monopole. Section 5.7 is

devoted to the mixing rates mentioned before, which are displayed as functions of initial

time and either radius or value of S along a shear-line. Concluding remarks and an outlook

on future work are given in Section 5.8.

5.3 Model overview

The model used in this chapter is the 2D nondivergent barotropic model for hurricane-like

vortices studied by [KS01, KE01, SMT+99]. The velocity field, u(x, t) = (u(x, t), v(x, t))∗

with x = (x, y)∗ ∈ R
2 (asteriks denote transposed vectors or matrices), is given as the
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solution on the f -plane of the incompressible Navier Stokes equation,

∂u

∂t
+ (u · ∇)u− fBu +

1

ρ
∇p = ν∇2u, (5.1)

∇ · u = 0, (5.2)

where

B =


 0 1

−1 0


 ,

p is the pressure, ρ the constant density, f the constant Coriolis parameter, and ν the

constant viscosity, chosen to be 100 m2 s−1. In the choice of ν we follow [SMT+99], while

[KS01] used 5 m2 s−1. The choice of viscosity may have an effect on long time mixing

processes, which could be studied by the methods of [HS09]. Expressing the velocity in

terms of a streamfunction ψ(x, t) as u = −B∇ψ and eliminating the pressure from (5.1),

leads to the equation

∂ζ

∂t
+
∂ψ

∂x

∂ζ

∂y
−
∂ψ

∂y

∂ζ

∂x
= ν∇2ζ, (5.3)

where ζ = ∇2ψ is the relative vorticity. Following [KS01], we impose periodic boundary

conditions on ψ with a fundamental domain of 600 km × 600 km, and choose as initial

condition an almost circular symmetric ring of vorticity, ζ0(r, θ), to model a 2D hurricane

after an initial eyewall has formed. The defining equation of ζ0(r, θ) is the equation used in

[KS01].

Equation (5.3) was solved numerically using a Fourier pseudospectral method with 512×

512 collocation points. Dealiasing results in 170× 170 Fourier modes. The ODE-system for

the Fourier modes was solved via Matlab’s ode45 routine, which implements a fourth order

Runge-Kutta method with adaptive time steps.

In our numerical calculation of ψ and ζ, we reproduced the behavior observed in

[SMT+99]. The annular ring of high vorticity fluid develops a wavenumber 4 asymme-

try, which is present in the vorticity fields as early as 2 hours, and develops into a polygonal

eyewall, with 4 mesovortices after 6 hours. After 8 hours, the mesovortices begin to break

down and merge. The breakdown of the mesovortices is nearly complete after 12 hours,

and mixing of high and low vorticity occurs along long filament structures. The relative

vorticity fields during these times can be seen in Figs. 5.6–5.11 (a). After 24 hours, diffusive

mixing along the filaments leads to a more mixed state. Few pools of high or low vorticity

fluid remain, with a pool of low-vorticity fluid from the eye migrating through the eyewall,
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and high vorticity fluid redistributing in the eye. After 48 hours, a high vorticity eye and a

low vorticity environment remain in a monopole endstate. The eyewall is no longer present

as there is no longer a strong angular velocity gradient.

In this chapter we study Lagrangian mixing in the model, which is based on following

trajectories for varying initial times. The trajectories were calculated with the same spatial

and temporal resolution as the model output, using a fourth order Runge-Kutta method

with a fixed time step of 7.5 s. Because of time and memory limitations associated with the

large number of trajectories needed for quantifying mixing over a sequence of initial times,

the trajectories used for computing time-dependent mixing rates were calculated with a

time step of 60 s. Comparison of the results for the two time steps for a small random

set of initial conditions showed that the use of the coarser time resolution in the mixing

calculations is justified.

5.4 Diagnostic fields for mixing and shear

In this section we introduce the scalar fields utilized to diagnose the particle flow resulting

from the numerically calculated velocity field. A main characteristic feature of the model

is an almost circular motion, the trajectories encircle the origin in the counterclockwise

direction. The model shows a strong variation of the particle speed |u| in the radial direction.

This variation leads to high shearing that dominates the particle separation, but is not the

result of hyperbolic trajectory separation. Superimposed on this shear effect is hyperbolic

mixing due to trajectory separation in directions orthogonal to the velocity.

In order to diagnose hyperbolicity, we exploit the Lagrangian field introduced in [HI03],

in which hyperbolic trajectory splitting is separated from particle separation due to shearing.

The more common FTLE-field is also analyzed, however, this field is dominated by the shear

and hence not suitable as an indicator for hyperbolic mixing. In order to quantify hyperbolic

mixing, we define closed shear lines as contour lines of a suitably defined shear field, and

measure and predict transport across these lines (Section 5.7). Further indicators used in

our study are two Eulerian fields: The Hessean determinant of the streamfunction (Q-field),

and the radial gradient of the instantaneous angular velocity.
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5.4.1 Eulerian fields

Q-field

Eulerian trajectory separation occurs when the linearized velocity shows local expansion of

area. The local variation of area can be inferred from the Jacobian of the velocity field, that

is, from the Hessian determinant of the streamfunction, which is referred to as the Q-field,

Q(x, t) = ψ2
xy(x, t)− ψxx(x, t)ψyy(x, t). (5.4)

According to the Okubo-Weiss criterion [SMT+99], regions with Q > 0 show local trajectory

repulsion, whereas regions with Q < 0 show local attraction. The Q-field allows diagnosis of

instantaneous separation, which typically differs from Lagrangian measures of separation.

Angular velocity

The strong rotation and near symmetry of the flow suggests that polar coordinates (r, θ)

provide a useful coordinate system for displaying fields calculated from the velocity field. In

particular, the quasi-circular behavior of trajectories suggests that the angular velocity, ω =

r−1u · (− sin θ, cos θ)∗, is an approximate measure of the particle speed, and the derivative

∂ω/∂r is an approximate measure of shearing.

For any scalar field ϕ(x, t), a measure for the radial variation is provided by the angular

average, indicated by an over-bar,

ϕ(r, t) =
1

2π

∫ 2π

0
ϕ(r, θ, t) dθ.

Contours of ∂ω
∂r are shown in Figs. 5.6–5.11 (d-f) showing the relationship of maxima

(maximum normal propogating shear), and minima (maximum counter propogating shear)

of ∂ω
∂r to features of other scalar fields.

5.4.2 Lagrangian fields

Let φt
t0(x0) be the flow map associated with the equation

ẋ = u(x, t) (5.5)

for particle trajectories x(t), that is, the solution of (5.5) with initial condition x(t0) = x0.

Small perturbations in the initial condition, y0 = x0 + ξ0, lead to a perturbed trajectory
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y(t) = x(t) + ξ(t). For sufficiently small |ξ0|, the perturbation ξ(t) can be approximated

through the Jacobian of the flow map as

ξ(t) = ∇φt
t0(x0)ξ0, (5.6)

which satisfies the variational equation

ξ̇ = ∇u(x(t), t)ξ. (5.7)

For our velocity field, the particle separation is dominated by the shearing in the radial

direction. As a result, the FTLE-values (see Chapter 3.4.1) measure growth of perturbations

in approximately angular directions, and high FTLE-values (ridges) occur near extrema of

∂ω/∂r, whereas low FTLE-values occur near zero contours of ∂ω/∂r. Generally, FTLE-

fields are not suitable as indicators of hyperbolic mixing in the presence of high shear.

Integrated Q-field

In addition to the instantaneous Q-field, equation (5.4), we consider the integrated Q-field,

formed by integrating Q along trajectories

Q̂(x, t) =

∫ t0+T

t0

Q(x0(t), t)dt. (5.8)

Lagrangian fields for hyperbolic mixing and shear

Following [HI03], in order to separate mixing and shear in the variational system (5.7), a

moving frame of reference is introduced by setting

ξ = M(x(t), t)η, (5.9)

where the component vectors of the matrix M ,

M(x, t) =
1

|u(x, t)|
(u(x, t),u⊥(x, t)), u⊥ = (−v, u)∗,

are the normalized fluid velocity u/|u|, and the unit vector orthogonal to u. This transfor-

mation is motivated by the fact that for autonomous velocity fields, u = u(x), u(x(t)) is a

solution of (5.7). Although our numerically computed fluid velocity is non-autonomous, its

time variation is slow, so that u(x(t), t) is still close to a solution of (5.7) for finite times.

The transformed system for η can be written in the form [HI03],

η̇ =
[
A(t) + b(t)B

]
η, (5.10)
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where

A(t) =


 −r(x(t), t) a(x(t), t)

0 r(x(t), t)


 ,

b(t) =
1

|u|2
u⊥ · ut |x=x(t) ,

r(x, t) =
1

|u|2
(u⊥)∗(∇u)u⊥

=
1

|u|2
(
u2vy − uv(uy + vx) + v2ux

)
,

and the non-diagonal entry a is composed of two parts,

a(x, t) = s(x, t) + d(x, t),

where

s(x, t) =
1

|u|2
u∗(∇u)u⊥

=
1

|u|2
(
u2uy + uv(vy − ux)− v2vx

)
,

d(x, t) =
1

|u|2
(u⊥)∗(∇u)u

=
1

|u|2
(
u2vx + uv(vy − ux)− v2uy

)
.

The terms in the transformed linearized system (5.10) motivate the definition of Lagrangian

fields as diagnostics for hyperbolic mixing and shear. Since our velocity field is slowly varying

in time, the terms associated with b(t) in (5.10) are neglected in these definitions.

5.4.3 R-field

As a consequence of incompressibility, the matrix A(t) has the eigenvalues ±r(x(t), t). Fix-

ing an integration time T , the integrated field R,

R(x0, t0) =

∫ t0+T

t0

r(φt0+τ
t0

(x0), τ) dτ, (5.11)

describes the growth of a perturbation in the direction orthogonal to the Lagrangian velocity,

and the ratio R/|T | plays the role of a finite-time Lyapunov exponent in this direction. Thus

R is a measure of attraction (R < 0) or repulsion (R > 0) of nearby trajectories towards

x(t) over the integration interval [t0, t0+T ]. Due to incompressibility, expansion orthogonal

to u is combined with contraction in the direction of u and vice versa.

We note that in the limit T → ∞, R reduces to the mixing efficiency proposed by

[Ott89], when this efficiency is evaluated in the direction orthogonal to u. In our study, R
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will be used as the main diagnostic field for hyperbolicity, and in addition as a means to

predict mixing rates across the shear-lines defined below.

5.4.4 S-field

The term s(x, t) can be written in the form

s(x, t) =
(
∇|u(x, t)|

)
· u⊥(x, t), (5.12)

and hence characterizes the rate of change of the particle speed in the direction orthogonal

to the velocity. Thus s is a local, Eulerian measure of shear in the fluid flow. We define the

S-field by integrating s along trajectories,

S(x0, t0) =

∫ t0+T

t0

s(φt0+τ
t0

(x0), τ) dτ, (5.13)

and use S as a Lagrangian diagnostic field for shearing.

We note that an alternative Lagrangian measure of shear has been defined in [HI03]

using the non-diagonal entry of the fundamental matrix of η̇ = A(t)η. However, this

field involves a double time-integral and is computationally more expensive. The S-field

has a straightforward interpretation as shear-diagnostic due to (5.12), and requires less

computational effort.

As in the case of the FTLE-field, we distinguish forward (T > 0) and backward (T < 0)

fields for both R and S.

5.4.5 Shear-lines

For a given integration time T , we define the shear-line of strength C at initial time t0 as

the level contour of S, i.e.,

SC = {x0 |S(x0, t0) = C}.

High values of |C| correspond to lines with high shear. For our model, the shear lines are

all closed curves around the origin (distorted circles). Positive and negative values of S

indicate that the Lagrangian speed increases when moving radially outwards and inwards,

respectively. We refer to the first case as “normal propagating shear” and to the second

case as “counter-propagating shear.” Hyperbolic mixing measured by R is associated with

transport across the shear-lines. This will be used in Section 5.7 to define mixing rates.
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5.5 Lagrangian fields and coherent structures

In Figures 5.1, 5.2, and 5.3 we show forward and backward FTLE-, S-, and R-fields, re-

spectively, at the initial time t0 = 6 hrs, after the polygonal eyewall has formed, and for

integration times T = ±15 min, T = ±30 min, and T = ±120 min. For T = ±15 min, the

FTLE-field (Figure 5.1a,b) reveals coherent structures near the polygonal eyewall, since the

effect of the shear is not so pronounced over this short time range. For increasing |T | the

shear becomes dominant, and the FTLE-level contours evolve into distorted circles (Fig-

ure 5.1c–f). Comparison of the azimuthally averaged fields (Section 5.6) shows that high

FTLE-values occur near extreme values of ∂ω/∂r. While high FTLE-values correspond

to high trajectory separation, they do not give clear LCS’s (ridges) for longer integration

times. LCS’s can be seen only at very short integration times (Figure 5.1a,b), and in re-

gions that are predicted by the Q-field. As integration time is increased (Figure 5.1c–f), the

LCS’s do lengthen as expected, but they also become broader. In particular, the LCS’s for

T = ±15 min that are located near the corners of the eyewall, converge into a single broad

ring that represents an annulus of high shear.

The S-field (Figure 5.2) is a shear-indicator, and its level contours (the shear-lines) are

distorted circles for all integration times. The FTLE-field shows similar structures as the

S-field for longer integration times, confirming that trajectory separation is mainly due to

shear.

The R-field (Figure 5.3) shows structures of high and low R-values that persist over a

series of integration times, making them coherent. These structures lengthen and become

more resolved (narrower) when the integration time increases. Initial points on ridges

and valleys have R > 0 and R < 0, indicating strong separation and contraction in the

(approximately radial) direction orthogonal to the Lagrangian velocity, respectively. The

structures exist in both the forward and backward time fields, and some of the forward and

backward time structures have intersection points. Since the R-field is radially continuous,

high values of the R-field lead to trajectories that show high net movement orthogonal to the

Lagrangian velocity, and hence are more likely to cross shear-lines. Since the structures span

across the shear-lines, they are not Lagrangian, as trajectories with high angular velocity

pass trajectories with lower angular velocity.

A prominent feature of the forward R-field at t0 = 6 hours (and later) are the filaments

observable in Figure 5.3a,c,e, which are a consequence of the polygonal eyewall. At t0 = 2 hrs
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(Figure 5.4a) no filaments are observed. The filamentation concerns the ridges and valleys,

as well as the edges between them.

5.5.1 An advective mixing mechanism

Initial conditions x0 that satisfy R(x0, t0) = 0 are invariant in the sense that there is no net

movement of neighboring trajectories relative to the Lagrangian velocity. As can be seen

in Figures 5.3 and 5.4a, ridges and valleys of R come in nearby pairs, and the ridge and

valley of a pair are separated by a segment of a zero contour which forms (approximately)

an edge of the R-field. The edge is neutrally stable, that is, it attracts from one side (from

the ridge) and repels from the other side (towards the valley). The situation is illustrated

in Figure 5.4a,c,d for t0 = 2 hrs. At this initial time the motion is almost circular (Figure

5.4b), but motion across shear-lines can be observed already.

Let R be a structure (ridge or valley) of R at initial time t0. The structure is coherent

in the sense that it evolves continuously, for varying initial time, into a structure R′ seen

as a ridge or valley of R at initial time t0 + τ . It is, however, not Lagrangian because it is

not advected with the flow, that is, the image of R under the flow map, Rτ = φt0+τ
t0

(R),

has advanced farther from R than R′, and is not a structure of R at t0 + τ . (Figure 5.5a).

Generally we observe that the coherent structures move at a slower rotational speed than

that of the mean flow, which can be attributed to the effect of Rossby waves [ML97].

A coherent structure R has a leading and a lagging end relative to counterclockwise

rotation. Concerning the evolution of R under the flow map, two cases can occur for

structures computed in a forward time integration:

(a) If the leading end is at higher angular velocity than the lagging end, then the image

RT of R under φt0+T
t0

is lengthened over the integration and tends to align with a

contour of the S-field (Figure 5.5b).

(b) If the leading end is at lower angular velocity than the lagging end, then the flow map

rotates R, and for sufficiently large T the image RT tends to align with a contour of

the S-field in the opposite direction (Figure 5.5c).

For a nearby pair of a ridge and a valley, the relative position of their flow map images is

preserved in case (a), whereas in case (b) they switch position. This rotation and position

switching are a mechanism for the advective mixing during the polygonal eyewall stage. The
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Figure 5.1: Forward and backward FTLE-fields at the initial time t0 = 6 hours integrated

(a) 15 min, (b) −15 min, (c) 30 min, (d) −30 min, (e) 120 min, and (f) −120 min.
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Figure 5.2: Forward and backward S-fields at the initial time t0 = 6 hours integrated (a)

15 min, (b) −15 min, (c) 30 min, (d) −30 min, (e) 120 min, and (f) −120 min.
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Figure 5.3: Forward and backward R-fields at the initial time t0 = 6 hours integrated (a)

15 min, (b) −15 min, (c) 30 min, (d) −30 min, (e) 120 min, and (f) −120 min.
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square eyewall gives four valleys and ridges aligned in a way that four sets of trajectories

pass from outside to inside and four from inside to outside of an S-contour. The combination

of ridge-edge-valley sets of R, aligned with the leading ends at lower angular velocity, can

be seen as an indicator of fluid regions that will roll into mesovortices over the forward

integration time. Thus the strength and size of the surrounding ridges and valleys are an

indicator of the potential flux in and out of the mesovortex.

5.6 Field diagnostics for varying initial time

In Figures 5.6–5.11 we show in (a) the relative vorticity, in (b) the Q-field, and in (c) the

R-field with overlayed vorticity contours chosen to illustrate the relation between R-field

structures, and vorticity structures. We show the S-field, integrated Q-field, and FTLE

field in (d), (e), and (f) respectively, together with contours (from inside to outside) of the

maximum normal propogating shear, the maximum tangential velocity, and the maximum

counterpropogating shear. The initial times in these figures are t0 = 2 hrs, 4 hrs, 6 hrs, 8 hrs,

10 hrs, and 12 hrs, and the integration time is T = 1 hr.

Since the shear-lines are distorted circles, we can interpret the average σ(r0, t0) (r0 =

|x0|) as radial mixing rate. In all Figures 5.6–5.11 (d-f) we observe that extreme Q̂, S, and

FTLE-values occur at extrema of ∂ω/∂r, demonstrating that the Q̂, S, and FTLE-fields are

dominated by the shear. A similar interpretation as radial mixing rates can be attributed

to the averages S(r0, t0) and R(r0, t0). Plots of S and σreveal these two averages are very

similar in structure, as both measure shear. The quantity R can be interpreted as a measure

of hyperbolic mixing, which is important for transport through the eyewall.

5.6.1 2–4 hours: Initial state

At the initial time of 2 hours (Figure 5.6), the model is still close to the initial state and shows

a broad ring of high vorticity fluid. While the vorticity, Q, S, and FTLE-fields are almost

circular-symmetric, the R-field shows distinct lines of high radial mixing, demostrating that

coherent structures can persist through dominant shear. The wavenumber four asymmetry

begins to show in the R-field, particularly in the forward time integration, atthough the

initial vorticity profile is nearly preserved, with any asymmetries barely noticible. The

rotation of the R-ridges and valleys in this stage allows the crystallization that is neccessary

for mesovortex formation.
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Figure 5.4: (a) R-field with ridges and valleys and (b) Lagrangian speed at t0 = 2 hrs.

(c) Zoom of box A from R-field showing repelling edge, and (d) zoom of box B showing

attracting edge. Integration time is T = 60 min. Black lines show the azimuthal velocity at

the initial time.
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Figure 5.5: (a) Sketch of a structure R of R at initial time t0, the associated structure

R′ of R at initial time t0 + τ , and the flow map image Rτ = φt0+τ
t0

(R), illustrating the

non-Lagrangian nature of the coherent structures. (b) Structure R crossing an S contour

with speed above the contour higher than the speed below, and flow map image RT after

an integration time. Leading and lagging ends of R and their images on RT are marked

by a triangle and a square, respectively. (c) Same as (b) with opposite orientation of R

relative to the contour, leading to a rotation of RT .
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At 4 hours (Figure 5.7), much of the symmetry of the initial state still remains. A forward

time integration begins to display asymmetries in the Q, FTLE- and S-fields, whereas the

R-field retains the structures that were present at 2 hours. At 4 hours the backward time

integration of R (not shown) also shows regions of high orthogonal separation.

5.6.2 6–8 hours: Polygonal eyewall

At 6 hours (Figure 5.8), the vorticity field shows a polygonal eyewall structure, where the

flow resembles a nonlinear critical layer for dry barotropic instability. A square inner eyewall

structure forms, with pools of low vorticity fluid organized into the corners of the eye. The

fluid is largely unmixed, with low vorticity fluid organized in the mesovortices, where it is

largely protected from the outer flow. Since vorticity is materially conserved, low vorticity

fluid from the eye and environment must replace the fluid that left the eyewall. The fluid

that is mixed across the boundaries is consistent with the ridges and valleys of the R-field.

The filamentation that develops from the stretching of high vorticity fluid that exits from

the vorticity ring to the environment, can be seen in the form of spiral bands in the vorticity

field.

The Q-field shows that, instantaneously, high trajectory separation occurs along the

square boundary of the inner eyewall. The pools of low vorticity show instantaneous con-

traction. The outer vorticity ring shows high trajectory separation. Even when the FTLE-

fields are calculated for the small integration time of T = 3 minutes, there is a noticible

difference between the separation points of the Q-field and the FTLE-field. The square

eyewall formation corresponds to four structures of high FTLE-values in both the forward

and backward time fields for short integration times. As integration time is increased, the

structures lengthen and are no longer distinguishable.

The R field shows a series of ridges and valleys that originated as coherent structures

from the earlier times, but are not as refined as previous structures. There are also structures

emanating outward from the ring of high vorticity that may play the role of protecting the

ring from interaction with the outer flow [DMW09]. If our model was a true representation

of a wave critical layer, the structures would correspond to dividing streamlines, but the high

shear prohibits this. The maximal R-regions are located at the same places that show high

FTLE-values, but with much greater resolution than the FTLE-fields, which are blurred by

the shear.



76

At 8 hours (Figure 5.9), the polygonal eyewall structure that is present at 6 hours is

still clearly visible. The R-field has similar properties as the R-field at 6 hours (Figure 5.8),

with the coherent structures begining to merge, showing intense mixing.

5.6.3 Later state: mixing into a monopole

The period after t0 = 8 hours until t0 = 12 hours exhibits intense mixing that leads to a

collapse into a monopole end state.

For t0 = 10 hours (Figure 5.10), the Q-field is less square, and the R-field shows high

mixing in two distinct regions, one with expansion and one with contraction. The region

of expansion is inside the ring of high vorticity, while the region of contraction has become

organized in the dominant mesovortex, which is the “winner” and survives to become the

primary vortex during the collapse into the monopole end state, Note that the merging of

LCS’s into a single LCS is a bifurcation, and cannot happen if they represent true stable and

unstable manifolds, however the coherent structures here are not entirely Lagrangian, yet

their interactions and bifurcations play an important role in the systematic mixing during

mesovortex interaction. As more advection (stirring) in and out of the eyewall occurs,

there is filamentation of the initial vorticity-contours with diffusive mixing occurring along

the lengthening contour boundaries, leading to an “averaging” of vorticity values through

diffusion.

For t0 = 12 hours (Figure 5.11), the inner ring of vorticity has broken down. The

FTLE- and S-fields show the outer rings converged as a thick ring, and the model is entering

the monopole state. The R-field coherent structures now show the dominant mesovortex

migrating to the center and the other mesovortices are disappearing due to their annihilation

by the dominant mesovortex. Regions of high R-values are pushed outward, indicationg

mixing with the outer flow. At this stage, there is a single remaining protecting R-ridge,

on the outside of the remaining high vorticity ring, which has served the role of protecting

the mesovortex that eventually becomes the “winner”.

Beyond 12 hours, the initial regions of vorticity are not recognizable, and high (although

not as high as the initial state) vorticity fluid begins to organize into the eye. The low

vorticity fluid from the eye becomes well mixed, and the eyewall and environment become

filled with relatively low vorticity fluid. The angular velocity gradient decreases, and the S

field shows no eyewall.
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Although the fluid that is mixed beyond 12 hours is not distinguishable based on its

initial vorticity, the R-field still gives regions of advective mixing, showing that the moving

frame of initial conditions still shows regions of fluid that are transported.

5.7 Mixing rates

The radial mixing rates σ(r0, t0) and S(r0, t0) quantify mixing due to shear, whereas

R(r0, t0) quantifies hyperbolic mixing. In these mixing rates, the lines along and across

which mixing is quantified are circles. Hyperbolic mixing rates that are more closely re-

lated to the shearing structures are mixing rates which quantify transport across shear-lines

(level contours SC of S, see Section 5.4.2).

5.7.1 Measured mixing rate

Given a level-contour SC of the S-field and an integration time T , we define the mixing rate

Rm(C, t0) as the area of initial conditions whose trajectories cross SC during [t0, t0 + T ],

divided by the length of the contour. This mixing rate is computed (“measured”) by seeding

a grid of initial conditions and counting trajectories which cross SC .

5.7.2 Predicted mixing rate

We define a predicted mixing rate through the R-field as follows. Let rC be the average

radius along SC . If R(x0, t0) > 0 and x0 = r0(cos θ0, sin θ0)
∗ with r0 < rC , x0 is inside

the circle with radius rC , and the trajectory φt
t0(x0) is repelling. Thus trajectories seeded

on the ray with angle θ0 and radial values slightly above r0 move outwards, towards the

circle with radius rC . This suggests to define a boundary point (rC − δ(θ0), θ0) through the

condition

eR(r0,θ0,t0)δ(θ0) + r0 = rC . (5.14)

Points on the θ0-ray above this boundary point and below rC can be expected to cross the

rC-circle. If r0 > rC and R(x0, t0) > 0, trajectories on the ray θ0 with radial values slightly

below r0 move inwards, towards the circle with radius rC again, which leads to the same

boundary point (5.14), now with δ(θ0) < 0. If R(x0, t0) < 0, the trajectory is attracting,

and initial conditions on the opposite side of the rC-circle move towards this circle, provided

x0 is sufficiently close to that circle. The corresponding boundary point is then defined by
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Figure 5.6: (a) Relative vorticity field, (b) Q-field, (c) R-field with vorticity contours over-

layed to relate structures, (d) S-field, (e) integrated Q-field Q̂, and (f) FTLE-field for

initial time of t0 = 2 hrs with integration time T = 1 hr. The white contours in (d)-(f) mark

the radius of maximum ∂ω
∂r (inner, solid), the radius of maximum tangential wind (middle,

dashed), and the radius of maximum counterpropogating ∂ω
∂r (outer, dash-dot).
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Figure 5.7: (a) Relative vorticity field, (b) Q-field, (c) R-field with vorticity contours over-

layed to relate structures, (d) S-field, (e) integrated Q-field Q̂, and (f) FTLE-field for

initial time of t0 = 4 hrs with integration time T = 1 hr. The white contours in (d)-(f) mark

the radius of maximum ∂ω
∂r (inner, solid), the radius of maximum tangential wind (middle,

dashed), and the radius of maximum counterpropogating ∂ω
∂r (outer, dash-dot).
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Figure 5.8: (a) Relative vorticity field, (b) Q-field, (c) R-field with vorticity contours over-

layed to relate structures, (d) S-field, (e) integrated Q-field Q̂, and (f) FTLE-field for

initial time of t0 = 6 hrs with integration time T = 1 hr. The white contours in (d)-(f) mark

the radius of maximum ∂ω
∂r (inner, solid), the radius of maximum tangential wind (middle,

dashed), and the radius of maximum counterpropogating ∂ω
∂r (outer, dash-dot).
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Figure 5.9: (a) Relative vorticity field, (b) Q-field, (c) R-field with vorticity contours over-

layed to relate structures, (d) S-field, (e) integrated Q-field Q̂, and (f) FTLE-field for

initial time of t0 = 8 hrs with integration time T = 1 hr. The white contours in (d)-(f) mark

the radius of maximum ∂ω
∂r (inner, solid), the radius of maximum tangential wind (middle,

dashed), and the radius of maximum counterpropogating ∂ω
∂r (outer, dash-dot).
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Figure 5.10: (a) Relative vorticity field, (b) Q-field, (c) R-field with vorticity contours

overlayed to relate structures, (d) S-field, (e) integrated Q-field Q̂, and (f) FTLE-field for

initial time of t0 = 10 hrs with integration time T = 1 hr. The white contours in (d)-(f)

mark the radius of maximum ∂ω
∂r (inner, solid), the radius of maximum tangential wind

(middle, dashed), and the radius of maximum counterpropogating ∂ω
∂r (outer, dash-dot).
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Figure 5.11: (a) Relative vorticity field, (b) Q-field, (c) R-field with vorticity contours

overlayed to relate structures, (d) S-field, (e) integrated Q-field Q̂, and (f) FTLE-field for

initial time of t0 = 2 hrs with integration time T = 1 hr. The white contours in (d)-(f) mark

the radius of maximum ∂ω
∂r (inner, solid), the radius of maximum tangential wind (middle,

dashed), and the radius of maximum counterpropogating ∂ω
∂r (outer, dash-dot).



84

(rC + δ(θ0), θ0), where δ satisfies

eR(rC ,θ0,t0)δ(θ0) + rC = r0. (5.15)

By varying θ0, the conditions (5.14) for R > 0 and (5.15) for R < 0 define an annulus of

initial conditions around the rC-circle, whose area we use to define the predicted mixing

rate Rp(C, t0). This mixing rate is an approximation of the measured mixing rate. Of

course, several approximations and simplifying assumptions are involved in this definition,

but the results obtained make sense and the structure of Rp is similar to the structure of Rm.

Color-coded plots of the mixing rates σ(r0, t0), S(r0, t0), R(r0, t0), Rm(C, t0), and Rp(C, t0)

are displayed in Figures 5.13, 5.14, 5.15, 5.16, and 5.17, respectively, for integration times

T = 30 min and T = 1 hr. The rates σ and S should be compared to the average angular

velocity ω and its radial derivative ∂ω/∂r shown in Figure 5.12. These rates are measures

of shear and show the highest shear during the initial 6 hours, with the amount of shear

dissipating as hyperbolic mixing begins to occur during the polygonal eyewall stage.

The hyperbolic mixing is captured by R(r0, t0), Rm(C, t0), and Rp(C, t0). All of these

rates show that high hyperbolic mixing begins with the polygonal eyewall formation at 6

hours and continues through the transition to a high vorticity eye at 24 hours. In partic-

ular, the measured and predicted mixing rates Rm(C, t0) and Rp(C, t0) are very similar in

structure, and reveal strong mixing near the zero S-contour S0 (jet).

We note that [HS09] studied mixing for the same barotropic model using the concept of

effective diffusivity [SH03, Nak96]. This quantity was computed at the initial time t0 = 0,

and with an integration time t ≡ T (flow map φt
0) varying over the full duration of the

model run of 48 hours. The effective diffusivity yields a mixing rate that depends on r and

t. Our mixing rates have a similar dependence on t0 as the mixing rate of [HS09] had on

t, due to our moving frame approach. The mixing rate of [HS09] shows two radial regions,

at approximately r = 30 km and r = 50 km, where high mixing occurs during t = 6 and

t = 32 hours. The similar time and spatial regions associated with the same high mixing

in our study occur for σ and S during t0 = 6 and t0 = 24 hours, when the band of low

FTLE-values (the jet) is less prominent and more hyperbolic mixing occurs. The mixing

rates Rm(C, t0) and Rp(C, t0) show very similar times of high mixing as the mixing rate of

[HS09], and the S-contours for which these high rates occur are located approximately at

the same radial values noted above.
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Figure 5.12: (a) Averaged angular velocity ω(r, t), and (b) averaged radial derivative ∂ω/∂r

for t = 0− 48 hrs.

High R-values determine sets of trajectories that show growth orthogonal to the La-

grangian velocity, and result in filamentation that enables turbulent diffusion to occur. The

R-field gives an advective measure that converges on very short time scales, yet still yields

similar mixing rates as the effective diffusivity obtained by integration over the full model

time.

5.8 Concluding remarks

We have characterized Lagrangian mixing in a two-dimensional, nondivergent barotropic

model for hurricane-like vortices through several diagnostic techniques. For this model, the
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Figure 5.13: Radial FTLE-values σ(r0, t0) for integration times (a) 30 min and (b) 1 hr.
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Figure 5.14: Radial S-values S(r0, t0) for integration times (a) 30 min minutes and (b) 1 hr.
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Figure 5.15: Radial R-values R(r0, t0) for integration times (a) 30 min minutes and (b) 1 hr.
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Figure 5.16: Measured mixing rate versus Rm(C, t0) across shear-lines SC for integration

times (a) 30 min minutes and (b) 1 hr.
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Figure 5.17: Predicted mixing rate Rp(C, t0) across shear-lines SC for integration times (a)

30 min minutes and (b) 1 hr.
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field of finite-time Lyapunov exponents provided a measure of total particle separation, but

it did not separate the effects of hyperbolicity and shear, and did not show distinct coherent

structures. In order to separate the effects of the high shearing occurring in the model from

hyperbolic mixing, the trajectory separation was decomposed in directions along and normal

to the Lagrangian velocity. This decomposition gave rise to two Lagrangian fields, the R-

field and the S-field, which quantified the relative contributions of hyperbolicity and shear

to the mixing process, respectively. In this approach, shear-lines and shear-strengths were

identified with level-contours and level-values of the S-field.

The R-field showed coherent structures which impacted the mixing and mesovortex

interaction, even through high shear. The outer ridges of the R-field were also involved in

protecting the mesovortices from environmental flow, and the persistance of the ridges was

associated with the dominance of particular mesovortices over others. In contrast to the

other Lagrangian methods showed that the R-field was able to distinguish not only regions

of high mixing, but also the structures that were involved in the evolution and annihilation

of mesovortices. Future work will be devoted to study the impact of coherent structures on

mesovortex interaction during tropical cyclogenesis and its role for the evolution of a wave

critical layer.

The impact of the coherent structures on the mixing process was quantified in terms of

time- and space-dependent mixing rates, with the spatial dependence displayed as a function

of shear-strength as well as a function of the (average) radius of shear-lines. Overall, the

moving-frame approach used in this chapter provides time-dependent mixing rates that

isolate mixing events occurring in particular time windows.

The methods used here led to mixing profiles of similar structure as in [HS09], but with

a moving time frame and with fast convergence in Lagrangian fields integrated over short

times. The S-field provided a natural choice of contours for varying initial time that allowed

to quantify mixing by determining transport across them.

Future work will address the impact of hyperbolicity in the presence of high shear in a

three-dimensional setting, where planar shear and movement orthogonal to the shear are

separated using suitable extensions of the fields introduced in this chapter. These techniques

will be applied to a realistic, three-dimensional hurricane model that has both shearing and

hyperbolic components governing the mixing processes. The focus of this work will be rather

different from that of a recent chapter by [SH09], who studied mixing in a three-dimensional
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hurricane model by computing Lagrangian quantities along a slow manifold.



Chapter 6

A 3D Lagrangian hurricane

eye-eyewall computation

6.1 Summary

The computation of a hurricane eyewall is necessary for determining mixing between the

eyewall and the neighboring eye and environment regions. We define a Lagrangian eyewall

region by computing the Lagrangian structures of hyperbolic stability that distinguish the

eyewall from surrounding regions. The methods used guarantee the stability and continuity

of the eyewall for time-dependent velocity fields. As an added benefit of our methods, fast

convergence gives the opportunity to utilize the methods in real-time simulations. Exact

location of Lagrangian coherent structures is accomplished through a ridge extraction algo-

rithm, which is efficient for locating the ridges found in this model. A complete construction

of 3D coherent structures is accomplished by overlaying horizontally continuous ridge-curves

on z-levels.

6.2 Background and overview

A hurricane eye may be defined in terms of a variety of physical quantities. Material residing

in the eye has low pressure, high potential temperature, and low relative humidity compared

to material travelling through the eyewall. Lower wind speeds relative to the eyewall are also

characteristic of the eye. While all of these features differentiate the two regions, properties

such as wind speed may not be continuous over space and time. A continuous eye-eyewall

definition is necessary for determining transport between the regions.
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Transport of fluid within the hurricane core is believed to have significant impact on

intensity [?, MBAB06], see also Chapter 4. Particularly important is the movement of fluid

across the eye-eyewall and eyewall-environment boundaries [SMZ05, Bra02]. Accurately

quantifying mixing in these regions requires the definition of boundaries. This study focuses

on the definition, extraction, and stability of a Lagrangian eye-eyewall interface (LEEI), as

a time-dependent set of manifolds determined from the velocity field.

Defining boundaries from Eulerian quantities is useful for visualization of instantaneous

structures within a hurricane. However, time-dependence of a velocity field makes it pos-

sible that particle trajectories diverge from instantaneous structures and cross Eulerian

boundaries. In contrast, Lagrangian methods are based on following trajectories, and re-

veal structures which are impenetrable to trajectories over short to intermediate integration

times. The frame independence of these methods makes them applicable to rotational flows

[Hal05].

In Lagrangian methods, invariant structures are computed based on the separation of

trajectories, and regions of high separation are established as invariant manifolds. Finite-

time Lyapunov exponents (FTLE’s) have been the basis for many recent Lagrangian studies

in fluid mixing, see e.g. [HY00, Hal00, HP97, Hal02]. For divergent atmospheric flows,

finite-size Lyapunov exponents (FSLE’s) have some advantages over FTLE’s [JL01, KL02],

however, neither of these methods accounts for separation due to shear, although hyperbolic

stability of trajectories can be established through eigenvalues of the strain tensor. Because

they are measures of total separation, FTLE’s and FSLE’s hold no relation to Eulerian fea-

tures in the flow. An orthogonal version of FTLE’s in the 2D nondivergent setting, which

differentiates hyperbolic separation from shear and accounts for Eulerian features, has been

introduced in [HI03], and was used in Chapter 5 to diagnose hyperbolicity superimposed on

shear in a 2D nondivergent barotropic hurricane model. In Chapter 5 it was also demon-

strated that calculations based on this method show faster convergence than calculations

based on FTLE’s. In this study, we establish and apply the 3D extension of the orthogonal

FTLE-method, and describe the resulting stability types arising from the 3D transformed

variational system. Finding vertically continuous hyperbolic structures over a variety of

initial times leads to a definition of the eye-eyewall interface that is consistent with the

actual trajectory movement. In addition, we adapt a gradient climbing ridge extraction

method to extract 3D surfaces from the Lagrangian scalar fields.
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Lagrangian methods have only recently been applied in atmospheric studies. Joseph and

Legras [JL01] have defined Lagrangian boundaries on the antarctic polar vortex, and Huber

et al. [HMG01] studied relative dispersion in the troposphere. Recent studies have also

applied Lagrangian techniques to hurricanes. Cram et al. [CPMB07] studied mixing in a

3D hurricane simulation through a trajectory analysis. Haller and Sapsis [SH09] computed

a slow manifold to study attracting properties of inertial particles.

The chapter is organized as follows. In Section 6.3 we provide the solution to the 3D

variational system, as well as a choice of coordinate frames for defining Lagrangian fields. A

new ridge extraction algorithm, along with a method for extracting 3D maximal surfaces is

outlined in Section 6.4. In Section 6.5 we present results obtained by applying the methods

from Sections 6.3 and 6.4 to the 3D MM5 hurricane model. Conclusions and an outlook on

future work are given in Section 6.6.

6.3 Model overview

The simulation used for this study is an adaptation of the fifth generation Penn State/NCAR

mesoscale model (MM5) [Dud93, GDS95] used in the study of [NSM08]. An initially weak

tropical storm strength axisymmetric vortex develops into a 3D asymmetric flow. Later,

these asymetries disappear, and a mature tropical cyclone vortex emerges. The model

physics used is a bulk-aerodynamic boundary-layer scheme, with a simple moisture scheme.

Output wind fields are given on a triply-nested mesh, with data on the innermost mesh

given on an equidistant xy grid with dx = dy = 5 km, and the z grid given in pressure

coordinates. The temporal spacing is dt = 15 min.

Trajectories are computed using a fourth order Runge-Kutta scheme, with intermediate

time steps of 1 min, and with no absolute integration tolerance.

The computations presented here were done during a mature cyclone phase near a model

time of 62 hours.

For construction of a Lagrangian eyewall, we examine the solutions of the 3D variational

system. The solutions show the interaction between separate subspaces, and differentiate

types of particle separation, as well as the directions of separation. Since the solutions are

computed along trajectories, the fields have a relationship with local flow features that the

trajectories encounter. A result of incorporating the local features into a Lagrangian scalar

field is faster convergence of the method than methods which only measure total separation.
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6.4 Variational system and TNB coordinate frame

The Lagrangian velocity in 3D is defined in the same manner as in the 2D case, see [HI03]

and Chapter 5. Given a velocity field

u(x, t) =




u(x, t)

v(x, t)

w(x, t)



, x ∈ R

3, (6.1)

and a trajectory x(t) satisfying

ẋ = u(x, t), (6.2)

small perturbations ξ(t) of the trajectory are solutions of the variational system

ξ̇ = ∇u(x(t), t)ξ. (6.3)

The Lagrangian velocity direction is given by the unit tangent vector

t =
u

|u|
, (6.4)

evaluated along trajectories. The separation of trajectories orthogonal to the Lagrangian

velocity is measured by the rate of separation in directions in the normal plane of t. If n

is a unit vector normal to the Lagrangian velocity, that is, |n| = 1 and t∗n = 0 (we use an

asterik to denote a transposed vector or matrix), an orthonormal basis in the normal plane

is provided by n and

b = t× n. (6.5)

This includes the special case where n is chosen as principal normal pointing in the direction

of the curvature center.

In our transformation of the variational system (6.3), we first assume a given (t,n,b)

(TNB) coordinate frame in which n(x, t) varies differentiably with (x, t), but is not specified

otherwise. We refer to n as normal vector and to b as binormal vector. Two special choices

for n will be discussed in some detail in Section 6.7.

6.5 Transformation of the variational system

Given a TNB-frame as described in Section 6.4, a moving frame of reference for (6.3) is

introduced along a trajectory by setting

ξ = T (x(t), t)η, (6.6)
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where the columns of T are the unit vectors t,n,b,

T (x, t) = [t(x, t),n(x, t),b(x, t)]. (6.7)

Since T has orthonormal columns, T−1 = T ∗, and the rows of T−1 are the unit row vectors

t∗,n∗,b∗. The transformed system for η has the form

η̇ = [A(x(t), t) +B(x(t), t)]η, (6.8)

where A(x, t) = T ∗(∇u)T − T ∗(Txẋ) with

Txẋ =
[
(∇u)t− [t∗(∇u)t]t, (∇n)u, (∇b)u

]
,

and B(x, t) = −[b1, T
∗nt, T

∗bt] with b1 = (1/|u|) [0,n∗ut,b
∗ut]

∗ contains all terms of

the transformed matrix that depend on the time derivatives of u,n,b (indicated by the

subscript t), thus B vanishes in the case of autonomous velocity fields. Combining the two

terms of which A is composed yields A = [a1, T
∗a2, T

∗a3], where

a1 = [t∗(∇u)t, 0, 0]∗,

a2 = (∇u)n− (∇n)u,

a3 = (∇u)b− (∇b)u.

As in the 2D case, the (1, 1)-component of A is the parallel strain rate, A11 = Sp = t∗(∇u)st.

Here, for any square matrix M , the symmetric part is denoted by Ms and the antisymmetric

part by Ma, Ms = (M + M∗)/2 and Ma = (M −M∗)/2. In Cartesian coordinates, the

parallel strain rate is given by

Sp =
1

|u|2

(
u2ux + v2vy + w2wy + uv(uy + vx) (6.9)

+ uw(uz + wx) + vw(vz + wy)
)
.

The terms in A and B can be simplified using the orthonormality of the TNB-frame. For ex-

ample, |n| = 1 gives n∗(∇n) = 0 and n∗nt = 0, and n∗u = 0 implies n∗(∇u)+u∗(∇n) = 0

and n∗ut + u∗nt = 0. Exploiting these and analogous relations shows that B is antisym-

metric,

Bη = Ω× η, (6.10)

with

Ω = [b∗nt,−t∗bt, t
∗nt]

∗. (6.11)
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Similarly, the terms in A can be simplified to

A(x, t) =




Sp 2t∗(∇u)sn 2t∗(∇u)sb

0 Sn −|u|n∗(∇× n)

0 |u|b∗(∇× b) Sb



, (6.12)

where Sn = n∗(∇u)sn and Sb = b∗(∇u)sb are the strain rates in the directions of n and

b, respectively.

As in our study of the 2D case in Chapter 5, we assume that the time derivatives are

small and can be neglected. Thus we use the following approximation of the transformed

variational system,

η̇ = A(x(t), t)η. (6.13)

6.6 Transformation to upper triangular form

In contrast to the 2D case, the matrix A is not upper triangular. To obtain upper triangular

form we apply a time-dependent orthogonal transformation in the normal plane. The normal

plane component, η⊥ = (η2, η3)
∗, satisfies η̇⊥ = A⊥η with

A⊥ =


 A22 A23

A32 A33


 . (6.14)

Let φ(t) be a solution to the differential equation

φ̇ =
1

2
(A33 −A22) sin 2φ+A23 sin2 φ−A32 cos2 φ, (6.15)

and R(φ) the rotation matrix

R(φ) =


 cosφ sinφ

− sinφ cosφ


 . (6.16)

The transformation η⊥ = R(φ(t))η̃⊥ transforms the normal plane system to

˙̃η
⊥

= Ã⊥η̃⊥, (6.17)



99

where

Ã22 = A22 cos2 φ+A33 sin2 φ

−1
2(A23 +A32) sin 2φ,

Ã33 = A22 sin2 φ+A33 cos2 φ

+1
2(A23 +A32) sin 2φ,

Ã23 = (A22 −A33) sin 2φ+ (A23 +A32) cos 2φ,

Ã32 = 0,

(6.18)

Thus, dropping the tilde, we may assume that A in (6.13) has the form

A(x(t), t) =




A11 A12 A13

0 A22 A23

0 0 A33



, (6.19)

and the transformed variational system can be solved by direct integration.

For any TNB-frame, the normal plane components (η2, η3) are decoupled from the tan-

gential component η1, indicating that hyperbolic separation can be determined from the

growth of perturbations aligned with the η2 and η3 subspaces. The additional decoupling

in the normal plane means that there is a distinguished normal direction such that de-

formations in the associated binormal direction, measured by η3(t), are decoupled from

deformations in the normal direction, measured by η2(t).

The fundamental matrix for the system (6.13) with A given by (6.19) is found by direct

integration as

Ψ(t, t0) =




Ψ11(t, t0) Ψ12(t, t0) Ψ13(t, t0)

0 Ψ22(t, t0) Ψ23(t, t0)

0 0 Ψ33(t, t0)



, (6.20)

where the diagonal elements can be written as

Ψii(t, t0) = exp
(∫ t

t0

Aii(τ) dτ
)
,

and the off-diagonal elements as

Ψ12 =
∫ t
t0

exp
(∫ t

s A11(τ) dτ
)

exp
(∫ s

t0
A22(τ) dτ

)
A12(s) ds,

Ψ23 =
∫ t
t0

exp
(∫ t

s A22(τ) dτ
)

exp
(∫ s

t0
A33(τ) dτ

)
A23(s) ds,

Ψ13 =
∫ t
t0

exp
(∫ t

s A11(τ) dτ
)[

Ψ23(s, t0)A12(s)

+ exp
(∫ s

t0
A33(τ) dτ

)
A13(s)

]
ds.

(6.21)
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6.7 Special choices for the TNB frame

The equation (6.12) for A(x, t) holds for any choice of the unit vector n(x, t) in the normal

plane. We discuss here two special cases in some detail: The case where n is chosen as

principal normal, and the case where n is located in the (x, y)-plane. In our numerical

calculation for the MM5-data we used the second choice.

Principal normal

Here we consider a local trajectory y(τ,x, t) passing at τ = 0 through the point (x, t),

that is, yτ = u(y, τ) and y(0,x, t) = x. The principal normal is found from the quadratic

expansion of y with respect to τ ,

y = x + τu +
1

2
τ2w +O(τ3),

where w = (∇u)u + ut, and u and derivatives of u are evaluated at (x, t). Converting this

to arclength, ds = |yτ | dτ , gives

y = x + st +
1

2
s2

(
w − [t∗w]t

)
/|u|2 +O(s3).

The principal normal, which we denote here also by n(x, t), is the unit vector in the direction

of the coefficient vector of s2/2, and the square of the curvature, κ, at τ = 0 is the squared

length of this vector. In terms of u, these quantities and the associated binormal b(x, t)

are given by

κ2 =
1

|u|6
∣∣u×w

∣∣2,

n =
1

κ|u|4
u× (w × u), (6.22)

b =
1

κ|u|3
u×w.

With time-derivatives again neglected, these terms can be expressed through ∇u and t =

u/|u| as

κ2 =
1

|u|2
(
|(∇u)t|2 − [t∗(∇u)t]2

)
,

n =
1

κ|u|

(
(∇u)t− [t∗(∇u)t]t

)
, (6.23)

b =
1

κ|u|
t× (∇u)t. (6.24)

For a 3D hurricane, the motion in the eyewall can be described as helical, with rotational

and vertical components. In Figure 6.1 we show the z-component of the binormal on
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trajectories integrated for 1 hour and seeded on (x, y)-grids at two different z-levels. As

is apparent from this figure, the binormal direction is generally aligned vertically upward,

which means that the principal normal is (approximately) aligned in the (x, y)-plane.

In Figure 6.2(a) an updraft trajectory and an environment trajectory are displayed along

with the principal normal and the binormal, demonstrating the approximately vertical ori-

entation of the binormal direction. The counterclockwise rotation implies that the principal

normal direction is generally oriented inward, as is apparent from Figure 6.2(b), where the

(x, y)-projections of the tangent and the principal normal along the trajectories shown in

Figure 6.2(a) are depicted.

Using (6.23), the components A12, A13, A22, and A33 in (6.12) can be written in terms

of ∇u and t in the form,

A12 =
1

κ|u|

(
|(∇u)t|2 + t∗(∇u)2t− 2[t∗(∇u)t]2

)
,

A13 =
1

κ2|u|
det[t, (∇u)t, (∇u)∗t],

A22 =
1

κ2|u|2
(
t∗(∇u)∗(∇u)s(∇u)t + [t∗(∇u)t]3

− [t∗(∇u)t][t∗(∇u)2t + |(∇u)t|2]
)
,

A33 =
1

κ2|u|2
[t× (∇u)t]∗(∇u)s[t× (∇u)t].

The components A23 and A32 involve second derivatives of u. For A32 we obtain

A32 =
|u|det[t, (t∗∇)u,Du]

[t∗(∇u)t]2 − |(t∗∇)u|2
,

where D is the second order differential operator,

D =
1

|u|2

(
u2∂2

x + 2uv∂x∂y + 2uw∂x∂z + v2∂2
y

+ 2vw∂y∂z + w2∂2
z

)
.

The component A23 can be written compactly in the form

A23 = −
|u|

|N|2
N∗(∇×N),

where N = (∇u)u − A11u. When written out explicitly, A23 becomes a complicated ex-

pression involving projections and derivatives of the vorticity.
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Figure 6.1: Binormal z-component on trajectories integrated 1 hr and seeded on (x, y)-grids

at z-levels 500 m (a) and 3 km (b). Values near 1 show that the coordinate system is oriented

with the binormal direction vertically upward.
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Figure 6.2: (a) Updraft and environment trajectories along with principal normal (oriented

horizontally inward) and binormal (oriented vertically upwards). (b) (x, y)-projections of

tangent and principal normal along the trajectories of (a).
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6.7.1 Horizontally aligned normal vector

Another choice for the unit normal n, which we used in our calculations for the MM5-model,

is provided by

n = u⊥
h /|uh|, (6.25)

where uh = (u, v, 0)∗ is the horizontal component of the velocity, and u⊥
h = (−v, u, 0)∗. In

this case the binormal is given by

b =
1

|u||uh|

(
−uw,−vw, |uh|

2
)∗
, (6.26)

and the entries Aij with i > 1 in (6.12) become

A12 =
1

|u||uh|

{
(u2 − v2)(uy + vx) + 2uv(vy − ux)

+ uw(vz + wy)− vw(uz + wx)
}
,

A13 =
1

|u|2|uh|

{
(|uh|

2 − w2)
(
v(vz + wy)

+u(uz + wx)
)
− 2w(u2ux + v2vy)

−2uvw(uy + vx)
}
,

A22 =
1

|uh|2

{
u2vy + v2ux − uv(uy + vx)

}
,

A23 =
|u|

(
uvz − vuz

)

|uh|2
,

A32 =
1

|u||uh|2

{
2w

(
v2vx − u

2uy +

uv(ux − vy)
)

+ w2(vuz − uvz)

+|uh|
2
(
uwy − vwx + w(uy − vx)

)}
,

A33 =
1

|u|2|uh|2

{
w2

(
u2ux + v2vy + uv(uy + vx)

)

−|uh|
2w

(
u(uz + wx) + v(vz + wy)

)

+|uh|
4wz

}
.

6.8 3D Lagrangian measures

6.8.1 3D Shear

Shear in the 3D setting can be characterized by studying alignment of the subspaces along

trajectories. The 3D variational system has three coupled solutions, all of which can be

attributed to a type of shear. Following the 2D characterization of Haller [HI03], we look
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at the alignment of the η2 and η3 subspaces to the Lagrangian velocity. The angles between

these subspaces to the η1 subspace are the angles φ2 and φ3, defined by

cotφi =
Ψii

Ψ1i
, i = 2, 3. (6.27)

Shear in the (η1, ηi) plane is determined by | cotφi| → ∞. Under short integration times,

regions of high shear are characterized by cotφi being bounded away from zero. An orthog-

onal shear can be determined by the alignment of the binormal direction onto the normal

plane by

cotφ⊥ =
Ψ22

Ψ23
, (6.28)

which describes rotations of material elements aligned with the η3 subspace onto the η2

subspace.

Shearing is an important aspect of 3D hurricanes. The eye-eyewall boundary is an

example of a region of vertical wind shear, with the normal vector to the Lagrangian velocity

aligning with the Lagrangian velocity. The angle φ2 is representative of this type of shear.

The boundary-layer inflow and upper-level outflow are regions of horizontal wind shear, and

can be represented by φ3. Strong updrafts near strong rotation define shear for a hurricane

as either cotφ2 or cotφ3 being bounded away from zero.

6.8.2 Hyperbolic manifolds

To interpret the stability of coherent structures from the hyperbolic fields, we look at the

combinations of all hyperbolic and shear trajectory separation. If the model has a hyperbolic

manifold, it must exist in a region with little shear, meaning material lines initially oriented

with the η2 and η3 axes do not rotate onto the η1 axis. A hyperbolic trajectory has stable

and unstable manifolds, with one being 2D and the other 1D. Since the time-dependent

manifold forms a set of solutions to the velocity field, we can assume that the η1 subspace

is contained in the manifold, and shows little expansion or contraction along trajectories.

In general the manifold need not be oriented along either η2 or η3 axis. Instead the angle

φi shows the amount of rotation of the ηi subspace onto the eigendirection of the manifold.

For the fields that we have computed, the rotation is small in the region where a maximal

surface occurs, and the η coordinate system is already aligned with the maximal surface

such that the surface lies (locally) in the η1 − η3 plane. Thus we conclude that the 2D

manifold lies in the η1 − η3 plane, and the 1D manifold then lies along the η2 axis. Since



106

the η3 subspace is contracting, an induced expansion occurs in the directon orthogonal to

the 2D manifold. The 2D manifold is unstable, while the 1D manifold in the η2 direction

is stable. Since Ψ11 ≈ 1, a maximal Ψ22 value is equivalent to a minimal Ψ33 value, due to

small divergence along trajectories.

We note that the quantities log Ψ22

t−t0
and log Ψ33

t−t0
are the finite-time Lyapunov exponents in

the directions of the η2 and η3 subspaces respectively. These would compare to the standard

FTLE if the perturbation was aligned along the correct subspace, and there was no shear.

6.8.3 Comparison to FTLE’s and instability time

The growth rate of line elements initially oriented in the directions of the various η sub-

spaces is different from the growth rate obtained from FTLE computations, which measure

total separation of neighboring trajectories. The growth captured in the FTLE field is the

cumulative growth of perturbations which are initiated at initial conditions. In contrast,

while the solutions of the (η2, η3)-system do not necessarily describe the total growth of

perturbations, but rather the growth of a continuously reinitiated perturbation, they still

give a diagnostic of the flow separation, which grow faster, and therefore converge faster,

than FTLEs.

For trajectories seeded near a repelling hyperbolic material surface, trajectories nearest

to the surface are expected to remain near the surface longer than trajectories initially fur-

ther away from the surface, which are expected to diverge from the surface more quickly.

The Ψ22 hyperbolic values for trajectories that remain near the material surface show pos-

itive A22 values for longer times than those that leave the material surface quickly (Figure

6.3). Trajectories that leave the hyperbolic repelling region do not necessarily maintain

hyperbolic repelling stability, but may switch to neutral or hyperbolic attracting stability.

For trajectories seeded near a ridge, however, continuous expansion/contraction ensures

minimal/maximal hyperbolic values. In fact, trajectories remaining in hyperbolic repelling

regions for the longest times do generally correspond to trajectories with the highest La-

grangian Ψ22 values (Figure 6.4).

We define the η2-instability time as the amount of time that a trajectory resides in a

region where the η2 subspace is expanding (A22 > 0). It should be noted that there are initial

conditions that show persistent hyperbolic repelling behavior by the η2-instability time, yet

have neutral (low Ψ22) stability through integration of the variational system. Thus high
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Ψ22 values are a stronger condition for expansion in the η2 subspace. It should also be noted

that the Ψ22 field shows narrower ridges than the η2-instability time field, which suggests

that shorter integration time is required to fully resolve the hyperbolic structures associated

with Ψ22 than the structures associated with the η2-instability time.

6.9 Extraction of coherent structures

The manifolds from the 3D variational system must be extracted to show the exact location

of Lagrangian coherent structures (LCS’s). The vertically oriented cylindrical nature of

the manifolds leads to an approach of extracting the manifolds by taking slices on z-levels,

and piecing the manifolds together. A main concern when extracting ridges is not only

the visualization of surfaces, which has been done in many recent studies, but also the

extraction of ridges as sets of ordered points. The extraction algorithm used here is based

on the gradient climbing algorithms used by Shadden et al. [SLM05] and Mathur et al.

[MHP+07], but starts with a small number of points. The manifolds are then grown through

the gradient dynamical system adapting a manifold growing algorithm by Mancho et al.

[MSWI03].

The initial ridge segment is chosen by taking a maximal point on a ridge. By choosing

the maximum value of the scalar field, the algorithm is automated in the choice of initial

conditions.

Gradient climbing Given a 2D scalar field σ(x), initial points evolve towards a ridge of

σ under the flow of the gradient dynamical system [SLM05],

dx

ds
= ∇σ(x). (6.29)

A disadvantage of gradient climbing is that points are eventually attracted to the maximal

values of the ridges, or in the case of uneven ridges, the spikes in the ridges. This clustering

has been avoided in [MHP+07] by switching to a Hessian system when a point is close enough

to a ridge point. For an application of this method to atmospheric data, see [TMH+09].

Our approach is to extend the ridge along the direction of secondary curvature derived from

the Hessian matrix.

The ridge points may still extend beyond the actual ridge using this ridge extension. In

the event that this occurs, end points from the ridge are removed if the scalar field value
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Figure 6.3: (a) Normal hyperbolic component
∫
A22dt as function of integration time for

three trajectories. (b) Ψ22-field for integration time 1 hr and initial locations of the trajec-

tories depicted in (a), marking their proximity to the Ψ22 ridge.
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Figure 6.4: (a) Ψ22 and (b) instability time integrated for 3 hrs at initial time 62 hrs. Maxima

of Ψ22 occur in regions that are persistently hyperbolic.



110

at the endpoint is greater than a parameter ρ. Gaps in the ridges may develop, making

it necessary to insert additional points. For the ridges extracted from the scalar fields for

the MM5 model, we use a distance criterion, adding additional points when the distance

between two neighboring points becomes larger than a fixed parameter δ. Other criteria

are given in [MSWI03], including methods that take into account the curvature of the

ridge curve. In our case, the distance criterion was sufficient, although likely not optimal.

To avoid the clustering, we use a redistribution of points along the ridge, similar to the

manifold computation algorithm of [MSWI03]. We use only a distance parametrization,

and do not attempt to introduce a parameter measuring curvature, although for ridges with

high curvature, such a parameter may lead to more accurate results.

Our algorithm for the ridge extraction can be summarized as follows:

Algorithm

1. Choose initial condition x0 = [x1,x2, ...,xn−1,xn].

Continue until
∑n−1

i=1 |∇σ(x1)||xi+1 − xi| < ǫ:

2. Advance ridge segment x0 by (6.29).

3. Add initial and end points, x0 ← [x1′ ,x0,x
n′

].

4. Advance ridge further using gradient climbing.

5. Remove endpoints x1′ , xn′

if σ(x1′) > ρ or σ(xn′

) > ρ, respectively.

6. Insert point between xi and xi+1 if ‖xi − xi+1‖ > δ.

7. Redistribute points to equal spacing.

8. Make current ridge segment the next initial condition and go to 3.

6.10 Results

The solutions to the transformed variational system (6.13) are easily computed when the

principal normal and binormal directions are well defined. Since we are studying the motion

in and near a hurricane eyewall, most trajectories take helical paths, and the horizontal

alignment described in Section 6.7.1 is a convenient choice for the normal vector n. After
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computing the orthogonal transformation described in Section 6.6 (using φ(t0) = 0), the

matrix A becomes upper triangular and the components Ψij in (6.20)-(6.21) are computed

by direct integration.

The fields Ψ22 and Ψ33 are the hyperbolic components of mixing, and the shear fields

are the Ψ12 and Ψ13 components. In Figure 6.5 we show radial profiles of the Lagrangian

fields Ψ22 and Ψ12 in comparison to radial profiles of the tangential and updraft winds.

The eyewall updraft region is visible as the region of high updraft winds from 40-80 km,

which is dominant only at certain azimuths. Tangential winds are also high in this region.

The hyperbolic Ψ22 component shows maxima near 40 and 80 km, with less η2 hyperbolic

behavior in the region of strong updraft. The hyperbolic structures at these radii repel

trajectories into the updraft jet, which is close to a minimum of Ψ22 at 60 km, just outside the

radius of maximum tangential winds. The inner hyperbolic structure also repels trajectories

inward to the eye, but these trajectories show only a weak rotational motion. A minimum

of Ψ33 at the same location shows the contraction of nearby trajectories as they descend in

the low pressure eye, or are elevated in the updraft. Maximal shear occurs just inside the

outer hyperbolic maxima, and outside of the radius of maximum winds.

We define the Lagrangian eye-eyewall interface (LEEI) as the LCS corresponding to

the inner ring of hyperbolic separation determined by the ridge surface of Ψ22. The region

has little shear, so the structure is purely hyperbolic, and therefore invariant. Computing

the LEEI in the (x, y) plane at a given altitude shows that the structure forms an almost

closed ring, allowing transport in or out through the gap in the ring, as shown in Figure

6.6. The gap is marked by minimal Ψ22 values, which may indicate a contracting region

(jet) transporting material between the eye and eyewall. The break in the LEEI occurs at

a similar azimuth as a region of high updraft winds, see Figure 6.10. Vertical coherence of

the LEEI can be seen by computing the fields on additional z-levels, shown at higher levels

in Figures 6.7, 6.8, and 6.9. In Figures 6.6-6.9, we show log Ψ22 and log Ψ33 where negative

values correspond to contraction and positive values to expansion.

A surface of high shear is located just outside of the radius of maximal winds, visible

as ridges of φ2, which is the angle of rotation of the η2 subspace onto the η1 subspace, see

Figures 6.6-6.9 (a). Trajectories in the LEEI show almost no rotation, while trajectories

outside the LEEI show rotation of nearly π/2, so material lines rotate completely onto the

η1 subspace. The shear is mostly in the η2 subspace, and the φ2 field shows an almost closed
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Figure 6.5: Radial profile of normalized fields Ψ22 (blue) and Ψ12 (green), tangential winds

(red), and updraft winds (black) at 1 km (a), 5 km (b), 10 km (c), and 14 km (d) altitude,

initial time 250 min, and azimuth angle 0o. The integration time for the Lagrangian fields

is 1 hr.
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Figure 6.6: φ2 (a), log Ψ22 (b), log Ψ33 (c), and FTLE (d) fields at z-level 1 km, initial time

62.5 hours, and integration time 1 h.
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Figure 6.7: φ2 (a), log Ψ22 (b), log Ψ33 (c), and FTLE (d) fields at z-level 5 km, initial time

slice 62.5 hours, and integration time 1 h.
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Figure 6.8: φ2 (a), log Ψ22 (b), log Ψ33 (c), and FTLE (d) fields at z-level 10 km, initial

time 62.5 hours, and integration time 1 h.
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Figure 6.9: φ12 (a), log Ψ22 (b), log Ψ33 (c), and FTLE (d) fields at z-level 14 km, initial

time 62.5 hours, and integration time 1 h.
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Figure 6.10: Tangential wind (a,c,e) and updraft wind (b,d,f) at vertical levels of 1 km, 5

km, and 10 km
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(a) (b)

Figure 6.11: Ψ22 (a) and Ψ12 (red) and Ψ13 (blue) surfaces at initial time 62.5 hours with

integration time 1 h.

distorted cylinder of maximal shear (Figure 6.11(a)). The shear in the η3 subspace (almost

vertical) is captured by the φ3 field. Superimposing the φ3 ridge on the φ2 ridge gives a

closed cylindrical surface of high shear. The LEEI also forms an almost closed cylindrical

surface at lower levels (z < 5 km), shown in Figure 6.11(b), and is completely enclosed

by the shear surface (see Figure 6.12). The break in the LEEI occurs at a region of high

updraft winds, as is apparent in Figure 6.10.

Stability and invariance of the LEEI The LEEI surface is repelling along the η2

subspace, and attracting along the η3 subspace. The repulsion is mainly in the eyewall region

and is oriented approximately radially toward the region of strong circulation. Trajectories

within the eye show more neutral stability relative to the LEEI, as is apparent in Figure

6.13, where the evolution of trajectories seeded on two straight lines intersecting the LEEI is

depicted. This figure also illustrates that the LEEI is an invariant manifold, as trajectories

in the eye and eyewall regions remain in these regions.

In Figure 6.14 we show the trajectories of Figure 6.13 together with the LEEI, which is

displayed here in the form of stacked curves at different z-levels. The figure demonstrates

again the invariance of the LEEI, since trajectories seeded inside and outside of it do not

cross the manifold. Trajectories may, however, leave the eye by ascending or descending



119

Figure 6.12: Combined hyperbolic (green), Ψ12 (red), and Ψ13 (blue) at initial time 62.5

hours with integration time 1h.

to escape the cylindrical region. On the one hand, buoyancy-produced upward motion

allows some trajectories to escape the eye by passing over the LEEI at high z-levels (see

Figure 6.13). On the other hand, a broadening of the LEEI manifold near the sea-surface

shows that descending particles in the eye may escape the eye by exiting radially outward

at low z-levels. The direct interaction between the two regions occurs at the break in

the LEEI. If the LEEI is closed, which is common at low levels, there is no interaction.

The rotational motion within a cyclone is strong enough that trajectories are unlikely to

experience clockwise motion. The overlap in the ring can show two separate orientatations,

which either allow counterclockwise rotation to mix eye trajectories into the eyewall, or visa

versa.

6.11 Concluding remarks

We have developed a method for the computation of Lagrangian structures, which enabled

us to define the eye-eyewall interface of a 3D hurricane model in terms of ridge surfaces of

scalar fields that determine regions of trajectory separation of varying stability types. The

advantages of the methods described here are fast convergence, as well as a decomposition

of stability along orthogonal subspaces.

We have exactly located hyperbolic structures over varying initial times using a ridge

extraction algorithm on vertical levels and constructing a full manifold. The extracted
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(a) (b)

(c) (d)

Figure 6.13: (a) Initial locations of trajectories and the LEEI integrated 1 hr, both at

initial time 250 min. Trajectories are seeded on two straight lines intersecting the LEEI,

with initial points located in the eye and eywall marked red and blue, respectively. The

LEEI and the trajectory locations after 15 min, 30 min, and 45min are shown in (c), (d),

and (e), demonstrating the invariance of the LEEI.
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Figure 6.14: Trajectory and LEEI evolution as in Figure 6.13 with the LEEI displayed in

the form of stacked curves (blue) at different z-levels. Trajectory points starting inside and

outside of the LEEI are marked here green and red, respectively.
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manifolds mark an impenetrable boundary between the eye and the eyewall. A stability

analysis demonstrated that the boundary is indeed Lagrangian, that is, trajectories do not

cross the boundary.

The definition of a Lagrangian eyewall leads to the question of quantifying mixing across

the eye-eyewall boundary. Further work will be devoted to the automation of the ridge

extraction procedure, which will allow the computation of mixing rates that vary with

initial time. In this way results from our previous 2D studies Chapters 4 and 5 will be

extended to the 3D case to determine time-dependent mixing rates.

The complete interaction of the subspaces in relation to shear is complex, and is an

area of current study. In particular, the role of Lagrangian coherent structures during the

intensification phase of a tropical cyclone is being investigated using the fields developed

for this study.



Chapter 7

A time-dependent Lagrangian

eye-eyewall interface

7.1 Summary

The eyewall of a tropical cyclone is usually defined in terms of Eulerian quantities such

as instantaneous vorticity, potential temperature, or pressure. By contrast, a Lagrangian

eyewall definition is based on the transport of particles. In this chapter, we continue the

analysis of Chapter 6 of the Lagrangian eye-eyewall interface (LEEI), which is defined as

a surface that acts as barrier to particle motion. As in Chapter 6, the surface is identified

with a maximal ridge of a hyperbolic Lagrangian field, and varies with the initial time

at which particles are seeded. The study here extends the study of Chapter 6 as follows.

First, the ridge extraction algorithm used is now fully automated over time and z-levels,

and smoothed by representing the ridge curves on z-slices in terms of Fourier descriptors.

Secondly, the ridge curves for varying z-levels are matched to vertical basis functions leading

to a 3D spatially continuous and low-dimensional representation of the LEEI, by truncating

the combined azimuthal and vertical expansion. The surface is then analyzed over varying

initial time, and structural differences in time and height are described. Specifically, this

analysis provides information about the degree of axisymmetry of a mature hurricane.

7.2 Background and Overview

Tropical cyclones (TC’s) have been the subject of much recent research [SMT+99, MBAB06],

which has led to a significant increase in our understanding of the physical mechanisms sus-

123
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taining and the dynamics inherent in hurricanes, as well as to improved methods for tracking

and predicting them. However, one of the major problems encountered in theoretical stud-

ies of TC’s is that realistic 3D simulations require huge amounts of computing power and

storage to handle large data sets, and the same problem is encountered in the analysis of

real data. Although a great deal of research has been conducted on dimensionally reduced

models, in particular axisymmetric [RE87] and planar [SMT+99] models, these idealized

models are not capable of capturing the essential features of a hurricane, since real data as

well as large scale 3D simulations have shown that non-axisymmetric structures and vertical

variations are important hurricane characteristics. Representing key dynamical structures

of a fully 3D TC as low-dimensional data sets should provide significant gains in efficiency

as well as a better understanding of essential properties of hurricane dynamics. The objec-

tive of this study is to extract a low-dimensional representation of a Lagrangian eye-eyewall

interface from 3D simulation data.

In several recent studies of the structure of the eye and eyewall, see e.g. [KE01,

MBAB06], it has been noted that intensification is coincident with the vanishing of higher

wavenumber asymmetries, while low wavenumber asymmetries have been observed in real

storms and in simplified models dring a mature state. According to the asymmetric balance

(AB) theory of [SM93] the decay of higher wavenumber asymmetries is caused by shear.

A quantitative study of the process of asymmetrization has been performed by [SIM95].

In this study, which is based on AB theory, time scales for particle separation and re-

lated to asymmetry decay in dependence of the aximuthal wavenumber involved have been

extracted. In [RMMJG99] it is found that low-wavenumber asymmetries are dominant in

model simulations and in the recorded data of Hurricane Olivia (1994), though the degree of

asymmetry was sensitive to the location of vortex centers. Similar structures in 3D vortices

have been reported in [NM02].

The thermodymics of the eye also plays an important role in intensification [Wil01,

ZY02], and mixing between the eye and eyewall plays an important role in the transport

of energy. Mixing of angular momentum inward into a ring like structure strengthens an

axisymmetric vortex [KE01], while the collapsing of angular momentum into a monotonic

profile is present in steady or weakening storms [SMT+99].

Though those studies generally provide similar results regarding the role of asymmetries,

there is no agreement on how to define the structure of the inner core. A tropical cyclone
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eye-eyewall interface is accepted as the region between the fast moving circulation and

updrafts of the eyewall, and the region of slower solid body rotation contained within

the eye. Common measures of vorticity, shear, as well as thermodynamic properties are

often used to describe storm structure. Thermodynamically, the eye and eyewall have

very different characteristics. The eye contains air with high potential temperature, low

moisture, and low central pressure. The eyewall has a much higher moisture content, and

is seen visually as a cylindrical wall of clouds extending from the sea-surface to the upper

troposphere. The basic problem with any of these thermodynamic fields is that they are not

continuously advected through the storm. In fact, higher wavenumber asymmetries have

been shown to cause irreversible diffusion of many of these fields [HS09]. Though the eye

and eyewall have very different thermodynamic properties, the mixing of material between

the two regions cannot be accurately quantified in terms of these quantities. A definition

of the boundary between the two regions that is based on material transport appears more

adequate than a definition based on instantaneous thermodynamic properties.

In this chapter, we define the Lagrangian eye-eyewall interface (LEEI) as the surface

that acts as a barrier for particle transport between the two regions. The time-varying

velocity fields of a TC are well suited to Lagrangian methods, which are based on par-

ticle motion. The LEEI is a a cylindrical surface which is rotationally invariant for the

axisymmetric model, while for a 3D model it is generally asymmetric, with the degree of

asymmetry quantified by the amplitudes of aximuthal modes. The degree of asymmetry

within a 3D storm is unclear, but studies [MBAB06] have noted that while many of the

early asymmetries of intensification vanish after maturation into a single vortex, the low

wavenumber asymetries, specifically wavenumbers 1 and 2, remain. True axisymmetry oc-

curs when all of the asymmetries of the primary vortex vanish during the mature phase.

The remaining asymetries can be due to convective bursts, or material transport between

the eye and eyewall. In this study, we examine the role of transport in the evolution of

asymmetries during a mature TC.

For the time-dependent velocity fields of a hurricane, Lagrangian techniques are required

to accurately define the structures associated with particle transport. In several recent

studies in Lagrangian dynamics, techniques have been developed for locating and extracting

structures from time-dependent velocity fields, see [HP97, HY00]. For an application of

these methods to geophysical flows, see [KL02, JL01].
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Our study builds upon previous work of Chapter 6 by extending a specific type of

Lagrangian hyperbolic structure to a moving frame, which provides a barrier to transport

between the eye and eyewall that is continuous in initial time (time at which trajectories

are seeded). A benefit of our method is fast convergence of the Lagrangian fields, along

with a ridge extraction algorithm that locates the hyperbolic structure exactly. In this

paper, we extend the ridge extraction from Chapter 6 to a moving frame, and provide

a good approximation to the true maximal hyperbolic surfaces that is continuous, and

computed in an automated manner, by using a representation of the surface in terms of

Fouries descriptors. Combining the Fourier descriptors with a fit of radial basis functions

to capture the dependence on the vertical coordinate yields a smooth representation of

the LEEI. A similar procedure is applied to compute a maximal shearing surface. The

combined amplitudes of the azimuthal and vertical modes are then analyzed, which results

in a dynamical model that captures the temporal evolution of the LEEI, and allows to

quantify the asymmetries due to particle transport. By using a shape-based coordinate

system, the vortex center is unambiguously defined as the centroid of the LEEI.

Energy considerations show that the LEEI-structure is well approximated by the first 3

Fourier modes and 15 radial basis functions vertically (yielding 90% of the energy). Thus,

our approach yields a low-dimensional representation of a dynamically evolving LEEI.

The outline of this chapter is as follows. In Section 7.2, we extend the study of Chapter

6.9 by developing a fully automated (over z-levels and across initial time) ridge extraction

algorithm that generates closed maximal ridge-curves on z-slices, which are smoothed by

truncating an expansion in terms of Fourier descriptors. The Fourier descriptors provide

information about the degree of axisymmetry of a mature hurricane. Matching the variation

of the ridge-curves with z-levels to vertical basis functions then leads, in Section 7.3, to a

3D continuous and low-dimensional representation of the LEEI. Concluding remarks and

an outlook on future work are given in Section 7.4.

Model

The model from which the velocity data are calculated is the MM5 3D hurricane model,

which was used in Chapter 6. The velocity fields are given on staggered grids, with z levels

given in pressure coordinates. The initilization used in this study was a nonhydrostatic

axisymmetric vortex initilization as in [NSM08]. The model run was a high resolution run
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with x-y grid spacing of 1.67 km, and a time step output of 2 min.

7.3 Ridge extraction

The Lagrangian fields used in this study are the fields Ψij introduced in Chapter 6.2. As in

Chapter 6, the LEEI is identified with the maximal surface of Ψ22 that encloses the z-axis,

and the maximal shear surface is identified with the maximal ridge surface of φ2. In this

paper, the ridge extraction algorithm of Chapter 6 is extended in an automated manner

across varying initial time, and at each z-level the ridge is smoothed by representing it in

terms of a reduced set of Fourier descriptors. Since the data are rather noisy, the smoothing

procedure combined with gradient climbing, see Chapter 6, yields a ”best fit surface”.

At given z-levels, a ridge-curve is computed by evolving an initial guess of an ordered

set of points towards the ridge through gradient climbing. A change to our previous calcu-

lation is that the points are uniformly azimuthally distributed, and the gradient climbing

is restricted to the radial direction. Let R = (Rx, Ry) be the initial guess. The Fourier

descriptors of R are defined FR = F(Rx + iRy), where F denotes the the discrete Fourier

transform (computed through the fast Fourier transform algorithm). The curve is smoothed

by zeroing higher order Fourier descriptors and mapping back to Cartesian coordinates via

the inverse Fourier transform. This yields a new ordereed set of points R′, which is again

evolved through radial gradient climbing. The algorithm for ridge extraction at a given

z-level can be summarized as follows:

Algorithm

1. Choose an ordered set of aximuthally uniformly distributed points as an initial guess.

2. Evolve points through gradient climbing in the radial direction.

3. Apply a fast Fourier transform to the evolved points.

4. Set higher order Fourier descriptors to zero and apply inverse fast Fourier transform.

5. Continue 2-4 until convergence is reached.

In our computation, we have used 70 points and kept 10 Fourier descriptors for Fourier

inversion. Examples of the resulting ”best fit ridge curves” are shown in Figure 7.1. The

advantage of this method is that the ridge points for varying z-levels have identical aximuthal

distributions and so are stacked to form a ridge surface that can be represented in a matrix.
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This leads to easy visualization, see Figure 7.2, and the possibility to build a continuous

dynamical model of the surface. In addition, at a given z-level, the method provides a

center given by the zero frequency Fourier descriptor, and higher order Fourier descriptors

provide information about the degree of asymmetry.

We note that the algorithm used here is a priori designed to find a closed ridge-curve

on each z-level. In our previous computation, without smoothing and gradient climbing

restricted to the radial direction, some of the LEEI sections show gaps which allow transport

between the eye and eyewall. The presence of these gaps is an effect of convective bursts in

the eyewall.

7.3.1 Continuation across z-levels and initial time

The ridge extraction on a fixed z-level described above is extended across varying initial

times as follows.

1. For fixed initial time, the ridge curves are advanced from bottom to top by using the

converged ridge from the previous computation as initial guess for the computation at the

next z-level.

2. The bottom ridge-curve computed at a given initial time is used as initial guess for

the computation of the bottom ridge curve at the next initial time.

7.3.2 Areas and volume

The size of the eye is measured by the areas of the LEEI-sections and by the total volume.

The area, A, of the eye at a z-slice is computed from the closed ridge-curve using Green’s

theorem, according to

A =

∫ (
Rx(s)

d

ds
Ry(s)−Ry(s)

d

ds
Rx(s)

)
ds, (7.1)

where R(s) is arclength parameterization of the curve R = (Rx(s), Ry(s)). Given the areas

at all z-levels, the volume of the eye, V, is approximated by

V = ∆z
N−1∑

n=0

An, (7.2)

where N is the number of z-levels, and An is the eye-area at level z = n∆z. In our

calculation, N = 40 and ∆z = 250 meters. Areas and volume as function of initial time

varied between 60 and 62.5 hours are depicted in Figure 7.4.
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Figure 7.1: log(Ψ22) and ridge at initial time of 60 hours with 1 hour integration time, at

z-levels of 500 m. (a), and 3500 m. (b).
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Figure 7.2: log(Ψ22) ridges stacked on z-levels.

7.3.3 Asymmetries

The relative contributions of the individual Fourier descriptors to the total energy provide

information about the degree and structure of the asymmetries contained in the LEEI. In

Figure 7.5 we show the contributions of the wavenumber 1 and 2 components as functions

of initial time and z-level. The figure indicates that these two modes contain almost 90%

of the energy. Inspection of contributions from other modes (not shown) shows that the

contributions of the low-frequency Fourier descriptors increase as the area decreases. Thus,

axisymmetry is a more valid assumption of smaller eyes.

7.4 Dimensionally reduced model

The ridge extraction of Section 3 produces a representation of the LEEI that is continuous

in the azimuthal variable φ, and discrete in the vertical coordinate z. Setting c = x + iy,

this representation can be written as

cn(ϕ, t) =
M∑

m=−M

FR,mn(t)eimϕ, (7.3)

where FR,mn is the Fourier descriptor at level zn, (0 ≤ n ≤ N) for wavenumber m, amd

M = 35, N = 40 in our calculations. A continuous representation across z is achieved by

matching (7.3) to vertical basis functions Bk(z), 0 ≤ k ≤ N , as

c(ϕ, z, t) =

N∑

k=0

M∑

m=−M

cmk(t)Bk(z)e
imϕ. (7.4)
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(a)

(b)

Figure 7.3: Ψ22 maximal surface at initial times 60 hours (a) and 64 hours (b) with 1 hour

integration time.
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Figure 7.4: Areas on z-levels (a) and volumes (b) of the LEEI as functions of initial time
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Figure 7.5: Wavenumber 1 (a) and 2 (b) component of the Fourier descriptor for varying

z-levels and initial times for the LEEI.
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The condition that (7.4) coincides with (7.3) at z = zn yields a linear equation for the

coefficient vectors cm = (cm0, · · · , cmN ),

N∑

k=0

cmk(t)Bk(zn) = FR,mn(t), (7.5)

which has a unique solution for each m and t if the basis functions are linearly independent.

We consider two choices for the vertical basis functions. The first choice is Fourier basis

functions,

Bk(z) = e2πikz/zN , (7.6)

and the second choice is radial basis functions (RBF’s),

Bk(z) = φ(|z − dk|), (7.7)

where φ is any RBF and the dk are uniformly distributed centers in the vertical range. After

experimenting with different RBF’s, we found that the choice

φ(ξ) =
√
ξ2 + β (7.8)

with β = 20 works well, although the results are not very sensitive to variations in β.

The approximations of the first 3 Fourier descriptors at a fixed initial time as functions

of z-level in terms of 5 and 10 basis functions are shown in Figures 7.6 and 7.7 respectively,

along with the relative errors in these approximations. Using 5 and 10 RBF’s captures 90%

and 95% of the information in the vertical variation. For 10 RBF’s this corresponds to a

reduction by 80%. The weights |cmk|
2 + |c−mk|

2 for 10 RBF’s are shown in Figure 7.8 as

functions of t for m = 1 and m = 2. The RBF-representation reproduces the vertical shape

of the eyewall and can be used to analyze the vertical tilt of the LEEI in the presence of

vertical wind shear. This and a time-series analysis of the coefficient functions is the subject

of a forthcoming study. With 10 RBF’s and 3 Fourier descriptors, our approach yields a

30-dimensional model for the dynamics of the LEEI.

7.5 Concluding remarks

The dynamics of a 3D Lagrangian eye-eyewall interface were studied by applying Lagrangian

methods for its construction, and using methods of data reduction in the extraction and

analysis of this structure. The LEEI was defined as a ridge of a Lagrangian field that acts as

a barrier for particle transport, and varies with initial time. The construction of a reduced
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Figure 7.6: Fourier descriptors (blue) for wavenumbers 0 a), 1 (c), and 2 (e) as functions of

z-level at t=60 hours, and their approximations using 5 Fourier basis functions (red dashed)

and RBF’s (red dashed-dotted). The relative errors of the representations in (a), (c), and

(e) are depicted in (b), (d), and (f) respectively.
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Figure 7.7: Fourier descriptors (blue) for wavenumbers 0 a), 1 (c), and 2 (e) as functions

of z-level at t=60 hours, and their approximations using 10 Fourier basis functions (red

dashed) and RBF’s (red dashed-dotted). The relative errors of the representations in (a),

(c), and (e) are depicted in (b), (d), and (f) respectively.
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Fourier descriptor.
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dimensional model using Fourier descriptors and appropriate vertical modes showed that

the structure can be viewed as lower dimensional, both in the azimuthal and the vertical

directions. Moreover, the amount of information contained within the lower dimensional

data set characterizes the degree of axisymmetry in the model during a mature state, and

the ”shape-based coordinate” eliminated the problem of a nonstationary vortex center. The

temporal evolution of the LEEI can be studied by analyzing the time series of the coefficients

associated with the spatial basis functions, which is the subject of future work. Further

work in this direction will include a similar analysis for an intensifying storm, where the

complexity increases due to the nonstationary evolution and interaction of mesovortices.



Chapter 8

Lagrangian coherent structures

involved in vortical hot tower

interaction

8.1 Summary

Vortical hot towers (VHT’s) have been recently recognized as the key coherent structures

present during tropical cyclone (TC) intensification. Though obvious from inspection as

warm core localized mesovortices, their interaction and role in the transfer of energy is a diffi-

cult problem, since the structures are inherently 3-dimensional, and highly time-dependent.

So far, no Lagrangian studies have attempted to capture either of these properties. Cur-

rent Lagrangian methods can handle time-dependent structures effectively, however most

applications have been to 2D flows with weak time-dependence. In this chapter, we apply

new Lagrangian techniques developed for 3D coherent structures, to study the dynamics of

VHT’s. Our findings are that (1) VHT’s are elliptic structures with parabolic boundaries,

and (2) associated with VHT’s are hyperbolic structures that determine the mixing of en-

ergy and the merging of VHT’s during intensification. The relation between the VHT’s and

the hyperbolic structures confirms that the interaction of mesovortices has the ability to

dictate the transport of material into a single ring of high vorticity.
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8.2 Background and overview

The study of tropical cyclones has attracted much recent interest, with the level of mathe-

matical sophistication in these studies steadily increasing. While most of these efforts have

focused on mature storms, the recent discovery of structures and processes dominating

tropical cyclogenesis have sparked growing interest in the intensification process. Knowing

whether a particular tropical storm will intensify is of obvious importance to coastal com-

munities, shipping, and marine assets, and a better understanding of the process involved

in intensification can be expected to lead to improved prediction of hurricane formation.

Tropical cyclogenesis is an inherently 3D and asymmetric process, marked by the spinup

of individual moist convective mesovortices [SMN09], which are found in the tropical atmo-

sphere prior to the formation of a tropical depression. There are two proposed mechanisms

for the spinup of TC’s. The first is through sea-surface winds that transfer energy to the

core through wind induced surface heat exchange (WISHE), [MNSP09]. The second mech-

anism is through the interaction of warm-core vortex structures, termed vortical hot towers

(VHT’s), [HMD04]. The VHT’s are assumed to be the key coherent structure present dur-

ing TC formation [MNCS06, DMW09]. Their role for intensification is highly important,

as the axisymmetric vortex does not develop until the temperature in the surrounding en-

vironment reaches the temperature in the VHT’s. Thus, the thermal transport properties

associated with the interaction of VHT’s play a key role for intensification.

VHT’s are localized structures creating a protected environment [McW84] which sup-

ports the conversion of latent heat into rotational energy [SH82, HS86] during their lifecycle

of approximately 1 hour. Though VHT’s have a small horizontal scale, their upscale orga-

nization is a mechanism for the transport of energy into a single vortex [MNCS06]. Their

relation to environmental flow is not well understood, although in [DMW09] the low entrain-

ment rate of cat’s eye features is proposed as a potential mechanism for less disturbance

from the environment. The studies of [FR99] and [FR01] provide some insight into the

effects of environmental flow for mature storms, but the case of a developing storm is still

not understood.

Understanding the transport induced by VHT interaction requires advanced mathemat-

ical techniques, due to the spatio-temporal complexities of the velocity fields. VHT’s are

the most obvious coherent structure during intensification, and are seen as regions of high

convection and vorticity. They are also trackable, and robust through changing wind fields.
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However, their role in the transport of thermodynamic properties cannot be fully under-

stood without knowledge of the related flow dividing structures associated with VHT’s. The

interaction between mesovortices can be characterized by the coherent structures between

them, which either allow or prohibit interaction. The manifolds linking VHT’s cannot be

found by Eulerian methods, since this requires to trajectories. The time-dependence of the

velocity fields implies that the manifolds are of finite length. The appearance of these con-

necting structures has been seen in Eulerian phase portraits, see e.g. [PMFS03, DMW09],

but they are difficult to track and visualize due to the time-dependence and shear present

in tropical cyclones.

A new class of finite-time Lagrangian methods allows for the detection of Lagrangian

coherent structures (LCS’s), which are the finite-time analog of stable and unstable mani-

folds. Haller and coauthors [HP97, HY00, Hal00] proposed finite-time Lyapunov exponents

(FTLE’s) as a method for measuring trajectory separation, and maximal ridges of an FTLE

field mark LCS’s. This method was shown to be robust under approximation errors of the

velocity fields [Hal02], and it allows to treat time-dependence of a velocity field. Recently,

there have been many applications of FTLE’s by the dynamical systems community to a

variety of fluid flows. The applications to atmospheric flows have been more limited, but

several studies have ventured into this area. In [SH09], Chapter 4, and Chapter 5, FTLE’s

have been applied to tropical cyclones, and in [TMH+09], FTLE’s are used in a study of

the subtropical jetstream.

Though FTLE’s are easily computed, and handle time-dependence and approximation

errors of velocity data, they do not differentiate between hyperbolicity and shear effectively,

and are therefore limited for atmospheric flows. The study of Chapter 5 showed that the

methods of [HI03] could be used even in the presence of large-scale shear to detect LCS’s.

Though the LCS’s were not manifolds, since they move with the Rossby wave speed, they

were shown to be robust across time, and influence the systematic transport of trajectories.

The 2D method of separating shear was extended to 3D in Chapter 6, and was used to

compute a Lagrangian eye-eyewall interface during a mature, but still highly time-dependent

velocity field. In this study, 3D flow separation has been decomposed into several hyperbolic

and shear components. An additional benefit of the method was that it offers faster conver-

gence than FTLE’s. The key ingredient in the approach of Chapter 6 was a specific choice of

coordinates adapted to the helical trajectory motion. Though the VHT interaction is clearly
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more complex than the evolution of a single vortex, the coordinate system proposed in Chap-

ter 6 is still valid, as long as trajectories entrained in vortices remain there over sufficiently

long time periods. We note that other studies [PMFS03, Saf81, Pro99, SDM06, Tru54] have

investigated the interaction between and entrainment of particles by vortices using different

methods.

In this study, we apply the methods of Chapter 6 to a 3D intensifying tropical cyclone,

and examine the LCS’s involved in VHT interaction. We show that while the VHT’s

constitute an important type of LCS, which is parabolic, the hyperbolic LCS’s separating

the VHT’s are shown to control the transport of material into the core, and are thus the

important LCS’s involved in tropical cyclogenesis. Our study also shows the length scales

over which VHT’s can interact, and demonstrates that multiple VHT’s may be involved

in this interaction [HMD04], which may result in the upscale organization proposed by

[MNCS06].

The outline of this chapter is as follows. Section 8.2 provides an overview of the coor-

dinate system and the Lagrangian methods used in this study. For further mathematical

details we refer to Chapter 6. In Section 8.3, the model from which the velocity data are

calculated is described, along with numerical details regarding trajectory calculations. Our

main results are presented in Section 8.4. The structures shown by the Lagrangian fields

indicate two phases of hurricane intensification, an initial cryatallization phase (5-20 hours)

with many VHT’s present and arranged symmetrically, and a diabatic vortex merger phase

(20-30 hours) that leads to the formation of an eyewall, We conclude, in Section 8.5, with

further remarks on the relation between Lagrangian hyperbolic structures and VHT’s, and

an outlook on future studies stimulated by the results of this chapter.

8.3 Model and numerical details

The model used in this study is the fifth generation Penn State/NCAR mesoscale model

(MM5), [GDS95] and [Dud93]. The model run is a fully 3D nonhydrostatic vortex evolved

with bulk aerodynamic scheme and initialized from a moist idealized axisymmetric vortex

which is a high resolution run of experiment S5 from [NSM08]. Surface fluxes are uncapped

and allowed to vary with wind speed, which allows WISHE amplification. Though the initial

condition is axisymmetric, asymmetries develop quickly in the form of convective bursts,

and then vanish leaving only the low wavenumber asymmetries during the mature state,
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here for t > 50 hours. The VHT’s begin to emerge at about 5 hours in this simulation. In

this study we examine fields from times of t=0 to 50 hours during intensification.

Velocity data is calculated on a set of four 3D nested grids in the horizontal plane with

x − y spacing of 1.67 km on the innermost domain of 300 × 300 km. Velocity data for

trajectory computations is taken only from the innermost grid. Vertical coordinates are

given on σ-levels, and vary in time, with a time-step of 2 min. Trajectory integrations

are performed using a fourth order Runge-Kutta scheme, on grids of evenly spaced points

in a box of size 220 km by 220 km by 16 km in x, y, and z respectively, with horizontal

resolution of 1 km, and vertical resolution of 250 m, resulting in approximately 2.5 million

trajectories at each initial time.

Integration times using Lagrangian methods are chosen long enough to resolve structures

while minimizing computation, particularly in the case of a moving time frame. Here, we

have chosen T = 1 hour as the primary integration time, which is consistent with the typical

time of existence of a VHT, and may allow the assumption of slow time-dependence along

trajectories. The initial time, t, is varied between 5 and 30 hours, which is a characteristic

time range for VHT interaction during the intensification phase.

For this study, the numerical methods and choice of coordinate frame presented in

Chapter 6 are used for computation of the Ψ22 fields. In addition, the angle of rotation φ is

used as a measure of shear. The 3D FTLE-fields and 2D “planar” FTLE-fields, which are

computed by ignoring the vertical component of 3D trajectories and using the definitions

from Chapter 3.4.1. The planar FTLE is better suited for the aspect ratio of atmospheric

models. The Ψ22 fields are more suitable for atmospheric flows since zero vertical velocity

reduces the Ψ22 field to the R-field described in Chapter 5.

8.4 Lagrangian fields

The Lagrangian fields display coherent sets of time-dependent structures, which can be

visualized over varying initial times. To illustrate the spatial forms of these structures, we

show in Figure 8.1 the planar (at fixed z-level) FTLE, Ψ22, and φ fields at z = 1 km. and

t = 10 hours, along with zooms highlighting a particular structure. The FTLE field shows

many high regions of separation, including vortices and hyperbolic lines, while the Ψ22 field

shows only hyperbolic separation, and the shearing is captured by the angle of rotation φ.
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8.4.1 Structures and asymmetry

The LCS’s are coherent through varying z-levels, showing the 3D nature of the structures,

which indicates that vortex interaction plays a crucial role in the transport and organization

of energy. Since the vortices reach heights of 10 km, well above the sea-surface, the role of

WISHE in the transport of energy is seen as less important than the vortex interaction.

Initial crystalization phase

At 5 hours, the VHT’s can be recognized as ringlike structures in the planar FTLE fields,

see Figure 8.2(ace). Potential temperature contours indicate that the structures at this

phase are highly localized, and regions of high potential temperature are at the same places

as the vortex rings. The Ψ22 ridges located between the vortex rings have the form of a

”crystal lattice” with approximately hexagonal symmetry, that acts as a barrier to interac-

tion between the vortices, see Figure 8.2(bde). We note that the VHT’s emerge just after 5

hours, but the forward integration time of 1 hour incorparates velocity data over the time

range of 5 ≤ t ≤ 6 hours, allowing the VHT’s at 5.5 hours to been seen in Lagrangian fields

at t0 = 5 hours.

At 10 hours (Figure 8.3), many VHT’s are present in an annulus of about 60 to 80 km,

seen as rings in the planar FTLE field, and as countours of high potential temperature. Fil-

amentation has developed from the rings showing more interaction with neighboring VHT’s.

The filaments are also ridges of the Ψ22 field, which confirms that they are hyperbolic. There

are two types of ridges surrounding mesovortices. In the first case, a Ψ22 ridge is circular

and almost enclosing a region of localized high potential temperature. The mesovortex is

then protected by the hyperbolic ridge, and does not interact with surrounding mesovor-

tices. In the second case, a ridge and a valley are aligned at the boundary of the mesovortex,

with the attracting set showing interaction of outside air with the mesovortex. After the

mesovortex is allowed to interact, the ridge is no longer protecting the vortex, and generally

lengthens as it is advected with the mean flow. The ridge then either vanishes, as its role

is complete, or governs the interaction between adjacent mesovortices. This behavior is in

contrast to observations reported in [PMFS03] for 2D barotropic mesovortex interaction,

which suggest that partial interactions may occur. With the stong temporal variation of

the VHT’s, and lifetimes of only 1 hour, the interaction seen here is either splitting, or

complete merger, since a weaker VHT is annihilated by a stronger one.
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Figure 8.1: Planar FTLE, Ψ22, and φ fields in (a), (c), and (e) respectively, at initial time

of 10 hours with integration time of 1 hour. A zoom into a particular structure is shown in

(b), (d), and (f).
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Figure 8.2: Planar FTLE fields (left column) and planar Ψ22 (right column) fields at z-levels

of 1 km (a,b), 4 km (c,d), and 7 km (e,f) with 1 hour integration time and vorticity contours

overlaid at initial time of 5 hours



147

x (km)

y
 (

k
m

)

 

 

t=10hours

−100 −50 0 50 100

−100

−50

0

50

100

10

12

14

16

18

20

(a)

x (km)

y
 (

k
m

)

 

 

t=10hours

−100 −50 0 50 100

−100

−50

0

50

100

−0.02

−0.01

0

0.01

0.02

(b)

x (km)

y
 (

k
m

)

 

 

t=10hours

−100 −50 0 50 100

−100

−50

0

50

100

10

12

14

16

18

20

(c)

x (km)

y
 (

k
m

)

 

 

t=10hours

−100 −50 0 50 100

−100

−50

0

50

100

−0.02

−0.01

0

0.01

0.02

(d)

x (km)

y
 (

k
m

)

 

 

t=10hours

−100 −50 0 50 100

−100

−50

0

50

100

10

12

14

16

18

20

(e)

x (km)

y
 (

k
m

)

 

 

t=10hours

−100 −50 0 50 100

−100

−50

0

50

100

−0.02

−0.01

0

0.01

0.02

(f)

Figure 8.3: Planar FTLE fields (left column) and planar Ψ22 (right column) fields at z-levels

of 1 km (a,b), 4 km (c,d), and 7 km (e,f) with 1 hour integration time and vorticity contours

overlaid at initial time of 10 hours
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Figure 8.4: Planar FTLE fields (left column) and planar Ψ22 (right column) fields at z-levels

of 1 km (a,b), 4 km (c,d), and 7 km (e,f) with 1 hour integration time and vorticity contours

overlaid at initial time of 15 hours.
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Figure 8.5: Planar FTLE fields (left column) and planar Ψ22 (right column) fields at z-levels

of 1 km (a,b), 4 km (c,d), and 7 km (e,f) with 1 hour integration time and vorticity contours

overlaid at initial time of 20 hours
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Eyewall formation

At 15 hours, the lattice structure has broken down (Figure 8.4), and at 20 hours (Figure 8.5),

the number of mesovortices has been greatly reduced as many mergers and annihilations

have occured. Triangular and square patterns formed by the dominant LCS’s show that the

remaining structural asymmetries are dominated by wavenumbers 3 and 4. Higher potential

temperature air has entered into the core, and the breaks in the LCS lattice open pathways

for the transport of material to the core. The fields between 20 and 30 hours initial times

are shown in Figures 8.6 and 8.7.

Generally, the domain of influence of each mesovortex is determined by the length of the

manifolds emanating from it. During the crystalization phase, e.g. at 10 hours (Figure 8.3),

the manifolds extend only to adjacent VHT’s, and do not control any transport beyond the

adjacent VHT’s. By contrast, at 20 hours (Figure 8.5), the strength of the LCS’s is much

more intense, and some hyperbolic manifolds reach a length of over 50 km. The position

of the longest manifold observable in Figures 8.6 and 8.7 is a connecting structure between

mesovortices on opposite sides of the eventual primary vortex, which shows that the VHT’s

do not have interactions only with adjacent VHT’s, but act along flow boundaries that will

eventually define the axisymmetric vortex. At this stage, the set of LCS’s do not completely

enclose the eye, but gaps in the annulus remain which allow transport across the inner core

boundary. At 50 hours, the gaps have closed and the eyewall formation is completed.

In [MNSP09] it is noted that as asymetries develop, the higher wavenumber asymetries

appear first, but then disappear as the storm evolves toward a single vortex, whereas the low

wavenumber asymmetries remain even after the storm has reached a steady vortex state.

In our simulation, at 20 hours the wavenumber 4 asymmetry remains.

The structure of the VHT’s in our 3D study is quite different from the 2D study of

[PMFS03] and other studies in fluid mechanics, because of the lack of complete enclosure

and presence of convection. In the 2D case, the vortex grows as it entrains additional fluid,

and then splits a trailing shear layer of outflow from the vortex, often resulting in splitting

into multiple vortices [OD10]. In the study of [PMFS03], the dominant vortex grows as it

entrains the other vortex. For VHT interaction, we see that the size of VHT’s generally

grows as their entrainment of fluid increases. However, the open top of the VHT allows

rising air to exit above z = 10 km, while there are two inflows present, at the sea surface

and at z = 6− 9 km [MNCS06, HMD04].
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The role of the manifolds also extends beyond entrainment and interaction, and helps

to dictate movement of VHT’s relative to the mean flow as a boundary with friction. For

counterclockwise motion, a VHT located radially inward from an LCS will move slower

than the mean flow, while an LCS located radially outward moves faster. This can lead

to a merger or splitting of nearby LCS’s as they move upstream or downstream relative to

each other.

8.4.2 Diabatic vortex merger

During the time period from 20 hours to 30 hours, several prominant vortices remain intact

for longer than the normal 1 hour lifecycle and reach diameters of about 30 km. The merger

of weaker vortices into the stronger vortex is illustrated in Figure 8.6, and can be clearly

seen in an animation of the images.

A prominant vortex, labeled A in Figure 8.6 at 20 hours undergoes two types of mergers

in the next 10 hour period. First, the vortex merges with smaller vortices that are located

radially outward by a process of anihilation of the smaller vortices. The high vorticity in

the outer vortices is filtered and contained within a tangle of manifolds. The outer vortices

merge as the tangle unfolds into a single manifold at 24 hours. Merger of this new vortex

with the inner vortex occurs at 26 hours when the manifolds unwind and release the vortex

from its protective core in a pinchoff.

After the vortex has no manifold protecting it from interaction, it merges through a

nearby tangle and becomes an elongated region of vorticity, which forms a portion of the

eventual eyewall. The merger occurs first between 26 and 28 hours, and again between 28

and 30 hours. After the merger, the manifolds that protected the vortices have unwound

and are located radially inward from the elongated vortex, now serving as a barrier to the

center of the storm. The elongation and merger of primary VHT’s is coincident with a

higher rate of rotation. The VHT travels about one half rotation about the storm center for

each 2 hour segment during the period from 20 to 26 hours, while it travels a full rotation

during a 2 hour period from 28 hours to 30 hours, which indicates that an increase in angular

velocity is a result of the upscale organization of vorticity through VHT interaction. Note

that the length of the manifolds during the period of slower rotation is longer than the

distance travelled by a trajectory during a 1 hour integration time, and that the coherent

structures are far more resillient than the 1 hour lifetimes of VHT’s. The tight closure
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of manifolds around a VHT eliminates interaction, while the unwinding allows additional

entrainment by the VHT, which is subsequently pinched off from the manifold.

8.5 Concluding remarks

We have shown that during the intensification phase of a hurricane, the dynamics of VHT’s

play a crucial role in the formation of a (nearly) symmetric eyewall. Lagrangian coherent

structures were located which dictate the transport of particle trajectories, and hence energy,

to the hurricane core. Localized VHT’s entrain air with high potential temperature, but

the existence of hyperbolic LCS’s surrounding the VHT’s form a lattice that prohibits

interaction between mesovortices. As the higher wavenumber asymetries begin to vanish,

it is these LCS’s that provide a pathway for the transport of energy to the core, while still

forming a protective barrier around the core. The 3D nature of the structures shows that

their role in the interaction of VHT’s and in the organization of transport to the core is

vital for the intensification process, perhaps more vital than WISHE which occurs only near

the sea-surface.

Though this study has been conducted using model data calculated from an idealized

initialization, our 3D Lagrangian methods resultted in 3D continuous LCS’s persisting over

varying initial time. The lengths of the manifolds suggest that the choice of integration

time must be well adapted to the time-dependence of the storm data, but a proper choice of

scales is certainly a reasonable adaptation of any method. The methods used in this study

are applicable to any time-dependent vortex flows, and may uncover aspects of transport

that have been unattainable by other methods. In particular, the application to intensifying

storms in the crucial cases of African Easterly waves and a sheared tropical cyclone will

provide insight into real storm intensification. In addition, the methods can be used to

investigate interaction of a primary vortex with environmental flow.
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Figure 8.6: Planar FTLE fields with 1 hour integration time and vorticity contours overlaid

at times from 20 hours to 30 hours every 2 hours.
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Figure 8.7: Planar Ψ22 fields with 1 hour integration time and vorticity contours overlaid

at times from 20 hours to 30 hours every 2 hours.



Chapter 9

Conclusions

This study has introduced many concepts from dynamical systems pertaining to finite time

transport in time-dependent flows to the field of tropical cyclone dynamics. The challenges

of atmospheric data sets and tropical cyclones required the adaptation of many of the

techniques and development of new techniques. Additionally, ideas from image processing

have been used to viualize results, but still in a limited way.

There are many key advances and more questions that arise as a result of this study.

The advances in Lagrangian dynamics lead to alternative methods with improved algorithms

over existing Lagrangian methods. The applications of the methods to atmospheric models

provide new methods of data analysis, which lead to new ideas about the dynamics and

mixing that are present during a TC lifecycle.

Mathematically, the ideas presented here extend many of the methods in Lagrangian

dynamics to a moving time frame and a 3D domain, which allows the analysis of mixing

on intermediate time scales. The adaptation to the difficult domains and aspect ratios

of atmospheric data sets along with the time scale problem was the main focus of the

axisymmetric study. A variety of mixing rates were adapted and found to be meaningful

indicators of hurricane intensity. For the barotropic model, high shear led to the use of a

decomposition of the Lagrangian flow separation into hyperbolic and shearing components.

Time dependent mixing rates were developed that measured transport across shear lines.

The ideas of a moving time frame from the axisymmetric study were again used in the

study and shown to be appropriate for a variety of flows. The key result of the study was

that the question of whether persistent coherent structures could exist in dominant shear

was answered affirmatively, and the structures were shown to have a tremendous impact on

155



156

transport, and subsequent vortex breakdown. The 2D shear separation was extended to 3D,

and a computational algorithm for extracting 3D fields followed after a specific coordinate

transformation and rotation. The decomposition of the Lagrangian separation into three

hyperbolic and three shearing components was crucial for extracting a continuous in time

hyperbolic surface during a mature state that was not seen by other methods. The 3D

method was shown to be particularly useful for atmospheric data sets due to the aspect ratio.

Additional ridge extraction methods were developed that extracted the nearly cylindrical 3D

surface. In the dynamical eyewall study, the methods were extended across varying initial

time to produce a time-dependent eye-eyewall interface. The ridge extraction algorithms

were automated over varying images to produce a continuously evolving structure. The

ridge extraction algorithm was aided by the use of Fourier descriptors, which provided a

natural data reduction to a shape-based coordinate over varying z-levels and initial times.

Additional data analysis on z-levels showed a significant data reduction on the storm as

a whole. The study of VHT interaction had the key mathematical result that hyperbolic

structures shown to exist between vortices determine the later interaction, and in many

cases annihilation. Symmetries were also shown to exist within the Lagrangian structures

that are not evident using other methods, giving a new perspective on the formation of a

primary vortex from mesovortices.

The use of the new mathematical tools developed here and by others have shown sig-

nificant scientific results on the behavior of TC’s. In the axisymmetric study, short time

fluctuations in intensity were shown to be caused by mixing episodes. The time frame of the

events support the argument that gravity waves causing local buoyancy in the eye promote a

transfer of energy that leads to higher intensity. The study on the barotropic model shows

that the interaction of mesovortices is determined by hyperbolic structures that persist

through shear. Moreover, the length of the structures determines the degree of interac-

tion, and may shield the mesovortices from environmental factors. The 3D eyewall study,

while mostly mathematical, showed that the eye-eyewall boundary was an almost closed

hyperbolic surface, and the boundary dictated the trajectory transport between the two

regions. An extension to varying initial time in the time-dependent eyewall study showed

that the asymetries of the eyewall could be characterized over varying time, and showed the

degree of axisymmetry on the inner core from a transport perspective durng a mature state.

The VHT study showed that hyperbolic structures were present and abundant during the
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intensification phase, and dictated the interaction of mesovortices. The hyperbolic LCS’s

provided a mechanism for the upscale organization of vorticity. The number of mesovor-

tices and hyperbolic structures show the loss of higher wavenumber asymmetries during the

transition to a mature storm.

Though many questions have been answered by this study, many remain. Specifically,

the use of these techniques on real data during intensification has the opportunity to drive a

great amount of future research that can increase our knowledge of TC intensification much

further. The time-scale flexibility and methods for handling difficult 3D data sets have the

potential to confirm new theories such as marsupial theory, and may show the importance

of environmental factors to the strength and stability of the inner core. Additional use of

data reduction and image processing may also show structural properties of the LCS’s that

are important for storm development.
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