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ABSTRACT 
 
 
 

INVESTIGATING THE RELATIONSHIP BETWEEN COVER CROP SPECIES DIVERSITY, 

COMPOSITION AND FUNCTION OF THE SOIL MICROBIOME. 

 
 
 

 Cropping diversification, such as cover cropping, can contribute to sustainable agriculture 

by enhancing soil health and promoting ecosystem services through interactions with the soil 

microbial community. One important mechanism through which cover crops impact soil health is 

via root exudation, the release of organic compounds from plant roots into the soil region 

surrounding the roots, the rhizosphere. Root exudation varies among cover crop species, growth 

stages, and edaphic and environmental conditions resulting in a myriad of effects on the 

rhizosphere. Plant-derived inputs, like root exudates, modulate the soil microbial community, 

influencing microbial biomass, community structure, and catalyzing biogeochemistry. As a result, 

cover crops are linked to microbial changes that impact soil nutrient cycling and organic matter 

decomposition leading to a legacy impact on primary crop yield and health. Understanding the 

intricate relationship between cover crop root exudation composition and the soil microbiome is 

crucial for optimizing cover crop selection, management practices, and harnessing cover crops 

for precision microbiome management in agroecosystems. My dissertation demonstrates that 

cover crop root exudation differs considerably across cover crop species, and cultivars within 

species, and reveals cover crop metabolic impacts on soil microbial composition and function, 

which play a large role in the generation and maintenance of healthy soils to support our 

agricultural needs. 
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CHAPTER 1: ROOTING FOR SUCCESS: HARNESSING COVER CROP ROOT EXUDATION 
TO CULTIVATE THRIVING SOIL MICROBIOMES FOR SUSTAINABLE AGRICULTURE 

 
 
 

1.1 Introduction 

Current sustainable agricultural practices, like cover cropping, use secondary crops to 

support the growth of a primary crop and stabilize the soil microbiome. Cover cropping is defined 

as the use of a secondary, unharvested crop in rotation or in coordination with a primary cash 

crop. Various plant species serve as cover crops and often multiple species are used at once to 

maximize desired functions. Specifically, cover crops have been shown to increase functions such 

as soil aggregation, water infiltration, weed suppression, nutrient cycling, and organic matter 

levels and in many cases, increase primary crop yields1-7. Specialized cover crop ecosystem 

services, like the implementation of cover cropping for weed- and pest-suppressive effects, are 

known to vary as these desirable functional traits are typically expressed in a species- or genus-

dependent manner. Thus, the selection of cover crops is primarily driven by desired primary crop 

outcomes through cover crop functional trait selection that is closely aligned with farmer 

objectives. However, many of these specialized traits have yet to be quantified in cover crops 

which ultimately hinders the potential impact cover crop selection can have on precision 

agriculture.  

Cover crops elicit some of these ecosystem services through their physical and chemical 

interactions with the soil microbiome. These agricultural soil microbial communities are composed 

primarily of bacteria, fungi, archaea, nematodes, and viruses and harbor an incredible amount of 

taxonomic and functional diversity that directly respond to cover crops. While these soil 

microorganisms directly impact cover crop efficiency, their interactions with cover crops also play 

a vital role in the sustained functioning of agricultural ecosystems through their ability to aid in 

nutrient cycling, organic matter decomposition, and pest and disease management, leading to the 
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beneficial ‘legacy effect’ model that many cover cropping systems have reported8-11. However, 

primary crops can only benefit from cover cropping (i.e., legacy effects) if the desired effects 

persist until primary crop germination, which means cover crops have the potential to boost and 

activate selected soil microbes that could improve these ecosystems function, yet this remains a 

relatively understudied area in agricultural research.  

One way in which cover crops can interact with soil microbes, and modulate these 

microbial interactions and legacy effects, is through the release of plant-derived carbon and 

nitrogen containing compounds, called root exudates. Root exudates, a term encompassing plant 

root secretion of organic compounds, are a critical chemical cue that plants use to alter soil 

microbial community composition and function. Root exudate compounds range from simple 

primary metabolites to much larger secondary metabolites, proteins, and mucilage 12-14.  Plants 

use root exudates as currency in exchange for microbial assistance in accessing soil nutrients, 

resisting pathogens, and increasing nutrient and water availability15. However, the composition of 

root exudates is not static. Factors such as plant species and genotype, growth stage, and 

edaphic conditions lead to variations root exudate quantity and composition influencing microbial 

associations that crops may support16-18. In particular, crop genotype is a target for leveraging 

specialized root exudation as even genetic variants of the same species have shown dissimilarity 

in root exudate composition resulting in different rhizosphere establishment, highlighting the strict 

genetic regulation of root exudates and the potential for root exudates to be a target for precision 

microbiome management18-21.  

Despite the growing appreciation for the impacts of cover crops on soil microbial 

communities, mechanistic research using modern microbiome technologies to link plant root 

exudate chemistry, soil microbial community metabolism, and soil health responses remains 

limited. As a result, there is a current critical need to identify how cover crop selection shapes the 

chemical landscape of the soil and its impacts on the soil microbial community composition and 
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function to enable the advancement of precision agricultural management strategies that aim to 

shape favorable microbiomes for primary crops.  

Here, I review the current state of cover cropping research that investigates the potential 

for root exudates to influence the bacterial, archaeal, and eukaryotic establishment and function 

in agricultural systems and the legacy impacts as a result of these interactions. A primary focus 

of this review is to highlight current progress and emerging strategies for exudate-focused 

intentional microbiome manipulation to enhance primary crop performance and sustainability.   

1.2 Influence of Cover Crop Root Exudates on the Bacterial and Archaeal Microbiome 

1.2.1 Bacteria 

Soil bacteria make up the vast majority of below-ground biomass and diversity closely 

followed by fungi, protists, viruses, and other eukaryotes22. At the local scale, bacteria from bulk 

soil associate with plants through chemotaxis towards plant roots and root exudates and densely 

inhabit the soil adjacent to the roots (i.e. the rhizosphere). Small root exudates from cover crops, 

like sugars, organic, and amino acids are the most common primary metabolites released via root 

exudation from the root tips and hairs of plants. Primary root exudates may function either directly 

to mobilize nutrients through adjusting soil pH, or by stimulation and feeding rhizosphere bacteria 

(rhizobacteria) which in turn mobilize nutrients into plant available forms. Aside from growth 

promotion and rhizosphere establishment, sugar assimilation in rhizobacteria promotes nutrient 

cycling. Nitrogen (N), phosphorus (P), and potassium (K) are considered the most limiting 

minerals to crop growth and productivity due to the limited quantity of naturally-occurring plant 

bioavailable forms in many soils23. Root exudates therefore provide the necessary signals 

required to stimulate and metabolically compensate beneficial rhizobacteria like phosphorus-

solubilizing bacteria (PSB), potassium solubilizing bacteria (KSB), heterotrophic bacteria involved 

in nitrogen mineralization processes, and nitrogen fixing bacteria (rhizobia) which all function to 

convert minerals into plant bioavailable forms (NH4
+, NO3

-, K+, H2PO4
- , HPO42-), reducing the 



 

 

4 
 

need for external inputs in cropping systems7,24 (Figure 1A). Additionally, PSB, KSB, and 

siderophore-releasing bacteria benefit from metabolizing root exudate sugars resulting in organic 

acid by-products that lower soil pH which further aids in the solubilization of plant bioavailable P, 

K, and iron25-27.  

Variation in root architecture is an additional factor known to influence the spatial 

distribution and abundance of roots and root exudates, determining the extent and effect of root-

soil interactions modulating the quantity and composition of exudates released into the 

rhizosphere28. For example, cover crops Vicia faba, Fagopyrum esculentum, and Lupinus sp. 

grown under P deficiency respond through increasing root biomass and exudation of primary root 

exudates like organic acids, carboxylates, protons, and enzymes necessary for P acquisition, 

enhancing P availability29-32. 
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Figure 1. Rhizosphere intercropping interactions. The varying interactions between 
commonly used cover crop functional groups (a. grasses; b. legumes; c. brassicas) and primary 
crop (i.e., corn) grown in close proximity (intercropping) where root exudates and root-associated 
microorganisms influence soil biogeochemistry, crop function, and crop disease suppression. 
Circles depict functional changes in the rhizosphere from root exudation, circle colors indicate 
prokaryotic (orange) or eukaryotic (blue) interactions. A) Influence of grass cover crop species on 
the rhizosphere. Eukaryotic recruitment via general/primary root exudates improve nutrient and 
water acquisition. Rhizobacteria recruitment from primary root exudates, nutrient cycling (C, 
Carbon; N, Nitrogen) from beneficial bacteria, and the potential role of archaea in the rhizosphere 
all of which contributing to increase nutrient availability for plants. B) Influence of legume cover 
crops on the rhizosphere through exuded flavonoid compounds that recruit N cycling rhizobia, 
which form root nodules, and fix atmospheric N. Other specialized flavonoid exudates recruit AMF 
and contribute to increased nutrient availability to plants. C) Influence of brassica cover crops on 
the rhizosphere. Glucosinolates (GLs) from brassica root exudates control disease pressure 
against pathogenic bacteria and mycotoxigenic fungi, as well as parasitic nematodes. This figure 
was generated in BioRender. 

 

Secondary root exudates are specialized metabolites that can improve plant fitness and 

influence soil N cycle dynamics, improving N use efficiency. Secondary plant metabolites 

commonly found in soils include flavonoids, phenolics, polyketides, terpenoids, alkaloids, and 

many others in varied concentrations across species33-36. Using secondary root exudates, plants 

have the ability to regulate N transformations carried out by fungal and bacterial populations. For 

example, leguminous cover crops species can enhance N availability by releasing species 

specific flavonoids which target compatible nitrogenase-producing rhizobial bacteria that convert 

N2 gas into NH3 within special legume root nodule structures (Figure 1B)37. An additional impact 

root exudates may have on nitrogen cycling is with nitrifying rhizobacteria, which convert NH4
+ to 

NO3
- to be assimilated by plants. This also causes NO3

-  leaching and the loss of the greenhouse 

gas, nitrous oxide (N2O). Recently, biological nitrification inhibition by root exudation has been 

characterized as a way to control soil N cycle and reduce environmental pollution. For example, 

the cover crops Sorghum bicolor and Brachiaria humidacola produce secondary metabolites 

sorgoleone, sakuranetin, methyl 3-(4-hydroxyphenyl) propionate, brachialactone which can inhibit 

ammonia monooxygenase, the enzyme responsible for the first and rate-limiting step of 

nitrification (NH3 oxidation to NH2OH). Sorgoleone, sakuranetin, and brachialactone also inhibit 



 

 

6 
 

hydroxylamine oxidoreductase, which catalyzes the second step of nitrification (oxidation of 

NH2OH to NO2
−)38-40. Therefore, endogenously supporting soil N cycling using specialized cover 

crops with specific root exudate patterns can greatly reduce the pressure to use N-based 

fertilizers alleviating harmful effects from N overapplication such as eutrophication of water 

systems7,41.  

Antimicrobial nitrogen- and sulfur-containing secondary metabolites called glucosinolates 

(GLs) are another method some cover crops use as a functional strategy to improve soil microbial 

community structure. GLs are found commonly in brassicas cover crops like Brassicas rapa and 

Brassica napus which can be planted to reduce reliance on pesticides in agroecosystems and 

reduce pest pressure on primary crop, leading to improved yield and quality42,43.  GLs are 

hydrolyzed by myrosinase into specialized thiocyanates, isothiocyanates, nitriles among other 

hydrolysis products. Hydrolyzed GLs can inhibit the growth of soil-borne pathogenic bacteria and 

parasitic fungi, protecting primary crops from these disease and providing the potential for 

endogenous microbial pathogen suppression in sustainable cropping systems without the need 

for traditional pesticide applications41,44 (Figure 1C). However, reports on the impacts of brassica 

biofumigation off-target effects of GLs are varied, making GLs a complex biofumigation strategy 

what warrants more attention45-47. 

Benzoxazinoids (BXs) are allelochemicals exuded from the roots of a number of cover 

crop species (e.g., Poaceae species) into the rhizosphere, where they can have multiple functions 

such as a plant defense system reducing the growth of neighboring plants and altering root-

associated fungal and bacterial infections. Because of this, Poaceae crops (e.g., cereal rye, 

maize, wheat) offer a competitive advantage by limiting the growth of weeds. In maize, the BX, 

2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), acts as a chemoattractant for plant 

growth promoting (PGP) Pseudomonas putida KT2440, a competitive root colonizer of the maize 

rhizosphere that promotes colonization by other PGP bacteria and elicits systemic defense 
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priming 48-51. Despite maize being a primary crop, this perspective of specialized root exudates in 

maize also offers a potential target in other cereal grain crops. In contrast, wheat BXs are primed 

for defense against mycotoxigenic fungi and cereal rye BXs illicit weed suppressive effects52,53. 

While they are primarily known for their roles in plant defense against pests, pathogens, and 

allelopathy, recent research has suggested that BXs can also have beneficial effects when 

released into the soil as root exudates offer a new perspective for cereal grains as useful cover 

crops that can modulate soil microbial composition and functionality. 

Generally, primary and secondary root exudates will positively influence the bacterial 

rhizosphere dynamically whether cover crops are intercropped or in rotation with main crops 

(Figure 2). These effects are largely through increased host-defense priming, soil enzymatic 

activity, microbial taxonomic diversity and function, nutrient cycling, mineral solubilization, and 

other plant-beneficial interactions which are estimated to enhance cover crop legacy effects on 

primary crop productivity13,54-56.  Although intensive future research is needed to untangle the 

proximal mechanisms governing cover crop root exudation, the bacterial rhizosphere function and 

composition, and the potential for meaningful legacy effects, current work in the field suggests 

that cover crop root exudates and their manipulation could be promising targets for enhancing 

bacterial function in agricultural microbiomes.  
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Figure 2. Influence of rotational cover crops on the soil microbiome and their legacy 

effects. Winter cover crops planted during fallow allow soil protection from wind and rain erosion, 
among other physical properties due to root presence (green box). Nutrient cycling and organic 
matter addition take place during periods of cover cropping (orange circle). Upon termination of 
the cover crop, organic matter decomposition and turnover begins from the bacteria and fungi 
(orange and blue circles). Legacy effects from the increase in organic input and carbon turnover 
positively impacts the growth of the primary crop (e.g., corn) (purple box).   

 

1.2.2 Archaea 

Archaea are distinct from bacteria in their functional potential (although some functional 

redundancy exists) and ecosystem preferences, as archaea are best known to thrive in earth’s 

most extreme environments.   Although underrepresented in microbial profiling of agricultural 

soils, with the exception of archaeal methanogenesis in rice fields, plant-associated archaea are 

gaining an appreciation for their functional potential as PGP organisms, nutrient cyclers, and 
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ability to shield plants during periods of stress57,58. As obligate anaerobes, archaeal taxa in 

agricultural microbiomes are typically methanogens from the orders Methanobacteriales, 

Methanomicrobiales, Methanosarcinales and Methanocellales59,60. Recent work that 

characterized an alpine peat bog associated archeome using metagenomics has uncovered the 

potential role of archaea in PGP due to the detection of auxin biosynthesis genes as a domain-

wide signature57. In the context of the rhizosphere, auxins are critical signaling molecules between 

rhizosphere microbes and plants, as these compounds can be produced by both plants and 

microbes and is often linked to improved plant health through elongation of plant roots, faster 

nodulation by rhizobia, and improved plant productivity. These results assign an emerging role 

for archaea to be significant members in PGP model61,62.  Previous work has also shown that 

within a chemically rich and highly competitive rhizosphere, slower-growing archaea are out-

competed by faster-growing fungi and bacteria, potentially contributing to their lower abundance 

in rhizosphere despite their similar carbon utilization63. Despite an appreciation for archaeal 

abundance and functional potential in the rhizosphere of some crop plants, little work has 

supported the mechanistic response of archaea to root exudation in a targeted manner, leaving 

open the possibility for archaea to become an untapped resource in precision microbiome 

management.   

1.3 Functional Influence of Cover Crop Root Exudates on the Eukaryotic Microbiome  

1.3.1 Fungi 

The agricultural rhizosphere harbors various types of fungi, including arbuscular mycorrhizal 

fungi (AMF), saprophytic fungi, endophytic fungi, and pathogenic fungi influencing nutrient uptake, 

decomposition, plant health, and disease dynamics. Fungi are highly efficient at colonizing plants 

and roots due to their unique physiological and morphological characteristics. Because fungi are 

heterotrophs and rely on root exudates, soil organic matter, and other external energy sources 

for survival, they have developed specialized structures like hyphae and mycelium that enable 
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them to penetrate and explore the plant tissues and large soil volumes, allowing for nutrient 

acquisition and symbiotic interactions. Root associated fungi, called mycorrhizae, have adapted 

two strategies for plant root symbiosis. The fungal mycelium of ectomycorrhiza surround the roots 

forming a mantle and Hartig net, providing extensive surface area for nutrient exchange. In 

contrast, endomycorrhiza, most observed as arbuscular mycorrhiza fungi (AMF), form a 

mutualistic symbiotic association with plant roots, where the fungal hyphae penetrate the root 

cells, forming arbuscules and vesicles, facilitating nutrient exchange and enhancing plant nutrient 

uptake.  

Cover crops represent a key opportunity to enhance soil health through fungal recruitment by 

root exudation. While mycorrhiza do metabolize primary root exudates, in general they receive a 

relatively constant source of glucose from their root-associated hyphae while external hyphae and 

mycelium scavenge for nutrients through the release of extracellular hydrolytic enzymes like 

cellulase and lignin-degrading enzymes64. Therefore, secondary metabolites are the prime target 

of interest for cover crop fungal associations.  

Secondary root exudates play a larger role in influencing fungal diversity and function in the 

rhizosphere. For example, leguminous cover crops like alfalfa, hairy vetch, and clover release 

higher quantities of flavonoids such as quercetin and quercitrin as root exudates which are 

recognized by AMF as stimulatory signaling molecules that induce in hyphal growth, 

differentiation, and root colonization (Figure 1B)65,66. Similarly, strigolactone root exudates 

released from cover crops species like alfalfa, pea, and sorghum have also been shown to induce 

hyphal branching of AMF and stimulation of spore germination67-69. AMF fungi, in return for plant 

carbon, extend their hyphae into the soil and increase the root surface area for nutrient absorption, 

particularly to scavenge for phosphorus70,71.  Mycorrhizae colonization also act to suppress 

pathogens in cover and primary crops (Figure 1C). For example, enhanced mycorrhizal 

populations associated with hairy vetch cover cropping enhanced subsequent mycorrhizal 
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abundance and reduced the incidence of fusarium wilt in watermelon crops72. Similar effects have 

been recorded in other cover crop systems73-76. Cover crops that associate with AMF also improve 

water infiltration, enhance soil structure, and protect against erosion due to the extensive hyphal 

networks, although these functions are less directly associated with cover crop root exudate 

chemistry and more likely a physical effect from plant roots (Figure 2).  These biological functions 

highlight the importance of AMF colonization, which is typically disturbed by traditional tillage 

systems in conventional agriculture77. Recent results further support the role root exudates and 

cover cropping as AMF-colonizing cover crops act to increase AMF colonization of primary crops 

through their legacy effects77. 

1.3.2 Nematodes 

Nematodes also play a vital role in agricultural soil ecosystems. Beneficial nematode 

species decompose organic matter and mineralize nutrients contributing to plant and soil fertility. 

Some nematodes feed on bacteria, fungi, and other soil organisms, regulating their populations 

and maintaining a balanced soil ecosystem. Plant parasitic nematodes, however, can cause 

significant damage to crops by feeding on various plant tissues as they puncture plant cells, 

withdraw nutrients, and cause stunted growth, wilting, and ultimately, crop yield losses. 

Consequently, nematicides are utilized but their use may affect non-target organisms and reduce 

the efficiency of cropping systems. Thus, many secondary metabolites from cover crops have 

been investigated for their nematocidal or nematode inhibitory effects78. For instance, cereal rye 

BXs, primarily DIBOA (2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one), DIMBOA, and their 

degradation products BOA (benzoxazolin-2(3H)-one) and MBOA (6-methoxy-benzoxazolin-

2(3H)-one) exhibit nematocidal effects in vitro and thus represent a target for biocidal root 

exudates79. Alfalfa root exudates containing medicagenic acid, a triterpene glycoside, can control 

for parasitic nematodes such as Xiphinema index, the root-knot nematode Meloidogyne incognita 

and the potato cyst parasite, Globodera rostochiensis80. Finally, brassica glucosinolates are anti-
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herbivory against nematodes as the hydrolyzed glucosinolates products can be lethal to root knot-

nematodes and cyst nematodes in potato crop populations42,81 (Figure 1C). Thus, cover crop root 

exudates have the potential to play a significant role in managing nematodes by acting as 

deterrents or through inhibitory effects on nematode development and reproduction. 

1.4 Conclusions 

The intentional manipulation of the rhizosphere microbiome is limited in practice and has 

historically involved bacterial or fungal soil inoculation, such as inoculating seeds with PGP 

microorganisms, to encourage proliferation without the need for external chemicals82-84. The 

primary pitfall to microbiome-focused strategies is the lack of inoculant resilience to competition 

or lack of proliferation due to unfavorable soil conditions which decreases their impact.  

Alternatively, successful experiments using the complementary approach of altering root exudate 

chemistry to induce changes in the microbiome are sparse but suggest great potential. This 

approach alters the expression of transporter proteins or metabolic pathways to regulate the 

release of specific root exudates to encourage consistent and favorable rhizosphere colonization 

from bulk soil85. Current work has investigated how regulating the quantity of primary root 

exudates, like citrate, malate, and γ-amino butyric acid, can alter the soil microbiome of transgenic 

wheat and rice roots, but root tissue type and soil still played a significant role85. Despite these 

efforts, an outstanding question remains on how and if important secondary metabolites, such as 

beneficial rhizobia inducing flavonoids or pathogen suppressing glucosinolate expression can be 

altered in a productive and profitable way. Future work is therefore a necessity required to enable 

the development of efficient and precise cover crop management strategies in regenerative 

agricultural systems that utilize root exudates to intentionally shape favorable agricultural soil 

microbiomes.  
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In this work, I addressed this knowledge gap using multi-omic approaches within 

laboratory systems to interrogate the microbial responses to variable cover crop root exudate 

stimulation. Specifically, the three objectives of my dissertation research were to: 

1. Determine the variability in primary and secondary root exudate composition across 19 

commonly used cover crop species (Chapter 2). 

2. Utilize laboratory-scale soil microcosms to measure soil microbial responses to root exudate 

treatments and curate an agriculturally relevant exudate responsive metagenomics database 

(Chapter 3). 

3. Examine differential multi-omic responses of soil microorganisms under stimulation by four 

cover crop root exudate treatments to identify mechanisms with which cover crops benefit soil 

biogeochemical cycles, microbial inhabitants, and primary crop productivity. A major community 

outcome of this work is the availability of the exudate-responsive metagenomic, 

metatranscriptomic, metaproteomic, and metabolome repositories (Chapter 4). 

 

Taken together, this work supports the development of efficient and precise cover crop 

management strategies in regenerative agricultural systems that utilize root exudates to 

intentionally shape favorable agricultural soil microbiomes. 
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CHAPTER 2: COVER CROP CULTIVAR, SPECIES, AND FUNCTIONAL DIVERSITY IS 
REFLECTED IN VARIABLE ROOT EXUDATION COMPOSITION1 

 
 
 

2.1 Introduction 

Current agricultural practices such as monoculturing, soil tillage, and application of 

synthetic inputs can negatively impact soil health and the surrounding environment, degrading 

the potential of arable farmlands to produce crops for an increasing population86-88. Regenerative 

agricultural practices offer a practical solution for maintaining crop productivity without 

compromising future needs. Such agricultural practices work to reduce reliance on external inputs 

and improve soil health by increasing biodiversity and soil cover while reducing soil disturbance, 

amongst other practices. While there is no individual agricultural innovation that meets every 

sustainability requirement, cover cropping represents a versatile management strategy that is 

highly adaptable to soil type, primary crop species, and desired soil health outcomes. Integrating 

cover crops has been reported to improve soil health parameters and provide an alternative 

approach to maintaining primary crop productivity while promoting soil health through increased 

above- and below-ground biodiversity 5,89,90.  

Cover cropping is defined as the use of a secondary, unharvested crop in rotation or in 

coordination with a primary cash crop. Various plant species serve as cover crops and often 

multiple species are used at once to maximize desired functions91,92. Specifically, cover crops 

have been shown to increase functions such as soil aggregation, water infiltration, weed 

suppression, nutrient cycling, and organic matter levels1,3,93,94. Additionally, cover crops contribute 

to sustainable pest control, acting as biofumigants and weed suppressors which is reported to 

reduce the need for herbicides and pesticides92. Cover crop ecosystem services, like the 

 

1 This chapter was reproduced verbatim from “Seitz, et al. Cover Crop Cultivar, Species, and Functional Diversity is Reflected in 

Variable Root Exudation Composition. Journal of Agriculture and Food Chemistry (2023)”. The text benefitted from writing and 

editing contributions from other contributing authors and reviewers selected by the publisher. The ordering of the materials in this 

dissertation are consistent with the content available online but have been renumbered to reflect incorporation into this dissertation. 
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implementation of cover cropping for weed- and pest-suppressive effects, are known to vary as 

desirable functional traits are typically expressed in a species- or genus-dependent manner. Thus, 

the selection of cover crops is primarily driven by desired primary crop outcomes through cover 

crop functional trait selection that is closely aligned with farmer objectives. 

 Several cover crop functions, such as pest suppression and nutrient cycling, are mediated 

by soil microbial communities. One of the primary mechanisms by which cover crops exert 

functional changes to soil biological activity is through stimulation from root exudates, which are 

low molecular weight compounds (e.g., organic acids, sugars, phenolics, amino acids, and other 

secondary metabolites) that are secreted by plant roots into soils15.  Within the soil region adjacent 

to roots (the rhizosphere), root exudates can be involved in multiple plant-beneficial processes 

including modification of soil properties, biological nitrogen fixation, resistance to pests, and 

recruitment of beneficial rhizosphere soil microbes. Importantly, multiple studies have shown that 

root exudate composition will vary between crop species and with plant growth, which can likely 

support different microbial associations85,95. Thus, as a result of above- and below-ground 

phenotypic traits and the influence on microbial associations, cover crop species have been 

loosely classified into various plant functional types (e.g., grasses, legumes, brassicas). For 

example, crops species classified as legumes can enhance soil nitrogen availability by targeting 

free-living rhizobia (nitrogen fixing taxa), while crop species within the brassica functional group 

produce glucosinolates that control soil pest and disease pressures44. More recently, the use of 

diverse mixtures of cover crop species from multiple functional groups has gained popularity as 

this is thought to provide several soil health benefits simultaneously5.  Despite these observations, 

a detailed understanding of the root exudate chemical profiles representative of each cover crop 

species, and select cultivars, remains lacking, leaving a major gap in the knowledge necessary 

to enable cover cropping as a precision agricultural management strategy. 



 

 

16 
 

Here, we investigated the chemical heterogeneity of root exudates across 16 commonly 

used cover crop species as well as 3 distinct cultivars within a the hairy vetch species96. We 

hypothesized that cover crop species would exhibit significant variation in root exudate 

composition and these differences would be attributable to diverse morphological and functional 

traits linked to plant fitness. We collected pure root exudates from hydroponically grown cover 

crops and profiled the chemical heterogeneity in cover crop metabolisms to characterize root 

exudate profiles. To our knowledge, this is the first comprehensive characterization of root 

exudates from commonly used cover crops in U.S. agriculture. The results of this study will directly 

contribute to the development of efficient and precise management strategies in cover cropping 

agricultural systems while paving the way for manipulation of root exudate composition to 

intentionally shape favorable agricultural soil microbiomes.  

2.2 Results & Discussion 

2.2.1 Root exudation rate is not explained by cover crop root morphology alone. 

The cover crop species chosen for this work represent the most commonly used species 

as reported in the 2017 USDA Sustainable Agriculture Research and Education program and the 

Conservation Technology Information Center cover crop survey that included responses from 

more than 2,000 farmers across the U.S. on their cover crop practices97.  Cover crop species 

represented four diverse functional groups: (i) cool season grasses, (ii) brassicas, (iii) legumes, 

and (iv) non-legume summer annuals. Additionally, to evaluate the genetic diversity typically 

found in cover crop seed sources, three cultivars of hairy vetch were included (Figure 3A). This 

selection of cover crops is representative of both fibrous and taproot root systems as some 

measures of cover crop effectiveness, such as soil physical properties, can be attributed to root 

morphology. For example, fine-root species have been shown to increase soil aggregate stability, 

overall porosity, and protect against erosion98,99. 
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Figure 3. Cover crop phylogeny and root trait analyses. Measurement of three root 
morphological traits (dry root weight (DRW) mg; root length (cm); and root surface area (cm2)) 
using WinRHIZO™. A) Cover crop species were phylogenetically clustered using NCBI 
Taxonomy Browser with NCBI Taxonomy ID (Appendix A Table S2) to highlight functional group 
taxonomic distributions. Functional group annotations are colored in purple (non-legume summer 
annuals), green (brassicas), pink (legumes) and orange (cool season grasses). Dashed lines 
indicated monocotyledon species and solid lines indicate dicotyledon species. B-E). 
Measurement of three root morphological traits colored by cover crop species (Appendix A File 
S1). B) Dry root weight (DRW) (mg) per species; C) root length (cm) per species; and D) root 
surface area (cm2) per species using WinRHIZO™. E) Root exudation rate (mg/day) per species. 
Error bars represent 1 standard deviation away from the mean.  

Despite these observations, the impact of root morphology on exudate composition and 

exudation release rate in common cover crop species has yet to be investigated. As expected, 

cover crop species exhibited high variation between root biomass (DRW), root length, root surface 

area, and root exudation rate (Figures 3B-E). As such, we evaluated the effects of species, DRW, 

root length, and root surface area on root exudation rate across hydroponically grown cover crop 

species normalized to a growth timepoint of two weeks.  Using a linear model with root exudation 
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rate as the response variable and species as the predictor variable, we first tested the relationship 

between cover crop species and root exudation rate and observed that root exudation rate was 

significantly different across cover crop species (ANOVA p < 0.001; Appendix A Table S3). Root 

length, DRW, and root surface area, were also significantly influenced by cover crop species 

(ANOVA p < 0.001; Appendix A Table S4-6). These findings align with others who have reported 

on the phylogenetic control between crops species and specific functional root traits100. In the 

context of cover crops, understanding species-specific root exudation rates (both in quantity and 

composition) may confer functional ecosystem advantages to the development of a productive 

rhizosphere microbial community.  

To understand potential drivers of rhizosphere development, whether morphological, 

chemical or both, we explored interactions between root morphology, genotype, and exudation 

rate. This was tested using a linear model where species, root length, DRW, and root surface 

area were included as predictor variables.  The results revealed no significant association to 

explain the variances in root exudation rate per day (p = 0.925), suggesting that the root 

morphological traits we measured were not sufficient to explain root exudation rates in these cover 

crop species, a result that also aligns with previous studies101. However, because the range of 

root morphologies observed may interact broadly with soils, or exhibit adaptive changes to 

hydroponics systems, it seems unlikely that root morphology in cover crop species is entirely 

inconsequential for plant growth and root exudation rate outcomes. The absence of evidence for 

associations between root exudation rate and root morphological traits in our experiment may be 

a function of the limited set of characteristics measured. For example, previous studies have 

suggested that measurement of root diameter and root tissue density are more predictive of 

exudation rate102.  Alternatively, it could be that, as suggested by our data, plant genotype 

represents a stronger factor in root exudation rate than root morphology. 
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2.2.1 Root exudate quality and quantity is influenced by plant genotype. 

Plants release varying quantities and types of root exudates according to plant genotype, 

environment, and developmental stages14,16 which systematically alters rhizosphere community 

structure and biogeochemical cycles that ultimately aid in plant fitness. Thus, the dynamic 

chemical composition of root exudates released from cover crops represents a primary target for 

enhancing agricultural rhizosphere function and composition to meet desired plant and soil health 

outcomes. Using a controlled hydroponic plant growth system, we collected pure root exudates 

from 16 commonly used cover crop species in U.S. agriculture96, as well as 3 distinct cultivars 

within the hairy vetch species. Collecting root exudates from hydroponic systems ensures the 

collection of significant quantities of purified root exudates without interference from soil sorption, 

soil matrix effects, organic matter breakdown, or microbial transformation which presents 

substantial impediments to collecting root exudates from soil-grown plants103. Hydroponic growth 

systems are easy to implement and maintain, allowing for the inclusion of 19 cover crops which 

represents, to our knowledge, the broadest survey of cover crop root exudation profiling to date.  

Previous studies assessing root exudate variability across plant species normalize to a 

plant growth stage (i.e., seedling). Due to the array of cover crop species diversity in our study, 

plants reached seedling growth at marginally different rates, and thus using this strategy would 

introduce variability in root exudation composition as plants are known to change exudation 

strategies depending on growth stage17. To account for this, we chose to normalize to a two-week 

growth timepoint which most closely reflects the seedling stage normalized across all species. 

After growth for two weeks, we collected the soluble fraction of root exudates from each cover 

crop species and profiled a broad range of exudate compounds using a combination liquid- and 

gas chromatography-mass spectrometry platforms (LC-MS/MS and GC-MS).  Specifically, non-

targeted GC-MS and LC-MS/MS analyses were performed to capture primary and secondary 

metabolites, respectively, and a targeted LC-MS/MS analysis was performed to detect low 
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abundance phytohormones. However, it is important to note that there will still be a fraction of 

root exudates that remain uncharacterized (i.e., unknown metabolites) or that were undetected 

due to analytical choices (i.e., large polymers or proteins).  

Here, we report the detection of 164 annotated metabolites. Of which, a total of 14 

compounds were identified at a level 1 annotation, 56 compounds at the level 2 annotation, and 

94 compounds at a level 3 annotation according to the Metabolomics Standards Initiative104. To 

broadly evaluate cover crop root exudate composition, we taxonomically classified root exudates 

using the Global Natural Products Social (GNPS) analysis tool, Molecular Network Enhancer 

(MolNetEnhancer)105, and ClassyFire106 into the following superclasses: lipids and lipid-like 

molecules (49), phenylpropanoids and polyketides (39), organic acids and derivatives (36), 

organic compounds (15), organic oxygen compounds (12), organoheterocyclic compounds (7), 

benzenoids (5), homogenous non-metal compounds (1), and organic nitrogen compounds (1) 

(Figure 4A).  Our results demonstrate that at a two-week growth timepoint, cover crop species 

exude a wide array of compounds ranging from sugars, amino and organic acids, phytohormones, 

terpenes, lipids, and many other secondary plant metabolites (Appendix A Figure S1).  

Furthermore, the high chemical diversity observed between species aligns with previously 

reported data for similar crop species grown in both hydroponics14 and field settings 100,107. To 

explore the chemical diversity among species, we used the number of annotated compounds 

within each species to define chemical richness used here as a proxy for chemical diversity. An 

ordinary one-way ANOVA demonstrated that the chemical richness significantly depended on 

species (Figure 4B; ANOVA, p < 0.0001; Appendix A Table S7). Chemical richness was highest 

in all hairy vetch cultivars (OG, Purple Bounty, AU Merit and MSP4101), cowpea, and peas (p < 

0.0001) and lowest in triticale, radish, canola, and millet (p < 0.0001).  

We next wanted to determine if chemical richness significantly differed across cover crop 

functional type, as cover crops are typically chosen based on functional capacity within the soil, 



 

 

21 
 

and secondarily by species. Using a linear model, species were categorized into either legumes, 

cool season grasses, brassicas, or non-legume summer annual functional groups (Figure 3A). 

We found that the number and types of detected metabolites was significantly different between 

the legumes and all other functional groups (Figure 4C and Appendix A S2 ANOVA, p < 0.0001; 

Appendix A Table S8). Legumes are broadly considered one of the most effective cover crop 

groups due to species diversity within the group, versatile plant secondary metabolite production, 

and capacity for symbiosis between nitrogen fixing rhizobia and legume roots35. In our data, 

legume cover crops released the widest range of compounds with 91.5% of the detected 

metabolites represented in at least one legume species.  
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Figure 4: Chemical composition and richness analysis of root exudates. A) Root exudates 
were classified using MolNetEnhancer105 (for non-targeted LC-MS/MS) and ClassyFire106 (for GC-
MS and targeted LC-MS/MS) at the superclass level. From 164 features, nine superclasses were 
identified: lipids and lipid-like molecules (49), phenylpropanoids and polyketides (39), organic 
acids and derivatives (36), organic compounds (15), organic oxygen compounds (12), 
organoheterocyclic compounds (7) benzenoids (5), homogenous non-metal compounds (1), and 
organic nitrogen compounds (1). Bars represent the number of compounds within each 
superclass. B) Chemical richness of root exudates by species ordered from highest to least 
average compound counts per species colored by functional group. Each circle represents a 
replicate sample. Error bars represent one standard deviation from the mean chemical richness 
count. Chemical richness was determined using z-score normalized peak areas. Normalized peak 
areas above the mean (greater than 0) were included as a count for that metabolite. Metabolites 
with a normalized peak area below the mean (less than 0) were assigned a zero count. The 
summation of normalized peak areas above the mean (greater than 0) resulted in the chemical 
richness count. C). Chemical richness of root exudates by cover crop functional group. Cover 
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crop species within each functional type were grouped together (legumes (7), cool season 
grasses (4), brassicas (4), non-legume summer annuals (3)). Circles represent the average 
number of detected metabolites per species within functional group. *** is equivalent to p < 0.001. 
Error bars represent 95% CI from the mean. 

 

Legume root exudate heterogeneity is not unexpected, as regulation of root exudation is 

an imperative fitness response in controlling for favorable plant-microbiome interactions. For 

example, a range of flavonoid root exudates are known to play an essential role in plant fitness37. 

Namely, flavonoid biosynthesis in legumes is fundamental for establishing the symbiosis (through 

induction of rhizobial nod genes) between legumes and their nitrogen-fixing symbionts, the 

rhizobia. We detected the presence of four flavonoids known to participate in nodule induction in 

legume species: kaempferol-7-O-hexoside, apigenin, quercetin-3,4'-O-di-beta-glucoside, and 3-

genistein-8-C-glucoside108,109. In addition, we detected 23 compounds classified as flavonoids and 

5 compounds classified as isoflavonoids (subclass level) reflecting the diversity of flavonoid 

synthesis for root exudation across legume species.  

The pattern of chemical richness across species and functional group was also reflected 

in the multivariate modeling of metabolite composition, as revealed by an unsupervised principal 

components analysis (PCA) (Appendix A Figure S3), and a supervised partial least squares 

discriminate analysis (PLS-DA) (Figure 5). PCA analysis visualized differences in the root 

exudate profiles broadly across species (Appendix A Figure S3) with trends of chemical 

compositional differences between species shown in the PLS-DA loadings (Appendix A Figure 

S4 and S5). Variable importance in projection (VIP) scores were derived from the PLS-DA model 

to estimate the importance of each variable in the projection used in model. 54 metabolites had 

VIP > 1.0, 13 metabolites showed VIP > 1.5, but only two metabolites had VIP > 2.0 (soyasaponin 

Bb (VIP = 2.1049) and soyasaponin Bb-like molecule (loss of H2O) (VIP = 2.12)) (Appendix A 

Figure S6 and Table S9). Results of the PLS-DA and VIP scores show that broad differences 

between groups are primarily accounted for by a relatively small subset of metabolites. 
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Figure 5. Multivariate analysis of cover crop root exudation by functional type. A) Two-
dimensional scores plot of PLS-DA (R2X = 0.105, R2Y = 0.0938, Q2 = 0.662) of root exudates by 
functional cover crop group. Each colored dot represents a species replicate within a functional 
group: legume (pink), cool season grasses (orange), brassicas (green), non-legume summer 
annuals (purple). B) PLS-DA metabolite loadings colored by superclass of exudate compounds. 
Purple = benzenoids, dark green = homogenous non-metal compounds, dark red = lipids and 
lipid-like molecules, red = organic compound, light purple = organic nitrogen compound, blue = 
organic oxygen compounds, light green = phenylpropanoids and polyketides, yellow = 
organoheterocyclic compounds, tan = organic acids and derivatives. Metabolites mentioned 
within the text are called out on the PLSDA loadings. 



 

 

25 
 

 

Legume and cool season grasses each clustered into functional group metabolite profiles, 

driven primarily by the presence of compounds from the lipids and lipid-like molecules superclass 

within the legume functional group and phenylpropanoids and polyketides in the cool season 

grasses. PLS-DA model VIP scores revealed differences separating the legumes from other 

functional groups is driven by the exudation of sixteen compounds from the superclass lipids and 

lipid-like molecules, six organic compounds, two benzenoids (4-aminobenzoic acid and benzoic 

acid), pinitol, and aminomalonic acid (Appendix A Figure S6; VIP > 1.2). Separation of cool 

season grass cover crop species from other functional groups was found to be primarily due to 

the exudation of one organoheterocyclic compound (VIP = 1.09) and phenylpropanoids and 

polyketides from the flavonoid glycosides subclass (apiin, saponarin, apigenin-6-C-glucoside-7-

O-glucoside), however the later compounds were not found to be significant (VIP < 1.0).  

Additionally, within the four hairy vetch cultivars (AU Merit, OG, Purple Bounty, MSP4101) 

that were included to investigate cultivar-dependent root exudation, differences in the root 

exudate profiles were appreciable using an additional PLS-DA model from the four hairy vetch 

cultivars (Appendix A Figure S7A). PLS-DA loadings and VIP scoring highlight the production 

of diverse secondary metabolites in the hairy vetch cultivars. Specifically, Purple Bounty enriches 

for three soyasaponin Bb isomers and other unknown metabolites belonging to the 

phenylpropanoids and polyketides superclass while AU Merit and MSP4101 enrich for root 

exudates in the superclasses of organic oxygen compounds and organic acids and derivatives 

(Appendix A Figure S7B and S7C). In particular, AU Merit enriches for the organic acids 

asparagine, salicylic acid, and aminomalonic acid (VIP > 1.5).  These data suggest hairy vetch 

root exudation strategies are tightly genetically controlled, varying across cultivars, highlighting 

the impact that plant genotype may have on the soil through root deposition of secondary 

metabolites.  
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Non-legume summer annuals and brassicas, on the other hand, exhibit similar root 

exudate profiles containing compounds from the superclasses organic acids and derivates, 

organic oxygen compounds, and phenylpropanoids and polyketides (Appendix A Figure S5). 

Still, brassica species root exudate profiles were significantly enriched for citric acid, pyroglutamic 

acid, ornithine, lysine, and stachyose as compared with the other functional groups (Figure 5B 

and Appendix A S6; VIP > 1.5). These compounds are primarily regarded for their use in 

microbial regulation or as carbon source; however, brassicas are non-mycorrhizal and are also 

known to exude organic acids as one strategy to enhance soil phosphorus availability110. Although 

brassicas are a functional group known to exhibit pest and weed-suppressive effects on the 

rhizosphere through the release of glucosinolates, we did not expect to see those compounds 

here in the absence of both allelopathy and microbial interference due to the nature of 

hydroponics. Non-legume summer annuals, however, were not found to have any significantly 

abundant root exudates. This observation is likely because non-legume summer annuals were 

grouped by planting season and not entirely on shared similarities in soil functional utility. In fact, 

sorghum and millet, two members of the non-legume summer annuals group are more 

phylogenetically related to cool season grasses while buckwheat is considered a pseudocereal 

(Figure 3A). Therefore, it is an unsurprising result that non-legume summer annuals lacked 

functional-group specificity and did not form a distinct root exudate profile. 

2.2.3 Identification of two soyasaponins, a soyasapogenol aglycone base, and sixty-nine 

soyasaponin molecular family members highlight legume cover crop functional capacity for 

soyasaponin synthesis. 

Feature-based molecular networking (FBMN) was then used to visualize and annotate the 

chemical complexity of root exudates analyzed via non-targeted LC-MS/MS using GNPS. GNPS 

generated twenty-five annotated molecular families using 372 MS/MS spectra (Appendix A 

Figure S8) resulting in 91 compound annotations at various annotation levels. The size and 



 

 

27 
 

robustness of the soyasaponin molecular family suggested importance and led us to further 

explore these compounds using GNPS tools. 

Soyasaponins are triterpenoid saponins commonly found in legume plant tissues 

consisting of a soyasapogenol aglycone and oligosaccharide moieties111. They can be further 

classified into four groups according to the aglycone backbone, sugar moieties, and functional 

group attachments. Group A, B, and E soyasaponins are derivatives from glycosides of 

soyasapogenols A–E, respectively while the fourth group, DDMP (2,3-dihydro-2,5-dihydroxy-6-

methyl-4H-pyran-4-one), is a derivative from the glycoside of soyasapogenol B, containing DDMP 

residues at C22. Consumption of soyasaponins has been previously investigated in human health 

for biological activity as anti-inflammatory, antimutagenic, and anticarcinogenic compounds112,113. 

However, little is known about the effect of soyasaponins from root tissues and root exudates, as 

soyasaponins were only recently discovered to be released as root exudates in soybeans114. Most 

work has investigated the role of saponins as specialized plant metabolites highlighting diverse 

biological functions in the rhizosphere such as acting as antibacterial, antifungal, allelopathic 

agents115,116 or beneficial rhizosphere-shaping metabolites as shown in tomatoes and oat117,118. 

However, work investigating microbial responses to triterpenoid saponins, like soyasaponins, in 

the rhizosphere is minimal. Excitingly, soyasaponins were found to be microbially degraded in a 

soybean rhizosphere experiment which influenced rhizosphere assembly119. However, further 

work is necessary to determine 1) which legume species are capable of soyasaponin exudation; 

2) how soyasaponins are utilized in the rhizosphere; and 3) which microorganisms are capable of 

degradation. We used FBMN to show quantitative evidence that soyasaponins, and putatively 

annotated isomers of soyasaponins in the molecular family, are uniquely enriched in all legume 

cover crops, highlighting species which have yet to be profiled for exudation of soyasaponins in 

current literature. 
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The soyasaponin molecular family, generated from 72 MS/MS spectra, resulted in the 

identification of two group B soyasaponins (soyasaponins Ba and Bb), one soyasapogenol base 

aglycone (Bbase+O-HexA-HexA-dHex), eight putatively annotated soyasaponin-like molecules, 

and sixty-one unannotated members of the soyasaponin molecular family (unknowns or 

superclass level annotations) (Figure 6). Using GNPS enabled confident identification of 

soyasaponin Ba and Bb as well as its aglycone base, soyasapogenol B (level 2 annotation). To 

aid in identification of unknown molecules within the soyasaponin molecular family, manual 

MS/MS spectrum and mass comparisons were used as a method to identify isomers of 

soyasaponins Ba and Bb. We identified eight structurally related, but unannotated soyasaponins 

containing small (< 30Da) mass shifts resulting from the loss or gain of H2O, O-, H2, CH2 or CH2O- 

from soyasaponin Ba or Bb. The remaining unknown compounds are shown as such or with their 

chemical superclass annotation (Figure 6; Appendix A Table S10).  
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Figure 6. Soyasaponin molecular family and soyasaponin proportions in legumes. FBMN 
was utilized to generate individual molecular families from annotated compounds. Soyasaponin 
molecular networking resulted in the annotations of 2 soyasaponins (teal), 1 soyasapogenol 
aglycone (teal), 8 putatively annotated soyasaponin-like molecules (light green), and 61 
unannotated members of the soyasaponin molecular family (purple, orange and brown circles). 
Node shape represents level of molecule annotation (circles = unknown member of soyasaponin 
molecular family with level 3 or lower annotation; hexagon = putative annotation assignment 
based on common functional group gains/losses as visualized using the Edge Annotation feature 
in GNPS; square = level 2 compound assignment). Node color represents compound annotation. 
Edge size represents cosine similarity score (0 to 1 where 1 indicates an identical spectrum and 
0 indicates no similarity; here edge scores range from 0.7 (thinnest line; FBMN spectral similarity 
cutoff) to 1.0 (thickest line)) between two MS/MS spectra. The full-sized images of the entire 
network to zoom in on the molecular networks/families can be found as supporting information 
(Appendix A Figure S8). Because there were two soyasaponin Bb-like molecule (loss of H2) 
putative annotations, an asterisk (*) denotes which annotation corresponds to that node in 
subsequent text and figures. The full-sized image of the soyasaponin molecular family, with every 
node charted as a proportion of soyasaponins found in each species, can be found as Appendix 
A Figure S9.  
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2.2.4 Soyasaponins exclusively enriched in legume cover crop species. 

Legume cover crop species exhibited root exudate profiles that clearly distinguish them 

from other functional groups and potentially point to selective advantages that prime legumes for 

specific functional potential in the soil. Of the sixteen significantly abundant compounds belonging 

to the lipids and lipid-like molecules superclass within legumes (Appendix A Figure S6; VIP > 

1.5), eleven were structurally related or identified as group B soyasaponins and were exclusively 

found in legume species (Figure 7A; VIP > 1.5). This finding aligns with others who have 

demonstrated soyasaponin secretion dynamics in soybeans over time and concluded the highest 

release of group B soyasaponins occurs during the early growth stages in soybean119. Of the 

eleven soyasaponins annotated, seven were significantly (VIP > 1.5) enriched in the legume 

functional group: soyasaponin Bb, soyasaponin Ba-like molecule (loss of CH2O-), soyasaponin 

Bb-like molecule (gain of CH2), soyasaponin Bb-like molecule (gain of OH), two soyasaponin Bb-

like molecules (loss of H2), soyasaponin Bb-like molecule (loss of H2O) (Figure 7B).  
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Figure 7. Heatmap of eleven soyasaponins annotated from non-targeted LC-MS/MS data. 
A) Heatmap showing the relative abundances (represented as a log10 transformation across 
samples) of 11 root exudates annotated as soyasaponins averaged across each cover crops 
species. Ward’s clustering method was applied with a Euclidean distance measure for both 
features and samples. Cover crop species are indicated by colors in the legend and organized 
within the legend as shown in the heatmap from left to right. B) Individual pie graphs of seven 
significantly abundant soyasaponins in legumes show the proportion of the molecule found in 
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each legume species or cultivar. Because there were two soyasaponin Bb-like molecule (loss of 
H2) putative annotations, an asterisk (*) denotes which annotation corresponds to the second 
isomer of soyasaponin Bb-like molecule (loss of H2). 

 

Cowpeas were unique among the legume functional group in that they were significantly 

enriched (ANOVA, p< 0.0001; Appendix A Figure S10) for the presence of two soyasaponins 

(soyasaponin Ba and a soyasaponin Ba isomer (loss of H2)). Soyasaponin Ba is different from 

soyasaponin Bb as it contains glucuronic acid and two sugars (galactose and glucose) bound to 

soyasapogenol B at position C3 while soyasaponin Bb contains glucuronic acid, galactose and 

rhamnose bound to soyasapogenol B at position C3. Interestingly, cowpea seeds have previously 

been shown to contain higher concentrations of soyasaponin Ba than other legume seeds, such 

as common bean, scarlet runner bean, adzuki bean, and chick pea120. Because of this 

distinctiveness to cowpea, soyasaponin Ba and a soyasaponin Ba isomer (loss of H2) were not 

found to be significantly important as a legume functional group soyasaponin (VIP < 1.0). Although 

direct biochemical evidence is lacking to document root exudation in cowpea until now, it is 

possible the difference in cowpea exudation of soyasaponin Ba could play a role in a selective 

advantage of this species for optimal rhizosphere assembly as has been suggested for field-

grown soybean with soyasaponin Bb119 and for other saponins in tomato and oat117,118. More 

research is needed to determine the influence of soyasaponins across all legume cover crops 

and their potential functional role as a plant-specialized metabolite in rhizosphere priming. 

2.2 Conclusions 

While it is known that cover crops can influence soil health based on traditional physical 

measures, their influence on the composition, diversity, and function of the soil microbiome is less 

understood. There is currently very little information on how variation in root exudation between 

cover crop species, and cultivars within species, can drive functional changes in the soil 

microbiome and in turn how these changes influence soil health.  The results of this study address 
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a necessary first step to understand variation in cover crop metabolism and allocation of carbon 

resources through analysis of root exudate composition.  We demonstrate that root exudate 

profiles are heterogeneous across surveyed cover crop species and cultivars (Figure 5, 

Appendix A S1 and S2). The results suggest that this chemical diversity is under phylogenetic 

control and representative of functional utility as legumes, hairy vetch cultivars within legumes, 

cool season grasses, and brassicas exhibited functional class separation in their metabolic 

profiles (Figure 5 and Appendix A S7). Notably, legumes stand out as a unique group of plants 

capable of producing distinct chemical environments rich with complex secondary metabolites, 

such as a diverse array of triterpenoid saponins, isoflavonoids, and flavonoids (Figure 6, 7 and 

Appendix A S6). Brassicas and cool season grass species were also found to exhibit distinct 

exudate profiles, albeit with fewer functional group specific compounds (Appendix A Figure S6). 

In light of the metabolic evidence from this study, the extent to which species-specific root 

exudation from cover crops, or combinations of cover crops, will influence the functional 

relationship between these crops and the agricultural rhizosphere warrants further investigation. 

Collectively, our findings pave the way for the development of efficient and precise cover crop 

management strategies in regenerative agricultural systems enabling the possibility for root 

exudates to be a source for intentionally shaping favorable agricultural soil microbiomes.  

2.3 Materials and Methods 

2.3.1 Cover Crop Root Exudate Collections 

Mature seeds (see Appendix A File S1 for seed information) from 19 cover crops were 

first surface sterilized by placing seeds in 15 mL conical tubes with either (A) 2 mL of Clorox 

bleach solution (3% sodium hypochlorite. 1:1 bleach to water) + 1 drop of Tween-20 to reduce 

surface tension and improve serialization or (B) 2 mL of Clorox bleach solution (3% sodium 

hypochlorite. 1:1 bleach to water) (see Appendix A File S1 for sterilization optimization) in a 

sterile tissue culture hood. Sterilization method A or B was chosen based on optimization of 
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germination rate for each cover crop species (unpublished data). Seeds suspended in sterilization 

solution were shaken for 1 min. In a sterile tissue culture hood, bleach was removed using sterile 

techniques and the seeds were rinsed five times with sterile deionized (DI) water. Seeds were 

either (A) plated to agar plates with MS basal salt mixture (2.16 mg Murashige and Skoog (MS) 

media in 500 mL sterile DI water; MP Biomedicals, Santa Ana, CA) germinated in the dark for 3 

days, and then transferred to sterile tubes with 3 mL liquid MS media after 3 days; or (B) placed 

directly in sterile growth vessel with 3 mL MS media. Growth vessels were either glass tubes 

which were used for monocotyledon species or Magenta boxes which were used for dicotyledon 

species based on preliminary experiments to optimize growth of each seedling (unpublished 

data). All seeds were incubated in a growth chamber with photoperiod 16 h light/8 h night at 25°C 

for 14 days. The 14-day-old seedlings did not introduce any microbes to the system as no bacterial 

growth was observed on the MS agar plates or growth containers. Germination method was 

optimized for each species (see File Appendix A S1 for germination rate and method for each 

species). 18 seedlings of each cover crop species were grown for 14-days before root exudate 

collections. Root exudates were collected by first rinsing the roots in sterile DI water 3 times and 

transferring to a new, sterile vessel filled with 5mL sterile DI water for a 24-h root exudate 

collection period.  The root exudate suspensions containing the root exudates were then filtered 

through a 0.2μm filter membrane to remove root detritus. 6 root exudate suspensions were pooled 

for 3 biological replicates of each species to achieve enough pure root exudates for analysis 

(n=18/6 for 3 biological reps). Root exudate suspensions were frozen at -20°C in 200 mL sterile 

glass jars. Frozen root exudate samples were lyophilized completely (~72 h) before resuspension 

in 1.5 mL sterile HPLC-grade water (Thermo Fisher Scientific, Waltham, MA). Resuspended 

exudates were vortexed thoroughly to remove all residue from the bottle (1min of vortexing along 

all edges of the bottle).  Samples were then aliquoted into 2 mL glass autosampler vials (three 

500 mL fractions for each of the three analytical platforms used) and dried completely under N₂(g). 

Total root exudate weights for each bioreplicate can be found in Appendix A File S1. For each 
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analysis, a volume equivalent to 0.25 mg of root exudates was transferred to a new, pre-weighed 

2 mL glass autosampler vial and dried under N₂(g).  

2.3.2 Root Scanning, Analysis, and Drying 

After exudate collections, roots were carefully separated and evenly spread out into 

deionized water on a transparent tray (300 x 200 mm) and scanned using an Epson Perfection 

V750 Pro Photo Scanner (Epson, Los Alamitos, CA). After image acquisition, roots were analyzed 

using the 2013 Arabidopsis WinRHIZO™ Pro software (Regent Instrument Inc, QC, Canada). 

Total root length and surface area were analyzed via the use of WinRHIZO™ Pro analysis 

software and can be found in Appendix A File S1. Roots were then blotted dry and gently placed 

on a tray with paper towels, dried at 70°C for 72 h in an oven, and weighed (see Appendix A File 

S1 for DRW). 

2.3.3. Targeted UPLC-MS/MS for Phytohormone Analysis of Root Exudates 

Targeted detection of phytohormones was performed as previously described121.  Briefly, 

0.25 mg subsamples were extracted in 75 µL of a spiked methanol solution containing 80% 

methanol (MeOH) with 65.2 ng/mL ABA-d6, 62.5 ng/mL salicylic acid-d6, and 90.0 ng/mL 

jasmonic acid-d5 (Sigma Aldrich, St. Louis, MO). After solvent addition, samples were placed on 

a shaker plate for 1 h at the highest speed setting, centrifuged at 3500 x g at 4°C for 5 min, and 

transferred to glass inserts. A final centrifuge step at 3500 x g for 15 min at 4°C was completed 

to ensure any precipitate was in the bulb of the vial insert. Five microliters of root exudate samples 

were injected onto a Perkin Elmer UPLC MS/MS system, equipped with a PerkinElmer QSight 

LX50 Solvent Delivery Module (PerkinElmer, Waltham, MA). An ACQUITY UPLC T3 column (1 × 

100 mm, 1.8 μM; Waters Corporation, Milford, MA) was used for chromatographic separation. 

Mobile phase A consisted of LC‐MS grade water with 0.1% formic acid and mobile phase B 

consisted of 100% LC‐MS grade acetonitrile (Thermo Fisher Scientific, Waltham, MA). The elution 

gradient was initially set at 0.1% B for 1 min, which was increased to 55.0% B at 12 min and 
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further increased to 97.0% B at 15 min, then decreased to 0.1% B at 15.5 min. The column was 

re‐equilibrated for 4.5 min for a total run time of 20 min. The flow rate was set to 200 μL/min and 

the column temperature was maintained at 45°C. Samples were held at 4°C in the autosampler. 

Detection was performed on a PerkinElmer QSight™ 220 triple quadrupole MS in selected 

reaction monitoring (SRM) mode.  The transitions monitored for each phytohormone compound 

can be found in Appendix A Table S1. The MS was operated with ESI voltage 4500 V in positive 

mode and -3500 V in negative mode. Nebulizer gas flow was set at 350 arbitrary units and drying 

gas was set to 120 arbitrary units. The source temperature was 315°C and hot-surface induced 

desolvation temperature was set to 200°C. Pooled QCs were injected after every 6th sample to 

ensure proper instrument function and to detect any analytical variation. 

2.3.4 Non-targeted GC-MS Analysis of Root Exudates 

Sample preparation was conducted as previously described122. Briefly, dried samples 

were resuspended in 50 µL of pyridine containing 25 mg/mL methoxyamine hydrochloride (Sigma 

Aldrich, St. Louis, MO), centrifuged, incubated at 60 °C for 45 min, vortexed for 30 s, sonicated 

for 10 mins, centrifuged briefly, and incubated a second time for 45 min at 60 °C. Samples were 

centrifuged for 2 mins. Then, 50 µL of MSTFA + 1% TMCS (Thermo Fisher Scientific, Waltham, 

MA) was added, samples were vortexed for 30 s, centrifuged, and incubated a third time at 60°C 

for 35 min. Samples were cooled to room temperature, centrifuged, and 80 µL of supernatant was 

transferred to glass vial inserts within glass vials. Samples were centrifuged a final time for 10 

min before analysis. Metabolites were separated with a 30 m TG-5MS column (Thermo Fisher 

Scientific, Waltham, MA, 0.25mm i.d. 0.25 um film thickness) and detected using a PerkinElmer 

Clarus 690 GC coupled to a Clarus SQ 8S mass spectrometer (PerkinElmer). Samples (1μl) were 

injected at a 12:1 split ratio onto the column with a 1.0 ml/min helium gas flow rate. The gas 

chromatography inlet was held at 285°C, and the transfer line was held at 300°C, and the source 

temp was held at 260°C. The GC oven program started at 80°C for 30 s, followed by a ramp of 
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15 °C/min to 330°C, followed by an 8 min hold. Masses between 50–620 m/z were scanned at 4 

scans/s under electron impact ionization. Pooled QCs were injected after every 6th sample to 

ensure proper instrument function and to detect any analytical variation.  

2.3.5 Non-targeted FastDDA LC-MS/MS Analysis 

0.25 mg subsamples were extracted in 75 µL 80% MeOH in LCMS-grade water (Thermo 

Fisher Scientific, Waltham, MA). After solvent addition, samples were placed on a shaker plate 

for 1 h at the highest speed setting, centrifuged at 3500 x g at 4°C for 5 min, and transferred to 

glass inserts. A final centrifuge step at 3500 x g for 15 min at 4°C was completed to ensure any 

precipitate was in the bulb of the vial insert. Five microliters of extract were injected onto a Waters 

Acquity UPLC system (Waters Corporation, Milford, MA). Separation was achieved using a 

Waters Premier Acquity Premier VanGuard FIT HSS T3 column (Waters Corporation, Milford, 

MA; 1.8 µM, 2.1 x 100 mm), using a gradient from solvent A (LC-MS Water, 0.1% formic acid) to 

solvent B (LC-MS Acetonitrile, 0.1% formic acid). Injections were made in 99% A, held at 99% A 

for 1 min, ramped to 98% B over 12 minutes, held at 98% B for 3 minutes, and then returned to 

starting conditions over 0.05 minutes and allowed to re-equilibrate for 3.95 minutes, with a 600 

µL/min constant flow rate.  The column and samples were held at 65°C and 6°C, respectively. 

The column eluent was infused into a Waters G2-XS Q-TOF-MS with an electrospray source in 

positive mode, scanning 50-1200 m/z at 0.1 seconds per scan, using Waters FastDDA (Data 

Dependent Acquisition Algorithm) to select up to 4 precursor ions per MS scan at a collision 

energy ramp of 23 V.  Dynamic exclusion was set such that once a precursor was sampled, it was 

excluded for 6 seconds, and the full DDA cycle was limited to 0.1 s to ensure sufficiently 

responsive precursor selection.  Waters software AutocatV1 was used to exclude previously 

scanned masses within the sample reps. Calibration was performed using sodium formate with 1 

ppm mass accuracy. The capillary voltage was held at 700 V, source temperature at 150°C, and 

nitrogen desolvation temperature at 600°C with a flow rate of 1000 L/h. 
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2.3.6 Metabolomics Data Analysis 

Non-targeted GC-MS data were processed within the R statistical software123 using 

methods previously described18. For GC-MS samples, .cdf files were processed through the 

following workflow: 1) XCMS software was used for preprocessing to identify molecular 

features124; 2) features were further normalized to total ion current (TIC); 3) the package 

RAMClustR125 was used for clustering features into spectra and prepared for subsequent spectra 

identification in RAMSearch125 via spectral searching against external databases including Golm 

(http://gmd.mpimp-golm.mpg.de/) and NIST (http://www.nist.gov). Prior to TIC normalization, 

features were normalized by linearly regressing run order versus QC feature intensities to account 

for instrument signal intensity drift. Z-scored GC-MS peak area can be found in Appendix A File 

S2. 

For phytohormone analysis of root exudates, LC-MS/MS data were processed using 

Simplicity 3Q (v1.5, Perkin Elmer, Waltham, MA) bioinformatics software. Briefly, the peak area 

for each phytohormone compound was normalized to the corresponding internal standard peak 

area and quantification was assessed using a linear regression against an external calibration 

curve (Appendix A Table S10). Phytohormone concentrations can be found in Appendix A File 

S2. 

For LC-MS/MS Data Dependent Acquisition (DDA) data, .mzML files were first processed 

in MS-DIAL126 using the conventional DDA MS Method Type Data collection type was set to 

centroided with the following parameters: MS1 tolerance 0.01 Da, MS2 tolerance 0.025 Da, MS1 

mass range begin: 50 Da, MS1 mass range end: 1200 Da, MS2 mass range begin: 50 Da, MS2 

mass range end: 1200 Da. Peak detection parameters were as follows: minimum peak height 

1000, mass slice width 0.1 Da and smoothing was set to linear weighted moving average with a 

smoothing scan of 1 and minimum peak width of 5. Identification was conducting using GNPS 

public libraries with default MS-DIAL parameters. Adducts chosen were: [M+H]+, [M+NH4]+, 

http://gmd.mpimp-golm.mpg.de/
http://www.nist.gov/
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[M+Na]+, [M+K]+. [M+H-H2O]+.  MS2Dec was set to default parameters. Alignment parameters 

used a retention time of 0.05 min and an MS1 tolerance of 0.015 Da. Features were removed 

based on blank information at a 5-fold sample max/blank average ratio. ‘Suggested (w/o MS2) 

metabolite features’ were excluded.  Raw peak area data matrix and the GNPS export feature 

was then used to generate the MS/MS spectral summary file containing the list of representative 

MS/MS spectra (the most intense MS/MS spectrum) and the feature quantification table 

containing compound intensity and annotation. Z-scored LC-MS/MS peak areas can be found in 

Appendix A File S2 

2.3.7 Molecular Networking and Spectral Library Search 

A molecular network was created with the Feature Based Molecular Networking 

workflow127 on GNPS (https://gnps.ucsd.edu)The MS/MS spectral summary file and the 

quantification results file generated from MS-DIAL were imported to GNPS for FBMN analysis. 

The data were filtered by removing all MS/MS fragment ions within +/- 17 Da of the precursor m/z. 

MS/MS spectra were window filtered by choosing only the top 6 fragment ions in the +/- 50 Da 

window throughout the spectrum. The precursor ion mass tolerance was set to 0.01 Da and the 

MS/MS fragment ion tolerance to 0.01 Da. A molecular network was then created where edges 

were filtered to have a cosine score above 0.7 and more than 4 matched peaks. Further, edges 

between two nodes were kept in the network if and only if each of the nodes appeared in each 

other’s respective top 10 most similar nodes. Finally, the maximum size of a molecular family was 

set to 100, and the lowest scoring edges were removed from molecular families until the molecular 

family size was below this threshold. The spectra in the network were then searched against 

public GNPS spectral libraries. The library spectra were filtered in the same manner as the input 

data. All matches kept between network spectra and library spectra were required to have a score 

above 0.7 and at least 6 matched peaks. The individual molecular networks were downloaded 

from GNPS and visualized using Cytoscape software (v3.9.1). The Network Annotation 

https://gnps.ucsd.edu/
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Propagation (NAP) tool was used in GNPS to propagate network results to unknown 

metabolites128.  

2.3.8 Compound Superclass Annotations 

The GNPS tool, MolNetEnhancer105, was applied to the molecular network from non-

targeted LC-MS/MS data to determine chemical superclass classification. Classyfire106 was used 

to manually assign superclass annotations to GC-MS and targeted LC-MS/MS data.  

2.3.9 Statistics 

Significance of association between cover crop species, DRW, root surface area, root 

length, and root exudation rate was modeled using the lm command for fitting linear models from 

the stats (v4.4.0) package in R (v4.2.2). The anova command was then used to compute analysis 

of variance tables for the fitted model objects. Peak area files for each analysis were combined 

into one file (Appendix A File S2) and normalized by z-scoring. Chemical richness of species 

and functional groups was determined using z-score normalized peak areas. Normalized peak 

areas above the mean (greater than 0) were included as a count for that metabolite. Metabolites 

with a normalized peak area below the mean (less than 0) were assigned a zero count. The 

summation of normalized peak areas above the mean (greater than 0) resulted in the chemical 

richness count and were used in subsequent analyses. To determine differences in chemical 

richness between species and functional groups, an ordinary one-way ANOVA was conducted in 

GraphPad Prism (v9.4.1) using grouped analysis with Tukey’s multiple comparison testing with 

alpha = 0.05. Multivariate statistics were conducted in SIMCA (v17.0.1) to generate PCA and 

PLS-DA models. PCA and PLS-DA was performed using annotated and unannotated metabolites 

using z-scored and UV-scaled data. The list of scores and loadings coordinates were then plotted 

in GraphPad Prism. Prism was used to visualize PCA and PLS-DA scores and PLS-DA loadings. 

VIP scores were generated using the PLS-DA Important Features tool in MetaboAnalyst (v5.0) 

using annotated and unannotated z-scored metabolites and pareto-scaled data to identify 
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metabolites that were significantly different between functional groups. The top 40 metabolites 

were used to generate VIP scoring and plotted according to VIP score. Heatmaps were generated 

in MetaboAnalyst (v5.0) using annotated and unannotated z-scored metabolites and pareto-

scaled data, standardized by autoscaling features, and clustered using a Euclidean distance 

measure and Ward’s clustering method. ANOVA-significant compounds and cowpea 

soyasaponin significance analysis was generated in MetaboAnalyst using annotated and 

unannotated z-scored metabolites and pareto-scaled data using the One-Way ANOVA analysis 

option with a p-value cutoff of 0.05. 
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CHAPTER 3: VARIATION IN ROOT EXUDATE COMPOSITION INFLUENCES SOIL 
MICROBIOME MEMBERSHIP AND FUNCTION2 

 

 

 

3.1 Introduction 

The region where plant roots interface with soil known as the rhizosphere, is one of the 

most intricate and diverse microbial ecosystems on earth129.  It is widely recognized that exudation 

of compounds from plant roots is key to assembling these rhizosphere microbial communities130-

132, which in turn can influence plant health and soil biogeochemistry. Plant roots exude up to 40% 

of their photosynthetically derived carbon, with these compounds ranging from small (e.g. 

carbohydrates, amino acids, organic acids, phytohormones) to large (e.g. proteins, mucilage) 

molecules19,133. These exudates provide microbial substrates, as well as signaling molecules, that 

stimulate microbial activity. For instance, rhizosphere enriched microorganisms can suppress 

plant pathogens and provide plant nutrients through nitrogen fixation and metal chelation, among 

other mechanisms130,134-136. Moreover, some members of the rhizosphere can produce plant 

hormones like indole-3-actic acid (IAA), gibberellins, cytokinins, and abscisic acid, which 

modulate plant physiological health137,138. The importance of these various contributions highlights 

the clear need to understand the mechanistic link between plant root exudate chemistry and 

metabolic changes in the soil microbiome.   

Recently there has been an increased focus on plant rhizodeposition and its impact on 

soil microorganisms.  To enhance tractability in a complex system, many of these keystone 

studies selected model plants (e.g. Brachypodium distachyon, Arabidopsis thaliana) and 

 

2 This chapter was reproduced verbatim from “Seitz, et al. Variation in Root Exudate Composition Influences Soil Microbiome 

Membership and Function. Applied and Environmental Microbiology (2022)”. This manuscript was co-written with BBM, with 

my contributions as the following: experimental design planning, sample preparation, 16S and exometabolomics data analysis and 

interpretation, manuscript writing. The text benefitted from writing and editing contributions from other contributing authors and 

reviewers selected by the publisher. The ordering of the materials in this dissertation are consistent with the content available online 

but have been renumbered to reflect incorporation into this dissertation. 
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evaluated their impact on known plant growth promoting rhizobacteria (e.g. Pseudomonas) 

16,17,20,139. However, the scaling of these concepts to more complex chemical profiles and soil 

microbial communities has been constrained by methodological challenges. For example, where 

exudates were chemically profiled, they were often limited to a small set of known metabolites140-

143, or when microbial communities were analyzed they often relied on methods that tracked 

changes in membership (16S rRNA, Phospholipid Fatty Acid profiles) but not metabolic potential 

over the course of exudation144,145. Therefore, there is a current need for studies that employ high-

resolution microbial and chemical methods to begin to mechanistically describe the exudate-

microbe interactions in agriculturally relevant crop species.  

Here, we used a multi-omics approach to characterize how root exudation from a model 

crop plant can drive soil microbial community structure and function. Using three common, but 

phenotypically diverse, Sorghum (Sorghum bicolor (L.) Moench) genotypes, we determined the 

variation in root exudate chemical composition amongst these plant varieties. To narrow in on the 

microbial response to these different exudate profiles, we created plant-free soil microcosms and 

fed these with two sorghum-informed exudate amendments.  We tracked these microcosms over 

20 days using exometabolomics, 16S rRNA gene profiling, and genome-resolved metagenomics. 

Integrating these data, we show that different sorghum exudate treatments led to distinct microbial 

communities and metabolisms, including the production of three phytohormones. Harnessing this 

knowledge could support the growing need for sustainable agroecosystems by developing holistic 

agricultural management strategies that optimize the metabolic capabilities of the soil microbiome. 

3.2 Results & Discussion 

3.2.1 Sorghum genetics influence root exudation patterns  

Sorghum is one of the most widely produced agricultural crops in the world, serving as a 

grain, forage, and cover crop for use as human food, livestock feed, and as a biofuel feedstock 

122,146. Due to its diverse agronomic uses, we leveraged three sorghum genotypes known to have 
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distinct aboveground phenotypes that we hypothesized would contribute to distinct root exudate 

profiles. We selected 1) the grain sorghum, BTx623; 2) the sweet sorghum type, Leoti; and 3) the 

bioenergy sorghum PI 505735122,147,148. We grew sorghum genotypes in vitro (hydroponically) for 

seven days, and soluble exudates were collected in water and analyzed with non-targeted gas 

chromatography-mass spectrometry (GC-MS).  

Metabolites from sorghum seedlings spanned known root exudate metabolite classes 

ranging from sugars, sugar alcohols, organic acids, and amino acids (Figure 8A, Appendix B 

Figure S1). Chemical differences were observed between genotypes BTx623 and Leoti, while PI 

505735 represented an intermediate root exudate chemical profile (Figure 18A). Among BTx623 

and Leoti, statistical differences in exudate profiles were found (ANOVA, p < 0.001), with BTx623 

exudates enriched in monosaccharides and disaccharides, while Leoti was significantly enriched 

in organic and amino acids (Figure 8A, Appendix B File S1). Given these sorghum genotypes 

released root exudates with distinct metabolic profiles, we next pursued how these different 

exudate regimes would alter microbiome membership and metabolic responses. 
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Figure 8. Root exudation metabolite profiles from three sorghum genotypes were used to 

design relevant amendments for soil microcosms. A) Non-metric multidimensional scaling 
(NMDS) of Bray-Curtis distances across metabolite abundance of Leoti (purple), BTx623 
(orange), and PI 505735 (green) sorghum genotypes (stress=0.06). Ellipses denote the 95% 
confidence interval for each treatment. Significant metabolite vectors are shown (p-value <0.05) 
and labelled in gray. B) Butterfly plots show the summed total amount of each compound added 
across the treatments (Phe, Phenylalanine; 5-Oxopro, 5-Oxoproline); orange represents 
proportion added to High-Sugar Treatment (HST) and purple represents proportion added to the 
High Organic acid Treatment (HOT). For example, of the sucrose added, 95% went to the HST 
and 5% to the HOT. For actual added concentrations, see Appendix B Table S3. C) Microcosm 
schematic depicts treatment formulation from where HOT represents Leoti, HST represents 
BTx623, and Control was buffered media lacking an exudate treatment. Triplicate microcosms 
with agricultural soil were maintained for a 20-day experiment with the sampling schematic 
denoting when samples were obtained. Days with exudate addition are noted with pipettes and 
day number is colored in red. Time points with circles represent the samples taken each day, with 
the total number (n) of samples for each analysis listed. Colors within circles represent the type 
of sample (HST = orange, HOT = purple, control = teal) taken at that time point. 
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3.2.2 Laboratory microcosms reveal that exudate treatment structures agricultural soil microbial 

communities 

We formulated root exudate solutions for laboratory-scale soil reactors (microcosms) 

using either a high sugar treatment (HST) representing BTx623 or a high organic acid treatment 

(HOT) representing Leoti. These treatments were run in parallel with exudate-lacking control 

microcosms. Both HST- and HOT-amended microcosms received the same eleven root exudate 

compounds (glucose, galactose, fructose, sucrose, trehalose, malic acid, lysine, phenylalanine, 

5-oxoproline, citric acid, and shikimic acid, Appendix B Table S3), but in varying concentrations 

to model the relative concentrations observed in BTx623 and Leoti exudates (Figure 8B). The 

soil microcosms were constructed using soil from semi-arid agricultural plots and were amended 

with exudate treatments daily for the first 5 days and sampled for chemical and microbiological 

analyses over 20 days (Figure 8C).  

Gene amplicon sequencing of the 16S rRNA gene was used to temporally profile the 

microbial diversity and membership across the three treatments (HOT, HST, exudate control, 

Figure 8C). We sequenced 81 samples, generating 2,148,831 reads with an average of more 

than 30,000 reads per sample (Appendix B File S2). After denoising, a total of 9,818 amplicon 

sequencing variants (ASVs) were detected, representing 43 phyla (Appendix B File S2). We first 

assessed alpha and beta diversity metrics to understand soil microbial community changes in 

response to exudates.  

Over time, we observed distinct changes in response to amendments with either the HST 

or HOT (Figure 9A). For instance, after one day of exudate amendment, HST-amended 

microcosms had significant decreases in ASV richness (p = 0.007), Shannon’s Diversity Index (p 

= 0.019), and Pielou’s evenness (p = 0.017). In contrast, we did not detect significant changes in 

these metrics for HOT or control microcosms in this time period. This suggests HST enriched for 

select members of the microbial community. In support of this result, we observed an ASV 
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belonging to the genus Pseudomonas (Appendix B File S2) accounted for 59.4% of the HST 

community at day 1. Following 5 days of exudate addition, the HST-amended microcosms 

retained low diversity (p = 0.038), richness (p = 0.042), and evenness (p = 0.017) compared to 

the HOT and control microcosms (Figure 9A). By the final day of the experiment, these diversity 

metrics were no longer significantly different between HST and HOT, highlighting the importance 

of these amendments in structuring the microbial communities.  

 

Figure 9. 16S rRNA gene diversity metrics and membership changes with exudate 
amendment. A) ASV richness (top), Shannon’s Diversity Index (middle), and Pielou’s Evenness 
for each day highlighting differences in treatment richness, alpha diversity, and community 
evenness. Coloring corresponds to treatment: control (teal), HST (orange), and HOT (purple). 
Days where exudates were added are colored red (days 0-5). B) Non-metric multidimensional 
scaling (NMDS) of Bray-Curtis distances of 16S rRNA amplicon communities showing changes 
in microbial community structure and membership over time with colors representing treatment 
and the size and darkness of circles representing time (stress=0.09). 
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Next, changes in the membership and structure of the microbial community across 

treatments was assessed using Bray Curtis dissimilarity matrix and visualized using non-metric 

multidimensional scaling (NMDS) (Figure 9B). We found that HST and HOT amendments 

significantly shifted microbial community composition and structure during and after periods of 

synthetic root exudate addition (multi-response permutation procedure, mrpp = 0.01, p-value < 

0.05). A PERMANOVA analysis revealed that microbial communities were significantly altered 

across treatments (p = 0.001) and time (p = 0.001). Building on this, beta dispersion analyses 

indicated the control exudate communities were the most stable over time, while the HOT 

treatment had the greatest across time variation in microbial community membership (Figure 9B). 

These microbial community alpha and beta diversity metrics highlight that both treatment and time 

were factors shaping the soil microbiome in exudate-amended microcosms. Scaling beyond these 

microcosms, this research highlights the need for understanding the composition and temporal 

dynamics of natural root exudates. 

3.2.3 Exometabolites hint at potential microbial metabolisms stimulated by exudates 

In these soil reactors, we tracked the temporal dynamics of exometabolites (Figure 8C), 

which are the extracellular fraction of molecules that are inferred to be produced and/or utilized 

by soil microorganisms. We classified and assigned the detected exometabolites to three 

chemical classes: (i) central carbon metabolism, (ii) amino acids and derived compounds, and (iii) 

phytohormones (Figure 10, Appendix B File S1). The exometabolites were coordinated to the 

microbial communities identified by 16S rRNA gene sequencing, and thus demonstrated 

differences by treatment and time (Appendix B Figure S2, 10). Relative to the HOT and controls, 

the HST was enriched in most of the detected exometabolites, likely reflecting a greater metabolic 

stimulation from the sugar rich treatment (Appendix B Figure 10). This finding is not completely 

unexpected, as prior studies have noted sugar metabolism is more efficient than amino acid 

metabolism in soil microorganisms149.  
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Figure 10. Exometabolite abundances across treatments. We categorized the detected 
exometabolites into three chemical classes: (A) central carbon metabolism, (B) amino acids and 
derivatives, and (iii) phytohormones. Within each, heatmaps (left) showing the relative 
abundances (represented as a z-score across samples) of each exometabolite detected. Time 
increases from left (day 0) to right (day 20) within each treatment, with days where exudate 
treatments were added colored red (days 0-5). Ridgeline plots (right) show the relative abundance 
(0 – 100%) of these exometabolites over time. Coloring corresponds to treatment: control (teal), 
HST (orange), and HOT (purple).  
 

 

Metabolites relevant to microbial central carbon metabolism were some of the most 

enriched exometabolites in HST microcosms (Figure 10A). We detected six organic acids that 

changed significantly over time in HST and were significantly enriched in HST compared to the 

control and HOT.  For example, between days 2 and 3, succinic acid and fumaric acid increased 

1.5 and 0.9-fold (log2), respectively, in the HST-amended microcosms relative to HOT and the 

control treatments (Figure 10A). We also detected increases in itaconic acid (0.7-fold) and oxalic 

acid (1.6-fold) over time, both of which can be derived from tricarboxylic acid (TCA) cycle 

intermediates cis-aconitate and oxaloacetate, respectively150. Furthermore, consumption of 

malate and citrate was inferred in HST-amended microcosms at the same time points due to their 
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loss over time (Appendix B Figure S3). Perhaps indicating metabolite cross feeding across the 

community, we also observed a spike in pyruvate at days 2-3 in the HST, followed by consumption 

concomitant with the production of lactic acid across the experiment (Figure 10A). Collectively, 

this exometabolite data pointed to HST exudate treatments differentially altering soil carbon pools 

via the metabolism of the microbiome.  

We also detected chemical evidence for production and consumption of amino acid and 

amino acid derived compounds by these soil microbial communities. Like the central carbon 

metabolites, these organic nitrogen exometabolites were most enriched in HST-amended 

microcosms relative to the other treatments, a somewhat unexpected response given the HOT 

amendments were initially dosed with these types of compounds (Figure 8B). Compared to 

control and HOT-amended microcosms, we observed the production of two non-proteinogenic 

amino acids (β-alanine and pipecolic acid) and one aromatic compound (phenyllactic acid) in 

HST-amended microcosms (Figure 10B). β-alanine, which was produced over the first 7 days 

but removed by day 20, is an important amino acid precursor and also necessary for biosynthesis 

of coenzyme A, a critical cofactor of microbial metabolism in soils151.  

Next, we identified and tracked the production of pipecolic acid (PA), whose production 

peaks between days 2-4 in HST-amended microcosms. This amino acid is thought to be 

microbially synthesized from lysine152, a component added to both treatments (Figure 8B), that 

was consumed during this period (Appendix B Figure S3). PA synthesis has broader 

ramifications for the entire microbiome, as it is a required intermediate in secondary metabolite 

production of antibiotics and anthelmintics in many bacteria152. PA dynamics, which indicate 

production and subsequent consumption by day 20, suggest its use as a public good153. Finally, 

phenyllactic acid (PLA), a phenylalanine derivative, increased 2.6-fold in the HST microcosms 

over time, peaking at day 11 and 20 (Figure 10B). Microbes that release amino acid and amino 
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acid derived compounds could be competitive root colonizers or act as antagonistic agents 

against target pathogens154. 

Most notably, we observed a significant increase in the abundance of three 

phytohormones. Salicylic acid (SA), benzoic acid (BA), and indole-3-acetic acid (IAA) significantly 

increased (p < 0.01) over the experiment in the HST relative to microcosms treated with HOT or 

exudate-lacking control (Figure 10C). In HST microcosms, BA and SA increased 1-fold (log2) 

while IAA increased the most with a 3-fold (log2) increase from day 0 to day 20.  In plants, SA, 

BA, and IAA are vital phytohormones integral to physiological processes like plant defense and 

development155. Our detection of these metabolites over time highlights that certain root exudation 

chemical profiles can stimulate soil microbes to produce phytohormones critical for plant growth 

and defense.   

3.2.4 Curation of a sorghum exudate responsive microbial genome catalog 

In light of the phytohormone production observed in our HST microcosms, we sought to 

identify microbial genomes capable of producing these compounds. Towards this goal, we 

constructed metagenome-assembled genomes (MAGs) representing the suite of soil microbes in 

the HST and control microcosms. To maximize MAG recovery, we obtained more than 365 Giga 

base pairs total of sequencing from control and HST microcosms, at three different timepoints 

spanning the experiment (control: day 0, 5, 20; HST: day 5, 20, each in triplicate; n= 15 

metagenomes, Figure 8C). With this data, we reconstructed 371 MAGs that were dereplicated at 

99% identity into 243 MAGs, of which 28% were high-quality156 (Figure 11A, Appendix B File 

S2). The genome recovery demonstrated here exceeds those from field-based studies where 

assembling and binning are hampered by the vast complexity in agricultural soils157, further 

validating the relevance of stimulated laboratory microcosms to increase the microbial genome 

tractability of soil systems158,159.  
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Figure 11. Taxonomy of the 243 dereplicated metagenome assembled genomes in the 
genome database. A) Sequential colored rings indicate the most resolved taxonomic level that 
could be assigned by GTDB-tk 160. Taxonomic level (D=Domain, P=Phylum, C=Class, O=Order, 
F=Family, G=Genus, S=Species) is denoted in black with a single letter abbreviation. Ring color 
corresponds to phylum assignment, with the color legend at right. The treatment condition 
corresponding to MAG detection is illustrated in the outer ring labeled “Detection”; MAGs detected 
only in Control metagenomes are indicated by teal, MAGs detected only in HST metagenomes 
are indicated by orange, and MAGs that were detected in both indicated with brown (see Materials 
& Methods for detection thresholds). The MAG quality is shown in the outermost ring following 
the MIMAG standards 156: high quality (HQ, >90% complete, <5% contamination), medium quality 
(MQ, >50% complete, <10% contamination), and low quality (LQ, here defined as >48% complete, 
<10% contamination). B) Stacked bar graph shows the number of dereplicated MAGs recovered 
that represent novel families, genera, or species according to taxonomy assignments from GTDB-
tk. Coloring corresponds to MAG phylum.  

 

Of these MAGs, 49% (n=119) were detected in HST-amended microcosm samples while 

41% (n=100) were detected in the control microcosm samples (Figure 11A, Appendix B File 
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S2). Notably, only 10% (n=24) of these MAGs were shared across the two treatments, further 

supporting our 16S rRNA and exometabolite data showing HST amendments significantly altered 

the soil microbial community. Our MAG database contains representative soil microbes across 

20 phyla, dominated by members of the Actinobacteriota and Proteobacteria (Figure S4), and 

includes MAGs belonging to 15 previously unidentified families (6%), 41 previously unidentified 

genera (17%), and 157 previously unidentified species (65%) (Figure 11B). We recovered 26 

MAGs with partial or full 16S rRNA genes and could directly link 19 of these MAGs to 16S rRNA 

amplicon sequencing identified ASVs, providing metabolic blueprints for these taxa. These results 

highlight the advantage of coupling community profiling (16S rRNA gene) with high resolution 

metagenomics to capture the functional potential encoded within the soil microbiome.  

3.2.5 Bacterial salicylic acid production is assigned to a potentially-new species of 

Pseudomonas 

We examined which of our MAGs encoded the two genes (pchA, isochorismate synthase; 

pchB, isochorismate pyruvate lyase) for SA production. The first gene, pchA, catalyzes the 

conversion of chorismate to isochorismate with the second gene, pchB, catalyzing the subsequent 

conversion to salicylate (Figure 12A)161. Two of our HST-detected MAGs encoded a pchA, while 

one of these MAGs also encoded pchB. Notably, the MAG that encoded both pchA and pchAB 

likely represents a novel species within the genus Pseudomonas_E (L_E1_T20_B_bin.65) and 

had two copies of this gene set (Figure 12B). Consistent with our exometabolite data for SA 

production (Figure 10C), this Pseudomonas_E MAG was abundant in HST metagenomes at day 

20 (Figure 12E).  
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Figure 12. Diverse MAGs encode biosynthetic potential for salicylic acid, benzoic acid, 
and indoleacetic acid. A) Salicylic acid production from chorismate by pchAB. B) A 
Pseudomonas MAG encoded two biosynthetic gene clusters containing pchAB, including one 
for the antimicrobial Promysalin (left) and another for a predicted siderophore (right). The 
clusters on the bottom are the reference clusters from antiSMASH. C) Benzoic acid production 
from multiple pathways. D) Indoleacetic acid production pathways. E) Rank abundance curve of 
MAGs detected in HST metagenomes at day 20. Bars represent the average relative 
abundance (n=3), and error bars represent one standard deviation. Bars are colored by MAG 
phylum, and key phytohormone producing MAGs are indicated. MAG detection is denoted 
below abundance bars for potential phytohormone producing MAGs, with MAGs only detected 
in HST colored orange (n=18), and MAGs detected in both HST and control in brown (n=1). In 
A, C, and D, circles correspond to MAGs encoding each gene in E. The circles for the two 
Mycobacterium MAGs with BA and IAA potential are outlined in pink. 

 

 Previous research has shown that bacterial species such as Pseudomonas, Bacillus, 

Mycobacteria, and Azospirillum synthesize this important compound, with pseudomonads, like 

those enriched in our reactors, exhibiting a propensity for SA production162. It is recognized that 

microbially produced SA can act as a plant defense hormone providing pathogen resistance and 

modulating developmental signaling cascades163-165. Beyond phytohormone roles, bacterially 

produced SA can function as a siderophore for metal acquisition from soils162,163,166 or to support 

antibiotic production. Excitingly, further genomic analysis of the Pseudomonas_E MAG revealed 
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one set of pchAB which occurred in a predicted siderophore biosynthetic gene cluster (Figure 

12B). Furthermore, the second pchAB cluster occurred in a 16kb gene cluster with 100% gene 

similarity to the promysalin biosynthetic gene cluster from Pseudomonas putida (Figure 12B). 

Promysalin is an antibiotic that contains SA and was shown to be selectively antagonistic to other 

closely related pseudomonads to enable rhizosphere colonization167. Our data suggest the HST 

microcosms created conditions that stimulated the Pseudomonas_E MAG to produce SA, which 

could ultimately aid in its competition for limited resources in the complex soil microbiome. 

Additionally, the accumulation of SA in the enrichment leaves open the possibility that beyond 

enhanced microbial metabolism, this exometabolite could also be available to act as a plant 

defense hormone.  

3.2.6 Diverse benzoic acid production pathways encoded by multiple MAGs 

We next investigated BA production potential in our MAGs. Known BA production 

pathways derive from degradation of aromatic compounds (Figure 12C)168. The terminal step of 

most of these pathways is the oxidation of benzaldehyde to BA by benzaldehyde dehydrogenase 

(xylC). In these microcosms, seven MAGs encoded xylC, including Stenotrophomonas indicatrix, 

Arthrobacter koreensis, two MAGs of Rhodococcus erythropolis, and two species of 

Mycobacterium (Figure 12C). These MAGs were only detected in the HST microcosms at day 20 

(Figure 12E), matching when BA was observed in exometabolomic data (Figure 10C). 

The S. indicatrix MAG encoded an aryl-alcohol dehydrogenase (EC: 1.1.1.90) adjacent to 

xylC, which would enable reduction of benzyl alcohol to benzaldehyde (Figure 12C). This is also 

the most abundant MAG in HST metagenomes at day 20 (Figure 12E), indicating it may be 

important to BA production in the HST microcosms. Beyond S. indicatrix, a MAG representing 

Mycobacterium sp008329585 encoded a benzoylformate decarboxylase (mdlC), which 

decarboxylates benzoylformic acid to benzaldehyde (Figure 12C). Finally, an abundant MAG 

representing a novel species of Sedimentibacter encoded a gene for hippurate hydrolase (Figure 
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12E). This enzyme cleaves glycine from hippuric acid, producing BA (EC: 3.5.1.32, Figure 12C). 

Consistent with the literature, these findings position BA as a central aromatic metabolite in these 

microcosms. 

While there are limited reports today that microbial BA production can have direct benefit 

to plants, it is well known that plant BA and derivatives are precursors to the production of 

secondary metabolites and hormones169. BA is also known to improve plant stress tolerance and 

contribute to growth regulation169. In support, exogenous application of BA has been associated 

with improved growth and yield in quinoa and drought-stressed soybean170,171. As such, BA 

synthesis by the soil microbiome and its relationship with plant health is an area of research that 

warrants more investigation.  

3.2.7 Bacterial indoleacetic acid production encoded by diverse MAGs 

Tryptophan (Trp) is the primary precursor for IAA biosynthesis in microorganisms172, with 

five known biosynthetic pathways characterized in bacteria 173. We surveyed our MAG database 

for these genes and found 14 HST-detected MAGs capable of IAA production using two different 

pathways (Appendix B File S3), consistent with reports that auxin biosynthesis is widely encoded 

in plant172,174. Nine MAGs encoded indole-pyruvate decarboxylase (ipdC), the key gene for 

converting Trp to IAA via indole-3-pyruvate (Figure 12D). These MAGs spanned four phyla, with 

six belonging to Proteobacteria, covering several of the most abundant MAGs at day 20 in the 

HST metagenomes (Figure 12E). Beyond this pathway, three MAGs encoded iaaH for IAA 

production via indoleacetamide (Figure 12D). One of these MAGs, a novel species of 

Xanthobacteraceae, encoded both iaaH and ipdC. This fits with previous observations of single 

organisms encoding redundant IAA biosynthesis pathways62. Of note, two Mycobacterial MAGs 

with IAA-production potential also had BA-production potential. One potentially novel 

Mycobacterium species encoded ipdC and xylC, while Mycobacterium sp008329585 encoded 
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iaaH in addition to mdlC and xylC, indicating some soil microbes can produce multiple 

phytohormones. 

IAA is a phytohormone in the auxin family that is necessary for proper plant development 

and can be used to stimulate root biomass growth175,176. From a microbial perspective, IAA 

production offers a competitive colonization strategy over non-IAA producing strains177,178 and it 

has been shown that microbially-produced IAA in rhizosphere can elicit positive plant growth 

promotion and disease suppression effects142,177-179. However, these effects are dose dependent, 

as high concentrations of IAA can also inhibit plant growth180-182. The reduced complexity of our 

laboratory microcosm system allowed us to demonstrate that IAA can accumulate in soil 

microbiomes, and its production is redundantly encoded across 4 different phyla, offering new 

perspectives on the microbial contributions to soil IAA pools.  

It is important to note that the metagenomic results presented here only represent the 

genomic capabilities of a hypothesized genome, thus, additional experimental evaluation of gene 

expression would be required to definitively confirm specific bacterial synthesis of SA, BA, and 

IAA and their roles as potential PGPR species. Furthermore, gene expression could inform 

whether exometabolite production was a direct microbial response to exudates versus an indirect 

responses via the priming effect183. Yet, we find these MAG results, coupled with exometabolite 

evidence for these compounds through time, to be an exciting platform for targeted studies aimed 

at harnessing the power of microbial metabolisms for improving agroecosystems.  

3.3 Conclusions 

Coupling a reduced complexity, tractable laboratory soil system with high-resolution multi-

omics approaches afforded new perspectives on the complex interactions between plant root 

exudation and the soil microbiome. We first showed that root exudate amendments modeled after 

two different sorghum genotypes drastically impacted overall soil microbial community diversity 

and membership. Second, shifts in microbial community structure mirrored differences in 
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exometabolites. Finally, we linked interesting plant-relevant metabolites to bacterial genomes, 

highlighting new roles for specific microorganisms in phytohormone biosynthesis. We have 

provided a publicly available, genome-resolved microbial database for researchers interested in 

the sorghum rhizosphere. Our findings suggest root exudate composition influenced microbial 

production of possible phytohormones that could impact host plant physiology, as well as govern 

metal acquisition and antibiotic production from soils. Future studies can scale these hypotheses 

to the field to analyze the impact of plant genotype, root exudates, and associated microbial 

communities on overall plant performance. In summary, the results of this study represent an 

important step towards decoding the complex chemical language between plants and their 

rhizosphere microbial communities, a translation required to optimize these interactions for 

enhanced agricultural management and production.  

3.4 Materials & Methods 

3.4.1 Sorghum Root Exudate Collections 

Mature seeds from three sorghum genotypes (Leoti, BTx623, and PI 505735) were first 

sterilized by placing seeds in sterile 50 mL conical tubes with 45 mL 95% ethanol. Tubes were 

vortexed, ethanol was removed and 45 mL of Captan fungicide solution (0.2g Captan fungicide 

in 45 mL sterile water) was added to remove any fungal components on the seeds and vortexed 

for 3 hours. After removal of the Captan fungicide, 45 mL of 100% Clorox bleach (8.25% sodium 

hypochlorite active ingredient) + 3 droplets of dish soap (Ajax Triple Action Orange) was added 

for the final sterilization step and seeds were shaken for 20 mins. In a sterile tissue culture hood, 

the bleach was removed using sterile techniques and the seeds were rinsed five times with sterile 

water. Seeds were blotted dry and placed on germination paper inside a clean 600 mL beaker 

with a solution of 1 mM CaCl₂. After 7 days of growth, seedlings were removed from the paper 

and pooled into a 250 mL glass bottle filled with 80 mL of ultrapure water. Root exudates were 

collected for each genotype in separate bottles. The bottles were covered with aluminum foil to 
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protect roots from the light and were placed on a rotary shaker. After 2 hours, the roots were 

removed, blotted dry, and weighed. The root exudate suspensions containing the root exudates 

were filtered through a 0.2 μm filter membrane to remove root detritus and microbial cells. 

Samples were frozen at -80°C. We recognize that the use of hydroponic growth chambers does 

not exactly replicate soil growth conditions of sorghum 184; however, this system provided a highly 

controllable, tractable, and sterile environment that eliminated confounding microbial or soil 

influences for more accurate downstream analytical detection. Samples were lyophilized 

completely before resuspension in 15 mL sterile HPLC-grade water. Resuspended exudates were 

vortexed thoroughly to remove all residue from the bottle, transferred to a clean 50 mL falcon tube 

and dried completely under nitrogen gas. 1mL LCMS-grade 80% acetonitrile was added to the 

falcon tube with dried exudates and vortexed until thoroughly resuspended. 0.5 mL was 

transferred to a clean 2 mL glass vial, and 5 µg of glucose-13C6, D-arabinose-13C5, sucrose-13C12, 

galactose-13C6, and fructose-13C6 were added to each vial and dried completely under nitrogen 

prior to derivatization.  

3.4.2 Sample Derivatization for Sorghum Root Exudates  

Dried samples were resuspended in 75 μL of 0.2M of methoxyamine hydrochloride in 

pyridine (Sigma), incubated at 60°C for 45 min, vortexed, sonicated for 10 min, incubated a 

second time at 60 °C for 45 min and allowed to cool to ambient temperature. 30 µL of each sample 

were then transferred to a separate 2mL glass vial for MSTFA derivatization and the other 30 μL 

for Acetic Anhydride (AA) derivatization. 90 μL of 100% AA was added to AA vials, vortexed for 

30 s, incubated at 60°C for 60 min, and cooled for 10 min at ambient temperature. 30 μL of N-

methyl-N-trimethylsilyltrifluoroacetamide plus 1% trimethylchlorosilane (MSTFA + 1% TMCS, 

Thermo Scientific) was added to the MSTFA vials, vortexed for 30 s, incubated at 60°C for 35 min 

and cooled to ambient temperature before transferring to vial inserts. AA samples were dried 
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completely under nitrogen and resuspended in 40 μL of 100% ethyl acetate and then loaded into 

glass inserts for analysis.  

3.4.3 Non-Targeted and Targeted GC-MS Analysis for Sorghum Root Exudates 

Metabolites were analyzed and detected using a Trace 1310 GC (Thermo) coupled to an 

ISQ mass spectrometer (Thermo). Samples (1 µL) were injected into an injection port at 285°C 

and 1:10 split ratio. Separation was accomplished with a 30 m TG-5MS column (Thermo 

Scientific, 0.25 mm i.d., 0.25 μm film thickness) and a helium gas at 1.2 mL/min flow rate.  The 

oven temperature program started at 80°C for 30 s, ramped to 330°C at 15°C/min, and then held 

at the final temperature for 8 min. The transfer line and ion source were maintained at 300°C and 

260°C, respectively.  Masses between 50-650 m/z were scanned at 5 scans/sec after electron 

impact ionization. A pooled QC sample (made by combining an equal volume of all samples) was 

injected after every 6 samples to monitor instrument stability throughout the analysis.  

3.4.4 Synthetic Exudate Preparation 

Exudate treatments were formulated based on the results of the exudate profiles for the 

two most divergent sorghum genotypes (Leoti and BTx623). High Sugar Treatment (HST) was 

formulated to mimic BTx623 with higher sugar and lower organic acid composition and the High 

Organic acid Treatment (HOT) was formulated to mimic the Leoti exudate profiles with higher 

organic acid, and lower sugar composition (Appendix B Table S3, File S5 and File S6). The 11 

synthetic root exudate compounds were chosen based on practical considerations and availability 

of standards. Organic acid root exudate relative quantification values were normalized to fructose 

peak area and scaled to the absolute quantification of fructose in that sample. Treatment 

calculations can be found in supplementary files S5 and S6. The exudate-lacking media control 

treatment (Control) was a 10mM phosphate buffer, consisting of ammonium chloride, disodium 

phosphate, and sodium dihydrogen at a pH of 6.5 (Appendix B Table S1). Exudates found in 

each genotype were weighed out to their respective masses (Appendix B Table S3) to supply 
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equal exudates for 6 days of exudate addition (Fig 8C, days 0-5) to the microcosms, 

homogenized, suspended in 10mL 10mM phosphate buffer, vortexed, aliquoted into 6 tubes for 

each day of exudate addition, and frozen at -80°C until use. Aliquots were removed 30 min before 

use, incubated at 24°C until thawed, and added to microcosms at the respective time point.    

3.4.5 Soil Samples 

The soil (microbial inoculum) was collected from agricultural fields at the Colorado State 

University Agricultural Research and Education Center (CSU-ARDEC) near Fort Collins, CO on 

October 4th, 2019. The climate at the site is semi-arid, with 408 mm mean annual precipitation 

and a mean annual temperature of 10.2°C (1981-2010 average, https://usclimatedata.com/ ). The 

soil is classified as an Aridic Haplustalf. Three 2-cm diameter soil core samples to approximately 

15cm depth were collected from each of seven different plots. The soil was stored at -20˚C until 

microcosm construction. 20g of soil from each replicate/plot was pooled and homogenized to 

create a representative bulk soil repository used in the following microcosms experiment.  

3.4.6 Microcosm Experimental Set-Up 

Microcosms were established and sampled as previously described158,185. Briefly, 5 g of 

homogenized soil and 35mL of phosphate buffered (pH 6.5) minimal medium (Appendix B Table 

S1) was added to sterile 50 mL conical tubes to construct each microcosm. Microcosms were 

vortexed and allowed to settle for 5 min. Then day 0 samples were taken by removing 1 mL of 

soil slurry for exometabolomics analysis and 1 mL of soil slurry for DNA extraction. After this initial 

sampling, 2 mL of exudate treatment were added to each microcosm, vortexed, and a second 1 

mL aliquot was immediately taken for exometabolomics analysis. At this point, for each 

microcosm the bottle caps were removed and replaced with a sterile foam stopper for the rest of 

the experiment to maintain oxic conditions and prevent colonization by contaminating microbes. 

Microcosms were incubated in an orbital shaker set at 200 rpm at 24°C for 20 days. Each exudate 

treatment (i.e., HST, HOT and Control) was conducted in triplicate and treatments were added (2 

https://usclimatedata.com/
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mL) to microcosms on days 0, 1, 2, 3, 4, 5. After day 5, no additional exudate treatments were 

applied but microcosms were maintained until day 20 which afforded additional samples taken at 

day 7, 11, and 20 (Figure 8C).  Samples were collected at roughly the same time each day and 

collected with aseptic techniques to ensure no additional microbial influence was introduced. All 

collected samples were immediately frozen at -80°C until processing.   

3.4.7 Sample Preparation and Extraction for Exometabolomics Analysis 

Samples were thawed at 4°C overnight, centrifuged for 20 minutes at 18,000 x g and 

supernatant was transferred to a pre-weighed 1.5-dram vial and refrozen at -80°C for subsequent 

lyophilization. Samples were lyophilized for 24 hours until all water was sublimated. Samples were 

weighed to calculate total exometabolite mass and then were resuspended in 4mL sterile HPLC-

grade water. A volume equivalent to 0.50 mg was transferred to a new, pre-weighed 2 mL glass 

vial and dried under N₂. Lastly, each sample was resuspended in 500 µL of sterile HPLC-grade 

water, vortexed for 1 min, and sonicated for 15 min. Two 250 µL aliquots were transferred to new 

2 mL vials, respectively, and samples were dried under N₂. This yielded two 0.25 mg subsamples 

for analysis by GC-MS and UPLC-MS/MS as described below.   

3.4.8 Targeted UPLC-MS/MS for Phytohormone Analysis of Exometabolites 

0.25 mg subsamples were extracted in 75 µL of a spiked methanol solution containing 

100% methanol with 65.2 ng/mL ABA-d6, 62.5 ng/mL salicylic acid-d6, and 90.0 ng/mL jasmonic 

acid-d5 (Sigma). After solvent addition, samples were placed on a shaker plate for 1 hour at the 

highest speed setting, centrifuged at 3500 x g at 4°C for 5 minutes, and transferred to glass 

inserts. A final centrifuge step at 3500 x g for 15 minutes at 4°C was completed to ensure any 

precipitate was in the bulb of the vial insert. Five microliters of exometabolite samples were 

injected onto a Perkin Elmer UPLC MS/MS system, equipped with a PerkinElmer QSight LX50 

Solvent Delivery Module (PerkinElmer). An ACQUITYUPLC T3 column (1 × 100 mm, 1.8 μM; 

Waters Corporation) was used for chromatographic separation. Mobile phase A consisted of LC‐
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MS grade water with 0.1% formic acid and mobile phase B consisted of 100% LC‐MS grade 

acetonitrile. The elution gradient was initially set at 0.1% B for 1 min, which was increased to 

55.0% B at 12 min and further increased to 97.0% B at 15 min, then decreased to 0.1% B at 15.5 

min. The column was re‐equilibrated for 4.5 min for a total run time of 20 min. The flow rate was 

set to 200 μL/min and the column temperature was maintained at 45°C. Samples were held at 

4°C in the autosampler. Detection was performed on a Perkin Elmer QSight™ 220 triple 

quadrupole MS in selected reaction monitoring (SRM) mode.  The transitions monitored for each 

phytohormone compound can be found in Appendix B Table S2. The MS was operated with ESI 

voltage 4500 V in positive mode and -3500 V in negative mode. Nebulizer gas flow was set at 

350 arbitrary units and drying gas was set to 120 arbitrary units. The source temperature was 315 

°C and hot-surface induced desolvation (HSID) temperature was set to 200°C. 

3.4.9 Non-targeted GC-MS Analysis of Exometabolites 

Sample preparation was conducted as previously described122,186 and as described above 

for sorghum root exudates. Briefly, dried samples were resuspended in 50 µL of pyridine 

containing 25 mg/mL methoxyamine hydrochloride (Sigma), centrifuged, incubated at 60°C for 45 

minutes, vortexed for 30 seconds, sonicated for 10 mins, centrifuged briefly, and incubated a 

second time for 45 mins at 60°C. Samples were cooled to room temperature and centrifuged for 

2 mins. Then, 50 µL of MSTFA + 1% TMCS (Thermo Fisher) was added, samples were vortexed 

for 30s, centrifuged, and incubated a third time at 60°C for 35 minutes. Samples were cooled to 

room temperature, centrifuged, and 80µL of supernatant was transferred to glass vial inserts 

within glass vials. Samples were centrifuged a final time for 10 mins before analysis. Metabolites 

were separated with a 30 m TG-5MS column (Thermo Scientific, 0.25mm i.d. 0.25 um film 

thickness) and detected using a Perkin Elmer Clarus 690 GC coupled to a Clarus SQ 8S mass 

spectrometer (Perkin Elmer). Samples (1μl) were injected at a 10:1 split ratio onto the column 

with a 1.0 ml/min helium gas flow rate. The gas chromatography inlet was held at 285°C, and the 
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transfer line was held at 300°C, and the source temp was held at 260°C. The GC oven program 

started at 80°C for 30s, followed by a ramp of 15°C/min to 330°C, followed by an 8‐min hold. 

Masses between 50–620 m/z were scanned at 4 scans/s under electron impact ionization. 

Injection of QCs were analyzed after every 6th sample to ensure proper instrument function and 

to detect any analytical variation.  

3.4.10 GC-MS and LC-MS Data Analysis 

Non-targeted GC-MS data (both sorghum exudates and exometabolites) were processed 

within the R statistical software 123 using methods previously described 186. For GC-MS samples, 

.cdf files were processed through the following workflow: 1) XCMS software was used for 

preprocessing to identify molecular features124; 2) features were further normalized to total ion 

current (TIC); 3) the package RAMClustR125 was used for clustering features into spectra and 

prepared for subsequent spectra identification in RAMSearch187 using external databases 

including Golm (http://gmd.mpimp-golm.mpg.de/) and NIST (http://www.nist.gov). For 

exometabolite data, prior to TIC normalization, features were normalized by linearly regressing 

run order versus QC feature intensities to account for instrument signal intensity drift. For root 

exudate data, relative quantitation was also normalized by root weight.  Targeted quantification 

of sugars from the GC-MS data was performed using Chromeleon 7.2 (Thermo Fisher).  The 

integrated peak area for each sugar was normalized to its corresponding internal standard with 

the exceptions that arabinose 13C5 was use for xylose, glucose 13C6 was used for mannose and 

sucrose 13C12 was used for trehalose and maltose.  Quantification was determined using a linear 

regression of an 8 point standard curve for each sugar.  Final concentrations were normalized to 

root weight.  For phytohormone analysis of exometabolites, LC-MS data were processed using 

Simplicity 3Q (v1.5, Perkin Elmer) bioinformatics software for sample processing. Briefly, the peak 

area for each phytohormone compound was normalized to internal standard peak area and 

http://gmd.mpimp-golm.mpg.de/
http://www.nist.gov/
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quantification was assessed using a linear regression against an external calibration curve. 

Exudate and exometabolite data are provided in Appendix B File S1. 

3.4.11 Soil DNA Extraction and Library Preparation 

Total genomic DNA was extracted from the microcosms using the Zymo Quick-DNA 

Fecal/Soil Microbe Microprep kit. 16S rRNA gene amplicon sequencing was performed on the 

Illumina MiSeq using 251-bp paired-end reads and the Earth Microbiome Project primers 

515F/806R188, for an average of more than 30,000 reads per sample (see Appendix B File S2 

for individual sample data). The 16S rRNA partial gene reads were analyzed and reads were 

demultiplexed using QIIME2189 (2019.10). Using DADA2190, demultiplexed reads were denoised 

to produce an amplicon sequence variant (ASV) table and filtered to remove noisy sequences, 

chimeras and singletons. Feature classification was completed by comparing the ASV table 

against the trained full-length SILVA classified (silva132.250) database for taxonomic 

classification. The ASV table was filtered to contain ASVs that were observed in at least 2 samples 

and the output files were visualized in QIIME2. Samples L_E1_T5_A (HST day 5 rep A), 

L_E2_T11_A, and L_E2_T20_A (HOT days 11 and 20 rep A) yielded insufficient sequencing 

results and were excluded from subsequent analyses. The ASV feature table is provided in 

Appendix B File S2. 

3.4.12 Metagenomics Analysis  

Metagenomic DNA from day 0 (control) and day 5 (control and HST) metagenomes (n = 

9) was sequenced at the Genomics Shared Resource at the University of Colorado Cancer Center 

using the NovaSeq6000 platform. Metagenomic DNA from day 20 (control and HST, n = 6) was 

prepared for metagenomic sequencing using the Nextera XT low input-Illumina library creation kit 

and samples were sequenced at the Department of Energy Joint Genome Institute on the Illumina 

NovaSeq 6000. FastQ files were trimmed using Sickle (v1.33) 191. Day 0 and day 5 reads were 

concatenated within each timepoints/treatments (i.e. triplicate controls at day 5) for co-assembly. 
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Day 0 and day 5 (both control and HST) coassemblies, and the day 20 individual assemblies were 

assembled with IDBA-UD192. Within each assembly, scaffolds greater than 2.5kb were binned into 

metagenome-assembled genomes (MAGs) using MetaBAT2 (v2.12.1)193. MAGs were assessed 

for completion and contamination using checkM194. A MAG was retained if it was >48% complete 

with <10% contamination, and assigned quality following MIMAG guidelines156. Using dRep195, 

MAGs were dereplicated to 99% identity. MAG taxonomy was assigned using GTDB-tk (v1.5.0, 

R06-RS202), and taxonomic novelty was defined as the first unnamed taxonomy level160. To 

obtain MAG abundance, trimmed metagenomic reads from individual samples were mapped to 

the dereplicated MAG set using bbmap196 (v38.70) at minid=95, and output as sam files which 

were converted to sorted bam files using samtools197 (v1.9). CoverM (v0.3.2) was used to 

determine MAG relative abundance as described in McGivern et al 158. MAGs were annotated 

using DRAM 198. Biosynthetic gene clusters were detected using the antiSMASH webserver using 

default parameters (v6.0) 199. See Appendix B File S2 for MAG quality, taxonomy, and mapping; 

Appendix B File S3 for DRAM annotations; and Appendix B File S4 for raw annotations 

accessed using https://doi.org/10.5281/zenodo.5639650. 

3.4.13 Statistics 

Sorghum genotype ordinations were generated using metaMDS function from the vegan 

200 package in R123 (v4.0.2) and visualized with ggplot2201. Metabolite loadings were calculated 

with the envfit function in vegan.  Alpha diversity of microbial communities was calculated using 

the diversity function from the vegan package200 in R123 (v4.0.2) using Shannon’s (H), Pielou’s, 

and richness indices. To estimate beta diversity across treatments, we utilized Bray-Curtis 

dissimilarity matrix visualized by non-metric multidimensional scaling (NMDS) in R with the 

ggplot2 package with stress of the non-parametric fit for the goodness of fit for the model. 

Significance of compositional differences across treatments was quantified using mrpp and the 

betadisper commands from the vegan package with an ANOVA model in R. Significance between 

https://doi.org/10.5281/zenodo.5639650
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communities across time and treatment were quantified using beta-group-significance commands 

in QIIME2 189 (2019.10) using a PERMANOVA model. Fold changes for exometabolite dynamics 

were calculated and converted to log2 abundances via the log function. 2-way ANOVA tests and 

pairwise comparisons were completed in GraphPad Prism (v8.2.1) using grouped analyses with 

Sidak’s multiple comparison testing with alpha = 0.05.  
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CHAPTER 4: GENOME-RESOLVED MULTI-OMICS REVEAL COVER CROP ROOT 
EXUDATES DIFFERENTIALLY INFLUENCE SOIL MICROBIAL FUNCTION AND 
PHYTOHORMONE PRODUCTION IN AGRICULTURAL SOIL MICROBIOMES 

 

 

 

4.1 Introduction 

Plant roots and their root exudates alter the physical and chemical properties of the soil 

immediately surrounding them, representing a primary target for enhanced soil health outcomes. 

Addressing crop-microbiome metabolic exchanges and the impacts those interactions have on 

nutrient cycling is of paramount importance in agroecosystems.  Enhancing rhizosphere mediated 

processes during traditionally non-crop phases through crop diversification via cover cropping is 

an attractive complementary approach to breeding efforts that also prioritize selection for 

functional attributes that cultivate favorable microbiomes.  

Crop diversification through cover cropping is the incorporation of a secondary, 

unharvested crop grown to support the development of a primary cash crop species. Plants used 

as cover crops are cultivated in conjunction with or following primary cash crops to enhance soil 

health, nutrient cycling, and pest management as a function of the increased biodiversity these 

crops introduce to the soil. Various plant species serve as cover crops and often cropping multiple 

species synergistically can maximize functional outcomes89,91. Cover cropping can influence 

aboveground plant growth responses and belowground soil characteristics to promote soil and 

cash crop health alike93,202. For instance, aboveground, cover crops act as a physical barrier 

against wind and water erosion, protect against weeds, and when utilized between periods of 

fallow, cover crops can contribute to the maintenance of soil functionalities that bolster primary 

cash crop yields2,5,99,203. Additionally, belowground, cover crops stimulate diverse microbial 

populations that catalyze beneficial biogeochemical processes86,204. The impact of cover cropping 

belowground are influenced by both the additional plant litter and responses stimulated by cover 
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crop root exudation3,14. Here we focus on the latter, investigating how different cover crops can 

stimulate specific microbial populations and processes through exudation. 

Metabolites released as root exudates include diverse sugars, organic and amino acids, 

enzymes, and secondary plant metabolites. These compounds, primarily water-soluble and of low 

molecular weight, are released into the rhizosphere, altering the chemical landscape adjacent to 

plant roots and influencing the types and quality of microbial recruitment and associations that 

are beneficial for plant hosts19,50,205. For example, sugars and amino acids are primarily carbon 

and nitrogen sources acting as growth substrates for rhizosphere microorganisms, stimulating 

microbial activity near roots, which provides secondary benefits of enhanced nutrient acquisition 

and pathogen suppression from generalist that rapidly consume primary metabolites7,24,206. 

Secondary metabolites in exudates, like flavonoids, contribute to microbially-mediated plant 

defense responses and plant-microbe signaling and play a crucial role in shaping the overall 

ecology of the rhizosphere207,208. However, harnessing exudates for targeted stimulation of the 

rhizosphere is complicated by the diversity in both quantity and quality of root exudate compounds 

resulting from different crop species, and cultivars within species, which is altered in response to 

growth phase, abiotic and biotic stress, and many edaphic conditions14,16,36,209,210.  

In the most recent national survey conducted in 2020, more than 15 million acres utilized 

cover cropping across 153,000 U.S. farms96. Despite the popularity of cover cropping as a 

regenerative agriculture practice, the complex interface between plants and the soil environment 

underpins essential ecological processes for crop health, yet remains largely unresolved in cover 

cropping systems. There is a paucity of data on cover crop root exudation chemical diversity, 

which extends to an even larger knowledge gap on how cover crops can modulate soil 

biogeochemistry, both during cover crop cultivation and after periods of termination and extension 

to the cash crop (i.e., legacy effects). In fact, unlike many primary cash crops, most cover crop 
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species have undergone very little selection and breeding, leaving an opportunity for chemical 

tunability through the manipulation of root exudates in the soil landscape for desired outcomes.   

We previously used metabolomics to characterize variability in root exudation across 19 

commonly used cover crop species. We assessed primary and secondary root exudates, but 

importantly, quantified low abundance phytohormones released as exudates36. The cover crop 

species selected here are representative of four functional classes (legumes, brassicas, cool-

season grasses, non-legume summer annuals) of cover crops and our team’s work demonstrated 

these species had distinct root exudate chemical profiles, a finding we hypothesized could yield 

distinct microbial outcomes. To decipher the microbial responses to amendments with different 

cover crop root exudate treatments, we utilized laboratory-scale soil microcosms and stimulated 

microbial communities with daily amendments of pure root exudates over 5 days (Figure 13A), 

tracking the responses over a 21-day experiment using metabolomics and genome-resolved 

metagenomics and metatranscriptomics (Figure 13B). Integrating genome-resolved 

metagenomics and metatranscriptomics, our findings demonstrate microbial membership yielded 

a less sensitive response than metabolomics, but functional gene expression and chemical 

behavior were more tightly coupled, especially for phytohormone metabolisms. Importantly, we 

provide a public genomic resource for exudate-stimulated microorganisms and new insights 

provide an important first step towards the development of precision cover cropping, supporting 

sustainable agriculture management practices which safeguard valuable ecosystem resources.  
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Figure 13. Curation of an exudate-responsive MAG database. A) Root exudates were 
collected from 4 hydroponically grown cover crops 36. The experimental design included soil 
reactors (amended with soil from the agricultural research station at Colorado State University) in 
biological quadruplets from 5 treatments (i) cereal rye (dark blue), (ii) sorghum (green), (iii) 
rapeseed (light purple), (iv) hairy vetch (orange) and a water amended soil control (grey). B) 
Microcosm reactors were amended with pure root exudates from treatments in (a) for 5 days 
(denoted as the exudate addition phase) and responses were surveyed for 21 days. 
Metagenomes, metatranscriptomes, and metabolomes were collected at specific timepoints, 
indicated by circles, to profile microbial responses. The number of samples collected for each 
multi-omic measurement is indicated by the bar charts on the right. C) Schematic summary of the 
collection of data for the MAG database which spans two studies to collectively make up the 
Agricultural Exudate-Responsive Metagenomic (ARM) Database. 
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4.2. Results & Discussion 

4.2.1. Agricultural Exudate-Responsive Metagenomic (ARM) Database Expands Genomic 

Knowledge in Colorado Soils 

Obtaining high-quality metagenomic data from field settings is challenging due to the 

dynamic and variable nature of these environments, despite the need for field-level experiments 

to determine the extent to which precision agriculture can be tailored. Challenges like diverse 

microbial communities, difficulties in sample collection and preservation, and high strain variability 

complicate the ways in which metagenomics can be applied at a large scale. Thus, a necessary 

first step toward building a metabolic blueprint of these agriculturally relevant taxa, many of which 

have not been genome sequenced or cultivated, is through the use of intermediate complexity 

laboratory-scale ecosystems (microcosms) to link the simplified chemical cover crop exudate data 

from findings in the more complex field trials. While not a perfect replica of natural ecosystems, 

here, microcosms provide controlled and replicable environment for amplification of microbial 

genomes to aid in genome tractability in these soils.  

Our dereplicated metagenome-assembled genome (MAG) database provides, to our 

knowledge, the first exudate-responsive resource of the microbial community members of 

agricultural soils, which we call ARM (Agricultural Exudate-Responsive Metagenomic (ARM) 

Database). Two shotgun metagenomic sequencing datasets derived from experiments utilizing 

root exudate stimulated microcosms were used to taxonomically classify abundant MAGs that 

respond to root exudate amendments (Figure 13C). In both experiments, cover crops were grown 

hydroponically to collect the fraction of water-soluble root exudates and their metabolomes were 

assessed using a combination of untargeted gas- and liquid chromatography-mass spectrometry 

(GC-MS and LC-MS), and a targeted LC-MS/MS assay to characterize low abundance 

phytohormones. In experiment 1 (Figure 13C; denoted as “Seitz & McGivern, et al 2022”), root 

exudate treatments were formulated after a high sugar exuding sorghum genotype (Sorghum 
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bicolor BTx623) and a high organic acid sorghum genotype (Sorghum bicolor Leoti) in which 

synthetic treatments were created to amend to soil microcosms to determine how sorghum 

genotypes influence microbial composition and function18. In the second experiment (Figure 13C; 

denoted as “This study”), four cover crops were chosen based on their distinct root exudate 

profiles36, and pure root exudates were collected hydroponically from those plants to be directly 

added to microcosms. These cover crop root exudate treatments represent common cover crops 

that exude distinct profiles during the seedling stage. The cover crops used in experiment 2 were: 

sorghum (Sorghum bicolor), hairy vetch (Vicia villosa), rapeseed (Brassica napus), and cereal rye 

(Secale cereale) (Figure 13A). In both experiments, root exudates were amended to microcosms 

during a 5-day exudate addition phase and surveyed until 21 days (post exudate-addition phase). 

Metagenomes were collected from experiment 1 in triplicate from days 0, 5, and 21 (n=15) and in 

experiment 2, metagenomes were collected from each treatment on days 0 (control only), 3, 5, 7, 

10, 21 (n=26) to capture changes in community composition and functional potential occurring 

before, during, and after exudate addition for a total of 41 metagenomes that make up ARM 

(Figure 13C). 

With a total of 41 metagenomes across two experiments, we reconstructed 342 medium- 

and high-quality MAGs dereplicated at 99% identity into 326 clusters, representative of distinct 

microorganisms (Figure 14A). Highlighting the genomic novelty of the soils, the ARM genomic 

database contains 10 MAGs which may represent previously unidentified (i.e., lacking a 

taxonomic assignment at this level) orders (3%), 39 MAGs that belong to previously unidentified 

genera (11.9%) and 170 MAGs that belong to previously unidentified species (52.1%) further 

emphasizing the phylogenetic novelty yet to be captured in agricultural soils (Figure 14B). 

Additionally, a large proportion of our MAG database belonged to lineages only recognized by 

alphanumeric identifiers (e.g., Draft Genome Sequence, DSM) in GTDB-tk at the class (n=7), 

order (n=46), family (n=104), and genus (n=126) levels indicating these lineages are undescribed 
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in soils and larger MAG catalogs.  Ultimately, ARM provides new genomic information and 

resources for ecologically relevant taxa and is a public MAG resource that can be used to enable 

taxonomic analyses and metabolic reconstruction of microbial metabolisms in agricultural soils. 

 

 

 

 

Figure 14. ARM Database taxonomy. A) Taxonomy of the 326 dereplicated MAGs in ARM. Ring 
color corresponds to phylum assignment with the color legend to the right. The top four most 
dominate phyla are written in text on the outer ring and colored according to phyla. B) Stacked 
bar graph shows the number of dereplicated MAGs recovered that represent novel orders, 
genera, or species according to taxonomy assignments from GTDB-tk. Coloring corresponds to 
MAG phylum. 

 

We used ARM to inform on the community make-up across our microcosm treatments 

and timeseries. Based on read mapping, an average of 38% of reads that assembled mapped 

back to ARM, signifying that the underlying assemblies were well represented in the MAG 

database. Accounting for relative abundance, the top 10 most dominate MAGs across all 

treatments, including the control, were either from the Sphingomicrobium, Arthrobacter, or 
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Pseudomonas_E genera or from alphanumeric genera from the classes Vicinamibacteria, 

Acidimicrobiia, Bacteroidia, and Gammaproteobacteria. During the exudate addition phase (days 

0-5), all treatments enriched for MAGs from the classes Vicinamibacteria, Acidimicrobiia, 

Bacteroidia, while only the exudate treatments enriched for the MAGs from the 

Gammaproteobacteria class and a MAG from the Sphingomicrobium genus (Appendix C). 

During the post exudate addition phase (days 7-21), the enrichment of a Pseudomonas_E borbori 

MAG was shared across all five treatments, but by day 21, the four exudate treatment microcosms 

were more enriched for this species than the control. By day 21, the treatment microcosms were 

more diversely enriched for these dominate taxa than in the control.  The top 4 bacteria enriched 

only in the treatment microcosms were from four diverse lineages representing taxa from the 

Arthrobacter and Sphingomicrobium genera and the Burkholderiales and Flavobaceriales orders. 

Arthrobacter and Burkholderiales in particular contain members that are known rhizosphere 

colonizers and taxa within these lineages are typically associated with plant-growth promotion 

traits like nitrogen fixation and pest suppression, respectively 211-213 

 

4.2.2. Microbial Community Function, but Not Membership, is Altered by Exudate Addition  
 

Next, we wanted to examine the microbial community response to exudates at the 

membership and functional levels. We used the ARM database to resolve metatranscriptome 

expression profiles across the enrichment timeseries. At the MAG and function levels, 

metatranscriptome expression differed significantly by time, but not by exudate treatment. This 

suggests the agricultural soils used as inoculum may already be adapted to exudate inputs, or 

that this measure of community function was not strongly affected by the amount of exudates 

added per gram of soil in the context of this experiment, which aimed to replicate average 

quantities of exudates release over a 24h period. In both the control and exudate treated 

microcosms, MAGs from four genera in Nitrososphaeraceae (phylum Thermoproteota, previously 
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Thaumarchaeota) contributed roughly 50% of exudate-addition phase metatranscriptome 

expression. By the end of the enrichment, all control and treatment microcosm 

metatranscriptomes were dominated by MAGs from the Bacteroidota, including unclassified 

genera in the Crocinitomicaceae and JADKCL01 families. 

As we wanted to understand the impact of exudate addition on the soil microbiomes, we 

focused on the metatranscriptomes from day 5, representing the exudate addition phase. We first 

examined MAG expression for individual exudate treatments relative to the controls. No MAGs 

were discriminant between control and cereal rye, or between control and rapeseed, exudate 

treatments. One MAG from an undescribed species in the Actinomycetota (JAJTCL01 

sp021323255) was discriminant to the hairy vetch exudate microcosms, and a MAG from a novel 

genus in the Patescibacteria (family UBA1547) was discriminant to the sorghum exudate 

microcosms (Maaslin2, q<0.25).  Next, we wanted to know what MAGs broadly responded to 

exudate addition. We found 5 MAGs were enriched in the exudate microcosm metatranscriptomes 

(Maaslin2, q<0.25). The latter group included two MAGs in the Gammaproteobacterial genus 

Hydrogenophaga, one MAG classified as Nitrobacter vulgaris, and MAGs representing novel 

species of Arthrobacter and Paucimonas. Collectively, this suggests exudate compounds 

stimulated specific microorganisms in the broader community. 

Next, we wanted to examine the impact of exudate stimulation on microbial community 

gene expression. We aggregated genes at the annotation level to determine functions that were 

discriminant to control and exudate amended microcosms. We identified 114 microbial functions 

that were enriched in the control metatranscriptome at day 5, and 145 functions that were enriched 

in the exudate amended microcosms (Maaslin2, q<0.25). This analysis revealed genes involved 

in cellular activity (ex. ribosomal proteins, RNA polymerase, anabolic pathways, etc.) were more 

highly expressed in exudate treatment microcosms than in control. This suggests the exudate 

inputs enhanced microbial metabolic activity. In support of this, genes for sugar and amino acid 
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transport are enriched in the control metatranscriptome, which may suggest that exudate treated 

microcosms are replete with these resources. 

4.2.3. Root Exudates from Cereal Rye and Hairy Vetch Had a More Pronounced Impact on 

Restructuring Microbial Metabolic Outputs. 

Our next aim was to investigate the microbial community response to exudates at the 

metabolite level. We combined non-targeted and targeted LC-MS/MS data which resulted in the 

detection of 641 molecular features to resolve community metabolic changes across the 

enrichment timeseries. Compared to the metagenome and metatranscriptome responses, the 

metabolite data showed much stronger structuring by treatment and time (PERMANOVA, 

p<0.001). We found that cereal rye and hairy vetch microcosms were significantly different 

compared to soil controls at each timepoint following the first day of exudate addition 

(PERMANOVA, p<0.05), indicating these exudates rapidly influenced microbial outputs. In the 

sorghum and rapeseed treatment, soil metabolic changes in response to exudate amendments 

were only significantly different compared to controls following day 3 and 5 of exudate addition, 

respectively, as well as the post-exudate addition phase, suggesting these treatments do not 

stimulate as strong as a response as cereal rye and hairy vetch exudates, however these 

treatments still prompted changes (PERMANOVA, p<0.05).  

To broadly visualize changes in metabolisms over time and across treatments, we utilized 

partial least squares discriminate analysis (PLS-DA) to visualize differences in metabolomes 

(Figure 15A). The most distinct metabolic changes were observed between the metabolomes of 

cereal rye and hairy vetch treatments relative to the control during periods of exudate addition. 

Then, in the post-exudate addition phase (days 10, 15, and 21), the metabolomes clustered more 

similarly to the starting inoculum, suggesting a functional convergence following the lack of 

stimulation by exudates, although these metabolomes were still significantly different from the 
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controls (PERMANOVA, p<0.05). This may suggest a shorter-lived legacy effect following the 

microbial changes stimulated by exudate treatments.  

 

Figure 15. Cover crop treatment influences microbial metabolome and phytohormone 
biosynthesis across time. A) Two-dimensional scores plot of PLS-DA (R2X = 0.101, R2Y = 
0.0597, Q2 = 0.784, PERMANOVA p<0.001) between all treatment metabolomes. Ellipses 
represent 95% confidence intervals and are colored by treatment. Shapes denote treatment as 
well, cereal rye (circles), hairy vetch (triangles), sorghum (diamonds), octagons (rapeseed) and 
control (square) metabolomes and colors within shapes represent time. B-E) Line graphs show 
concentration of 4 abundant phytohormones colored by treatment. Circles represent the average 
concentration at that timepoint and error bars represent standard deviation. (B) Indole-3-acetic 
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acid (IAA) (C) 1-aminocyopropane carboxylic acid (ACC) (D) gibberellic acid 4 (GA4) (E) Indole-
3-butyric acid (IBA). F) PLS-DA biplot shows the relative contribution of each phytohormone to 
each treatment. Colored stars indicate a treatment and colored circles indicate a phytohormone. 
Colored circles with labels indicate phytohormones discussed in the text. 

 

4.2.4. Specific Microbial Phytohormone Metabolisms are Captured in Laboratory Microcosms  

To survey the metabolites and metabolite classes contributing to the changing treatment 

metabolomes, we combined unannotated and annotated metabolites and taxonomically classified 

compounds using ClassyFire214 into compound superclasses. We detected metabolites across 14 

superclass: Lipids and lipid-like molecules (179), organoheterocyclic compounds (106), organic 

acids and derivatives (97), phenylpropanoids and polyketides (64), organic oxygen compounds 

(52),  benzenoids (38), nucleosides, nucleotides, and analogues (20), alkaloids and derivatives 

(18), organic nitrogen compounds (15), lignans, neolignans and related compounds (7), 

organosulfur compounds (3), organic 1,3-dipolar compounds  (1), organic polymers (1) 

(Appendix C).  

From our targeted methods, we quantified 8 phytohormones in total: indole-3-acetic acid 

(IAA), indole-3-butyric acid (IBA), gibberellic acid 4 (GA), 1-aminocyclopropane carboxylic acid 

(ACC), salicylic acid (SA), methyl salicylate (mSA), benzoic acid (BA), jasmonic acid (JA). In light 

of phytohormone production and consumption patterns observed in the microcosms, we focused 

on microbial responses to phytohormones as these compounds can have a significant impact in 

shaping plant-microbe interactions, soil health, and ecosystem functioning62,215. IAA, IBA, BA, GA, 

and ACC had the strongest effect on treatment metabolomes out of the phytohormones surveyed 

(Figure 15F). Specifically, IAA and ACC, were detected in each cover crop treatment but not in 

the control (Figure 15B-C). Within all exudate treatment microcosms, ACC accumulated during 

the exudate addition phase and decreased in the post exudate addition phase. IAA, on the other 

hand, accumulated during the exudate addition phase in all treatments, but in sorghum exudate 

amended microcosms, IAA concentrations increased during the post-addition phase as well. 
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Cereal rye microcosms enriched production for two different phytohormones, GA4 and IBA (one-

way ANOVA, p<0.05); IBA was found exclusively in the post-exudate addition phase and GA4 

was found at all timepoints following day 0 (Figure 15D-E).  These data suggest root exudate 

treatment stimulated microbial phytohormone biosynthesis, which motivated us to investigate 

microbial genomes and coupled transcriptomes for members capable of these biosynthetic 

routes. 

 

4.2.3. Microbial Production of ACC-Deaminase in Response to Addition of ACC 

The non-proteinogenic 1-aminocyclopropane carboxylic acid (ACC) is an amino acid 

derivative and can act as an assembly cue for plant growth promoting (PGP) bacteria (PGPB) in 

the rhizosphere 216,217. Here, we detected the presence of ACC in each exudate treatment at a 

significantly higher amount than in the control (Figure 15C; one-way ANOVA, p<0.001). The 

abundance of ACC increased with time during the exudate addition phase and at day 7, and then 

decreased or stayed the same, in the post-exudate addition phase indicating the degradation of 

the metabolite, with the largest conversion of ACC in the rapeseed treatment. Many PGPB 

metabolize ACC via deamination, thereby converting ACC into ammonium and α-ketobutyrate 

using the enzyme ACC deaminase (acdS), resulting in the production of microbial nitrogen and 

carbon sources, respectively. In fact, this gene has been cited as an important trait for PGPB 

rhizosphere competence and plants that harbor acdS are more stress resistant218. 

We mined the ARM MAGs for ACC deaminase genes and found 66 genes from 63 MAGs 

annotated as acdS. As ACC deaminase genes can be misannotated as D-cysteine sulfhydrase 

219,220, we curated these putative hits with key active site residues to identify 13 high confidence 

acdS genes from distinct MAGs in the Actinomycetota (n=9) and the Pseudomonadota (formerly 

Proteobacteriota, n=4). We next wanted to examine the expression of these genes in the 

metatranscriptomes. ACC deaminase expression was detected in 2 Actinomycetota MAGs across 
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treatments and timepoints. One MAG in the genus Pseudonocardia expressed acdS at day 0 in 

the control soils, and at day 5 in the control soils and the sorghum and cereal rye treatments. The 

other MAG, a member of the genus Ornithinibacter, expressed acdS at day 0 in the sorghum 

treatment, at day 5 in the hairy vetch treatment, and at day 21 in the cereal rye treatment. Analysis 

of the broader gene expression of these two MAGs suggests they may be using the 2-

oxobutanoate generated from ACC deaminase activity in isoleucine biosynthesis.  To the best of 

our knowledge, this represents the first report of ACC deaminase potential for members of these 

two genera. In summary, we show the power of combining metabolite data with microbial genomic 

expression for highlighting how phytohormones may support soil microbial lifestyles.   

 

4.2.4. Production of IAA & IAA-like Indole Derivatives is Stimulated by Rapeseed, Hairy Vetch 

and Sorghum Treatments, but not Cereal Rye. 

Microbial biosynthesis of indole derivatives, like auxins, can have important impacts on 

plant health which makes characterizing microbial indole production an important avenue for 

evaluating the impact of PGP microbes62,138. Mining our untargeted LC-MS data, complemented 

by targeted approaches (LC-MS/MS), we utilized in silico chemical structural predictions from MS-

FINDER to determine taxonomic lineage of unknown compounds that shared structural similarity 

to the known phytohormones captured in our targeted methods (i.e., IAA and IBA). We first 

completed this analysis for indole compounds and found two indoles that shared structural 

similarity with IAA and thus were annotated as unknown indoles classified at a level 3 annotation 

104.  These indoles were from the subclasses (i) indole and (ii) indolyl carboxylic acids and 

derivatives and could be further categorized as a 3-alkylindole compound and an IAA derivative, 

respectively, at a parent level 1 according to ClassyFire214. 

First, we tracked changes in known phytohormones, IAA and IBA. IAA concentrations 

fluctuated in all treatment microcosms over time, but was detected at a higher relative abundance 
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in sorghum by day 21 compared to the control (Figure 15B) although this was not statistically 

significant due to the low abundance of this compound (2-way ANOVA, p>0.05). IBA, on the other 

hand, accumulated significantly by days 15 and 21 in cereal rye treated microcosms, indicating 

this auxin was likely produced during the post-exudate addition phase (2-way ANOVA, p<0.002; 

Figure 15E). The unknown IAA derivative was significantly more abundant in the rapeseed 

treatment compared to the control at each timepoint following day 1 (2-way ANOVA, p<0.0001, 

Figure 16A). Exhibiting a broader response, the unknown 3-alkylindole was significantly enriched 

at each timepoint following the first day of exudate addition in rapeseed, sorghum, and hairy vetch 

compared to the control (2-way ANOVA, p<0.0001, Figure 16B).  
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Figure 16. Production of Indole-3-Acetic Acid (IAA) & IAA-like compounds from diverse 
lineages in rapeseed, sorghum, and hairy vetch microcosms. A-B) Line plots represent TIC 
normalized abundances of two unknown IAA-like compounds, an unknown IAA-like derivative and 
an unknown indole, respectively, annotated at a level 3 annotation. Color corresponds to 
treatment, circles represent the mean, error bar represent standard deviation. Significance is 
indicated by and asterisk (*): 0.0332 (*), 0.0021 (**), 0.0002 (***), 0.0001 (****). C) IAA biosynthetic 
pathways. 4 routes for IAA were detected by metagenomics (metaG) or metatranscriptomics 
(metaT), detection is indicated by arrow type: hollow arrows indicate the gene was not detected 
via metaG, dotted arrows indicate the gene was only encoded, solid arrows indicate the gene was 
encoded and expressed (metaT). Enzymes names are in grey next to the corresponding reaction 
arrow, and given an enzyme #. Colors correspond to IAA pathway. The final product, IAA, is 
indicated as a boxed metabolite. D) Heatmaps show the zscored geTMM value for each summed 
gene abundance across all MAGs expressing the gene (corresponding to the enzyme number in 
(C)) within a treatment and timepoint. Enzyme number corresponds to biosynthetic routes in C. 
E) Summed abundance of all MAGs across all treatments either encoding an IAA-production gene 
(top) or expressing the gene (bottom). Colors correspond to IAA pathway and number 
corresponds to enzyme ID. F) pie charts show the distribution of each IAA-production gene 
summed at the phyla level for MAGs encoding (top) or expressing (bottom) the gene. Color 
corresponds to phyla assignment.  

 

IAA, and indole intermediates, can be synthesized via five major pathways derived from 

tryptophan (Trp) metabolism resulting in the shared terminal oxidation step converting indole 

acetaldehyde (IAAld) to IAA by aldehyde dehydrogenase (ALDH) (Figure 16C)138,172. We profiled 

genes for IAA pathways in the ARM database and found 4 pathways were represented in our 

MAGs. IAA can be synthesized from Trp via transamination (Tam1) to indole-3-pyruvate (IPA) 

and decarboxylated to IAAld via the IPA decarboxylase (ipdC) gene. Despite 10 MAGs carrying 

ipdC, we did not detect any MAGs encoding Tam1, suggesting this pathway is not fully 

represented in these soil genomes. Providing further evidence for the lack of IAA biosynthesis 

from the IPA pathway, there was no expression of Tam1 or idpC enzymes in any transcriptomes. 

The second pathway, indoleacetonitrile (IAN) pathway, is partially unknown for proximal 

oxidoreductases in bacteria (i.e., Trp  indoleacealoxime), but the last step of the pathway 

hydrolyzing IAN to IAA catalyzed by nitrilase, was encoded in 55 MAGs. Nitrilases expressed only 

in treatment and not controls at days 5 and 21, were found in 5 MAGs from three genera in 

Actinomycetota, one in Pseudomonadota, and one in Chloroflexota. Expression of nitrilase, 
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averaged across these MAGs within a treatment revealed nitrilase expression was most abundant 

in cereal rye and rapeseed microcosms (Figure 16D).   

Completing the two step IAM pathway, 3 MAGs encoded tryptophan 2-monooxygenase 

(iaaM) and 6 MAGs encoded indoleacetamide (IAM) hydrolase (iaaH). Of these MAGs, 1 MAG 

from the Geminicoccaceae family expressed iaaM while a second MAG from the Burkholderiales 

order expressed iaaH. Both genes were expressed across the rapeseed, hairy vetch, and cereal 

rye exudate treatments at day 5, but not in the control (Figure 16D). There were no MAGs carrying 

both iaaM and iaaH to complete the two-step IAM pathway, suggesting the possibility MAGs may 

catalyze Trp into disparate intermediates, sharing only partial responsibility in IAA synthesis, as 

others have shown221. The expression of the IAM pathway may elude to the utilization of this 

pathway by Geminicoccaceae family or Burkholderiales order members as stimulated by cereal 

rye, hairy vetch, and rapeseed exudates, but not sorghum, contributing to IAA synthesis in these 

microcosms.  

34 MAGs encoded the first step of the tryptamine (TAM) pathway, decarboxylating Trp to 

TAM by an aromatic-L-amino-acid/L-tryptophan decarboxylase (DDC) and 3 MAGs expressed 

DDC in the cereal rye, hairy vetch, and sorghum treatment microcosms but not the controls at 

day 21. Average expression per day of DDC revealed this enzyme was most active at day 21 in 

cereal rye and sorghum microcosms (Figure 16D). TAM is then oxidized to IAAld by monoamine 

oxidase (MAO), a gene encoded by 82 MAGs and expressed in 5 MAGs found in hairy vetch, 

rapeseed, and sorghum treatment microcosms at day 21 (Figure 16D). Finally, 215 MAGs from 

ARM encoded the NAD-dependent ALDH enzyme oxidizing IAAld to IAA. 15 of those MAGs 

expressed ALDH in each treatment microcosms, but not in the control. On average per day, MAG 

expression of ALDH in cereal rye and hairy vetch microcosms expressed higher relative amounts 

of ALDH, while rapeseed and sorghum produce less by day 21. The production of ALDH in these 
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15 MAGs at day 21, and not in the control, suggests these MAGs contributed the synthesis of IAA 

and IAA-like molecules over time. 

Previous studies have demonstrated that bacterial genomes are primed to produce IAA 

via the IPA or IAM pathways, but our results highlight that the soil microbes analyzed here more 

dominantly encoded and expressed genes from the TAM and IAN pathways (Figure 16 E-F). Out 

of the 190 MAGs expressing at least one gene across the IAA biosynthesis pathways, 61% of 

MAGs encoded genes from the TAM pathway, while only 5% carried genes for the IAM pathway, 

and 29% encoded for nitrilase (Figure 16E). Out of the 15 MAGs expressing genes for IAA 

synthesis in treatment microcosms, 20% and 33% expressed DDC and MAO, respectively, as a 

part of the TAM pathway, while only 7% expressed iaaM and iaaH, and 33% expressed nitrilase 

(Figure 16E). These results suggest that these soil bacteria have very high potential to synthesize 

IAA via the TAM pathway, followed by IAN, IAM, and then the IPA pathway. Different from other 

studies that suggest the IPA is the primary bacterial IAA synthetic route, we found bacteria from 

varying phyla preferred different pathways (Figure 16F). Our results suggest that MAGs capable 

of metabolizing IAA from Trp via IPA or IAM were primarily from the Pseudomonadota, 

Acidobacteroita, or Bacillota phyla while MAGs synthesizing IAA from TAM or IAN were much 

more diverse (Figure 16F). This result indicates the IAA-producing trait is widely distributed in 

soil MAGs, and that multiple heterogenous root exudation strategies stimulate MAGs carrying 

these genes to upregulate indole biosynthetic routes.  

 

4.2.5. Cereal Rye Exudates Stimulate Potentially New Bacterial Species with Gibberellic Acid 4 

Biosynthetic Capacity. 

We next examined the impact of cereal rye root exudate treatments on microbial 

gibberellic acid 4 (GA4) biosynthesis. A significant difference in the cereal rye metabolome as 

compared to the control was observed (Figure 17A; PERMANOVA; p <0.0001), suggesting 
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unique capacity of cereal rye root exudates to modulate microbial community response. In 

particular, we observed GA4 was produced over time (Figure 15D) and two additional unknown 

gibberellins detected via nontargeted LC-MS/MS were detected at higher abundances in the 

cereal rye treatment microcosms over time compared to the control (Figure 17A-B). These two 

unknown gibberellins were classified as type C20 and C19 gibberellins according to ClassyFire 

and were significantly different between cereal rye metabolomes versus the control at all 

timepoints following the first day of exudate addition (two-way ANOVA, p<0.0001; VIP >1.9).  
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Figure 17. Gibberellic acid (GA) biosynthesis in cereal rye microcosms. A-B) Line plots 
represent TIC normalized abundances of two unknown GA-like compounds, an unknown C20 
type GA and an unknown C19 type GA, respectively, annotated at a level 3 annotation. Color 
corresponds to treatment, circles represent the mean, error bar represent standard deviation. C) 
GA biosynthetic operon. The core operon CYP  KS is primarily conserved across bacteria, while 
CYP115 and KS have only been found in certain bacterial strains. D) GA biosynthetic route 
beginning with the 20-carbon isoprenyl precursor (E,E,E)-geranylgeranyl diphosphate (GGDP) 
and ending with the bioactive GA4, outlined with a blue dotted square. E) A potentially-new 
bacterium of the Thermomicrobiales order expressing 5 out of 9 GA biosynthetic proteins required 
to produce GA4, including the final enzyme converting GA9  GA4, the GA found most abundant 
in cereal rye microcosms at day 21. F) Averaged geTMM abundance of MAGs producing CYP155 
protein in cereal rye and control microcosms. G) Expression of CYP115 of a novel 
Thermomicrobiales bacterium. 

 

GAs are first derived from isoprenoid diphosphates which are converted to the 20-carbon 

isoprenyl precursor (E,E,E)-geranylgeranyl diphosphate (GGDP), by the geranylgeranyl 

diphosphate synthase (GGPS or idsA) gene. GGPP is transformed into ent-copalyl diphosphate 

(CDP) by ent-CPP synthase (CPS) followed by cyclization to form ent-kaurene by ent-kaurene 

synthase (KS), creating a key intermediate in the GA biosynthesis pathway. ent-kaurene is then 

oxidized to ent-kaurenoic acid by cytochrome P450 (CYP) monooxygenase 117 (CYP117) before 

a final oxidation to GA12-aldehyde by CYP114. GA12-aldehyde is modified to form GA12 by a short 

chain dehydrogenase (SDR), converted to GA9 by CYP112, and finally bioactivated to GA4 by 

GA-3-oxidation (CYP115)222.  Finally, GAs can be inactivated gibberellin 2-oxidases (Figure 17D).  

To investigate possible producers and inactivators of GA4 to understand its role as a plant 

signaling molecule for growth and development, we first used a BLAST analysis with individual 

protein sequences of each gene as the query to survey MAGs containing genes located in the 

GA operon223. MAGs that contained sequence matches were considered if the BLAST E value 

was 10-10 or less and the bitscore was >150. We found 176 MAGs that encoded at least one 

enzyme in the GA operon. We mined cereal rye metatranscriptomes for CYP115 to determine 

MAGs producing GA4, as this gene encode the necessary step to produce GA4 (Figure 17D). 

We found 5 MAGs expressing CYP115 uniquely in the cereal rye treatment at days 5 and 21, 
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suggesting these MAGs are important for GA4 production in response to cereal rye exudate 

(Figure 17F). Interestingly, we found 1 MAG which encoded 6 of the 9 GA operon genes, and 

actively expressed 5 (CYP112, CYP114, CYP115, GGPS, SRD) of the proteins at day 21 in the 

cereal rye treatment and not in the control, corresponding to a high concentration of GA4 in the 

cereal rye microcosms (Figure 17G) indicating this MAG may be important in the production of 

GA4 under the conditions tested here. This MAG, from the Thermomicrobiales order represents 

a potentially-new bacterium with GA4 producing capabilities. As such, GA4, and related GA, 

biosynthesis by the soil microbiome and its relationship with cereal rye’s utility as a cover crop, 

are areas of research that warrant more investigation as microbial production of GA4 is influential 

plant growth and may play an emerging role in shaping microbial communities and functions in 

the rhizosphere. 

 

4.3 Conclusions 

Integrating a simplified and manageable laboratory soil system with advanced high-

resolution multiomics techniques afforded new perspectives into the intricate interplay between 

plant root exudates and the soil microbiome. We first provide ARM, a public agricultural genome 

database, creating a community resource for use in related microbiome-cover crop workflows. 

We then demonstrated that root exudates from 4 cover crop amendments applied at a 

physiologically-relevant concentration can impact microbial metabolisms and membership 

function, in particular the feedback loop between the microbial degradation of the phytohormone 

ACC by ACC deaminase. We also highlight the impact of cereal rye root exudation on the 

microbial production of GA and IBA as well as the impact all 4 treatments on microbial indole 

biosynthesis. Future studies can scale these hypotheses to the field to analyze the impact of plant 

genotype, root exudates, and associated microbial communities on overall plant performance. In 

summary, the results of this study represent an important step toward decoding the complex 
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chemical language between plants and their rhizosphere microbial communities, a translation 

required to optimize these interactions for enhanced agricultural management and production. 

4.4 Materials & Methods  

4.4.1 Cover Crop Root Exudate Collections 

Mature seeds from the four chosen cover crops (cereal rye, hairy vetch, sorghum, and 

rapeseed) were first surface sterilized in a sterile tissue culture hood by placing seeds in 15 mL 

conical tubes with (A) 2 mL of Clorox bleach solution (3% sodium hypochlorite. 1:1 bleach to 

water) + 1 drop of Tween-20 to reduce surface tension and improve sterilization or (B) 2 mL of 

Clorox bleach solution (3% sodium hypochlorite. 1:1 bleach to water) (see Appendix C for 

sterilization optimization). Sterilization method A or B was chosen based on optimization of 

germination rate for each cover crop species (unpublished data). Seeds suspended in sterilization 

solution were shaken for 1 min. In a sterile tissue culture hood, bleach was removed using sterile 

techniques and the seeds were rinsed five times with sterile deionized (DI) water. Seeds were 

either (A) plated to agar plates with MS basal salt mixture (2.16 mg Murashige and Skoog (MS) 

media in 500 mL sterile DI water; MP Biomedicals, Santa Ana, CA) germinated in the dark for 3 

days, and then transferred to sterile tubes with 3 mL liquid MS media after 3 days; or (B) placed 

directly in sterile growth vessel with 3 mL MS media. Growth vessels were either glass tubes 

which were used for monocotyledon species (cereal rye and sorghum) or Magenta boxes which 

were used for dicotyledon species (rapeseed and hairy vetch) based on preliminary experiments 

to optimize growth of each seedling (unpublished data). All seeds were incubated in a growth 

chamber with photoperiod 16 h light/8 h night at 25°C for 14 days. The 14-day-old seedlings did 

not introduce any microbes to the system as no bacterial growth was observed on the MS agar 

plates or growth containers. Cover crop seedlings were grown for 14-days before root exudate 

collections. Root exudates were collected by first rinsing the roots in sterile DI water 3 times and 

transferring to a new, sterile vessel filled with 5mL sterile DI water for a 24-h root exudate 



 

 

91 
 

collection period.  The suspensions containing the root exudates were then filtered through a 

0.2μm filter membrane to remove root detritus. Enough root exudates were collected and pooled 

together to achieve a treatment addition of 1.5 mg of pure exudates per day (36 mg total). 1.5mg 

of exudates was chose based on preliminary experiments and averaged the amount of exudate 

mass exuded per day across crop species thus adding a relevant amount of exudates per day 

according to what was collected over a 24-h collection period36. Root exudates suspensions were 

frozen at -20°C in 200 mL sterile glass jars. Frozen root exudate samples were lyophilized 

completely (~72 h), weighed, before resuspension in sterile HPLC-grade water (Thermo Fisher 

Scientific, Waltham, MA). Resuspended exudates were vortexed thoroughly to remove all residue 

from the bottle (1min of vortexing along all edges of the bottle). A volume equivalent to 1.5mg was 

aliquoted into sterile glass jars for daily addition and frozen at -20C until use. 

4.4.2 Cover Crop Root Exudate Microcosm Experimental Setup 

Microcosms were established and sampled as previously described18,158. The soil 

(microbial inoculum) was collected from agricultural fields at the Colorado State University 

Agricultural Research and Education Center (CSU-ARDEC) near Fort Collins, CO on June 21 

2021. The climate at the site is semi-arid, with 408 mm mean annual precipitation and a mean 

annual temperature of 10.2°C (1981-2010 average, https://usclimatedata.com/ ). The soil is 

classified as an Aridic Haplustalf. Three 2-cm diameter soil core samples to approximately 12cm 

depth were collected at 5 random locations within the plot. The soil was stored at -20˚C until 

microcosm construction. 20g of soil from each plot was pooled, homogenized, and sieved (2mm) 

to create a representative bulk soil repository used in the following microcosms experiment. 4 g 

of homogenized soil and 45 mL of sterilized water were added to quadruplet sterile 100-mL glass 

bottles to construct each microcosm (n=20). Microcosm slurries were vortexed and allowed to 

settle for 5 min. Then, day 0 samples were taken by removing 3 mL of soil slurry for parallel 

DNA/RNA extraction, and 1mL for metaproteomics analysis which was flash frozen in liquid N. 

https://usclimatedata.com/
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DNA/RNA samples were centrifuged at 10,000 rcf for 10 mins to separate DNA and RNA from 

the metabolites present in the supernatant. The supernatant was then transferred to a new tube 

as the metabolome sample. After baseline sampling, 4 mL of exudate treatment (1.5mg pure, 

dried, root exudates in 4mL sterilized LC-MS-grade water) was added to each microcosm 

replicate and vortexed. At this point, for each microcosm the bottle caps were removed and 

replaced with a sterile foam stopper for the rest of the experiment to maintain oxic conditions and 

prevent colonization by contaminating microbes. Microcosms were incubated in an orbital shaker 

set at 200 rpm at 24°C for 21 days. Each exudate treatment was added to microcosms on days 

0, 1, 2, 3, 4, and 5 at approximately the same time every day. After day 5, no additional exudate 

treatments were applied, but microcosms were maintained until day 21, which afforded additional 

samples taken at days 7, 10, 15, and 21. Samples were collected at roughly the same time each 

day and collected with aseptic techniques to ensure no additional microbial influence was 

introduced. Metabolomic and DNA/RNA samples were immediately frozen at −80°C until 

processing. Once ready for analysis, metabolomic samples were thawed overnight at 4°C, 

lyophilized, and weighed to get the amount of metabolites in each sample. Because the 

metabolome was surveyed using LC-MS and LC-MS/MS, we aliquoted the sample into two 

0.25mg subsamples for each analysis.  

4.4.2 Metabolomics: Targeted UPLC-MS/MS for Phytohormone Analysis  

0.25 mg subsamples were extracted in 75 µL of a spiked methanol solution containing 

100% methanol with 65.2 ng/mL ABA-d6, 62.5 ng/mL salicylic acid-d6, and 90.0 ng/mL jasmonic 

acid-d5 (Sigma). After solvent addition, samples were placed on a shaker plate for 1 hour at the 

highest speed setting, centrifuged at 3500 x g at 4°C for 5 minutes, and transferred to glass 

inserts. A final centrifuge step at 3500 x g for 15 minutes at 4°C was completed to ensure any 

precipitate was in the bulb of the vial insert. Five microliters of plant extract was injected onto an 

LX50 UHPLC System, equipped with an LX50 Precision Sampling Module (20-μL sample loop, 
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partial loop injection mode) (PerkinElmer, Waltham, MA, USA). An ACQUITY UPLC T3 column 

(1 × 100 mm, 1.8 μM; Waters Corporation) was used for chromatographic separation. Mobile 

phase A consisted of LC-MS grade water with 0.1% formic acid and mobile phase B was 100% 

acetonitrile. Elution gradient was initially 0.1% B for 1 min, which was increased to 55.0% B at 12 

min and further increased to 97.0% B at 15 min, then decreased to 0.1% B at 15.5 min. The 

column was reequilibrated for 4.5 min for a total run time of 20 min. The flow rate was set to 200 

μL/min and the column temperature was maintained at 45 °C. Samples were held at 4 °C in the 

autosampler. Detection was performed on a QSight™ 420 triple quadrupole mass spectrometer 

(MS) operated in selected reaction monitoring (SRM) mode. SRM transitions for each compound 

were optimized through analysis of authentic standards (Appendix C). The MS was operated 

with the ESI voltage 5000 V in positive mode and -5000 V in negative mode. Nebulizer gas flow 

was set at 350 arbitrary units and drying gas was set to 120 arbitrary units The source temperature 

was 315 °C and hot-surface induced desolvation (HSID) temperature 200 °C.  

4.4.4 Metabolomics: Nontargeted LC-MS and fastDDA Analysis 

0.25 mg subsamples were extracted in 80uL of 20% MeOH, sonicated for 1h at 20°C, 

centrifuged at max speed for 15 min, and transferred to glass inserts for analysis. From each 

sample, 5 uL was aliquoted into a separate vial to be used as a pooled QC to monitor proper 

instrument function and to detect any analytical variation. From each sample within a treatment, 

5uL was aliquoted into a 2mL vial to be used as a treatment pool for fastDDA.  

One microliter of each sample was injected onto a Waters Acquity UPLC system. 

Separation was achieved using a Waters ACQUITY UPLC Premier BEH Amide 1.7μm Column 

(2.1 x 100 mm), using a gradient from solvent A (10 mM ammonium formate in water with 0.125% 

formic acid) to solvent B (95:5 acetonitrile:water, 10 mM ammonium formate in water with 0.125% 

formic acid) and a flow rate of 0.5 mL/min. Column eluent was infused into a Waters Xevo G2-XS 

Q-TOF-MS with an electrospray source in positive ion, sensitivity mode, with data dependent 
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acquisition. For individual samples, the following parameters were used for MS1 survey scan: 50-

1200 m/z at 0.2 seconds per scan, switching to MS/MS after individual ion intensity rises above 

10000. MS/MS acquisition occurred at a scan rate of 0.2 seconds, or at accumulated TIC 

threshold of 100000, with 1 MS/MS event per MS1 scan. No inclusion list was used, but dynamic 

peak exclusion was used with a 30 second and 100 ppm mass difference exclusion window. A 

pooled QC standard was run after every 7 normal sample injections. 

In addition, pooled cereal rye, control soil, control water, and hairy vetch samples were 

run separately with 10 replicate injections per pool in iterative exclusion mode using AutoCat_V1 

processing. In this case the following parameters were used for MS1 survey scan: 50-1200 m/z 

mass range at 0.1 seconds per scan, switching to MS/MS after individual ion intensity rises above 

5000. MS/MS acquisition occurred at a scan rate of 0.5 seconds, or after accumulated TIC 

threshold of 100000, with 5 MS/MS event per MS1 scan. For all experiments, collision energy for 

MS/MS was ramped from 15 to 30 V. Calibration was performed using sodium formate with 1 ppm 

mass accuracy. The capillary voltage was held at 700 V in positive mode. The source temperature 

was held at 150 °C and the nitrogen desolvation temperature at 450 °C with a desolvation flow 

rate of 1000 L/hr. Lockspray reference mass was used to correct for drift, with 40 seconds interval 

between scans, 0.1 seconds/scan and signal averaged over 3 scans. LeuEnk was used for mass 

correction, with reference mass of 556.2771 m/z. For pooled iterative exclusion samples, 

lockspray signal was collected but correction was not applied until post-processing. These latter 

data were processed using Waters Tynebridge to produce mass calibrated mzML files compatible 

with GNPS server. The column and samples were held at 30 °C and 6 °C, respectively.  

4.4.5 Metabolomics: Data Analysis 

For the analysis of low abundance phytohormones, Simplicity 3Q software (Version 3.0.2, 

PerkinElmer, Waltham, MA) was used to detect and integrate peak areas and to a calculate linear 

regression of analytical standards used for quantification. Each peak was normalized to an 
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appropriate internal standard (IS). The corresponding linear regression equation was used for 

quantification (ng/mL) for each analyte, which was then adjusted for precise volume of slurry 

(ng/mL). The limit of detection (LOD) was calculated as 3 times the standard deviation of the blank 

divided by the slope of the calibration curve. Likewise, the limit of quantitation (LOQ) was 

calculated as 10 times the standard deviation of the blank divided by the slope of the calibration 

curve. 

For LC-MS data, mzML files were processed through the following workflow: 1) XCMS 

software was used for preprocessing to identify molecular features124; 2) features were further 

normalized to total ion current (TIC); 3) the package RAMClustR125 was used for clustering 

features into spectra. MSFinder224 was used for spectral matching, formula inference, and 

tentative structure assignment. MSFinder InChiKey results were exported and uploaded to 

ClassyFire106 for batch annotation of chemical taxonomy214. 

For LC-MS/MS fastDDA data, mzML files for each iterative exclusion across all treatments 

(n=50) were uploaded to GNPS for molecular networking and annotation. A molecular network 

was created using the online workflow (https://ccms-ucsd.github.io/GNPSDocumentation/) on the 

GNPS website (http://gnps.ucsd.edu). The data was filtered by removing all MS/MS fragment ions 

within +/- 17 Da of the precursor m/z. The precursor ion mass tolerance was set to 0.5 Da and a 

MS/MS fragment ion tolerance of 0.02 Da. A network was then created where edges were filtered 

to have a cosine score above 0.5 and more than 5 matched peaks. Further, edges between two 

nodes were kept in the network if and only if each of the nodes appeared in each other's respective 

top 20 most similar nodes. Finally, the maximum size of a molecular family was set to 100, and 

the lowest scoring edges were removed from molecular families until the molecular family size 

was below this threshold. The spectra in the network were then searched against GNPS' spectral 

libraries. The library spectra were filtered in the same manner as the input data. All matches kept 

https://ccms-ucsd.github.io/GNPSDocumentation/
http://gnps.ucsd.edu/
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between network spectra and library spectra were required to have a score above 0.5 and at least 

4 matched peaks. 

Annotation of compounds to the level 2 classification was completed through manual 

matching between the MS1 data from all samples and the MS2 data collected from the pooled 

QCs. Specifically, annotation results from GNPS molecular networking were exported and 

precursor masses were matched to MS1 spectra within an 11s retention time window (to account 

for analytical drift).   Quantitative data (untargeted LC-MS and targeted LC-MS/MS for 

phytohormone analysis) were zscored and combined for the final quantitative dataset (Appendix 

C) 

4.4.6 Metagenomics: Sample Preparation 

For days 0, 3, 5, 7, 10, and 21, we obtained a metagenome for each treatment from a 

single sample (n = 26 metagenomes). For this, genomic DNA was prepared for metagenomic 

sequencing using the ZymoBiomics DNA/RNA Miniprep kit and the Tecan Ovation Ultralow 

System V2 library prep kit and was sequenced at the University of Colorado Anschutz Sequencing 

Core on the Illumina NovaSeq 6000 with 2x150bp chemistry at 20 million read pairs per sample.  

4.4.7 Metagenomics: Sample Preparation 

Fastq files were trimmed using Sickle (v1.33)191, and trimmed reads were assembled using 

MEGAHIT (v1.2.9)225. To maximize assembly, we performed (1) co-assemblies, combining reads 

from each treatment metagenome to increase assembly coverage (2) Iterative assembly, 

iteratively assembling reads that did not map to assembled scaffolds ≥3 kb at 97% identity on all 

metagenomes. Information for metagenome statistics, including assembly information, are found 

in Appendix C. For each assembly, scaffolds ≥2.5 kb were binned using MetaBAT2 (v2.12.1)193, 

and MAG completion was assessed using checkM (v1.1.2)194. MAGs were kept in the database 

if they were >50% complete and <10% contaminated. MAGs were dereplicated at 99% identity 

using dRep (v2.6.2)195.160 MAG taxonomy was assigned using GTDB-tk (v2.3.0). MAGs and 
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assemblies were annotated using DRAM (v1.4.4)198. CAZymes were inferred from the DRAM hits. 

To quantify MAG relative abundance in each temporal sample and treatment, trimmed 

metagenomic reads were mapped to the dereplicated MAG set using bbmap (v38.90)196 at 

minidfilter=95, and output as sam files which were converted to sorted bam files using samtools 

(v1.9)197. We had two requirements for a MAG to be found in a sample: first we required reads to 

map to at least 75% of a MAG in a given sample, and second the MAG had to have at least 3X 

coverage in that sample. To determine MAGs that had reads mapped to at least 75% of the MAG, 

we used coverM (v0.6.0)226cin genome mode to output MAGs that passed this threshold (–min-

covered-fraction 75). To obtain MAG coverage, we used coverM (v0.3.2) in genome mode to 

output reads_per_base (reads mapped/genome length), and from this calculated MAG coverage 

as reads_per_base x 151 bp. A bin was “present” in a treatment or in control if it was found with 

at least 3X average coverage across the MAG and had reads mapped to at least 75% of the MAG 

in any of the timepoints or was “present” in the treatments if these two criteria were met.  

4.4.8 Metatranscriptomics: Sample Preparation 

For days 0, 5, and 21, we obtained a metatranscriptomes for each treatment from a 

triplicate sample (n = 45 metagenomes). RNA was prepared for sequencing using the 

ZymoBiomics DNA/RNA Miniprep kit and cleaned using ZymoBiomics RNA Clean & Concentrate 

Kit and sent to the Department of Energy Joint Genome Institute for sequencing on the Illumina 

NovaSeq 6000 with 2x151bp chemistry at a target depth of 100M reads per sample. rRNA was 

depleted from an input of 10 ng of total RNA using QIAseq FastSelect™ – 5S/16S/23S, rRNA 

Plant and rRNA Yeast Kits (Qiagen). Using TruSeq stranded mRNA kit (Illumina), the 300 bp - 

400 bp heat fragmented RNA was reverse transcribed to create the first strand of cDNA with 

random hexamers and SuperScript™ II Reverse Transcriptase (Thermo Fisher Scientific) 

followed by second strand synthesis. The double stranded cDNA fragments were treated with A-
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tailing, ligation with JGI's unique dual indexed adapters (IDT) and enriched using 13 cycles of 

PCR. 

4.4.9 Metatranscriptomics: Data Analysis 

Fastq files were trimmed, and adapters were removed using bbduk (v38.90) with the parameters 

ktrim=r, k=23, mink=11, hdist=1, and filtered using rqcfilter2 (v38.90). Trimmed, filtered reads 

were then mapped via Bowtie2 227 to the MAG database (dereplicated to 99% ID). Sam files were 

transformed to bam files using samtools, filtered to 95% id using reformat.sh and name sorted 

using samtools. Transcripts were counted each gene with feature-counts 228. Counts were 

transformed to geTMM (gene length corrected trimmed mean of M-values) in R using edgeR 

package 229 . Genes and bins were considered if they were expressed in 5% of samples.  

4.4.10 Statistics 

Peak area files for each metabolomic analysis were combined into one file (Appendix C) 

and normalized by z-scoring. Line graphs of targeted and nontargeted data were visualized in 

Prism using absolute concentrations and TIC normalized values, respectively. Two-way ANOVAs 

(multiple comparisons were corrected using Tukey’s multiple comparison test) were calculated 

using log10 transformed data to satisfy the assumption of data normality in order to determine if 

a compound was significantly different between a treatment and the control at each timepoint.  

Multivariate metabolomic statistics were conducted in SIMCA (v17.0.1) to generate PLS-DA 

models and gather VIP scores (here,  we used a cutoff of VIP >1.9). PLS-DA was performed using 

annotated and unannotated metabolites using z-scored and UV-scaled data. The list of scores 

and loadings coordinates were then plotted in Prism. Significance between metabolic changes 

across time and treatment was quantified using the adonis2 commands from the vegan package 

R (v4.3.1) with a PERMANOVA model. Pairwise comparisons were completed using the 

pairwise_permanova commands. 
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Metatranscriptomic NMDS plots were generated in R (v4.3.1) to estimate beta diversity 

across treatments. We utilized Bray-Curtis dissimilarity matrix visualized by non-metric 

multidimensional scaling (NMDS) in R with the ggplot2 package with stress of the non-parametric 

fit for the goodness of fit for the model. NMDS scores were exported from R and imported for 

visualization into Prism. Significance of compositional differences across treatments and the 

interaction of treatment and time, was quantified using a multi-response permutation procedure, 

mrpp, and the betadisper commands from the vegan package (v2.6-4) with an ANOVA model in 

R. Metatranscriptomic hierarchical clustering was completed in R using the hclust function from 

the stats package (v4.3.1). Visualization of the clustering used the as.dendrogram function in the 

stats package. 
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APPENDICES 
 

 

Appendix A: Chapter 2 Supplementary Files 

See supplemental files in AppendixA.zip 

File S1: Plant, seed, germination information, root morphology and exudate measurements. 

File S2: Combined z-scored metabolomics data including annotations of level of identification for 

each metabolite.  

File S3: Additional experimental details, tables of ANOVA analyses, soyasaponin molecular 

networking, additional statistical significance tests and networking Figures, and SRM transitions.  
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Appendix B: Chapter 3 Supplementary Files 

See supplemental files in AppendixB.zip 

File S1: Exudate and Exometabolite data. 

File S2: 16S rRNA gene amplicon sequencing summary, ANCOM statistics, and feature table; 

metagenome sequencing and assembly statistics, metagenome-assembled genome summaries 

and abundance data. 

File S3: DRAM annotation outputs for MAGs. 

File S4: Synthetic exudate calculations for sugars 

File S5: Synthetic exudate calculations for organic acids + final exudate treatment calculations 
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Appendix C: Chapter 4 Supplementary Files 

See supplemental files in AppendixC.zip 

File S1: Metabolomics data. Measurement of phytohormones from previously published root 

exudate characterization experiment  used to formulate root exudate treatments used in this 

study (sheet: root_exudate_phyto_report), untargeted LC-MS/MS analysis of root exudates from 

previously published  root exudate characterization experiment used to formulate root exudate 

treatments used in this study (sheet: root_exudate_untargeted), untargeted LC-MS HILIC 

results from metabolomics profiling of microcosm soil (sheet: microcosms_untargeted_lc-ms), 

targeted measurement of phytohormones from microcosm soil (sheet: 

microcosms_targeted_phyto), zscore normalized combined metabolite data (sheet: 

microcosms_zscored_data). 

File S2: Metagenome data. Metagenome stats, total sequencing (sheet: metagenome stats), 

assembly stats (sheet: assembly stats), MAG IDs of medium and high-quality MAGs along with 

their completeness and contamination scores, bin size, and contig information (sheet: 

MAG_stats). Relative abundance of each MAG in a metagenome (sheet: MAG_rel_Abund).  

File S3: Supplementary figures and tables.  

File S4: Metatranscriptomic Data. Metatranscriptome stats (sheet: metadata) and geTMM 
normalized gene abundances (sheet: geTMM) 

File S5: Cover crop seed metadata. Seed name, germination rate, sterilization method, and 

purchasing link for supplier. 

File S6: DRAM gene annotations. DRAM gene annotations of the Medium and High-quality 
MAGs in the ARM database. 
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