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ABSTRACT OF THESIS 

COMPREHENSIVE VISCOELASTIC CHARACTERIZATION OF HUMAN LOWER 

CERVICAL SPINE LIGAMENTS 

Accurate definition of cervical spine ligament mechanical properties is requisite to understand 

and model global cervical spine biomechanics. These ligaments have been shown to exhibit 

complex nonlinear elastic behavior. In addition, ligamentous mechanical behavior is highly time-

dependent (viscoelastic). Previous investigators have reported the viscoelastic stress relaxation 

behavior of the anterior longitudinal ligament (ALL), posterior longitudinal ligament (PLL), and 

ligamentum flavum (LF) of the lower cervical spine using quasi-linear viscoelastic (QLV) theory. 

However, QLV theory assumes that the viscoelastic behavior is independent of the applied strain 

magnitude. Cervical spine ligaments are subjected to multiple strain magnitudes and loading rates 

during physiologic loading regimes. Thus, in order to characterize the comprehensive viscoelastic 

behavior of cervical spine ligaments within their physiological range, and to test the validity of 

the use of QLV theory to model this behavior, the mechanical response of human lower cervical 

spine ALL, PLL, and LF was recorded from stress relaxation experiments at multiple strain 

magnitudes and from cyclic experiments at multiple strain amplitudes and frequencies. 

The ALL, PLL, and LF were dissected from the C5-C6 level of human cadaveric cervical 

spines. Each ligament was isolated into a bone-ligament-bone (B-L-B) preparation by removing 

all surrounding non-osteoligamentous tissue. Each B-L-B preparation was placed in an 

environmental chamber, submerged in warmed saline (37 °C), and mounted to a servo-hydraulic 

materials testing machine. Ligaments were subjected to a uniaxial cyclic testing protocol at 

multiple strain amplitudes and frequencies, as well as a stress relaxation protocol at multiple 
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strain magnitudes. Dynamic material properties (phase shift, storage modulus, and loss modulus) 

were determined from the resulting load displacement data via transformation into the stress-

strain space. Stress relaxation data were fitted to QLV theory and a power law formulation in 

order to characterize the appropriate analytic function that best described the ligament relaxation 

behavior. 

Experimental results indicated that the dynamic material properties of the ALL, PLL, and 

LF were dependent upon both strain amplitude and frequency. In general, the dynamic material 

properties of the ALL and the PLL were not statistically different, but both were statistically 

different form the LF. The stress relaxation data was strongly dependent on the applied strain 

magnitude. Also, the relaxation rate of the ALL and PLL exhibited a converging trend as strain 

magnitude increased, while the relaxation rate of the LF diverged with increasing strain 

magnitude. The different strain-dependent relaxation rate behavior of the longitudinal ligaments 

and the LF is possibly a result of the compositional and microstructural differences between the 

two ligament types. Results from both the cyclic and stress relaxation experiments indicated that 

QLV theory cannot adequately describe the comprehensive viscoelastic behavior of these 

ligaments within the physiologic loading range. Therefore, a more rigorous, fully nonlinear, 

viscoelastic formulation is required to model the comprehensive viscoelastic behavior of the 

ALL, PLL, and LF in the human lower cervical spine. 

 

Kevin Levi Troyer 
Department of Mechanical Engineering 

Colorado State University 
Fort Collins, CO 80523 

Spring 2010 
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1. INTRODUCTION/BACKGROUND

1.1. Spine Anatomy and Function 

The human spine is an interesting and complex anatomical structure. It provides flexible and 

mobile support for the upper body as it transmits loads from the head, muscles, and external 

sources to the lower limbs, and protects the fragile spinal cord [1]. These tasks are accomplished 

through a combination of hard and soft tissue components that form the spinal column. Boney 

segments (hard tissue) termed vertebra provide structural support and protect the spinal cord. Soft 

tissue constituents, such as the intervertebral discs, ligaments, and cartilage, allow relative 

movement between the vertebra through activation of musculature, permitting the spine to rotate 

and bend.  

The first twenty-four vertebrae extending caudally from the occiput of the cranium are 

grouped into cervical, thoracic, and lumbar regions, respectively (Figure 1.1). All vertebrae in 

these segments, except for the two most cranial vertebrae in the cervical spine, are separated by 

intervertebral discs. The remaining vertebrae caudal to the lumbar region are fused and grouped 

into the sacral and coccygeal regions.  

A sagittal view of a normal spine, seen in Figure 1.1, displays four anterior-posterior 

curves that serve to increase its flexibility and shock absorbing characteristics [1]. Convex 

curvature towards the anterior, called lordosis, is present in the cervical and lumbar regions. The 

thoracic and sacral/coccygeal regions display kyphosis, or posterior convex curvature. This thesis 

is focused on the cervical region of the human spine, which serves to support the head and allows 

it to be oriented in three-dimensions. 
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Figure 1.1: (A) Sagittal view of the full human spine depicting the different levels. (B) Sagittal view of the human 
cervical spine. Adapted from Gray’s Anatomy [2]. 

1.1.1. Vertebrae of the cervical spine 

The vertebrae of the cervical spine can be subdivided into upper (occiput – C2) and lower (C3 – 

C7) sections (Figure 1.1B), where the vertebral geometry of the upper cervical spine is greatly 

distinguished from the lower. The ring shaped atlas vertebra (C1) is the most cranial vertebra and 

supports the occiput bone of the skull. Caudal to the atlas is the axis (C2), which contains a 

distinct bony process extending cranially from its anterior body called the odontoid process, or 

dens, that the atlas pivots about. The majority of the range of axial rotation of the cervical spine 

occurs at the atlanto-axial joint [3]. The vertebral geometry in the lower cervical spine, shown in 

Figure 1.2, is more consistent than that of the upper cervical spine. Each subaxial cervical 

vertebra contains a cylindrically shaped anterior body and a posterior ring, called the neural arch, 

that is composed of a pair of pedicles and a pair of lamina that contain four articular processes 

(two superior and two inferior), two transverse processes, and one spinous process (Figure 1.2). 

The lamina, transverse processes, and spinous process are attachment points for ligaments and/or 

muscles. The pedicles connect the lamina to the body, forming the vertebral foramen that 

(A) (B) 
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encloses and protects the spinal cord. The four articular processes contain hyaline cartilage on the 

articulating surfaces of the joints, called the zygapophysial or facet joints, between adjacent 

vertebrae.  

 
Figure 1.2: Top (upper) and lateral (lower) view depicting the anatomy of a regular 
lower cervical spine vertebra. Adapted from Gray’s Anatomy [2]. 

 The anatomy and geometry of vertebrae in the lower cervical spine is unique. For 

example, the opposing surfaces of the anterior body have a distinct saddle-shape. A bony lip on 

the front side of the inferior surface of the body, shown in the lateral view of Figure 1.2, slopes 

down and anteriorly while the body’s superior surface has an opposing shape that accepts this lip. 

Distinct uncinate processes rise cranially from the lateral ends of the body’s superior surface. 

Further, the surfaces of the articular processes are angled 45° from the transverse plane. These 

unique anatomical characteristics are conductive to flexation/extension being the primary motion 

(i.e., having the largest range of motion) of the lower cervical spine [4]. Additionally, all 
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vertebrae in the cervical spine contain an opening in the transverse process, called the foramen 

transversarium, to provide passage for the vertebral artery, the vertebral vein, and nerves. 

Osseous tissue is the primary structural component that resists the typical compressive 

loads experienced by the vertebrae. These forces are shared between the anterior body and the 

posterior arch through the facets. The bulk of the anterior body is formed from cancellous, or 

trabecular, bone enclosed in a thin cortical shell (Figure 1.3). Within the cancellous bone is bone 

marrow and vasculature. The bones of the neural arch have thicker cortical shell and less 

trabeculae than the anterior body.  

 
Figure 1.3: Sagittal cut view of a cross section of a 
lumbar vertebra. The vertebral body is mostly 
comprised of highly vascularized cancellous bone, 
containing bone marrow, enclosed by a thin shell of 
cortical bone. The cortical shell in the neural arch is 
thicker and contains less cancellous bone. Adapted from 
Gray’s Anatomy [2]. 

1.1.2. Intervertebral disc 

Human vertebrae from the C2-C3 level to the L5-sacrum level are separated by avascular 

intervertebral discs that lie between anterior bodies of adjacent vertebrae. They allow relative 

motion between adjacent vertebrae and transfer loads between levels. During motion, the disc is 

subjected to multiple loading conditions, sharing compressive loads with the facets and also 

experiencing tensile as well as torsional loads throughout physiological motion [1]. These loads 

are distributed evenly over the surface of the connected vertebral body [5].  
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Intervertebral discs are composed of an inner gelatinous nucleus pulposus, surrounded by 

the annulus fibrosis around its radial periphery. Thin cartilaginous endplates lie on the cranial and 

caudal surfaces of the disc that mate it to adjacent vertebral bodies (see Figure 1.4A).  

 
Figure 1.4: Schematic of the human intervertebral disc. (A). Layers of fibrous annulus tissue enclose an inner 
gelatinous nucleus. Endplates lie on the cranial (shown) and caudal (not shown) surfaces, connecting to the 
vertebral body. (B). Adjacent layers of annular lamellae contain aligned collagen fibers alternate between ±30° 
with respect to the disc plane. 

The nucleus pulposus contains cells suspended in an extracellular matrix composed of 

proteoglycan macromolecules, water, type II collagen fibers, and elastin fibers [5]. It is highly 

hydrated, with water content ranging from 70-90% [1]. This high water content causes the 

nucleus to act hydrostatically when compressively loaded, distributing pressures evenly to the 

surrounding annulus and endplates [6].  

The annulus fibrosis encloses the nucleus and consists of concentric layers (lamellae) of 

fibrous tissue containing highly aligned type I collagen fibers that span the disc space, providing 

resistance to tensile loads from bending and rotational movements (Figure 1.4). The fibers run 

diagonally, at ±30° to the transverse disc plane, and alternate with each layer so that there is 120° 

between fibers of adjacent lamina (Figure 1.4B) [1]. These fibers are encased in a ground 

substance containing water and mucopolysaccharide protein complexes [7]. Fibers along the outer 

periphery of the annulus are connected to the vertebral bodies to better resist tensile and torsion 

loads, while the fibers located more interiorly are attached to the endplates [1]. 

(A) (B)
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Cranial and caudal surfaces of the disc contain thin, avascular hyaline cartilage endplates 

that mate the disc to the vertebral body. The endplates absorb hydrostatic pressure from the disc 

during physiologic movements and prevent the nucleus from protruding into the vertebral body 

[8]. Further, the endplates supply the disc with nutrients from vasculature of the vertebral bone 

through diffusion [9]. 

1.1.3. Ligaments of the lower cervical spine 

Ligaments are a dense fiberous connective tissue composed of cells, collagen and elastic fibers, 

proteoglycans, and water [10]. They provide passive stability for the spinal column, absorb 

energy during trauma, and allow the spine to move safely; preventing excessive motion that 

would harm the spinal cord [1]. The ligament is most effective when loaded along the axis of the 

fibers, resisting tension and buckling in compression. During normal spinal motion, multiple 

ligaments work in conjunction so that at least one ligament is actively resisting tension.  

Six ligaments connect the vertebrae of the lower cervical spine (Figure 1.5). The anterior 

longitudinal ligament (ALL) is a continuous strip connected to the anterior aspect of the vertebral 

body and disc that extends the length of the lower cervical spine in the cranial-caudal direction. 

Similarly, the posterior longitudinal ligament (PLL) runs along, and is connected to, the posterior 

surface of the vertebral body and the disc. The ligamenta flava (LF) is located within the vertebral 

foramen and attaches the lamina of adjacent vertebra. Capsular ligaments (CL) surround each pair 

of articular processes, enclosing each facet joint. The interspinous ligament (ISL) connects the 

spinous process of adjacent vertebrae, and the supraspinous ligament (SSL) runs along the 

posterior tip of the spinous process, between adjacent vertebrae. 

This thesis is focused on characterizing the mechanical behavior of the ALL, the PLL, 

and the LF, which are the primary ligaments of the lower cervical spine [11]. Additionally, the 

longitudinal ligaments (ALL and PLL) and the LF are interesting to study because they have 

different morphologies, and thus possess unique mechanical properties that are conducive to the 

motion/resistance required by the ligament. The ALL and PLL have similar structures, consisting 
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of mostly parallel collagen fibers, aligned along the axis of the spine, with the deep fibers 

interwoven with the outer layer of the annulus [12-14]. The dry weight of the PLL in the cervical 

spine was shown to contain 67.1% collagen fibers and 5.9% elastin fibers [15]. Conversely, the 

LF has been shown to contain a two-to-one elastin-to-collagen ratio [16].   

 
Figure 1.5: Sagittal cut view depicting the six ligaments of the spine. Adapted from Gray’s Anatomy [2]. 

1.2. Viscoelastic Theory Background 

Viscoelasticity describes the time-dependent and the history-dependent response of a material to 

an applied disturbance. All biological tissue displays viscoelastic behavior [17], especially soft 

tissue (e.g., ligaments). Viscoelastic phenomena commonly exhibited by biological tissues 

include: creep, stress relaxation, hysteresis, and strain-rate dependent stiffness (Figure 1.6). Creep 

describes the continued deformation of a body over time when it is subjected to a constant load. 

Stress relaxation describes the reduction in the induced stress within a body over time when it is 

subjected to a constant displacement. Hysteresis depicts the energy lost during cyclic loading, and 

appears as different loading and unloading curves on a stress-strain plot of the loading cycle. 

When a viscoelastic body is loaded at increasing rates of strain, the effective stiffness of the 
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material will increase. This thesis investigates the cyclic and stress relaxation phenomena of the 

ALL, PLL, and LF in the subaxial cervical spine. 

Creep Stress Relaxation Hysteresis 
Strain-Rate Dependent 

Stiffness 
    

Stress Input: Strain Input:   

    

    
Strain Output: Stress Output:   

  

  

Figure 1.6: Viscoelastic phenomena commonly attributed to biological tissue. Creep: continued deformation 
with time following a step increase in strain. Stress relaxation: continued relaxation with time following a step 
increase in strain. Hysteresis: energy lost causing difference in loading and unloading curves. Strain-rate 
dependent stiffness: apparent material stiffness increases with increasing strain rate. 

1.2.1. Linear viscoelasticity  

Stress relaxation 

Linearly viscoelastic materials must satisfy two conditions: the stress must be proportional to the 

strain at a given time and linear superposition must hold [18]. Hence, a linearly viscoelastic 

material must satisfy the following mathematical relationships: 

ሻሿݐሺߝሾܿߪ  ൌ ሻሿ (1)ݐሺߝሾߪܿ

ሻݐଵሺߝሾߪ  ൅ ݐଶሺߝ െ ଵሻሿݐ ൌ ሻሿݐଵሺߝሾߪ ൅ ݐଶሺߝሾߪ െ ଵሻሿ (2)ݐ

where (for stress relaxation) ߝ is the strain input, ܿ is a constant scalar, and ߪ is the stress output 

[18]. Graphical representations of equations (1) and (2) are shown in Figure 1.7. Equation (1) 

states that the stress relaxation curve resulting from any magnitude of input strain can be scaled 
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by ܿ to match the relaxation curve resulting from an input strain that is scaled by ܿ (Figure 1.7A). 

It follows from the relationship in equation (1) that the rate of relaxation (i.e., the slope of the 

relaxation curve) is independent of the magnitude of the input strain in a linear viscoelastic 

material. Furthermore, equation (2) states that the stress output resulting from the addition of two 

different strain inputs occurring at different times ߪሾߝଵሺݐሻ ൅ ݐଶሺߝ െ  ଵሻሿ is equal to the sum ofݐ

two separate stress outputs ߪሾߝଵሺݐሻሿ and ߪሾߝଶሺݐ െ  ଵߝ) ଵሻሿ that result from the same strain inputsݐ

and ߝଶ) acting separately (Figure 1.7B) [18]. This is the linear superposition that is imposed by 

equation (2). 

A B 
Stain Input: Strain Input: 

  
Stress Output: Stress Output: 

Figure 1.7: Stress relaxation behavior of a linear viscoelastic material. 

The derivation of the constitutive relationship for a linear viscoelastic material utilizes the 

Boltzman superposition principal, which (in the case of stress relaxation) states that the current 

stress is a result of the complete strain history [17-19]. This thesis will follow the method of 
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derivation provided by [18]. In a stress relaxation test, a step increase in strain is applied to the 

body and the resulting stress is measured over time (see Figure 1.6 on page 8). For a single step 

input of strain: 

ሻݐሺߝ  ൌ ሻ (3)ݐሺܪ଴ߝ

where ߝ଴ is the input strain magnitude and ܪሺݐሻ is the Heaviside step function defined as: 

ሻݐሺܪ  ൌ ൞

0 ݎ݋݂ ݐ ൏ 0
1

2
ݎ݋݂ ݐ ൌ 0

1 ݎ݋݂ ݐ ൐ 0

 (4)

the resulting stress output is: 

ሻݐሺߪ  ൌ ሻ (5)ݐሺܧ଴ߝ

where ܧሺݐሻ ൌ ሻݐሺߪ ⁄଴ߝ  is the relaxation function. A series of such step increases in strain can be 

used to describe any arbitrary strain input profile. For ݎ step increases in strain equation (3) can 

be written as: 

 
ሻݐሺߝ ൌ෍∆ߝ௜

௥

௜ୀଵ

ݐሺܪ െ ߬௜ሻ (6)

where ∆ߝ௜ is the change in magnitude of the ith step in strain that occurs at time ߬௜. From equation 

(5), the resulting stress output (using the Boltzmann superposition principal) is: 

 
ሻݐሺߪ ൌ෍∆ߝ௜

௥

௜ୀଵ

ݐሺܧ െ ߬௜ሻܪሺݐ െ ߬௜ሻ. (7)

As the number of strain steps increases to infinity, equation (7) converges to the hereditary 

integral: 

 
ሻݐሺߪ ൌ න ݐሺܧ െ ߬ሻܪሺݐ െ ߬ሻ ሺ߬ሻߝ݀

௧

଴

. (8)

In equation (8), the term ܪሺݐሻ ൌ 1  since ߬ ൐ 0  is imposed and falls within the bounds of 

integration. Therefore, for a differentiable strain history, the final form of the constitutive 

relationship for a linear viscoelastic material is given by: 
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ሻݐሺߪ ൌ න ݐሺܧ െ ߬ሻ

ሺ߬ሻߝ߲

߲߬
݀߬

௧

଴

. (9)

It should be noted that the relaxation function ܧሺݐ െ ߬ሻ for a linearly viscoelastic material is 

solely dependent on time and does not vary with the magnitude of applied strain. 

Cyclic loading   

If a linear viscoelastic material is subjected to harmonic oscillations, the strain will “lag” the 

stress due to internal damping within the material (Figure 1.8); a consequence of the viscous 

component of the material [19].  

 
Figure 1.8: Plot of stress and strain vs time for a linear viscoelastic 
material subjected to cyclic loading. The strain lags the stress by δ. 

A sinusoidal stress applied to a material at a frequency of ߥ (units of Hz) can be written as [19]: 

ሻݐሺߪ  ൌ ଴ߪ sinሺ2ݐߥߨሻ. (10)

The resulting out-of-phase strain is: 

ሻݐሺߝ  ൌ ଴ߝ sinሺ2ݐߥߨ െ ሻ (11)ߜ

where ߜ is the phase lag between stress and strain (Figure 1.8). The tangent of the phase lag (i.e., 

tan   .is called the loss tangent and is a measure of a material’s internal damping [19] (ߜ

 Because of the phase lag between stress and strain, the dynamic stiffness (ܧ∗ ) of a 

material can be expressed as a complex number [19]: 
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ߪ 

଴ߝ
ൌ ∗ܧ ൌ ᇱܧ ൅ (12) ݅′′ܧ

with a magnitude of: 

|∗ܧ|  ൌ ඥሺܧᇱሻଶ ൅ ሺܧ′′ሻଶ. (13)

The storage modulus ܧ′ and the loss modulus ܧ′′ in (12) and (13) are defined as: 

ᇱܧ  ൌ cos|∗ܧ| ሺߜሻ (14)

ᇱᇱܧ   ൌ |∗ܧ| sinሺߜሻ.   

 

(15)

The storage modulus represents the energy stored in the material and the loss modulus represents 

the energy dissipated per cycle [20].  

1.2.2.  Quasi‐linear viscoelasticity 

Quasi-linear viscoelasticity (QLV), developed by Fung [17], is a generalized form of linear 

viscoelastic theory in that it allows the stress developed within the material to be a function of 

time as well as the deformation (i.e., the stretch). Specifically, QLV modifies the relaxation 

function of linear viscoelastic theory to include the nonlinear stress-strain characteristics. 

Accordingly, the relaxation function that describes the stress history response of a material 

stretched from ߣ ൌ
௅

௅బ
ൌ 1  (where ܮ଴  and ܮ  are the reference length and the current length, 

respectively) to ߣ is given by the separable equation: 

,ߣሺܭ  ሻݐ ൌ ሻ (16)ߣሻܶሺ௘ሻሺݐሺܩ

where ܩሺݐሻ is the reduced relaxation function, and ܶሺ௘ሻሺߣሻ is the instantaneous elastic response 

defined as the tensile stress resulting from an instantaneous application of stretch [17]. The 

reduced relaxation function is defined so that ܩሺ0ሻ ൌ 1 . If the material is unstressed and 

unstrained prior to load (or strain) application, and the deformation begins at ݐ ൌ 0, the stress 

developed in a material under quasi-linear theory is given by [17]: 

 
ܶሺݐሻ ൌ න ݐሺܩ െ ߬ሻ

߲ܶሺ௘ሻሾߣሺ߬ሻሿ

ߣ߲

ሺ߬ሻߣ߲

߲߬
݀߬

௧

଴

. (17)
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 The QLV equation (17) has been used to describe the time dependent behavior of human 

subaxial cervical spine ligaments [11]. Although the theory approximated the experimental data 

well, QLV theory contains an inherent shortcoming in that the reduced relaxation function ܩሺݐሻ is 

independent of applied strain level. Therefore, the relaxation function cannot vary with different 

levels of strain, and thus QLV assumes the rate of relaxation is the same for all levels of strain. 

This presents a problem if the material displays different rates of relaxation (i.e., different 

relaxation curves) at different levels of strain during stress relaxation experiments. One of the 

objectives of this thesis is to determine the validity of applying the aforementioned QLV 

assumption to cervical spine ligaments when subjected to multiple magnitudes of strain. 

1.2.3. Nonlinear viscoelasticity 

A viscoelastic material that does not satisfy equations (1) and (2) is a nonlinear viscoelastic 

material. When a nonlinear viscoelastic material is subjected to a stress relaxation experiment, the 

rate of relaxation, and thus the relaxation modulus, is dependent on the magnitude of the applied 

strain [19].  

 Recently, nonlinear viscoelastic behavior has been reported for rat [21] and rabbit medial 

collateral ligaments [22], and for porcine digital flexor tendon [23]. These studies suggested that 

these tissues be described by a single integral form of nonlinear superposition 

 
ሻݐሺߪ ൌ න ݐ൫ܧ െ ߬, ሺ߬ሻ൯ߝ

ߝ݀

݀߬
݀߬

௧

଴

, (18)

where the relaxation function ܧሺݐ,   .ሻ is dependent on both time and the applied strainߝ

1.3. Mechanical Properties of Spinal Ligaments 

1.3.1. Nonlinear elastic behavior 

An early study by Nachemson and Evans revealed a nonlinear, sigmoidal, stress-strain 

relationship for human lumbar LF [16]. Similar behavior was later reported for the human ISL 

[24] and lumbar longitudinal ligaments [25]. The reported ligament behavior, shown in Figure 
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1.9, consisted of an initial nonlinear toe region followed by a linear ramp region, and 

subsequently ending with a failure region. From Figure 1.9, one can see that there is little 

resistance to motion at small deformations until a defined point where the resistance greatly 

increases until failure. A detailed study by Panjabi et al. related the shape of the ligament stress-

strain curve to physiologic spinal movements [26]. They concluded that the nonlinear ligament 

behavior allows spinal mobility with minimum expenditure of muscle energy at small strains, 

while the high stiffness of the ligament at larger strains protects the spinal cord and nerves by 

offering an increased resistance to motion and energy absorbing capacity. Subaxial cervical spine 

ligaments have been shown to display the same nonlinear stress-strain behavior (Figure 1.9) as 

that reported for lumbar ligaments [27-29]. 

 
Figure 1.9: Representative stress-strain (or force-displacement) 
curve for spine ligaments. Spinal ligaments have an initial 
nonlinear toe region (0-A), followed by a linear ramp (A-B) that 
precedes ultimate failure (C). 

Researchers have attributed this nonlinear stress-strain behavior to the microstructure of 

these ligaments. Ligaments contain varying levels of collagen fibers that are initially crimped, but 

become straightened as the ligament is deformed, thus providing more resistance to further 
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deformation [14, 30-32]. Using x-ray diffraction to view the collagen fiber orientation and 

recruitment of lumbar spine ligaments, Hukins et al. determined that the collagen fibers in the 

longitudinal ligaments (ALL and PLL) in the original, unloaded, state had a three-dimensional 

“wavy” structure [14]. As the longitudinal ligaments were stretched, the collagen fibers became 

straightened and more aligned to the ligament axis. Consequently, the longitudinal ligaments are 

compliant at small strains and become stiffer as the fibers straighten [14, 32]. Conversely, the LF 

has a high elastin-to-collagen ratio, with the collagen fibers showing little preferential orientation 

until the ligament is significantly stretched [14, 16, 32]. A higher proportion of the low stiffness 

elastin fibers makes the LF more compliant, allowing it to lengthen considerably more than the 

longitudinal ligaments under similar loads [28, 29, 33]. Large elastic deformation of the LF is 

required under flexion of the spine. Thus, the unique microstructure structure of these spinal 

ligaments (i.e., the ALL and PLL versus the LF) produce specific stress-strain curves that are 

conductive to the motion required by the spine [26].   

1.3.2. Viscoelastic behavior  

Several studies have observed viscoelastic behavior of spine ligaments. Nachemson and Evans 

performed cyclic and stress-relaxation experiments on human lumbar LF and reported that the 

ligament displayed nonlinear viscoelastic behavior; the time-dependent properties of human LF 

were dependent on the level of applied stress [16]. Waters and Morris reported stress-relaxation 

behavior of human ISL at multiple spine levels [24]. Hysteresis phenomena were observed for 

various spinal ligaments (ALL, PLL, LF, ISL+SSL, and intertraverse ligaments), at spine levels 

ranging from C3-C4 to L5-S1, by Chazal and colleagues [34]. Yoganandan et al. determined that 

the tensile strength, stiffness, and energy absorbing capacity of cervical spine ALL and LF were 

dependent on the rate of applied loading [29]. Interestingly, this study also reported that while the 

failure loads increased with increasing strain rate, the ligament elongation at failure was not strain 

rate dependent [29]. Hukins et al. reported that human lumbar longitudinal ligaments (ALL and 

PLL) displayed stress-relaxation and hysteresis behavior [14]. Yahia et al. observed hysteresis, 
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stress relaxation and stepwise load relaxation behavior of human lumbar ISL+SSL ligament 

complexes [35].  

Few researchers, however, have attempted to develop a mathematical model to describe 

the viscoelastic behavior of spinal ligaments. An in-depth study by Little and Khalasa tested 

human lumbar CL under a uniaxial ramp-hold (stress relaxation) and a cyclic protocol in the 

directions parallel and perpendicular to the dominant collagen fiber orientation [20]. Under stress-

relaxation, it was reported that rate of relaxation of the human lumbar CL was dependent on the 

applied strain parallel to the collagen fibers, and was independent of applied strain when extended 

in a direction perpendicular to the collagen fibers. An equation relating the strain level and rate of 

relaxation were reported. Also, these researchers reported that the dynamic moduli (ܧ ,∗ܧ′, and 

 of the human lumbar CL, in a direction parallel to the collagen fiber orientation, were (′′ܧ

dependent on the cyclic strain amplitude. Furthermore, a recent study by Lucas et al. [11] 

examined the force-relaxation behavior of multiple levels (C3-C4, C5-C6 and C7-T1) of human 

cervical spine ligaments (ALL, PLL, and LF) by conducting a ramp-hold protocol at magnitudes 

of 25% and 50% engineering strain. They fitted the 50% strain magnitude force-relaxation 

experimental data using a QLV model, and validated their results by using this model to predict 

both the 25% strain magnitude force-relaxation behavior and a cyclic load with an amplitude of 

50%. Using the coefficients determined by their QLV mathematical model, Lucas et al. found 

statistically significant differences in the QLV fitting parameters that were based on ligament 

type, cervical spine level and gender.  

The QLV theory used by Lucas et al. to model viscoelastic behavior of spine ligament 

was shown to accurately model the relaxation behavior at two levels of engineering strain (25% 

and 50%) [11]. However, the QLV model is limited in that its relaxation function is independent 

of the strain magnitude. Several publications have reported that the rate of relaxation, and hence 

the reduced relaxation function, of collagenous tissue is dependent on the magnitude of applied 

strain. As stated earlier, nonlinear viscoelastic behavior has been reported for rat medial collateral 
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ligaments (MCL) [21], rabbit MCL [22], and porcine digital flexor tendon [23]. More 

importantly, Nachemson and Evans [16] and Little and Khalasa [20] have reported nonlinear 

viscoelastic behavior of human spine ligaments.  

1.4. Motivation for Current Study 

Ligaments play an important role in spine biomechanics. Therefore, in order to understand and 

accurately model spine biomechanics, a precise understanding of the mechanical properties of 

ligaments is requisite. In-depth knowledge of spine ligament mechanics is also essential in the 

development of accurate computational models to simulate spinal behavior. Finite element (FE) 

analysis, for example, is a commonly used mathematical technique to model spinal behavior that 

requires the input of accurately defined material properties [28]. 

In vivo, spinal ligaments are subjected to various magnitudes of strains throughout their 

physiologic loading regimes. Therefore, it is important to understand the viscoelastic behavior of 

spine ligaments at multiple magnitudes of strain. To the author’s knowledge, there is no published 

experimental data which examines the dependence of viscoelastic behavior, if any, on the 

magnitude of applied strain for cervical spine ligaments. Hence, there exists no experimental 

validation for or against the use of QLV to model subaxial spine ligaments. Furthermore, there is 

a lack of published data concerning the cyclic viscoelastic properties of human spinal ligaments 

in the current literature. Experimentally determining both the cyclic and stress-relaxation 

viscoelastic behavior of spinal ligaments are important in the development of accurate 

mathematical representations of this behavior, which can be used to predict global spine 

mechanics. The objective of this thesis is to determine the effect of multiple magnitudes of strain 

on the viscoelastic properties of subaxial cervical spine ligaments (ALL, PLL and LF) when 

subjected to stress relaxation and cyclic loading.  
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1.5. Specific Aims 

In order to achieve the stated objective, the following specific aims of this thesis are proposed: 

 Perform stress relaxation experiments at multiple magnitudes of strain to:  

o determine if the rate of relaxation is dependent on the magnitude of applied strain 

(indicating nonlinear viscoelastic behavior) for each ligament type (ALL, PLL 

LF). 

o determine if the initial stress induced by the relaxation test is dependent on the 

magnitude of applied strain for each ligament type. 

o determine if the percent of stress relaxation from the initially induced stress is 

dependent on the magnitude of applied strain for each ligament type. 

o compare the stress relaxation behavior of the different ligament types . 

 Perform cyclic loading at multiple levels of strain and frequency to: 

o determine the effect of strain level on the cyclic mechanical properties (ܧ ,∗ܧ′, 

 .and tanδ) based on ligament type ,′′ܧ

o determine the effect of frequency on the cyclic mechanical properties (ܧ ,′ܧ ,∗ܧ′′, 

and tanδ) based on ligament type.  

o compare the cyclic mechanical properties of the different ligament types. 

 Determine the validity and applicability of the QLV theory by: 

o fitting the experimental stress relaxation data to QLV theory and performing a 

statistical analysis of the fitted parameters to determine any strain magnitude 

dependence of the reduced relaxation function.      
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2. MATERIALS AND METHODS

2.1. Experimental Design/Overview 

The methods in this thesis were designed to characterize the stress relaxation and cyclic 

viscoelastic properties of human subaxial cervical spine ligaments at multiple magnitudes of 

strain and cyclic frequencies. Three ligaments (ALL, PLL, LF) were isolated from the 

surrounding tissue at the C5-C6 level of cadaveric cervical spines and dissected to form bone-

ligament-bone preparations. Each preparation was potted in polymethylmethacrylate (PMMA) 

that allowed them to be mounted to a servo-hydraulic testing machine. Nondestructive dynamic 

mechanical analysis (DMA) was performed at two strain amplitudes and four frequencies to 

determine the effect of strain magnitude and frequency on the cyclic viscoelastic properties of 

these ligaments. Stress-relaxation experiments were subsequently conducted at multiple 

magnitudes of physiologic strain to investigate the effect of strain level on the stress relaxation 

behavior of these ligaments. Quasi-linear viscoelastic theory was fitted to the experimental stress 

relaxation data to determine the validity and applicability of this theory to model the relaxation 

behavior of these ligaments. All experiments were conducted in an environmental chamber that 

was filled with physiologic saline heated to body temperature (37 °C). 

2.2. Specimen Preparation 

2.2.1. Specimen dissection 

Eight C5-C6 vertebra-disc-vertebra functional spinal units (FSUs) were isolated from human 

cadaver cervical spines (mean age 59 ± 9.2 years; 2 females/6 males) by cutting through the 

adjacent discs and ligaments at the C4-C5 level above and the C6-C7 level below. Specimen 
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donor information was used to eliminate any tissue with pre-existing bone or ligament pathology. 

Four of these FSUs were taken from cervical spines that were used in a previous non-destructive 

experiment [36] which loaded the full lower cervical spine (C3-C7) in its physiologic range. The 

remaining four FSUs were taken from cervical spines that were used solely for the experiments in 

this thesis. 

 After isolating the C5-C6 level, all surrounding non-osteoligamentous tissue was 

carefully removed from the FSU. The posterior arch of the FSU was then separated from the 

anterior vertebral body by carefully sawing through the pedicles of the adjacent vertebrae in the 

cranial-caudal direction (Figure 2.1B). On the separated posterior arch, the LF was isolated into 

bone-ligament-bone (B-L-B) preparations by carefully transecting the SSL and the ISL, and by 

cutting the CLs to disarticulate the facet joints. The LF was easily distinguished from the 

surrounding tissue because of its relatively large size and yellow color [33]. The ALL and PLL 

were separated into B-L-B preparations by sawing through the mid-coronal plane of the anterior 

vertebral bodies of the FSU (Figure 2.1C). Then, approaching from this newly cut surface, the 

annulus fibrosis and nucleus pulposus, along with the endplates, were carefully removed from the 

inferior surface of the cranial vertebral body, the superior surface of the caudal vertebral body, 

and the ligaments using a bone curette and a scalpel. Hydration was maintained throughout 

specimen dissection via periodic saline spray. When ligament isolation was complete, the B-L-B 

preparations were wrapped in saline soaked gauze while waiting to be potted (see Section 2.2.2).  

For some specimens, the lateral boundaries of the ALL and PLL were difficult to 

distinguish from the adjacent tissue, as reported previously [12]. To isolate the ALL, the ligament 

was located on the vertebral body since it was easier to discern the ligament from the osseous 

tissue than from the annulus fibrosis tissue. These boundaries were followed onto the annulus. 

The annulus tissue was then carefully removed from the lateral ligament boundaries using a 

scalpel and a bone curette.  
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Figure 2.1: Photographs of the dissection process. (A) Cranial-to-caudal view of an intact C5-C6 FSU. (B) 
Separation of the posterior elements from the anterior body to isolate the LF. (C) The anterior body was cut in 
its coronal plane to separate the ALL and the PLL. (D) The separated segments containing the LF, PLL, and 
ALL. 

Furthermore, fibers from the ALL and PLL are intertwined with the annulus fibrosis [13], 

with the PLL fibers extending more broadly around the circumference of the intervertebral disc 

[37] than the ALL. This made identification of the boundary between the annulus and the 

longitudinal ligaments, especially the PLL, difficult for some specimens. Consequently, attempts 

to separate the longitudinal ligaments from the annulus fibrosis were ceased once the annulus 

tissue was no longer readily removed with the bone curette to avoid damaging the ligament. 

The PLL was more difficult to distinguish than the ALL because of the dura matter (a 

membrane that surrounds the inside surface of the neural arch). In some specimens, the dura 

matter was strongly attached to the PLL while in others it was easily removed. For the specimens 

in which the spinal dura was strongly attached to the PLL, tweezers were used to gently pull the 

dura matter away from the PLL while a scalpel, with the cutting edge facing towards the dura 
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(C) (D)
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matter, was cautiously used to separate the dura matter away from the PLL. The difficulties of 

distinguishing the PLL from the dura matter have been previously reported [37, 38].  

Some ligaments could not be used in this experiment because they were either damaged 

during dissection for this thesis or during the preparation of previous experiments [36]. As a 

result, the final sample size was n = 8 for the ALL, n = 8 for the PLL, and n = 6 for the LF. 

2.2.2. Specimen potting 

Following isolation of the B-L-B preparations, the cranial and caudal vertebrae were potted in 

polymethylmethacrylate (PMMA) bone cement to be attached to custom built fixtures that 

mounted the specimen to the testing machine. Ligaments were wrapped in saline soaked gauze to 

maintain hydration during the potting procedure. A specific potting procedure was followed to 

ensure consistent physiologic alignment of the vertebral segments for all B-L-B preparation. 

Wood screws were affixed to the superior surface of the cranial vertebra and to the 

inferior surface of the caudal vertebra in the case of the ALL and PLL preparations, and to the 

superior and inferior surfaces of the articulating processes for the LF preparations (Figure 2.2). 

Theses screws provided a more secure attachment to the PMMA than bone alone. 

Figure 2.2: (A) Cut away of the PMMA showing cranial wood screw placement for the longitudinal ligaments. 
Caudal placement (not shown) was similar. (B) Wood screw placement for the LFs. 

Wooden tongue depressors were used to provide removable support for the specimens 

while being potted and also ensured consistent ligament alignment. For the longitudinal 

ligaments, one wooden tongue depressor was hot glued across the two vertebrae on the surface of 

Wood Screws

(A) (B)
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the coronal cut (see Figure 2.1C) of the B-L-B preparation (Figure 2.3). Care was taken so that 

the hot glue did not come into contact with the ligament. Two more tongue depressors were glued 

perpendicular to the previously affixed tongue depressor. Perpendicular alignment was achieved 

by using a small square during gluing.  

 
Figure 2.3: Tongue depressor structure for the longitudinal ligaments used 
to aid in the potting process. 

A similar tongue depressor construct, shown in Figure 2.4, was used to hold and align the 

LF B-L-B preparations during potting. In this case, a tongue depressor was hot glued across the 

adjacent posterior vertebral elements on the surface created by the cranial-caudal cut shown in 

Figure 2.1B. The LF specimens had to be oriented so that the PMMA did not interfere with the B-

L-B preparation movement. Hence, the caudal vertebral element was placed on the potting fixture 

so that it was supported by the affixed tongue depressor and the spinous process while two more 

tongue depressors were hot glued underneath the affixed tongue depressor (Figure 2.4B).  

Once the glue was fully cured, PMMA was mixed and poured into the custom fixtures to 

set the caudal vertebral bone elements. 

Perpendicular tongue depressors 

Tongue depressor hot glued to coronal cut surface 
(fixed to specimen with hot glue) 

Potting fixture 
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Figure 2.4: (A) Tongue depressor construct for the LFs used to aid in the potting procedure. (B) Side view of 
vertebral orientation for potting (cranial vertebra not shown in drawing). 

 After the PMMA was set for the caudal vertebral elements, the potting fixture was 

inverted and the cranial vertebral elements of the B-L-B preparations were potted using the 

construct shown in Figure 2.5. Tongue depressors remained attached to maintain alignment of the 

vertebral elements. The nuts on the vertical threaded rods of the fixture in Figure 2.5 were used to 

adjust the upper potting fixture so that it was parallel to the lower fixture (verified by the use of a 

level on the upper potting fixture).   

 
Figure 2.5: Potting of the cranial vertebral element. A level was used to 
ensure that the upper and lower plates were parallel. 
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 After the PMMA was set for the cranial vertebral elements, the potted specimens were 

removed from their potting fixtures, wrapped in fresh saline soaked gauze, placed in a sealed bag, 

and frozen at -20 °C until the day of testing.  

2.3. Experimental Methods 

2.3.1. Experimental setup and preparation 

All experiments were conducted in an environmental chamber that was filled with physiologic 

saline warmed to human body temperature (37 °C). Both temperature [39] and hydration [40] 

have been shown to affect the viscoelastic properties of ligaments. Temperature was monitored 

during testing via a thermocouple placed near the ligament (Figure 2.6). A digital readout 

displayed the temperature in real time. 

 
Figure 2.6: To monitor saline temperature, a thermocouple was place in 
close proximity of the ligament. 

Figure 2.7 shows a picture of the experimental setup. The environmental chamber was 

attached to a translation (x-y) table that was rigidly fixed to the base of a servo-hydraulic testing 

machine (858 Mini Bionix II, MTS, Eden Prairie, MN). The translation table was used to ensure 

ligament alignment. A uni-axial load cell (500 N capacity, model 661.11B-02, MTS, Eden 

Thermocouple Specimen 
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Prairie, MN) was placed in the load-train between the MTS actuator and a custom upper fixture 

that attached to the cranially potted vertebral element. 

 
Figure 2.7: Picture of the experimental setup. An environmental chamber 
was attached to a translation table that was rigidly fixed to the base of the 
MTS.   

Prior to mechanical testing, frozen specimens were allowed to gradually thaw to room 

temperature for at least 12 hours. After the specimen was thawed, the caudally potted vertebral 

element was attached to the environmental chamber. Then the upper fixture was lowered close to, 

but not contacting, the cranially potted vertebral element and the load cell force readout was 

zeroed. This process removed the weight of the custom upper fixture and accounted for the 

buoyancy force placed on this fixture due to the saline bath. The cranially potted vertebral 

element was subsequently attached to the upper fixture, and the MTS actuator was moved to the 
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zero force configuration for 1 hr to assure specimen equilibration. After equilibration, the cranial 

and caudal vertebral elements were compressed to 25 N and MTS crosshead displacement 

readout was zeroed. The specimen was subsequently ramped at a slow displacement rate of 0.05 

mm/s to 5 N of pretension [41] and allowed to relax for 600 s. The resulting displacement was 

recorded and used as the reference configuration for engineering stain calculations.  

2.3.2. Dynamic mechanical analysis (DMA) methods 

After the specimen was fully relaxed, it was subjected to the following sinusoidal displacement 

regimen with a peak-to-peak amplitude of 10% engineering strain: 2 cycles at 0.001 Hz; 5 cycles 

at 0.01 Hz; 10 cycles at 0.1 Hz; 10 cycles at 1 Hz. Data were sampled at 2 Hz for the 0.001 Hz 

and 0.01 Hz frequencies, 32 Hz for the 0.1 Hz frequency and 128 Hz for the 1 Hz frequency. 

Another sinusoidal displacement regimen was subsequently repeated with a peak-to-peak 

amplitude of 15% engineering strain at the aforementioned four frequencies. The cyclic material 

properties determined from these procedures were the complex stiffness, the loss stiffness, the 

storage stiffness, and the tan δ. These properties were calculated using the software provided by 

the manufacturer of the testing system (Model 793.31 Dynamic Characterization, MTS, Eden 

Prairie, MN). 

Multiple strain amplitudes and frequencies were chosen to investigate any respective 

strain amplitude and/or frequency dependence of the measured parameters.  

2.3.3. Stress relaxation methods 

Following the DMA protocol, the initial length was redefined by compressing the cranial and 

caudal vertebral elements to 25 N, zeroing the MTS crosshead displacement, extending the 

ligament a rate of 0.05 mm/s to 5 N of pretension, and allowing it to relax for 600 s. The resulting 

length was again recorded and used as the reference configuration. Each ligament was 

preconditioned by applying a sinusoidal displacement with a peak-to-peak amplitude of 10% 

engineering strain applied at 1 Hz for 120 cycles. The ligament was then returned to its reference 
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configuration for 600 s. Relaxation experiments were subsequently preformed by subjecting each 

ligament to a randomized application of 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20% and 25% 

engineering strain applied at 5 mm/s. Each strain level was held for 100 s and then returned to the 

reference configuration for 600 s before the application of the next strain magnitude. Force, 

displacement, and time data were recorded at 60 Hz.  

 These stress relaxation experiments were performed to define the relaxation behavior of 

human lower cervical spine ligaments when subjected to multiple magnitudes of strain and to 

investigate the dependence of this behavior, if any, on the applied strain magnitude. 

The range of strain magnitudes used in both the DMA procedure and the stress relaxation 

experiments were well below the previously reported failure strains for these ligaments [42], and 

includes physiologic strains that can be expected during activities of daily living, as predicted 

from computational modeling [43]. 

2.4. Measurement of Ligament Area 

Recorded structural data from the DMA (e.g. storage stiffness) and relaxation procedures were 

converted to engineering stress by normalizing the data to the undeformed cross-sectional area, 

measured using the following post hoc digital image capture method.  

Each ligament was carefully transected at its mid-substance and again at its insertion to 

the vertebral bone. The cut ligament was then placed on painted plastic rectangular cards that 

gave a high contrast between the ligament and the card color. Ligament hydration was maintained 

throughout the imaging procedure via periodic saline spray. Hydration kept the ligament adhered 

to the plastic card. Smaller ligaments (all ALLs and most PLLs) were placed under a dissection 

microscope, next to a ruler with 0.5 mm resolution, and a digital image was taken of the cross-

section (Figure 2.8). Ligaments with dimensions that were too large to be viewed under the 

dissection microscope (all LFs and some PLLs) were imaged using a digital camera that was 

attached to a tripod and positioned, using a level, perpendicular to the cross-section (Figure 2.8). 
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The same plastic cards and ruler were used to image the larger ligaments. The ligament area was 

calculated using ImageJ software (ver. 1.41, National Institutes of Health, Bethesda, MD). Image 

resolution was >80 pixels/mm for the ligaments imaged under the dissection microscope and >50 

pixels/mm for ligaments imaged using the digital camera attached to the tripod. 

Figure 2.8: Representative digital images used to measure the cross-sectional area of the ligament. Top: (A) 
Ligament imaged under a dissection microscope and (B) its cross-sectional area approximated by ImageJ 
software. Bottom: (C) Ligament imaged without a dissection microscope and (D) its cross-sectional area 
approximated by ImageJ software. 

2.5. QLV Fitting Procedure 

The stress relaxation data for each ligament, at each strain magnitude, were fitted using QLV 

theory to investigate the validity and applicability of this theory to accurately model the 

experimental behavior of the ligaments. Data were fitted to the QLV equation (17), that was re-

written in terms of engineering strain, ߝ, as [44]: 
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where ߪሺݐሻ is the engineering stress at time ܩ ,ݐሺݐሻ is the reduced relaxation function, ߪ௘ሺߝሻ is 

the instantaneous elastic stress, and ߦ  is a dummy variable of integration. Quasi-linear 

viscoelastic theory assumes that ܩሺݐሻ is independent of the applied magnitude of strain. Hence, 

for QLV theory to be a suitable model for the viscoelastic behavior of cervical spine ligaments, 

the ܩሺݐሻ determined from physical experiments must be independent of the strain magnitude.  

The reduced relaxation function ܩሺݐሻ was approximated by the Prony series [11]: 

 
ሻݐሺܩ ൌ ஶܩ ൅෍ܩ௡݁

ି௧ ఛ೙⁄

ସ

௡ୀଵ

 (20)

where ܩஶ  is the long-term relaxation parameter (i.e., ܩஶ ൌ lim௧→ஶ ሻݐሺܩ ), and ܩ௡  is the 

relaxation parameter associated with the time constant ߬௡. The time constants ߬ଵ, ߬ଶ, ߬ଷ, ߬ସ, were 

fixed at decade values [11] of 0.1 s, 1 s, 10 s, and 100 s for all fitting procedures. Equation (20) 

was subjected to the constraint [11]:  

ଵܩ  ൅ ଶܩ ൅ ଷܩ ൅ ସܩ ൅ ஶܩ ൌ 1 (21)

The instantaneous elastic stress was approximated as: 

ሻߝ௘ሺߪ  ൌ ሺ݁஻ఌܣ െ 1ሻ (22)

where parameters ܣ and ܤ are material constants [44, 45].  

 Since the stress relaxation experiments consisted of a finite ramping time (versus an 

instantaneous Heaviside step function), it is possible (and expected) for relaxation to occur during 

the ramping phase. To account for this, equation (19) was separated into ramping and relaxation 

regions (Figure 2.9) and the parameters were simultaneously fitted to both regions using a 

previously reported procedure [44]. During the ramping region, from 0 ൏ ݐ ൑  ଴, the ligamentݐ

was subjected to a constant strain rate ߛ . The time ݐ଴  was determined by finding the time 

associated with the maximum stress magnitude of the stress versus time curve. After inputting the 

relations ߝ ൌ  and ݐߛ
డఌ

డక
ൌ for 0) ߛ ൏ ݐ ൑  ଴), findingݐ

డఙ೐ሺఌሻ

డఌ
, and moving the constants out of the 

integrand, the ramping region of equation (19) was written as: 
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:ݐሺߪ  0 ൏ ݐ ൑ ,଴ݐ ሻߠ

ൌ නߛܤܣ ൫ܩஶ ൅ ଵ݁ܩ
ሺకି௧ሻ ఛభ⁄ ൅ ଶ݁ܩ

ሺకି௧ሻ ఛమ⁄ ൅ ଷ݁ܩ
ሺకି௧ሻ ఛయ⁄

௧

଴

൅ ସ݁ܩ
ሺకି௧ሻ ఛర⁄ ሻ݁஻ఊక߲ߦ 

(23)

where ߠ ൌ ሼܣ, ,ܤ ,ஶܩ ,ଵܩ ,ଶܩ ,ଷܩ   .ସሽܩ

Figure 2.9: Representative strain input (left) and stress output (right) curves for the stress relaxation 
experiments. The stress output curve was split into a ramping region (૙ ൏ ݐ ൑  ૙) and a relaxation region࢚
࢚) ൐  .૙) for the fitting procedure to account for relaxation that may have occurred during the finite ramp time࢚
The strain rate is denoted as ࢽ. 

Equation (23) was symbolically integrated using MathCAD software (version 14.0, PTC, 

Needham, MA) to give: 

:ݐሺߪ  0 ൏ ݐ ൑ ,଴ݐ ሻߠ

ൌ ߛܤܣ ቈ
ஶሺ݁ܩ

஻௧ఊ െ 1ሻ

ߛܤ
൅
ଵ߬ଵ൫݁ܩ

஻௧ఊ െ ݁ି௧ ఛభ⁄ ൯

ߛଵ߬ܤ ൅ 1
൅
ଶ߬ଶ൫݁ܩ

஻௧ఊ െ ݁ି௧ ఛమ⁄ ൯

ߛଶ߬ܤ ൅ 1

൅
ଷ߬ଷ൫݁ܩ

஻௧ఊ െ ݁ି௧ ఛయ⁄ ൯

ߛଷ߬ܤ ൅ 1
൅
ସ߬ସ൫݁ܩ

஻௧ఊ െ ݁ି௧ ఛర⁄ ൯

ߛସ߬ܤ ൅ 1
቉ 

(24)

The stress in the relaxation region of the curve is equal to the stress from the previous 

ramping region plus the stress history during the relaxation region. Thus, equation (24) can be 

recast as: 

 
:ݐሺߪ ݐ ൐ ,଴ݐ ሻߠ ൌ නߛܤܣ ݐሺܩ െ ߦሻ݁஻ఊక߲ߦ

௧బ

଴

൅ නߛܤܣ ݐሺܩ െ ߦሻ݁஻ఊక߲ߦ
௧

௧బ

 (25)

 ࢽ

1 
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Since the strain is held constant during the relaxation region of the curve, the strain rate (ߛ) is 

equal to zero for the second term of equation (25); thus, eliminating the contribution of this term. 

Hence, the first term was symbolically integrated using MathCAD software to give: 

 
:ݐሺߪ ݐ ൐ ,଴ݐ ሻߠ ൌ ߛܤܣ ቈ

ஶሺ݁ܩ
஻௧బఊ െ 1ሻ

ߛܤ
൅
ଵ߬ଵ݁ܩ

ି௧ ఛభ⁄ ൫݁௧బ ఛభ⁄ ା஻௧బఊ െ 1൯

ߛଵ߬ܤ ൅ 1

൅
ଶ߬ଶ݁ܩ

ି௧ ఛమ⁄ ൫݁௧బ ఛమ⁄ ା஻௧బఊ െ 1൯

ߛଶ߬ܤ ൅ 1
൅
ଷ߬ଷ݁ܩ

ି௧ ఛయ⁄ ൫݁௧బ ఛయ⁄ ା஻௧బఊ െ 1൯

ߛଷ߬ܤ ൅ 1

൅
ସ߬ସ݁ܩ

ି௧ ఛర⁄ ൫݁௧బ ఛర⁄ ା஻௧బఊ െ 1൯

ߛସ߬ܤ ൅ 1
቉ 

(26)

As described in [44], the experimental data for the ramping region was defined as ሺݐ௜, ܴ௜ሻ for 

0 ൏ ௜ݐ ൑ ,௜ݐ଴ and the experimental data for the relaxation region was defined as ሺݐ ௜ܵሻ for ݐ௜ ൐  .଴ݐ

The sum of squares difference between the experimental data and equation (24) was expressed as 

[44]:  

 ݂ሺߠሻ ൌ෍ሾܴ௜ െ :௜ݐሺߪ 0 ൏ ௜ݐ ൑ ,଴ݐ ሻሿߠ
ଶ

௜

 (27)

Since the data in the relaxation region was dominated by slow rate behavior, an exponentially 

weighted sum of squares difference was used to capture the initial, fast rate behavior of the 

relaxation region [46]. Thus, the weighted sum of squares difference for the relaxation region was 

expressed as: 

 ݃ሺߠሻ ൌ෍ሼݓሺݐ௜ሻ ∙ ሾ ௜ܵ െ :௜ݐሺߪ ௜ݐ ൐ ,଴ݐ ሻሿሽߠ
ଶ

௜

 (28)

Where ݓሺݐ௜ሻ is the weighting function defined as: 

ሻݐሺݓ  ൌ ݁ି௧ ఛభ⁄ ൅ ݁ି௧ ఛమ⁄ ൅ ݁ି௧ ఛయ⁄ ൅ ݁ି௧ ఛర⁄  (29)

All fits were performed using MATLAB software (ver. 7.8.0.347, The MathWorks, Inc., Natick 

MA). Parameter ܣ was initially determined by fitting equation (22) to the ramping region of the 

experimental data using a nonlinear least-squares optimization (lsqnonlin MATLAB function), 

then fixing its value while the remaining parameters were fit using a constrained (see equation 
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(21)) nonlinear optimization (fmincon MATLAB function) that minimized the objective function 

݂ሺߠሻ ൅ ݃ሺߠሻ [44]. 

The sensitivity of the fitted parameter values to the initial guesses required by the fitting 

algorithm was investigated by fixing each initial guess at a value of 0.001, 0.01, 0.1, 1, 10, or 100 

and determining any statistical differences in the fitted parameter values. Thus, a total of six sets 

of fitted parameter values (one for each initial guess) for each ligament were generated for this 

statistical comparison. If no statistical differences were detected, the fitted parameters associated 

with the initial guesses that gave the minimum value for the objective function were assumed to 

be the global minimum [44] and, hence, these values were those reported in the Results section. 

2.6. Examination of the Shape of the Relaxation Region 

As stated earlier, QLV theory assumes that the shape of the stress relaxation curve is independent 

of strain level. Previous work has reported the stress relaxation behavior of rat [21] and rabbit 

[22] medial collateral ligaments by directly examining the shape of the relaxation curve, without 

fitting the data to QLV theory. These researchers used the power law: 

ሻݐሺߪ  ൌ ݐ଴ߪ
௡ (30)

where ߪ଴ is the initial stress and ݊ is the “rate” of relaxation, to describe the relaxation region of 

their data. Taking the logarithm of equation (30) yields a straight line with a slope ݊ and an 

intercept of log ሺߪ଴ሻ, i.e.: 

 logሾߪሺݐሻሿ ൌ logሺߪ଴ሻ ൅ ݊ logሺtሻ (31)

 Equation (31) simplifies the interpretation equation (30) since different relaxation curve shapes 

are indicated by straight lines with different slopes. For QLV theory to be a suitable model for the 

viscoelastic behavior of cervical spine ligaments, the relaxation curves plotted on a log-log scale 

should have the same slope at each strain level. In order to further investigate the validity of QLV 

to model the viscoelastic behavior of cervical spine ligaments (in addition to the procedures in 

Section 2.5), experimental data in the relaxation region were fitted to equation (31) using 
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MATLAB (polyfit function) and the resulting fitted parameters (ߪ଴ and ݊) were compared across 

ligament types and strain levels. 

2.7. Statistics 

2.7.1. Ligament area statistics 

The ligament cross-sectional areas of each ligament type (ALL, PLL, LF) were compared using 

the SAS PROC GLM (SAS Institute, Inc., Cary, NC) procedure. Statistical significance was set at 

p<0.05.  

2.7.2. DMA statistics 

A logarithmic transformation was used to normalize the residuals and equalize the error variance 

of the cyclic properties (loss modulus, storage modulus, and tan ሺߜሻ) determined from the DMA 

procedure. The SAS PROC MIXED procedure was performed on these transformed data to 

determine any strain and/or frequency dependence of these material properties for each ligament. 

This procedure was also used to compare the cyclic properties across ligament types. The loss 

modulus, storage modulus, and tan ሺߜሻ  were treated as categorical variables. Statistical 

significance was defined as p<0.05. 

2.7.3. QLV fitted parameter statistics 

A square root transformation was used to normalize the residuals of the ܩ ,ܣஶ, ܩଵ, ܩଶ, ܩଷ, ܩସ 

fitted parameters, while a logarithmic transformation was required to normalize the residuals 

parameter ܤ because it exhibited a greater amount of variability than the other parameters. The 

SAS PROC MIXED procedure was performed on these transformed parameters to determine if 

the data exhibited a significant strain magnitude dependence, and to compare the parameters 

between the ligament types. To determine the effect of both ligament type and strain magnitude 

for each parameter, the strain magnitudes were treated as continuous variables and the PROC 

MIXED procedure regressed the parameter value on strain magnitude for each ligament type. 

Consequently, these data were analyzed to determine if the regression coefficients were 
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statistically different from zero and compared the regression coefficients across ligament types. A 

statistically significant slope regression coefficient indicated that the parameter value changed, 

and is therefore dependent on, strain magnitude. When comparing ligament types, the regression 

coefficient slopes were initially compared. If the slope comparison was not found to be 

significant, then a new regression was performed with the slope term removed from the model 

and the intercept regression coefficients were compared. 

The SAS PROC MIXED procedure was also used to test the sensitivity of the fit to the 

initial guesses by comparing the parameter values computed from each initial guess. Statistical 

significance was defined as p<0.05. 

2.7.4. Power law fitted parameter statistics 

A logarithmic transformation was used to normalize the slope and the initial stress parameters 

found by fitting the data to equation (30). The SAS PROC MIXED procedure was performed on 

these transformed parameters to determine any strain dependence within each ligament type, and 

also to compare parameters between the three types of ligament. The strain dependence and 

ligament type comparisons were made by performing the same regression analysis as the QLV 

fitted parameters described above (Section 2.7.3), except in this case it was of interest to 

determine if a polynomial equation would provide a significantly enhanced description of the 

fitted parameters over the tested strain magnitudes. Therefore, a quadratic term was added to the 

linear regression model, and tested by SAS to determine if it was statistically different from zero. 

If the quadratic term was significant, it was retained in the model. If it was not found to be 

significant, the quadratic term was removed, and a new analysis was performed using a linear 

regression model. The polynomial regression model which had the highest statistically significant 

order was reported. Statistical significance was defined as p<0.05. 
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3. RESULTS

3.1. Ligament Geometry 

The ligament initial lengths recorded under a reference tension of 5 N at the beginning of the 

DMA and relaxation procedures are given in Table 1. 

Table 1: Initial ligament length (mean ± 1 SD) for the DMA and relaxation 
procedures. 

ALL (mm) PLL (mm) LF (mm) 

DMA 3.06 ± 1.29 1.19 ± 0.69 3.31 ± 0.45 
Relaxation 3.17 ± 1.34  1.31 ± 0.67  3.44 ± 0.49 

 
The cross-sectional areas of the ligaments calculated from the digital images are given in 

Table 2. Figure 3.1 shows a box-and-whisker plot of the measured cross-sectional areas of the 

ligaments. The cross-sectional areas of the ALL and PLL were not statistically different 

(p=0.7504), while the LF had a larger cross-sectional area than both the ALL (p<0.0001) and the 

PLL (p<0.0001). 

Table 2: Ligament cross-sectional area (mean ± 1 SD).  

ALL PLL LF 

Area (mm2) 30.23 ± 6.33  31.92 ± 9.67  86.15 ± 15.26
 



37 
 

 
Figure 3.1: Box-and-whisker plot of the ligament cross-sectional areas, calculated from digital images of the 
ligament cross-sections.  

3.2. DMA Results 

DMA was performed on the ALL, PLL, and LF at two engineering strain amplitudes (10% and 

15%) and four frequencies (0.001 Hz, 0.01 Hz, 0.1 Hz, 1 Hz) to determine the effect of strain 

level, frequency, and ligament type on the cyclic viscoelastic properties. The loss angle (δ), 

storage stiffness, and loss stiffness were determined for each experimental variant. The tangent of 

the loss angle, tanሺߜሻ , was calculated to provide a measure of the internal damping of the 

ligament [19]. The storage stiffness and loss stiffness were normalized by the undeformed 

(reference configuration) cross-sectional area of the ligament to determine the intrinsic storage 

modulus (ܧᇱ) and loss modulus (ܧᇱᇱ), respectively, in order to quantify corresponding measures of 

the elastic (energy stored) and the viscous behavior (energy dissipated) of the ligament [20].  
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Tan delta 

Statistical analysis indicated a significant effect of strain amplitude (p<0.0001), frequency 

(p<0.0001), and ligament type (p=0.0037) with respect to the tanሺߜሻ parameter.  

The effect of strain amplitude is shown in Figure 3.2 for the ALL, Figure 3.3 for the PLL, 

and Figure 3.4 for the LF. For all ligaments, tanሺߜሻ at the 15% strain amplitude was significantly 

reduced compared to the 10% strain amplitude at 0.001 Hz frequency (p-values are indicated on 

respective figures). No statistically significant differences were observed for any of the other 

frequencies for each ligament type (p>0.05).  

 
Figure 3.2: Effect of strain amplitude on the ALL ࢔ࢇ࢚ሺࢾሻ. *indicates p=0.0010. No statistical differences were 
observed, except for *. Error bars represent the standard error. 
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Figure 3.3: Effect of strain amplitude on the PLL ࢔ࢇ࢚ሺࢾሻ. *indicates p=0.0104. No statistical differences were 
observed, except for *. Error bars represent the standard error. 

 
Figure 3.4: Effect of strain amplitude on the LF ࢔ࢇ࢚ሺࢾሻ. *indicates p=0.0011. No statistical differences were 
observed, except for *. Error bars represent the standard error. 

The data were also analyzed in order to observe the effect of frequency on tan ሺߜሻ for 

each ligament type, independent of strain amplitude. For the ALL, the tan ሺߜሻ was observed to 

decrease as frequency was increased for both strain amplitude levels (Figure 3.5), with each 

frequency being statistically different than the others (p<0.01 for all comparisons).  
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Figure 3.5: For both strain amplitudes, the ALL ࢔ࢇ࢚ሺࢾሻ decreased as frequency was increased. For a given 
strain amplitude, ࢔ࢇ࢚ሺࢾሻ  at each frequency was found to be statistically different (p<0.0001). Error bars 
represent the standard error. 

The tan ሺߜሻ for the PLL exhibited slightly different frequency-dependent behavior than 

the ALL tan ሺߜሻ. The PLL tan ሺߜሻ decreased with increasing frequency, similar to the ALL, 

except that there was no statistical difference (p=0.1348) in the tan ሺߜሻ between the 0.01 Hz and 

0.1 Hz frequencies for the 10% strain magnitude (Figure 3.6). All other comparisons for the PLL 

were statistically significant (p<0.0001 for all significant comparisons) at the 10% strain 

amplitude. For the 15% strain amplitude, the PLL tan ሺߜሻ at all frequencies were statistically 

different (p<0.05 for all comparisons). 
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Figure 3.6: For both strain amplitudes, the PLL ࢔ࢇ࢚ሺࢾሻ decreased as frequency increased. Within each strain 
amplitude, the ࢔ࢇ࢚ሺࢾሻ at each frequency was statistically different (p<0.0001 and p<0.05 for 10% and 15% 
strain amplitude comparisons, respectively), except the comparison between the 0.01 Hz and 0.1 Hz frequencies 
at the 10% strain amplitude. Error bars represent the standard error. 

The tan ሺߜሻ calculated for the LF also decreased with increasing strain, except that no 

statistical difference existed between the tan ሺߜሻ at the 0.01 Hz and 0.1 Hz frequencies at both 

strain amplitudes (p-values indicated on Figure 3.7). All other LF tan ሺߜሻ  comparisons were 

statistically significant (p<0.0001 and p<0.05 for 10% and 15% strain amplitude comparisons, 

respectively). 

Figure 3.7: For both strain amplitudes, the LF ࢔ࢇ࢚ሺࢾሻ decreased as frequency increased, the 0.01 Hz and 0.1 Hz 
frequencies. All other comparisons were significant (p<0.0001 and p<0.05 for 10% and 15% strain amplitude 
comparisons, respectively). Error bars represent the standard error. 

0.14

0.08
0.07

0.04

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.001 0.01 0.1 1

ta
n
(δ
)

Frequency (Hz)

PLL tan(δ): 10% strain amplitude

p=0.1348

0.11

0.08

0.06

0.04

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.001 0.01 0.1 1

ta
n
(δ
)

Frequency (Hz)

PLL tan(δ): 15% strain amplitude

0.09

0.04
0.04

0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.001 0.01 0.1 1

ta
n
(δ
)

Frequency (Hz)

LF tan(δ): 10% strain amplitude

p=0.4259

0.06

0.04
0.04

0.02

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.001 0.01 0.1 1

ta
n
(δ
)

Frequency (Hz)

LF tan(δ): 15% strain amplitude

p=0.7581



42 
 

Figure 3.8 compares the ligament types at the 10% strain amplitude. There was no 

significant difference between the ALL and the PLL tan ሺߜሻ at any of the tested frequencies. 

Also, the LF tan ሺߜሻ was smaller than that of both the ALL (p<0.05) and the PLL (p<0.05) at all 

frequencies.  

 
Figure 3.8: Comparing the ࢔ࢇ࢚ሺࢾሻ across ligament types at the 10% strain amplitude. All other comparisons 
were significantly different (p<0.05). Error bars represent the standard error. 

The effect of ligament type at 15% strain amplitude was similar to the 10% amplitude 

(Figure 3.9). No statistical difference existed between the ALL and the PLL at any frequency. 

Interestingly, at 0.1 Hz no statistical difference was observed between any of the ligament types. 

At all frequencies except for 0.1 Hz, the LF tan ሺߜሻ was smaller than that of the ALL (p<0.01) 

and the PLL (p<0.01).  
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Figure 3.9: Comparing the ࢔ࢇ࢚ሺࢾሻ across ligament types at the 15% strain amplitude. All other comparisons 
were significantly different (p<0.05). Error bars represent the standard error. 

Storage modulus 

Statistical analysis of the storage modulus (ܧᇱ) indicated a significant effect of strain amplitude 

(p<0.0001), frequency (p<0.0001), and ligament type (p=0.0034) on this parameter.  
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Figure 3.10: ALL storage modulus. There was a statistical difference (p<0.05) between the two strain amplitudes 
at each frequency. Error bars represent the standard error. 

 
Figure 3.11: PLL Storage modulus. There was a statistical difference between the strain amplitudes at the 0.001 
Hz and 0.01 Hz frequencies, but no significant difference was found at the 0.1 Hz and 1 Hz frequencies. Error 
bars represent the standard error. 
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Figure 3.12: The LF storage modulus was found to be independent of the two strain amplitudes. Error bars 
represent the standard error. 

As with the tan ሺߜሻ parameter, the data were analyzed by strain level in order to better 

observe the effect of frequency at each strain amplitude. For the ALL, the ܧᇱ calculated at 0.001 

Hz was statistically smaller than the ܧᇱ calculated at all other frequencies for both amplitudes of 

strain (p<0.05), creating two statistically different groups (Figure 3.13). There was no statistical 

difference between the ALL ܧᇱ calculated at the 0.01 Hz, 0.1 Hz and 1 Hz frequencies for both 

amplitudes of strain. 
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The LF ܧᇱ behavior was different from that of both the ALL and the PLL, showing no 

statistical difference in the calculated ܧᇱ across all frequencies for both strain amplitudes (Figure 

3.15). This data suggest that the ܧᇱ for the LF is independent of the tested range of frequencies. 

Figure 3.13: Frequency-dependent behavior of the ALL storage modulus. The storage modulus calculated at 
0.001 Hz was different (p<0.05) than the storage modulus calculated at any other frequency for both strain 
amplitudes. Brackets indicate this grouping. Error bars represent the standard error. 

Figure 3.14: Frequency-dependent behavior of the PLL storage modulus. At the 10% strain amplitude, the 
storage modulus calculated at 0.001 Hz was different (p<0.05) than that calculated at any other frequency. For 
the 15% strain amplitude, only the 0.1 Hz and 1 Hz frequencies were different (p=0.0099 and p=0.0015, 
respectively) than the 0.001 Hz frequency. Brackets indicate comparisons with no statistical differences. Error 
bars represent the standard error. 
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Figure 3.15: For each amplitude of strain, the LF storage modulus was not statistically different across all 
frequencies, indicating that it was independent of frequency. Error bars represent the standard error. 

 When comparing the ܧᇱ across ligament types, no statistical difference existed between 

ALL ܧᇱ  and the PLL ܧᇱ  at each frequency in the 10% strain amplitude (Figure 3.16). 

Additionally, the ܧᇱ calculated for the ALL and the PLL were both an order of magnitude larger 

than the ܧᇱ calculated for the LF (ALL: p<0.01; PLL: p<0.05). Identical behavior was observed 

when comparing the ܧᇱ  across ligament types for the 15% strain amplitude; no statistical 

difference existed between the ܧᇱ calculated for the ALL and the PLL, and the calculated ܧᇱ for 

the ALL and PLL were both an order of magnitude larger than the LF (ALL: p<0.01; PLL: 

p<0.05) (Figure 3.17).  
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Figure 3.16: Comparing the storage modulus across ligament types at each frequency for the 10% strain 
amplitude. There was no statistical difference between the calculated storage moduli for the ALL and the PLL. 
However, the ALL and PLL storage moduli were both statistically different than the LF (p<0.05). Error bars 
represent the standard error. 

 
Figure 3.17: Comparing the storage modulus across ligament types at each frequency for the 15% strain 
amplitude. The storage modulus behavior was similar to the behavior at the 10% strain amplitude. Error bars 
represent the standard error. 
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 As before, to observe the effect of frequency on ܧᇱᇱ (independent of strain amplitude), the 

 ᇱᇱ calculated for the ALLܧ ᇱᇱ calculated for each strain amplitude was plotted separately. Theܧ

was observed to decrease with increasing frequency at both strain amplitudes (Figure 3.18). At 

the 10% strain amplitude, the ܧᇱᇱ  calculated for the ALL at each frequency was statistically 

different than that calculated at the other frequencies (p<0.01). At the 15% strain amplitude, no 

statistical difference was observed for the ALL ܧᇱᇱ between the 0.001 Hz and 0.01 Hz frequencies 

(p=0.0992). However, the ܧᇱᇱ  calculated at all other frequencies were statistically different 

(p<0.01). The ܧᇱᇱ calculated for the PLL also decreased as the frequency was increased for both 

strain amplitudes (Figure 3.19). The calculated PLL ܧᇱᇱ  at each frequency was statistically 

different from other frequencies (p<0.01), except for the comparison between the 0.01 Hz and 0.1 

Hz frequencies at the 10% strain amplitude (p=0.3969), and between the 0.001 Hz and 0.01 Hz 

frequencies at the 15% strain amplitude (p=0.0930). For the LF, the calculated ܧᇱᇱ also showed a 

decreasing trend as frequency was increased for both strain amplitudes (Figure 3.20). The 

calculated ܧᇱᇱ were statistically different when compared across frequencies (p<0.01) for both 

strain amplitudes, except for comparisons between the 0.01 Hz and 0.1 Hz frequencies at the 10% 

(p=0.5237) and 15% (p=0.8610) strain amplitudes.  
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Figure 3.18: For each strain amplitude, the ALL loss modulus was observed to decrease as frequency was 
increased. The loss modulus was statistically different (p<0.05) at all frequencies, except between the 0.001 Hz 
and 0.01 Hz frequencies for the 15% strain amplitude. Error bars represent the standard error. 

Figure 3.19: For each strain amplitude, the PLL loss modulus was observed to decrease as frequency was 
increased. Each loss modulus was statistically different (p<0.05) for all frequencies, except between 0.01 Hz and 
0.1 Hz at the 10% strain amplitude and between 0.001 Hz and 0.01 Hz at the 15% strain amplitude. Error bars 
represent the standard error. 
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Figure 3.20: For each strain amplitude, the LF loss modulus was observed to decrease as frequency increased. 
Each calculated loss modulus was statistically different (p<0.05) for all frequencies, except between 0.01 Hz and 
0.1 Hz at both the 10% and 15% strain amplitudes. Error bars represent the standard error. 

 When comparing the ܧᇱᇱ across ligament types for the 10% and 15% strain amplitudes 

(Figure 3.21 and Figure 3.22, respectively), no statistical difference existed between the ܧᇱᇱ 

calculated for the ALL and the PLL for all frequencies, except for the 0.001 Hz frequency at the 

10% strain amplitude (p=0.0477). The ܧᇱᇱ for the LF was an order of magnitude smaller than the 

 .ᇱᇱ calculated for the ALL and the PLL at both strain amplitudesܧ

 
Figure 3.21: Comparing the loss modulus across ligament types at 10% strain amplitude. No statistical 
difference was observed between the loss moduli calculated for the ALL and the PLL, except for at the 0.001 Hz 
frequency (p=0.0477). The loss modulus for the LF was an order of magnitude smaller than the ALL and the 
PLL. Error bars represent the standard error. 
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Figure 3.22: Comparing the loss modulus across ligament types at 15% strain amplitude. No statistical 
difference was observed between the loss moduli for the ALL and the PLL at all frequencies. The loss modulus 
calculated for the LF was an order of magnitude smaller than the ALL and the PLL. Error bars represent the 
standard error. 

3.3. Stress Relaxation Results 

3.3.1. QLV fitted parameters 

Experimental stress relaxation versus time data at multiple strain magnitudes were fitted to QLV 

theory to determine the validity and applicability of this theory to model the viscoelastic behavior 

of the ALL, PLL, and LF over a range of applied strain magnitudes.  

Sensitivity of Fitted Parameters to the Initial Guesses 
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of the fitting algorithm to the required initial guesses. Hence, for each preliminary fit, all initial 
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parameter values (at each strain magnitude) were compared using the statistical procedure 

outlined in Section 2.7.3. 
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guesses (1, 0.1, 0.01, and 0.001). Specifically, an initial guesses of 100 gave extremely large and 

erroneous values (on the order of 1050 for some fits) for the objective function, and often gave 

invalid fitted parameter values, (e.g., negative ܩሺݐሻ coefficients and fitted values equal to the 

initial guess) for each ligament type. However, as the initial guesses were incrementally 

decreased from 100 to 0.001, the fitted parameter values appeared to converge to a unique 

solution since no statistical difference was observed between the fitted parameter values 

calculated with the smaller initial guesses. 

For the ALL, statistical analysis indicated that parameters ܣ ܤ , ஶܩ , , and ܩସ  were 

dependent on the initial guesses over the entire (six decade) range (Table 3). However, when the 

range of initial guesses was decreased from 0.001-100 to 0.001-10, no statistical difference was 

observed between any of the parameter values. Therefore, the fitted parameter values for the ALL 

were determined to be insensitive to the initial guesses in the range from 0.001-10. Since there 

was no statistical difference between parameter values over the relatively large range of initial 

guesses from 0.001-10 (five decades), the fitted parameter values were assumed to be converged 

at a unique solution within this range. 

Table 3: p-values for two-way interaction between the ALL fitted parameter values and 
the initial guess fixed at each decade value in the given range.  

Parameter Range: 0.001-100 Range: 0.001-10 Range: 0.001-1 

 0.9311 0.9788 0.0001> ܣ
 0.9994 0.9998 0.0001> ܤ
 ஶ  0.0058 1.0000 1.0000ܩ
 ଵ 0.7391 1.0000 1.0000ܩ
 ଶ 0.1401 1.0000 1.0000ܩ
 ଷ 0.1261 1.0000 1.0000ܩ
 ସ 0.0056 1.0000 1.0000ܩ

For the PLL, the ܩ ,ܤଶ, and ܩଷ parameter values were found to be sensitive to the initial 

guesses over the range of 0.001-100 (Table 4). However, similar to the ALL, no statistical 

difference was observed between the PLL fitted parameters for initial guesses in the range of 

0.001-10. The fitted parameter values were less reliant (indicated by even larger p-values that 
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approximated unit) when an initial guess in the range of 0.001-1. Since such a small difference 

was observed between the fitted parameter values calculated from the initial guesses in the 0.001-

1 range (four decades), the fitted parameter values were assumed to be converged within this 

range.   

Table 4: p-values for two-way interaction between the PLL fitted parameter values and 
the initial guess fixed at each decade value in the given range. 

Parameter Range: 0.001-100 Range: 0.001-10 Range: 0.001-1 

 0.9259 0.6589 0.0741 ܣ
 0.9995 0.3140 0.0001> ܤ
 ஶ  0.3565 1.0000 1.0000ܩ
 ଵ 0.9995 1.0000 1.0000ܩ
 ଶ 0.0002 1.0000 1.0000ܩ
 ଷ <0.0001 1.0000 1.0000ܩ
 ସ 0.1777 1.0000 1.0000ܩ

For the LF data, the fitted ܩ ,ܤ ,ܣஶ, and ܩସ parameters were found to be significantly 

different over the entire range of initial guesses (0.001-100). As with the ALL and PLL, the fitted 

parameters for the LF were relatively insensitive to the smaller initial guesses, specifically over 

the 0.001-1 range (4 decades). Hence, the fitted parameter values were assumed to be converged 

within this initial guess range.  

Table 5: p-values for two-way interaction between the LF fitted parameter values and 
the initial guess fixed at each decade value in the given range.  

Parameter Range: 0.001-100 Range: 0.001-10 Range: 0.001-1 

 0.9857 0.0003 0.0001> ܣ
 0.9998 0.3438 0.0001> ܤ
 ஶ <0.0001 1.0000 1.0000ܩ
 ଵ 0.9675 0.9997 1.0000ܩ
 ଶ 0.9090 0.9985 1.0000ܩ
 ଷ 0.2119 1.0000 1.0000ܩ
 ସ <0.0001 1.0000 1.0000ܩ

  
It is interesting to note that the p-values in Table 3, Table 4, and Table 5 indicate that the 

fitted ܩሺݐሻ parameters were less sensitive to the initial guesses than the ܣ and ܤ parameters for 

nearly all of the tested ranges. In fact, the fitted ܩሺݐሻ parameters were observed to converge faster 
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than both the ܣ  and ܤ  parameters and in some cases the fitted ܩሺݐሻ  parameters were not 

statistically different over the entire range (six decades) of initial guesses. 

For each ligament type, the fitted parameter values (determined from within the 

converged range of initial guesses described above) that gave the smallest average objective 

function (݂ሺߠሻ ൅ ݃ሺߠሻ ) value were assumed to be the global minimum [44]. Hence, the 

parameter values for the fitted QLV model reported herein are those that gave the smallest 

average objective function value. The initial guesses that resulted in the smallest average 

objective function were: 10 for the ALL, 1 for the LF, and 0.01 for the PLL.  

QLV Fitted Parameters 

Table 6 gives the median coefficient of determination (r2 value) between the fitted QLV 

model (equation (19)) and the experimental data. At each strain level, the fitted QLV model 

approximated the experimental data well with only three of the fits resulting in a poor median 

coefficient of determination (r2 < 0.5). Additionally, the r2 values in Table 6 increased with strain 

magnitude, indicating that the QLV model better approximated the experimental data as the strain 

magnitude increased. Representative experimental stress relaxation plots for the ALL, PLL, and 

LF, along with the fitted QLV model, are shown in Figure 3.23, Figure 3.24, and Figure 3.25, 

respectively. 

Table 6: Median coefficients of determination (r2 value) 
between the QLV model and the experimental data. 

Strain magnitude (%) ALL   PLL   LF 

4 0.68 0.41 0.25 

6 0.80 0.58 0.42 

8 0.90 0.71 0.55 

10 0.93 0.74 0.66 

12 0.95 0.77 0.77 

14 0.97 0.83 0.80 

16 0.97 0.86 0.81 

18 0.98 0.88 0.86 

20 0.98 0.89 0.90 

25 0.99   0.94   0.92 
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Figure 3.23: Representative stress relaxation curves for the ALL fitted using QLV theory. 

 

 
Figure 3.24: Representative stress relaxation curves for the PLL fitted using QLV theory. 

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (s)

E
ng

in
ee

rin
g 

S
tr

es
s 

(M
P

a)

 

 

Experimental Data

QLV Theory

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (s)

E
ng

in
ee

rin
g 

S
tr

es
s 

(M
P

a)

 

 

Experimental Data

QLV Theory



57 
 

 
Figure 3.25: Representative stress relaxation curves for the LF fitted using QLV theory. 

 The average (± 1 SE) QLV fitted parameter values for the ALL, PLL, and LF are given in 

Table 7 to Table 9, respectively. For all ligament types, the stress relaxation behavior was 

dominated by the combination of the ܩஶ and ܩଵ parameters, which accounted for approximately 

80% of the relaxation behavior for the ALL, and approximately 90% of the PLL and LF 

relaxation behavior. The remaining portion of the relaxation behavior (approximately 20% for the 

ALL and approximately 10% for the PLL and LF) is described by the ܩଶ, ܩଷ, and ܩସ relaxation 

parameters. Phenemelogically, each ܩ௡ parameter represents the strength of the relaxation at the 

߬௡  time constant [47] and the ܩஶ  parameter is the long-term relaxation parameter, and is the 

proportion of the instantaneous stress that would remain in the ligament as time goes to infinity 

(equation (22)). For all ligament types, the fitted ܩଵ parameters were approximately an order of 

magnitude larger than ܩଶ, ܩଷ , and ܩସ  parameters, indicating that there was a large amount of 

stress relaxation within the first second of strain onset (recall: ߬ଵ ൌ 0.1 s, ߬ଶ ൌ 1 s, ߬ଷ ൌ 10 s, 

߬ସ ൌ 100 s). Further, the ܩஶ parameter had the largest magnitude (> 0.5) of the ܩሺݐሻ parameters 
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for all ligament types, indicating that each ligament type would maintain more than half of the 

induced instantaneous stress over an infinite time. 
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Table 7: Fitted QLV parameter vales for the ALL (mean ± 1 SE). 

Strain (%)   ܩ ܤ  ܣஶ ܩଵ  ܩଶ ܩଷ ܩସ 

4 5.540 ± 0.730 
 

0.619 ± 0.073 0.720 ± 0.017 0.177 ± 0.017 
 

0.017 ± 0.005 0.044 ± 0.008 0.042 ± 0.008 

6 5.733 ± 0.802 
 

0.945 ± 0.493 0.685 ± 0.021 0.177 ± 0.020 
 

0.029 ± 0.007 0.054 ± 0.005 0.055 ± 0.011 

8 8.066 ± 0.992 
 

0.429 ± 0.058 0.648 ± 0.024 0.183 ± 0.013 
 

0.033 ± 0.003 0.059 ± 0.006 0.077 ± 0.014 

10 6.614 ± 1.020 
 

0.848 ± 0.375 0.635 ± 0.021 0.180 ± 0.011 
 

0.039 ± 0.004 0.064 ± 0.006 0.082 ± 0.013 

12 7.734 ± 1.295 
 

1.383 ± 0.964 0.609 ± 0.023 0.184 ± 0.012 
 

0.049 ± 0.006 0.076 ± 0.006 0.082 ± 0.012 

14 7.108 ± 1.539 
 

2.003 ± 1.148 0.585 ± 0.023 0.170 ± 0.009 
 

0.066 ± 0.004 0.089 ± 0.005 0.089 ± 0.014 

16 7.178 ± 1.682 
 

1.424 ± 0.599 0.590 ± 0.021 0.186 ± 0.011 
 

0.054 ± 0.004 0.084 ± 0.005 0.086 ± 0.014 

18 5.857 ± 1.337 
 

2.365 ± 1.111 0.586 ± 0.020 0.172 ± 0.007 
 

0.067 ± 0.006 0.088 ± 0.006 0.087 ± 0.013 

20 7.588 ± 1.604 
 

2.365 ± 1.327 0.592 ± 0.023 0.179 ± 0.010 
 

0.062 ± 0.006 0.082 ± 0.007 0.084 ± 0.013 

25   4.655 ± 1.446 
 

3.254 ± 1.189 0.582 ± 0.022 0.172 ± 0.008 
 

0.074 ± 0.006 0.088 ± 0.006 0.084 ± 0.012 

 

Table 8: Fitted QLV parameter values for the PLL (mean ± 1 SE). 

Strain (%)     ସܩ ଷܩ ଶܩ  ଵܩ ஶܩ ܤ  ܣ

4 3.621 ± 0.916 
 

1.597 ± 0.439 0.665 ± 0.036 0.290 ± 0.039 
 

0.006 ± 0.004 0.024 ± 0.006 0.015 ± 0.005 

6 5.615 ± 1.707 
 

0.485 ± 0.068 0.700 ± 0.023 0.235 ± 0.014 
 

0.007 ± 0.003 0.032 ± 0.006 0.026 ± 0.008 

8 5.823 ± 2.003 
 

0.456 ± 0.074 0.691 ± 0.026 0.229 ± 0.017 
 

0.008 ± 0.004 0.028 ± 0.008 0.043 ± 0.010 

10 5.241 ± 1.255 
 

0.407 ± 0.050 0.709 ± 0.023 0.187 ± 0.010 
 

0.023 ± 0.007 0.042 ± 0.008 0.039 ± 0.009 

12 5.703 ± 1.518 
 

0.370 ± 0.049 0.693 ± 0.020 0.195 ± 0.014 
 

0.024 ± 0.007 0.044 ± 0.007 0.044 ± 0.012 

14 7.448 ± 2.243 
 

0.358 ± 0.038 0.660 ± 0.036 0.209 ± 0.024 
 

0.030 ± 0.005 0.060 ± 0.007 0.041 ± 0.008 

16 7.640 ± 2.319 
 

0.293 ± 0.034 0.677 ± 0.030 0.193 ± 0.012 
 

0.030 ± 0.009 0.054 ± 0.009 0.047 ± 0.010 

18 8.246 ± 2.658 
 

0.332 ± 0.055 0.655 ± 0.027 0.204 ± 0.014 
 

0.029 ± 0.009 0.057 ± 0.008 0.055 ± 0.012 

20 7.845 ± 2.449 
 

0.336 ± 0.053 0.661 ± 0.034 0.197 ± 0.017 
 

0.032 ± 0.005 0.059 ± 0.007 0.051 ± 0.012 

25    8.208 ± 2.978 
 

0.439 ± 0.156 0.657 ± 0.028 0.173 ± 0.008 
 

0.044 ± 0.006 0.065 ± 0.009 0.061 ± 0.015 
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Table 9: Fitted QLV parameter values for the LF (mean ± 1 SE). 

Strain (%)     ସܩ ଷܩ ଶܩ ଵܩ ஶܩ ܤ ܣ

4 0.884 ± 0.194 1.007 ± 0.212 0.845 ± 0.023 0.142 ± 0.022 0.000 ± 0.000 0.008 ± 0.002 0.004 ± 0.002 

6 1.293 ± 0.208 0.472 ± 0.062 0.814 ± 0.018 0.170 ± 0.016 0.000 ± 0.000 0.012 ± 0.003 0.004 ± 0.001 

8 1.702 ± 0.339 0.338 ± 0.042 0.787 ± 0.018 0.192 ± 0.016 0.000 ± 0.000 0.014 ± 0.004 0.007 ± 0.001 

10 1.498 ± 0.284 0.390 ± 0.077 0.774 ± 0.025 0.202 ± 0.023 0.002 ± 0.001 0.014 ± 0.004 0.008 ± 0.001 

12 1.719 ± 0.257 0.297 ± 0.031 0.725 ± 0.020 0.248 ± 0.024 0.003 ± 0.002 0.016 ± 0.004 0.008 ± 0.002 

14 2.129 ± 0.398 0.356 ± 0.042 0.728 ± 0.024 0.212 ± 0.016 0.015 ± 0.008 0.028 ± 0.006 0.016 ± 0.004 

16 1.480 ± 0.305 0.673 ± 0.367 0.723 ± 0.020 0.237 ± 0.027 0.008 ± 0.005 0.021 ± 0.005 0.011 ± 0.002 

18 2.236 ± 0.440 0.394 ± 0.085 0.661 ± 0.033 0.261 ± 0.017 0.018 ± 0.010 0.028 ± 0.007 0.031 ± 0.011 

20 1.712 ± 0.460 0.618 ± 0.213 0.690 ± 0.027 0.233 ± 0.008 0.020 ± 0.009 0.030 ± 0.006 0.027 ± 0.009 

25    0.858 ± 0.327 2.717 ± 1.142 0.639 ± 0.025 0.242 ± 0.031 0.034 ± 0.013 0.048 ± 0.018 0.037 ± 0.011 
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 To determine the effect of strain magnitude on the fitted parameters, a linear regression 

of the fitted (transformed) parameter values onto strain magnitude was performed (Section 2.7.3). 

The sign of the slope regression coefficients and its associated p-value (testing the null hypothesis 

that the slope is zero) are given in Table 10. The value of the slope regression coefficient is not 

reported since the slope was determined using the transformed parameter value, and thus has no 

physical significance. The sign of the slope, however, indicates if the transformed parameter is 

increasing or decreasing with strain magnitude, and therefore is reported. A significant slope 

(p<0.05) indicates strain dependence of the given parameter, while a non-significant slope 

indicates that the fitted parameter value did not change with strain magnitude.  

Table 10: Slope and p-value determined by regressing the given parameter onto strain magnitude. 

Parameter ALL PLL LF 
Slope sign p-value Slope sign p-value Slope sign p-value 

negative 0.2757 positive <0.0001  ܣ negative 0.6091 
positive <0.0001  ܤ negative <0.0001 positive 0.5202 
ஶ  negative <0.0001ܩ negative 0.0074 negative <0.0001
ଵ  negative 0.4379 negative 0.0025 positive <0.0001ܩ
ଶ  positive <0.0001ܩ positive <0.0001 positive <0.0001
ଷ  positive <0.0001ܩ positive <0.0001 positive <0.0001
ସ  positive <0.0001ܩ positive <0.0001 positive <0.0001

 The instantaneous elastic stress parameter ܣ was not dependent on strain magnitude for 

the ALL and the LF, but was observed to increase with increasing strain for the PLL. Parameter ܤ 

showed an increasing trend with strain magnitude for the ALL, a decreasing trend for the PLL, 

and was not affected by strain magnitude for the LF. For all ligaments, each of the ܩሺݐሻ 

relaxation parameters was dependent on strain level, except for parameter ܩଵ for the ALL. The 

long-term relaxation parameter ܩஶ  significantly decreased with increasing strain for all 

ligaments, indicating that a smaller proportion of the induced instantaneous elastic stress would 

remain in the ligament over long periods of time as greater strain magnitudes were applied. 

Additionally, the reduction of the ܩஶ parameter with increasing strain magnitude indicates that 

more relaxation occurs at higher magnitudes of strain than at lower magnitudes. The ܩଵ 
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relaxation parameter was not observed to depend on strain magnitude for the ALL, but was 

observed to decrease with increasing strain for the PLL and increase with strain for the LF. The 

remaining fitted ܩଶ, ܩଷ, and ܩସ parameters were all observed to increase with increasing strain 

magnitude for all ligaments; indicating that the strength of the relaxation at the longer time 

constants (߬ଶ, ߬ଷ, and ߬ସ) increased as the strain magnitude was increased in all ligaments. 

 The effect of strain magnitude on the reduced relaxation function ܩሺݐሻ, particularly the 

initial fast-rate relaxation region, is more clearly observed by plugging the constants from Table 

7, Table 8, and Table 9 into equation (20), and plotting the reduced relaxation function on a 

logarithmic time scale [11]. For the ALL, the reduced relaxation function for all strain 

magnitudes overlap in the initial, fast-rate relaxation region (i.e. for ߬ଵ ൌ 0.1, Figure 3.26). This 

is consistent with the statistical findings that the fast-rate relaxation parameter ܩଵ is independent 

of strain magnitude for the ALL. Similar consistencies are observed for the fast-rate relaxation in 

the other ligaments (Figure 3.27); with the initial slope of the reduced relaxation function curve 

tending to decrease with increasing magnitudes of strain in the PLL, and tending to increase with 

increasing magnitudes of strain for the LF (Figure 3.28). Also, all ligaments show increasing 

long-term relaxation behavior (associated with ߬ଶ , ߬ଷ , and ߬ସ ) with increasing magnitudes of 

strain. Interestingly, Figure 3.26 and Figure 3.27 indicate a possible converging behavior for the 

reduced relaxation function for the ALL and PLL, respectively, at higher magnitudes of strain. 

For the ALL, the difference in the reduced relaxation functions at different strain magnitudes 

appears to decrease with increasing strain, indicating a possible converging behavior for the ALL 

(Figure 3.26). The reduced relaxation function for the PLL displays a more varied relaxation 

behavior at the smaller strain magnitudes, but the difference in the reduced relaxation functions at 

the higher strain magnitudes decreases, indicating the ܩሺݐሻ for the PLL may be converging as 

well. The ܩሺݐሻ plot for the LF does not have any indication of possible convergence.     
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Figure 3.26: The reduced relaxation function at multiple magnitudes of strain for the ALL.  

 

 
Figure 3.27: The reduced relaxation function at multiple magnitudes of strain for the PLL. 
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Figure 3.28: The reduced relaxation function at multiple magnitudes of strain for the LF. 

The comparison of parameter values between the three ligament types indicated that the 

QLV fitted parameter values were unique to each ligament type (Table 11), suggesting that each 

ligament requires a unique relaxation function to describe its relaxation behavior. As described in 

more detail in Section 2.7.3, some of the parameter comparisons had slopes that were not 

significantly different. In this case, the slope term was removed from the regression model and a 

new regression analysis was performed. The intercepts determined from the new regression were 

subsequently compared (indicated by an asterisk in Table 11). Specifically, the presence of an 

asterisk indicates that the effect of strain on that parameter was the same for the compared 

ligaments (i.e., the slopes were parallel), and that these slopes were offset by a constant value 

(i.e., the intercept value). 
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Table 11: Comparison of parameters between ligament types. * indicates 
comparison of intercepts because the slopes were not significantly 
different.  

Parameter   ALL-LF   ALL-PLL   PLL-LF 

 0.0018 0.0001> *0.0053  ܣ
 0.0003 0.0001> 0.0097  ܤ
 ஶ  0.0245 <0.0001 <0.0001ܩ
 ଵ  <0.0001 0.0021 <0.0001ܩ
 *ଶ  <0.0001* 0.0026* 0.0162ܩ
 *ଷ  0.0001* 0.0147* 0.0106ܩ
 *ସ    0.0024   0.0128*   0.0122ܩ

3.3.2. Power law fitted parameters 

The power law fitted parameters along with the median r2 values for the ALL, PLL, and LF are 

given in Table 12, Table 13, and Table 14, respectively. Equation (30) approximated the 

relaxation region of the data well, only observing a poor median r2 value (r2 < 0.5) at 4% strain 

for the LF (Table 14).   

Table 12: Power law fitted parameters (± 1 SE) and the median r2 for the ALL. 

Strain (%) ߪ଴ (MPa) ݊ r2 

4 0.207 ± 0.014 -0.022 ± 0.004 0.92 
6 0.293 ± 0.019 -0.029 ± 0.004 0.98 
8 0.397 ± 0.031 -0.037 ± 0.005 0.98 
10 0.471 ± 0.041 -0.040 ± 0.005 0.99 
12 0.606 ± 0.060 -0.046 ± 0.005 0.99 
14 0.861 ± 0.088 -0.053 ± 0.005 0.99 
16 0.919 ± 0.098 -0.050 ± 0.005 0.99 
18 1.217 ± 0.135 -0.052 ± 0.005 0.99 
20 1.396 ± 0.156 -0.050 ± 0.005 0.99 
25 1.981 ± 0.235 -0.053 ± 0.006 0.99 
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Table 13: Power law fitted parameters (± 1 SE) and the median r2 for the PLL. 

Strain (%)  ߪ଴ (MPa) ݊ r2 

4  0.208 ± 0.044 -0.012 ± 0.003 0.76 
6  0.262 ± 0.062 -0.016 ± 0.003 0.92 
8  0.326 ± 0.088 -0.019 ± 0.004 0.94 
10  0.390 ± 0.117 -0.022 ± 0.004 0.95 
12  0.512 ± 0.167 -0.025 ± 0.005 0.97 
14  0.615 ± 0.213 -0.030 ± 0.005 0.99 
16  0.646 ± 0.230 -0.029 ± 0.006 0.99 
18  0.823 ± 0.310 -0.032 ± 0.006 0.99 
20  0.906 ± 0.346 -0.032 ± 0.006 0.99 
25  1.203 ± 0.480 -0.036 ± 0.007 0.98 

 
Table 14: Power law fitted parameters (± 1 SE) and the median r2 for the LF. 

Strain (%)  ߪ଴ (MPa) ݊ r2 

4  0.057 ± 0.006 -0.003 ± 0.001 0.45 
6  0.067 ± 0.006 -0.004 ± 0.001 0.60 
8  0.074 ± 0.008 -0.006 ± 0.001 0.77 
10  0.075 ± 0.009 -0.006 ± 0.001 0.84 
12  0.083 ± 0.010 -0.007 ± 0.001 0.87 
14  0.117 ± 0.018 -0.013 ± 0.003 0.96 
16  0.102 ± 0.014 -0.009 ± 0.002 0.92 
18  0.141 ± 0.025 -0.018 ± 0.006 0.98 
20  0.148 ± 0.027 -0.017 ± 0.005 0.98 
25  0.187 ± 0.039 -0.026 ± 0.009 0.98 

 From the statistical analysis outlined in Section 2.7.4, the mean initial stress ߪ଴  was 

observed to increase with the square of the strain magnitude for all ligaments (p<0.0001 for each 

ligament), indicating a quadratic relationship between ߪ଴ and strain magnitude. Additionally, the 

mean relaxation rate ݊  was also found have a quadratic relationship with strain, becoming 

increasingly negative with increasing magnitudes of strain (p<0.0001 for each ligament). Hence, 

as the strain magnitude increased, all ligaments experienced a larger initial stress and a faster rate 

of relaxation (Figure 3.29 and Figure 3.30, respectively). The fitted equations shown in Figure 

3.29 and Figure 3.30 were calculated via regression of the ߪ଴ and ݊, respectively, on strain. The 

regression equations representing ߪ଴ሺߝሻ and ݊ሺߝሻ and their corresponding r2 values are provided 

in Table 15 and Table 16, respectively.  
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Figure 3.29: Initial stress increases with the square of the strain. Error bars indicate one standard error. 

 
Figure 3.30: Relaxation rate becomes increasingly negative with the square of strain magnitude. Error bars 
indicate one standard error. 
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Table 15: Fitted equations for the initial stress.  

Ligament Equation r2 
ALL ߪ଴ሺߝሻ ൌ 0.09047 ൅ ߝ0.01837 ൅  ଶ 0.9957ߝ0.002313
PLL ߪ଴ሺߝሻ ൌ 0.09573 ൅ ߝ0.02187 ൅  ଶ 0.9948ߝ0.000915
LF ߪ଴ሺߝሻ ൌ 0.0476 ൅ ߝ0.00177 ൅  ଶ  0.9353ߝ0.000155

 
Table 16: Fitted equations for the relaxation rate. 

Ligament Equation r2 
ALL ݊ሺߝሻ ൌ െ0.00588 െ ߝ0.00467 ൅  ଶ 0.9627ߝ0.000115
PLL ݊ሺߝሻ ൌ െ0.00382 െ ߝ0.00226 ൅  ଶ 0.9784ߝ0.00004
LF ݊ሺߝሻ ൌ െ0.00223 െ ߝ0.000075 െ  ଶ 0.9343ߝ0.00004

 As with the QLV fitted parameters, comparison of ߪ଴ and ݊ across ligament types (using 

the statistical procedure described in Section 2.7.4) indicated that the relaxation behavior of each 

ligament was unique (Table 17). Within the range of experimental strain magnitudes, the initial 

stress of the ALL and the PLL increased faster than the LF, although the initial stress of the ALL 

increased faster than the PLL (Figure 3.29). Interestingly, although the relaxation rate increased 

with increasing strain magnitude for all ligaments, the shape of the relaxation rate curve (Figure 

3.30) for the LF was opposite of that of both the ALL and PLL due to the negative quadratic 

regression coefficient of the LF regression equation (Table 16). As a result of the difference in 

regression equations, the rate of relaxation for the ALL and PLL appear to be slowing, and 

possibly converging to a constant ݊, at the higher strain magnitudes while the relaxation rate for 

the LF appears to be greatly increasing with increasing strain magnitude. The possible 

convergence behavior of the ALL and PLL relaxation curves, and the diverging behavior of the 

LF relaxation determined using the power law echoes the behavior observed for the reduced 

relaxation function ܩሺݐሻ in Section 3.3.1 (see Figure 3.26 for the ALL, Figure 3.27 for the PLL, 

and Figure 3.28 for the LF).  

Table 17: p-values comparing regression coefficients for different ligament types. * 
indicates a difference on the linear fit, but not the quadratic. 

Regression coefficient  ALL-LF  PLL-LF  ALL-PLL 
 *଴   0.0076  0.0137*  <0.0001ߪ
݊   <0.0001  0.0034  0.0016 

  In order to directly observe the effect of strain magnitude, and hence the validity of QLV 

theory to model the comprehensive viscoelastic behavior of these ligaments, a fitted power law 
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equation was calculated at the 4% strain level for a representative specimen from each ligament 

type and was superimposed onto the experimental relaxation data at all other strain magnitudes 

(ALL: Figure 3.31, PLL: Figure 3.32, LF: Figure 3.33) [21]. Since QLV assumes that the 

relaxation function is independent of strain magnitude, the fitted equation at 4% strain must 

approximate the experimental data at multiple magnitudes of strain. For all ligament types, the fit 

at 4% strain did not adequately approximate the experimental data at other strain magnitudes. 

Large deviations were observed between the multiple magnitudes of strain and the fit at 4% 

strain, especially at the larger strain magnitudes (Figure 3.31, Figure 3.32, and Figure 3.33). The 

experimental data indicate that the relaxation behavior of these ligaments is dependent on the 

magnitude of applied strain, and thus, QLV theory cannot adequately describe the comprehensive 

viscoelastic behavior of these ligaments. 

 
Figure 3.31: Fitted power law at 4% strain superimposed on all other strain magnitudes for the ALL. 
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Figure 3.32: Fitted power law at 4% strain superimposed on all other strain magnitudes for the PLL. 

 

 
Figure 3.33: Fitted power law at 4% strain superimposed on all other strain magnitudes for the LF. 
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4. DISCUSSION

Cyclic and stress relaxation experiments were performed on three types of human cadaveric 

lower cervical spine ligaments (ALL, PLL, and LF) to characterize the viscoelastic behavior of 

these ligaments within their physiologic range. The cyclic testing protocol was performed to 

characterize the comprehensive cyclic viscoelastic properties of the ligaments when exposed to 

four physiologic frequencies (0.001 Hz, 0.01 Hz, 0.1 Hz, and 1 Hz) at two physiologic strain 

amplitudes (10% and 15%). Results indicated that the cyclic viscoelastic properties were 

dependent on both strain magnitude and frequency. Stress relaxation experiments were performed 

to characterize the comprehensive stress relaxation behavior of these ligaments when subjected to 

multiple magnitudes of strain. For all ligament types, the stress relaxation behavior was observed 

to depend on the applied strain magnitude. 

4.1. Ligament Geometry 

Measurement of the geometric properties of human cervical spine ligaments is challenging, 

owing to the small size of the ligaments and difficulties in distinguishing the ligament from 

surrounding tissues. Traditional medical imaging techniques, such as X-ray, MRI, and CT do not 

provide the resolution required to accurately define ligament geometry and/or cannot accurately 

delineate tissue boundaries [28]. Researchers have used many different measurement techniques 

to define the geometry of human cervical spine ligaments. These methods include: (1) 

stereophotogrammetry, to measure ligament length and width [12]; (2) laser micrometer, to 

measure the cross-sectional area [27]; (3) sequential axial and sagittal cryomicrotome images, to 
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measure ligament areas and lengths, respectively [33]; (4) and digital calipers, to define the 

ligament gage length while attached to a testing apparatus [11].  

The current study used novel methods to measure the ligament initial gage length and the 

ligament cross-sectional area. Ligament gage length was defined as the distance between the 

cranial and caudal osseous insertion sites and was determined by recording the MTS crosshead 

displacement (measured via a built-in LVDT) after the segments were compressed together and 

the ligament was subsequently elongated at 5 N of pretension. Hence, the crosshead displacement 

output was the distance between the superior and inferior ligament-bone insertion points (i.e., the 

disc space) in the ALL and PLL, and the distance between the superior and inferior lamina for the 

LF. Previous studies have used the aforementioned dimensions to define the gage lengths of these 

ligaments [11, 27]. By defining the gage length in this manner, however, the resultant data holds 

an inherent assumption that all deformation of the ligament occurs in the in the section of the 

ligament spanning the disc space, and that the deformation in the section of the ligament attached 

to the bone is negligible.  

The initial lengths measured for the ALL and LF from the present study are within one 

standard deviation of the ALL and LF initial lengths reported by Lucas et al. [11] (Table 18). 

However, the initial length of the PLL from the current study was considerably smaller than that 

reported by Lucas et al. The initial lengths reported by Lucas et al. are surprising in that they 

report nearly identical gage lengths for the ALL and PLL, which is unexpected since the human 

cervical spine displays lordosis, or convex curvature towards the anterior [1]. This spinal 

curvature gives the cervical intervertebral disc a wedge shape, with a reported posterior-to-

anterior disc height ratio in the range of 41% – 49% at the C5-C6 level [28, 48]. Since the gage 

length definition for the longitudinal ligaments in this study is a measure of the disc space, it is 

natural to expect that the initial lengths for the ALL and PLL follow a ratio similar to that of the 

disc height. In fact, the ratio of the mean PLL initial length to the mean ALL initial length was 
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39% for the DMA experiments and 41% for the relaxation experiments (Table 18), approximating 

the reported posterior-to-anterior disc height range. 

Table 18: Comparison of the initial gage lengths (mean ± 1 SD) from the current study to 
those reported by Lucas et al.  

ALL (mm) PLL (mm) LF (mm) 

DMA 3.06 ± 1.29 1.19 ± 0.69 3.31 ± 0.45 
Relaxation 3.17 ± 1.34  1.31 ± 0.67  3.44 ± 0.49 
Lucas et al. [11] 3.47 ± 0.81 3.26 ± 0.85 3.87 ± 1.58 

 The ligament cross-sectional areas reported in this thesis were measured using post hoc 

digital image capture of a cross-sectional cut at the tissue’s mid-substance. Few studies have 

reported the cross-sectional area of cervical spine ligaments [27, 33] (Table 19). The mean cross-

sectional areas of the ALL and PLL determined from the present study were within one standard 

deviation of the cross-sectional areas reported by Przybylski et al., who measured ligament area 

using a laser micrometer while the ligament was under 1 N of tension [27]. However, the 

ligament cross-sectional areas in the present study were considerably larger than those reported 

by Yoganandan et al., who measured cross-sectional area using a cryomicrotome method [33]. 

The difference between the cross-sectional areas reported by Yoganandan et al. and those 

reported by both Przybylski et al. and in this thesis may be a result the different measurement 

techniques. Area measurements from the cryomicrotome were obtained from sections of intact, 

frozen cervical spines, while the measurements from both the present study and Przybylski et al. 

were taken from isolated, highly hydrated ligaments at room temperature. Thus, the discrepancy 

between the reported areas may be due to the combination of two factors: ligament pretension and 

ligament hydration. The cyromicrotome technique accounts for in situ ligament pretension, while 

the present study and the work of Przybylski et al. (with 1 N of ligament pretension and the 

intervertebral disc removed) did not. Pretensioned ligaments in situ may have a smaller cross-

sectional area than unloaded ligaments because of the Poisson effect. It should be noted that the 

intrinsic ligament properties presented in the Results section of this thesis were calculated from 

the unloaded cross-sectional area, and should be interpreted as such. The cross-sectional area of 
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tendons, which also exhibit in situ pretension, are commonly measured without pretension using 

an “area micrometer” method described by Butler and collegues [49]. In situ ligament pretension 

has not been quantified, and thus warrants further investigation. Ligament hydration is also 

important in determining the cross-sectional area since ligaments are composed of nearly two-

thirds water [50]. Yoganandan et al. do not comment on how ligament hydration was maintained 

during their cryomicrotome procedure, and it may be possible that the cryomicrotome frozen 

ligaments were not as hydrated as the ligaments used in this thesis and the study by Przybylski et 

al., where ligament hydration was closely monitored at room temperature. Because water is the 

dominant component of ligaments, it is expected that dehydrated ligaments will have a smaller 

cross-sectional area than well hydrated ligaments.   

Table 19: Comparison of cross-sectional areas from the present study to previously reported data. 

ALL (mm2) PLL (mm2) LF (mm2) 

Present study 30.23 ± 6.33  31.92 ± 9.67   86.15 ± 15.26
Przybylski et al. [27] 33 ± 10 33 ± 18 N/A 
Yoganandan et al. [33] 12.1 ± 2.68 14.7 ± 6.77 48.9 ± 7.9 

As seen in the box-and-whisker plot (Figure 3.1) and in the standard deviations reported 

by previous the work (Table 19), there was a considerable amount of variability in the cross-

sectional areas of these ligaments. While general cadaver specimen-to-specimen size differences 

likely contributed to the majority of the variation in the LF, previous studies have reported 

difficulties in delineating the lateral boundaries of the ALL and PLL during gross dissection 

because the deep ligament fibers are intertwined with the annulus fibrosis [12, 13, 37]. The PLL 

is even more difficult to distinguish because its fibers extend more broadly around the 

circumference of the intervertebral disc than the ALL, and due to its direct attachment to the dura 

matter [37, 38]. These difficulties were observed during the gross dissection of the longitudinal 

ligaments in this thesis, and possibly explain the variability in the cross-sectional area of the ALL 

and PLL. As stated in the Methods (Section 2.2.1), the ligaments were carefully separated from 
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the surrounding tissue, and dissection was ceased once the tissue was no longer readily removed 

to avoid damaging the ligament.  

4.2. Dynamic Mechanical Analysis 

Under the linear viscoelastic material assumption (standard linear solid), for which the relaxation 

behavior, ܧሺݐሻ, can be described as: 

ሻݐሺܧ  ൌ ଶܧ ൅ ଵ݁ܧ
ି௧ ఛೝ⁄  (32)

where ߬௥ is the relaxation time, the storage (ܧ′) and loss (ܧ′′) modulus can be written as [19]: 

 
ᇱሺ߱ሻܧ ൌ ଶܧ ൅ ଵܧ

߱ଶ߬௥
ଶ

1 ൅ ߱ଶ߬௥
ଶ (33)

ᇱᇱሺ߱ሻܧ  ൌ ଵܧ
߱߬௥

1 ൅ ߱ଶ߬௥
ଶ (34)

where ߱ is frequency. As presented in this thesis, the reduced relaxation function for quasi-linear 

viscoelastic theory is often written as a generalized form of equation (32) by adding more 

exponential terms [17]. Using equations (33) and (34), the complex modulus (ܧ∗) is written as: 

∗ܧ  ൌ ᇱሺ߱ሻܧ ൅ ᇱᇱሺ߱ሻ (35)ܧ݅

where the magnitude of ܧ∗ is given by: |ܧ∗| ൌ ඥሾܧᇱሺ߱ሻሿଶ ൅ ሾܧᇱᇱሺ߱ሻሿଶ. Additionally, the tan ሺߜሻ 

can be written as [19]: 

 
tanሺߜሻ ൌ

ଵܧ ⁄ଶܧ

ඥ1 ൅ ଵܧ ⁄ଶܧ
቎

௥ඥ1ݐ߱ ൅ ଵܧ ⁄ଶܧ

1 ൅ ߱ଶ൫ݐ௥ඥ1 ൅ ଵܧ ⁄ଶܧ ൯
ଶ቏ (36)

Note that under the assumption of a linear (and quasi-linear) viscoelastic material, the storage 

modulus, the loss modulus, the complex modulus, and the tanሺߜሻ are independent of the applied 

strain amplitude. Therefore, for a material subjected to a cyclic disturbance to satisfy the 

assumptions of linear and quasi-linear viscoelastic theory, the dynamic moduli and the tanሺߜሻ 

must be independent of strain. 
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 From the DMA analysis, all ligament types exhibited a nonlinear viscoelastic (i.e., strain 

amplitude-dependent) response, especially at slower frequencies. The tan ሺߜሻ was dependent on 

strain amplitude at the 0.001 Hz frequencies for all ligament types. The storage moduli were 

dependent upon strain amplitude at all frequencies for the ALL and at the 0.001 Hz and 0.01 Hz 

frequencies for the PLL. Strain amplitude-dependent nonlinear viscoelastic behavior has been 

observed in human lumbar facet joint capsule (FJC) [20] and human medial collateral ligament 

(MCL) [51]. Little and Khalsa reported that the storage and loss moduli, and hence the complex 

modulus, for human lumbar FJC increased with cyclic amplitude, but were unaffected by changes 

in frequency. However, the FJC phase lag (ߜ ) was independent of cyclic amplitude [20]. 

Bonifasi-Lista et al. observed the magnitude of the complex modulus for human MCL to increase 

with increasing strain amplitude when the ligaments were loaded parallel and transverse to the 

collagen fiber direction, as well as when loaded in shear [51]. Additionally, the MCL phase lag 

was strain amplitude-dependent when loaded parallel to the collagen fibers, but not when loaded 

transverse to the fibers or in shear [51].  

 The nonlinear strain amplitude-dependent viscoelastic behavior of the ligaments in this 

thesis was found to be dependent on frequency. For example, the tan ሺߜሻ for all ligaments was 

strain amplitude-dependent at the (slow) 0.001 Hz frequency, but was not dependent on strain 

amplitude at the faster frequencies. Further, the storage modulus for the PLL was dependent on 

strain amplitude at the 0.001 Hz and 0.01 Hz frequency, and exhibited weak evidence (݌ ൎ 0.09) 

of strain amplitude-dependent behavior at the 0.1 Hz and 1 Hz frequencies. Yoganandan et al. 

previously reported strain-rate dependent tensile mechanical properties (failure force, stiffness, 

and energy-absorbing capacity) for cervical spine ALL and LF [29]. Strain amplitude-dependent 

viscoelastic behavior at different frequencies may indicate that different viscoelastic behavior is 

observed when the ligament structure has sufficient time to react to the applied load [28]. Though 

there is not currently an agreement on the specific underlying microstructural mechanism that 

causes the viscoelastic behavior of ligaments, the time-dependent behavior of ligaments and 
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tendons has been attributed to the inherent viscoelasticity of collagen fibrils, along with their 

interactions with other microstructural components such as elastin fibers, ground substance, and 

water [52]. Thus, the complicated nonlinear viscoelastic behavior of the ALL, PLL and LF at 

slow loading rates may be a result of the viscous aspect of the tissue structure having time to 

significantly contribute to the mechanical behavior as the ligament elongates. The results of this 

thesis suggest that these viscous contributions vary depending on the amount of ligament 

elongation. 

The results of the DMA procedure also indicate that the cyclic material properties of the 

ALL, PLL and LF (storage modulus, loss modulus, and tan ሺߜሻ) are dependent upon frequency, 

especially over multiple frequency decades. These findings are consistent with previous reports of 

strain-rate dependent behavior of the tensile mechanical properties of human lower cervical ALL 

and LF [29] and upper cervical alar and transverse ligaments [53], and the frequency dependent 

cyclic properties of the human lumbar FJC tan ሺߜሻ [20].  

The present study found that the lower cervical spine ALL, PLL, and LF became more 

elastic (storing more energy than they were dissipating) as frequency was increased. Examples of 

more elastic behavior include: the tan ሺߜሻ decreased with increasing frequency for all ligament 

types, the ALL and PLL storage moduli at the 0.001 Hz frequency were smaller than the storage 

moduli calculated for the faster frequencies, and the loss modulus decreased with increasing 

frequency for all ligament types. These results are consistent with the observed increase in tensile 

stiffness, failure load, and energy absorbing capacity with increasing strain-rate reported for the 

lower cervical ALL and LF [29]. However, the decreasing tan ሺߜሻ observed in the lower cervical 

ALL, PLL, and LF is in opposition to the phase lag trend found by Little and Khalsa for the 

lumbar FJC, which was reported to increase with increasing frequency [20]. Furthermore, the 

storage and loss moduli of the human FJC were found to be insensitive to frequency. The 

discrepancy of the dynamic mechanical properties of the cervical ALL, PLL and LF, and the 

lumbar FJC may be due to the different anatomical locations and functions of these ligaments. In 
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addition, these differences are most likely also the product of variations in the range of 

frequencies that were investigated. Rumian et al. reported that the structures of individual ovine 

knee ligaments are unique to their anatomical location [54]. Since the mechanical behavior of 

ligaments is determined by their structural organization [17], it is possible that the mechanical 

behavior of ovine knee ligaments is also dependent on their anatomical locations. Individual 

spinal ligaments, like ovine knee ligaments, have unique structures that are conductive to their 

intended function [14]. Thus, differences in the cyclic mechanical behavior of the lower cervical 

ALL, PLL, and LF, and the lumbar FJCs may be due to unique microstructural differences 

between these ligaments. Furthermore, Little and Khalsa only tested the FJC at two frequency 

decades (0.2 Hz – 2 Hz), while the present study measured the ligament response over four 

decades (0.001 Hz – 1 Hz) [20]. In fact, many of the cyclic material properties of the ligaments in 

this thesis (e.g. the storage modulus for the PLL) were not statistically different over the range of 

two decades, but were statistically different over the four decade range. Hence, human lumbar 

FJC may exhibit frequency dependent behavior that is outside of the range tested by Little and 

Khalsa. 

Nearly no statistical differences were observed between the ALL and PLL cyclic material 

properties at any strain amplitude or frequency. However, the longitudinal ligaments had a 

markedly different, more viscoelastic, cyclic material behavior than the LF. While the LF tan ሺߜሻ 

was statistically smaller than both the ALL tan ሺߜሻ  and the PLL tan ሺߜሻ , the most notable 

differences between the longitudinal ligaments and the LF were in the storage and loss moduli, 

which were both an order of magnitude smaller for the LF than the longitudinal ligaments at each 

frequency and strain amplitude. The different material properties may be a result of the different 

morphologies of the longitudinal ligaments compared to the LF. As stated earlier in Section 1.1.3, 

the longitudinal ligaments have similar microstructures that contain a large proportion of highly 

aligned (parallel) collagen fibers and relatively little elastin content [13-15]. In contrast, the LF 

has been shown to have an elastin-to-collagen ratio of 2:1 with the collagen fibers loosely 
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dispersed in the elastic tissue [14, 16]. Elastin fibers are highly extensible, offering little 

resistance to deformation [13]. Thus, the high elastin content of the LF allows it to be stretched 

considerably more than the longitudinal ligaments before the inherently viscoelastic collagen 

fibrils become aligned and recruited [13, 52]. Previous work has shown that the highly aligned 

collagen fibers in the longitudinal ligaments become recruited at smaller strains than those of the 

LF [14], and therefore the longitudinal ligaments would be expected to exhibit a more 

viscoelastic response than the LF at the same strain amplitude. 

 The results of the DMA procedure are consistent with the functional role of ligaments 

[1]. At slower frequencies, all ligaments were observed to dissipate more energy than at the 

higher frequencies. Dissipating energy at slow loading rates would allow the spinal column to 

move in its physiologic regime at without injury. However, as the ligaments, specifically the 

longitudinal ligaments, were subjected to higher loading rates (frequencies) the ligaments began 

storing (absorbing) more energy. This observed behavior of these lower cervical longitudinal 

ligaments may be important to maintain stability of the spine and/or absorb energy during trauma, 

such as whiplash. 

4.3. QLV Fitted Parameters 

Quasi-linear viscoelastic theory is widely applied to model the viscoelastic behavior of ligaments 

and tendons [52]. The coefficients of determination in this study suggested that QLV theory 

adequately explained the experimental relaxation data of these ligaments at individual strain 

magnitudes; however, statistical analysis indicated strong dependence of the fitted reduced 

relaxation function ܩሺݐሻ coefficients on the applied strain magnitude for all ligament types. For a 

material to be modeled as quasi-linear viscoelastic, it is necessary that the relaxation function be 

independent of strain [19]. However, the reduced relaxation function ܩሺݐሻ determined by fitting 

the experimental stress relaxation data of the ALL, PLL and LF to QLV theory at each strain 

magnitude were found to be strongly dependent upon strain level. Therefore, a more general, 
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fully nonlinear viscoelastic theory is required to adequately characterize the comprehensive 

relaxation behavior of these ligaments when subjected to multiple magnitudes of strain. 

Furthermore, because of the good agreement between QLV theory and the experimental data at 

specific strain magnitudes, these results reiterate that stress relaxation experiments at a single 

strain magnitude is not sufficient to determine if the ligament exhibits linear, quasi-linear, or 

nonlinear viscoelastic behavior [19]. 

In contrast to the results presented in this thesis, Lucas at al. recently reported on the 

adequacy of QLV theory to describe the viscoelastic behavior of human lower cervical ALL, 

PLL, and LF [11]. They validated their claim by performing stress relaxation experiments on 

these ligaments at two different strain magnitudes (25% and 50%) and predicted the experimental 

response from a relaxation test at one strain magnitude (25%) from a QLV model determined by 

fitting the stress relaxation test at the other strain magnitude (50%). The ability of the QLV model 

to predict the experimental relaxation data was quantified by computing the square of the 

correlation coefficient (i.e., the coefficient of determination or R2 value) between the QLV model 

and the predicted force response. The reported mean squared correlation coefficients were greater 

than 0.78 (see [11], Table 1). In addition to the correlation coefficient, Lucas et al. state that the 

normalized force response from the two strain magnitudes were “…comparable, although not 

identical” [11]. Although the coefficients of determination appear to suggest good agreement 

between the two strain magnitudes, the high correlation between the QLV model at 50% strain 

and the experimental data at 25% strain may be due to the long-term relaxation behavior of these 

ligaments and not necessarily because the relaxation curves demonstrated correspondence. The 

large magnitude of the ܩଵ coefficient in relation to the ܩଶ, ܩଷ, and ܩସ coefficients observed in this 

thesis indicate that the short-term relaxation behavior is highly important in determining the 

shape of the relaxation curve. To illustrate the possible inadequacy of using the R2 value to test if 

the shape of two curves are different, and thus to examine the validity of this method to validate 

the adequacy of QLV theory to model cervical spine ligament behavior, a representative stress 
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relaxation curve (an ALL specimen) from the present work was fitted to QLV theory at 25% 

strain and the resulting model was used to predict the 4% stress relaxation behavior (Figure 4.1). 

The coefficient of determination between the QLV model at 25% strain and the experimental data 

at 4% strain was calculated to be 0.78, even though there are notable differences between these 

curves (Figure 4.1). Interestingly, Lucas et al. report a mean R2 value of 0.78 for the female LF at 

the C3-C4 level (see [11], Table 1). The inadequacy of this method is more clearly seen when the 

normalized QLV model at 25% strain is plotted against the normalized experimental data at 4% 

strain (Figure 4.2). The important short-term relaxation behavior is poorly correlated while the 

long-term behavior is highly correlated. Since there are many more datum points in the long-term 

relaxation region, the long-term behavior dominates the calculation of the R2 value, resulting in a 

moderate R2 value. Furthermore, if the QLV model at 25% strain was indeed a good predictor of 

the experimental data at 4% strain, the slope of a best-fit line in Figure 4.2 should converge to 

unity. Hence, the preceding example illustrates that a high R2 value does not provide assurance 

that the shape of the relaxation curves are equal. Therefore, the current study utilized a more 

rigorous statistical method to make inferences about the shape of the relaxation curve, and thus 

the validity of QLV theory. 
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Figure 4.1: Normalized experimental relaxation data at 4% strain and QLV model fitted to 25% strain.  

 

 
Figure 4.2: A moderate R2 value (0.78) between the QLV model at 25% strain and the experimental data at 4% 
strain may be a result of the data being highly weighted by the long-term relaxation behavior and, thus, does not 
guarantee that the shapes of the relaxation curves are equal. Note that the scales of the x- and y-axes have been 
reversed for better interpretation. 
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The coefficients of determination at each strain magnitude, which correlated the fitted 

QLV theory to the experimental data at each strain level, were observed to increase with 

increasing strain magnitude indicating a more viscoelastic response, and thus a better fit, at higher 

strains. There is much speculation in the literature as to the underlying microstructural 

mechanism of ligament viscoelasticity. The viscoelastic behavior of ligaments has been attributed 

to fluid flow [21, 55-57], interactions between the collagen fibers and the proteoglycan ground 

substance [58], and progressive collagen fiber recruitment [59]. A recent study on porcine lumbar 

PLL collagen fiber fascicles suggested that the stress relaxation behavior of spinal ligaments is 

related to the intrinsic viscoelastic properties of individual collagen fiber fascicles because these 

fascicles were found to posses similar relaxation characteristics to full ligaments [46]. However, 

it is possible that each microstructure constituent contributes to the viscoelastic behavior of these 

ligaments, and further investigations are required to determine the specific contributions of each 

microstructural component.  

Ligament microstructure may be responsible for the apparent asymptotic converging 

behavior observed in the reduced relaxation function ܩሺݐሻ for the ALL and PLL, and the apparent 

diverging behavior of the LF ܩሺݐሻ. Converging behavior of the reduced relaxation function with 

increasing strain magnitude has been reported for human medial collateral ligament [51]. 

Microstructural collagen fibers are initially crimped in the unloaded state, and become 

progressively recruited [52] and aligned [14] as the ligament is elongated. Thorton et al. related 

the viscoelastic creep of ligaments to progressive collagen fiber recruitment, and hypothesized 

that under stress relaxation a discrete group of fibers are recruited at a prescribed elongation [21, 

59]. Under this hypothesis, less collagen fibers will be available for recruitment at higher strains, 

and there would be less difference in the viscoelastic response at higher strains. Collagen fibers of 

human lumbar ALL have been shown to become highly aligned during gross ligament elongation 

(with little difference in collagen fiber alignment observed at higher strains) at much lower strains 

than the collagen fibers of the lumbar LF [14]. The data presented herein appear to support the 
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hypothesis of Thorton et al. because the viscoelastic relaxation behavior of the ALL and PLL 

(which have similar microstructures with a high proportion of collagen fibers [15]) appears to 

converge as strain magnitude is increased and more collagen fibers are recruited. Highly 

extensible elastic fibers, however, dominate the LF microstructure [13, 16] and prevent the 

collagen fibers from aligning as quickly as those in the ALL and PLL [14]. Thus, the relaxation 

behavior of the LF continued to show signs of increasing viscoelastic behavior as the ligament 

was continuously strained possibly because the collagen fibers were still being recruited. 

However, further microstructural analysis is required to confirm these hypotheses.  

The fitted QLV reduced relaxation function coefficients indicate that the relaxation 

behavior of the human cervical ALL, PLL, and LF are dominated by the short-term ܩଵ and the 

long-term ܩஶ relaxation parameters, with the long-term coefficient governing the behavior. The 

dominating behavior of both the short-term and long-term relaxation coefficients has been 

reported previously by Lucas et al. [11]. However, Lucas et al. report that the relaxation behavior 

was dominated by the short-term coefficient (see Table 2, coefficient ܩସ in [11]) and not the long-

term coefficient observed in this study. The reason for the discrepancy possibly lies in the 

different time scales used in each study. In the present study, each ligament was held for 100 s 

after strain application and the entire relaxation (100 s) curve was fitted. Lucas et al. held each 

strain for 60 s and fitted only the first second (1000 ms) of the relaxation curve. Fung reported 

that when the reduced relaxation function is represented as a sum of exponentials, as in the 

present study and that of Lucas et al., one may mistakenly arrive at an erroneous long-term 

coefficient if the experiment is prematurely ceased [17]. The reduced relaxation coefficients 

presented in this thesis were obtained from stress relaxation experiments that were two orders of 

magnitude longer than those carried out by Lucas et al. Hence, the difference may indicate that 

the experiments of Lucas et al. were temporally inadequate and do not represent the full 

relaxation spectrum of these ligaments. 
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The long-term relaxation parameter ܩஶ was observed to decrease with increasing strain 

for all ligament types, signifying that the ligaments dissipated more energy, and therefore 

underwent a greater amount of relaxation, at higher strains. However, the magnitude of the long-

term parameter indicated that all ligaments maintained more than half of the applied 

instantaneous elastic stress. The ability of the ligaments to retain more than half of the induced 

initial stress may aid in maintaining stability of the cervical spine under dynamic loading events. 

Further, the large fast-rate ܩଵ in relation to the other ܩ௡ coefficients indicated that the majority of 

the relaxation occurs around the ߬ଵ ൌ 0.1  s time constant. One possible phenomenological 

explanation for this behavior is that when the ligaments are relaxing the musculature may be 

working to stabilize the spine. In this case, fast relaxation times would minimize the muscle 

expenditure required to maintain spinal stability. 

The increasing and decreasing behavior observed for the LF and PLL ܩଵ  parameters, 

respectively, appears to further support the microstructural collagen fiber recruitment hypothesis 

proposed Thorton et al. [59]. Under this hypothesis, the decrease in the fast-rate ܩଵ parameter 

observed in the PLL as strain was increased could be attributed to a smaller amount of collagen 

fibers being recruited at higher strains than in the preceding strain magnitude. Also, if collagen 

fibers were still actively being recruited the hypothesis made by Thorton and colleagues would 

predict that a more viscoelastic response would be observed with increasing strain, as was 

observed in the LF, which has fewer collagen fibers that are more randomly oriented than the 

PLL [13, 14]. 

 Each ligament type had a unique instantaneous elastic response, which may be linked to 

the microstructure and function of the ligament. For the LF, the instantaneous elastic parameters 

 were not affected by strain magnitude. This may be a result of the aforementioned high ܤ and ܣ

elastin content of the LF, which possibly dominates the instantaneous elastic behavior of this 

ligament at the tested strain magnitudes [13, 16]. For the ALL, the instantaneous elastic 
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parameter ܤ  was observed to increase with increasing strain, indicating a more nonlinear 

instantaneous elastic response as strain increased [44]. The instantaneous elastic behavior of the 

PLL was more complex; parameter ܣ  increased with increasing strain while parameter ܤ 

decreased. The strain-dependent instantaneous elastic behavior of the ALL and PLL may be due 

to the collagen fibers in the ligament. If individual collagen fibers of the ALL and PLL are 

represented as discrete elastic components (springs) of different lengths that become 

progressively recruited as the ligament is elongated [45], then an increasingly nonlinear elastic 

response (parameter ܤ) with increasing strain magnitude, as observed in the ALL, would indicate 

that collagen fibers were actively being recruited. Conversely, the reduction in the nonlinear 

elastic response of the PLL may indicate a large amount of collagen fiber recruitment, and thus 

further strain would be resisted by the combined effort of nearly all collagen fibers, resulting in 

an increase in parameter ܣ. Anatomically, the PLL lies close to the center of rotation of the spinal 

motion segment, and thus a large stiffness is required to maintain spinal stability [27]. The ALL is 

located farther away from the center of rotation, and is required to be more compliant (i.e., allow 

more collagen fiber recruitment) than the PLL to permit spinal extension. Previous studies have 

shown the PLL to be grossly stiffer than the ALL [11, 27, 33]. 

4.4. Power Law  

Quasi-linear viscoelastic theory assumes that the shape of the stress relaxation curve is 

independent of the applied strain magnitude. To directly study the shape of a stress relaxation 

curve, previous investigations have fit relaxation data using a power law [21, 22]. Plotting 

relaxation data on a log-log scale produces a line; where different relaxation curve shapes are 

represented by different slopes. Data from the experimental relaxation region of the human 

cervical ALL, PLL, and LF from the current study were fitted to a power law at each strain 

magnitude, and statistical analyses indicated that the slope of the relaxation curves (and thus the 

shape of the curve) were strongly dependent on the applied strain magnitude. Therefore, the 
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results from fitting the model using a power law formulation indicate that QLV theory cannot 

adequately model the comprehensive viscoelastic behavior of these ligaments within the tested 

strain range. Furthermore, the power law described the viscoelastic behavior at an individual 

strain magnitude well, but the data from one strain magnitude was not able to predict the behavior 

at another strain magnitude. These results are in agreement with the aforementioned strain-

dependent reduced relaxation function observed in the QLV fits. Thus, a more general, fully 

nonlinear viscoelastic formulation is required to model the comprehensive viscoelastic behavior 

of these ligaments.  

The relaxation rate ݊ was observed to increase with increasing strain for each ligament 

type, indicating that the ligaments displayed a more viscoelastic response at higher strains than at 

lower strains. Previous studies report similar viscoelastic behavior for mouse tail tendons [60], 

porcine digital flexor tendon [23], and ovine digital tendons [61]. However, a contrary 

viscoelastic behavior (decreasing viscoelastic response with increasing strain) was previously 

observed for rat [21], rabbit [22] and human [51] MCLs, and for human lumbar FJC [20]. While 

differences in testing methodologies, such as temperature control (warmed bath [51, 60, 61] 

versus room temperature bath [20-23]), and tissue type (tendon [23, 60, 61] versus ligament [20-

22, 51]) may account for some of the observed discrepancies, the anatomical location and the 

specific functional microstructure of individual ligaments and tendons may be more important in 

determining the biomechanical behavior of the tissue. Rumian et al. found differences in the 

overall morphological and molecular compositions in the extracellular matrix of various ovine 

ligaments and tendons, and also found specific differences within ligament and tendon groups 

[54]. Rumian et al. speculated that the differences were dependent on anatomical location and 

intended function of each ligament or tendon [23, 54]. The observations of Rumian et al. are 

further justified by reports of the similar viscoelastic behavior observed between porcine and 

ovine digital flexor tendons [23, 61] and rat, rabbit, and human MCLs [21, 22, 51] since the 

intended function of these tendons and ligaments are similar among species. 
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Although the increasing relaxation rate with increasing strain trend observed for the ALL, 

PLL, and LF of the present study were contrary to the decreasing relaxation rate trends reported 

by Provenzano et al. [21] and Hingorani et al. [22] for rat and rabbit MCLs, both of these 

previous works also reported a similar relaxation rate convergence which was observed for the 

ALL and the PLL in the present study. Provenzano et al. and Hingorani et al. related the 

decreasing viscoelastic response with increasing strain to ligament water loss (termed the 

wringing out effect), speculating that higher strains caused a greater amount of water loss making 

the tissue less viscous at higher strains [21, 22]. However, as strain magnitude increased, these 

investigators reported that there was less of a difference between the relaxation rates, possibly 

indicating asymptotic converging behavior of the rat and rabbit MCLs. This behavior was similar 

to the asymptotic converging behavior observed herein for the ALL and PLL. While the effect of 

strain magnitude on the relaxation rate was observed to be different between the MCLs and the 

spine ligaments of this study (possibly because of the aforementioned differences in anatomical 

location and functional requirements of knee ligaments versus spinal ligaments), the mechanism 

of the converging behavior may be the same. As stated in the QLV discussion, the asymptotic 

behavior of the ALL, PLL, and the MCLs may be due to collagen fiber recruitment hypothesis of 

Thorton et al. [59], where a discrete amount of collagen fibers are recruited at each prescribed 

strain magnitude. Under this hypothesis, the difference between relaxation rates at higher strain 

magnitudes would be smaller because less additional collagen fibers will become recruited as 

strain increases [21, 22].  

 Plots of the relaxation rate (݊) versus strain magnitude indicated that the LF had a 

notably different relaxation response than the longitudinal ligaments. While the ALL and PLL 

exhibited possible asymptotic converging behavior as strain magnitude increased, the LF 

displayed a diverging behavior with increasing strain, consistent with the results observed for the 

QLV reduced relaxation function. As stated previously, the difference in the relaxation behaviors 

of the LF and the longitudinal ligaments could be a result of the distinctly different 
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microstructures of the LF compared to the longitudinal ligaments. The highly aligned, dense 

collagen fibers in the ALL and PLL exhibit a greater amount of recruitment at smaller strain 

magnitudes than the randomly oriented, loosely dispersed LF collagen fibers [14]. The 

longitudinal ligament morphology may result in a greater initial increase in relaxation rate 

compared to the LF. Since the LF collagen fibers are loosely dispersed in elastin, the ligament has 

to be elongated more than the ALL and PLL to activate the collagen fibers. In the present study, it 

is hypothesized that the highly extensible elastin fibers dominate the deformation at the small 

strain magnitudes resulting the relatively small viscoelastic response. As strain is increased, 

however, the collagen fibers become progressively recruited, yielding a more viscoelastic 

response for the LF. In accordance with the hypothesis of Thorton et al. [59], it is suggested that 

the LF did not display converging behavior because there was still a substantial amount of 

collagen fibers to be recruited beyond the highest strain magnitude (25%) investigated in this 

study. It has been shown that unrecruited collagen fibers of the lumbar LF remain at 50% strain, 

while the collagen fibers of the lumbar ALL were highly recruited at strains of 15% [14]. 

4.5. Limitations 

There are a number of limitations that should be addressed for proper interpretation of the results 

presented herein. The first is that the viscoelastic properties were obtained from ligaments 

dissected from highly variable cadaveric specimens, and potential confounding factors, such as 

donor age and gender, were not rigorously accounted for. Previous work has shown that the rate-

dependent mechanical properties of the lumbar ALL are also dependent on bone mineral content, 

which can change with age [62]. While bone mineral content was not directly measured in this 

thesis, care was taken to select cervical spines from donors with no reported pre-existing bone or 

ligament pathology. In addition, Lucas et al. observed that the instantaneous elastic parameter 

used in their QLV fit was dependent on gender [11]. However, in this previous study a gender-

dependent parameter was derived from a simplified (linear) instantaneous elastic equation, while 
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the present work used a nonlinear (exponential) instantaneous elastic relationship. While it is 

possible that the nonlinear instantaneous relationship may also be dependent on gender, to the 

best of the author’s knowledge, there is no literature that supports this assertion. Lucas et al. 

report that their fitted reduced relaxation function coefficients were not found to be dependent on 

gender [11].  

 The ligament cross-sectional area was measured using a post hoc digital image capture of 

the ligaments cross-section. Thus, the ligaments were assumed to have a constant cross-sectional 

area that was the same dimension as the cut surface. Furthermore, the ligament cross-sectional 

area was measured in its unloaded state. Previous studies have used laser microscopy [27] and 

cryomicrotome [33] techniques to measure the cross-sectional area of cervical spine ligaments 

while under tension. However, the laser microscopy technique could not be used because the 

device could not be used inside the environmental chamber. Further, the cryomicrotome 

technique requires the ligaments to be cut from an intact spine, preventing the measurement of the 

cross-sectional area of the same ligaments that were subjected to mechanical testing. Therefore, 

the cross-sectional area of the ligaments was measured in the unloaded state after the ligaments 

were tested. Previous ligament studies have reported the use of the unloaded cross-sectional area 

[49, 63].  

The viscoelastic parameters determined herein are presented under the assumption that 

the ligaments were completely isolated from the surrounding tissue. While the LF was easily 

identifiable, the deep fibers of the ALL and PLL are interdigitated with the outer annulus layer 

[13, 37], making the lateral boundaries of the ligament difficult to distinguish from the 

surrounding annulus tissue of some specimens. Furthermore, the dura matter was strongly 

attached to the PLL in some specimens. Previous work has reported the difficulties in 

distinguishing the ALL and PLL from the surrounding tissues [13, 37, 38]. It is possible that 

extraneous tissue remained attached to the ligament. 
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 The viscoelastic formulations used in this thesis, such as QLV theory, assumes a step 

increase in strain, which is theoretical and impossible to produce experimentally. The moderate 

elongation rate (5 mm/s) used herein was selected in an attempt to minimize the experimental 

errors associated with high elongation rates, but still have a ramp time fast enough to compare to 

previously reported data. Previous studies have attempted to experimentally produce an 

approximate step increase in strain [64], but they reported experimental errors, such as overshoot 

and vibrations, that are a result of these fast strain rates [44]. The elongation rate used herein is 

two orders of magnitude slower than that used to experimentally approximate a step increase in 

strain. Abramowitch and Woo developed a method (used herein) of fitting experimental data 

obtained from experiments with finite ramp times to QLV theory by simultaneously fitting the 

ramping and relaxation regions of the experimental data, accounting for relaxation that occurs in 

the ramping region [44]. Furthermore, the selected elongation rate produced a maximum ramp 

time of less than 0.3 s (a maximum ramp time of 0.28 s was observed for an ALL specimen at the 

25% strain magnitude), fast enough to fit the experimental relaxation portion of the data could be 

fit to a power relation and compared to previously reported data [21, 22]. This ramp time is on the 

same order of magnitude as a previous stress relaxation experiments using cervical spine 

ligaments [11]. 

 Although the elongation rate was two orders of magnitude smaller than experiments that 

attempted to produce a step increase in strain, errors were observed with the testing apparatus. 

Specifically, the MTS crosshead displacement did not reflect a perfect linear ramp (Figure 4.3), 

which is assumed in the QLV fitting procedure (Section 2.5). The MTS crosshead has to 

overcome inertial effects when ramping at sufficiently high strain rates, resulting in a slightly 

sigmoidal-shaped ramping region (from approximately 0 ൏ ݐ ൏ 0.1  in Figure 4.3) [29]. 

Therefore, the strain rate used in the fitting procedure was taken from the slope of the 

approximately linear portion of the ramping region. The MTS actuator inertial effects at larger 
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strain magnitudes were reduced from that shown in Figure 4.3 because of the increased ramp 

time. 

 
Figure 4.3: MTS crosshead displacement for a ligament subjected to 4% strain. 

All displacement and strain measurements were recorded using the built-in MTS LVDT. 

As a result, the stress relaxation data is presented under the assumption that all of the deformation 

takes place in the ligament, and any localized ligament deformation is neglected. This method has 

been used previously to define the mechanical properties of cervical spine ligaments [11, 29, 33, 

42]. Przybylski et al. previously used Verhoeff stain to mark the ligaments, and tracked these 

marks using a video analysis system [27]. However, this marking method was not used because 

the size of the environmental chamber could not accommodate a video camera and optical 

refraction caused by the different media (saline bath, curved plastic environmental chamber) 

would prevent accurate marker tracking if the video camera was placed outside the environmental 

chamber. 
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4.6. Future Work 

The work in this thesis presents the comprehensive viscoelastic material properties of human 

lower cervical ALL, PLL, and LF. Future experimentation, however, could lead to a more in-

depth understanding of the mechanical properties of these ligaments. For example, this thesis 

presents the phenomenological mechanical behavior of these ligaments and implicitly relates the 

observed behavior to the ligament microstructure based on the results of previous studies. 

Microstructural studies, such as those that examine the mechanical behavior of individual 

collagen fascicles [46], are required to determine the underlying cause of the global viscoelastic 

behavior.  

Also, calculation of the ligament area in real-time would have provided a more accurate 

approximation of the true stress within the specimen. Bass et al. suggest the use of a three-

dimensional video analysis setup to measure the dynamic cross-sectional area [42]. Such a video 

analysis setup could also be used to study the localized ligament deformation and strain. 

However, video analyses are complicated by the use of an environmental chamber, requiring 

waterproof systems or adjustments for optical refraction if placed outside the chamber. The 

development of such a detailed imaging technique was beyond the scope of this thesis, and is a 

topic that warrants further investigation.  

Ligaments are mechanically anisotropic due to their composite fiber structure [65]. 

Previous studies have characterized the biaxial viscoelastic behavior of human lumbar FJC [20]. 

However, this thesis characterized the uniaxial viscoelastic properties of the ligaments along the 

axis of the spine. Though ligaments are strongest along the main fiber direction, and the spinal 

anatomy effectively loads the ligaments along this direction [1], complete mechanical 

characterization of these ligaments would include mechanical experiments that are not along the 

main axis of the fibers (e.g. perpendicular to the main fiber direction). Additionally, multiaxial 

experiments could provide insight to the mechanical behavior of other microstructural 
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constituents, such as the ground substance, and therefore may reveal underlying microstructural 

viscoelastic mechanisms that are unattainable through uniaxial experiments.  

4.7. Conclusions 

DMA conclusions 

 All ligament types exhibited nonlinear (strain amplitude-dependent) viscoelastic cyclic 

behavior. 

 The storage modulus, loss modulus, and tan ሺߜሻ for all ligament types were dependent on 

frequency. 

 All ligament types exhibited an increased cyclic viscoelastic response at slower frequencies, 

with diminished viscoelasticity as frequency increased. 

 The ALL and PLL exhibited similar cyclic viscoelastic material properties. 

 Overall, the LF exhibited a more elastic response than the ALL and PLL. 

QLV fitted parameter conclusions 

 Since the reduced relaxation function ܩሺݐሻ  was observed to be dependent on strain 

magnitude, the comprehensive viscoelastic behavior of these ligaments cannot be accurately 

described with QLV theory. 

 The fitted QLV coefficients were found to be unique to each ligament type, indicating a 

unique relaxation response for each ligament type. 

 The reduced relaxation function ܩሺݐሻ for the ALL and PLL appeared to converge at higher 

strain magnitudes, while the LF ܩሺݐሻ exhibited diverging behavior with increasing strain. 

Power law conclusions 

 The relaxation rates (݊) were strongly dependent on strain level for all ligament types, 

indicating that these ligaments are nonlinear viscoelastic. 
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 The initial stress (ߪ଴) increased positively with the square of the strain magnitude, and the 

relaxation rate (݊) increased negatively with the square of the strain. 

 The ALL and PLL relaxation rate (݊) behavior indicated possible convergence behavior at 

high strain magnitudes, while the LF relaxation rate (݊) diverges with increasing strain.  
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