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ABSTRACT

CASA REAL-TIME MULTI-DOPPLER RETRIEVAL SYSTEM

Doppler synthesis of 3D wind products is of great practical importance to observing and

understanding severe weather features such as tornadoes and microbursts. It becomes very

effective for severe weather events if this modeling can be performed in real-time. A real-

time multi-Doppler retrieval system forms an important product of modern weather radar

networks. Challenging constraints exists between computing performance, high data resolu-

tion, and other quality issues. This Thesis describes the implementation of the operational

Real-time Multi-Doppler Retrieval System (R-MDRS) of the Center for Collaborative Adap-

tive Sensing of the Atmosphere Engineering Research Center (CASA ERC). The R-MDRS is

seamlessly integrated into CASA’s Distributed Collaborative Adaptive Sensing (DCAS) oper-

ational framework and exhibit robust performance that strikes balance between high resolution

and real-time processing speeds. A detailed technical description of the CASA R-MDRS im-

plementation is given, including design approach that builds around two core components of

the tool: interpolation to a common grid and Doppler synthesis. The R-MDRS generates 3D

Wind products in step with network scanning modes and has been effective at detecting con-

vective cells and tornadic activities. Data from 2009 and 2010 weather events are presented

and analyzed for evaluating processing time as well as factors that effect data accuracy. These

factors include Dual-Doppler candidate pair selection, advection correction, and variations in

wind calculation techniques.
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Chapter 1

INTRODUCTION

1.1 CASA Background

The Center for Collaborative Adaptive Sensing of the Atmosphere, is a National Science

Foundation Engineering Research Center (CASA ERC) dedicated to developing next genera-

tion weather-sensing radar networks. Its goals are to overcome current limitations with new

technologies and to improve the paradigm of weather sensing.

Conventional weather radar networks such as NEXRAD utilize data from high-power,

long-range radars usually operating in the S and C bands. The choice for low frequency

was necessitated by a period when high frequency attenuation at long range was a severe

and yet unresolved issue. However at long ranges, these radars are limited at observing lower

parts of the atmosphere due to Earth’s curvature, leading to under-sampling of meteorological

conditions in the lower troposphere where most weather activities occur. Compounding the

problem is the low resolution that these radars provide, with sample volumes extending to

many cubic kilometers as range increases. These factors severely limit current weather sens-

ing capabilities, especially in regards to observing small features such as tornadoes. Today,

tornadoes often go undetected and the rate of false alarms is high.

CASA tries to overcome these limitations by employing a networked sensing approach

using many small radars. These CASA radars operate at X-band over short ranges. Located

just few tens of kilometers apart, they form a high frequency network that can see the lower

troposphere in finer detail. The higher resolution of CASA radar observations consequently

results in higher resolution Doppler retrievals and thus better detection of severe weather

features. X-band has become a viable option for weather sensing due significant advances in
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Figure 1.1: CASA DCAS framework

attenuation correction over long ranges. In addition, the smaller antenna required for these

higher frequency radars significantly reduces the costs of manufacturing and deployment.

Besides networking small high frequency radars to overcome Earth curvature and reso-

lution issues, CASA also employs an on-demand adaptive operation architecture to improve

weather sensing and warning systems. This new operating paradigm is termed Distributed

Collaborative Adaptive Sensing, or DCAS for short. ‘Distributed’ refers to the use of large

number of small radars. ‘Collaborative’ and ‘Adaptive’ refer to the dynamic interactions

between the radars, the weather, the radars’ information technology infrastructure, and com-

peting end-user needs. In DCAS, weather detection and end-user demands jointly dictate the

radars to scan adaptively to areas of interest (Figure 1.1). This on-demand ‘pull’ method is

a significant shift from NEXRAD’s ‘push’ broadcast paradigm, and is perhaps a better ap-

proach for a weather sensing network composed of large numbers of small radars. In regards

to measuring air motion, DCAS adaptively scans only where is needed, using optimal sets of

Doppler radars. This makes it efficient at addressing the significant computational demands

2



of high resolution multi-Doppler retrievals and creates the feasibility for real-time air motion

tracking using only modest computing resources.
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1.2 Real-Time Multi-Doppler Retrieval

Air motion multi-Doppler retrievals has been a persistent pursuit since the birth of

Doppler radars. While the mathematical principles behind multi-Doppler retrievals are rela-

tively simple, implementing it in real-time has proven to be difficult due to high sensitivity

to errors and computational limitations.

Most of the current day operational NEXRAD Systems are spaced with no significant

overlap and as a result multiple Doppler product is not viable. Several research experiments

in the past that produced high resolution Doppler wind products were by post-processing.

CASA scan update times are on the order of 30 to 60 seconds to keep up with fast movement

and formation of tornadoes. Thus reliable and timely warning of these hazards requires

a multi-Doppler retrieval system that can operate in real-time while still maintaining high

enough resolution to capture the features. Going real-time inevitably places limits on the

throughput of the system based on computational power. This compromise of throughput

for speed may be readily achieved by lowering the resolution. It is on the premise of this

conflicting constraint that CASA’s real-time multi-Doppler retrieval system is designed.

CASA’s main test bed resides in Oklahoma’s “Tornado Alley”, code-named Integrative

Project One (IP1). Here, fundamental research is being done on electromagnetic wave at-

mosphere interactions, new information infrastructure to support the DCAS paradigm, and

lower atmosphere physics for sensing and forecasting. It is also here in IP1 that CASA’s

Real-time Multi-Doppler Retrieval System – henceforth known as R-MDRS – is tested and

validated.
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1.3 Outline of Thesis

The CASA R-MDRS is a convergence of many ideas including past implementations and

new designs. This Thesis will detail this comprehensive system over four major sections,

organized to provide an intuitive flow of the process behind its development.

Chapter 2 will be background information and a description of the CASA IP1 multi-

Doppler problem. It will begin with a technical overview of radars in general, followed by

Doppler principles. This will be followed by descriptions of the IP1 physical environment,

CASA radar specifications, and operating procedures. The chapter will conclude with the

mathematical formulations of multi-Doppler methodologies.

Chapter 3 provides a description of the CASA R-MDRS. A system overview will illustrate

the interactions between the integrated parts, the overall execution process flow, and the

real-time scheduling. Each subsystems of the R-MDRS will then be examined in detail. The

principles and formulations behind each subsystem will be derived, followed by their practical

functions and limitations. The chapter will conclude by examining the modularity, reliability,

and other design features of the system.

Chapter 4 will showcase some experimental results and analyze the performance of the

CASA R-MDRS. Weather events from 2009 and 2010 will be used to present the wind prod-

ucts. The accuracy and quality of the products will be validated with other radar networks,

ground sightings, and post-storm damage analysis.

Chapter 5 will be the conclusion and comments on future works for the CASA R-MDRS.

An evaluation will be made on the general performance of the current system, including its

major limitations of computational throughput. A proposal to evolve the R-MDRS towards

parallelism and modularization will be made.
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Chapter 2

PROBLEM DESCRIPTION

Designing the R-MDRS for the CASA IP1 test bed requires considerations for the test

bed layout, the radar network operation mode, and the methodologies behind Doppler tech-

niques. Multi-Doppler methodology has matured over the decades and the primary challenge

is implementing it into the CASA System constraints under which it must operate. To begin

understanding these circumstances, the document starts with a brief technical overview of

Doppler radars.

2.1 Radar Background

The word “radar” is an acronym for “radio detection and ranging”, which accurately

describes its function. Radars operate by radiating electromagnetic beams toward targets to

determine their properties based on the return signal. The most common application is to

measure the size or intensity of the target based on the strength of the return signal, quantified

as reflectivity.

Pulse radars operate by periodically sending out a short pulse and then ‘listening’ for

the echo (Figure 2.1). This ‘time-sharing’ mode is what allows pulse radars to be compacted

into a single antenna. Note that range-time τ is used to describe each period because each

temporal instant in τ corresponds to a radial range r = cτ/2. The division by 2 corresponds to

the return trip. The time between each transmitted pulse Ts is known as the pulse repetition

time or PRT. The reciprocal of the PRT 1/Ts is known as the pulse repetition frequency or

PRF. The duration of the pulse T0 is called pulse duration, but also commonly called the

pulse width.
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Figure 2.1: Transmitted pulse train and received echoes in range-time
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Figure 2.2: Sensing distributed targets within a sample volume [3]

Meteorological targets such as precipitation are composed of large numbers of hydromete-

ors extending over a large space. Pulse radars sense these as distributed targets within a sam-

ple volume. This sample volume is defined by the radar’s horizontal and vertical beamwidths

θ and ϕ extending a sample range ∆r (Figure 2.2). The beamwidths are dimensions based

on the physical parameters of the antenna. The sample range dimension ∆r is dependent on

the pulse width T0 by

∆r =
cT0

2
(2.1)
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Figure 2.3: Radar return from particles in range resolution ∆r [3]

This relationship is explained by the behavior of a finite-duration pulse in the range-time

domain. For each instant in τ , when the leading edge of the pulse reaches a distance r = cτ/2,

it will have T0 seconds to travel further out and back again before the trailing edge also

reaches r. This way both echoes will return to the radar simultaneously at τ ′ (Figure 2.3).

This additional distance that the leading edge may travel is precisely ∆r = cT0/2. Thus

the received echo at any instant in τ corresponds to the sum of backscatter energies from all

particles within the beam extending radially from r to r+∆r. Sampling in τ is the only way

to preserve the spatial information of the sample volume during pulse radar operations. Any

other way will irrevocably mix the echo signals of different locations in space, thereby losing

the critical spatial information. Because ∆r represents the finest detail the radar pulse could

‘see’, it is often referred to as the range resolution.

Pulse radars inherently time-sample the atmosphere with its PRF as the sampling fre-

quency. Even for radars scanning quickly across a wide arc, the pulse rate is many orders of

magnitude faster than the mechanical scanning motion. This results in each sample volume
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Figure 2.4: Range-time and discrete sample-time space of pulse radar operation [3]

time-sampled hundreds of times at t = τ ′, t = τ ′ + Ts, t = τ ′ + 2Ts, ... See Figure 2.4. In

this discrete time-sample space, each sample is an observation of the underlying stochastic

process taking place at the sample volume (Bringi & Chandra 2001). Together, time-samples

of a sample volume create the most fundamental unit of radar data, known as a range gate

or bin. The many gates of a particular pointing direction form a ray; the many rays of a scan

form a sweep; and multiple sweeps across different elevations or azimuths form a volume. In

a network of radars, the volume scans of each radar is synchronized to within a time frame

known as the system heartbeat.

Another noteworthy characteristic of pulse radars is their maximum unambiguous range

rmax, illustrated in Figure 2.3. While not directly related to Doppler retrievals, it does effect

the Doppler performance of pulse Doppler radars, which will be examined in the next section.

9



rmax essentially indicates the maximum range a radar pulse can travel and return before the

next pulse is sent out. It is defined as

rmax =
cTs

2
(2.2)

Of course targets beyond rmax can still be detected by the radar, but its reflected signal would

be aliased with echoes from the next pulse, making its range ambiguous. This phenomenon

is known as range aliasing or second-trip. The obvious solution to this problem is to increase

rmax by lengthening the PRT, but this runs into conflicting constraints when examining the

next focal point, Doppler radars.
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2.2 Doppler Radars

The Doppler effect can be noted as

fd = − v

λ
(2.3)

Here the subscript d denotes the Doppler frequency shift and λ denotes the wavelength. For a

constant wavelength, the Doppler shift becomes solely dependent on the velocity. Backscatter

from moving particles will be shifted in frequency based on particles’ relative velocities with

the radar. This affinity was recognized early on by radar engineers, and its exploitation

augmented conventional reflectivity measurements of weather radars with complete kinematics

of weather systems. Today, the vast majority of modern weather radars are pulse Doppler

radars.

Measuring the frequency shifts in backscatter from moving particles yield the velocity of

the particles as

vr = −fdλ

2
(2.4)

Note the subscript r indicating vr to be the radial velocity. Radial velocity is the velocity

component along the pointing direction of the radar. By convention, particles going away

from the radar have positive radial velocity, hence the negative signs in Equations 2.3 and

2.4.

There are however limitations on the maximum velocity that can be resolved unambigu-

ously. Pulse Doppler radars measure the Doppler shift by detecting the change in phase shift

of the return signal across sample time. If a pulse is transmitted with an initial phase of ϕ0,

the phase of the return signal from the sample volume at range r will be

ϕ = ϕ0 +
4πr

λ
(2.5)

If there is radial movement in the sample volume, this phase will change with time from

one pulse to the next. However, being a discrete time series, dϕ/dt can be no greater than

11



±π radians per sample. Thus the velocity that produces a phase shift of ±π radians is the

maximum velocity that a Doppler radar can unambiguously detect. This is described as

vmax =
fmaxλ

2
(2.6)

where fmax is given by

fmax =
(dϕ/dt)max

2π
=

π/Ts

2π
=

PRF

2
(2.7)

This yields the maximum unambiguous velocity as

vmax =
λPRF

4
(2.8)

This result implies that to increase vmax, either the wavelength or the PRF must be increased,

or both. Most often the PRF is more adjustable as wavelengths are locked into a range defined

by the band of the radar.

Care must be taken when trying to achieve higher vmax. Recall the maximum unam-

biguous range rmax of pulse radars mentioned in Equation 2.2, restated as

rmax =
cTs

2
=

c

2PRF
(2.9)

With PRF being in the numerator and denominator of vmax and rmax respectively, a conflict-

ing constraint forms between range and velocity ambiguity. This is known as the “Doppler

dilemma” and requires careful consideration in choosing the PRF during the design and usage

of pulse Doppler radars. Compounding the two constraints for highlight, we have

vmaxrmax =
cλ

8
(2.10)

A larger vmax must require a smaller rmax, and vice versa. The right side of the equation is

essentially constant for a given radar.

A pulse Doppler radar by itself is a powerful tool for weather sensing, but it cannot

extrapolate the entire kinematics of weather systems because it can only measure radial

velocities. Its true strength lies in working together as Doppler networks, where triangulations

of radial velocities can determine true air motion vectors. The CASA IP1 test bed is one such

Doppler network.
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2.3 IP1 Overview

The CASA IP1 test bed is located approximately thirty miles southwest of Oklahoma

City, OK and currently consists of four X-band pulse Doppler radars. The coverage area is

an 140 km by 140 km area as illustrated by Figure 2.5. The radars are named based on

nearby town names. They are clockwise from top-right, Chickasha (KSAO), Rushsprings

(KRSP), Lawton (KLWE), and Cyril (KCYR). The location of the test bed was chosen for

its climatology. Being in Tornado Alley, the test bed has a 77% chance to have at least one

tornado touchdown in any given year. Severe storms are almost 100% guaranteed every year,

with an average of 12 hail days annually [4].

IP1 radars are X-band dual-polarized pulse Doppler radars developed proprietary to

CASA’s research goals. This means that they are designed with the technical feasibility of

future mass deployment in mind. The radars have a range resolution of 75 meters and scan

to a maximum unambiguous range of 40 km during normal operations.

The layout of the radars is designed to optimize Doppler operations by maximizing cover-

age overlap and compensating for minimum beam-crossing angle blind-spots. Beam-crossing

angle refers to the angle of intersection between beams of two radars. A small beam-crossing

angle corresponds to two radars scanning a region between them that is close along the axis

connecting the two radars. In such a case, the two radars would measure Doppler velocities

that are approximately equal and opposite, giving very little or no orthogonal component

to triangulate the true velocity vector. This creates a blind-spot, which would need to be

compensated by another Doppler pair that has highly orthogonal beam-crossing angles at the

region. Each of IP1’s six radar pairs has their beam-crossing blind-spots covered by at least

one other Doppler pair.

From the perspective of beam-crossing angles, each point within IP1’s overlap regions

has an optimal radar pair for Doppler calculations based on maximizing the orthogonality of

the beam-crossing angle. These optimal Doppler pair regions are illustrated in Figure 2.6.

The CASA multi-Doppler system, as its name suggests, goes beyond optimizing the choice

13



KSAO

KRSP
KCYR

KLWE

Figure 2.5: CASA IP1 geographic layout (Google Maps 2010)

14



H=5km; R =40km;  =30deg

35

35.2

H=5km; R
MAX

=40km;  
MAX

=30deg

 

KSAO

KCYR

pair#

cyr-rsp

lwe-rsp

34 4

34.6

34.8

L
a

t 
(d

e
g

)

KCYR

KLWE

KRSP

sao-lwe

sao-rsp

cyr-lwe

-98.8 -98.6 -98.4 -98.2 -98 -97.8 -97.6 -97.4
34.2

34.4

Lon (deg)

 

sao-cyr

Figure 2.6: CASA IP1 optimal Doppler pair regions [12]

of dual-Doppler pair and uses all radars available in a region. However, dual-Doppler, tri-

Doppler, and quad-Doppler regions are all handled separately by the retrieval software. This

multi-Doppler approach may create over-determined systems, whose pros and cons will be

analyzed later in Chapter 4.
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2.4 IP1 Operation

IP1’s operation conforms to the DCAS concept as described in Chapter 1. Figure 2.7

illustrates this in more detail. The four IP1 radars scan collaboratively and adaptively under

the direction of the Meteorological Command and Control system (MC&C). The MC&C

resides in the System Operation & Command Center (SOCC), a compute server which also

houses the rest of IP1’s processing subsystems. MC&C tries to maintain temporal and spatial

synchronization between the radars so that they are scanning roughly the same region at about

the same time. With a fast scanning scheme and the relative slow motion of weather systems,

this creates an approximation to the ideal “snapshot” of the weather structure. To achieve

this synchronized and fast scanning scheme, MC&C dictates a volume scan heartbeat of 1

to 3 minutes depending on scanning modes, with radars initiating new volume scans usually

within 15 seconds of each other.

Moment data from each heartbeat constitutes the radial volumes centered on each radar.

They are broken down into elevation denominated plan position indicator (PPI) sweeps and

sent back to the SOCC via its Local Data Manager (LDM), an event-driven data distribution

system. The information level of this moment data is termed Tier2a and is high enough for
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direct graphical display to end-users, which is done. It has been adjusted by attenuation

correction, clutter filtering, and other processes. This data is also fed into meteorological

detection algorithms, which along with end-user rules, are input into MC&C to generate the

next set of scan tasks, thereby completing the DCAS loop.

Beside driving the DCAS loop, the SOCC also hosts a variety of data fusion algorithms

that uses Tier2a data, including the R-MDRS. More relevantly, Tier2a data contains corrected

reflectivity and radial velocity, which are crucial inputs for the calculation of true velocity

vectors.
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2.5 Multi-Doppler Methodology

The R-MDRS’s multi-Doppler retrieval implementation adopts algorithms developed by

Jay Miller at the National Center for Atmospheric Research (NCAR). It parallels formulations

presented by Armijo (1969), Ray et al (1978), and Ray et al (1980); and is outlined in detail

in Miller and Anderson (1991).

Conventional meteorological coordinate system consists of northward axis y, eastward

axis x, and upward axis z above mean sea level as illustrated in Figure 2.8. The respective

velocity components are u, v, and w. Usually Doppler radars detect particles so there is an

additional component of motion, terminal velocity of falling particles wt, to be considered as

well.

z

w
v

y

u

wt

(x,y,z)

y

x

Figure 2.8: Cartesian meteorological coordinate system
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The projection of particle motion (u, v, w,wt) along the Doppler radial direction is

vr = u sinϕ cos θ + v cosϕ cos θ + (w + wt) sin θ (2.11)

where ϕ and θ are azimuth and elevation angles of the beam, respectively. The azimuth

angle is measured clockwise from zero degree north. True vertical air motion w needs to be

separated from the Doppler measurement W = w + wt through additional information. It

should be noted that u, v, and W are average measured values within the sample volume.

It is common to express the radial velocity in terms of Cartesian coordinates because

the radial measurements need to be interpolated to a common grid for retrieving air motion

vectors. Since radial velocity is the projection of the velocity vector on the vector connecting

the observed point and the radar, Equation 2.11 can be rewritten as [?]:

vrr = u(x− x0) + v(y − y0) +W (z − z0) (2.12)

for a radar at (x0, y0, z0) with slant range

r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2

Further, advection effects due to storm motion need to be taken into account to adjust for

the difference between Doppler synthesis time t and the data sample time t+∆t.

To overcome this problem, Gal-Chen (1982) proposed finding a moving frame of reference

i.e. advection, that preserved the stationarity of observations. Non-Cartesian variables such as

radial velocity vr are non-stationary when advected in a moving frame, however the product

vrr is. Consequently Gal-Chen concluded that it would be more accurate to advect the

product vrr rather than vr solely. Thus for a weather event moving with components (U, V ),

the above vr equation is replaced with [5]:

[vrr]t+∆t

[r]t
=

[
u(x− x0 + U∆t)

r
+

v(y − y0 + V∆t)

r
+

W (z − z0)

r

]
t

(2.13)

Measured radial velocities are first multiplied by slant ranges from the radar at sample time

t+∆t. This product field is then advected at the storm motion to new locations, where it is
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divided by slant ranges at the synthesis time t. Coefficients of u and v on the right hand side

of 2.13 are modified to account for change in radar pointing direction. For M radars, a linear

system of equations can be formed for Doppler synthesis time t,

uam + vbm +Wcm = dm m = 1, 2, 3, ...,M (2.14)

where am, bm, cm, and dm are terms in Equation 2.13.

Approximating the solutions for (u, v,W ) by method of least square error, the error

equation

Q =
∑

E2
m =

∑
(uam + vbm +Wcm − dm)2 (2.15)

is minimized with respect to u, v, and W . A proposed solution lies in the following systems

of equations:

u
∑

amam + v
∑

ambm +W
∑

amcm =
∑

amdm

u
∑

bmam + v
∑

bmbm +W
∑

bmcm =
∑

bmdm (2.16)

u
∑

cmam + v
∑

cmbm +W
∑

cmcm =
∑

cmdm

or for just solving two unknown quantities u and v with two available radars

u
∑

amam + v
∑

ambm =
∑

amdm −W
∑

amcm

u
∑

bmam + v
∑

bmbm =
∑

bmdm −W
∑

bmcm (2.17)

Simplifying terms in the three equation system, we can rewrite Equation 2.16 as

uA1 + vB1 +WC1 = D1

uA2 + vB2 +WC2 = D2 (2.18)

uA3 + vB3 +WC3 = D3

for which the solutions are

u =
D1(B2C3 −B3C2)−D2(B1C3 −B3C1)−D3(B1C2 −B2C1)

D

v =
D1(A3C2 −A2C3)−D2(A3C1 −A1C3)−D3(A2C1 −A1C2)

D
(2.19)

W =
D1(A2B3 −A3B2)−D2(A1B3 −A3B1)−D3(A1B2 −A2B1)

D
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where D is the determinant of the coefficients

D = A1(B2C3 −B3C2)−A2(B1C3 −B3C1) +A3(B1C2 −B2C1) (2.20)

The vertical component W can be further separated into vertical air motion w and falling

speed wt via reflectivity-fallspeed relations or by incorporating the mass continuity equation

into the system.

Similarly for the system of two equations described by Equation 2.17 can be simplified

as

uA1 + vB1 = D1 −WC1

uA2 + vB2 = D2 −WC2 (2.21)

for which the solutions are

u =
D1B2 −D2B1

D
+W

B1C2 −B2C1

D
= u′ + ϵuW

v =
D2A1 −D1A2

D
+W

A2C1 −A1C2

D
= v′ + ϵvW (2.22)

where the determinant D equals

D = A1B2 −A2B1 (2.23)

And the terms ϵu and ϵv are lumped geometric terms. The quantities u′ and v′ in Equation

2.22 can be used to approximate u and v if ϵu and ϵv are sufficiently small.

It is necessary to estimate the impact of geometry on the transformation of radial ve-

locities to Cartesian components in order to determine the bounds and validity of the u, v,

and W solutions. To begin, it can be seen from Equation 2.19 and 2.22 that u, v, and W are

geometrically weighted sums of the interpolated radial velocity that can be described as

u =
∑

gumvrm

v =
∑

gvmvrm (2.24)

W =
∑

gWmvrm
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Since radial velocity measurement errors are independent, the variance of the solutions can

be written as sums of the radial velocity variances weighted by the squares of the geometric

terms

σ2(u) =
∑

g2umσ2vrm

σ2(v) =
∑

g2vmσ2vrm (2.25)

σ2(W ) =
∑

g2Wmσ2vrm

Assuming all radial velocity variances σ2vr are equal, it can be rewritten as normalized

variances

σ2
N (u) =

∑
g2um

σ2
N (v) =

∑
g2vm (2.26)

σ2
N (W ) =

∑
g2Wm

These normalized variances can be compared to determine the geometric impact and conse-

quently the validity of the u, v, and W solutions.

Low elevation scans such as those performed by IP1 radars produce radial velocities that

have small vertical components. With the above assessment and from a geometric standpoint,

the vertical wind component W solved from Equation 2.19 is usually unreliable. However

with u and v solutions being much more accurate, the mass continuity equation can be used

to obtain the vertical wind component. For this application, the mass continuity equation

becomes

∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z
= 0 (2.27)

ρ is the air density whose horizontal gradients and local variations are considered negligible.

It is modeled as a function of the altitude

ρ = exp(−zG) (2.28)
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where G is a user-specified parameter. Integrating Equation 2.27 to solve for the net mass

flow in the vertical direction yields

∫ zk+1

zk

∂(ρw)

∂z
dz = −

∫ zk+1

zk

ρ

(
∂u

∂x
+

∂v

∂y

)
dz (2.29)

For the discrete grid space, finite difference form is utilized between the previous p and the

current c levels

(ρw)c = (ρw)p − δ∆z

[
ρ

(
∂u

∂x
+

∂v

∂y

)]
p,c

(2.30)

where

δ =

{
+1 for updward integration
−1 for downward integration

The overbar value represents the average divergence of previous and current levels. The

boundary condition (ρw)b must be specified for every grid point at the bottom of the domain

for upward integration, or at the top of the domain for downward integration. A variational

integration scheme also exists where both upward and downward integrations are performed.

The solution is an averaged value of the two directional integrations, which attenuates the error

carry-overs exhibited by single-direction integrations. Downward and variational schemes are

viable only when radar measurements top out the storm, otherwise the upper boundary

condition becomes ambiguous.
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Chapter 3

SYSTEM DESCRIPTION

IP1’s R-MDRS is a composition of many programs, scripts, and event-driven processes.

These components are required to interact seamlessly under precise timing to ensure robust

function of the system. This chapter provides an indepth description of each component, their

interactions, the overall process flow, and the design philosophy.

3.1 System Overview

As shown earlier in Figure 3.1, the R-MDRS is a subcomponent of the overarching IP1

DCAS operation loop that enables accurate and real-time production of air kinematics within

the IP1 test bed during severe weather events. It shares computing and data resources with

other simultaneous operations running on the SOCC, but is an autonomous processes. Once

executed, the R-MDRS creates an independent processing branch until finished. It then

awaits the execution order of the next DCAS loop iteration. Since IP1’s operation loop is

strictly tied to the radar network’s scanning heartbeat, each R-MDRS execution must also fall

within the heartbeat time. In actuality, when overhead processing time is taken into account,

the R-MDRS processes need to complete within approximately 75% of the heartbeat time to

reliably avoid skipping data sets. Figure 3.1 illustrates an overview of the R-MDRS operation

that occurs on each heartbeat.

The overall process is divided into two major sections, a preprocessing phase that inte-

grates the R-MDRS proper with the IP1 DCAS loop, followed by the core R-MDRS itself.

Preprocessing consist of data distribution from the radar network via the LDM and ingestor

procedures that prepares the data for R-MDRS intake. While the LDM is a system-wide

feature used for all of IP1’s data products, the ingestor procedures are specifically designed

to accommodate volume-based processing applications such as R-MDRS.
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Figure 3.1: IP1 real-time multi-Doppler retrieval operation

The LDM is an event-driven process in the sense that it distributes the radar data to the

SOCC as soon as it is generated. These data are compressed Tier2a sweeps in Network Com-

mon Data Form (NetCDF) format. NetCDF is a prevalent data format for meteorological

research and is the standard for all CASA information exchange. In addition to data distri-

bution, the LDM can also execute programs to operate on the received data. This feature

is exploited on every loop to invoke the Ingestor program to decompress the incoming data,

extract their scanning information, synchronizing them to respective radar and volumes, and

finally executing the R-MDRS itself. Thus by inheritance, the whole R-MDRS is event-driven

and automated.

The R-MDRS proper consists of both new and legacy software controlled by a PERL

meta-script. This meta-control design is an important feature of the R-MDRS, as it greatly

improves the useability of the conglomeration of software that makes up the R-MDRS. Ex-

ternally, the R-MDRS appears as one functional block that intakes Tier2a NetCDF sweeps

and outputs 3D wind products.

In more detail, the R-MDRS revolves around two components, data interpolation and

Doppler synthesis. These functions are implemented by legacy software known as reorder

and cedric, respectively. The use of these legacy software to perform core functionalities is

justified by several reasons. reorder and cedric are developed cooperatively alongside each
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other at the National Center for Atmospheric Research (NCAR) for the specific purpose of

gridding radial data onto a common Cartesian grid and performing multi-Doppler synthesis,

albeit not in real-time. This cooperative development results in an integrative multi-Doppler

synthesis algorithm that guarantees inter-compatibility and execution fluidity. Consequently

the reorder cedric duo has been a widely used and well-supported toolset with proven

proficiency in terms of both accuracy and speed. For these reasons they are chosen for the

R-MDRS in favor of other implementations or new development. These core components

are wrapped by peripheral software specifically developed to retrofit them for useability and

integration with real-time IP1 applications. The PERL meta-script that controls this entire

process is called reoced, a conjunction reorder and cedric. Collectively, these components

form the R-MDRS core.

The first R-MDRS subsystem is the nc2uf format conversion program that acts as a

data adapter for the interpolation software reorder. It converts the Tier2a NetCDF files into

Universal Format (UF) files. UF is a position-defined ray-based data format that is commonly

used by legacy radar processing software, such as reorder. The conversion also combines the

separate sweep files into single volume files for each radar.

The UF volumes are then interpolated from its radial dimensions to Cartesian space

by reorder. This process is commonly referred to as ”gridding”. Mapping to Cartesian

space provides a common coordinate system for overlapping scans in the test bed. This is

a necessary geometric condition for performing the Doppler retrieval methods outlined in

Section 2.5. reorder implements radial to Cartesian interpolation through range-weighted

averaging of range gates to single grid points. Spheres of influence surrounding each grid

points are used to determine the boundaries of range gates being averaged to that point.

A variety of schemes for both range-weighting and sphere of influences are possible with

reorder.

The actual implementation of Section 2.5 is performed by cedric. Gridded volumes from

each radar is synthesized by cedric into a single composite grid with resolved u, v, and w
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fields. cedric outputs the products in NetCDF, but requires a final format conversion process

provided by the program ced2nc to convert results to CASA’s NetCDF standards. R-MDRS

ends by cleaning its memory and intermediary files before awaiting to be invoked again for

the next loop iteration. This practically implies that the R-MDRS is constrained by IP1’s

heartbeat. While falling behind due to large data sets or strained computing resources is not

fatal to R-MDRS processing, it does lead to skipping of data sets.
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3.2 LDM and Ingestor Preprocesses

SOCC LDM’s real-time data streaming from the four radars is not natively compatible

with the volume-based processing of the R-MDRS. The LDM is an event-driven collection

process that gathers meteorological data in small and potentially out-of-order chunks. While

the R-MDRS is a batch process that simultaneously synthesizes entire volumes of data from

multiple radars. To address these two incompatible operating models, the Ingestor program

is implemented and embedded into the LDM. This section provides a description of the LDM

and Ingestor preprocesses.

A brief overview of the LDM, the Local Data Manager (LDM) is developed and main-

tained by the Unidata Program Center. Unidata is a NSF sponsored program to promote IT

and software technologies to make the best use of atmospheric and related data for higher

education and research. The LDM is created as a software system for efficient and reliable

distribution of arbitrary but finite-sized data via the internet. It operates on a client-server

model with the data source being the servers and the data sinks being clients. Thus for the

IP1 test bed, each radar hosts a LDM server, and the LDM residing on the SOCC is techni-

cally a client downloading data from each radars’ LDM servers. Other LDM clients can also

be set up on any arbitrary internet-connected device to stream from the IP1 radars, creating

an efficient data-pull distribution system. Throughput is limited by the upload speeds of the

radar nodes.

An important feature of the LDM is its ability to execute user-defined processes on all

incoming data. As mentioned in the previous section, this is the basis of making the entire

SOCC operation event-driven, beginning with the Ingestor preparing the incoming data for

R-MDRS processing. Figure 3.2 illustrates the entire LDM Ingestor preprocess in detail.

Data streams via the LDM is dependent on the data generation rate at the radars as

well as network latency. For this reason it is not guaranteed that data acquisition times will

be simultaneous for simultaneous data sampling times, although it is required to be within a

reasonable time frame. Latency issues may also cause radars’ sweeps to arrive out of order,
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Figure 3.2: LDM and ingest pre-processes

or be lost altogether. In essence, IP1’s LDM tries its best to pull any available data from the

radars, but it cannot be aware of the completeness and the temporal sequence of the data.

That function falls to the Ingestor.

The Ingestor technically consist of three separate processes that share an inter-process

communication (IPC) channel. They are in order of execution, synchnc, unzipnc, and

ingest. synchnc parses incoming file name and passes this information to the IPC chan-

nel. As IP1 sweep file names contain the radar name and time stamp of the data sampling

time, synchnc serves as a method to enforce the correct grouping and sequence of the radar

data sweeps.

upzipnc, as its names suggest, decompresses the incoming data sweeps and archives it to

disk. Data from the radars are compressed for the sake of preserving fidelity and increasing

speed during transmission over the internet. Coincidentally, NetCDF formatted files are also

very compressible due to its constant dimensioned arrays; sometimes achieving compression

ratios approaching an order of magnitude. In addition to decompression, unzipnc also ex-

tracts the scan information from each data sweep, including scan id’s, elevation angles, and

scan times. This information is also passed to the IPC channel.
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ingest processes the data information from the IPC channel left by synchnc and unzipnc,

and organizes the sweeps into respective volumes for each radar. ingest does not physically

change the sweep data, but instead create meta-files that lists all the sweeps that make up

all the radar volumes of a heartbeat. These volume lists organize the incoming data streams

into batches that are suitable R-MDRS’s volume-based processing model. Note the following

volume list example:

4 2 3 3 2

/net/makalu/radar/CASA/LDM/20090514/cyril/1.00/KCYR_20090514-023108.nc

/net/makalu/radar/CASA/LDM/20090514/cyril/2.00/KCYR_20090514-023116.nc

/net/makalu/radar/CASA/LDM/20090514/lawton/1.00/KLWE_20090514-023107.nc

/net/makalu/radar/CASA/LDM/20090514/lawton/2.00/KLWE_20090514-023126.nc

/net/makalu/radar/CASA/LDM/20090514/lawton/3.00/KLWE_20090514-023146.nc

/net/makalu/radar/CASA/LDM/20090514/rushsprings/1.00/KRSP_20090514-023104.nc

/net/makalu/radar/CASA/LDM/20090514/rushsprings/2.00/KRSP_20090514-023123.nc

/net/makalu/radar/CASA/LDM/20090514/rushsprings/3.00/KRSP_20090514-023143.nc

/net/makalu/radar/CASA/LDM/20090514/chickasha/1.00/KSAO_20090514-023105.nc

/net/makalu/radar/CASA/LDM/20090514/chickasha/2.00/KSAO_20090514-023112.nc

The first line of numbers indicates the number of radars and the respective number of sweeps

from each radar in the batch, thus in the above example, the batch contains data from four

radars, with two sweeps from Cyril, three from Lawton, three from Rushsprings, and two

from Chickasha. Subsequently, the paths of the data sweeps are listed.

The generation of volume lists is both a simple and versatile method for providing com-

plete definitions of the data set. The versatility refers to the arbitration in how the volume

list is populated. For R-MDRS processing, the batches are defined by a combination of the

heartbeat and elevation angles. In the volume list example listed above, note that sweeps

from each radars are in order of ascending elevation angle. Since the IPC channel contains
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elevation angle information of each sweep, ingest can detect the beginning of a new volume

scan when the elevation angle suddenly drops back down to the lowest, in this case 1.00

degrees.

In addition to volume initialization, an arbitrary time delineation is also needed to mark

the end of the volume. This time range should approximate the time it takes for the radars

to complete a full volume scan. For normal IP1 operations, this volume scan time is tied

to the system heartbeat of one minute. Lastly, to synchronize the multiple volumes of each

radar, all the volumes are required to begin within a short time frame of each other. This

ensures a sufficiently ‘instantaneous’ snapshot of the weather space. Note that while the

timing restrictions pertain to sample time, a sweep that arrives too late due to network

latency or other issues will nevertheless be excluded from a volume list. These are the rules

for populating the volume lists for R-MDRS operations. For other applications, they can be

customized to generate other suitable data batches.
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3.3 Data Formats and Conversion

The utilization of legacy software in the R-MDRS necessitates the nc2uf format conver-

sion tool. CASA data exchange such as IP1 Tier2a data are formatted in Network Common

Data Form (NetCDF). Legacy radial-to-Cartesian interpolation software reorder intakes data

formatted in UF. While both formats are prevalent in meteorological research, they are sepa-

rated by several generations in development and are seldom used together. This section aims

to provide an understanding of the mapping performed by nc2uf between these two very

different data formats.

3.3.1 NetCDF structure

The ‘Network Common Data Form’, or NetCDF, is a data format also developed and

maintained by the Unidata Program Center. Unidata created NetCDF to provide a common

data platform for all Unidata applications and information exchange. Eventually however, it

also became widespread beyond Unidata applications and meteorological research due to its

comprehensive support and I/O libraries including C, C++, FORTRAN, PERL, and others.

In the meteorological research environment where mass amounts of volumetric data is

shared across multitude of sensors, networks, and computer architectures, NetCDF success-

fully adopts a self-describing, machine-independent data structure tailored for network distri-

bution of array-based data. “Self-describing” means that datasets include header information

that define the data they contain. Machine-independent” or “portable” means datasets can

be accessed by different computer architectures regardless of the memory system they use

store floats, integers, and various other data types. A NetCDF dataset generated on one

computer in FORTRAN can be accessed on another computer in C without any intermediary

conversions. To accommodate array-based data, a NetCDF dataset consists of three com-

ponents: dimensions, variables, and attributes, all of which have a name and an id number.

These components are used together to capture the meaning of the data and relations among

data fields. The example below illustrates a simple NetCDF product produced by R-MDRS.
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netcdf COMP_20090514-023004 {

dimensions:

Alt = 20 ;

Lat = 281 ;

Lon = 281 ;

variables:

float Alt(Alt) ;

Alt:Units = "Km" ;

float Lat(Lat) ;

Lat:Units = "Degrees" ;

float Lon(Lon) ;

Lon:Units = "Degrees" ;

float U(Alt, Lat, Lon) ;

U:Units = "MetersPerSecond" ;

float V(Alt, Lat, Lon) ;

V:Units = "MetersPerSecond" ;

float W(Alt, Lat, Lon) ;

W:Units = "MetersPerSecond" ;

float CorrectedReflectivity(Alt, Lat, Lon) ;

CorrectedReflectivity:Units = "dBZ" ;

global attributes:

:TypeName = "all" ;

:DataType = "AltLatLonGrid" ;

:Latitude = 35.457539850056 ;

:Longitude = -98.8681012556291 ;

:Altitude = 500.f ;

:Time = 1242268203 ;
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:FractionTime = 0. ;

:AltGridSpacing = 0.5f ;

:LatGridSpacing = 0.00449957f ;

:LonGridSpacing = 0.005481437f ;

:MissingData = -99900.f ;

:RangeFolded = -99901.f ;

}

A dimension may be used to model real physical dimensions such as altitude or time,

but it may also be used to as a data index such as station number. All dimensions must

have an arbitrary positive integer length, except for the first, which can have a length of

‘UNLIMITED’. This unlimited dimension acts as a record index that allows NetCDF datasets

to be appended indefinitely. For radar data, the record dimension is usually time. In the above

example, the data set is defined in in a three dimensional space by Alt, Lat, and Lon.

Variables contain the bulk of the data in a NetCDF dataset. It is made up of an array

of values of the same type and is defined by its data type and dimension list. The data type

such as float, integer, etc... applies to the values of the array, and the dimension list defines

the shape of the array. A scalar variable is not indexed to any dimension and thus does not

have a dimension list associated with it. The dimensions are ordered from most significant

to least, meaning the last dimensional index varies the fastest when indexing the variable.

In the above example NetCDF, variable U is defined as float with dimension list Alt, Lat,

and Lon. This means that the variable U is a 20 by 281 by 281 array of 4-byte floating point

values. In memory space, it is sequenced by longitudinal indexes, then by latitudinal, and

lastly by altitude.

A variable can have the same name as a dimension, it makes no difference to the NetCDF

environment. However it is conventionalized to mean that the eponymous variable is a ‘coor-

dinate variable’ that defines the physical coordinate corresponding to that dimension. In the

above example, the variables Alt, Lat, and Lon are coordinate variables.

34



Attributes are used to store supplemental information about data and is largely optional.

Information such as units of measure, project names, user comments, etc... are most conve-

niently conveyed as attributes. They are attached either globally to the NetCDF or to specific

variables. Note that since they have no dimensions, they can be used to store scalar data.

For the R-MDRS, vital information regarding timing, interpolation parameters and test bed

attributes are conveniently packaged as global attributes in the NetCDF data flow.

3.3.2 UF structure

The Universal Format, or UF, is a much older data format originally proposed by Barnes

(1980). It is specifically created for Doppler radar data, and is structured around scalable

records that correspond to rays - data acquired for a given pointing direction. Being a

widespread data format for radar information exchange in the 80s and early 90s, many legacy

radar data processing software utilize UF data standard. Due to memory-saving priority of

the past, UF field names must be no more than two ASCII character. It can be arbitrary,

but usually conforms to SIGMET standard field mnemonics listed below:

DZ - Reflectivity factor (dBZ)

CZ - Corrected reflectivity factor (dBZ)

DR - Differential reflectivity, ZDR (dB)

PH - Differential phase, PhiDP (deg)

KD - Specific phase, KDP (deg/km)

RH - Cross-polar correlation, RhoHV (0 to 1)

VR - Raw velocity (m/s)

VT, VE - Velocity thresholded on NC (m/s)

VF - Velocity with good/bad flag on least significant bit (m/s)

VP - Velocity thresholded on received power (m/s)

SIGMET, or Significant Meteorological Information, is a weather advisory that contains me-

teorological information concerning the safety of all aircraft.
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Record Size (bytes)( y )

4 bytes

Optional Header 

14 words

Local Header

Mandatory Header 

45 words

X words

Data Header

3+2M words

Field #1 Header 

19, 21, or 25 words

Field #1 DataField #1 Data

N words

Field #2 Header 

19, 21, or 25 words

Field #2 Data

N words

.

.

.

Record Size (bytes)

4 bytes

Figure 3.3: UF record strucure for a ray with M fields and N range gates

Each record in an UF dataset completely defines the data values, the radar information,

and the scanning parameters of a ray. Large rays with many variables may be broken down

into several records, but this is a feature seldom used in modern computer systems. Thus

for R-MDRS applications, a UF record strictly corresponds to an entire ray. Records are

organized into two-byte aligned, byte-swapped (big Endian) format illustrated by Figure

3.3. The exception is the beginning and end of the record, which are 32 bit memory spaces

indicating the number of bytes in the record, these values are still byte-swapped. All data

values are also stored as short integers (2 bytes), which means floating point values are scaled

by an integer multiplier to accomplish this. This scaling obviously truncates and reduces

precision, but gain a memory advantage.
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Unlike NetCDF, UF does not have any active development environment or official sup-

port. As a result, a UF library called ufsxz is implemented specifically for the R-MDRS.

The library provides a C interface for generation and manipulation of UF files and adheres

as much as possible to the original definitions of the UF data standard. While developed

for the R-MDRS, ufsxz is not proprietary to it, and can be used by any software requiring

manipulation of UF data. For a detailed user guide of ufsxz, please consult Appendix D.

3.3.3 NetCDF to UF mapping

As illustrated in Figure 3.1, the NetCDF to UF conversion process is performed by the

nc2uf program. nc2uf is a C program built on the Unidata NetCDF and ufsxz UF libraries

described in previous sections. Like ufsxz, nc2uf is created for the R-MDRS, but is a general

tool that can be used to convert any NetCDF to UF. However note that while not required, the

input NetCDF should be a radially-coordinated data structure, since UF format is inherently

radial. Tier2a data streaming from the IP1 network are radial sweeps, and thus meet this

criterion.

nc2uf is versatile because its execution is driven by configuration file. Most configuration

parameters set UF ray header information such as radar names and ray time to corresponding

fields in the NetCDF file. From previous examination of the two data formats, it is clear that

UF has a lot more redundant header information than NetCDF. For example, the radar name

parameter would be repeated in the header of every record of the UF data file, while in the

NetCDF data file it is specified once as a global attribute. This leads to single-to-multi-point

mapping as NetCDF data are converted to UF. The configuration options for nc2uf must be

able to accommodate these rather complex parameterizations. When integrated into the R-

MDRS, nc2uf configuration are auto-generated by the overarching reoced meta-script. For

a detailed user guide of nc2uf and the uf2sxz library, please consult Appendix D and C.

Aside from header information, the majority of nc2uf’s compute cycles are dedicated to

the transformation of the data itself. Conventionally this is a straightforward and compu-

tationally efficient process. However nc2uf’s task is complicated by the byte-swapped and
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scaled nature of UF data values. The conventional copy instruction is now expanded to a

sequence of multiplication, floating point to short integer conversion, byte swapping, and

then copying. In compute cycles, this represents an increase by about an order of magnitude.

Thus for R-MDRS’s real-time performance, nc2uf is parameterized to only transform radial

velocity and reflectivity variables.
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Figure 3.4: Interpolation via range-weighted averaging within sphere of influence

3.4 Data Interpolation

Interpolating radial volume to Cartesian space is a pre-requisite of the final Doppler

synthesis and retrieval, as is evident in the equations outlined in Section 2.5. For the R-

MDRS, this process is accomplished with the reorder program developed by NCAR. This

section will examine the methodologies, implementation, and limitations of this interpolation

process.

3.4.1 Gridding principles

The R-MDRS interpolation performed by reorder is characterized as distance-weighted

averaging of range gates to various grid points based on radius of influence criteria. This

creates two sets of choices, first for selecting the weighting scheme, and second for choosing

the radius of influence function. Figure 3.4 illustrate these geometric relations.

For distance weighting to a certain grid point k, each range gate in the input UF rays is

assigned its Cartesian coordinate in (x, y, z). Then its distance r to the grid point is compared

to the grid point’s radius of influence R. The relationship of this comparison is the weighting

scheme. The R-MDRS syetem uses a conventional Cressman weighting scheme, for which the
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mth range gate’s weight becomes

Wm =
R2 − r2m
R2 + r2m

m = 1, 2, 3, ...,M (3.1)

where the radius of influence R is

R2 = dX2 + dY 2 + dZ2 (3.2)

The dX, dY , and dZ values that define R are user-specified parameters. For constant dX,

dY , and dZ, the weighting volume literally becomes a sphere of influence. The final data

value at grid point k is then

ak =

∑M
m=1 Wmam∑M
m=1 Wm

(3.3)

reorder’s available weighting schemes include uniform, closest point, and exponential. For

exponential, the weighting scheme is

Wm = exp

[
−Gr2m
R2

]
m = 1, 2, 3, ...,M (3.4)

where G is a user-specified parameter.

Aside from user-specified dX, dY , and dZ defining a constant radius of influence R,

R can also be defined by components of azimuth, elevation, and range. In this case, user

specifies ∆Azimuth, ∆Elevation, and ∆Range, from which dX, dY , and dZ are calculated

for each grid point k. This has the effect of increasing the radius of influence for grid points

further away from the radar. For scans in which there are spatial gaps in between, especially

further away from the radar, this scheme can help interpolate the otherwise missing grid

points. However it also causes blurring of weather features under many circumstances. With

the proper selection of beamwidth and scanning elevations, gaps in scanning volumes can be

avoided, which also eliminates the need for using this variable radius of influence scheme. IP1

radars are designed and operated to use a combination of beamwidth and scanning elevations

that leave no gaps within their volume scans, thus the R-MDRS uses constant radius of

influence for interpolation.
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3.4.2 Interpolation implementation

During IP1 operation, reorder interpolates each radar to a common Cartesian grid

centered at (34.8276 ◦N,−98.1007 ◦W ), a point approximately at the center of the test bed.

The common grid extends from -70 to 70 km in the east-west direction and -70 to 70 km in

the north-south direction, extending just beyond the full coverage area of the radars. Altitude

extends from 0.5 to 10.0 km sea level, ensuring topping out of most storm cells. Resolutions

on all three axes are set to 0.5 km, a value chosen to limit the number of grid points to

be computationally feasible in real-time. In addition, as the prior NetCDF to UF conversion

process only transformed radial velocity and reflectivity values, only these will be interpolated,

further reducing computational load.

Each reorder execution is driven by a single configuration file that describes the data in-

put, the grid dimensions, and interpolation parameters. The meta-script reoced that controls

the R-MDRS process dynamically generates new reorder configuration files for each volume.

For a detailed operation manual of reorder, please consult Oye & Case (1995). Since inter-

polation is done on a per-radar basis, IP1’s test bed requires four reoder executions every

heartbeat. When performed sequentially with the aforementioned grid parameters, the total

interpolation process accounts for approximately 60% of total processing time.

reorder is integrated with the NetCDF libraries to be able to directly output interpo-

lated results in NetCDF format. This function is useful for verification of interpolation results.

However for IP1 operations, reorder is parameterized to output interpolated results in a pro-

prietary binary format for the Doppler synthesis program cedric. reorder is one of very few

programs that natively outputs cedric’s proprietary format due to their simultaneous and

complementary development. This compatibility makes the reoder-cedric duo a very conve-

nient choice for performing the entire interpolation-to-Doppler-retrieval process; as opposed

to having to cross-adapt separate interpolation and retrieval programs. When factored in

along with their respectable capabilities and speeds, the choice for using the reoder-cedric
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duo becomes clear. This merit will be further supported by the strengths and advantages of

cedric explained in Section 3.5.

3.4.3 Limitations of interpolation

R-MDRS’s implementation of reoder is not without issues, this section addresses the

limitations of reorder that the R-MDRS is not yet able to overcome. The two primary

limitations involve computational model and data resolution, both of which ultimately tie

into the speed limitation of reorder for R-MDRS operations.

As aforementioned, the R-MDRS executes reorder for each radar sequentially. This

means four reoder executions per heartbeat for IP1’s current radar configuration, accounting

for approximately 60% of total R-MDRS processing time. For normal IP1 scanning mode

heartbeat of 1 minute, and with SOCC’s current computational capabilities, this approxi-

mately turns out to be 30 seconds of interpolation out of a total R-MDRS processing time of

50 seconds. With variability in network latency and data size, R-MDRS sometimes surpasses

the heartbeat, resulting in skipped data sets. From this assessment, the most obvious and

potentially biggest speed gain for the R-MDRS is to parallelize the interpolation process over

all the radars. This can potentially quarter the 30 seconds down to 8, providing an ample

overhead time to avoid data set loss.

R-MDRS’s modular control of subroutines via the meta-script reoced makes it very easy

to initiate multiple processing threads and execute separate programs over each of them.

Utilization of PERL’s threads library allows for reoced to execute separate instances of

reorder for each radar. However this is limited by the computational hardware R-MDRS

resides on, in this case the SOCC compute server. Truly scalable multi-threaded processing

requires physically independent processing cores each with their own level 1 and level 2 caches.

With the multitudes of processes running on the SOCC as illustrated in Figure 2.7, it is simply

unfeasible to reserve the four required independent processing cores for the R-MDRS alone.

However this limitation is not a serious constraint that questions the fundamental design of
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the R-MDRS because it can be readily solved by scaling hardware to match IP1’s requirements

at nominal costs.

The second limitation addresses the resolution limit of the R-MDRS in real-time. In

cubic relations, doubling the resolution will multiply the number of grid points by eight,

scaling interpolation times by eight as well. Under current SOCC processing capabilities

and a 1 minute heartbeat scanning mode, IP1’s spatial domain of 140 by 140 by 10 km can

be interpolated in real time at a resolution of 0.5 km in each dimension. This equates to

1,568,000 grid points interpolated according to Equation 3.3. However recall from Section

?? that IP1 radars have radial range resolutions of 75 meters. For a Cartesian interpolation

to map this data on same scale order, a much finer grid resolution on the order of at least

100 meters would be required. Refining the resolution from 500 meters down to 100 meters

would multiply the number of grid points by 125, resulting in 196,000,000 points. As with

any brute-force method, this is unfeasible and unnecessary. It is also impossible as reoced

has a 500 by 500 by 500 grid size limit to control memory usage, though this limitation can

be readily removed in the code to accommodate modern computing capabilities.

For any moment in time, significant weather features such as squall lines and tornadic

spins would reasonably occupy only a small portion of the IP1 test bed. Encapsulating the

interpolation domain to only areas with significant weather can cut out a great majority of

unnecessary grid points. The R-MDRS already does this to a degree with the assistance of

the LDM and Ingestor. When no significant weather occurs within the domain of a particular

radar, that radar’s data is not included in the input volume list, thereby cutting out the

interpolation of that radar altogether. An even more aggressive approach is to minimally

encapsule the domain of interpolation based on significant weather echoes.

High resolution measurement and plotting of wind and tornadic events in IP1 require

significant zooming into the test bed. Staying within the 1,568,000 grid point throughput

previously calculated, a nominal 100 meter resolution grid would be 12.5 km by 12.5 km

by 10km. This is about 0.8% of the area of IP1’s test bed, thus the biggest dilemma with
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this approach is knowing where to zoom into. Currently, with no reliable way of pinpointing

locations of significant fast-moving weather features, real-time Multi-Doppler retrieval can

only be performed on a macro-scale. Finely detailed air motion in max resolution can only

be produced as a post-process, not in real-time. Unlike the previous limitation of compute

cores, this issue is not simply addressed by merely scaling computing capability. Aside from

unfeasible brute force using world-class super computers, a smarter approach needs to be

developed to dynamically encapsulate the interpolation domain to minimize the number of

necessary grid points. A plausible approach for vortex detection lies in sensing regions of high

vorticity in the test bed at low resolutions, and spinning off processing threads for further

high resolution Doppler analysis at candidate regions. This will be discussed in more detail

in Chapter 5 as a part of future works.
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3.5 Doppler Synthesis and Retrieval

The core Doppler retrieval function of the R-MDRS is applied on the output results of

reorder. The program that performs this task is known as Custom Editing and Display of

Reduced Information in Cartesian space, or cedric for short. This section will explore the

features and operations of the Doppler retrieval process.

3.5.1 cedric Usage

The cedric program is developed by NCAR’s Mesoscale and Microscale Meteorology

Division in the early 90’s with the primary purpose of multi-Doppler wind analysis. cedric

provides a wide and in-depth variety of options for calculating physical quantities, editing the

data, and filtering. In addition, users have flexibility in manipulating the data by stacking

functions to operate on an entire field. These factors extends cedric beyond its original

objectives and intended lifespan, making it a very versatile tool for manipulating and analyzing

any kind of gridded numerical data. Though it has been around for a very long time, cedric

still maintains very competitive capabilities and speeds.

cedric possesses a peculiar execution model that is inherited from its original develop-

ment on punch card computers. In its oldest form, each operation is explicitly defined by

a series of card images. A sequence of these card images operating on the same data set

performs the desired algorithms and calculations. The card images have since then been dig-

itized into text configuration files, however it maintains its stringent formatting and spacing

requirements. Below is an example a cedric configuration segment containing the CHANGE

operation and a COMMENT.

COMMENT

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10...

COMEND

CHANGE NAMFLD ISPCNX XLOC YLOC ZLOC VALUE

45



Each line in the configuration is exactly 80 characters long and corresponds to one of the

original “card image”, thus they are simply referred to as such. The COMMENT-COMEND comment

segment delineates each card image into 10 8-character wide parameter fields labeled P1

through P10. The first field P1 always contains the keyword that identifies the card image.

In the above example, the first card image is identified as a COMMENT segment, indicating all

subsequent content to be a comment string until terminated by a COMMEND card image. The

next card image is the CHANGE command and its parameters, dictating the replacement of the

NAMFLD field value at (XLOC,YLOC,ZLOC) with VALUE. Commands such as CHANGE occupy one

single card image. More complex commands with more than 9 parameters require multiple

card images and are referred to as stacks. Stacks must be terminated by an END card image.

The configuration format is archaic, but retains exact and indepth control of function

parameters. It also clearly illustrates the process flow as data is being manipulated. When

integrating cedric into the R-MDRS, this cumbersome configuration process is conveniently

overcome by having the overarching reoced meta-script auto-generate the configuration files.

This drastically improves the useability and tuning capabilities of cedric while reducing the

chance of critical operation errors caused by likely typos in the configuration.

cedric directly implements the Doppler retrieval methodologies outlined in Section 2.5,

taking appropriate approximations and discretizations when necessary. Piecewise, cedric

implements multi-Doppler analysis in the following order,

1. Intake Cartesian coordinated data sets that contains radial velocity fields. The data sets

must be in cedric binary format, either produced by reorder or otherwise through the

cedric I/O library.

2. Set appropriate coordinate boundaries. If proper housekeeping is done during interpo-

lation by reorder, this will be done automatically.

3. Perform Doppler synthesis with the SYNTHES operation. This step corresponds to solving

the least square error solution system of equations outlined in Section 2.5 for (u, v,W ).

46



4. Calculate horizontal divergence values for (u, v) solutions using the DIVR function. These

form the terms of the mass continuity relation outlined in Equation 2.27.

5. Integrate the divergence terms using the INTEGR operation. This solves the discrete

mass continuity equation described by Equation 2.30.

3.5.2 Data preparation

The cedric program utilizes its own proprietary data format and a sequential execution

model. Its proprietary format, similar to UF, is a position-dependent, non-self-describing

legacy format prioritized for memory conservation rather than ease of use. However as afore-

mentioned, reorder outputs this format specifically for feeding into cedric, and cedric

itself has been augmented to output products in NetCDF format. There is also an entire

cedric input and output library for integrating user applications with cedric. As a result of

these factors, cedric’s proprietary data format becomes largely invisible to the end-user, and

thus unimportant to the discussion of the R-MDRS. For technical details about cedric data

structure and function calls, please consult Appendix D of NCAR’s cedric manual (Miller &

Fredrick 1998).

In regards to coordinate definitions, it is mentioned in Section 3.4.2 that reorder in-

terpolates each radar to a common Cartesian grid representing the entire test bed. This

means data sets from each radar are already offset to correct locations in the test bed and

relative to each other. During cedric operations, they simply need to be superimposed to

correctly create the regions of dual- and multi-Doppler overlap as illustrated in Figure 3.5.

This superposition inherently imposes resolution requirements on the data grids. cedric can

handle data grids of mixed resolutions, but they must be integer multiples of each other.

The R-MDRS is configured with one common resolution for all its interpolated data sets to

avoid complications. Within IP1’s geographic boundaries, compromising between covering

the entire test bed and keeping a sustainable number of grid points for real-time performance

results in a nominal resolution of 0.5 km in x, y, and z directions.
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Figure 3.5: Grid synthesis via superposition for cedric analysis

3.5.3 Synthesis

Synthesis of radial velocity information is performed by the SYNTHES operation. This is

the core process in cedric that implements the lease square error solution presented in Equa-

tions 2.15 to 2.22. Optionally, the SYNTHES operation also performs the advection correction

detailed in Equation 2.13 as well as importing up to five additional data fields from input

data volumes. SYNTHES’s command structure is illustrated as follows:

COMMENT

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10...

COMEND

SYNTHES NSNVOL NRADS DTEST1 DTEST2 DTEST3 ITWOEQ ITANAL STMDIR STMSPD

LUNIT NAMVOL IBEGTM IENDTM IREWND NAMEVEL LADTYP NAMTIM NADFSW

INPUT NAMINP NAMINP NAMINP NAMINP NAMINP

OUTPUT NAMOUT NAMOUT NAMOUT NAMOUT NAMOUT

END

P2 NSNVOL Name of the SYNTHES output field.
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P3 NRADS Number of radar input volumes included in the synthesis.
P4 DTEST1 User specified constraint on the component contribution of W to

(u, v) described by Equation 2.22. ϵu and ϵv must both be less than

DTEST1 for an acceptable two equation solution.
P5 DTEST2 User specified constraint on the quality of the (u, v) solution. Both

σNu and σNu from Equation 2.26 must be less than DTEST2 for

an acceptable two or three equation solution.
P6 DTEST3 User specified constraint on the quality of the W solution. σNW

from Equation 2.26 must be less than DTEST3 for an acceptable

three equation solution
P7 ITWOEQ YES: Always use two equation solution.

NO: Use two equation solution when there is only data from two

radars, otherwise use three equation solution.
P8 ITANAL Reference (synthesis) time for advection correction. Advection cor-

rection is optional and can be skipped by leaving P8 through P10

blank.
P9 STMDIR Storm direction for advection correction, in degrees clockwise from

North.
P10 STMSPD Storm speed for advection correction, in meters per second.

The other parameters are additional card images specifying the import of additional data

fields. For their detailed description, please consult the cedric manual. The SYNTHES opera-

tion produces several fields depending on whether two- or three-equation solution is selected:

U Component of air motion in x direction, can be u in Equation 2.19

or u′ in Equation 2.22.
V Component of air motion in y direction, can be v in Equation 2.19

or v′ in Equation 2.22.
W Component of air motion in z direction, W in Equation 2.19.
USTD Normalized standard deviation, square root of normalized u-

variance σ2
N (u) in Equation 2.26.

VSTD Normalized standard deviation, square root of normalized v-

variance σ2
N (v) in Equation 2.26.
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WSTD Normalized standard deviation, square root of normalized W-

variance σ2
N (W ) in Equation 2.26, only available when three-

equation solution is selected.
EWU Geometric factor ϵu that scales W as a contribution to u in Equa-

tion 2.22.
EWV Geometric factor ϵv that scales W as a contribution to v in Equa-

tion 2.22.

For the two-equation solution, if EWU and EWV are both less than DTEST1, and USTD

and VSTD are both less than DTEST2, then the output U and V are given by u′ and v in

Equation 2.22, respectively. For the three-equation solution, if USTD and VSTD are both less

than DTEST2, then the output U and V are given by u and v in Equation 2.19, respectively.

In addition, if WSTD is less than DTEST3, the output W is given by W in Equation 2.19. If

only two radial velocities are present at a grid point, the procedure defaults to two-equation

solution.

3.5.4 Advection

The R-MDRS incorporates two stages of storm advection correction. The first stage

accounts for non-simultaneous observations inherent in the sweeping motion of radar scans

and across radar networks. This correction is performed during the synthesis process by the

SYNTHES operation outlined previously. Mean motion of the storm over the system network

heartbeat results in an increasing spatial displacement of meteorological values as sampling

time progresses. A fast-moving storm within IP1’s 1 minute heartbeat scanning may exhibit

significant displacement. Thus to attain the desired ‘snapshot’ at the specified synthesis time,

these displacements must be corrected. To reiterate Equation 2.13, a storm system moving

with components (U, V ) should be adjusted by the following advection correction:

[vrr]t+∆t

[r]t
=

[
u(x− x0 + U∆t)

rt
+

v(y − y0 + V∆t)

rt
+

W (z − z0)

rt

]
t

(3.5)

Radial velocities are first multiplied by slant ranges from the radar at sample time t+δt. This

product field [vrr]t+δt is then shifted at storm motion to new spatial location coordinates,
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Figure 3.6: Sample time lag advection for storm moving at (U,V)

where it is divided by slant ranges at the synthesis time t. This spatial advection to correct

for sample time lag is illustrated by Figure 3.6. The illustration suggests that for a storm

moving at (U, V ), the radial velocity vr at (x, y) sampled at time t+∆t is actually the vr at

(x − U∆t, y − V∆t) at time t. Thus to adjust vr to synthesis time t, the data field must be

spatially advected by (−U∆t,−V∆t).

Adjusting the velocity-range product field vrr instead of simply vr is due to vr being a

non-Cartesian field undergoing Cartesian transformation. The product accounts for change in

radar pointing direction during the advection, thereby improving the accuracy of the advection

process. The detailed advection methodology is beyond the scope of this Thesis, but is detailed

in Gal-Chen (1981).

The second stage of advection correction performed by the R-MDRS is the removal of

mean storm motion altogether from the velocity products. This is done to isolate the internal

air dynamics of the storm from the moving frame of reference of the storm itself. This can

reveal features such as vortices that are otherwise obscured by the storm movement, and is

a reflection on the fact that even if there is no spin in the absolute air motion relative to

ground, an observer within the storm may still feel a spin. Mathematically, this correction

removes the constant components from areas of convergence or divergence, leaving the pure

derivative. Subtracting the mean storm motion is implemented by cedric with a relatively

simple operation:
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COMMENT

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10...

COMEND

FUNCTIONNAME 1.0 Z FULL

U P LINEAR U 1.0ADVX

V P LINEAR V 1.0ADVY

END

The critical factor in both stages of advection correction is knowing the storm motion.

Currently the R-MDRS obtains this from sounding data archived at University of Wyoming.

Sounding data from the nearest National Weather Service WSR-88D radar at Norman, OK

(KOUN) is gathered every 12 hours. From this data, air motion at mid-level atmosphere

altitude corresponding to 700 mbar is used for mean storm motion. Being a single-point

constant not centrally-located in the IP1 test bed and with a long sampling time, this value

is inherently limited at accurately describing the mean storm motion. Generally speaking,

larger, slower-moving, and longer-lasting storm systems tend to be more accurately portrayed

by the sounding data.

For real-time operations, a lack of better alternatives has made sounding data the only so-

lution for calculating mean storm motion. Post-analysis can of course use abundant posteriori

information to accurately calculate the mean storm motion. A viable ongoing improvement of

the RTMDS system is to use nowcasting products to determine mean storm motion accurately

in real-time. Nowcasting is another development product of the IP1 project focusing on very

short term forecast of weather events.

3.5.5 Field import and merging

The optional feature of SYNTHES to import fields into the cedric editing space is con-

venient for incorporating additional desired data fields from each of the radars. Further

analysis and manipulations can be done with the data using the vast array of cedric opera-

tions. Merging reflectivity fields from the radars is one common application, as Doppler wind
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products are almost always superimposed on top of another scalar data such as reflectivity to

visualize the physical correlation between hydrometeors and air motion.

The R-MDRS is configurable to import any data field. However, conventionally it only

imports reflectivity to save on processing time. From the very beginning, reflectivity is pro-

cessed alongside radial velocity starting with the nc2uf data format conversion, through

reorder interpolation, and finally to the current SYNTHES operation in cedric. Once im-

ported, the following merging operation is performed within cedric:

COMMENT

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10...

COMEND

FUNCTIONNAME 1.0 FULL

BADMSK T CON -200.0

CZ1 P ORELSE CZ1 BADMSK

CZ2 P ORELSE CZ2 BADMSK

CZ3 P ORELSE CZ3 BADMSK

CZ4 P ORELSE CZ4 BADMSK

CZ1 P MAX CZ1 CZ2

CZ1 P MAX CZ1 CZ3

CZ1 P MAX CZ1 CZ4

CZ1 P ONLYIFC<CZ1 CZ1 -200.0

END

DELETE CZ2 CZ3 CZ4

The Corrected Reflectivity “CZ” fields from each radar refers to reflectivities that have been

corrected for attenuation and other quality controls. These “CZ” fields first have their bad

values masked with a known constant using the ORELSE function and a constant BADMASK

field. They are then compared and merged with each other using the MAX function, which
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eponymously merges using a maximization criteria. Finally the BADMASK is filtered back out,

leaving blank elements to correspond to bad values.

More complex merging algorithms are avoided in favor of a simple maximizing scheme.

This is to optimize speed and real-time performance of the R-MDRS. The merged reflectivity

values are intended to merely provide a visual correlation background to the wind products,

they are not intended to be high quality products suitable for rigorous analysis.

3.5.6 Reflectivity thresholding

After synthesis and data import, various data quality measures are taken by the R-MDRS

before further processing. The first step usually entails thresholding reflectivity to realistic

physical bounds between 15.0 to 80.0 dBZ using the operations outlined below:

COMMENT

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10...

COMEND

FUNCTIONNAME 1.0 Z FULL

CZ1 P ONLYIFC<CZ1 CZ1 15.0

CZ1 P ONLYIFC>CZ1 CZ1 80.0

U P ONLYIFC<U CZ1 15.0

V P ONLYIFC>V CZ1 80.0

END

Velocity products are also thresholded on the same reflectivity thresholds to eliminate them

from places where no significant hydrometeors exist. This operation is based on the assump-

tion that without significant reflective particles, velocity products could not have been mea-

sured. Whatever velocity products that do exist in non-reflective areas are likely anomalies

caused by noise or aliasing.
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3.5.7 Beam-crossing angles

The issue of beam-crossing angle mentioned in Chapter 2 is the next problem resolved by

cedric. To reiterate, beam-crossing angle refers to the angle of intersection between beams

of two radars. A small beam-crossing angle corresponds to two radars scanning close along

the axis connecting them. The two radars would measure radial velocities that are nearly

equal and opposite, yielding a very small orthogonal component that results in great velocity

error variances. The error variances corresponding to certain beam-crossing angles are known

as the angle constant. Angle constants for some common minimum beam-crossing angles are:

Min beam-crossing angle Angle constant
20.0 deg 4.135
22.0 deg 3.75
30.0 deg 2.83

Eliminating high error wind products within the minimum beam-crossing angle is then

achieved by thresholding velocity variance against the angle constant, as outlined below:

COMMENT

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10...

COMEND

FUNCTIONNAME -1.0 Z FULL

TEMP1 T SQ+SQ USTD VSTD

TEMP2 T SQRT TEMP1

U P ONLYIFC>U TEMP2 2.83

V P ONLYIFC>V TEMP2 2.83

END

The above operations threshold velocity against a velocity variance of 2.83, corresponding to

30.0 degrees minimum beam-crossing angle. This is the typical value used by the R-MDRS.

For cases with very limited data, this constraint can be loosened to include data within narrow

beam-crossing angles.

55



3.5.8 Other quality control processes

A series of quality control processes have been implemented throughout the maturity of

the cedric stage of the R-MDRS. They begin with noise reduction and de-spiking operations,

followed by a crosscheck between U and V values, and concluding with a final smoothing by

Leise filters.

The decimation and de-spiking operations are to eliminate noisy features within the wind

products.

COMMENT

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10...

COMEND

PATCHER UD U DECIGLO 5.0 Z FULL

PATCHER VD V DECIGLO 5.0 Z FULL

FIELDSETPRI UD VD U V

PATCHER UD UD DECILOC 2 4 7.5 Z FULL

PATCHER VD VD DECILOC 2 4 7.5 Z FULL

FIELDSETPRI UD VD U V

PATCHER UD UD FILLCON 3 4 7 Z FULL

PATCHER VD VD FILLCON 3 4 7 Z FULL

The above procedure first decimate spurious velocity data globally using the DECIGLO operaton

to set all values outside 5.0 standard deviations from the global mean to BAD. Then local

decimation is performed with the DECILOC operation. This is done by taking a mean of all

local points within 2 grid points of current grid point. If current grid point deviates by more

than 7.5 from local mean, or if there are less than 4 GOOD points in the vicinity, the value is

set to BAD.

Lastly, BAD values are attempted to be filled using the FILCON operation. Going out one

grid interval from a BAD grid point, if at least 4 quadrants surrounding the grid point has GOOD
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values and there are at least 7 GOOD points in the vicinity, the BAD grid point is interpolated

with a linear least-square fit solution. If conditions are not met, the program goes out one

more grid interval and repeats the procedure until it has gone out 3 grid intervals.

The u v crosscheck procedure is to ensure that every grid point has a valid u and v value,

or none at all. If u or v are BAD, then the whole grid point will be labeled BAD. The procedure

is as follows:

COMMENT

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10...

COMEND

FUNCTIONNAME

UD P ONLYIF UD VD

VD P ONLYIF VD UD

END

As a final pass, wind and reflectivity products are smoothed by a 1-step Leise filter

described as follows:

COMMENT

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10...

COMEND

FILTER UDF UD LEI 1 Z FULL

FILTER VDF VD LEI 1 Z FULL

FILTER CZ1 CZ1 LEI 1 Z FULL

These three procedures have the common goal to improve the integrity of the wind

products across the spatial domain. In particular, they focus on low-pass filtering to remove

discontinuities and improve the derivative properties of the u and v wind products. This is to

prepare them for the final mass continuity calculations to solve for W outlined in Equation

2.29.
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3.5.9 Mass Continuity

The W solved by the SYNTHES operation is the solution from the least mean square

error solution outlined in Equation 2.19 and 2.22. As aforementioned, this value usually

has very high errors due to the small vertical component of measured radial velocities used

to perform the Doppler calculations. Practical and reliable results lie in utilizing the mass

continuity solution outlined in Equation 2.29. For the discrete grid space, finite difference

form is utilized between the previous p and the current c levels as described by Equation 2.30,

reiterated here:

(ρw)c = (ρw)p − δ∆z

[
ρ

(
∂u

∂x
+

∂v

∂y

)]
p,c

(3.6)

where

δ =

{
+1 for updward integration
−1 for downward integration

The divergence terms are first calculated using the following procedure:

COMMENT

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10...

COMEND

FUNCTIONNAME 1.0 FULL

DIVR T DDI+DDJ U V

CONV P LINEAR DIVR -1.0 0.0

END

They are then integrated following Equation 2.30 using:

COMMENT

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10...

COMEND

INTEGR Wup CONV U*0.1 FRACT 0.25

INTEGR Wvar CONV V*0.1 FRACT 0.25FRACT 0.25D=ZMIN D=ZMAX
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Two W products are produced by the two integration operations, Wup and Wvar. The first

integration specifies a P4 parameter of U*0.1, which means an upward integration with

ρ = e−0.1∗z. Its P5 and P6 parameters set the bottom boundary condition to be based on a

fraction of the field being integrated, specifically Wbot = CONV∗0.25∗δ∗∆z. The P5 parameter

may also set a constant or a field as the boundary values of W , with constant value 0 being

a common choice.

The second integration performs a variable integration requiring each vertical column

to have both a bottom and an upper boundary condition as specified by the P4 parameter

V*0.1. All else being equal, this method reduces the accumulated errors exhibited by Wup

as the integration climbs higher upward. However, if the scan does not top out the storm,

the assumed top boundary condition of Wtop = CONV ∗ 0.25 ∗ δ ∗∆z would be invalid, and the

integration fails. In such a case where the storm is not topped out, Wup is the only viable

solution despite its upward error accumulation.
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Chapter 4

EXPERIMENTS AND RESULTS

The R-MDRS has been in successful operation for the past two years across the IP1 DCAS

network. During this time, it has successfully captured high resolution wind kinematics of

every major weather event within the IP1 test bed. Operationally, it has also exhibited

excellent robustness by maintaining reliable and stable operation under real-time demands.

Figure 4.1 illustrates R-MDRS’s deployment within the CASA framework. R-MDRS’s

main operational platform is the SOCC at the University of Oklahoma (OU). Additional

SOCCs at Colorado State University (CSU) and the University of Massachusetts Amherst

(UMass) run parallel instances of R-MDRS as development and test platforms. Since R-

MDRS operates on a local level at each SOCC, new instances of it are readily generated with

modest IT resources.

UMass SOCC

R MDRS parallel

test platform

CSU SOCC

R MDRS development

& test platform

Data transfer

via LDM

OU SOCC

R MDRS main

operation platform

IP1 network

Figure 4.1: R-MDRS deployment across CASA
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The following sections provide critical analysis of the R-MDRS by first examining some

of its products from significant case events over the past two years. This will then be followed

by a technical evaluation of R-MDRS’s speed performance as well as various analysis focused

on quality-effecting factors of the process. These include but are not limited to:

Advection Effects - Evaluate the quality of the advection corrections and its impact on the

wind products. If the changes are insignificant, or if inadequate corrections are made

based on unsound assumptions, it may be better to leave the data unadvected.

Vertical Product Comparisons - Compare the quality of Wup, and Wvar vertical wind

products. In conjunction with the physical circumstances under which the data is

observed, a decision can be made over which is the better product.
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4.1 Case Events

May 14, 2009. A cold front moved into the test bed from the north at approximately

0100 UTC and generated severe winds and at least one tornado that was captured by R-

MDRS. Figure 4.2 is a display of the storm that was generated in real time. The domain

stretches from -70 to 70 km in both X and Y directions, corresponding to the geographic

layout of the IP1 test bed. During operation, this display would be updated every minute as

each volume scan undergoes R-MDRS processing. It provides a real-time mesoscale indicator

but cannot represent the data at full resolution, as that would create wind vector fields that

are too dense to visualize. Instead, microscale features are fully resolved by zooming into

specific regions on the order of 10 by 10 km. Figure 4.3 illustrates this with a full-resolution

display of an EF2 tornado touchdown during the event.

Figure 4.2: 2009-05-14 storm event at 02:31:04 UTC
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a) Horizontal plane

b) Vertical plane

Figure 4.3: 2009-05-14 02:31:04 UTC - EF2 tornado touchdown
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April 2, 2010. A severe squall line moving northeast entered the test bed at approximate

0830 UTC. The system produced heavy precipitation, hail, and minor wind damage. Figure

4.4 is the real-time mesoscale display that shows the most severe time frame at approximately

1100 UTC. Due to the extent of the squall line, most scans were very wide, typically more

than 200 degrees. This translated to a more strenuous data load, which the R-MDRS handled

without issue. Time performance was naturally more marginal but no crashes or time-outs

occurred.

Numerous convective cells were exhibited all along the squall line. These produced strong

updrafts at the front of the storm that were clearly visible in the vertical wind profile such as

those illustrated in Figure 4.5.

Although no tornado touchdowns were reported for this event, strong circulations were

detected by the R-MDRS as shown in Figures 4.6 and 4.7. Being recorded at 0.5 km altitude,

it is likely that these vortexes made contact with the ground.

Figure 4.4: 2010-04-02 fast moving squall line at 10:55:15 UTC
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a) Horizontal plane

b) Vertical plane

Figure 4.5: 2010-04-02 10:55:15 UTC - squall front convection and updraft
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a) Horizontal plane

b) Vertical plane

Figure 4.6: 2010-04-02 10:57:14 UTC - circulation at edge of Doppler region
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a) Horizontal plane

b) Vertical plane

Figure 4.7: 2010-04-02 11:00:14 UTC - circulation with strong convection
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May 19, 2010. A string of tornado outbreaks occurred between 2100 UTC and 0200 the

next day within a cluster of scattered thunderstorms. As seen from Figure 4.8, precipitation

and other high reflectivity regions were relatively sparse. This limited velocity measurement

regions due to reflectivity thresholding explained in Section 3.5.6. Consequently, R-MDRS

was limited in its ability to capture the comprehensive air motion dynamics of the weather

system.

17 tornados were reported for the event, with several originating within the test bed.

However only one circulation occurred within Doppler regions, as illustrated in Figure 4.9.

This circulation occurred in a region of the test bed where radar scans fully topped out the

storm. This allowed variably-integrated vertical wind product Wvar to be used to display the

vertical wind profile.

Figure 4.8: 2010-05-19 scattered thunderstorms at 23:45:12 UTC
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a) Horizontal plane

b) Vertical plane

Figure 4.9: 2010-05-19 23:45:12 UTC - circulation with Wvar vertical wind product

69



May 24, 2011. A strong tornado touched down east of Chickasha near Criner, OK. A

time-lapse of the tornado evolution is illustrated in Figure 4.10.

This event showcased a new R-MDRS real-time display that overlaid wind products onto

Google Earth. This leap provides two feature advantages. The first is a geo-spatial reference

for tracking the location and movement of storm features. The second is the integration with

a mature commercial product such as Google Maps. This integration provides a streamlined

web interface for end-users, forming the crucial practical link between CASA and society.

Combined, both these factors have taken R-MDRS one step further to being a mature early

weather warning system.

Clockwise from top left: Google Earth time lapse of tornado east of Chickasha nearClockwise from top left: Google Earth time lapse of tornado east of Chickasha near

Criner, OK. May 24, 2011

Figure 4.10: 2011-05-24 - time-lapse of tornado touchdown near Criner, OK
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4.2 Real-time Performance

The raison-d’etre of the R-MDRS is to perform IP1 Doppler retrievals in real-time. This

section provides an analysis of R-MDRS’s real-time performance collected over hundreds of

executions. Further, a breakdown and comparison of R-MDRS individual process times will

also be examined.

Time logging is collected from both R-MDRS’s development test platform rainier at

Colorado State University as well as the SOCC application server at the University of Mas-

sachusetts. At both locations, the R-MDRS is configured to process IP1 test bed as a 140 by

140 km grid extending from 0.5 to 10.0 km altitude with a grid resolution of 0.5 km. This

configuration results in a total of 1,658,181 grid points in the composite radar product. It is

chosen after calibrating rainier to be able to consistently complete a single R-MDRS syn-

thesis within IP1’s 1 minute scanning heartbeat. As UMass SOCC is a much more powerful

computer, its time performance is expected to be better.

Figure 4.11 below illustrates the distribution of R-MDRS total process time over 689

executions on rainier during actual case events. As expected for a calibration reference, the

majority of synthesis completed within a safe margin of 35 to 45 seconds. Less than 1% of

cases extended beyond 1 minute, which in operational sense would have resulted in skipping

data of the next heartbeat.

In more detail, Figure 4.12 below illustrates the time consumption of each major process

of the R-MDRS as it executes on rainier. Interpolation by reorder occupies the majority

of compute cycles, followed in descending order by cedric Doppler synthesis, miscellaneous

tasks, and nc2uf format conversion. Miscellaneous tasks include but are not limited to:

obtaining sounding data, conforming to WDSSII format, and clean up.
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Figure 4.11: R-MDRS process time distribution on Rainier
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Figure 4.12: R-MDRS process time composition on Rainier
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Figures 4.13 and 4.14 below illustrates expectedly better time performances for UMass

SOCC server. With a sufficiently large sample of 1,090 R-MDRS executions, over 90% com-

pleted within 35 to 40 seconds. Similar to rainier, about 1-2% of cases extended beyond 1

minute, resulting in data loss.

While UMass SOCC is faster than rainier as expected, visually comparing the time

performance of the two servers does point to some glaring disparities. Specifically, the two

servers does not have the same time composition as one would expect from running identical

software. Comparing Figures 4.12 and 4.14 reveals that all subroutines except reorder

takes approximately one third of the time it does on UMass SOCC as it does on rainier.

For reorder interpolation, UMass SOCC actually takes longer than rainier with an average

of more than 30 seconds as compared to rainier’s consistent 20 seconds. The cause of this

is still under investigation.
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Figure 4.13: R-MDRS process time distribution on UMass SOCC
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Figure 4.14: R-MDRS process time composition on UMass SOCC
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Figure 4.15 illustrates the overall breakdown of R-MDRS process times into its subrou-

tines. It combines both rainier and UMass SOCC time data to provide a complete process

breakdown characteristic of the R-MDRS. By far the greatest demand on computing resources

is the interpolation of each radar from radial to Cartesian coordinates, thus it is insightful to

predict that the greatest performance gain is likely obtained by improving reorder executions.

Chapter 5 will provide further theories on how this may be accomplished.

5%
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Overhead & misc.
Format conversion (nc2uf)
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Figure 4.15: R-MDRS process time breakdown
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4.3 Advection Effects

Advection correction during R-MDRS operation is detailed in Section 3.5.4. To reiterate,

two stages of advection corrections are performed during real-time synthesis. The first stage

accounts for displacement caused by sampling time lag. The second stage subtracts the mean

storm motion altogether to isolate internal air dynamics from the moving frame of reference

of the storm itself.

Currently, during real-time operations, the only means by which the R-MDRS can pro-

cure mean storm motion information is from sounding data measured by National Weather

Service stations. The closest sounding station to the IP1 test bed is at the Norman WSR-

88D radar (KOUN). Sounding data is gathered by balloons once every twelve hours. Several

shortcomings immediately become apparent. First, the sampling time of twelve hours may

be too sparse to describe entire storm events. Secondly, the sounding is about 100 km north

east of the test bed and may be too far for the measurements to be applicable to the test bed.

Lastly, sounding data provides a single point measurement, applying this to the entire span

of the test bed may be an oversimplified assumption. Regardless, sounding data has proven

to be reliable at modeling daily trends of mesoscale air motion in the atmosphere. And as of

yet, sounding data is the only tool available to R-MDRS for real-time determination of mean

storm motion.

R-MDRS’s experimental results have been inconclusive about the benefits and disad-

vantages of advection correction. The only conclusive observation is that subtracting mean

storm motion has much more impact on wind products than sampling time displacement cor-

rections. Figure 4.16 illustrates an instance where advection correction significantly improves

the wind products. With both stages of advection corrections applied, Figure 4.16 clearly

reveals the air circulation about a developing hook echo. Figure 4.16b shows wind products

with no sampling time displacement corrections, while Figure 4.16c shows the results with

both advection correction stages ignored. In both cases, the spinning vortex is obscured.
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a) Full advection correction

b) No time displacement correction c) No advection correction

Figure 4.16: 2010-04-02 10:57:14 UTC - beneficial advection correction

It is worth noting, comparing Figures 4.16b with 4.16c reveals very minute differences.

This supports the generally minute effects of sampling time displacement. Only for very

fast-moving storms does the sampling time lag of radar scanning mechanics began to have

noticeable effects on the Doppler wind products.

The two case examples aforementioned represents the general ambiguity of how beneficial

advection correction is to the R-MDRS. It is reasonable to conclude that due to the nature of

how sounding data is gathered, it is wholly inadequate for modeling real-time storm motions.
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Consequently, without reliable storm motion information, no effective advection corrections

can be made.
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4.4 Vertical Wind Analysis

Several vertical wind products are generated according to the methodologies outlined in

Section 2.5. To reiterate, they are:

W - Direct trigonometric result from system described by Equation 2.19. This product only

exists for Doppler regions covered by three or more radars. Geometrically, since radars

scan at low slant angles, very little vertical component exists. Consequently, W product

is very error-prone and ignored.

Wup - Result of upward vertical integration as a part of the mass continuity solution approach

outlined in Equation 2.30. Setting the bottom boundary of the storm as Wup = 0

simulates the physical boundary conditions of storm air motion. Integrating upward

within limitations of mass continuity derives the rest of vertical wind products. This

solution inevitably suffers from carry-over errors as altitude increases.

Wvar - Similar to Wup, with the difference being that both bottom and top boundary of

the storm are set as Wvar = 0, and integration is performed in both directions. While

this reduces carry-over errors as altitude increases, its basis assumption is only valid if

Doppler region tops out the storm, which is rare during IP1 operations.

Figure 4.17 provides a comparison of the two products that is representative of the

majority of R-MDRS syntheses. The vertical profile bisects the vortex of an air circulation

near the front of the storm. The radars do not top out the storm, as can be seen in the sudden

cutoff in reflectivity echoes. Due to not topping out the storm, Wvar is not a viable product.

This leaves Wup as the only valid product in the vast majority of R-MDRS synthesis.

Disregarding the validity of the products for one second and simply comparing Figure

4.17b and c confirms some of the characteristics of Wup and Wvar outlined above. Wup

exhibits increasing vertical magnitudes as altitude increases. While this may be true in some

cases, its occurrence in nearly all syntheses indicates that it is a direct visual result of the
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a) Horizontal plane

c) Vertical profile, Wup product d) Vertical profile, Wvar product

Figure 4.17: 2010-04-02 11:00:14 UTC - vertical wind products comparison

carry-over integration error. Wvar has a much more controlled vertical variability as a result

of its top and bottom bounding. However in this particular situation, its 0 vertical wind value

in the middle of the storm is clearly nonsensical.

The primary reason the R-MDRS is limited to only using Wup product for the vast

majority of syntheses is because of the low elevation scanning modes that IP1 radars typically

operate in. This scanning mode makes sense for the operational goals of IP1, which is to detect

acute low level weather features such as tornadoes. Scanning higher elevations will allow more

prevalent overtopping of storms, which provides another known boundary condition thatWvar
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can utilize to reduce errors. In short, optimizing scans for better low level weather monitoring

will naturally conflict with optimizing for better vertical wind profiling.

81



Chapter 5

SUMMARY AND CONCLUSION

5.1 Achievements

The most important practical achievement of this work is the successful implementation

of a real-time multi-Doppler retrieval tool in CASA’s DCAS network. This achievement is a

culmination of overcoming a sequence of challenges.

The first challenge to be overcome is the integration of existing but fragmented data

processing tools into a robust process flow that is fast and efficient enough to meet real-time

demands. Much of R-MDRS’s components such as reorder and cedric have existed for

many years and been widely used. However they have never been linked and executed as a

cohesive real-time unit. R-MDRS does that and customizes this integration into a specialized

tool to meet CASA’s needs.

This integration encompasses a variety of peripheral applications built around the few

core components. They range from simple conversions to entire code libraries. On top of all

these core components and their interlinks is a governing framework to dictate the process

flow. Complex technical issues such as compatibility, file structures, function methods, etc

all have to be carefully considered and resolved in order to create the conglomerate R-MDRS

tool that robustly performs its designed functions.

Once the process flow of the R-MDRS is operational and products are being generated,

the next challenge overcome by the R-MDRS is the comprehensive effort to eliminate errors,

variations, and uncertainty to improve product integrity. This is done by adjusting process-

ing parameters such as reflectivity-thresholding or beam-crossing angle criteria to produce

variations in the final wind products and forming comparisons. This exploration of different

combinations of settings continues until a high quality product is achieved.
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This effort of perpetually tweaking R-MDRS settings to explore a great variety of results is

possible due to the tool’s superb useability. A comprehensive tool such as R-MDRS encounters

the dilemma of creating a control interface that provides easy accessibility to all its features.

Short of developing a full graphical user interface, R-MDRS overcomes this challenge through

the implementation of a simple but effective text-based user configuration interface.

The final achievement of note is not the overcoming of any particular challenge, but

rather a preemptive foresight that makes R-MDRS a promising tool to continue developing.

From the beginning, R-MDRS has been designed with scalability and expansion in mind.

This is in part due to knowing that version 1.0 of R-MDRS will not be perfect and will need

significant adjustments. But more importantly it is the vision to expand the capabilities of

R-MDRS beyond its core functions as a fast Doppler synthesizer.

The most important future-proofing element of R-MDRS is the script-based governing

framework that dictates the process flow of all R-MDRS subcomponents. This avoids over-

integration of processes and grant each of them autonomy and modularity to be modified

or interchanged. As a further supplement, the PERL-based scripts and native UNIX core

applications are portable across nearly all computing platforms. Last but not least, R-MDRS’s

development has been parallelled with detailed and concise documentations, making any

future maintenance and expansion much more easier.
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5.2 Suggestions for Future Works

As in the case of any version 1.0 products, R-MDRS still has much room to grow. This

section will peruse some of the most relevant potentials for improvement.

While R-MDRS currently meets real-time demands for CASA IP1 network, there are still

many significant advantages to be gained from increasing processing speeds even further. IP1

radars’ native scanning resolution allow for much finer grid resolutions, down to approximately

100 meters. From a purely computational standpoint, this represents 125 times the current

R-MDRS processing load, which is done at 0.5 km resolutions.

Timing performance analysis shows the greatest potential speed increase lies in the in-

terpolation stage. When viewed in conjunction with the fact that R-MDRS interpolates each

radar in sequence, it becomes immediately obvious that the interpolations need to be paral-

lelized. This must be achieved via recoding the reoced PERL meta-script to initiate each

radars’ interpolations on separate processing threads. This is a simple procedure in itself,

however complexities quickly arise when resolving computer resource conflicts with the rest of

CASA applications running on the SOCC server. A more global thread management scheme

will first need to be implemented on the SOCC level before stable parallelization can be

implemented.

Another potential to increase speed is to analyze the data flow through the R-MDRS.

From beginning to end, the radar data undergo several format conversions, which serve no

benefit to the final wind products and are thus a waste of computing process. They are

only necessary for adapting to proprietary formats of core applications such as reorder

and cedric. The apparent solution here is to eliminate those core applications and re-code

their functionalities in a completely NetCDF-native environment. This obviously embodies

a tremendous amount of design and coding work, but the result would be a straightforward

and efficient process that waste no overhead with conversions and translations. In fact, this

improvement goes beyond mere speed increase, it would thoroughly reform the R-MDRS into
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a fluent application suite built upon a unified framework consisting of NetCDF data structure,

C applications and PERL control scripts.

Functionally, what the R-MDRS needs most is significant improvement to its advection

correction methods. As results have shown, current utilization of sounding data gives no

consistent outcome, and as such should be abandoned altogether. Another approach that

shows great promise for solving this problem is short-term prediction of trending weather,

also known as nowcasting. CASA has developed a functional nowcasting implementation

detailed in Ruzanski (2009). As this nowcasting tool runs alongside the R-MDRS on the

same SOCC hardware and DCAS operational framework, it is entirely plausible to integrate

nowcasting results into the R-MDRS process to estimate real-time storm movement. This

real-time value would be much more suitable for reliable advection corrections.

85



Appendix A

REOCED MANUAL

Manual for reoced

A real-time multi-Doppler retrieval system

==========================================

Sean X. Zhang

Colorado State University

sxzazn@engr.colostate.edu

Last updated 2011 June 28

Introduction

=============

reoced is the real-time multi-Doppler retrieval system developed for CASA IP1

test bed. It is an integrated interface built around two core components:

reorder, which interpolates radial coordinated radar data into Cartesian; and

cedric, which synthesizes the multi-Doppler wind products. Both programs are

developed by the National Center for Atmospheric Research at Boulder, CO.

Their detailed descriptions can be found at:

Oye, D., and M. Case, 1995: REORDER a program for gridding radar data,

installation and use manual for the Unix version". National Center for

Atmospheric Research, Atmospheric Technology Division.
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Miller, L.J., and S.M. Frerick, 1998: CEDRIC custom editing and display

of reduced information in Cartesian space. National Center for Atmospheric

Research, Mesoscale and Microscale Meterology Division.

reoced is solely developed by Sean X. Zhang (2009) at Colorado State

University.

Installation

=============

1) Dependencies - reoced requires the following software to be installed.

Unidata NetCDF http://www.unidata.ucar.edu/software/netcdf/

Universal Format provided by "ufsxz".

reorder provided by NCAR

cedric provided by NCAR

2) reoced.pl is a PERL script that is portable to all PERL-compatible computing

platforms. Simply execute from shell command line.

Usage

======

reoced.pl VOLLISTPATH CFGPATH OUTPATH

VOLLISTPATH: volume list file path.

CFGPATH: config file path.

OUTPATH: output NetCDF file path.
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run_reoced_event.pl VOLLISTDIR CFGPATH OUTDIR

VOLLISTDIR: volume list file directory.

CFGPATH: config file path.

OUTDIR: output NetCDF file directory.

Configuration

==============

General parameters

-------------------

General parameters are delineated by the "[General]" tag.

advection_mode (manual|auto)

Advection mode, manual uses advx and advy values below, auto uses sounding

data.

advx (float)

Advection in X

advy (float)

Advection in y

sounding_dir (str)

Directory of sounding files

qc (0|1)
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Perform quality control (Not)

Variable list

--------------

Variable list is delineated by the "[Variables]" tag.

<var1>

<var2>

.

.

.

Grid definition

-----------------

Grid definition parameters are delineated by the "[GridDefinition]" tag.

glat (float)

Grid origin latitude

glon (float)

Grid origin longitude

galt (float)

Grid origin altitude

xmin (float)

x minimum
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xmax (float)

x maximum

xres (float)

x increment

ymin (float)

y minimum

ymax (float)

y maximum

yres (float)

y increment

zmin (float)

z minimum

zmax (float)

z maximum

zres (float)

z increment

xrad (float)

Radius of influence x component
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yrad (float)

Radius of influence y component

zrad (float)

Radius of influence z component

azrad (float)

Radius of influence delta azimuth component

elrad (float)

Radius of influence delta elevation component

rgrad (float)

Radius of influence delta range component

weighting_function (CRESSMAN|EXPONENTIAL|UNIFORM|CLOSEST POINT)

Weighting scheme (consult reorder manual)

weighting_value (float)

Weighting value (for EXPONENTIAL, consult reorder manual)
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Appendix B

VOLLISTGEN MANUAL

Manual for vollistgen

A volume list generator for events

==================================

Sean X. Zhang

Colorado State University

sxzazn@engr.colostate.edu

Last updated 2011 June 28

Introduction

=============

vollistgen is a PERL script for generating volume lists for the reoced real-time

Multi-Doppler retrieval system. It compiles data file paths through parsing

UNIX shells, after which it sorts and prints the volume lists into ASCII texts.

Installation

=============

vollistgen.pl is a simple PERL script that is portable to all PERL-compatible

computing platforms. It has no dependencies. Simply execute from shell command

line.
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Usage

======

vollistgen.pl EVENTDIR CFGPATH OUTDIR

EVENTDIR: event data directory.

CFGPATH: config file path.

OUTDIR: output volume list directory.

Configuration

==============

Parameters

-----------

begin (YYYYMMDDhhmms)

The event start time in YYYYMMDDhhmmss format

end (YYYYMMDDhhmms)

The event end time in YYYYMMDDhhmmss format

threshold (int)

The threshold time in whole seconds. Sites must begin their volume scans

within threshold time of the eachother in order for those sites to be

included in the volume
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Appendix C

NC2UF MANUAL

Manual for nc2uf

A tool to convert NetCDF to Universal Format

============================================

Sean X. Zhang

Colorado State University

sxzazn@engr.colostate.edu

Last updated 2011 June 28

Introduction

=============

nc2uf is a program to convert NetCDF files to Universal Format (UF) files. UF

is a radar data format originally proposed and documented in:

Barnes, S.L., 1980: Report on a meeting to establish a common Doppler

radar data exchange format. The Bulletin of the American Meteorological

Society, 61.11, 1401-1404.

nc2uf utilizes the ufsxz UF library. Both nc2uf and ufsxz are solely developed

by Sean X. Zhang (2009) at Colorado State University.
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Installation

=============

1) Dependencies - nc2uf requires the following software to be installed.

Unidata NetCDF http://www.unidata.ucar.edu/software/netcdf/

Universal Format provided by "ufsxz".

2) Configure "Makefile"

PREFIX - Home directory of installation. Files will be placed relative to it.

PREFIX/bin - binary files

PREFIX/include - header files

PREFIX/lib - library files

ex: PREFIX=/usr/local/

NCINCDIR - Directory where NetCDF header files reside.

ex: NCINCDIR=/usr/local/include/

NCLIBDIR - Directory where NetCDF library files reside.

ex: NCLIBDIR=/usr/local/lib/

UFINCDIR - Directory where UF header files reside.

ex: UFINCDIR=/usr/local/include/

UFLIBDIR - Directory where UF library files reside.

ex: UFLIBDIR=/usr/local/lib/

3) Run "make" to compile.
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4) Run "make install" to install. Use "sudo" as needed.

5) Run "make clean" to clean out intermediate setup files.

6) Optionally copy nc2uf.pl to execution directory.

Note: When running "make", configuration settings can be included, this will

override the Makefile settings.

ex: make install PREFIX=/usr/local/

Usage

======

nc2uf [-h] [-f CFGPATH] [-o OUTPATH] NC1PATH NC2PATH ...

-h: prints this message.

-f CFGPATH: config file path (default: ./nc2uf.cfg).

-o OUTPATH: output UF file path (default: ./output.uf).

NC1PATH NC2PATH ... : input NetCDF file paths.

nc2uf.pl [CFGPATH] [OUTPATH] NC1PATH NC2PATH ...

CFGPATH: config file path (default: ./nc2uf.cfg).

OUTPATH: output UF file path (default: ./output.uf).

NC1PATH NC2PATH ... : input NetCDF file paths.

The radial structure of UF files requires that the input NetCDFs to nc2uf must

also be radial. This means the NetCDF must have a radial dimension and the

variables to be converted must also be dimensionally radial.
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nc2uf.pl is simply a PERL wrapper for nc2uf.

Configuration

==============

nc2uf execution is driven by a configuration file. Configuration parameters

are set with the "=" sign and mostly correspond to UF ray header information

such as "radarname", "raytime", etc... Since there are many rays in an UF file,

these parameters must be sufficiently defined to dictate the values of all the

ray headers of the final output UF. To achieve this, parameter values may be set

to the following forms:

number - Constant integer or float value. Consequently, the corresponding ray

header field will be constant across all rays of the output UF.

ex: lat=37.2

The "lat" (latitude) ray header field across all rays of the output UF will be

set to 37.2 deg.

string - String enclosed by "". Constant across all rays.

ex: projectname="CASA"

dim.DIMNAME - NetCDF dimension. Since NetCDF dimensions have no value, this is

mostly used to provide indexing references such as determining

which order to read out a multi-dimensioned NetCDF variable.

ex: raydim=dim.Radial
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var.VARNAME - NetCDF variable. The variable must be dimensionally radial. The

radial dimension is defined by the "raydim" parameter. The

corresponding ray header field across all rays of the output UF

will then be uniquely taken from the specified variable. If the

variable contains other dimensions, the first value of each ray

will be taken.

ex: raytime=var.Time

"Time" is a single dimension NetCDF variable (radial). The "raytime" UF ray

header field across all rays of the output UF will be set to the corresponding

"Time" variable values.

var.VARNAME.VATTNAME - NetCDF variable attribute. Constant across all rays.

ex: units=var.velocity.units

global.GATTNAME - NetCDF global attribute. Constant across all rays.

ex: radarname=global.RadarName

In addition to these , parameter values may also contain special operator

symbols:

’ inversion operator - Inverts the value or variable that precedes it.

ex: prt=var.Prf"

The "prt" ray header field for each ray will be set as the reciprocal of the

corresponding "Prf" NetCDF variable value.

* multiply operator - Mutiplies by value.

ex: binspacing=var.GateWidth*0.001
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The "binspacing" ray header field of each ray will be set as the corresponding

"GateWidth" NetCDF variable value factored by 1000.

The following is an explanation of the nc2uf configuration parameters.

General parameters

-------------------

General parameters are delineated by the "[General]" tag.

raydim (NetCDF dimension)

Radial dimension.

bindim (NetCDF dimension)

Gate (bin) dimension.

volid (int)

Volume identifier.

swpid (int)

Sweep identifier.

radarname (str)

Radar name.

sitename (str)

Site name.
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lat (double)

Latitude of radar in degrees.

lon (double)

Longitude of radar in degrees.

height (float)

altitude of radar in km.

raytime (int)

Ray time in Unix time (seconds since Jan 1 1970 UTC).

azimuth (double)

Ray azimuth in degrees.

elevation (double

Ray elevation in degrees.

swpmode (int)

Sweep mode (see "ufsxz" manual).

swprate (float)

Sweep rate in deg/sec.

ncbadval (double)

NetCDF bad value.
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ufbadval (short)

UF bad value.

projectname (str)

Project name.

blineazimuth (double)

Baseline azimuth.

blineelevation (double)

Baseline elevation.

tapename (str)

Tape name.

binflag (int)

Range gate (bin) status flag (see "ufsxz" manual).

Variable parameters

--------------------

Variable parameters are delineated by [] brackets containing the variable name

uffieldname (str)

UF field name mnemonic (2 ASCII characters).

scale (int)

Scaling factor (actual value=file value/scale).
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startrange (float)

Start range in km.

binspacing (float)

Gate (bin) spacing in meters.

nbin (int)

Number of gates (bins).

pulsewidth (float)

Pulse width in meters.

beamwidthH (double)

Horizontal beam width in degrees.

beamwidthV (double)

Vertical beam width in degrees.

rcvrbandwidth (float)

Receiver bandwidth in MHz.

polarization (int)

Polarization status (see "ufsxz" manual).

wavelength (float)

Wavelength in cm.
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nsample (int)

Number of samples used in field estimate.

threshfield (str)

Threshold field name mnemonic (2 ASCII characters).

threshval (float)

Threshold value.

prt (float)

Pulse repetition time in microseconds

radarconstant (float)

Radar constant.

noisepower (float)

Noise power in dBm.

rcvrgain (float)

Receiver gain in dB.

peakpower (float)

Peak power in dBm.

antgain (float)

Antenna gain in dB.
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pulsedur (float)

Pulse duration in microseconds.

nyquistv (float)

Nyquist velocity in m/s.

veflag (str)

Velocity status flag (see "ufsxz" manual).
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Appendix D

UFSXZ UF LIBRARY USER GUIDE

Manual for ufsxz

A library for the manipulation of Universal Format files

========================================================

Sean X. Zhang

Colorado State University

sxzazn@engr.colostate.edu

Last updated 2011 June 28

Introduction

=============

ufsxz is a library for manipulating Universal Format (UF) files. UF is a radar

data format originally proposed and documented in:

Barnes, S.L., 1980: Report on a meeting to establish a common Doppler

radar data exchange format. The Bulletin of the American Meteorological

Society, 61.11, 1401-1404.

ufsxz is an entirely standalone library soley developed by Sean X. Zhang (2009)

at Colorado State University.
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Installation

=============

1) Configure Makefile

PREFIX - Home directory of installation. Files will be placed relative to it.

PREFIX/bin - binary files

PREFIX/include - header files

PREFIX/lib - library files

ex: PREFIX=/usr/local/

2) Run "make" to compile.

3) Run "make install" to install. Use "sudo" as needed.

4) Run "make clean" to clean out intermediate setup files.

Note: When running "make", configuration settings can be included, this will

override the Makefile settings.

ex: make install PREFIX=/usr/local/

UF file structure

==================

UF files consist of records that correspond to rays (data acquired for a given

pointing direction). Large rays may be broken into several records. The multiple

records within a ray will be identical except differing data header, field

headers, and field values. Note that some programs such as IRIS converters do

not support multi-record rays, and must place a ray in a single record.
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In the case of ufsxz, rays may consist of a maximum of 100 fields with a

maximum of 50 fields per record, resulting in a maximum of 2 records per ray.

Each field can have a maximum length of 2500 bins (gates). These values can be

altered at compile time.

Field names must be of two ASCII character and can be arbitrary, but it is

recommended to conform to the following SIGMET standard field mnemonics:

DZ - Reflectivity factor (dBZ)

CZ - Corrected reflectivity factor (dBZ)

DR - Differential reflectivity, ZDR (dB)

PH - Differential phase, PhiDP (deg)

KD - Specific phase, KDP (deg/km)

RH - Cross-polar correlation, RhoHV (0 to 1)

DM - Received power (dBm)

NC - Normalized coherent power (0 to 1)

VR - Raw velocity (m/s)

VT, VE - Velocity thresholded on NC (m/s)

VF - Velocity with good/bad flag on least significant bit (m/s)

VP - Velocity thresholded on received power (m/s)

SW - Spectrum width (m/s)

SR - Raw spectrum width, no noise correlation (m/s)

Within each record, data is organized into two-byte aligned (16 bit word), byte-

swapped (Big endian) format. The exception is that the record starts and ends

with a 32 bit memory space indicating the number of bytes in the record, this

value is still byte-swapped.
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Record structure for a ray with M fields and N bins:

|--------------------|

|record size (bytes) |

| 4 bytes |

|--------------------|

| MANDATORY HEADER |

| 45 words |

|--------------------|

| OPTIONAL HEADER |

| 14 words |

|--------------------|

| LOCAL HEADER |

| X words |

|--------------------|

| DATA HEADER |

| 3+2M words |

|--------------------|

| FIELD #1 HEADER |

|19, 21, or 25 words |

|--------------------|

| FIELD #1 DATA |

| N words |

|--------------------|

| FIELD #2 HEADER |

|19, 21, or 25 words |
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|--------------------|

| FIELD #2 DATA |

| N words |

|--------------------|

| . |

| . |

| . |

|--------------------|

|record size (bytes) |

| 4 bytes |

|--------------------|

MANDATORY HEADER BLOCK

Word

1 "UF" (2 ASCII) *MUST NOT* have "UF" string anywhere else in UF file or

read error will occur.

2 Record length (no. of 16-bit words)

3 Position of first word of optional header block (word position). If no

optional header block exists, this points to the first existing header

block following the mandatory header. In this way, word (3) always

gives 1 + the length of the mandatory header (in words).

4 Position of first word of local header block (word position). If no

local header block exists, this points to the start of the data header

block.

5 Position of first word of data header block (word pos)

6 Record number within the file (starts from 1)

7 Volume number within the file (starts from 1)
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8 Ray number within the volume (starts from 1)

9 Record number within the ray (starts from 1)

10 Sweep number within the volume (starts from 1)

11-14 Radar name (8 ASCII)

15-18 Site name (8 ASCII)

19 Antenna latitude - degrees (north is positive, south is negative)

20 Antenna latitude - minutes

21 Antenna latitude - seconds (s*64)

22 Antenna longitude - degrees (east is positive, west is negative)

23 Antenna longitude - minutes

24 Antenna longitude - seconds (s*64)

25 Antenna height above sea level (m)

26 Ray acquisition time - year

27 Ray acquisition time - month

28 Ray acquisition time - day of month

29 Ray acquisition time - hour

30 Ray acquisition time - minute

31 Ray acquisition time - second

32 Ray acquisition time - time zone (2 ASCII - UT, CT, MT, etc...)

33 Ray azimuth (deg*64)

34 Ray elevation (deg*64)

35 Sweep mode: 0 - Calibration

1 - PPI (constant elevation)

2 - Coplane

3 - RHI (constant azimuth)

4 - Vertical

5 - Target (stationary)
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6 - Manual

7 - Idle

36 Fixed angle (deg*64, e.g. elevation of PPI, azimuth of RHI, etc.)

37 Sweep rate (deg/s*64)

38 UF generation date - year

39 UF generation date - month

40 UF generation date - day of month

41-44 UF generation program (8 ASCII)

45 Value stored for deleted, missing, or corrupted data

OPTIONAL HEADER BLOCK

Word

1-4 Project name (8 ASCII)

5 Baseline azimuth (deg*64)

6 Baseline elevation (deg*64)

7 Volume start time - hour

8 Volume start time - minutes

9 Volume start time - seconds

10-13 Tape name (8 ASCII)

14 Bin flag: number of range bins, minimum range, and range bin spacing are

0 - Same throughout volume

1 - Same only within each sweep

2 - Same only within each ray

LOCAL HEADER BLOCK

Any use, any contents
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DATA HEADER BLOCK

Word

1 Total number of fields in the ray

2 Total number of records in the ray

3 Total number of fields in the record

4 1st field name (2 ASCII)

5 Position of first word of 1st field header

6 2nd field name (2 ASCII)

7 Position of first word of 2nd field header

etc...

FIELD HEADER BLOCK

Word

1 Position of first data word of field

2 Scale factor (meteorological value = file value / scale)

3 Start range kilometers (km)

4 Start range residue meters (m)

5 Bin spacing (m)

6 Number of bins

7 Pulse width (meters)

8 Horizontal beamwidth (deg*64)

9 Vertical beamwidth (deg*64)

10 Receiver bandwidth (MHz)

11 Polarization: 0 - Horizontal

1 - Vertical

2 - Circular

3 - Elliptical
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12 Wavelength (cm*64)

13 Number of samples used in field estimate

14 Threshold field name (2 ASCII, SIGMET standard)

15 Threshold value

16 Scale

17 Edit code (2 ASCII)

18 Pulse repetition time (us)

19 Bits per bin (must be 16)

20-? Words for individual fields, as follows

for DM:

Word

20 Radar constant (RC*scale such that dBZ = RC + DM + 20log(range km))

21 Noise power (dBm*scale)

22 Receiver gain (dB*scale)

23 Peak power (dBm*scale)

24 Antenna gain (dB*scale)

25 Pulse duration (us*64)

for VR, VE, VT, VF, VP:

Word

20 Nyquist velocity (m/s*scale)

21 Velocity flag (2 ASCII): "FL" - Velocity flagged in least significant

bit with good/bad flag (1=good,0=bad)

other - Velocity not flagged
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ufsxz mechanics

==================

ufsxz manipulates UF files on a ray-by-ray basis corresponding to the radial

structure of UF files. This means that ufsxz reads and writes UF files in ray

chunks. ufsxz interfaces with UF rays via two important data structures and a

data buffer. Reading and writing UF rays with ufsxz requires initializing

these three components. See ufsxz.h for more details.

The first is the "UFHeaderInfo" data structure that contains general

UF ray header info, such as ray identification, radar location, ray time, etc...

The second is the "UFFieldHeaderInfo" data structure that contains field-

specific UF ray header info, such as UF field mnemonic, scaling factor, starting

range, etc... Each field has its own "UFFieldHeaderInfo" data structure.

The third is the "raydata" data buffer that contains all the fields" data values

of the current ray. "raydata" corresponds to UF data format by being big-Endian

short integers, thus it can be directly read from or written to disk when

manipulating UF rays.

UFHeaderInfo data structure

int volnuminfile - volume number in file

int raynuminvol - ray number in volume

int swpnuminvol - sweep number in volume

char radarname[8] - radar name

char sitename[8] - site name

double lat - latitude of ray source (antenna) in deg
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double lon - longitute of ray source (antenna) in deg

float height - altitude of ray source (antenna) in meters

int raytime - ray time in UNIX time

double azimuth - ray azimuth in deg

double elevation - ray elevation in deg

int swpmode - sweep mode (see UF data structure)

double fixangle - fixed angle (elevation for PPI, azimuth for RHI)

float swprate - sweep rate in deg/s

float badval - bad/missing value

char projectname[8] - project name

double blineazimuth - baseline azimuth in deg

double blineelevation - baseline elevation in deg

int voltime - volume time in UNIX time

char tapename[8] - tape name

int flag - range gate status flag (see UF data structure)

int nfieldinray - number of fields in ray

UFFieldHeaderInfo

char uffieldname[2] - UF field name (SIGMET standard)

int scale - scale factor (actual value=file value/scale)

float startrange - start range in km

float binspacing - range gate spacing in km

int nbin - number of gates

float pulsewidth - pulse width in meters

double beamwidthH - horizontal beamwidth in deg

double beamwidthV - vertical beam width in deg

float rcvrbandwidth - receiver bandwidth in MHz
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int polarization - polarization status id

float wavelength - wavelength in cm

int nsample - number of samples used in field estimate

char threshfield[2] - threshold field name (SIGMET standard)

float threshval - threshold value

float prt - pulse repetition time in microseconds

float radarconstant - radar constant

float noisepower - noise power in dBm

float rcvrgain - receiver gain in dB

float peakpower - peak power in dBm

float antgain - normalized antenna gain in dB

float pulsedur - pulse duration in microseconds

float nyquistv - nyquist velocity in m/s

char veflag[2] - velocity status flag (see UF data structure)

Data mapping

=============

UF file (big endian) ufsxz structs (little endian)

--------------------------------------------------------------------------------

MANHEADER

uftag[2]="UF" -

reclen (no. of 16-bit words) -

optheaderwpos (word pos) -

locheaderwpos (word pos) -

dataheaderwpos (word pos) -

recnuminfile -
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volnuminfile UFHeaderInfo.volnuminfile

raynuminvol UFHeaderInfo.raynuminvol

recnuminray -

swpnuminvol UFHeaderInfo.swpnuminvol

radarname[8] UFHeaderInfo.radarname

sitename[8] UFHeaderInfo.sitename

lat (deg,min,s*64) UFHeaderInfo.lat (deg)

lon (deg,min,s*64) UFHeaderInfo.lon (deg)

height (m) UFHeaderInfo.height (m)

raytime (year,mon,mday,hr,min,s) UFHeaderInfo.raytime (UNIX time)

azimuth (deg*64) UFHeaderInfo.azimuth (deg)

elevation (deg*64) UFHeaderInfo.elevation (deg)

swpmode UFHeaderInfo.swpmode

fixangle (deg*64) UFHeaderInfo.fixangle (deg)

swprate (deg/s*64) UFHeaderInfo.swprate (deg/s)

gendate (yr,mon,mday) -

progname[8]=ufsxz -

badval UFHeaderInfo.badval

OPTHEADER

projectname[8] UFHeaderInfo.projectname

blineazimuth (deg*64) UFHeaderInfo.blineazimuth (deg)

blineelevation (deg*64) UFHeaderInfo.blineelevation (deg)

voltime (hr,min,s) UFHeaderInfo.voltime (UNIX time)

tapename[8] UFHeaderInfo.tapename

binflag UFHeaderInfo.binflag
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DATAHEADER

nfieldinray UFHeaderInfo.nfieldinray

nrecinray -

nfieldinrec -

DATAHEADERFIELD

uffieldname[2] UFFieldHeaderInfo.uffieldname

fieldheaderwpos (word pos) -

FIELDHEADER

datawpos (word pos) -

scale UFFieldHeaderInfo.scale

startrangekm (km) UFFieldHeaderInfo.startrange (km)

startrangem (m) UFFieldHeaderInfo.startrange (km)

binspacing (m) UFFieldHeaderInfo.binspacing (m)

nbin UFFieldHeaderInfo.nbin

pulsewidth (m) UFFieldHeaderInfo.pulsewidth (m)

beamwidthH (deg*64) UFFieldHeaderInfo.beamwidthH (deg)

beamwidthV (deg*64) UFFieldHeaderInfo.beamwidthV (deg)

rcvrbandwidth (MHz) UFFieldHeaderInfo.rcvrbandwidth(MHz)

polarization (stat id) UFFieldHeaderInfo.polarization (stat id)

wavelength (cm*64) UFFieldHeaderInfo.wavelength (cm)

nsample UFFieldHeaderInfo.nsample

threshfield[2] UFFieldHeaderInfo.threshfield

threshval UFFieldHeaderInfo.threshval

Scale UFFieldHeaderInfo.scale

editcode[2]="na" -
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prt (us) UFFieldHeaderInfo.prt (us)

nbitperbin=16 -

DMHEADER

radarconstant (*scale) UFFieldHeaderInfo.radarconstant

noisepower (dBm*scale) UFFieldHeaderInfo.noisepower (dBm)

rcvrgain (dB*scale) UFFieldHeaderInfo.rcvrgain (dB)

peakpower (dBm*scale) UFFieldHeaderInfo.peakpower (dBm)

antgain (dB*scale) UFFieldHeaderInfo.antgain (dB)

pulsedur (us*64) UFFieldHeaderInfo.pulsedur (us)

VHEADER

nyquistv (m/s*scale) UFFieldHeaderInfo.nyquistv (m/s)

veflag[2] UFFieldHeaderInfo.veflag

Global constants

=================

UF_MAX_NFIELDINRAY 100

Maximum number of fields in each ray.

UF_MAX_NFIELDINREC 50

Maximum number of fields in each record.

UF_MAX_NBIN 2500

Maximum number of bins(gates) in each ray.
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Global functions

=================

long readray(int ufid, UFHeaderInfo* ufhptr, UFFieldHeaderInfo* uffhs,

int uffhslen)

Reads the next ray in the UF file into "UFHeaderInfo" and "UFFieldHeaderInfo"

data structs and the "raydata" data buffer. On success, returns the size of

the ray in number of bytes. Else returns -1, such as when end of UF file is

reached.

ufid - UF file id

ufhptr - Pointer to "UFHeaderInfo" struct where general ray header info is

stored.

uffhs - Pointer to array of "UFFieldHeaderInfo" structs where field-specific

ray header info is stored.

uffhslen - length of the "UFFieldHeaderInfo" array buffer, i.e. max number of

fields to read in.

long readprevray(int ufid, UFHeaderInfo* ufhptr, UFFieldHeaderInfo* uffhs,

int uffhslen)

Same as "readray", but reads the previous ray instead of the next.

ufid - UF file id.

ufhptr - Pointer to "UFHeaderInfo" struct where general ray header info is

stored.

uffhs - Pointer to array of "UFFieldHeaderInfo" structs where field-specific

ray header info is stored.

uffhslen - length of the "UFFieldHeaderInfo" array buffer, i.e. max number of

fields to read in.
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long readselectray(int ufid, int volnum, int raynum, UFHeaderInfo* ufhptr,

UFFieldHeaderInfo* uffhs, int uffhslen)

Same as "readray", but reads a selected ray instead of the next.

ufid - UF file id.

volnum - volume number of desired ray.

raynum - ray number of desired ray.

ufhptr - Pointer to "UFHeaderInfo" struct where general ray header info is

stored.

uffhs - Pointer to array of "UFFieldHeaderInfo" structs where field-specific

ray header info is stored.

uffhslen - length of the "UFFieldHeaderInfo" array buffer, i.e. max number of

fields to read in.

int getfield(char* uffieldname, double* vec, int veclen, double badval)

Reads values of selected field from "raydata" data buffer of current ray.

uffieldname - name of field to read.

vec - pointer to memory location where values will be stored.

veclen - length of "vec" memory buffer, i.e. max number of values to read.

badval - substitute value for bad/missing values.

void disprayinfo(int ufid)

Display info about current ray: ray start position, ray size, vol number, ray

number.

ufid - UF file id.

int pushfield(double* vec, int veclen, double badval, int scale)
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Writes field values into "raydata" data buffer of current ray.

vec - data array to be written.

veclen - length of "vec" array, i.e. max number of values to write.

badval - substitute value for bad/missing values.

scale - scaling factor (buffer value=actual value*scale).

int writeray(int ufid, UFHeaderInfo ufh, UFFieldHeaderInfo* uffhs, int nfield)

Writes data structures and buffer of current ray to disk.

ufid - UF file id.

ufh - "UFHeaderInfo" struct.

uffhs - "UFFieldHeaderInfo" structs for each field.

nfield - number of fields to write.

ufchk utility

================

ufchk is a program to inspect header information of UF files. It allows users

to browse through each individual record (ray) of the UF file and display all

the header values. Usage:

ufchk UFPATH

UFPATH: input UF file path.
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Appendix E

PLOTNCGRID MANUAL

Manual for plotncgrid

A display for Cartesian-space NetCDF files

==========================================

Sean X. Zhang

Colorado State University

sxzazn@engr.colostate.edu

Last updated 2011 June 28

Introduction

=============

plotncgrid is a tool for displaying Cartesian-space NetCDF files. In addition

to conventional colormaps, plotncgrid can also plot vector fields, designed

for mapping wind products. Slices of 2D plots are produced along a 3rd

dimension, providing a complete 3D visual representation of the data.

plotncgrid is solely developed by Sean X. Zhang (2009) at Colorado State

University.

Installation

=============
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1) Dependencies - plotncgrid requires the following software to be installed.

Unidata NetCDF http://www.unidata.ucar.edu/software/netcdf/

PNGwriter 0.5.4 http://pngwriter.sourceforge.net/

2) Configure "Makefile"

PREFIX - Home directory of installation. Files will be placed relative to it.

PREFIX/bin - binary files

PREFIX/include - header files

PREFIX/lib - library files

ex: PREFIX=/usr/local/

NCINCDIR - Directory where NetCDF header files reside.

ex: NCINCDIR=-I/usr/local/include/

NCLIBDIR - Directory where NetCDF library files reside.

ex: NCLIBDIR=-L/usr/local/lib/

PNGWINCDIR - Directory where PNGwriter header files reside.

ex: PNGWINCDIR=-I/usr/include/

PNGWLIBDIR - Directory where PNGwriter library files reside.

ex: PNGWLIBDIR=-I/usr/include/

3) Run "make" to compile.

4) Run "make install" to install. Use "sudo" as needed.
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5) Run "make clean" to clean out intermediate setup files.

6) Optionally copy run_plotncgrid_event.pl to execution directory.

Note: When running "make", configuration settings can be included, this will

override the Makefile settings.

ex: make install PREFIX=/usr/local/

Usage

======

plotncgrid NCPATH CFGPATH OUTDIR

NCPATH: input NetCDF file path.

CFGPATH: config file path.

OUTDIR: output directory.

run_plotncgrid_event.pl NCDIR CFGPATH OUTDIR

NCDIR: input NetCDF file path.

CFGPATH: config file path.

OUTDIR: output directory.

As its name implies, plotncgrid should only be used to plot gridded NetCDFs,

i.e. NetCDFs whose dimensions are Cartesian 3D. While the program can plot along

any three dimensions, only dimensions corresponding to Cartesian 3D will yield

the spatially-correct visual representation of the data.

In addition, plotncgrid requires the NetCDF to have at least three
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"dimensional variables" corresponding to the axes values of the three dimensions

to be plotted. For example, if a NetCDF is to be plotted against its Lat, Lon,

and Alt dimensions, there needs to be three one-dimensional variables, each

containing the axis values of Lat, Lon, and Alt, respectively. These three

variables are known as the three "dimensional variables".

run_plotncgrid_event.pl is an optional PERL script that automates plotncgrid

for entire data sets.

Configuration

==============

Configuration parameters are broken down into sections corresponding to each

variable. Each variable section is delineated by [] brackets containing the

variable name. Parameters are set with the "=" operator.

mode (fullframe|googlemap) default=fullframe

Plotting modes:

fullframe - Classic plot with margins, grids, colorbar, title, labels, etc...

googlemap - Bezel-less plot designed to be superimposed on a map, NYI.

xvarname (str) default=x

Dimensional variable containing X-axis values.

yvarname (str) default=y

Dimensional variable containing Y-axis values.
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slcvarname (str) default=z

Dimensional variable containing Z-axis values, along which slices will be

plotted.

slcvals ([min:spacing:max]|slc1,slc2,...) default=[0.5:0.5:2.5]

Slice values to be plotted. Based on these specified value, the closest values

along the slicing dimension will be plotted.

timeattname default=time

Global attribute specifying the time of data acquisition (volume start time).

badvalattname default=badval

Global attribute specifying the bad/missing value.

toground (0|1) default=0

Plot Y-axis to 0, even if there is no defined value for those regions.

Designed to give a relative-to-ground visual perspective when plotting RHI.

plotwind (0|1) default=0

Plot vectors arrows, requires vector X-component and Y-component variables.

Designed for plotting wind vectors, but can plot other vector value as well.

vxvarname (str) default=U

Variable containing vector X-component.

vyvarname (str) default=V

Variable containing vector Y-component.
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veref (float) default=10.0

Reference velocity in m/s, the velocity magnitude represented by a vector

arrow whose length equals the spacing between arrow origins.

arrowspacing (auto|int) default=auto

Arrow spacing, the pixel spacing between vector arrows. measured from arrow

origins. "auto" sets arrow spacing to axis width in pixels divided by number

of X-axis increments, with a minimum of 10.

cbarmin (float) default=0.0

Minimum value to be represented on the color bar. Data values smaller than

"cbarmin" will be colorized as being equal to "cbarmin".

cbarmax (float) default=70.0

Maximum value to be represented on the color bar. Data values greater than

"cbarmax" will be colorized as being equal to "cbarmax".

cbarinc (float) default=5.0

Colorbar increment that is represented by tick lines.

ncbarlvl (int) default=224

Colorbar palette count. If "ncbarlvl" is greater than the colormap palette

count, it is set as equal to the colormap palette count. Otherwise, the

colorbar palette will be a whole-range sampling of the colormap palette.

cmappath (str) default=./colormap/wdssii.colormap
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Color map path.

ncmaplvl (str) default=224

Color map palette count. Nonarbitrary, must equal the actual palette count of

the specified colormap file.

fontpath (str) default=./font/FreeSansBold.ttf

Font file path.

fontsize (int) default=16

Plot font size.

figwidth (int) default=1200

Figure width in pixels.

figheight (auto|int) default=auto

Figure height in pixels. "auto" sets height to maintain at least 1:1 increment

ratio between X-axis and Y-axis values while also maitaining at least a 5:1

width-to-height ratio visually (pixel count).

marginratio (float) default=0.1

Percentage of figwidth dedicated to margins. e.g. marginratio=0.1 means all

margin thicknesses are 10% of figwidth.

bgcolor (black|white) default=black

Figure background color
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arrowcolor (black|white) default=white

Figure wind arrow color
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