Engineering Sciences

MAR 25 '76

Branch Library

COMPUTATION OF POWER SPECTRAL DENSITIES AND CORRELATIONS USING DIGITAL FFT TECHNIQUES By R. E. Akins* J. A. Peterka**

Sponsored by National Science Foundation Grant ENG72-04261-A01

Fluid Mechanics and Wind Engineering Program Department of Civil Engineering Colorado State University Fort Collins, Colorado

December 1975

*Research Assistant **Assistant Professor CER75-76REA-JAP13

ACKNOWLEDGMENTS

This work was supported by NSF Grant ENG72-04261-A01. Dr. A. C. Hansen helped with some of the programming details and was also involved in many discussions concerning problems and applications.

TABLE OF CONTENTS

Chapter		Page
	ACKNOWLEDGMENTS	i
	LIST OF TABLES	iii
	LIST OF FIGURES	iv
1	INTRODUCTION	1
2	EXISTING FFT ROUTINES AT CSU	1
3	SINGLE CHANNEL FORWARD/INVERSE TRANSFORM	2
4	CALCULATION OF A POWER SPECTRAL DENSITY FROM A TIME SERIES	6
	 4.1 Calculation of Power Spectral Densities Using Segment Averaging Techniques 4.2 Calculation of Power Spectral Densities 	11
	Using an External Core FFT Algorithm	19
		24
5	TWO CHANNEL CALCULATIONSCROSS-SPECTRAL DENSITIES	
	AND CROSS-CORRELATIONS	25
	REFERENCES	28
	FIGURES	29
	APPENDICES. A1 SUBROUTINE FOURT. A1 A2 SUBROUTINE FOR2D. A1 B1 PROGRAM CHECK A1 B2 PROGRAM SEGEMNT A1	43 44 55 65 67
	B3 PROGRAM EXTCORE	72 78
	B5 PROGRAM CSPECT3	81

LIST OF TABLES

Table	Title	Page
1	LIMITS FOR POWER SPECTRAL DENSITY COMPUTATION-SYSTEMS-DEVELOPMENT A-D SYSTEM. RECORD LENGTH = 8192.9	9
2	EFFECT OF SEGMENT AVERAGING ON POWER SPECTRAL DENSITY ESTIMATES	13
3	COMPARISON OF INTEGRATED PROPERTIES OF POWER SPECTRAL DENSITY ESTIMATES	13
4	EFFECT OF FREQUENCY AVERAGING ON POWER SPECTRAL DENSITY ESTIMATES	14
5	EFFECT OF SEGMENT AVERAGING ON THE AREA UNDER THE AUTOCORRELATION FUNCTION.	15
6	COST FOR TEST CASES-PROGRAM SEGEMNT. CENTRAL PROCESSOR COST = \$290/hr	18
7	EFFECT OF RECORD LENGTH ON POWER SPECTRAL DENSITY ESTIMATES EXTERNAL CORE FFT	21
8	COMPARISON OF INTEGRATED PROPERTIES OF POWER SPECTRAL DENSITY ESTIMATES, EXTERNAL CORE FFT .	22
9	EFFECT OF RECORD LENGTH ON THE AREA UNDER THE AUTOCORRELATION FUNCTION, EXTERNAL CORE FFT	23
10	COST FOR TEST CASES PROGRAM EXTCORE. CENTRAL PROCESSOR COST = \$290/hr	23

1. INTRODUCTION

Spectral measurements are frequently required in fluid mechanics applications. Traditionally they have been made using analog techniques. With the development of the Fast Fourier Transform algorithms in the mid 1960's, digital techniques have evolved which enable power spectral densities and correlation functions to be calculated with costs much less than were previously possible. This report is intended to describe the Fast Fourier Transform algorithms available at Colorado State University, outline some of the difficulties encountered in using these algorithms, and provide a brief description of actual computer programs being used for spectral analysis on the CDC 6400 computer.

2. EXISTING FFT ROUTINES AT CSU

There are presently a number of computer programs used at CSU which use available FFT routines. Two FFT programs are being used extensively by the Fluid Mechanics and Wind Engineering group. These are FOR2D and FOURT, both a part of the IBM Contributed Program Library. FOURT (IBM Contributed Program No. 360D-13.4001) is presently on the system Fortran library (FTNLIB). FOR2D (IBM Contributed Program No. 360D-13.4006) is usually stored on a permanent file. For CSU users, a deck or access to this permanent file may be obtained by contacting Robert Akins or Dr. J. Peterka. The major difference between these two programs is that FOURT is written to use data located in the core of the computer and FOR2D is written to use data located on an external storage device. More detailed comments on these two specific subroutines appear in later sections.

3. SINGLE CHANNEL FORWARD/INVERSE TRANSFORM

Two separate uses of the FFT will be described; (1) calculation of a power spectral density from a time series and (2) transformation of a power spectral density to obtain an autocorrelation function. An explanation of the details of these types of calculations can be found in Bendat and Piersol (1). It will be assumed in the following discussions that the reader is familiar with this reference or an equivalent text.

The single-channel forward/inverse transform is perhaps the most straightforward application of the FFT, and is a good starting point for someone beginning to work with the FFT. A useful exercise is to select a known fourier transform pair and to perform the same transform using the FFT. An example utilizing this type approach will be discussed in order to illustrate usage of subroutine FOURT. Appendix Al contains a program listing of subroutine FOURT. A short section of comments appears at the beginning of the listing and explains the calling parameters and some basic aspects of usage. Use of the program can be understood without a detailed understanding of the details of the program itself.

The example transform pair to be used consists of $R(t) = e^{-t}$, $t \ge 0$ and its inverse fourier transform $G(\omega) = 4/1+\omega^2$, $\omega \ge 0$. Such an R function is often used to represent the autocorrelation function of a fluctuating velocity signal and is not only an easy function to deal with, but also is of some physical significance. A sample program (Program CHECK) which was written to take a forward and inverse fourier transform is listed in Appendix B1. The following discussion

will be based upon output from that program. References to the program will be by line number of the listing in the appendix.

The program was written to calculate a selected number of values of the function R(t) at a time step specified by an input parameter. This array of values of R(t), called D in the program, is reflected prior to performing the forward transform. This reflection is an important operation which is not adequately discussed in most texts. It is needed to satisfy continuous, even-function characteristics of the transform. In using a digital transform technique, one assumes that the data record is of infinite length. In order to create a record which resembles an infinite record, the function to be transformed is reflected about its endpoint, creating a symmetric, even, continuous function. A schematic of this reflection and the resulting periodic function is shown in Figure 1. Note that the function is one increment short of returning to the zero-time value of one at the ΔT time position $2N \Delta T$. This occurs because the reflection point is really at the $N\Delta T+1$ point rather than precisely on the NAT point as might be expected. The effect of not reflecting R prior to the transform is shown in Figure 2. In other words, the reflection should be done about a zero lag time, such that $R(\tau) = R(-\tau)$ so that the reflected correlation function is even. If there are 2N total points, N prior to reflection, then R(N+I) = R(N+2-I) for $2 \le I \le N$. This scheme of reflection will result in the point R(N+1) not being defined. Since a correlation is normally small at the maximum lag time, it is easiest to let R(N+1) equal R(N). The reflection in program check is performed in lines 35-40.

LIST OF FIGURES

Figure	Title	Page
1	REFLECTION OF AUTOCORRELATION	29
2	EFFECT OF TRANSFORMING R(t) PRIOR TO TRANSFORMING	30
3	COMPARISON OF $G(\omega)$	31
4	COMPARISON OF R*(t)	32
5	EXECUTION TIMEPROGRAM FOURT	33
6	SEGMENT AVERAGED POWER SPECTRAL DENSITIES PROGRAM SEGEMNT	34
7	FREQUENCY AVERAGED POWER SPECTRAL DENSITIES PROGRAM SEGEMNT	35
8	AUTOCORRELATIONSPROGRAM SEGEMNT	36
9	COMPARISON OF AUTOCORRELATIONS PROGRAM SEGEMNT AND DIRECT CALCULATION	37
10	EFFECT OF RECORD LENGTH ON DIRECT CALCULATION OF AUTOCORRELATION	38
11	EFFECT OF REVERSED CHANNELS	39
12	POWER SPECTRAL DENSITIESPROGRAM EXTCORE	40
13	AUTOCORRELATIONSPROGRAM EXTCORE	41
14	COMPARISON OF CROSS-CORRELATION FUNCTIONS DIRECT AND FFT COMPUTATION	42

After the data has been reflected and the D(2,I)'s set to zero, subroutine FOURT is called in line 43. It is necessary to create D as a two-dimensional array because the input to FOURT is complex. In many applications of these techniques only real signals are dealt with and the complex arithmetic capabilities of the program are not used. In these cases the fifth calling parameter of FOURT is set equal to zero indicating a real input only. It is important to understand the difference between NUMBER and NUMBE2. NUMBER as used in the program is the number of points in the unreflected R function. NUMBE2 is twice NUMBER or the length of the reflected R function.

After FOURT has been called, the output must be multiplied by a scaling factor in order to obtain the correct G. This factor for FOURT is 2 * DELTAT where DELTAT is the timestep of R. This multiplication is carried out in line 52 of Program Check. The G function returned from FOURT has data uniformly spaced in frequency with the data points at f = n/(NUMBER * DELTAT), n = 0, NUMBER-1.

Prior to performing the inverse transform, G is also reflected. In addition to reflecting G, the imaginary part of the D array is set to zero. Normally small values will appear in this position of the array during a transform and the inverse transform will be more accurate if the imaginary (D(2,I)) part of the D array is forced to zero. These operations are carried out in lines 57 to 65.

An inverse transform is performed to obtain the original R(t). Again the output of FOURT must be multiplied by a constant. For the inverse transform, this factor is 1/(4*NUMBER*DELTAT). The product of the factors for the forward and inverse transforms is 1/(2*NUMBER)

or 1/NUMBER2. This agrees with the factor given in the write-up of FOURT in Appendix A1.

Several examples using the test functions R and G will now be discussed. A number of different experiments were conducted to determine the effect of the total time and the time increment on the accuracy of the results. In the tables and plots that follow, R* will denote the recovered R function after a forward and an inverse transform. Figure 3 is a comparison of G for various values of NUMBER, the total number of points, and DELTAT, the time step between points. These variables were selected to result in all of the R's being defined for the same total time. This plot is only for the higher frequencies; below $\omega = 3$, all of the cases tested agree. The N's on the plot are for the unreflected data. It can be seen that as NUMBER increases and DELTAT decreases the region over which the transform is accurate increases. For NUMBER equal to 2048, the results are very close to the actual function G for the entire range plotted. At higher frequencies, even the case for NUMBER equal to 2048 will deviate from the actual values.

A comparison of R* for the same cases is shown in Figure 4. R* is the initial function R after having been subjected to both a forward and inverse transform. In this case virtually all values of NUMBER yield an acceptable value for R*.

The central processor (Cp) times required for the various values of NUMBER2 are shown in Figure 5. It can be seen that there is an almost linear increase in Cp time with increasing NUMBER2. These times are for the actual transform only; any multiplication or other

manipulations with the data would increase them. These test cases were run under the Scope 3.3.14 on the CSU CDC 6400 computer.

In summary, the FFT can be used rapidly and economically to perform a digital fourier transform of known data. Care must be taken to insure the data are reflected properly prior to the transform and that the appropriate factors are used after the transform. A user with no experience with FFT is strongly urged to experiment with this type of application prior to attempting to obtain a spectrum directly from digital data.

4. CALCULATION OF A POWER SPECTRAL DENSITY FROM A TIME SERIES

Another valuable application of the FFT is the calculation of a power spectral density function from a time series. A detailed explanation of this process is given in Chapter 9 of Bendat and Piersol (1) or in Chapter 6 of Enochson and Ontes (2). The basic equations used are straightforward and apply to any FFT routine. There is one significant difference between the procedures outlined in these references and the procedure recommended in this report.

This difference has to do with the addition of zeros to the initial time series to avoid having a distorted autocorrelation function as discussed on pages 312-314 of Bendat and Piersol (1). If one uses the reflection techniques described in Section 3 in obtaining an autocorrelation function from a power spectral density, the addition of zeros to the initial time series is unnecessary. This results in a significant advantage in that the same time series can be placed in a data array half the size required if the technique described in Bendat and Piersol (1) is used. In other words if a time

series of data consisting of 2000 points was to be examined using standard procedures, an array of length 4000 would be required. If the reflection technique was used, the required array length would only be 2000 and there would be a savings in core of 50 percent. In most cases the size of the data array is limited by the available core of the computer, and therefore the ability to use a smaller array can be a significant advantage.

At this point nomenclature comparable to that in Bendat and Piersol will be introduced to make the following discussions easier to follow. Denote the time series by $x_n(t)$, n = 1, N, the fourier transform of this time series by $X(f_n, N)$ n = 1, N, and the spectral density function of the time series x_n by $\tilde{G}_x(f_n)$, n = 1, N. $f_n =$ (n-1)/T where $T = N \Delta t$. Δt is the time increment of the initial time series.

In terms of these variables, a technique for computation of power spectral densities is:

- Truncate the data sequence or add zeros such that N is a power of 2. In most cases, the data should be taken to provide N data values without adding any zeros.
- 2. Taper this sequence using a cosine taper window. This process is discussed in Bendat and Piersol (1), pp. 322-324.
- 3. Compute $\chi(f_n, N)$ using a FFT routine.

4. Compute $\tilde{G}_{x}(f_{n})$ using the equation $\tilde{G}_{x}(f_{n}) = \frac{2 \cdot \Delta t}{.875 \cdot N} |x_{k}|^{2}$ 5. Smooth $\tilde{G}_{x}(f_{n})$ using either frequency or segment averaging.

Frequency averaging averages together several values of G_x from one transform about some value f_n and replaces all values averaged with one average value. Segment averaging is an ensemble average at each value of f_n of a number of separate transforms. These steps are the basis for two programs which will be used as examples. It should be noted that a real data sequence x_n will have a complex fourier transform $\chi(f_n, N)$. In a sense the real part is the coefficient of the cosine term and the imaginary part is the coefficient of the sine term. Therefore in step (4) when the power spectral density estimate is computed, the sum of the square of these two terms is used. In all examples and figures, the power spectral density has been normalized with the variance of the time series. This normalized power spectral density will be called $F(f_n)$ or F(n).

The smoothing in step (5) is one of the more subjective aspects of the procedure and the technique used will depend upon the type of signal being analyzed, the amount of computer time available, and the final use of the power spectral density. The smoothing and the choice of N and ΔT will determine the frequency range of the smoothed power spectral density. There is some choice available in the determination of these parameters, and this choice should be made prior to taking the data.

The largest value of N which can be used in core with the CDC 6400 is 8192 (2^{13}) . This is the largest power of two which can be used for a data array and not exceed the available core. Frequencies will then run from 0 to $(\frac{N}{2}-1)*\frac{1}{T}$. But $T = N\Delta T$, and therefore the frequencies will run from 0 to $(\frac{N}{2}-1)*\frac{1}{N\Delta T}$. For large N this is approximately $1/2\Delta T$, the Nyquist frequency. The zero frequency value is generally not reliable because the record lengths are of a finite length. If the value were to be nearly exact, the total time of the input data record, T, should approach infinity. The increment between points is equal to $\frac{1}{T}$ where T is the length in time of the input

data record. Recall T is equal to N Δ T. Therefore the high frequency end of the power spectral density is determined by Δ T, the time interval of the data record, and the low frequency end is determined by the length of the data record.

Normally the type signal to be examined will dictate the sample rate, $1/\Delta T$. Once this is determined, and if the maximum range possible is desired, N is 8192, the low frequency end of the power spectral density is also set. The following table gives these limits for sample rates available on the Systems-Development A-D system currently in use.

ΔT (SEC)	SAMPLE RATE (1/SEC)	LOWER LIMIT (HZ)	UPPER LIMIT (HZ)
. 004	250	.031	125.0
.002	500	.061	250.0
.001	1000	.122	500.0
. 0005	2000	. 244	1000.0
.00025	4000	.488	2000.0

TABLE 1 - LIMITS FOR POWER SPECTRAL DENSITY COMPUTATION - SYSTEMS -DEVELOPMENT A-D SYSTEM. RECORD LENGTH = 8192.

If a smaller range is desired, N may be reduced and there will be a savings in computer costs. If a larger range is desired, a program is available which allows larger N's to be used by employing an external storage device such as a disc. This program will be discussed later in this section. Smoothing of the power spectral density is required. Two techniques are available: segment averaging and frequency averaging. These may be used independently or in a combined manner. In segment averaging, a number of power spectral densities are computed from separate records from the same signal. These estimates of the power spectral densities are treated as an ensemble, and an ensemble average computed. The number of segments used is determined by the quality of the smoothed power spectral density desired and the amount of computer time to be expended. Segment averaging will not alter the frequency range of the power spectral density, the upper limit will be $1/2\Delta T$ and the lower limit 1/T.

Frequency averaging involves averaging adjacent points of the power spectral density estimate from one data record. For example every m points could be averaged and replaced by one point at the midpoint of the frequency range of the original m points. This type of averaging will have a negligible effect on the high frequency limit of the power spectral density, but will normally raise the lower limit substantially, depending, of course, on the choice of m and the original ΔT .

Factors which enter into the choice of frequency smoothing techniques are determined by the ultimate use of the power spectral density. If a well-smoothed plot is the desired output, a combination of frequency and segment averaging may be employed. If a correlation function is to be computed from the power spectral density function, then equal frequency spacing must be preserved. Also, the time spacing of the correlation obtained is determined by the frequency interval of the power spectral density and this relationship should be considered in any frequency smoothing.

4.1 Calculation of Power Spectral Densities Using Segment Averaging Techniques

In order to provide some examples of the use of both the FFT and the averaging techniques, output from a specific program will be presented. This program, SEGEMNT, is listed in Appendix B2, and references will again be made to line numbers in the program.

This program follows the suggested routine for computation of a power spectral density. Lines 107-133 read one block of data 8192 elements long off of the data tape, tape 1, and compute the mean and the rms of that data record. Lines 138-151 remove the mean from the data and divide by the rms to obtain a rms of 1.0. This section of the program also tapers the data. Lines 156-167 perform a forward fourier transform of the array D, and segment average into array SEGMEN. Lines 171-194 reflect the segment averaged spectra and perform an inverse transform to obtain a correlation function. The remainder of the program is concerned with output and plots of both the correlation and the power spectral density. Frequency averaging is performed in lines 246-260.

Some sample results from this program will now be used to illustrate the effect of segment and frequency averaging. Segment averaging can be evaluated using both qualitative and quantitative methods. The appearance of both the smoothed spectra and the autocorrelation can be compared for different numbers of segments. Figure 6 shows four different segment averaged spectra computed from the same data record. All four of these spectra were also smoothed using frequency averaging over the high frequency portion. The portion of the title which is of the form xx-8192 indicates how many segments of length 8192 were used in the calculation of the spectra. It can be easily seen that as the total number of records increases, the spectra become smoother. If

the spectra are compared by laying one on another, there is no change in the best line that could be drawn through the data. In other words, if the 64-8192 case is compared with the 4-8192 case, the mean curves are identical. Additional qualitative comparisons can be made using a number of different criteria. The effective bandwidth, number of degrees of freedom and normalized standard error for the different cases can be computed using equations (9.140) to (9.149) of Bendat and Piersol (1). These values for the cases plotted in Figure 6 are shown in Table 2. As the number of segments averaged increases, the normalized standard error decreases. The effect of frequency averaging in reducing the normalized standard error can also be seen. Another means of comparison is available in terms of more physically relevant parameters. The area under the spectrum is compared in Table 3 for the four cases shown in Figure 6. There is very little difference in these integrated quantities as the number of segments increases. These values were all computed for the segment averaged spectra before frequency averaging. Close attention should be paid to the integral of F(n). A value which is not very close to 1.00 is an indication that, for some reason, an incorrect spectrum has been obtained.

Figure 7 shows the qualitative effect of frequency averaging. All three cases were averaged over the same number of segments, and the differences are a result of frequency averaging alone. The last line of the titles indicate the type of frequency averaging used. The different averaging schemes are: (1) no frequency averaging (2) HF AVG 10 - no frequency averaging from 0-5.98 HZ, 10 points averaged

CASE	NUMBER OF POINTS FREQUENCY AVERAGED	RANGE OF SMOOTHING (HZ)	EFFECTIVE BANDWIDTH (HZ)	NUMBER OF DEGREES OF FREEDOM	NORMALIZED STANDARD ERROR
4-8192	1	0-5.98	.122	8	.500
	10	5.93-500.0	1.220	80	.158
8-8192	1	0-5.98	.122	16	. 353
	10	5.98-500.0	1.220	160	.112
16-8192	1	0-5.98	.122	32	.250
	10	5.98-500.0	1.220	320	.079
64-8192	1	0-1.09	.122	128	.125
	3	1.09-5.98	. 366	384	.072
	10	5.98-500.0	1.220	1280	.039

TABLE 2 - EFFECT OF SEGMENT AVERAGING ON POWER SPECTRAL
DENSITY ESTIMATES

TABLE	3	-	COMPARISON	OF	INTE	GRATED	PROPERTIES	OF	POWER
			SPECTRAL D	ENS 1	ITY E	STIMATE	ES		

CASE	500 ∫ F(n)dn o
4-8192	1.014
8-8192	1.004
16-8192	1.002
64-8192	1.007

from 5.98-500 HZ (3) HF AVG 10 LF AVG 3 - no frequency averaging from 0-1.098 HZ, 3 points averaged from 1.098-5.98 HZ and 10 points averaged from 5.98-500 HZ. Table 4 is comparable to Table 2 and shows the effective bandwidths, number of degrees of freedom and normalized standard error for the cases shown in Figure 7. These criteria are the only ways to evaluate frequency averaging. In most cases frequency averaging will be used to provide a smooth plot of the spectra, and the means of frequency smoothing selected will be dependent upon the type of data being considered, the frequency range of interest, and the ultimate use of the plot.

CASE	NUMBER OF POINTS FREQUENCY AVERAGED	RANGE OF SMOOTHING (HZ)	EFFECTIVE BANDWIDTH (HZ)	NUMBER OF DEGREES OF FREEDOM	NORMALIZED STANDARD ERROR
4-8192	1	0-500.0	.122	8	. 500
4-8192	1	0-5.98	.122	8	.500
	10	5.98-500.0	1.220	80	.158
4-8192	1	0-1.09	.122	8	.500
	3	1.09-5.98	. 366	24	.289
	10	5.98-500.0	1.220	80	.158

TABLE 4 - EFFECT OF FREQUENCY AVERAGING ON POWER SPECTRAL DENSITY ESTIMATES

Some additional guidelines which may be used in the selection of how many segments to average may be obtained from considerations of the autocorrelation function obtained from the segment averaged spectra. In order to compute an inverse fourier transform, the smoothed spectra must consist of equally spaced frequency increments. Generally the spectra to be used will only be segment averaged and not frequency

averaged in order to preserve equal frequency spacing. In all of the cases which will be discussed, the segment averaged spectra was transformed using the techniques outlined in section 3. Figure 8 is a plot of the autocorrelation functions obtained from the spectra shown in Figure 6. In all cases the plots are quite similar up to a lag time of .2 seconds. For longer lag times there is more difference evident. As the number of segments used in the frequency averaging increases, the value of the autocorrelation stays closer to zero for lag times from .2 to 1.0 seconds. Table 5 shows the areas of the autocorrelation function up to the first zero crossing and also from 0 to 4.096 seconds. There is up to a 25 percent difference in the area to the first zero crossing between the different cases although the spectra of Figure 6 appear to be virtually identical. The areas computed over the full range of the autocorrelation are at least one order of magnitude less than the areas to the first zero crossing. A more detailed discussion of the reason for the difference in the areas is presented in the following paragraphs. These two problems represent a significant difficulty if one is interested in computing an integral scale.

CASE	AREA TO FIRST ZERO CROSSING	AREA 0-4.096 SECONDS
4-8192	.0405	.00142
8-8192	.0363	.00157
16-8192	.0336	.00195
64-8192	.0280	.00187

TABLE 5 - EFFECT OF SEGMENT AVERAGING ON THE AREA UNDER THE AUTOCORRELATION FUNCTION

In order to try to get a more accurate calculation of the autocorrelation function, a program was written to calculate the autocorrelation directly from the data record. This is a much more expensive method than the FFT technique and not as many cases were run. A comparison of the autocorrelations obtained using a direct calculation and using an inverse fourier transform of a spectra is shown in Figure 9. The plots with the title PROGRAM ACR were computed directly using a data record of the indicated length in 8 second segments. For a 32 second record, 4 separate autocorrelations were computed and averaged in a manner analogous to segment averaging of the spectra. The cost of calculation was such that in the direct case, the computation was only carried out to a lag time of .9 seconds. Therefore, the only direct comparison which can be made between the plots is the area up to the first zero crossing. For the 32 second record, the area to the first zero crossing is .0333 for the direct calculation and .0405 for the FFT calculation. For the 64 second record, the area is .0362 for the direct calculation and .0363 for the FFT calculation. It is interesting to note the comparison in cost to obtain an autocorrelation via the direct method with that for the FFT technique. For the lower two plots of Figure 10, both of which represent a data record of approximately 64 seconds of real time, the direct calculation for 100 values of time lag cost \$28.00 while the FFT calculation costs \$5.40 for 4096 values of time lag. This is a factor of 5 differences in cost for 40 times fewer correlation points. The FFT technique also provides a spectrum for the cost indicated.

In the course of the direct calculation of the autocorrelation function, an interesting effect of the length of the record used in the

calculation was observed. The direct calculation was initially carried out using a record length of 2000 (2 seconds) and the maximum lag computed corresponded to 1000 data values (1 second). Two examples of this calculation are shown in Figure 10. In both cases where records of 2 seconds each were used, the autocorrelation is negative from a time lag of 0.3 seconds to a time lag of 1.0 seconds. This was not the case in any of the computations which used the FFT. In order to see what effect record length had on this negative region, the direct calculation program was modified to use a record length of 8000 (8 seconds). The results of these computations for the same total length of data are also shown in Figure 10. The negative region from .3 to 1.0 is no longer predominant, and these results agree well with the autocorrelations obtained from the FFT routines as shown in Figure 9.

An explanation for this difference can be made based on physical arguments. A time lag of .5 seconds corresponds to a frequency of 2HZ. In a 2 second record there would only be 4 cycles at this frequency and fewer cycles at any lower frequency (longer time lags). It seems that 4 cycles are not enough to adequately average in the calculation of an autocorrelation. By using a record length of 8 seconds, there will be 16 cycles of a 2HZ signal in one record, and the resolution at lag times of .5 seconds will be better. Based on a limited amount of experience with this particular record, it is felt that at least 8 cycles of a particular frequency should be present to obtain adequate resolution in an autocorrelation function at a lag time corresponding to the reciprocal of the frequency.

An additional effect of interest also arose in one case. A digital data tape was used which had more than one channel of data.

For a small portion of one record, the channels were reversed and the effect on the power spectral density is shown in Figure 11. The noise in the high frequency portion of the spectra is due to the channel switch. The second plot is of the same data but avoiding the record with the channel switch.

The cost of the various cases run with program SEGEMNT are listed in Table 6. These include the computation of a power spectral density, an autocorrelation and plots of both using the U200 plotting routines available at the Engineering Research Center, Colorado State University.

NUMBER OF SEGMENTS OF LENGTH 8192	TIME OF TOTAL AMOUNT OF DATA (SECONDS)	COST \$	
4	32.77	4.00	
8	65.54	5.40	
16	131.07	8.92	
64	524.29	27.82	

TABLE 6 - COST FOR TEST CASES - PROGRAM SEGEMNT CENTRAL PROCESSOR COST = \$290/hr

It is important to bear in mind that all of the examples in this section have been calculated using a record of pressure data obtained using a linear transducer. Non-linear transducers or signals of a different type which require different frequency range or which were taken at a different sample rate would alter the cost figures. As such, these examples should only be considered as guidelines in selecting a scheme for digital analysis. 4.2 Calculation of Power Spectral Densities Using an External Core FFT Algorithm

In some applications, it is desirable to have a greater frequency range of the power spectral density, or resolution of the autocorrelation at relatively large lag times. In order to obtain either of these results, a long record of data must be used for each segment. In order to stay within the present available core of the CDC 6400, (140000_{g}) , the longest data record which is a power of two which may be used is 8192. A technique is available which allows longer data records to be considered by making use of disc storage and performing the FFT in pieces. The details of the algorithm are described by Brenner (3). A program titled FOR2D is available from the IBM Contributed Program Library (#360D-13.4006). This program was written by Norman Brenner and uses the algorithm of reference 3. The program allows record lengths limited only by the disc storage available on the computer system in use (presently between 2,000,000 and 3,000,000 for the CSU CDC 6400 system). This capability allows very long record lengths to be used if necessary. The cost of the calculations becomes large as longer records are used and in many cases becomes a limiting factor. A comparison of external core techniques and segment averaging techniques is discussed in section 4.3.

In order to use an external core type of program, the input data record is broken into a series of equal length records. It is necessary to be able to store 3 of these records in the core of the computer at any given time. This requirement will set the length of this array. The input data record is then stored on the disc and the FFT routine only calls a portion of the record at a time. It is important to

understand that this is not a segment averaged technique, but that the resulting sequence of points is the same that would be obtained if the entire data record were transformed using a computer with a very large core.

A listing of a program written to utilize the external core technique, EXTCORE is in Appendix B3. A listing of subroutine FOR2D is in Appendix A2.

The steps necessary to calculate a power spectral density are basically the same as were listed in section 4.1. The only differences between program EXTCORE and SEGEMNT are in the input and averaging. These differences will be pointed out with reference to line numbers in Appendix B3.

In lines 145-170, the data is read from the data tape (tape 1) in units compatible with the length of the records to be stored in mass storage. These records are available to the program by calling subroutine DREAD. Lines 187-205 remove the mean from the data and taper the data. FOR2D is called in line 209. The remainder of the program involves frequency averaging, output, and plotting.

The frequency averaging is similar to that described in the previous section except that even the low frequency portion of the spectrum is frequency averaged. Since only one segment is run, some frequency averaging is necessary even in the low frequency portions in order to obtain acceptable levels of statistical reliability.

The power spectral densities obtained from four different cases using program EXTCORE are shown in Figure 12. The notation in the figures indicates how many portions were used to make up the entire record. The figure in the bottom right utilized a record made up of

512 parts, each consisting of 1024 data elements. The averaging in the three shorter cases was such that the bandwidths for all three were the same. The fourth case (512-1024) used a different scheme of frequency averaging. The details of the frequency averaging along with the number of degrees of freedom, and the normalized standard error are shown in Table 7. This table can be compared with Tables 2 and 4 of section 4.1. It can be easily seen that as the normalized standard error decreases, the power spectral density function becomes smoother.

CASE	NUMBER OF POINTS FREQUENCY AVERAGED	RANGE OF SMOOTHING (HZ)	EFFECTIVE BANDWIDTH (HZ)	NUMBER OF DEGREES OF FREEDOM	NORMALIZED STANDARD ERROR
32-1024	8	0-31.25	.244	16	. 353
(32.77 SEC)	16	31.25-62.50	.488	32	.250
	128	62.50-500.0	3.906	256	.088
64-1024	16	0-15.63	.244	32	.250
(65.54 SEC)	32	15.63-31.25	.488	64	.177
	256	31.25-500.0	3.906	512	.063
128-1024	32	0-7.81	.244	64	.177
(131.07 SEC)	64	7.81-15.63	.488	128	.125
	512	15.63-500.0	3.906	1024	.044
512-1024	16	0-1.95	.030	32	.250
(504 00 050)	64	1.95-21.48	.122	128	.125
(524.29 SEC)	256	21.48-41.02	.488	512	.063
	512	41.02-500.0	.977	1024	.044

TABLE 7 - EFFECT OF RECORD LENGTH ON POWER SPECTRAL DENSITY ESTIMATES, EXTERNAL CORE FFT

Table 8 shows the values of the areas under the spectra of Figure 12. This table is comparable to Table 3 of section 4.1. The first case (32-1024) shows more variation than any of the other cases in Table 3 or Table 8, but for many applications this error would be acceptable.

CASE	$\int_{0}^{\infty} F(n) dn$
32-1024	.978
64-1024	1.016
128-124	1.009
512-1024	.997

TABLE 8 - COMPARISON OF INTEGRATED PROPERTIES OF POWER SPECTRAL DENSITY ESTIMATES, EXTERNAL CORE FFT

Correlation functions were computed for three of the example cases and are shown in Figure 13 along with one case calculated with program SEGEMNT. A trend can be seen in these figures which is similar to that of Figure 8. As the length of record increases, the correlation at larger lag times is more nearly zero. The correlations computed using program EXTCORE all have very much larger record lengths than those computed using program SEGEMNT. It would be expected that the EXTCORE correlations would be valid for longer lag times. A listing of the areas for the three correlations computed is shown in Table 9. In all of the cases, the area to the first zero crossing is comparable to that for the entire autocorrelation (0-4.096 sec). This agreement is in contrast with the cases shown in Table 5 for the shorter records of program SEGEMNT. This is another example of the effect of record length on the calculation of autocorrelation functions. There is fair agreement between the areas out to the first zero crossing in both cases, and this may be an appropriate choice of area when only a limited record length is available. Care must be used in using the area to the first zero crossing, since not all correlations remain as close to zero as this demonstration case for regions beyond the first zero crossing.

CASE	RECORD LENGTH SECONDS	AREA TO FIRST ZERO CROSSING	AREA 0-4.096 SEC
32-1024	32.77	.0362	. 0339
64-1024	65.54	.0378	.0376
128-1024	131.07	.0333	. 0350

 TABLE 9 - EFFECT OF RECORD LENGTH ON THE AREA UNDER THE

 AUTOCORRELATION FUNCTION, EXTERNAL CORE FFT

The costs for the EXTCORE examples are listed in Table 10. These include the cost of all calculations and plotting.

CASE	DATA LENGTH SECONDS	COST \$		
32-1024	32.77	12.10		
64-1024	65.54	22.59		
128-1024	131.07	46.37		
512-1024	524.29	210.30		

TABLE 10 - COST FOR TEST CASES PROGRAM EXTCORE. CENTRAL PROCESSOR COST = \$290/hr

4.3 Comparison of Program SEGEMNT and Program EXTCORE

Many of the differences between and advantages of segment averaging and external core approaches are apparent after reading the previous section. These differences and advantages will be briefly summarized in order to point out the most significant.

The major advantages of the external core technique are that it allows a greater frequency range in the spectrum and provides an autocorrelation function which is valid at relatively long lag times. The advantage of being able to obtain more points at low frequency in the spectrum is offset somewhat by the need to perform some type of smoothing in order to obtain a statistically reliable value. For the external core case, the smoothing will be accomplished using frequency averaging which will reduce the number of data points available at the low frequency end of the spectrum.

The autocorrelation which may be obtained using the external core technique is of higher quality at higher lag times than the autocorrelation which may be obtained using segment averaging. This increase in quality is obtained at a corresponding increase in cost of computer time. This extra cost may be necessary if an accurate measure of integral scale is desired. The integral time scale and the low frequency end of the power spectral density are directly related, $(F(0) = 4 \int_{0}^{\infty} R(t)dt)$, and if the low frequency end of the spectra has a standard error of .5, there can be up to 50 percent error in the integral scale.

The major advantage of segment averaging is cost. In all cases, comparable quality power spectral densities can be obtained (based on

normalized standard error) for from 1/3 to 1/8 the cost using segment averaging instead of external core techniques.

The core requirements for each case are comparable based on the array sizes used in the example programs. Changing array sizes in either of the programs would have an effect on the core required, but a comparable change would have to be made to both programs and the core requirements would still be comparable.

A general guideline in selecting a technique would be to use segment averaging unless a special requirement exists which requires the external core technique.

5. TWO CHANNEL CALCULATIONS--CROSS-SPECTRAL DENSITIES AND CROSS-CORRELATIONS

Some applications require information concerning the relationship between two time series in either the frequency or time domains. Once the techniques described in the previous sections are understood, the computation of functions describing these relationships can be readily accomplished. Most computations of multichannel functions begin with a cross-spectral density function, a complex quantity. Once the crossspectral density function is obtained, a number of additional quantities can be computed. A brief discussion of some of these functions can be found in Bendat and Piersol (1), pp. 25-34.

The equation for the cross-spectral density of two time series x(t) and y(t) is given by the equation $G_{xy}(f_n) = \frac{2}{T} X^*(f_n) Y(f_n)$. $(X^*$ is the complex conjugate of the transform of the x(t) time series.) Thus, once the transforms of two simultaneous time series are available, the cross spectral density, and any other related quantities may be computed. As brief examples of both computation and averaging

techniques, programs which compute a coherence function and a cross-correlation coefficient will be discussed.

The two most important aspects of these programs are the techniques of data storage and averaging. The data storage is common to both programs and will be explained with reference to PROGRAM CSPECT2 (Appendix B4). The single channel transforms have been computed and are stored on a master data tape (tape 2) as separate files, with each segment a separate record (logical record) of the file. The input portion of the program (lines 90-105) reads each file from tape 2 and stores them on tape 3 and tape 4 for $X(f_n)$ and $Y(f_n)$ respectively. All reads and writes are done using unformatted binary reads and writes. The use of this type statement instead of a formatted read or write results in savings of from 50 percent to 90 percent in the required computer central processor costs.

As shown in previous sections, some method of averaging will be required to obtain statistically reliable estimates. In the examples segment averaging is used as the primary method. It is necessary to segment average the cross-spectral density function and <u>not</u> the single channel transforms. Therefore, in lines 110 and 111 the single channel transform for each segment is read and the segment averaged crossspectral density function is computed. In the calculation of the coherence function (lines 113-130) the cross-spectral density is also frequency averaged prior to the final calculation of the coherence function (lines 138-156).

A second example program which calculates a cross-correlation function (PROGRAM CSPECT3) is listed in Appendix B5. The input and smoothing sections of this program are the same as those in CSPECT2.

The cross-correlation is obtained from an inverse fourier transform of the cross-spectral density function. A segment averaged cross-spectral density is computed in lines 106-113 and reflected in lines 117-122. The cross-spectral density is reflected such that the real part is an even function and the imaginary part an odd function. The reflected cross-spectral density is transformed in line 126 to obtain a crosscorrelation coefficient. The cross-correlation coefficient can be calculated directly from the time series, and a comparison of a direct computation and a FFT computation is shown in Figure 14. The two results are virtually identical.

This brief section shows just two of the many cross-channel computations possible. Costs of the different calculations will vary with the application and no definite guidelines can be stated. The two most important aspects of cross-channel calculations are (1) use of binary write and read statements (2) averaging the crossspectrum and not the single channel transforms.

REFERENCES

- 1. Bendat, J. S., and Piersol, A. G., <u>Random Data: Analysis and</u> Measurement Procedures, Wyley-Interscience, New York, 1971.
- 2. Enochson, Soren D., and Ontes, Robert K., <u>Programming and Analysis</u> for Digital Time Series Data, The Shock and Vibration Information Center, United States Department of Defense, 1968.
- 3. Brenner, Norman M., "Fast Fourier Transform of Externally Stored Data," <u>IEEE Transactions on Audio and Electroacoustics</u>, Vol. AU17-No. 2, June 1969.

FIGURE 1. REFLECTION OF AUTOCORRELATION.

FIGURE 2. EFFECT OF TRANSFORMING R(t) PRIOR TO TRANSFORMING.

FIGURE 3. COMPARISON OF $G(\omega)$.

FIGURE 4. COMPARISON OF R*(t).

FIGURE 5. EXECUTION TIME--PROGRAM FOURT.

FIGURE 6. SEGMENT AVERAGED POWER SPECTRAL DENSITIES--PROGRAM SEGEMNT.

FIGURE 7. FREQUENCY AVERAGED POWER SPECTRAL DENSITIES--PROGRAM SEGEMNT.

FIGURE 8. AUTOCORRELATIONS--PROGRAM SEGEMNT.

FIGURE 9. COMPARISON OF AUTOCORRELATIONS--PROGRAM SEGEMNT AND DIRECT CALCULATION.

FIGURE 10. EFFECT OF RECORD LENGTH ON DIRECT CALCULATION OF AUTOCORRELATION.

FIGURE 12. POWER SPECTRAL DENSITIES -- PROGRAM EXTCORE.

FIGURE 13. AUTOCORRELATIONS--PROGRAM EXTCORE.

FIGURE 14. COMPARISON OF CROSS-CORRELATION FUNCTIONS--DIRECT AND FFT COMPUTATION.

APPENDICES

- A1 SUBROUTINE FOURT IBM contributed Program No. 3600-13.4001
- A2 SUBROUTINE FOR2D IBM contributed Program No. 3600-13.4006
- B1 PROGRAM CHECK
- B2 PROGRAM SEGEMNT
- B3 PROGRAM EXTCORE
- B4 PROGRAM CSPECT2
- B5 PROGRAM CSPECT3

	SUBROUTINE FOURT(DATA;NN;NDIM;ISIGN;IFORM;WORK)	FFTT0000
С		FFTT0010
С	THE COOLEY-TUKEY FAST FOURIER TRANSFORM IN USASI BASIC FORTRAN	FFTT0020
С		FFTT0030
С	TRANSFORM(K1,K2+) = SUM(DATA(J1+J2+)*EXP(ISIGN*2*PI*S09T(-1)	FFTT0040
c	*((J1-1)*(K1-1)/NN(1)+(J2-1)*(K2-1)/NN(2)+))) • SUMMED FOP ALL	FFTT0050
Ċ	J1. K1 PETWEEN 1 AND NN(1). J2. K2 HETWEEN 1 AND NN(2). ETC.	FFTT0060
Ĉ	THERE IS NO LIMIT TO THE NUMBER OF SUBSCRIPTS. DATA IS A	FFTT0070
Ċ	MULTIDIMENSIONAL COMPLEX ARRAY WHOSE REAL AND IMAGINARY	FETTOORO
č	PARTS ARE ADJACENT IN STORAGE, SUCH AS FORTRAN IV PLACES THEM.	FFTT0090
c	IF ALL IMAGINARY PARTS ARE ZERO (DATA ARE DISGUISED REAL), SET	FFTT0100
С	IFORM TO ZERO TO CUT THE RUNNING TIME BY UP TO FORTY PERCENT.	FFTT0110
č	OTHERWISE, IFORM = +1. THE LENGTHS OF ALL DIMENSIONS ARE	FFTT0120
Ċ	STORED IN ARRAY NN, OF LENGTH NDIM. THEY MAY BE ANY POSITIVE	FFTT0130
Ċ	INTEGERS, THO THE PROGRAM RUNS FASTER ON COMPOSITE INTEGERS, AND	FFTT0140
Ċ	ESPECIALLY FAST ON NUMBERS RICH IN FACTORS OF TWO. ISIGN IS +1	FETT0150
Ċ	OR -1. IF A -1 TRANSFORM IS FOLLOWED BY A +1 ONE (OR A +1	FFTT0160
c	BY A -1) THE ORIGINAL DATA REAPPEAR, MULTIPLIED BY NTOT (=NN(1)*	FFTT0170
Ċ	NN (2) *) . TRANSFORM VALUES ARE ALWAYS COMPLEX. AND ARE RETURNED	FFTT0180
С	IN ARRAY DATA, REPLACING THE INPUT. IN ADDITION, IF ALL	FFTT0190
С	DIMENSIONS ARE NOT POWERS OF TWO, ARRAY WORK MUST RE SUPPLIED,	FFTT0200
С	COMPLEX OF LENGTH EQUAL TO THE LARGEST NON 2**K DIMENSION.	FETT0210
С	OTHERWISE, REPLACE WORK BY ZERO IN THE CALLING SEQUENCE.	0550TT44
С	NORMAL FORTRAN DATA ORDEPING IS EXPECTED, FIRST SUBSCRIPT VARYING	FFTT0230
С	FASTEST. ALL SUBSCRIPTS BEGIN AT ONE.	FFTT0240
С		FFTT0250
С	RUNNING TIME IS MUCH SHORTFR THAN THE NAIVE NTOT**2. BEING	FFTT0260
С	GIVEN PY THE FOLLOWING FORMULA. DECOMPOSE NTOT INTO	FFTT0270
С	2**K2 * 3**K3 * 5**K5 * LET SUM2 = 2*K2, SUMF = 3*K3 + 5*K5	FFTT0280
С	+ AND NF = K3 + K5 + THE TIME TAKEN BY A MULTI-	FFTT0290
С	DIMENSIONAL TRANSFORM ON THESE NTOT DATA IS T = T0 + NTOT*(T1+	FFTT0300
C	T2*SUM2+T3*SUMF+T4*NF). ON THE CDC 3300 (FLOATING POINT ADD TIME	FFTT0310
С	OF SIX MICROSECONDS), T = 3000 + NTOT*(500+43*SUM2+68*SUMF+	FFTT0320
С	320*NF) MICROSECONDS ON COMPLEX DATA. IN ADDITION, THE	FFTT0330
С	ACCUPACY IS GREATLY IMPROVED, AS THE RMS RELATIVE ERROR IS	FFTT0340
С	BOUNDED BY 3*2**(-B)*SUM(FACTOR(J)**1.5). WHERE B IS THE NUMBER	FFTT0350
С	OF BITS IN THE FLOATING POINT FRACTION AND FACTOR(J) ARE THE	FFTT0360
С	PRIME FACTORS OF NTOT.	FFTT0370
С		FFTT0380
С	PROGRAM BY NORMAN BRENNEP FROM THE BASIC PROGRAM BY CHARLES	FFTT0390
С	RADER. RALPH ALTER SUGGESTED THE IDEA FOR THE DIGIT REVERSAL.	FFTT0400
С	MIT LINCOLN LABORATORY + AUGUST 1967. THIS IS THE FASTEST AND MOST	FFTT0410
С	VERSATILE VERSION OF THE FFT KNOWN TO THE AUTHOR. SHORTER PRO-	FFTT0420
С	GRAMS FOUR1 AND FOUR2 RESTRICT DIMENSION LENGTHS TO POWERS OF TWO.	FFTT0430
С	SEE IEEE AUDIO TRANSACTIONS (JUNE 1967), SPECIAL ISSUE ON FFT.	FFTT0440
C		FFTT0450
С	THE DISCRETE FOURIER TRANSFORM PLACES THREE RESTRICTIONS UPON THE	FFTT0460
С	DATA.	FFTT0470
C	1. THE NUMBER OF INPUT DATA AND THE NUMBER OF TRANSFORM VALUES	FFTT0480

С		MUST BE THE SAME.	FFTT0490
С		2. ROTH THE INPUT DATA AND THE TRANSFORM VALUES MUST REPRESENT	FFTT0500
С		EQUISPACED POINTS IN THEIR RESPECTIVE DOMAINS OF TIME AND	FFTT0510
С		FREQUENCY. CALLING THESE SPACINGS DELTAT AND DELTAF. IT MUST RE	FFTT0520
С		TRUE THAT DELTAF=2*PI/(NN(I)*DELTAT). OF COURSE. DELTAT NEED NOT	FFTT0530
C		BE THE SAME FOR EVERY DIMENSION.	FETT0540
Ċ		3. CONCEPTUALLY AT LEAST, THE INPUT DATA AND THE TRANSFORM OUTPU	FFTT0550
Ĉ		REPRESENT SINGLE CYCLES OF PERIODIC FUNCTIONS.	FETT0560
č			FETT0570
č		EXAMPLE 1. THREE-DIMENSIONAL FORWARD FOURIER TRANSFORM OF A	FETT05H0
č		COMPLEX ARRAY DIMENSIONED 32 BY 25 HY 13 IN FORTRAN IV.	FETT0590
č		DIMENSION DATA (32+25+13) + WORK (50) + NN (3)	FETT0600
č		COMPLEX DATA	FETT0610
č		DATA NN/32-25-13/	FETT0620
č			FETTOGRO
č			FETT0640
č			FETT0650
č	1	DATA $(\mathbf{I}_{\bullet}, \mathbf{I}_{\bullet}, \mathbf{K}) = COMPLEX VALUE$	FETTOGGO
ř	•		FETT0670
ř			FETT0680
ř		FXANDER 2. ONE-DIMENSIONAL FOUNADD TRANSFORM OF A DEAL ADDAY OF	FETTOGOO
ř		LAMPLE 2. THE DIPENSIONAL FORWARD TRANSFORM OF A REAL ARRAY OF	FETT0700
č			FETT0710
ř			FETT0720
č		DATA () - T) = FFAI PART	FFTT0730
ř	2		FETT0740
č	ν.	CALL = FOURT (DATA + 64 + 1 + -1 + 0 + 0)	FETT0750
ř			FETT0760
ç		DIMENSION DATA(1) + NN(1) + TEACT(32) + WORK(1)	FETT0770
		$\mathbf{W} = 0 \cdot 0$	
		$\mathbf{H} \mathbf{T} = 0 \cdot 0$	
		WSTPT = 0.0	
		Tw0PI=6.283185307	FETT0780
		TE(NDTM-1)920-1-1	FETT0700
1			FETTOROO
•			FETTOALO
		TE (NN (TDTM)) 920.920.2	FETTOR20
2			FETTORED
ř			FETTORAD
ř		MAIN LOOP FOR FACH DIMENSION	FETTORSO
č			FETTORAD
		NP1=2	FETT0870
			FETTORAD
			FETTOROD
		NP2=NP1+N	FETTOGOO
		TF (N=1) 920-900-5	FETTOGIO
c		••••••••••••••••••••••••••••••••••••••	FFTTAU2A
č		FACTOR N	FETTAURA
č			FFTTAGAA
5		M-N	FETTAGEA
,			11110700

	NTWO=NP1	FFTT0960
	IF=1	FFTT0970
	5=2101	FETTOSAO
10		FETT0990
• •		FETT1000
	IF (10407-101V) 50-11-11	FFTT1010
11	IF (IREM) 20.12.20	FETT1020
12		FETT1030
	M=IQUOT	FETT1040
	GO TO 10	FETT1050
20	IDIV=3	EETT1060
30		FETT1070
		FETTIORO
	IF (1000T-101V) 60-31-31	FETTINON
31	TE (TREM) 40. 32.40	FFTT1100
32		FFTT1110
-		FETT1120
		FETT1130
	60 10 30	FETT1140
40		FETT1150
		EETT1160
50	IF (TREM) 60+51+60	FETT1170
51		FETTII80
	60 TO 70	FFTT1190
60	IFACT(IF)=M	FFTT1200
c		FFTT1210
č	SEPARATE FOUR CASES	FFTT1220
С	1. COMPLEX TRANSFORM OF REAL TRANSFORM FOR THE 4TH. 5TH.ETC.	FFTT1230
С	DIMENSIONS.	FFTT1240
С	2. REAL TRANSFORM FOR THE 2ND OF 3RD DIMENSION. METHOD	FFTT1250
С	TRANSFORM HALF THE DATA+ SUPPLYING THE OTHER HALF BY CON-	FFTT1260
С	JUGATE SYMMETRY.	
С	TRANSFORM HALF THE DATA AT EACH STAGE+ SUPPLYING THE OTHER	FFTT1290
С	3. REAL TRANSFORM FOR THE 1ST DIMENSION. N ODD. METHOD	FETT1280
С	HALF RY CONJUGATE SYMMETRY.	FFTT1300
C	4. REAL TRANSFORM FOR THE 1ST DIMENSION. N EVEN. METHOD	FFTT1310
С	TRANSFORM A COMPLEX ARRAY OF LENGTH N/2 WHOSE REAL PARTS	FFTT1320
С	ARE THE EVEN NUMBERED REAL VALUES AND WHOSE IMAGINARY PARTS	FFTT1330
С	ARE THE ODD NUMBERED REAL VALUES. SEPARATE AND SUPPLY	FFTT1340
С	THE SECOND HALF BY CONJUGATE SYMMETRY.	FFTT1350
С		FFTT1360
70	NONS=N61*(Nb5\n1m0)	FFTT1370
	ICASF=1	FFTT1380
	IF(IDIM-4)71+90+90	FFTT1390
71	IF(IF0RM)72+72+90	FFTT1400
75	ICASF=2	FFTT1410
-	IF(IDIM-1)73+73+90	FFTT1420
73	JCASE=3	FFTT1430
-	IF(NTWO-NP1)90.90.74	FFTT1440
74	ICASE=4	FFTT1450
	NTWO=NTWO/2	FFTT1460

	N=N/2	FFTT1470
	NP2=NP2/2	FFTT14H0
	NTOT=NTOT/2	FFTT1490
	I=3	FFTT1500
	DO 80 J=2.NTOT	FFTT1510
		FFTT1520
80	1=1+2	FETT1530
90	11PNG=NP1	EETT1540
	IF (1CASE-2) 100.95.100	FETT1550
05		FETT1560
r i		FETT1570
č	SHIEFLE ON THE FACTORS OF TWO THEN AS THE SHIEFLING	FETTISON
č	CAN BE DANE BY STADLE THERE WAS IN MARKING ADAY IS NEEDED	FETT1500
	CAN BE DONE BY SIMPLE INTERCHANGES NO WORKING ARRAY IS NEEDED	FETT1600
100		FF111000
100		FF111010
110		FF111020
		FF111530
	DC 150 J2=1,NP2,NON2	FFTT1640
	IF (J-I2) 120+130+130	FFTT1650
120	IIWAX=IS+NONS-5	FFTT1660
	D0 125 11=12+11MAX+2	FFTT1670
	D0 125 I3=I1+NTOT+NP2	FFTT1680
	21-E1+U=EU	FFTT1690
	TEMPR=DATA(I3)	FFTT1700
	TEMPI=DATA(I3+1)	FFTT1710
	DATA (13)=DATA (J3)	FFTT1720
	DATA(I3+1) = DATA(J3+1)	FFTT1730
	DATA (J3)=TEMPR	FFTT1740
125	DATA(J3+1)=TEMPI	FFTT1750
130	M=NP2HF	PFTT1760
140	IF(J-M)150+150+145	FFTT1770
145	M - L = L	FFTT1780
	M=M/2	FFTT1790
	IF (M-NON2) 150 • 140 • 140	FFTT1800
150	M + U = U	FETT1810
Ċ		FFTT1820
č	MAIN LOOP FOR FACTORS OF TWO. PERFORM FOURIER TRANSFORMS OF	FETT1830
č	LENGTH FOUR . WITH ONE OF LENGTH TWO IF NEEDED. THE TWIDDLE FACTO	REETTIALO
ř	= EXP(ISIGN\$2\$PI\$SOF(-))\$#/(4*MMAX)) CHECK FOR == ISIGN\$SOF(-)	NEETTIASO
ř	AND DEDEAT FOR WEISIGNESSOF(=) SCON USATE(W)	FETTINGO
č		FETT1270
0		FFTT1000
		FF11000
210	1F AF = N I BUZ NF 1 TE / TRAD- 20 2E A - 22 A - 22 A	FFT11090
330	17 (1~AR~2/3003300370 TDAD-TDAD/A	FF111900
320	10 A C 210	FF111910
220		FF111920
530		FF1F1930
		FF111940
	DU 34U KIEJSANTUTANUNZI	FF71950
	K2=K1+N0N2	FFTT1960
	IEMPR#DATA(K2)	FFTT1970

	TEMPI=DATA(K2+1)	FFTT1980
	DATA(K2)=DATA(K1)-TEMPR	FFTT1990
	DATA(K2+1) = DATA(K1+1) - TEMPT	FFTT2000
	DATA(K1) = DATA(K1) + TFMPR	FFTT2010
340	DATA(K1+1) = DATA(K1+1) + TEMPT	FFTT2020
350	MMAX=NON2	FFTT2030
360	IF (MMAX-NP2HF) 370+600+600	FETT2040
370	$LMAX=MAXO(NON2T \cdot MMAX/2)$	FETT2050
	IF (MMAX-NON2) 405,405,380	EETT2060
380	THETA=-TWOPI*FLOAT(NON2)/FLOAT(4*MMAX)	FETT2070
	IF (TSIGN) 400 • 390 • 390	FETT2080
390	THETA=-THETA	FFTT2090
400	WR=COS(THETA)	FFTT2100
	WI=SIN(THETA)	FETT2110
	WSTPR=-2.*WI*WI	FFTT2120
	WSTPI=2.*WR*WI	FFTT2130
405	DO 570 L=NON2+LMAX+NON2T	FFTT2140
	M=L	FFTT2150
	IF (MMAX-NON2) 420,420,410	FFTT2160
410	W2R=WR*WR-WI*WI	FFTT2170
	M5I=S**Mb*MI	FFT72180
	W3I=W2R*WI+W2I*WR	FFTT2200
	W3R=W2R#WR-W2I#WI	FFTT2190
420	00 530 I1=1,T1RNG,2	FFTT2210
	D0 530 J3=I1+NON2+NP1	FFTT2220
	KMIN=J3+IPAR*M	FFTT2230
	IF (MMAX-NON2)430+430+440	FFT72240
430	KMIN=J3	FFTT2250
440	KDIF=IPAR*MMAX	FFTT2260
450	KSTEP=4*KDIF	FFTT2270
	DC 520 KI=KMIN+NTOT+KSTEP	FFTT2240
	K2=K1+KDIF	FFTT2240
	K3=K2+KDJF	FFTT2300
	K4=K3+KDIF	FFTT2310
	IF (MMAX-NON2)460+460+480	FFTT2320
460	U1R=DATA(K1)+DATA(K2)	FFTT2330
	U1I=DATA(K1+1)+DATA(K2+1)	FFTT2340
	U2R=DATA(K3)+DATA(K4)	FETT2350
	U2I=NATA(K3+1)+!)ATA(K4+1)	FFTT2360
	U3R=DATA(K1)-DATA(K2)	FFT72370
	U3I=DATA(K1+1)-DATA(K2+1)	FFTT2380
	IF (ISIGN) 470+475+475	FFTT2390
470	U4R=DATA(K3+1)-DATA(K4+1)	FFTT2400
	U4I=DATA(K4)-DATA(K3)	FFTT2410
	GO TO 510	FFTT2420
475	U4R=DATA(K4+1)-DATA(K3+1)	FFTT2430
	U4I=DATA(K3)-UATA(K4)	FFTT2440
	GO TO 510	FFTT2450
480	T2R=W2R*DATA(K2)-W2I*DATA(K2+1)	FFTT2460
	ISI=MSB+UVALV(KS+1)+MSI+VVALV(KS)	FFTT2470
	T3R=WR#()ATA(K3)-WI#()ATA(K3+1)	FFTT2480

	T3I=wR#DATA(K3+1)+W1#DATA(K3)	FFTT2490
	T4R=W3R#DATA(K4)-W3I#DATA(K4+1)	FFTT2500
	T4I=W3R+DATA(K4+1)+w3I+DATA(K4)	FFTT2510
	U1R=DATA(K1)+T2R	FFTT2520
	U1I=DATA(K1+1)+T2I	FFTT2530
	U2R=T3R+T4R	FFTT2540
	U2I=T3I+T4I	FFTT2550
		FFTT2560
	U3I=DATA(K1+1)-T2I	FFTT2570
	IF(ISIGN)490.500.500	FFTT2580
490	U4R=T3I-T4I	FFTT2590
	U4I=T4R-T3R	FFTT2600
	GO TO 510	FFTT2610
500	U4R=T4T-T3T	FETT2620
	U4I=T3R-T4R	FETT2630
510	DATA(K1) = U1R + U2R	FETT2640
	DATA (K1+1)=(1) 1+(12)	FETT2650
	DATA (K2)=U3R+U4R	FETT2660
	DATA(K2+1) = 1/31 + 1/41	FETT2670
		FETT2680
	DATA (K3+1)=111-1121	FFTT2690
		FFTT2700
520		FFTT2710
- 3 6 . (*	KATNEA# (KATNE-13) + 13	FFTT2720
		FFTT2730
		FFTT2740
530		FETT2750
550		FETT2760
		FETT2770
540		FETT2760
5 4 0		FF112100
		FF112190
		FFILCOUV
EEA		FF112010
550		FF112020
		FF112530
54A	#1-15 MER TE /W-1 MAYYE4E - E4E - 610	FF112040
700	1F (M=LMAA/303+303+41V	FF112050
305	IC#FF=#F	FF1 (200V
670		FEICOLU
570	WI=WIYK5IPR+IEMPRYW5IPL+WI	FFII2SHO
	IPAH=3-IPAH	FF112890
		FF112900
-	60 10 360	FETT2910
C		FETT2920
C	MAIN LOOP FOR FACTORS NOT EQUAL TO TWO. APPLY THE TWIDDLE FACTOR	FFTT2930
С	W=EXP(ISIGN*2*PI*SORI(-1)*(J2-1)*(J1-J2)/(NP2*IFP1)), THEN	FFTT2940
C	PERFORM A FOURIER TRANSFORM OF LENGTH IFACT(IF) + MAKING USE OF	FFTT2950
C	CONJUGATE SYMMETRIES.	FFTT2960
C		FFTT2970
600	1F(N1W0-NP2)605+700+700	FETT2980

605	IFP1=NON2	FFTT2990
	1F=1	FFTT3000
	NP1HF=NP1/2	FFTT3010
610	IFP2=IFP1/IFACT(IF)	FFTT3020
	J1RNG=NP2	FFTT3030
	IF (ICASE-3)612+611+612	FFTT3040
611	JIRNG=(NP2+IFP1)/2	FETT3050
	J2STP=NP2/IFACT(IF)	FETT3060
	J1RG2=(J2STP+IFP2)/2	FETT3070
612	J2MIN=1+IFP2	FFTT3080
	IF (IFP1-NP2)615+640+640	FFTT3090
615	D0 635 J2=J2MIN.IFP1.IFP2	FETT3100
	THETA=-TWOPI*FLOAT(J2-1)/FLOAT(NP2)	FETT3110
	IF(ISIGN)625,620,620	FFTT3120
620	THETA=-THETA	FFTT3130
625	SINTH=SIN(THFTA/2.)	FFTT3140
	WSTPR=-2. #SINTH#SINTH	FETT3150
	WSTPI=SIN(THETA)	FFTT3160
	WR=WSTPR+1.	FFTT3170
	WI=WSTPI	FFTT3180
	J1MIN=J2+IFP1	FFTT3190
	DO 635 J1=J1MIN+J1RNG+JFP1	FFTT3200
	IlMAX=J1+IlRNG-2	FFTT3210
	00 630 I1=J1+I1MAX+2	FFTT3220
	D0 630 I3=I1+NT0T+NP2	FFTT3230
	J3MAX=I3+IFP2-NP1	FFTT3240
	00 630 J3=I3+J3MAX+NP1	FFTT3250
	TEMPR=DATA (J3)	FFTT3260
	DATA(J3)=DATA(J3)*WR-NATA(J3+1)*WI	FFTT3270
630	DATA(J3+1)=TEMPR#WI+DATA(J3+1)#WR	FFTT3280
	TEMPR=WR	FFTT3290
	WR=WR*WSTPR-WI*WSTPI+WP	FFTT3300
635	WI=TEMPR*WSTPI+WI*WSTPR+WI	FFTT3310
640	THETA=-TWOPI/FLOAT(IFACT(IF))	FFTT3320
	IF(ISIGN)650+645+645	FFTT3330
645	THETA=-THETA	FFTT3340
650	SINTH=SIN(THETA/2.)	FFTT3350
	WSTPR=-2.*SINTH*SINTH	FFTT3360
	WSTPI=SIN(THETA)	EETT3370
	KSTFP=2*N/IFACT(IF)	FFTT3380
	KRANG=KSTEP*(IFACT(IF)/2)+1	FFTT3390
	D0 698 11=1•11RNG•2	FFTT3400
	D0 698 I3=I1+NT0T+NP2	FFTT3410
	DO 690 KMIN=1+KRANG+KSTEP	FFTT3420
	JIMAX=I3+JIPNG-IFP1	FFTT3430
	UU 68U JI=I3.JIMAX.IFP1	FFTT3440
	J3MAX=J1+IFP2=NP1	FFTT3450
	DO 680 J3=J1+J3MAX+NP1	FFTT3460
	J2MAX=J3+IFP1-IFP2	FFTT3470
	K=KMIN+(J3-J1+(J1-I3)/IFACT(IF))/NP1HF	FFTT3490
	IF (KMIN-1)655+655+665	FFTT3490

655	SUMR=0.	FFTT3500
	SUMI=0.	FFTT3510
	00 660 J2=J3+J2MAX+IFP?	FFTT3520
	SUMR=SUMR+DATA(J2)	FFTT3530
660	SUMT = SUMT + DATA(J2+1)	FFTT3540
	WORK (K) = SUMR	FETT3550
	WORK(K+1) = SIMT	FETT3560
		CETT2670
66E		FF 13370
005		FF113360
		FF 13540
		FE113600
	SUM I = DATA(JZ+I)	FF13610
	OLDSR=0.	FFTT3620
	OLDST=0.	FFTT3630
	J2=J2-IFP2	FFTT3640
670	TEMPR=SUMR	FETT3650
	TEMPI=SUMI	FFTT3660
	SUMR=TWOWR#SUMR-OLDSR+DATA(J2)	FFTT3670
	SUMI=TWOWR*SUMI-OLDSI+DATA(J2+1)	FFTT3680
	OLDSR=TEMPH	FFTT3690
	OLDSI=TEMPI	FFTT3700
	J2=J2-IF2	FFTT3710
	IF (J2-J3) 675+675+670	FFTT3720
675	TEMPR=WR*SUMR-OLDSR+DATA(.12)	FFTT3730
	TEMPI=WI*SUMT	FFTT3740
		FETT3750
	WORK (KCONI) = TEMPR+TEMPT	FETT3760
	TEMPR=WR#SIINT=01 DST+00ATA(.12+1)	FETT3770
		66773700
	WADY (KI) -TEMPATEMOT	EETT3700
		FF113770
600		FF113800
000	CONTINUE	FF113810
405	IF (KMIN=1/002+000+000	FF 113820
000		FF113830
	WI=WSIPI	FFTT3840
	60 10 690	FFTT3850
686	TEMPR=WR	FETT3860
	WR=WR*WSTPR-WI*WSTPI+WR	FFTT3870
	WI=TEMPR#WSTPI+WI#WSTPR+WI	FETT3880
690	TWOWR=WR+WR	FFTT3890
	IF (ICASE-3)692+691+692	FFTT3900
691	IF(IFP1-NP2)695+692+692	FFTT3910
692	K=1	FFTT3920
	I2MAX=I3+NP2-NP1	FFTT3430
	DC 693 I2=I3+I2MAX+NP1	FFTT3940
	DATA(I2)=WORK(K)	FETT3950
	DATA(I2+])=WORK(K+1)	FETT3960
693	K=K+2	FETT3970
-	GO TO 698	FETTAGAO
С		FFTT300A
č	COMPLETE & REAL TRANSFORM IN THE 1ST DIMENSION. N ODD. BY CO	ON- FETT4000
~	CONFERRE WHEN ON THE TOP DIMENSIONA A ODDA HI C	

C	JUGATE SYMMETRIES AT EACH STAGE.	FFTT4010
605	12MAX-12.1502-ND1	FF114020
073		FF114030
		FF114040
	UZMAA-UJ+NFZ-UZJFF $NA 407 UJ-13 UAAV. 135TD$	FF114050
		FF114060
		FF114070
		FFTT4080
		FFTT4090
		FFTT4100
		FFTT4110
	$D_{A} = A (J_{1} + 1) = M (P_{A} (K + 1))$	FFTT4120
	IF (JI-JZ) 697+6976	FFTT4130
090		FFTT4140
	$J_{A} = J_{A} = J_{A$	FFTT4150
697	JICNJ=JICNJ-IFP2	FFTT4160
698	CONTINUE	FFTT4170
	I = I + I	FFTT4180
	IFP1=IFP2	FFTT4190
_	IF(IFP1-NP1)700+700+610	FFTT4200
С		FFTT4210
С	COMPLETE A REAL TRANSFORM IN THE 1ST DIMENSION. N EVEN. BY CON-	FFTT4220
С	JUGATE SYMMETRIES.	FFTT4230
С		FFTT4240
700	GO TO (900,800,900,701).ICASE	FFTT4250
701	NHALF=N	FFTT4260
	N=N+N	FFTT4270
	THETA=-TWOPI/FLOAT(N)	FFTT4280
	IF (ISIGN)703•702•702	FFTT4290
702	THETA=-THETA	FFTT4300
703	SINTH=SIN(THETA/2.)	FFTT4310
	WSTPR=-2.*SIN[H*SINTH	FFTT4320
	WSTPI=SIN(THETA)	FFTT4330
	WR=WSTPR+1.	FFTT4340
	WI=WSTPI	FETT4350
	IMIN=3	FETT4360
	JMIN=2*NHALF-1	FFTT4370
	GO TO 725	FETT4380
710	NIML=L	FETTA 390
	DO 720 I=IMIN+TOT+NP2	FETTAA00
	SUMR = (DATA(I) + DATA(J))/2	FETTAAIO
	SUMT = (DATA(I+1) + DATA(J+1))/2	FFTT4420
	DIFR=(DATA(I)-DATA(J))/2	FETTAA30
	DIFI=(DATA(I+1)-DATA(J+1))/2	FFTTAAAO
	TEMPR=WR*SUMI+WI*DIFR	FETTAASO
	TEMPT=WT+SUMT-WR+DIFR	FETTAALO
		FE114400 FETTAA70
		FF114470
		FF114480
		FF114490
720		FTT4500
120		FFTT4510

	IMIN=IMIN+2	FETT4520
		FETT4520
	TEMPR=WR	FETT4540
	WR=WR*WSTPR-WI*WSTPI+WR	FFTT45E0
	WI=TFMPR*WSTPI+WI*WSTPR+WI	FF114000
725	IF (TMIN-JMIN) 710 • 730 • 740	FF11420U
730	IF (ISIGN) 731 - 740 - 740	FF114570
731		FF114580
735	DATA $(1+1) = -DATA (1+1)$	FF114590
740		FF114500
• • •		FF114610
		FF114620
		FF114630
745		FF114640
		FFT14550
	GO TO 755	FFTT4660
750		FFTT4670
1.50		FFTT4680
765	$D_{A} = (0, 1) = (0, 1) = (0, 1)$	FFTT4690
155		FFTT4700
		FFTT4710
760		FFTT4720
100	DATA(J) = DATA(IMIN) - DATA(IMIN+1)	FFTT4730
	7A + A + (J + L) = 0	FFTT4740
745		FFTT4750
105	DATA(J) = (ATA(T))	FFTT4760
770	(A A (J+1) = DA A (I+1)	FFTT4770
119	J = L - C	FFTT4780
		FFTT4790
	IF (I-IMIN) 775,775,765	FFTT4300
115	PATA(J) = DATA(IMIN) + DATA(JMIN+1)	FFTT4910
	DAIA(J+I) = 0.	FFTT4820
		FFTT4830
700		FFTT4840
180	DATA(1) = DATA(1) + DATA(2)	FFTT4850
	DATA(2)=0	FFTT4860
	GO TO 900	FFTT4870
Ç		FFTT4880
Ċ	COMPLETE A REAL TRANSFORM FOR THE 2ND OR 3RD DIMENSION BY	FFTT4890
С	CONJUGATE SYMMETRIES.	FFTT4900
C		FFTT4910
800	IF(I1RNG-NP1)805+900+900	FFTT4920
805	D0 860 I3=1•NTOT•NP2	FFTT4930
	I2MAX=I3+NP2-NP1	FFTT4940
	DO 860 IP=I3,I2MAX,NP1	FETT4950
	IMIN=I2+IlRNG	FFTT4960
	IMAX=IS+Nb1-5	FFTT4970
	JMAX=2*I3+NP1-IMIN	FFTT4980
	IF(I2-I3)820,820,810	FFTT4990
810	SAN+XWD5	FFTT5000
820	IF(IDIM-2)850+850+830	FETT5010
830	J=JMAX+NPO	FFTT5020

	DO 840 I=IMIN+IMAX+2	FFTT5030
	DATA(I)=DATA(J)	FFTT5040
	DATA(I+1) = -DATA(J+1)	FFTT505(
840	J=J−2	FFTT5060
850	XAML=L	FETT5070
	DO 860 I=IMIN, IMAX, NPO	FFTT5080
	DATA(I)=DATA(J)	FFTT5090
	DATA(I+1) = -DATA(J+1)	FFTT5100
860	J=J-NP0	FFTT5110
C		FFTT5120
с	END OF LOOP ON EACH DIMENSION	FFTT5130
Ċ		FFTT514(
900	NP0=NP1	FFTT5150
	NP1=NP2	FFTT5160
910	NPRFV=N	FFTT517(
920	RFTURN	FFTT518
	END	
#		

SUBROUTINE FOR2D (IDATA+N+NDIM+ISIGN+IFORM+WORK+NELFM) F2D 1 FOR2D COMPUTES A DISCRETE FUURIER TRANSFORM BY THE COOLEY-TUKEY C F2D 2 С ALGORITHM. THE ARRAY IS COMPLEX, MULTI-DIMENSIONAL AND KEPT ON F20 3 C DIRECT ACCESS STORAGE. THE NUMBER OF DATA IN EACH DIMENSION MUST F2D 4 BE A POWER OF TWO. RUNNING TIME IS PROPORTIONAL TO NTOT* С F2D 5 С LOG2 (NTOT) + WHERE NTOT IS THE TOTAL NUMBER OF DATA. ORDINARY F20 6 C FOURIER TRANSFORM PROGRAMS RUN IN TIME NTOT##2. THE TRANSFORM F20 7 C IS DONE IN-PLACE ON THE DIRECT ACCESS STORAGE, AND AS MUCH OF THE F2D 8 С TRANSFORM AS POSSIBLE IS DONE IN CORE. ENTIRELY IN-CORE 9 F2D С PROGRAMS ARE ALSO AVAILARLE (FOUR1, FOURG, FOUR2 AND FOURT). F2D 10 С WRITTEN BY NORMAN BRENNER, MIT LINCOLN LABORATORY, SEPTEMBER 1968.F2D 11 С SEE---IFEE AUDIO TRANSACTIONS (JUNE 1967), A SPECIAL ISSUE ON THE F2D 12 С FAST FOURIER TRANSFORM. F2D 13 C F2D 14 DIMENSION DATA(N(1)+N(2)+...+N(NDIM))+THANSFORM(N(1)+...+N(NDIM)) F2D 15 C С COMPLEX DATA . TRANSFORM F2D 16 C DIMENSION N(NOTM) F2D 17 С TRANSFORM (K1+K2++++) = SUM (DATA (J1+J2+++) *EXP (ISIGN*2*PI*I*) F20 18 C ((J1-1)*(K1-1)/N(1)*(J2-1)*(K2-1)/N(2)*...)) SUMMED FOR ALL F2D 19 Ċ J1 FROM 1 TO N(1), J2 FROM 1 TO N(2), FTC., FOR ALL K1 FROM 1 ESD 20 C TO N(1) + K2 FROM 1 TO N(2) + ETC. + UP TO N(NDIM) - NOTM IS F2D 21 С UNLIMITED. IF A SET OF DATA ARE ISIGN = -1 TRANSFORMED AND THEN F2D 22 С THE TRANSFORM VALUES +1 TRANSFORMED (OP VICE VERSA) THE RESULTS F2D 23 С WILL BE THE ORIGINAL DATA, MULTIPLIED BY NTOT = N(1)*...*N(NDIM). F2D 24 С IFORM MUST EQUAL 1. FUTURE VERSIONS OF FOR2D WILL MAKE USE OF IT.F2D 25 С DATA ARE STORED ON DIRECT ACCESS STORAGE IN FILE NUMBER IDATA. ESD 56 С BROKEN INTO RECORDS OF LENGTH NELEM COMPLEX ELEMENTS (NELEM MUST F20 27 С BE & POWER OF TWO). TRANSFORM VALUES ARE RETURNED TO FILE IDATA, F2D 28 C REPLACING THE INPUT. F2D 29 С F20 30 С THE USER MUST SUPPLY TWO SUBROUTINES FOR I/O TO THE DIRECT. F2D 31 ACCESS STORAGE, DREAD AND DWRIT. THE CALLING SEQUENCE IS CALL С F2D 32 С DXXXX(IDATA+IREC+BUFFR+NREC+NELEM), MEANING NREC RECORDS (EACH F20 33 NELEM COMPLEX ELEMENTS LONG) ARE TO BE TRANSMITTED BETWEEN STORAGEF2D 34 С C BUFFER BUFFR AND FILE NUMBER IDATA, RECORD NUMBER IREC (FROM 1 F2D 35 С TO NTOT/NELRC). THE BUFFER SUPPLIED WILL BE PART OF ARRAY WORK. F20 36 С WHICH MUST BE SUPPLIED BY THE USER. IT IS THREE RECORDS LONG. F20 37 С FOR FASTEST RUNNING TIME. MAKE NELEM AS LARGE AS POSSIBLE. F2D 38 DIMENSION N(1), WORK(1) F2D 39 NTOT=1F2D 40 DO 10 IDIM=1.NDIM F2D 41 10 NTOT=NTOT*N(IDIM) F2D 42 NPRFV=1 F2D 43 MIGN+1=MIGI 02 00 F20 44 NREM=NTOT/(N(IDIM) #NPHEV) F20 45 CALL BTRVD (IDATA+NPREV+N(IDIM)+NREM+WORK+NELEM) F20 46 CALL COL2D (TDATA • NPREV • N(IDIM) • NREM • ISIGN • WORK • NELEM) F2D 47 20 NPREV=N(IDIM) *NPREV F20 48 RETURN F20 49

ទទ

F	20	50-
		~ ~

	SUBROUTINE RTRVD (IDATA+NPREV+N+NPEM+BUFFR+NELEM)	BTD	1
С	SHUFFLE THE DATA BY BIT REVERSAL.	RTD	2
С	DIMENSION DATA (NPREV, N, NPEM)	HTD	3
С	COMPLEX DATA	BTD	4
С	EXCHANGE DATA(J1,J2REV,J3) WITH DATA(J1,J2,J3), WHERE J2REV-1	BTD	5
С	IS THE BIT MEVERSAL OF J2-1. FOR EXAMPLE, LET N = 32. THEN FOR	BTD	6
Ċ	J2-1 = 10011, J2REV-1 = 11001, ETC. DATA ARE COMPLEX AND STORED	BTD	7
С	ON DIRECT ACCESS STORAGE. BUFFR IS A COMPLEX BUFFER THREE RECORD	SHTD	8
С	LONG, EACH RECORD OF LENGTH NELEM COMPLEX ELEMENTS. NELEM MUST	BTD	9
С	BE LESS THAN HALF OF NPREV*N*NREM. THE TOTAL NUMBER OF ELEMENTS.	BTD	10
С	ELSE THE WHOLE TRANSFORM COULD BE DONE IN CORE. NPREV, N, NREM	BTD	11
С	AND NELEM MUST BE POWERS OF TWO.	BTD	12
С	INTEGER INDICES MAY BECOME AS LARGE AS NPREV*N*NREM*2.	BTD	13
	DIMENSION RUFFR(1)	BTD	14
	IF (NELFM-NPPEV) 10,10,20	BTD	15
C	DIMENSION DATA (NELEM+NPREV/NELEM+N+NREM)	BTD	16
10	CALL SHUFD (IDATA+NELEM+NPREV/NELEM+N+NREM+HUFFR)	RTD	17
	RETURN	BTD	18
20	IF (2*NELEM-N*NPREV) 50,30,30	BTD	19
С	DIMENSION DATA(2*NELEM+(NPREV*N*NREM)/(2*NELEM))	BTD	50
30	IP0=2	BTD	21
	IP1=IP0+(2+NELEM)	8TD	22
	IP2=IP0+(NPREV*N*NREM)	8TD	53
	D0 40 I2=1,IP2,IP1	HTD	24
	IREC=1+(2*(I2-1))/IP1	BTD	25
	CALL DREAD (IDATA+IPEC+BUFFR+2+NFLEM)	BTD	26
	CALL BITRV (BUFFR+NPREV+N+(2*NELEM)/(NPREV+N))	BTD	27
40	CALL DWRIT (IDATA+IREC+BUFFR+2+NELEM)	RTD	28
	RETURN	8TD	29
50	NELRC=NFLEM/NPREV	8TD	30
	NPEC=N/NFLPC	BTD	31
С	DIMENSION DATA(NPREV+NELPC+IREM+2+IPROD+NREM)	BTD	32
С	DEFINE R = LOG2(NREC) AND E = LOG2(NELRC). THEN THE ENTIRE BIT	BTD	-33
С	REVERSAL TAKES E STAGES, OF WHICH NO MORE THAN R+1 CAN TAKE FULL	BTD	34
С	PASSES THRU THE DATA.	BTD	35
	IP0=2	BTD	36
	IP1=IP0+NPREV	BTD	37
	IP2=IP1*NELRC	BTD	38
	IP5=IP2*NREC	ATD	39
	IP6=IP5*NREM	BTD	40
	IP4=IP5	8TD	41
60	IF (IP4-IP1*MAX0(NELRC+NPEC)) 170,170,70	FITD	42
C	IP4=IP5/2**(ISTAG-1)	BTD	43
C	IF ISTAG .GT. MIN(R.E) GO TO LAST TEST	RTD	44
70	IP3=IP4/2	PTD	45
С	MERGE RECORDS DATA(11+12+13+1+15+16) AND DATA(11+12+13+2+15+16)	BTD	46
	DO 160 16=1+IP6+IP4	BTD	47
	I3MAX=I6+IP3-IP2	BTD	48
	DO 160 I3=I6+I3MAX+IP2	BTD	49

END

IREC1=IREC0+IP3/IP2RTD 51IF (IREC1-IREC0-1) 80.HU.90RTD 52C SAVE SOME ACCESS TIME IF THE RECORDS ARE ADJACENTRTD 5380 CALL DRFAD (IDATA.IREC0.RUFFR(IP2+1).2.NELEM)RTD 54GO TO 100RTD 5590 CALL DREAD (IDATA.IREC0.RUFFR(IP2+1).1.NELEM)RTD 56CALL DREAD (IDATA.IREC1.PUFFR(2*IP2+1).1.NELEM)RTD 57100 CALL MERGE (RUFFR(IP2+1).BUFFR(1).NPREV.NELRC)RTD 58C MERGE THF EVEN NUMBERED FLEMENTSHTD 60CALL MERGE (RUFFR(IRUFF).HUFFR(IP2+1).NPREV.NELRC)RTD 56C MERGE THE ODD-NUMBERED FLEMENTSRTD 61C MERGE THE ODD-NUMBERED ELEMENTSRTD 61C MERGE THE ODD-NUMBERED ELEMENTSRTD 62IPUFF=1RTD 63C THE RECORDS ARE NOW IN RUFFERS 0 AND 1RTD 64IF (IP5-NREC*IP3) 130.110.110RTD 65C IF ISTAG .LT. R.GOTO WRITEHTD 66110 IF (NREC-NELRC) 120.130.130RTD 67C IF R .LT. E THEN DO SHUFC. ELSE WHITE OUT.RTD 67C SUBROUTINES SHUFC AND SHUFC. ELSE WHITE OUT.RTD 67C REQUIRES THAT NELRC BE GREATER THAN NHEC. WHILE THE LATTERHTD 70C REQUIRES THE REVERSE.RTD 71
IF (IREC1-IREC0-1) 80+HU+90BTD 52CSAVE SOME ACCESS TIME IF THE RECORDS APE ADJACENTBTD 5380CALL DRFAD (TDATA+IREC0+RUFFR(IP2+1)+2+NELEM)BTD 5490CALL DRFAD (IDATA+IREC0+RUFFR(IP2+1)+1+NELEM)BTD 5590CALL DREAD (IDATA+IREC0+RUFFR(IP2+1)+1+NELEM)BTD 57100CALL MERGE (RUFFR(IP2+1)+BUFFR(2*IP2+1)+1+NELEM)BTD 57100CALL MERGE (RUFFR(IP2+1)+BUFFR(1)+NPREV+NELRC)RTD 58CMERGF THF EVEN NUMBERED FLEMENTSHTD 59IPUFF=IP2+IP1+1RTD 60CALL MERGE (RUFFR(IRUFF)+BUFFR(IP2+1)+NPREV+NELRC)RTD 61CMERGE THE ODD-NUMBERED FLEMENTSHTD 60CIPUFF=IP2+IP1+1RTD 62IPUFF=1RTD 64RTD 65CIF (IP5-NREC*IP3) 130+110+110RTD 65CIF ISTAG +LT R+ GOTO WRITFHTD 66110IF (NREC-NELRC) 120+130+130RTD 67CIF R +LT E THEN DO SHUFC + ELSE WRITE OUT.RTD 67CSUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRSTRTD 67CREQUIRES THAT NELRC RE GREATER THAN NHEC, WHILE THF LATTERHTD 70CREQUIRES THE REVERSE.RTD 71
CSÁVE SOME ACCESS TIME IF THE RECORDS ARE ADJACENTRTD 5380CALL DRFAD (IDATA+IRECO+RUFFR(IP2+1)+2+NELEM)RTD 54g0 TO 100RTD 5590CALL DREAD (IDATA+IRECO+RUFFR(IP2+1)+1+NELEM)RTD 56CALL DRFAD (IDATA+IRECI+PUFFR(2*IP2+1)+1+NELEM)RTD 57100CALL MERGE (RUFFR(IP2+1)+BUFFR(1)+NPREV+NELRC)RTD 58CMERGF THF EVEN NUMBERED FLEMENTSHTD 60CALL MERGE (RUFFR(IRUFF)+BUFFR(IP2+1)+NPREV+NELRC)RTD 51CMERGE THE ODD-NUMBERED FLEMENTSHTD 61CMERGE THE ODD-NUMBERED ELEMENTSRTD 63CTHE RECORDS ARE NOW IN PUFFERS 0 AND 1RTD 63CIF (IP5-NREC*IP3) 130+110+110RTD 65CIF (IP5-NREC*IP3) 130+110+110RTD 65CIF (NREC-NELRC) 120+130+130RTD 67CIF R +LT. E THEN DO SHUFC+ ELSE WRITE OUT.RTD 67CSUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRSTRTD 69CREQUIRES THAT NELRC BE GREATER THAN NREC, WHILE THE LATTERHTD 70CREQUIRES THE REVERSE.RTD 71
80CALL DRFAD (TDATA+IREC0+RUFFR(IP2+1)+2+NELEM)RTD54GO TO 100RTD5590CALL DREAD (IDATA+IREC0+RUFFR(IP2+1)+1+NELEM)RTD56CALL DRFAD (IDATA+IREC1+FUFFR(2*IP2+1)+1+NELEM)RTD57100CALL MERGE (RUFFR(IP2+1)+BUFFR(1)+NPREV+NELRC)RTD58CMERGE THE EVEN NUMBERED FLEMENTSHTD60IRUFF=IP2+IP1+1RTD60CALL MERGE (RUFFR(IRUFF)+HUFFR(IP2+1)+NPREV+NELRC)RTD61CMERGE THE ODD-NUMBERED ELEMENTSRTD63CTHE RECORDS ARE NOW IN PUFFERS 0 AND 1RTD64IF (IP5-NREC*IP3) 130+110+110RTD65CIF ISTAG +LT. R+ GOTO WRITFHTD66110IF (NREC-NELRC) 120+130+130RTD67CIF R +LT. E THEN DO SHUFC+ ELSE WRITE OUT.RTD68CSUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRSTRTDCREQUIRES THAT NELRC BE GREATER THAN NREC, WHILE THE LATTERHTDCREQUIRES THAT NELRC BE GREATER THAN NREC, WHILE THE LATTERHTDCREQUIRES THAT NELRC BE GREATER THAN NREC, WHILE THE LATTERHTDCREQUIRES THAT NELRC BE GREATER THAN NREC, WHILE THE LATTERHTDCREQUIRES THAT NELRC BE GREATER THAN NREC, WHILE THE LATTERHTDCREQUIRES THAT NELRC BE GREATER THAN NREC, WHILE THE LATTERHTDCREQUIRES THAT NELRC BE GREATER THAN NREC, WHILE THE LATTERHTD
GO TO 100RTD 5590CALL DREAD (IDATA+IREC0+RUFFR(IP2+1)+1+NELEM)RTD 56CALL DREAD (IDATA+IREC1+PUFFR(2*IP2+1)+1+NELEM)RTD 57100CALL MERGE (RUFFR(IP2+1)+BUFFR(1)+NPREV+NELRC)RTD 58CMERGF THF EVEN NUMBERED FLEMENTSHTD 59IPUFF=IP2+IP1+1RTD 60CALL MERGE (RUFFR(IRUFF)+HUFFR(IP2+1)+NPREV+NELRC)RTD 61CCALL MERGE (RUFFR(IRUFF)+HUFFR(IP2+1)+NPREV+NELRC)RTD 61CMERGE THE ODD-NUMBERED ELEMENTSRTD 62IPUFF=1RTD 63CTHE RECORDS ARE NOW IN RUFFERS 0 AND 1RTD 63CIF (IP5-NREC*IP3) 130+110+110RTD 65CIF ISTAG +LT-R+GOTO WRITFHTD 66110IF (NREC-NELRC) 120+130+130RTD 67CIF R +LT-E THEN DO SHUFC+ ELSE WRITE OUT+RTD 68CSUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRSTRTD 69CREQUIRES THAT NELRC BE GREATER THAN NREC+ WHILE THE LATTERRTD 70CREQUIRES THE REVERSE+RTD 71
90CALL DREAD (IDATA+IREC0+RUFFR(IP2+1)+1+NELEM)BTD 56CALL DREAD (IDATA+IREC1+PUFFR(2*IP2+1)+1+NELEM)BTD 57100CALL MERGE (BUFFR(IP2+1)+BUFFR(1)+NPREV+NELRC)BTD 58CMERGE THF EVEN NUMBERED FLEMENTSBTD 59IPUFF=IP2+IP1+1BTD 60CALL MERGE (BUFFR(IBUFF)+BUFFR(IP2+1)+NPREV+NELRC)BTD 61CMERGE THE ODD-NUMBERED ELEMENTSBTD 62IPUFF=1BTD 62CTHE RECORDS ARE NOW IN RUFFERS 0 AND 1BTD 63CIF (IP5-NREC*IP3) 130+110+110BTD 65CIF ISTAG +LT. R+ GOTO WRITFBTD 66110IF (NREC-NELRC) 120+130+130BTD 67CIF R +LT. E THEN DO SHUFC+ ELSE WRITE OUT.BTD 67CSUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRSTBTD 67CREQUIRES THAT NELRC BE GREATER THAN NREC, WHILE THE LATTERBTD 70CREQUIRES THE REVERSE.BTD 71
CALL DRFAD (IDATA, IREC1, PUFFR(2*IP2+1), 1, NELEM)RTD 57100CALL MERGE (RUFFR(IP2+1), BUFFR(1), NPREV, NELRC)RTD 58CMERGE THF EVEN NUMBERED FLEMENTSHTD 59IPUFF=IP2+IP1+1RTD 60CALL MERGE (BUFFR(IRUFF), BUFFR(IP2+1), NPREV, NELRC)RTD 61CMERGE THE ODD-NUMBERED ELEMENTSPTD 62IPUFF=1RTD 63CTHE RECORDS ARE NOW IN RUFFERS 0 AND 1RTD 64IF (IP5-NREC*IP3) 130+110+110RTD 65CIF ISTAG ,LT, R+ GOTO WRITFRTD 66110IF (NREC-NELRC) 120+130+130RTD 67CIF R ,LT, E THEN DO SHUFC, ELSE WRITE OUT.RTD 67CSUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRSTRTD 69CREQUIRES THAT NELRC BE GREATER THAN NREC, WHILE THE LATTERRTD 70CREQUIRES THE REVERSE.RTD 71
100CALL MERGE (RUFFR(IP2+1),BUFFR(1),NPREV,NELRC)RTD 58CMERGE THF EVEN NUMBERED FLEMENTSHTD 59IPUFF=IP2+IP1+1RTD 60CALL MERGE (RUFFR(IRUFF),BUFFR(IP2+1),NPREV,NELRC)HTD 61CMERGE THE ODD-NUMBERED ELEMENTSHTD 61CMERGE THE ODD-NUMBERED ELEMENTSHTD 62IPUFF=1RTD 63CTHE RECORDS ARE NOW IN RUFFERS 0 AND 1HTD 64IF (IP5-NREC*IP3) 130+110+110RTD 65CIF ISTAG LT. R+ GOTO WRITFHTD 66110IF (NREC-NELRC) 120+130+130RTD 67CIF R +LT. E THEN DO SHUFC, ELSE WRITE OUT.RTD 67CSUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRSTHTD 69CREQUIRES THAT NELRC BE GREATER THAN NREC, WHILE THE LATTERHTD 70CREQUIRES THE REVERSE.RTD 71
CMERGE THE EVEN NUMBERED FLEMENTSHTD 59IPUFF=IP2+IP1+1RTD 60CALL MERGE (BUFFR(IBUFF)*BUFFR(IP2+1)*NPREV*NELRC)RTD 61CMERGE THE ODD-NUMBERED ELEMENTSRTD 62IPUFF=1RTD 63CTHE RECORDS ARE NOW IN RUFFERS 0 AND 1RTD 64IF (IP5-NREC*IP3) 130*110*110RTD 65CIF ISTAG *LT* R* GOTO WRITERTD 66110IF (NREC-NELRC) 120*130*130RTD 67CIF R *LT* E THEN DO SHUFC* ELSE WRITE OUT*RTD 68CSUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRSTRTD 69CREQUIRES THAT NELRC BE GREATER THAN NREC* WHILE THE LATTERRTD 70CREQUIRES THE REVERSE*RTD 71
IPUFF=IP2+IP1+1RTD 60CALL MERGE (BUFFR(IBUFF)*BUFFR(IP2+1)*NPREV*NELRC)PTD 61C MERGE THE ODD-NUMBERED ELEMENTSPTD 62IPUFF=1RTD 63C THE RECORDS ARE NOW IN RUFFERS 0 AND 1PTD 64IF (IP5-NREC*IP3) 130*110*110PTD 65C IF ISTAG *LT * F GOTO WRITFPTD 65110 IF (NREC-NELRC) 120*130*130PTD 67C IF R *LT * E THEN DO SHUFC* ELSE WRITE OUT*PTD 67C SUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRSTPTD 68C REQUIRES THAT NELRC BE GREATER THAN NREC* WHILE THE LATTERPTD 70C REQUIRES THE REVERSE*PTD 71
CALL MERGE (AUFFR(IRUFF)*HUFFR(IP2+1)*NPREV*NELRC)PTD 61CMERGE THE ODD-NUMBERED ELEMENTSPTD 62IPUFF=1RTD 63CTHE RECORDS ARE NOW IN RUFFERS 0 AND 1PTD 64IF (IP5-NREC*IP3) 130*110*110PTD 65CIF ISTAG *LT*R*GOTO WRITFPTD 65110IF (NREC-NELRC) 120*130*130PTD 67CIF R *LT*E THEN DO SHUFC*ELSE WRITE OUT*PTD 67CSUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRSTPTD 68CREQUIRES THAT NELRC BE GREATER THAN NREC* WHILE THE LATTERPTD 70CREQUIRES THE REVERSE*PTD 71
CMERGE THE ODD-NUMBERED ELEMENTSPTD 62IPUFF=1RTD 63CTHE RECORDS ARE NOW IN RUFFERS 0 AND 1RTD 64IF (IP5-NREC*IP3) 130+110+110RTD 65CIF ISTAG .LT. R. GOTO WRITFRTD 66110IF (NREC-NELRC) 120+130+130RTD 67CIF R .LT. E THEN DO SHUFC. ELSE WRITE OUT.RTD 67CSUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRSTRTD 69CREQUIRES THAT NELRC BE GREATER THAN NREC. WHILE THE LATTERRTD 70CREQUIRES THE REVERSE.RTD 71
IPUFF=1RTD 63CTHE RECORDS ARE NOW IN RUFFERS 0 AND 1RTD 64IF (IP5-NREC*IP3) 130+110+110RTD 65CIF ISTAG .LT. R. GOTO WRITFRTD 66110IF (NREC-NELRC) 120+130+130RTD 67CIF R .LT. E THEN DO SHUFC, ELSE WRITE OUT.RTD 67CSUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRSTRTD 69CREQUIRES THAT NELRC BE GREATER THAN NREC, WHILE THE LATTERRTD 70CREQUIRES THE REVERSE.RTD 71
CTHE RECORDS ARE NOW IN RUFFERS 0 AND 1PTD 64IF (IP5-NREC*IP3) 130+110+110PTD 65CIF ISTAG .LT. R. GOTO WRITEPTD 66110IF (NREC-NELRC) 120+130+130PTD 67CIF R .LT. E THEN DO SHUFC, ELSE WRITE OUT.PTD 68CSUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRSTPTD 69CREQUIRES THAT NELRC BE GREATER THAN NREC, WHILE THE LATTERPTD 70CREQUIRES THE REVERSE.PTD 71
IF (IP5-NREC*IP3) 130+110+110PTD 65CIF ISTAG .LT. R. GOTO WRITEPTD 66110IF (NREC-NELRC) 120+130+130PTD 67CIF R .LT. E THEN DO SHUFC, ELSE WRITE OUT.PTD 68CSUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRSTPTD 69CREQUIRES THAT NELRC BE GREATER THAN NREC, WHILE THE LATTERPTD 70CREQUIRES THE REVERSE.PTD 71
CIF ISTAG .LT. R. GOTO WRITEHTD 66110IF (NREC-NELRC) 120.130.130PTD 67CIF R .LT. E THEN DO SHUFC, ELSE WRITE OUT.PTD 68CSUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRSTHTD 69CREQUIRES THAT NELRC BE GREATER THAN NREC, WHILE THE LATTERHTD 70CREQUIRES THE REVERSE.BTD 71
110IF (NREC-NELRC) 120+130+130PTD 67CIF R +LT+ E THEN DO SHUFC+ ELSE WRITE OUT+PTD 68CSUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRSTRTD 69CREQUIRES THAT NELRC BE GREATER THAN NREC+ WHILE THE LATTERRTD 70CREQUIRES THE REVERSE+RTD 71
CIF R .LT. E THEN DO SHUFC, ELSE WRITE OUT.PTD 68CSUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRSTRTD 69CREQUIRES THAT NELRC BE GREATER THAN NREC, WHILE THE LATTERRTD 70CREQUIRES THE REVERSE.RTD 71
C SUBROUTINES SHUFC AND SHUFD ARE MUTUALLY EXCLUSIVETHE FIRST BTD 69 C REQUIRES THAT NELRC BE GREATER THAN NREC, WHILE THE LATTER BTD 70 C REQUIRES THE REVERSE. BTD 71
C REQUIRES THAT NELRO BE GREATER THAN NREC, WHILE THE LATTER HTD 70 C REQUIRES THE REVERSE. BTD 71
C REQUIRES THE REVERSE. BTD 71
120 CALL SHUFC (BUFFR(IP2+1)+BUFFR(2*IP2+1)+NPREV+NELRC+NREC) BTD 72
C SHUFFLE RUFFER 1 AND PLACE INTO BUFFER 2 BTD 73
CALL SHUFC (RUFFR(1), BUFFR(IP2+1), NPREV, NELRC, NREC) BTD 74
C SHUFFLE BUFFER 0 AND PLACE INTO BUFFER 1 6TD 75
IPUFF=IP2+1 8TD 76
C DATA ARE NOW IN BUFFERS I AND 2 ATD 77
130 IF (IRECI-IPECO-I) 140-140,150 4TD 78
140 CALL DWRIT (IDATA, IRECO, RUFFR(IBUFF), 2, NELFM) ATD 79
TOU CALL DWRIT (IDATA)RECU-RUFFR(IBUFF)+I+NELEM) RID
CALL DWRIT (IDATA) RECIPHOFR (IBUPP) (INPLEM) RID 33
00 10 00 BID BD BID BI
I O DET REVENSE THE RECORDS ON DISK. PHD 70
SUBROUTINE RITRY (DATA+NPREV+N+NREM)
C SHUFFLE THE DATA BY BIT REVERSAL.
C DIMENSION DATA (NPREV.N. NPEM)
C COMPLEX DATA BIT 4
C EXCHANGE DATA (J1, J4REV, J5) WITH DATA (J1, J4, J5) FOR ALL J1 FROM 1 RTT 5
C TO NPREV, ALL J4 FROM 1 TO N (WHICH MUST DE A POWER OF TWO), AND BIT 6
C ALL J5 FROM 1 TO NREM. J4REV-1 IS THE BIT REVERSAL OF J4-1. E.G. PIT 7

С	SUPPOSE N = 32. THEN FOR $J4-1 = 10011$, $J4REV-1 = 11001$, ETC.	BIT	R
	DIMENSION DATA(1)	BIT	9
	IP0=2	BIT	10
	IP1=IP0*NPREV	віт	11
	IP4=TP1*N	RTT	12
	IP5=IP4*NRFM	BIT	13
		нтт	14
c		BIT	15
C		BIT	16
c		917	17
C	1 = 1 + (0 = 1) + (1 = 1)		10
10		6 T T	10
10		01! 077	20
~		011	20
L	11 = 1 + (31 - 1) + 100 + (34 - 1) + 101	811	21
•		BII	22
C	15 = 1 + (JI - I) * IP0 + (J4 - I) * IP1 + (J5 - I) * IP4	RTI	23
-	15RFV=14REV+15-14	HIT	24
С	15REV = 1 + (J1-1) * IP0 + (J4REV-1) * IP1 + (J5-1) * IP4	BIT	25
	IEMPREDATA(IS)	PIT	26
	TEMPI=DATA(15+1)	eit	27
	DATA(IS)=DATA(ISREV)	HIT	28
	DATA(15+1)=DATA(15REV+1)	BIT	29
	DATA(I5PEV)=TEMPR	BIT	30
20	DATA(I5RFV+1)=TEMPI	6IT	31
С	ADD ONE WITH DOWNWARD CARRY TO THE HIGH ORDER BIT OF J4REV-1.	PIT	32
30	IP2=IP4/?	HIT	33
40	IF (I4REV-IP2) 60,60,50	HIT	34
50	I4REV=I4REV-IP2	BIT	35
	IP2=IP2/2	PIT	36
	IF (IP2-IP1) 60.40.40	RIT	37
60	I4REV=I4REV+IP2	BIT	38
	RETURN	BIT	39
	END	BIT	40-
	SUBROUTINE SHUFD (IDATA+NELEM+NPREV+N+NRFM+HUFFR)	SHD	1
С	SHUFFLE THE RECORDS ON DIRECT ACCESS STORAGE BY RIT REVERSAL.	SHD	2
С	DIMENSION DATA (NELEM+NPREV+N+NREM)	SHD	3
С	COMPLEX DATA	SHD	4
С	EXCHANGE DATA(J1+J2+J4PEV+J5) WITH DATA(J1+J2+J4+J5)+ WHERE	SHD	5
С	JAREV-1 IS THE BIT REVERSAL OF J4-1. THIS CAN BE DONE BY AN	SHD	6
С	EXCHANGE OF RECORDS.	SHD	7
	DIMENSION BUFFR(1)	SHD	Å
	IP0=2	SHD	9
	IP1=TP0*NFIEM	SHD	10
		SHD	11
		SHD	12
		SHD	13
		500	14
		5HU	1 =
		200	14
10		500	17
10	DA EA ID-TAATLDATKA	500	11

	I2MAX=I5+IP2-IP1	SHD	18
	00 20 I2=I5+I2MAX+IP1	SHD	19
	I2RFV=I4PEV+I2-I4	SHD	20
	IREC0=1+(12-1)/IP1	SHD	21
	IREC1=1+(T2REV-1)/TP1	SHD	22
	CALL DREAD (TUATA-TRECO-BUFER(1)-1-NELEM)	SHD	23
	CALL DREAD (TDATA+TREC1+BUFFR(IP1+1)+1+NFIFM)	SHD	24
	CALL DWDTT (TDATA TRECLABUFER(1) ALANELEM)	SHD	25
20		SHO	26
ົ້	ADD ONE WITH DOWNWARD CADRY TO THE HIGH ORDER BIT OF MAPPY-1.	SHD	27
ັຈດ		SHD	28
A 0	$\frac{1}{14} = \frac{1}{14} $	SHD	24
50		SHD	30
50		SHD	จั
		SHD	32
60		SHD	33
00		SHO	34
		CHD	35-
		21111	J J
	SUBROUTINE MERGE (FROM. TO. NPREV. NELRC)	MER	1
с	MERGE TWO RECORDS INTO ONE.	MER	2
Ċ	DIMENSION FROM (NPREV+2+NELPC) +TO (NPREV+NELPC)	MER	3
с	COMPLEX FROM.TO	MER	4
Ċ	TO(JI + J3) = FROM(JI + I + J3)	MER	5
	DIMENSION FROM(1), TU(1)	MER	6
	150=5	MER	7
	IP1=IP0*NPRFV	MER	8
	IP2=IP1*2	MER	9
	IP3=IP2*NELRC	MER	10
	ITO=1	MER	11
	D0 10 I3=1.IP3.IP2	MER	12
	I1MAX=I3+IP1-IP0	MER	13
	DO 10 II=I3.IIMAX.IPU	MER	14
	TO(ITO) = FROM(II)	MER	15
	TO(TTO+1) = FROM(II+1)	MER	16
10	ITO = ITO + IPO	MER	17
	RETURN	MER	18
	END	MER	19-
			-
	SUBROUTINE SHUFC (FROM.TO.NPREV.NELRC.NREC)	SHC	1
C	SHUFFLE THE DATA IN COPE BY RIT REVERSAL.	SHC	5
c	DIMENSION_FROM(NPREV+NELRC/NREC+NREC),TO(NPREV+NPEC,NELRC/NPFC)	SHC	3
C	COMPLEX FROM TO	SHC	4
C	IQ(JI+J4+J3REV)=FROM(JI+J3+J4) WHERE J3REV-I IS THE HIT REVERSAL	SHC	5
С	UF JJ-1.	SHC	6
	DIMENSION FROM(I) + 10(1)	SHC	
		SHC	H
		SHC	9
	IPJ=IPIT(NELRG/NREC)	SHC	10
	IP4=IP3*NREC	SHC	11
	I GREV=1	SHC	-12

		SHC	13
	90 40 13-191739171 TTO-1 ANDECO (T305V-1)	SHC	14
		SHC	16
	10 10 14=134(F441F3	SHC	16
		SHC	17
	$\begin{array}{c} 10 10 11 = 14 + 11 \text{ max} + 170 \\ T \circ (T = 14 + 11) \\ \end{array}$	CHC	14
		SHC	19
1.0		540	20
10	110=110+1PU	SHC	21
C	ADD ONE WITH DOWNWARD GARRY TO THE HIGH ORDER SIT OF JSHEVET.	SHC	23
~ ~		SHC	22
20	IF (I3REV-IPZ) 40,40,30	240	24
30	1345V=1345V=142	SHC	25
	$\frac{1}{1} \frac{1}{1} \frac{1}$	SHC	20
4.0		SHC	27
40		SHC	20
		SHC	20-
	END	240	24-
	SUBDOUTINE COLOD (TOATA-NOOFV-N-NORMATSTON-BUFFR-NELFM)	C2D	1
r	DISCOPTINE COLLED TRANSFORM OF LENGTH N. IN-PLACE COLLEY-TUKEY	020	2
ř	ALCONTING ATTERVISED TO NORMAL OFFS. SANDE-TUREY PASE SHIFTS.	C20	3
ř	LEGATING DITCHEVENINGEN	C20	4
č		C2D	5
č	OMFLER DATA DATA (1) = SIM (DATA (1) = 14 = 15) #FXP(TSTGN#2#PT#T#(14=1)#	C20	6
č	$(\mathbf{x}_{4} = 1)$ (N). SIMMED OVER 14 = 1 TO N FOR ALL 11 FROM 1 TO NPREV.	C20	7
č	KA FROM 3 TO N AND 15 FROM 1 TO NREM. N MUST BE A POWER OF TWO.	C2D	8
č	METHODIFT TOPEV TAKE THE VALUES 1. 2 OR 4. 4 OR 8 N/16.	020	9
č	N/4. N. THE CHOICE BETWEEN 2 OR 4. FTC. DEPENDS ON WHETHER N IS	C2D	10
ř	A POWER OF FOUR DEFINE TEACT = 2 OR 4. THE NEXT FACTOR THAT	020	11
č	TPREV MIST TAKE. AND TREM = N/(TEACT*TPREV). THEN	C20	12
č	DIMENSION DATA (NPREV.IPREV.IFACT.IREM.NREM)	C2D	13
č	COMPLEX DATA	050	14
č	DATA (1) + 12+K3+14+15) = SIM (DATA (1) + 12+13+14+15) *EXP(ISIGN*2*PI*I*	C2D	15
č	(K3-1)*((J3-1)/(TFACT+(J2-1)/(TFACT+TPRFV)))). SUMMED OVER J3 = 1	C2D	16
č	TO TEACT FOR ALL JI FROM 1 TO NEREV. JZ FROM 1 TO IPPEV. K3 FROM	050	17
č	1 TO TEACT . 14 FROM 1 TO TREM AND 15 FROM 1 TO NREM. THIS IS	C2D	18
č	A PHASE-SHIFTED DISCRETE FOURIER TRANSFORM OF LENGTH IFACT.	C2D	19
č	FACTORING N BY FOURS SAVES ABOUT TWENTY FIVE PERCENT OVER FACTOR-	020	20
č	ING BY TWOS. DATA MUST PE BIT-REVERSED INITIALLY.	C2D	21
č	IT IS NOT NECESSARY TO REWRITE THIS SUPROUTINE INTO COMPLEX	C2D	22
č	NOTATION SO LONG AS THE FORTRAN COMPILER USED STORES REAL AND	CSD	23
č	IMAGINARY PARTS IN ADJACENT STORAGE LOCATIONS. IT MUST ALSO	CSD	24
č	STORE APRAYS WITH THE FIRST SUBSCRIPT INCHEASING FASTEST.	C20	25
•	DIMENSION BUFFR(1)	C20	26
	TWOP1=6,2831853072*FLOAT(ISIGN)	C20	27
	IF (2*NFIEM-NPREV) 30,30,10	CSD	28
с	DIMENSION DATA (2*NELEM+ (NPREV*N*NPFM) / (2*NELEM))	C20	29
10	IPO=2	020	30
	IP1=IP0+(2+NFLEM)	C5D	31
	IP2=IP0*(NPREV*N*NWEM)	CSD	32
	NMID=MINO(N+(2*NELEM)/NPREV)	C2D	33

	NFIN=MAX0(1•(2*NELEM)/(NPRFV*N))	CSD	34
	00 20 I2=1,IP2,IP1	CSD	35
	IREC=1+(2*(12-1))/IP1	CSD	36
	CALL DREAD (IDATA+IREC+BUFFR+2+NELEM)	C2D	37
	CALL COOL2 (BUFFR,NPREV,NMIU,NFIN,ISIGN)	CSD	38
20	CALL DWRIT (IDATA+IREC+BUFFR+2+NELEM)	CSD	39
С	DIMENSION DATA(NPREV+IPROD+2+IREM+NREM)	C2D	40
30	IP0=2	C2D	41
	IP1=IP0*NPRFV	C20	42
	IP4=IP1*N	C20	43
	IP5=IP4*NREM	CSD	44
	NWORD=IP0*NELEM	CSD	45
	IP2=IP0+MAX0(2+NELEM+NPRFV)	CSD	46
40	IF (IP2-IP4) 50+100+100	C2D	47
50	IP3=IP2*2	C2D	48
	THETA=TWOPI/FLOAT(IP3/IP1)	C50	49
	SINTH=SIN(THETA/2.)	C5D	50
	WSTPR=-2.4SINTH*SINTH	C2D	51
	WSTPI=SIN(THETA)	C50	52
	IREC0=1	C20	53
_	IREC1=IREC0+IP2/NWORD	C2D	54
С	IRECO AND IRECI ARE NEVER ADJACENT RECORDS. SO MUST BE READ AND	C20	55
с	WRITTEN SEPARATELY.	C2D	56
	CALL DREAD (IDATA+IRECO+RUFFR(1)+I+NELFM)	C50	57
	CALL DREAD (IDATA+IREC1+RUFFR(NWORD+1)+1+NELEM)	CSD	58
	IELEM=1	CSD	59
	13MIN=1	C50	60
	D0 90 15=1+1P5+1P3	CSD	61
	WF=1.	C20	62
		CZD	63
		C20	64
	00 40 12=15+12MAX+1P1	C20	65
	11MAX = 12 + 121 - 120	C20	66
	$\begin{array}{ccc} UU & HU & 11 = 12 + 11 \text{MAA} + 19 \text{U} \\ IE & IE = 12 + 11 \text{MAA} + 12 \text{U} \\ IE & IE = 12 + 12 \text{MAA} + 12 \text{U} \\ IE & IE = 12 + 12 \text{MAA} + 12 \text{U} \\ IE & IE = 12 + 12 \text{MAA} + 12 \text{U} \\ IE & IE = 12 + 12 \text{MAA} + 12 \text{U} \\ IE & IE = 12 + 12 \text{MAA} + 12 \text{U} \\ IE & IE = 12 + 12 \text{MAA} + 12 \text{MAA} + 12 \text{MAA} \\ IE & IE = 12 + 12 \text{MAA} + 12 $	020	57
60	$\frac{1}{10} \left(\frac{1}{1000} - \frac{1}{1000} - \frac{1}{1000} \right) \left(\frac{1}{1000} - \frac{1}{1000} - \frac{1}{1000} \right) \left(\frac{1}{1000} - \frac{1}{1000$	020	68
69	CALL DWRIT (IDATA)IMECU/MUFER(I)/INNELEM)	620	70
		620	70
		C20	71
		C20	72
		620	7.5
	TELE DE ME TELEVISION DE LA CONTRA CONT	C20	75
		020	76
70		C20	77
		C20	78
	TEMPR=WR#RUFER(T3R)-WT#RUFER(T3R+1)	C2D	79
	TEMPT=WR*RUFER(T38+1)+WI*RUFER(T38)	C2D	ลด์
	BUFFR (I3R)=BUFFR (I3A) -TEMPR	C20	81
	BUFFR(T3B+1)=BUFFR(T3A+1)-TEMPT	C20	82
	BUFFR (13A) = BUFFR (13A) + TEMPR	C20	83
	BUFFR(I3A+1)=BUFFR(I3A+1)+TEMPT	C2D	84
		~~	

80	IELEM=IELEM+1 Tempr=wr	020 020	85 86
	WR=WR*WSTPP-WI*WSTPI+WP	050	87
90	WI=TFMPR#WSTPI+WI#WSTPP+WI	CSD	88
	CALL DWPIT (IDATA+IREC0+BUFFR(1)+1+NELEM)	CSD	89
	CALL DWPIT (IDATA+IREC1+RUFFR(NWORD+1)+1+NELEM)	CSD	90
	IP2=IP3	C2D	91
	GC TO 40	C2D	92
100	RETURN	C2D	93
	END	CSD	94-
	SUBROUTINE COUL2 (DATA + NPREV + N + NREM + ISIGN)	C05	1
ç	DISCRETE FOURIER TRANSFORM OF LENGTH N. IN-PLACE COOLEY-TUKEY	COS	5
Ç	ALGORITHM, BIT-REVERSED TO NORMAL ORDER. SANDE-TUKEY PHASE SHIFTS	.C05	3
C	DIMENSION DATA (NPREV + N + NREM)	COS	4
C	COMPLEX DATA	C05	- 5
Ç	DATA(J1*K4*J5) = SUM(DATA(J1*J4*J5)*EXP(ISIGN*2*PI*I*(J4*1)*	COS	6
Ç	(K4-1)/N)), SUMMED OVER J4 = 1 TO N FOR ALL JI FROM 1 TO NPREV.	SUD	7
C	K4 FROM I TO N AND J5 FROM I TO NREM. N MUST BE A POWER OF TWO.	COS	8
C	METHOD-LET IPREV TAKE THE VALUES 1, 2 OR 4, 4 OP A,, N/16,	C05	.9
C	N/4, N. THE CHOICE RETWEEN 2 OR 4, ETC., DEPENDS ON WHETHER N IS	C05	10
C	A POWER OF FOUR. DEFINE IFACT = 2 OF 4, THE NEXT FACTOR THAT	002	11
C	IPREV MUSI TAKE + ANI) IPEM = N/(IFACI*IPREV) - THEN	C05	12
	DIMENSION DATA (NPREVILPREVILPACIOIREMONREM)	002	13
	CUMPLEA DATA	002	14
	UA1A(J1)J2(A,3)J4(J2) = 3UM(UA1A(J1)J2(J2)J4(J2)J7*EAP(13)M*EAP(13)(M*EAP(13))	C02	10
	$(K_3-1) \times ((J_3-1)/(F_4 C_1 + (J_2-1)/(F_4 C_1 + (F_4 C_2 + (F_4 C_2 + (J_3-1)/(F_4 C_1 + (J_2-1)/(F_4 C_1$	C02	10
с С	TO TRACT FOR ALL JI FROM I TO NPREVO JE FROM I TO TPREVO KS FROM	C02	1/
	A DUSCEDUTETED DISCOULT FOUNDED TOADSCOUL OF INCHING (1915-15)	C02	10
r r	A PHASE SHIFTED DISCRETE FOURIER TRANSFORM OF LENGTH TRACT.	C02	20
r r	TACTURING N DI FOURS SAVES ADOUT IMENITETIVE FERGENT OVER FACTURET TACE DV TWOC - DATA MIST DE DITEDEVEDCED TATTALLY	C02	20
r r	ING PT INUS, DATA MOST PE DIT-REVENSED INITIALLI.	C02	22
ř	IT IS NOT NEGLISSANT TO REWRITE THIS SURNOTINE INTO COMPLEX	C02	22
r	THATTADE DADTE IN THE FUELENT CODAGE LOCATIONS IT MIST ALSO	002	24
r r	THAGTHART FARTS IN ADJACTNE STURAGE LUCATIONS. IT MUST ALSO	C02	24
C	DIMENSION DATA(1)	C02	26
		C02	27
		C02	28
		C02	20
		C02	30
		C02	30
		C02	32
r		C02	33
		C02	34
10	TE (NPAPT=2) 60.30.20	C02	35
20		C02	34
<u> </u>		CU2	37
r	DC A FOURTER TRANSFORM OF LENGTH TWO	CU2	30
้รก	TE ($IP2-IP4$) 40.160.160	C02	30
40		C02	40
		· · · · · ·	· •

Ň

С	IP3=IP2+IFACT	C05	41
	DO 50 11=1+IP1+IP0	C02	42
С	I1 = 1 + (J1-1) * IP0	C05	43
	D0 50 I5=I1•IP5•IP3	COS	44
С	I5 = 1 + (J1-1) * IP0 + (J4-1) * IP3 + (J5-1) * IP4	COS	45
	I3A=I5	C05	46
	I38=I3A+IP2	COS	47
С	I3 = 1 + (J1-1) * IP0 + (J2-1) * IP1 + (J3-1) * IP2 + (J4-1) * IP3 + (J5-1) * IP4	C05	48
-	TEMPR=DATA(13B)	C02	49
	TEMPT=DATA(T3B+1)	200	50
	DATA(I3B)=DATA(I3A)-TEMPH	C02	51
	DATA(I3B+1) = DATA(I3A+1) - TEMPT	C02	52
	DATA(I3A) = DATA(I3A) + TEMPR	C02	53
50		C02	54
		coz	55
c	DO A FOURTER TRANSFORM OF LENGTH FOUR (FROM BIT REVERSED ORDER)	C02	56
۵ کې	TE (TP2-TD4) 70-160-160	C02	57
70		C02	50
~ ¹⁰	1 F J - 1 F Z - 7 T D J - T D J X F X C T	C02	50
L.	1-3-1-6-1-401 Theta=Twodt/El (At/103/101)	C02	60
		C02	61
	JIN10-JIN100,10/10/10/10/10/10/10/10/10/10/10/10/10/1	C02	62
c	$w_{3} = e_{-3} = e_$	CU2	63
C	WSTHEIA/TIFICA ACCORACT.	C02	64
	WOIF1=01N(1981A)	C02	65
		C02	66
		C02	- 00 - 67
r		C02	60
C.	1 = -12 - 17 - 17 - 17 - 17 - 17 - 17 - 17	C07	40
80	17 (12-1) 7077070 M2D=MD8WT	C02	76
00		C02	71
	W3D-W378W7_W378W1 W21-20-W7-W1	C02	72
		C02	73
00	M31-WCK*W17WC1-WK	C02	74
70	11 m M = 1 c + 1 r - 1 - 1 r + 0	C02	75
^	$11 = 1 \times (1 - 1 \times $	002	72
L	11 = 1 + (31 - 1) + (7 -	C02	77
~	00 140 17-1141F341F3 T5 = 1//12134T01//122134T03//162344502//16233470	C02	70
L	13 = 1+(J1-1)*1P0+(J2-1)*1P1+(J4-1)*1P3+(J3-1)*1P4	C02	70
		C02	- 49
		002	່ວາ
		C02	01
~	130-130+176 73 - 14/11-11#1044/12-11#1014/12-11#1024/14-11#1024/15-11#104	0.02	20
L	13 + 17(31-1) + 170(32-1) + 171(33-1) + 172(34-1) + 173(35-1) + 174 15 + 172(34-1) + 130(35-1) + 160	002	03
~	$\frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} \right) \frac{1}{1} \left(\frac{1}{1} + \frac{1}{1} + \frac{1}{1} \right)$	C02	- 04
100	MERLI 1997, FERRI, OFIFI FRUINNO TEMPO-NATA/1001	C02	- 70 - 94
100	IE MFR-UAIA(130) Data (130)	002	00
	$UATA(135) = WCW^*UATA(135) = WCI^*UATA(135+1)$	002	- 57
	UAIA(138+1)=WCK*UAIA(138+1)+WC1*1EMPK Tened-data(138)	C02	88
		002	89
	UAIA(IJC) = WR*UAIA(IJC) - WI*DAIA(IJC+1)	C05	90
	DATA(13C+1)=WR*DATA(13C+1)+WI*TEMPR	C05	- 91

	TEMPR=DATA(I3D)	COS 92	
	DATA(I3D)=W3P*DATA(I3D)-W3I*DATA(I3D+1)	CO2 93	
	DATA(I3D+1)=W3P*DATA(I3D+1)+W3I*TEMPR	CO2 94	
110	TOR=DATA(I3A)+DATA(J3H)	C02 95	
	TOI=DATA(I3A+1)+DATA(I3H+1)	C05 96	
	TIR=DATA(I3A)-DATA(I3H)	CO2 97	
	T1I=DATA(I3A+1)-DATA(I3H+1)	COS 38	
	T2R=DATA(I3C)+DATA(I3D)	C02 99	
	T2I=DATA(I3C+1)+DATA(I3D+1)	COS 100	
	T3R=DATA(I3C)-DATA(I3D)	CO2 101	
	T3I=DATA(I3C+1)-DATA(I3D+1)	C02 102	
	DATA(I3A)=TOR+T2R	CO2 103	
	DATA(I3A+1)=T0I+T2I	CO2 104	
	DATA(I3C)=TOR-T2R	CO2 105	
	DATA(I3C+1)=T0I-T2I	C02 106	
	IF (ISIGN) 120+120+130	CO2 107	
120	T3R=-T3P	CO2 108	
	T3I=-T3I	C02 109	
130	DATA(I3R)=T1R-T3I	C02 110	
	DATA(I3R+1) = TIT+T3R	C02 111	
	DATA(13D) = T1R + T3T	C02 112	
140	DATA(I3D+1)=TII-T3R	C02 113	
	TEMPREWR	CO2 114	
	WR=WSTPP*TEMPK-WSTPI*WI+TEMPR	C02 115	
150	WI=WSTPR#WI+WSTPI#TEMPR+WI	C02 116	
	IP2=1P3	C02 117	
	GO TO 60	C02 118	
160	RETURN	C02 119	
	END	C02 120	_

	~		PROGRAM CHECK(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)
5	000000		THIS PROGRAM WAS WRITTEN BY R. AKINS COLORADO STATE UNIVERSITY TO Illustrate the use of subroutine fourt. A forward and inverse Transform of a known function are performed and the results are Compared with the exact values.
	č		PROGRAM VARIABLES IN ALPHABETICAL ORDER ARE
10	0000		D - ARRAY USED AS INPUT AND OUTPUT FROM SUBROUTINE FOURT Deltat - Time Step of Input Function Deltaw - Frequency Step Corresponding to Deltat
15			NUMBER - NUMBER OF DATA POINTS USED IN TRANSFORMS NUMBE2 - NUMBER OF DATA POINTS AFTER REFLECTION USED IN TRANSFORMS TIME - ACTUAL TIME AT A GIVEN ELEMINT OF D DIMENSION D(2,4096)
20	CCC		READ INPUT VARIABLES
20	L	3 5	READ(5+111)NUMBER+DELTAT IF(EOF(5))300+5 NUMBER#2
25	COOC	5	DELTAW=6.2832/(DELTAT*FLOAT(NUMBE2)) COMPUTE INPUT EXPONENTIAL FUNCTION - STORE IT IT D(1+I) CORRESPONDING TO THE REAL PART OF THE FOURT INPUT+ PLACE A ZERO IN D(2+I) CORRESPONDING TO THE IMAGINARY PART OF FOURT INPUT.
30	C	10	DO 10 I=1+NUMBER D(1+I)=EXP(-FLOAT(I-1)*DELTAT) D(2+I)=0+0
	Č		REFLECT THE INPUT FUNCTION
35	L		D(1+NUMBER+1)=D(1+NUMBER) D0 20 I=2+NUMBER K=NUMBER-I+2
40		20	L=NUMHEK+1 D(2+L)=0.0 D(1+K)
	ç		PERFORM A FORWARD (-1) TRANSFORM ON THE DATA
4 E	C		CALL FOURT (D+NUMBE2+1+-1+0+0)
40			COMPUTE ACTUAL TRANSFORM AND PRINT OUT A COMPARISON WITH THEOUTPUT OF SUBROUTINE FOURT
50	C		CPTIME=SECOND(A) WRITE(6,201)NUMBER,DELTAT,CPTIME WRITE(6,115)
r c		30	D0 30 I=1.NUMBER D(1.I)=D(1.I.)*DELTAT*2.0 D0_35 I=1.NUMBER.10
22		35	ACIUAL=4.0/(1.0+(FLOAT(I-1)*DELTAW)**2) FREQ=FLOAT(I-1)*DELTAW WRITE(6,120)FREQ,D(1,I),ACTUAL D(2+1)=0 D(2,NUMBER+1)=0

60		D(l+NUMBER+1)=D(l+NUMBER) DO 40 I=2+NUMBER K=NUMBER-I+2 L=NUMBER+I
65	40 C	D(2,L)=0.0 D(2,I)=0.0 D(1,L)=D(1,K)
	Č	PERFORM AN INVERSE (+1) TRANSFORM OF THE DATA
70	с	CALL FOURT(D,NUMBE2,1,1,0,0)
	CCC	COMPARE THE RESULTS OF A FORWARD AND INVERSE TRANSFORM WITH THE ORIGINAL DATA
75	C	CPTIME=SECOND(A) WRITE(6,201)NUMBER,DELTAT,CPTIME
		WRITE(6,110) VALUE=D(1,1)
80		DO 60 I=1•NUMBER•10 TIME=FLOAT(I-1)#DELTAT
		D(2+1)=EXP(-TIME) D(1+1)=D(1+1)/(FLOAT(NUMBER)+DELTAT+4)
05	110	FORMAT(11X+*T(SEC) COMPUTED R(T) ACTUAL R(T)*)
85	115	FORMAT(110,F10,3) FORMAT(11X,#W(RPS)COMPUTED F(W) ACTUAL F(W)#)
	120 201	FORMAT(10X+F7+3+5X+2E14+5) FORMAT(10X+*N = *+14+5X+*DELTAT = *+F6+3+5X+*CPTIME = *+F8+5)
90	300	GO TO 3 CONTINUE END

	PROGRAM SEGEMNT (INPUT, OUTPUT, TAPES=INPUT, TAPE6=OUTPUT, TAPE1)	
5	THIS PROGRAM WAS WRITTEN 8/75 BY R. AKINS CSU TO COMPUTE POWER SPECTRAL DENSITIES (PSD) FROM A TIME SERIES USING SUBROUTINE FOURT. AND SEGMENT AVERAGING. AN OPTION IS TO PERFORM AN INVERSE TRANSFORM OF C OF THE PSD AND OHTAIN AN AUTOCORPELATION (ACR) FUNCTION. PLOTS OF BOTH C THE PSD AND THE ACR WILL BE MADE USING THE U200 HARD COPY PLOTTER C	
10	C SUBROUTINES CALLED ARE C ALL PLOT SUBROUTINES ARE DESCRIBED IN THE CSU USERS MANUAL 1975 EDITIO	
15	C AXIS - PLOT ROUTINE C CURVE - PLOT ROUTINE C FPAME - PLOT ROUTINE C FIRSTPT - PLOT ROUTINE C FOUPT - FFT SUBROUTINE CALLED FROM FINLIB C FOUPT - FFT SUBROUTINE CALLED FROM FINLIB C TPS - SUBROUTINE TO INTEGRATE THE SPECTRA	
20	C LOCAT - PLOT ROUTINE C MACROT - CALCULATES INTEGRAL TIME SCALES FOR THE ACR C MICRO1 - CALCULATES MICROSCALE FROM (N**2)*F(N) C MICRO2 - CALCULATES MICROSCALE FROM ACR	
25	C PFN2 - PLOT ROUTINE C READATA - READS DATA RECORD FORM TAPE1 (12 BIT WORDS) C SFT - PLOT ROUTINE C SYMBOL - PLOT ROUTINE C UNPAK2 - CONVERTS DATA RECORD FROM 12 TO 60 BIT WORDS C VECOTR - PLOT ROUTINE	
30	C INPUT VARIABLES IN ALPHABETICAL ORDER ARE	
35	GAIN - GAIN OF LINEAR TRANSDUCER CICON - CODE FOR CORRELATION CALCULATION CIPATE - SAMPLE RATE OF DATA CIPEC - RECORD LENGTH OF TAPE1 (DATA TAPE) CRETT-5 - RLOT LABELS FOR BOTH PSD AND ACR PLOT CLABY - Y AXIS LABEL FOR PSD CLABY - Y AXIS LABEL FOR PSD	
40	C NSEGM - NUMHER OF SEGMENTS TO AVERAGE C TITLE - ALPHANUMERIC ARRAY USED TO LABEL PRINTED OUTPUT C XTIT - X AXIS LABEL FOR CORRELATION PLOT C YTIT - Y AXIS LABEL FOR CORRELATION PLOT	
45	C PROGRAM VARIABLES C A - ARRAY OF 12 ATT WORDS READ FROM TARE INPUT TO UNPACK	
50	C B - APRAY OF 60 BIT WORDS OUTPUT FROM UNPACK C CONST - NORMALIZING FACTOR FOR ACR C D - 2 DIMENSIONAL ARRAY USED TO SIMULATE COMPLEX NUMBERS C D - 2 DIMENSIONAL ARRAY USED TO SIMULATE COMPLEX NUMBERS C D - 2 DIMENSIONAL ARRAY USED TO SIMULATE COMPLEX NUMBERS C DFLTAN - FREQUENCY INTERVAL OF SPECTRA C DFLTAT - TIME STEP OF INPUT DATA C FACTOR - CONSTANT USED IN SPECTRA CALCULATIONS C IND - INDEX USED IN SETTING UP PLOT ARRAYS	
55	C KTAPER - UPPER LIMIT TAPER START C LTAPER - LOWER LIMIT TAPER CUTOFF C N - NUMBER/2 C NFW - NUMBER/2 C NPLOT - PLOT PARAMATER C NREC - NUMBER OF RECORDS TO BE READ FROM THE TAPE PER SEGMENT	
60	0000	NUMPER - LENGTH OF D ARRAY RMS - COMPUTED VALUE OF RMS SEGMEN - ARRAY USED TO STORE THE SEGMENT AVERAGED SPECTRA TOTAL - FLOATING PUINT VERSION OF NUMBER
-----	------------	---
65	000000	UTAPER - TAPER FACTOR X - INPUT ARRAY FOR PLOTS XMEAN - RUNNING TOTAL USED IN MEAN CALCULATIONS X2 - RUNNING TOTAL USED IN RMS CALCULATIONS Y - INPUT ARRAY FOR PLOTS
70	L	COMMON D(2+8192)+N+SEGMEN(4096) DIMENSION X(500)+Y(500)+TITLE(8) DIMENSION XIIT(4)+YIIT(4)+LABX(4)+LABY(4) DIMENSION KEY1(3)+KEY2(3)+KEY3(3)+KEY4(3)+KEY5(3)+KEY6(3)
75	1	COMMON/1/IREC+IPATE+K1 DATA Y/500*0.0/ DO 1 J=1+4096 SEGMEN(I)=0.0 NUMBEP=8192
80	CCCC	IN OFDER TO CHANGE THE SIZE OF ARRAY D, TWO CARDS NEED TO BE CHANGED, THE DIMENSION CARD AND THE VALUE OF NUMBER
85	ç	PEAD THE INPUT VARIABLES
90	501 500	READ(5+501)TITLE FORMAT(RA10) READ(5+500)NSEGM+IREC+IRATE+ICOR+GAIN FORMAT(4110+F10+3) READ(5+510)XTIT READ(5+510)YTIT READ(5+510)LABX BEAD(5+510)LABX
95		READ (5,511) KEY1 READ (5,511) KEY2 READ (5,511) KEY3 READ (5,511) KEY3 READ (5,511) KEY4 READ (5,511) KEY5
100	510 511	READ(5+511)KEY6 FORMAT(4A10) FORMAT(3A10) CALL LOCAT(2RAT) CALL PENZ(5HBL4CK+4HFELT)
105	č	READ IMPUT DATA OFF OF TAPEL, COMPUTE THE MEAN AND THE RMS
110	C	WRITE(6+600)TITLE+NSEGM+NUMHER+IREC+IRATE NREC=NUMHER/IREC+1 DO 100 K=1+NSEGM ICOUNT=1 XMEAN=0+0
115	600	FORMAT(1H1+BA10+//+5×,*A SEGMENT AVERAGED SPECTRA WILL BE COMPUTED 1 USING *+I4+* SEGMENTS*+/+5×,*OF LENGTH *+I6,*. THE DATA IS IN 2RECORDS *+I5+* VALUES LONG AT A SAMPLE*,/,5×.*RATE OF *+I6+* SPS. 3*+///+11×,*SEGMENT*+17×.*XMEAN*,16×,*RMS*) DO 10 K1=1+NREC

120		CALL PEADATA CALL UNPAK2(A+#+IREC) DO 8 J=1+IREC B(J)=B(J)#GAIN
125		$D(1 + ICOUNT) = B(J)$ $D(2 + ICOUNT) = 0.0$ $XME \Delta N = XME \Delta N + H(J)$ $X2 = XZ + B(J) * * 2$ $IF(ICOUNT - E0.NUMBER) = 0.12$
130	8 10 12	ICOUNT=ICOUNT+1 CONTINUE TOTAL=FLOAT(NUMBER) XMEAN=XMEAN/TOTAL RMS=SORT(AHS((XZ=XMEAN#XMEAN#TOTAL)/TOTAL)) WDITE(6.01)/Y.VMEANEMS
135	601 C C	FORMAT(13X,14,15X,F10.7,10X,F10.7) TAPER AND NORMALIZE THE DATA (REMOVE MEAN, DIVIDE BY RMS)
140		LTAPEP=NUMBER/10 KTAPEP=NUMBER-LTAPEP DO 15 I=1+NUMHER D(1+I)=(D(1+I)-XMEAN)/RMS IF(I+GT+LTAPER)GO TO 13 IF(I+GT+LTAPER)GO TO 13
145	13	$\begin{array}{c} FAC=F\left[LOA\right]\left(1-1\right)F\left[OAF\left(1-APER-1\right)\right]\\ UTAPEP=COS\left(1\cdotS70796*\left(1-FRAC\right)\right)**2\\ D\left(1\cdotI\right)=D\left(1\cdotI\right)*UTAPER\\ GO \ TO \ 15\\ IF\left(I\cdotI\right)=TAPER\right)GO \ TO \ 15$
150	15	FRAC=FLOAT(KK)/FLOAT(LTAPER-1) UTAPER=COS(1.570796*(1.0-FRAC))**2 D(1.1)=D(1.1)*UTAPER CONTINUE
155	000	PERFORM & FORWARD TRANSFORM OF THE DATA ARRAY D CALL FOURT (D+NUMBER+1+-1+0+0) NEW=NUMPER/2 DEFINITION
160	C	FACTOR=2.0*1.143*DELTAT/TOTAL DELTAM=1./(TOTAL*DELTAT) ADD THE INCREMENT INTO ARRAY SEGMEN. THE SEGMENT AVERAGED SPECTRA
165	C 20 100	DO 20 I=1+NEW SEGMEN(I)=(FLOAT(K-1)*SEGMEN(I)+FACTOR*(D(1+I)**2+D(2+I)**2))/FLOA IT(K) CONTINUE
170	ccc c	COMPUTE THE CORRELATION FUNCTION FROM THE N SEGM AVERAGED SPECTRA N=NUMBER/2
175	C C 110	REFLECT THE SPECTRA INTO THE D ARRAY DO 110 J=1+N D(1+I)=SEGMEN(I) D(2+I)=0+0

180		$D(1 \cdot N+1) = D(1 \cdot N)$ $D(2 \cdot N+1) = 0 \cdot 0$ $D0 - 115 - 1 = 2 \cdot N$ k = N - 1 + 2 t = N + 1 $D(2 \cdot L) = 0 \cdot 0$
185	c 11	5 $D(1+L)=D(1+K)$ REPEARM AN INVERSE TRANSFORM TO OBTAIN A CORRELATION FUNCTION
	č	CALL FOURT (DONUMBER, 101.00)
190	CCC	NORMALIZE THE CORPELATION FUNCTION
	12	CONST=D(1.1) DO 120 I=1.N 0 D(1.1)=D(1.I)/CONST
195	CCCC	PLACE THE NORMALIZED COPRELATION FUNCTION INTO ARRAY Y AND GENERATE ARRAY X - TIME STEPS
200	13	DO 130 I=1+50 X(I)=FLCAT(I-1)*DELTAT 0 Y(I)=C(1+I) INO-51
205	13	D0 135 T=60+N+10 Y(IND)=D(1+I) X(IND)=FLOAT(I-1)*DELTAT IF(X(IND).GT.1.0)G0 T0 137 5 IND=IND+1
210	C C C C C C C C	OUTPUT AND PLOT THE CORRELATION FUNCTION
215	14	<pre>wRITE(6+602)TITLE D0 140 J=1+NPL0T+5 0 wRITE(6+603)X(I)+Y(I)+X(I+1)+Y(I+1)+X(I+2)+Y(I+2)+X(I+3)+Y(I+3)+X(1I+4)+Y(I+4)</pre>
	60 60	2 FORMAT(1H1+8A10+/+10X+*AUTOCORRELATION FUNCTION*+//+5(* TIME 1 R(T) *)+//) 3 FORMAT(10F10+6) 3 FORMAT(10F10+6)
220		CALL SET(1:095:001:006:090:091:00-201:0111) CALL AXIS(0:00:0:0YTIT:040:6:090:09-29:291) CALL AXIS(0:00:0:0:0XTIT:0-40:5:00:0:00:00:02:1) CALL SYMBOL(2:0:4:6:29KEY1:0:0:30) CALL SYMBOL(2:0:4:6:29KEY1:0:0:30)
225		CALL SYMBOL (2.0.4.0.2.KEY3.0.0.30) CALL SYMBOL (2.0.3.7.2.KEY4.0.0.30) CALL SYMBOL (2.0.3.7.2.KEY4.0.0.30) CALL SYMBOL (2.0.3.4.2.KEY5.0.0.30) CALL SYMBOL (2.0.3.1.2.KEY6.0.0.30)
230		CALL VECTOR(1.0.0.0) NPLOT=NPLOT-1 CALL CUPVE(X,Y.NPLOT.0.2) CALL FRAME
235	2 15 C	DO 153 T=1,500 3 Y(I)=0.0 PLACE THE FIRST 10 POINTS OF THE SPECTRA INTO ARRAY Y AND ASSOCIATED

	ç		FREQUENCY INTO X
240	Ū	150	DO 150 J=1+10 X(I)=FLOAT(I)*OFLTAN Y(I)=SEGMEN(I+1) INO=11
245	C C C C		FREQUENCY AVERAGE 3 POINTS
250		157 154	NO 157 J=1+3 Y(IND)=Y(IND)+SEGMEN(I+J-1) Y(IND)=Y(IND)/3.0 X(IND)=FLOAT(I+1)*DELTAN IND=IND+1 N2=N-10
255	C C C C		FREQUENCY AVERAGE 10 PUINTS DO 155 I=60.02.10
260		156 155	D0 156 T1=1+10 Y(IND)=Y(IND)+SEGMEN(I+I1-1) X(IND)=FLOAT(I+5-1)*DELTAN Y(IND)=Y(IND)/10+0 IND=IND+1 NPLOT=IND+1
265		607 160	WRITE(6+607)SFGMEN(1) FORMAT(1H0+10X+*THE FIRST ELEMENT OF SEGMEN IS *+E15+4) WRITE(6+604)TITLE DO 160 T=1+NPLOT+4 WRITE(6+605)X(1)+Y(1)+X(1+1)+Y(1+1)+X(1+2)+Y(1+2)+X(1+3)+Y(1+3)
270		605 608	FORMAT(1H1+8A10+/+10X+*NORMALIZED POWER SPECTRAL DENSITY FUNCTION* 1+//+4(* FREU-CPS F(N)*)+//) FORMAT(RE15+7) CALL IPS(SEGMEN+DELTAN+SUM+N+1) #PITE(6+608)SUM EORMAT(1H0+10X+8AREA OF SEGMEN = #+E10+5)
275		500	CALL SET (1.50,9,25,1,75,12,95,0,01,1000,0,0000001,1,0,2,7,4) CALL PERIM(5,0,7,0) CALL SYMHOL(3,5,-,8,25,LABX,0,0,40) CALL SYMHOL(3,5,-,8,25,LABX,0,0,40) CALL SYMHOL(-,5,3,0,25,LABY,90,0,40)
280			CALL SYMBOL(1.0.3.2.2.KEY100030) CALL SYMBOL(1.0.2.9.2.KEY2.0.0.30) CALL SYMBOL(1.0.2.9.2.KEY3.0.0.30) CALL SYMBOL(1.0.2.6.2.KEY4.0.0.30) CALL SYMBOL(1.0.2.3.2.KEY5.0.0.30)
285			CALL SYMHOL(1.0.2.0.2.KEY6.0.0.30) CALL CUPVE(X.Y.NPLOT.0.2) CALL FPAME CALL MACROT(DELTAT) CALL MICRO2(DELTAT) CALL MICRO1(DELTAN.HMICRO1)
290		606	WRITE(6,606)RMICRO1 FORMAT(1H0,10X,*MICROSCALE COMPUTED BY INTEGRATING N2F(N)*,F10,6) FND

		PROGRAM EXTCORE(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE1,TAPE2, 1TAPE3)
5	1000	THIS PROGRAM WAS WRITTEN BY R. AKINS TO COMPUTE A POWER SPECTRAL USING SUBROUTINE FORZU, AN EXTERNAL CORE FFT ROUTINE
	000	SUBROUTINES CALLED IN ALPHABETICAL ORDER ARE - ALL PLOT ROUTINES ARE DISCUSSED IN THE CSU USERS MANUAL
10	0000	CURVE - PLOT ROUTINE DREAD - READS RECORDS FROM MASS STORAGE DWRIT - WRITES ON MASS STORAGE, REWRITING OVER OLD DATA USED AFTER THE
15	0000	DATA HAS BEEN WRITTEN ONCE DWRITI - WRITES ON MASS STORAGE - FIRST TIME FOR2D - EXTERNAL COPE FFT FRAME - PLOT ROUTINE FRAME - PLOT ROUTINE
20	0000	IPS - INTEGRATION SUBROUTINE LOCAT - PLOT ROUTINE PFNZ - PLOT ROUTINE PERIM - PLOT ROUTINE
	CCCC	OPENMS - SETS UP MASS STORAGE - SYSTEM SUBROUTINE READATA - READS 1 DATA RECORD IREC VALUES LONG FROM TAPE1 USING ARRAY SYMBOL -PLOT ROUTINE UNPAK2 - CAHNGES FROM 12 BIT TO 60 BIT WORDS
25	CCC	TAPE UNITS USED -
30	CCCCC	TAPF 1 - DATA TAPE TAPF 2 - MASS STORAGE TAPE 3 - OUTPUT FOR EQUALLY AVERAGED SPECGRA TAPE 5 - CARD INPUT TAPE 6 - PRINTED OUTPUT
35	°CCCCC	A - ARRAY OF 12 BIT WORDS INPUT TO UNPACK, READ FROM TAPE1 B - APRAY OF 60 HIT WORDS OUT PUT FROM UNPACK DELATN - FREQUENCY STEP FOR GIVEN AVERAGING INTERVAL DELTAT - TIME STEP OF DATA, 1/IRATE EACTOR TO WHITTELY OUTPUT OF FORD
40	00000	FRED - REAL ARRAY USED TO STORE THE FREQUENCY VALUES FOR SPECT GAIN - CALIBRATION FACTOR ICHAN - CHANNEL TO BE USED ICOUNT - COUNTER USED IN TAPERING, AND IN INITIALLY PLACING THE DATA
45	COCC	INTO MASS STORAGE INDEX - INTEGER ARRAY USED IN MASS STORAGE CONTROL INDEX1 - COUNTER USED TO KEEP TRACK OF MASS STORAGE LOCATIONS ON INPUT IRATE - SAMPLE RATE PER CHANNEL TAPE1 IREC - NUMBER OF DATA VALUES PER DATA RECORD, TAPE1
50	00000	ISP - COUNTER USED IN FREQUENCY SMOOTHING KEY 1 - TITLE CARD FOR PLOT OF SPECTRUM KEY2 - TITLE CARD FOR PLOT OF SPECTRUM KEY3 - TITLE CARD FOR PLOT OF SPECTRUM KEY3 - TITLE CARD FOR PLOT OF SPECTRUM
55	20000	KEYS - TITLE CARD FOR PLOT OF SPECTRUM KEYS - TITLE CARD FOR PLOT OF SPECTRUM KEYA - TITLE CARD FOR PLOT OF SPECTRUM KTAPER - USED IN TAPERING THE DATA LABX - PLOT AXIS LAREL
	С С С С С С С С С С С С С С	LABY - PLOT AXIS LAREL LIMIT(1+I) - NUMBER OF POINTS TO AVERAGE ITH INTERVAL LIMIT(2+I) - NUMBER OF RAW POINTS I-TH INTERVAL LIMIT(3+I) - NUMBER OF AVERAGED POINTS I-TH INTERVAL

60	cccc	LTAPER - USED IN TAPÉRING THE DATA N - APRAY GIVING DIMENSION OF ENTIRE DATA ARRAY INPUT TO FOR2D NAVG - NUMBER OF AVERAGING INTERVALS NAVG1 - UNIFORM AVERAGING TO HE USED IN OUTPUT TO TAPE3
65	Č C C	NCHAN - NUMBER OF CHANNELS OF DATA ON TAPE 1 NREC - COUNTER USED IN INTEGRATION NPECURD - TOTAL NUMBER OF DATA RECORDS ON TAPE
70		NUMBER - LENGTH OF RECORDS NEEDED TO READ N(I) VALUES FROM TAPE 1 NUMBER - LENGTH OF DATA RECORDS IN MASS STORAGE N1 - NUMBER OF RECORDS TO BE USED IN MASS STORAGE +1 PEUNC (X) - GATNEX - CALTERATION FOR A LINEAR TRANSDUCER
	č c c	PKHI - HIGHEST VALUE OF RECORD PKLO - SMALLEST VALUE OF RECORD RMS - ROOT-MEAN-SQUARE OF THE INPUT DATA
75	cccc	RMS2 - RMS##2 SPECT - REAL ARRAY USED TO STORE THE SMOOTHED SPECTRUM SQ - SUM OF SQUARES OF DATA VALUES STORE - REAL ARRAY USED IN UNIFORM SMOOTHING OF THE SPECTRUM TFMP - COMPLEX ARRAY NUMBER ELEMENTS LONG, USED WITH FOR2D
80	00000	TOTAL - TOTAL NUMBER OF POINTS USED IN THE FFT UTAPER - USED IN TAPERING THE DATA WORK - COMPLEX ARRAY 3*NUMBER ELEMENTS LONG USED WITH FOR2D AND MASS S STOPAGE READ AND WRITE ROUTINES XINC - ARRAY USED IN INTEGRATION TO STORE EREQUENCY INCREMENTS
85	Č C C C C C	XINT - RUNNING VALUE OF INTEGRAL OS SPECTRA XLIMIT(1+I) - HANDWIDTH FOR THE I-TH AVERAGING INTERVAL XLIMIT(2+I) - UPPER LIMIT FOR THE I-TH AVERAGING INTERVAL XMEAN - RUNNING MEAN
90	Ū	COMPLEX TEMP COMPLEX WORK COMMON TEMP(1024) COMMON/UNPK/A(204)+B(1020) COMMON/1/IREC+NCHAN+IRATE
95		COMMON/2/IRUN+DIAM+LENGT+IWIND+J2 DIMENSION WORK (3072)+N(3)+INDEX (513)+SPECT(1200)+FREQ(2000) DIMENSION STORE(8) DIMENSION LARX(4)+LABY(4)+KEY1(3)+KEY2(3)+KEY3(3)+KEY4(3)+KEY5(3)+ IKEY6(3)
100		DIMENSION XLIMIT(2+6)+LIMIT(3+6) DIMENSION XINC(6) DATA SPECT/1200+0.0/ DATA STORE/8+0.0/ PFUNC(X)=GAIN+X
105	CCC	READ IN PARAMETERS FOR PROGRAM EXECUTION
110	1900	CALL PENZ(5HBLACK+4HFELT) GAIN = .04114 READ(5+1000)IREC+NCHAN+IRATE+N(1)+NAVG+NRECORD+NUMBER+N1 FORMAT(RI10)
115		READ (5+1000) 1CHAN, NAVGI READ (5+1001) LABX READ (5+1001) LABY READ (5+1002) KEY1 READ (5+1002) KEY2 READ (5+1002) KEY3 READ (5+1002) KEY4

120	1001	READ(5,1002)KEY5 READ(5,1002)KEY6 FORMAT(4A10) FORMAT(3A10) READ(5,1003)(LIMIT(1,J),J=1,NAVG) READ(5,1003)(LIMIT(2,J),J=1,NAVG)
125	C C C	OPEN MASS STORAGE
130	C	CALL OPFNMS(2+INDEX+N1+0) N1=N1-1 NTRFC=N(1)*NCHAN/IRFC+1 IF(NTPEC+GT+NRECORD)STOP11
135	č	INITIALIZE PROGRAM PARAMETERS XMEAN=0.0
140		PKHI=-100.0 PKL0=100.0 SQ=0.0 ICOUNT=0 INDEX1=1 ICHAN=ICHAN-1 DO 10 I=1.NTREC
145	ccc	READ THE DATA OFF OF TAPE1, UNPACK IT FORM 12 TO 60 BIT WORDS
150		CALL PEADATA CALL UNPAK2(A+B+IREC) DO 5 JJ=1+IREC+NCHAN J=JJ+ICHAN R(J)=PFUNC(R(J)) XMEAN=XMEAN+B(J) SQ=SQ+R(J)*B(J) IF(R(J) + T PKHI)GO T(LB)
155	3	PKHI=P(J) IF(R(J).GT.PKLO)GO TO 5 PKLO=R(J) CONTINUE
160		PLACE THE DATA INTO MASS STORAGE 1 RECORD NUMBER DATA VALUES LONG AT A TIME
165		DO 10 JJ=1+IREC+NCHAN J=JJ+ICHAN ICOUNT=ICOUNT+1 WORK(TCOUNT)=B(J) IF(ICOUNT=NE+NUMHER) GO TO 10 ICOUNT=0
170	10	CALL DWRIT1(2+INDEX1+WORK+1+NUMBER) INDEX1=INDEX1+1 CONTINUF
175	CCC	COMPUTE THE MEAN AND THE RMS TOTAL=FLOAT(NTREC)*FLOAT(IREC)/FLOAT(NCHAN) XMEAN=XMEAN/TOTAL RMS=SQRT(ABS((SQ-XMEAN*XMEAN*TOTAL)/TOTAL))

180	WRITE(6.2000)IREC.IPATE.N1,NUMBER,XMEAN,RMS,PKHI,PKLO 2000 FORMAT(1H1.10X.*TRIAL RUN OF FOR2D FOR PRESSURE SPECTRA*.//.10X.*R 1ECORD LENGTH = *.17.* SAMPLE RATE = *.17.*SAMPLES/SECOND*.//.10X.* 2FOR2D WAS CALLED USING*.15.* RECORDS OF LENGTH*.17.//.10X.* 4MEAN = *.F10.6.20X.*(ALL UNITS PSI)*./.10X.*RMS = *.F10.6.//.10X.* 5PEAK HIGH = *.F10.6//.10X.*PEAK LOW = *.F10.6)
185	C RECALL THE DATA+REMOVE THE MEAN+TAPER IF APPROPIATE +RETURN TO STORAGE C LTAPER=N(1)/10
190	KTAPER=N(1)-LTAPER ICOUNT=1 DO 20 J=1•N1 CALL DREAD(2•J•WORK•1•NUMBER) DO 15 K=1•NUMBER WOOK(K)=WORK(K)=XMEAN
195	IF(ICOUNT.GT.LTAPER)GO TO 12 FRAC=FLOAT(ICOUNT-1)/FLOAT(LTAPER-1) UTAPER=COS(1.570796*(1.0-FRAC))**2 WORK(K)=WORK(K)*UTAPER
200	12 IF (ICOUNT.LT.KTAPER)GO TO 14 KK=(LTAPER-1)-(ICOUNT-KTAPER) FRAC=FLOAT(KK)/FLOAT(LTAPER-1) UTAPER=COS(1.570796*(1.0-FRAC))**2 WORK(K)=WORK(K)*UTAPER 14 ICOUNT=TCOUNT+1
205	15 CONTINUE 20 CALL DWRIT(2+J+WURK+1+NUMHER) C
	C PERFORM A FORWARD TRANSFORM ON THE DATA C
210	CALL FORZD (2+N+1+-1+1+WORK+NUMBER)
	C READ OUT THE TRANSFORMED VALUES, CONVERT TO A POWER SPECTRAL C DENSITY, FREQUENCY AVERAGE C
215	ISP=1 TOTAL=FLQAT(N(1)) DELTAT=1.0/FLQAT(IRATE) DELTAT=1.0/FLQAT(IRATE)
	FACTOR=2.0#1.143#DELTAT/TOTAL RMS2=PMS##2
220	DO 35 J=1•NAVG DELTAN=FLOAT(LIMIT(1•J))/(TOTAL+DELTAT)
	XLIMIT(1,J)=DELTAN LIMIT(3,J)=LIMIT(2,J)/LIMIT(1,J)
	35 XLIMIT(2+J)=LIMIT(3+J)*DELTAN D0 36 J=2+NAV6
225	36 XLIMIT(2+J)=XLIMIT(2+J)+XLIMIT(2+J+1) WRITE(6+2004)(XLIMIT(2+J)+LIMIT(1+J)+XLIMIT(1+J)+J=1+NAVG)
	2003 FORMAT(////)10X * SCHEME OF VARIABLE BANDWIDTH SPECTRUM SMOOTHING*) 2004 FORMAT(10X, *UPPER LIMIT CPS * F10, 2.5X *NUMBER OF POINTS AVERAGED/
230	10UTPUT POINT*,19,5X,*BANDwIDTH *,FI0.4) NREC=1
~ ~ ~	K1=0 D0 40 J=1+NAVG
	C COMPUTE THE NUMBER OF RECORDS NECESSARY TO COMPUTE THIS PORTION
235	C OF THE SPECTRUM

240		J3=NUMHFR/LIMIT(1+J) J2=LIMIT(1+J) J1=LIMIT(2+J)/NUMRER DELTN =FLOAT(J2)/(TOTAL*DELTAT) J1=N#FC+J1=1
245	300 37	DO 45 I=NREĈ+J1 CALL DREAD(2+I+WORK+I+NUMBER) DO 37 K=I+NUMBER WRITE(3+300)WORK(K) FORMAT(2E12+4) WORK(K)=FACTOR*(REAL(WORK(K))**2+AIMAG(WORK(K))**2) IADD=0
250	C	SMOOTH THE SPECTRUM USING VARIABLE BANDWIDTH TECHNIQUES
255	C 38	D0 39 KK=1+J3 D0 38 L=1+J2 SPECT(ISP)=SPECT(ISP)+REAL(WORK(IADD+L)) SPECT(ISP)=SPECT(ISP)/(FLUAT(J2)*RMS2) IF(ISP+EQ+1)FREQ(ISP)=+DELTN/2+0 IF(ISP+FQ+1)G0 T0 30 IF(ISP+FQ+1)G0 T0 30 IF(I+FQ+NREC+AND+KK+EQ+1)FREQ(ISP)=FREQ(ISP-1)+DELTN/2+0+ODELTN/2+0
260		IF(KK.EQ.1.AND.I.EQ.NREC) GO TO 30 FREQ(ISP)=FREQ(ISP-1)+DELIN
265	30 39 45 C C C	IADD=IADD+J2 ISP=ISP+1 CONTINUE INTEGRATE THE SPECTRUM LEAVING OUT THE END PORTIONS
270	60 63 40	XINC(J)=DELTN K1=K1+LIMIT(3,J) CALL IPS(SPECT+XINC(J),SUM+K1+LIMIT(3,J)) XINT=XINT+SUM ODELTN=DELTN NREC=J1+1
275	CCC	ADD ENDPOINTS AND OTHER ODD REGIONS
280	71	IND=1 KL=NAVG+1 D0 80 I4=1,KL IF(I4.NF.1)G0 T0 71 XINT=XINT+XINC(I4)*SPECT(IND)/2.0 G0 T0 78 IF(I4.NF.KL)G0 T0 72
285	30	XINT=XINT+XINC(I4-1)*SPECT(IND-1)/2.0 G0 T0 B0
200	72 78 80	$\frac{x_{1N} = x_{1N} + SPEUT(1ND) * (x_{1N}U(14) + x_{1N}U(14-1))}{2 \cdot 0}$ IND=IND+LIMIT(3 \ I 4) CONTINUE WRITE(6 \ 2005) XINT FOUND TO X AT A DEAL UNDER THE OPERATOR IS A FROM
<u>2</u> 90	C 2008	OUTDUT THE SNOUTHED SECTEM
	C C	UNIPUT THE SMOUTHED SPECTRUM
295		M=[SP-]

300	D0 50 J=1+M+4 50 WRITE(6+2002)FREQ(J)+SPECT(J)+FREQ(J+1)+SPECT(J+1)+FREQ(J+2)+SPECT 1(J+2)+FREQ(J+3)+SPECT(J+3) 2001 FOPMAT(1H1+10X+*SMOOTHED SPECTRUM*+/+10X+*FREQ CPS*+10X+*G(N)*) 2002 FORMAT(RE15+4)
	C PLOT THE SMOOTHED SPECTRUM
305	CALL LOCAT(2RAT) CALL SET(1.50,9.25,1.75,12.95,0.01,1000.0,.0000001,1.0,2,7,4) CALL PEPIM(5,0,7,0)
310	CALL SYMBOL(3.3,8,.25,LABX,0.0,40) CALL SYMBOL(6,3.0,.25,LABY,90.0,40) CALL SYMBOL(1.0,3.5,.2,KEY1,0.0,30) CALL SYMBOL(1.0,3.2,.2,KEY2,0.0,30) CALL SYMBOL(1.0,2.9,.2,KEY3,0.0,30) CALL SYMBOL(1.0,2.6,.2,KEY4,0.0,30) CALL SYMBOL(1.0,2.6,.2,KEY4,0.0,30)
315	CALL SYMBOL(1.0,2.3,.2,KEY5,0.0,30) CALL SYMBOL(1.0,2.0,.2,KEY6,0.0,30) CALL CUPVE(FREQ,SPECT,M,4,2) CALL FRAME END

	, ,	PROGRAM_CSPECT2(INPUT=101B,0UTPUT=202B,TAPE5=INPUT,TAPE6=OUTPUT, 1TAPE2=513,TAPE3=513B,TAPE4=513B)
5	10000	THIS PROGRAM WAS WRITTEN 11/75 BY R. AKINS TO COMPUTE AND PLOT A COHERENCE FUNCTION USING SEGMENT AVERAGING AND READING THE SINGLE CHANNEL TRANSFORMS FROM A DISC DEVICE, TAPE2 AND TAPE3.
10	0000	SUBROUTINES CALLED (ALL PLOT SUBROUTINES ARE DESCRIBED IN THE CSU USERS MANUAL, 1975 EDITION)
16	COCOC	AXIS - PLOT ROUTINE CURVE - PLOT ROUTINE LOCAT - PLOT ROUTINE PENZ - PLOT ROUTINE
15	00000	RSTR - PLOT ROUTINE SET - PLOT ROUTINE SKIPF - TAPE CONTROL SYMBOL - PLOT ROUTINE
20	č	INPUT VARIABLES ARE
25	0000	IRATE - SAMPLE RATE OF ORIGINAL TIME SERIES NRUN - NUMBER OF RUNS NSEG - NUMBER OF SEGMENTS NSKIP1 - TAPE CONTROL PARAMETER
30	00000	NSKIP2 - TAPE CONTROL PARAMETER NUMBER - LENGTH OF EACH SEGMENT TITLEI - LABEL FOR CHANNEL 1 TITLE2 LABEL FOR CHANNEL 2
30	20000	XTIT - PLOT AXIS LABEL Y - COMPLEX ARRAY STORING TRANSFORM OF CHANNEL 2 YTIT - PLOT AXIS LABEL
35	č	PROGRAM VARIABLES
40	0000000	A - FACTOR USED IN FREQUENCY AVERAGING Com - Array Storing Frequency Averaged Coherence Deltan - Frequency Increment of Spectra Freq - Array Storing Frequency Steps for Coherence IND - INDEX USED IN FREQUENCY AVERAGING NPLOT - TOTAL NUMBER OF POINTS TO PLOT
45	00000	NEXT - SEGMENT AVERAGED CROSS SPECTRAL DENSITY SPECT1 - SINGLE CHANNEL SEGMENT AVERAGED SPECTRA CHANNEL 1 SPECT2 - SINGLE CHANNEL SEGMENT AVERAGED SPECTRA CHANNEL 2
	č	TAPE UNITS USED
50	200000	TAPE2 - MASTER INPUT TAPE TAPE3 - DISC USED AS INPUT FOR CHANNEL 1 TAPE4 - DISC USED AS INPUT FOR CHANNEL 2 TAPE5 - INPUT FILE TAPE5 - OUTPUT FILE
55	Č L	COMMON FREQ(500),TITLE1(8),TITLE2(8),COH(500),XTIT(4),YTIT(4), ISPECT1(500),SPECT2(500),GXY(500) COMMON X(4096),Y(4096) COMPLEX GXY

60	C		COMPLEX X.Y
	CC		READ INPUT VARIABLES FOR ALL RUNS
65	C		READ(5,500)NRUN READ(5,500)IRATE,NUMBER,NSEG READ(5,502)XTIT,YTIT CALL PENZ(5HBLACK,4HFELT) CALL LOCAT(2RAT) ICODE=1
70	ç		DO 100 KTOTELONRUN
75	C	2	DO 1 I=1,500 SPECT2(I)=0.0 SPECT1(I)=0.0 COH(I)=0.0 GXY(I)=(0.0,0.0)
80	Č		READ INPUT VARIABLES FOR EACH RUN
85	C	500 501 502	READ(5,501)TITLE1,TITLE2 READ(5,500)NSKIP1,NSKIP2 FORMAT(3110) FORMAT(8A10) FORMAT(4A10) DELTAN=FLOAT(IRATE)/FLOAT(NUMBER)
00	č		COPY INPUT ARRAYS FROM TAPE TO DISCS
95	C	3	REWIND 3 REWIND 4 DO 3 I=1,NSEG READ(2)X WRITE(3)X BACKSPACE2 CALL SKIPF(2,NSKIP1,178,1)
100		4	DO 4 I=1,NSEG READ(2)Y WRITE(4)Y BACKSPACE2 CALL SKIPF(2,NSKIP2,178,1) REWIND 3 REWIND 4
105	CCCC CCCC		COMPUTE AND SEGMENT AVERAGE SINGLE CHANNEL SPECTRA AND CROSS SPECTRAL DENSITY
110	-		DO 30 JT=1+NSEG READ(3)X READ(4)Y DO 20 I=1+10 SPECT1(I)=SPECT1(I)+CABS(X(I+1))##2
115		20	SPECIZ(I)=SPECTZ(I)+CABS(Y(I+1))##2 GXY(I)=GXY(I)+CONJG(X(I+1))#Y(I+1) IND=11 DO 22 K=11+49+3 DO 21 J=1+3

120	SPECT1(IND)=SPECT1(IND)+CABS(X(K+J))**2 SPECT2(IND)=SPECT2(IND)+CABS(Y(K+J))**2 21 GXY(IND)=GXY(IND)+CONJG(X(K+J))*Y(K+J) 22 IND=IND+1 N2=NUMBER/2-25 D0 25 I=50-N2+20
125	D0 24 J=1,20 SPECT1 (IND) = SPECT1 (IND) + CABS (X (I+J)) ##2 SPECT2 (IND) = SPECT2 (IND) + CABS (Y (I+J)) ##2 24 GXY (IND) = GXY (IND) + CONJG (X (I+J)) #Y (I+J)
130	25 IND=IND+1 30 CONTINUE C SET UP THE FREQUENCY ARRAY C SET UP THE FREQUENCY ARRAY
135	A=FLOAT(NSEG) C C COMPUTE AND FREQUENCY AVERAGE THE COHERENCE FUNCTION C DO DE TUDINO
140	DU 35 I=I+I0 GXY(I)=GXY(I)/A COH(I)=(CABS(GXY(I))**2)*(A**2)/(SPECT1(I)*SPECT2(I)) 35 FREQ(I)=FLOAT(I)*DELTAN IND=11 A=3.0*A
145	D0 36 I=11,49,3 GXY(IND)=GXY(IND)/A COH(IND)=(CABS(GXY(IND))**2)*(A**2)/(SPECT1(IND)*SPECT2(IND)) FREQ(IND)=FLOAT(I+2)*DELTAN 36 IND=IND+1 A=20,0%A/3.0
150	D0 ⁻ 37 [°] 1=50,N2,20 GXY(IND)=GXY(IND)/A COH(IND)=(CABS(GXY(IND))**2)*(A**2)/(SPECT1(IND)*SPECT2(IND)) FREQ(IND)=(FLOAT(I)+/O.S)DELTAN IF(FREQ(IND).GT.250.0)G0 [°] T0 [°] 60
122	60 NPLOT=IND+1 C C OUTPUT COHERENCE
160	<pre>wRITE(6,610)TITLE1,TITLE2 D0 50 I=1,NPLOT.3 50 WRITE(6,611)FREQ(I),COH(I),FREQ(I+1),COH(I+1),FREQ(I+2),COH(I+2) 611 FORMAT(6X,3(F9.2,8X,F7.4,7X)) 611 FORMAT(6X,3(F9.2,8X,F7.4,7X))</pre>
165	C CALL SET (1-0.6-0.1-0.6-0.0-0.300-02-1-1-1-1)
170	CALL AXIS(0.0,0.0,XTIT,-40,6.0,0.0,0.0,50.0,-1) CALL AXIS(0.0,0.0,YTIT,40,6.0,90.0,-2,.2,1) CALL SYMBOL(3.0,6.0,.1,TITLE1,0.0,80) CALL SYMBOL(3.0,5.8,.1,TITLE2,0.0,80) CALL SYMBOL(3.0,5.8,.1,TITLE2,0.0,80) CALL CURVE(FREQ,COH,NPLOT,0.0) CALL CURVE(FREQ,COH,NPLOT,0.0)
175	ICODE=ICODE+1 G0 T0(100+90)ICODE 90 ICODE=0
	100 CONTINUE END

	PROGRAM CSPECT3(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE2,TAPE3, 1TAPE4)
5 00	THIS PROGRAM WAS WRITTEN 11/75 BY R. AKINS TO COMPUTE AND PLOT CROSS-CORRELATION FUNCTIONS USING SEGMENT AVERAGING AND READING THE SINGLE CHANNEL TRANSFORMS FROM A DISC DEVICE, TAPE 2 AND TAPE 3.
10 0	SUBROUTINES CALLED (ALL PLOT SUBROUTINES ARE DESCRIBED IN THE CSU USERS MANUAL, 1975 EDITION) AXIS PLOT_ROUTINE
15 0	CURVE - PLOT ROUTINE FOURT - FFT ROUTINE FRSTPT - PLOT ROUTINE LOCAT - PLOT ROUTINE PENZ - PLOT ROUTINE ROTATE - PLOT ROUTINE
20 C	RSTR - PLOT ROUTINE SET - PLOT ROUTINE Skipf - Tape control subroutine - CSU users manual Symbol - Plot Routine Vecotr - Plot Routine
25	INPUT VARIABLES ARE IRATE - SAMPLE RATE OF INITIAL TIME SERIES
30 CC	NPUN - NUMBER OF RUNS NSEG - NUMBER OF SEGMENTS NSKIP1 - TAPE CONTROL PARAMETER NSKIP2 - TAPE CONTROL PARAMETER NUMBER - LENGTH OF SINGLE CHANNEL TRANSFORMS TITLE1 - CHANNEL 1 TITLE TITLE2 - CHANNEL 2 TITLE
35 C	YTIT - PLOT TITLE Y-AXIS
40 CC	PROGRAM VARIABLES DELTAN - FREQUENCY STEP OF X,Y,GXY DELTAT - TIME STEP OF CROSS-CORRELATION FACTOR - USED TWICE - FACTOR IN CROSS-SPECTRUM CALCULATION AND LATER CROSS CORRELATION CALCULATIONS GYY - CONDIEX ADDAY WITH SEGMENT AVERAGED CROSS SPECTRUM
45 C	INDEX - USED IN OUTPUT AND PLOTTING N2 - NUMBER/2 R12 - REAL ARRAY STORING CROSS-CORRELATION FUNCTION
50 C	TIME - REAL ARRAY WITH TIEM LAGS USED IN OUTPUT X - COMPLEX ARRAY STORING TRANSFORM OF CHANNEL 1 TIME SERIES Y - COMPLEX ARRAY STORING TRANSFORM OF CHANNEL 2 TIME SERIES
55 CC CC CC CC CC CC CC CC CC CC CC CC CC	TAPE UNITS USED TAPE2 - MASTER INPUT TAPE TAPE3 - DISC USED AS INPUT FOR CHANNEL 1 TAPE4 - DISC USED AS INPUT FOR CHANNEL 2 TAPE5 - INPUT FILE TAPE6 - OUTPUT FILE

60			DIMENSION TIME(137)+R12(137)+TITLE1(4)+TITLE2(4)+XTIT(4)+YTIT(4) COMMON GXY(8192)+X(4096)+Y(4096) COMPLEX GXY COMPLEX X+Y
65	CCC		READ INPUT VARIABLES FOR ALL RUNS
70	C		READ(5,500)NRUN READ(5,500)IRATE,NUMBER,NSEG READ(5,502)XTIT,YTIT CALL LOCAT(2RAT) CALL PENZ(5HBLACK,4HFELT) ICODE=1 DO 100 KLTM=1,NPUN
75		1	$DO \ 1 \ I = 1 + 4096 \\ GXY (I) = (0, 0, 0, 0)$
	C	-	READ INPUT VARIABLES WHICH CHANGE EACH RUN
80	C	500 501	READ(5,501)TITLE1,TITLE2 READ(5,500)NSKIP1,NSKIP2 FORMAT(3110) FORMAT(4A10)
85	ç	502	FORMAT(4A10) DELTAN=FLOAT(IRATE)/FLOAT(NUMBER) DELTAT=1.0/FLOAT(IRATE)
	C C		COPY INPUT ARRAYS X AND Y FROM DATA TAPE TO SEPARATE DISC FILES
90		3	REWINDS REWIND4 DO 3 I=1,NSEG READ(2)X WRITF(3)X
95		-	BAČKŠPACE2 CALL SKIPF(2,NSKIP1,178,1) DO 4 I=1,NSEG READ(2)Y
100		4	WRITE(4)Y BACKSPACE2 CALL SKIPF(2,NSKIP2,178,1) REWIND3 REWIND4
105			CALCULATE SEGEMNT AVERAGED CROSS SPECTRAL DENSITY FUNCTION
	C		DO 30 JT=1+NSEG READ(3)X READ(4)Y DO 30 J=1+4096
110		30 32	GXY(J)=GXY(J)+CONJG(X(J))*Y(J) FACTOR=2.0*1.143/FLOAT(IRATE)/FLOAT(NUMBER)/FLOAT(NSEG) D0 32 I=1.4096 GXY(I)=FACTOR*GXY(I)
115	C		REFLECT THE CROSS SPECTRAL DENSITY FUNCTION
	C		NDOUB=NUMBER N2=NUMBER/2

120	c	GXY(N2+1)=CONJG(GXY(N2)) DO 33 I=1+4095 K=NUMRER-I+1 33 GXY(K)=CONJG(GXY(I+1))
125	č	PERFORM AN INVERSE TRANSFORM TO OBTAIN THE CROSS-CORRELATION FUNCTION
	с С	CALL FOURT(GXY+NDOUB+1+1+0) FACTOR=FLOAT(IRATE)/2.0/FLOAT(NUMBER)
130		PLACE SELECTED VALUES OF THE CROSS-CORRELATION FUNCTION INTO ARRAY R12 AND ASSOCIATED TIME LAGS INTO ARRAY TIME FOR OUTPUT AND PLOTTING
135	U	R12(69)=GXY(1)*FACTOR TIME(69)=0.0 INDEX=1 D0 34 I=1,20 K=69+INDEX L=69-INDEX
140		R12(K)=GXY(I+1)*FACTOR R12(L)=GXY(NUMBER-I+1)*FACTOR TIME(K)=DELTAT*FLOAT(I) TIME(L)=-TIME(K) 34 INDFX=INDFX+1
145		DO 35 I=22+60+2 K=69+INDEX L=69-INDEX R12(K)=GXY(I+1)*FACTOR R12(L)=GXY(NUMBER-I+1)*FACTOR
150		TIME(K)=DELTAT*FLOAT(I) TIME(L)=-TIME(K) 35 INDEX=INDEX+1 DO 37 I=65,200,5 K=69+INDEX
155		L=69-ĪNDĒX R12(K)=GXY(I+1)#FACTOR R12(L)=GXY(NUMBER-I+1)#FACTOR TIME(K)=DELTAT#FLOAT(I) TIME(L)=-TIME(K)
160	c	37 INDEX=INDEX+1 WRITE(6,610)TITLE1,TITLE2
	čc	PRINT CROSS CORRELATION FUNCTION
165	6	DO 39 I=1,137,2 39 WRITE(6,611)TIME(I),R12(I),TIME(I+1),R12(I+1) 10 FORMAT(1H1,9X,*CROSS CORRELATION COEFFICIENT*,/,10X,*CHANNEL 1 - 1*,4A10,/,10X,*CHANNEL 2 - *,4A10) 11 FORMAT(11X,F6.3,5X,F7.4,12X,F6.3,5X,F7.4)
170	CCC	PLOT CROSS CORRELATION FUNCTION
175	ŭ	CALL ROTATE(90.0) CALL SET(1.,8.,-7.,6.,4,.4,2,1.,1,1,0) CALL AXIS(0.,0.,XTIT,-40,8.0,0.0,4,.1,1) CALL AXIS(0.,0.,YTIT,40,6.,90.,2,.2,1) CALL FRSTPT(0.,2) CALL VECTOR(0.,1.)

	CALL FRSTPT(4,0.) CALL VECTOR(.4,0.)	
180	CALL CURVE (TIME + R12 + 137 + 0 + 0)	
	CALL SYMBOL (0.5,5.0,1,TITLE1,0.,40))
	CALL SYMBOL (0.5,4.8,1) TITLE2,0.0,40	Ó)
	CALL RSTR(ICODE)	
	ICODE = ICODE + 1	
185	GO TO (100-90) ICODF	
	90 TCODE=0	
	100 CONTINUE	
	END	
	ÊND	