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Abstract

DETERMINING DISEASE OUTBREAK INFLUENCE FROM VOLUMINOUS

EPIDEMIOLOGY DATA ON ENHANCED DISTRIBUTED

GRAPH-PARALLEL SYSTEM

Historically, catastrophe has resulted from large-scale epidemiological outbreaks in livestock

populations. E↵orts to prepare for these inevitable disasters are critical, and these e↵orts primarily

involve the e�cient use of limited available resources. Therefore, determining the relative influence

of the entities involved in large-scale outbreaks is mandatory. Planning for outbreaks often involves

executing compute-intensive disease spread simulations. To capture the probabilities of various

outcomes, these simulations are executed several times over a collection of representative input

scenarios, producing voluminous data. The resulting datasets contain valuable insights, including

sequences of events that lead to extreme outbreaks. However, discovering and leveraging such

information is also computationally expensive.

This thesis proposes a distributed approach for aggregating and analyzing voluminous epi-

demiology data to determine the influential measure of the entities in a disease outbreak using the

PageRank algorithm. Using the Disease Transmission Network (DTN) established in this research,

planners or analysts can accomplish e↵ective allocation of limited resources, such as vaccinations

and field personnel, by observing the relative influential measure of the entities. To improve the per-

formance of the analysis execution pipeline, an extension to the Apache Spark GraphX distributed

graph-parallel system has been proposed.
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CHAPTER 1

Introduction

According to the Food and Agriculture Organization (FAO), there are currently more than 1.5

billion cattle, 1.1 billion sheep, and 0.97 billion pigs and goats in the global livestock industry,

which employs at least 1.3 billion people [1]. Diseases in livestock have serious e↵ects on ecological

systems, the global economy, and human health in the case of zoonotic diseases, such as Ebola

and swine flu, which can be transmitted from animals to humans. In 2001, the Foot and Mouth

Disease (FMD) outbreak in the United Kingdom infected nearly 10 million livestock animals, and

approximately 4 million of them were slaughtered during the process of disease control. In addition,

this outbreak a↵ected agriculture, rural tourism, and food supply chains, resulting in overall damage

to the economy of the country [2]. It has been estimated that yearly direct production losses and

vaccination costs due to highly contagious FMD are in the range of US$6.5 billion to $21 billion in

infected regions, compared to just over US$1.5 billion in FMD free regions [3].

One of the main challenges during an outbreak is the lack of available resources essential to

minimizing the catastrophe, such as skilled veterinarians, veterinary stockpiles, and quarantine

stations, that are essential to minimize the catastrophe. Also, the number of trained veterinarians

has been declining for the last two decades, and it is anticipated that this is likely to lead to a

significant gap between supply and demand [4]. Moreover, the U.S. Department of Agriculture

- Animal and Plant Health Inspection Service (USDA-APHIS) manages the National Veterinary

Stockpile (NVS) program, which maintains and supplies critical veterinary stockpiles consisting

of vaccines, antivirals, and drugs. This organization delivers stockpiled supplies to infected areas

within 24 hours from a request by the state in which the outbreak is occurring [5]. Given an

outbreak of FMD, clinical signs of the disease appear at least 2 to 3 days after infection [6], during

which, other animals and humans can be infected by means of mediums the include direct or indirect

contact, shipments, and airborne spread. This timespan, along with the issue of availability of the
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veterinary stockpile and limited supply of veterinarians, easily create conditions that allow a normal

infection chain to become an outbreak. With this set of obstacles, the ideal approach to prevent

a disease outbreak is to use resources e�ciently by targeting those influential premises that a↵ect

others disproportionately. In other words, once a particular influential premise is infected, the

properties of disease spread; for example, overall disease duration and the total number of premises

infected are high. Studies have shown that strategic vaccination is certainly more e↵ective than

its counterpart, the random approach [7]. The same notion can be applied to e↵ective resource

utilization. Hence, determining influence of premises is central to implementing a potential resource

allocation plan.

The epidemiology research community has invested resources in order to understand and pre-

dict disease distribution within a premise as well as between premises by leveraging statistical

epidemiological models [8]. These models are often represented as stochastic discrete events, which

demand hundreds to thousands of input parameters and turn to be compute-intensive. The North

American Animal Disease Spread Model (NAADSM) is one such model. This model was developed

after the 2001 UK outbreak as the refinement of previously used models for policy making in the

case of an FMD outbreak [9]. It has been scrutinized by over 300 epidemiologists and veterinarians,

and it is used by United States Department of Agriculture (USDA) to plan for disease incursions

[9]. NAADSM is being used to model various infectious FMDs, highly pathogenic avian influenza,

swine flu, and pseudorabies [10], [11], [12]. The models authenticity and origins make it a perfect

fit for this study.

A single commodity machine completes a typical NAADSM simulation run in nearly 70,000

seconds [13], which proves the necessity of a processing platform that is perfectly customized for the

influential analysis. In NAADSM, disease biology parameters include transmission via airborne or

direct contact; control measures (such as vaccinations); and e↵ectiveness of vaccines, quarantines,

shipments, and veterinarian visits. Since the simulation is stochastic, each set of input parameters

is executed several times to gain statistical confidence in the results. These iterations contribute
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to the overall representation of the output variables’ probability distributions. Key outputs used

during planning include the disease duration, number of infected animals, and depletion of vaccine

stockpiles. While this study targets livestock disease outbreaks, the methodology described here

is broadly applicable to systems where entities are organized into large networks and the spread

of information, such as pathogens, ideas, or tracked movements, is based on relationships between

entities.

1.1. Scientific Challenges

This section introduces the set of scientific challenges that arise in the timely determination of

premises’ influence from voluminous simulated epidemiology data.

• Dataset Size: As mentioned earlier, NAADSM simulates each input case several times, each

of which produces numerous output parameters that are stored in a single file, which must be

processed in order to extract relevant information to perform the influential analysis. As input

parameters can be in the order of thousands, the dataset size and computation demands outgrow

the capability of single commodity computer.

• Timeliness: The data analysis must be completed earliest on the computing platform in order

to get timely results. Given the enormous data and related inherent challenges, such as disk I/O

and the capability of single commodity machine, the likelihood of electing any existing solution

that fulfills requirements in their entirety is non-existent.

• Scalability: The proposed approach should be scalable enough to retain its purpose in case of

variance in the nature of the data in terms of number of premises and interconnectivity between

them, as well as computing resources. This ensures the validity and uniformity of proposed

approach.

• Accuracy and Interoperability: The analysis must be reasonably accurate, and it must

support interpretability by explaining why a premise is considered highly influential. This is

critical for fine-tuning outbreak responses.
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1.2. Research Questions

The following research questions are addressed with this work:

(1) What data structure(s) allow the representation of disease spread interactions for

analysis? Specifically, the proposed approach must be able to capture infection information

from the simulation output while preserving the cumulative dynamics of disease spread.

(2) How is the influence of each premise measured? This involves aggregating data from

millions of simulation runs as well as the selection of an appropriate approach, which should

be able to justify influence measures of premises.

(3) How is the analysis achieved at scale in the least time? Given the data volumes

involved, repeated sweeps over on-disk data must be avoided, and the analysis should be exe-

cuted concurrently on multiple machines, which guarantees the least time provision. In order

to achieve scalability, the analytics platform should be implemented by enhancing a state-of-

the-art distributed computing solution.

1.3. Overview of the Approach

This section gives an overview of the analytics approach used in this work, which is designed

to overcome the challenges presented and to reasonably answer the research questions. The pro-

posed approach for determining the influence measure of premises from the voluminous simulated

epidemiology dataset proceeds in the following manner:

(1) The information related to infection interaction between premises, which is essential for the

analysis, is extracted from NAADSM simulation outputs.

(2) The Disease Transmission Network (DTN), later used by the analytics algorithm, is constructed

by aggregating the information extracted in the previous step.

(3) The PageRank algorithm [14] is applied to the DTN in order to find relative influence measure

of premises in NAADSM and to compare the results with the super-spreader analysis [15].

4



The above steps briefly describe the operations involved in the influential analysis. In order to

perform these in an e�cient and timely manner, the computation platform must be optimized. The

following points briefly explain the way existing distributed data storage and processing technologies

are leveraged and customized to build such a platform.

• The data extraction was accomplished using the customized input handler with the Apache

Hadoop Distributed File System (HDFS) [16], a reliable and fault-tolerant distributed file system

that is the storage component of the open source distributed storage and processing framework,

Apache Hadoop.

• The creation of the DTN as well as the execution of the PageRank algorithm was performed on

the customized version of the in-memory distributed graph processing framework, Apache Spark

GraphX [17]. This version provides noticeable enhancements over the existing one.

The epidemiology dataset, which comprises of simulation outputs from NAADSM, encompasses

multiple representative scenarios and iterations, which were processed to extract and record millions

of infection incidents. This included tracking the number, source, destination, and duration of

infections. This information was encoded in the DTN, which is a weighted, directed graph that

summarizes the infections between premises. Nodes in the DTN are premises, and edges represent

infection transmissions. The direction of traversals in the DTN varies depending on the algorithm

underlying the analysis.

Once generated, the DTN was used to determine influence measure of premises. In the analytics

workflow, the PageRank algorithm, originally used in the Google search engine to estimate the

importance of web pages [14], was leveraged to determine these influence measures. The PageRank

value for each premise in the DTN was calculated; if a premise had a higher PageRank value, we

considered the premise to be more influential in the disease outbreak.

Apache Spark GraphX is an in-memory distributed graph processing framework [14]. PageR-

ank being a graph algorithm, GraphX is a well-suited execution environment for it. Ideally, graphs
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are partitioned and input to the algorithm. This partitioning causes communication and load bal-

ancing overheads. During this work, the performance of GraphX was enhanced by improving the

underlying 2D graph partitioning scheme such that every vertex in the graph saves at most two

network transfers while distributing nearly an equal amount of load among partitions, ultimately

allowing the algorithm to complete faster.

1.4. Thesis Contribution

This thesis presents the approach for determining influence of premises from simulated vo-

luminous epidemiology data as well as the enhanced version of a cutting-edge distributed graph

processing framework. Specific contributions of this work include:

• Design of a graph-based data structure, the DTN, which preserves the cumulative dynamics of

disease spread across space and time. This data structure supports traversals that are needed

for analysis.

• Determination of premises’ influence by harnessing and adapting the PageRank algorithm in the

context of epidemiology.

• Customized and e�cient platform design that avoids repeated I/O passes over the dataset and

compactly encodes results in the memory-resident DTN along with the enhanced graph partitions,

which reduces the computation time of determining relative influential measures.

1.5. Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 provides a detailed background

encapsulating NAADSM and graph partitioning, as both topics play a pivotal role in comprehend-

ing this work. Chapter 3 gives an overview of previous methodology related to this work in the

context of analytics and graph partitioning. Chapter 4 describes the methodology to determine

relative influence measure of premises, which includes data extraction, creation of the DTN, and
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application of the PageRank algorithm. Chapter 5 contains a discussion of the customization of

the execution environment, mostly concentrating on the enhancement of the existing 2D graph

partitioning scheme in Apache Spark GraphX. Chapter 6 is a presentation of the evaluation of the

proposed approaches for the determination of influence measure as well as for the graph partition-

ing. Chapter 7 concludes this work with answers to the research questions and a discussion of

future avenues concerning the expansion and refinement of the current methodology.
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CHAPTER 2

Background

This chapter details the background knowledge required to understand the work performed in

this thesis. An introduction to simulation in NAADSM is critical because analytics is accomplished

on outputs generated by it. The history and fundamentals of graph partitioning are presented to

facilitate a clear understanding of the methodology used; the customized computation platform is

established in this study by enhancing one of the graph partitioning schemes provided in Apache

Spark GraphX.

2.1. NAADSM

The North American Animal Disease Spread Model (NAADSM) is a stochastic simulation of

highly contagious disease outbreaks in animals that facilitates strategy development and decision

making [9]. In this model, groups of livestock, called units, are the basis of the simulation. Note

that the terms, premise and herd, are also being used to refer to a group of animals. Disease spread

between units is influenced by production types, intergroup similarities (shipment rates, infection

rates, etc.), relative locations, and distances between herds. When a unit is infected, it follows a

natural cycle of disease states consisting of susceptible, latent, subclinically infectious, clinically

infectious, naturally immune, vaccine immune, and destroyed. This cycle can be interrupted by

disease control strategies including quarantine, destruction, and vaccination. The disease spread

among the units can happen by any of the following three methods: direct contact, indirect contact,

and airborne spread. Stochastic processes drive all operations in the model, and they are based on

user-defined distributions and relational functions. NAADSM input parameters can be of six types:

yes/no values, integers, floating point numbers, probabilities, probability density functions, and

relational functions. Collectively, these parameters form a scenario, and each scenario represents a

simulated disease outbreak. Because the simulation is stochastic, it is run for several iterations (32
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per scenario, in this study) to gain confidence in the output distributions. Each of the scenarios

as well as iterations is completely independent of each other. To reduce the overall execution

time of the simulation, NAADSM can be parallelized over a cluster of computing resources in a

fault-tolerant fashion [18].

2.1.1. Dataset: The subject dataset was derived from a sensitivity analysis that explored

the NAADSM parameter space to produce multiple valid combinations of inputs set in Colorado,

USA [19], [20]. This process generated 100,000 scenario variants that were executed 32 times for a

total of 3.2 million outputs (6.26 TB). In this particular scenario, a single initial herd is infected,

with disease spread eventually encompassing tens of thousands of premises. The output of the

simulation contains attributes representing the disease status of individual premises and how the

infection spreads across premises within the network. These outputs also account for topological

characteristics such as connectivity between the premises, proximity, and contact due to movements.

NAADSM output is extremely data-intensive even for a single simulation run. Scenarios are

in the order of hundreds of thousands, each of which is executed for 32 iterations. Furthermore, an

output file is created for each of the iterations; hence, the file count of a single simulation run is in

the order of millions. These files contain outbreak-related information for each of the simulation

days, meaning, if a scenario iteration makes a simulated outbreak last for n simulated days, the

corresponding output file consists of data for that number of simulated days. Moreover, this model

outputs the disease state for each of the herds, indicating infection propagation along with summary

statistics that include information related to categorical control strategies for each simulation day.

2.2. Graph Partitioning

Lately, graphs and related algorithms have found applications in a wide variety of domains

including social networks, recommendation systems, web documents, routing, and many more.

Graphs represented in these applications have continued to emerge at an astonishing rate, and
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trends are clearly directing the growth. The Facebook friends graph has more than 1 billion vertices

(users) and nearly 1 trillion edges (friendships) [21]. Moreover, many machine learning techniques

can be represented as graphs, such as Deep Neural Networks. Applications in these domains

demand nearly real-time results. Although the computing and storage capacity of one machine has

increased exponentially, a single machine is unable to satisfy real-time requirements completely.

This leads to the advent of various distributed graph computation systems, also called distributed

graph-parallel systems, which operate above the cluster of commodity hardware [22], [23], [24], [17].

These systems have employed the ”Think Like a Vertex” [25] programming model and exposed

developer-friendly APIs wherein any graph algorithm can be expressed from the perspective of a

vertex. Ideally, input graphs are partitioned and stored on machines within a cluster to execute

graph algorithms quickly and use cluster resources completely. Evidently, graph partitioning is

the primary factor in deciding the performance of a graph algorithm in a distributed environment.

Graph partitioning raises following concerns:

• Ingression time: This refers to the time that is taken by the system to partition and load the

graph before starting the actual execution of the algorithm. Clearly, it completely relies on the

partitioning strategy. Some strategies take more time to generate the partitions than others.

• Communication cost: This refers to the amount of network transfer between partitions while

executing the algorithm. Ideally, partitions are stored on di↵erent machines. Therefore, some

amount of communication is required between these machines in order to achieve the necessary

synchronization. Obviously, this plays a prominent role in the performance of the partitioning

scheme, and accordingly, the graph algorithm.

• Load balancing: This refers to the quality of load distribution, which ultimately boils down to

the number of vertices and edges assigned to each partition. Clearly, improper distribution leads

to under- or over-utilization of cluster resources.

Balanced graph partitioning is classified as an NP-complete problem [26]. This means that

the solution to a problem can be acquired by heuristics or approximation algorithms. With the
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arrival of graph-parallel systems, the research community has started taking interest in streaming

graph partitioning algorithms, which partition a vertex or an edge based only on the information

that belongs to themselves, without having knowledge about the complete graph. Primarily, these

algorithms are divided into the following two categories:

(1) Edge-cut: The motivation behind the algorithms in this category is that vertices are equally

distributed among partitions and edges are cut and distributed across partitions in order to

produce a complete subgraph, hence the name edge-cut. It is worth noting that, cut edges

along with the corresponding vertices are replicated and passed according to the requirement

between partitions. Due to this characteristic, the communication cost associated with edge-cut

algorithms is directly proportional to the number of edges cut. Clearly, each partition will be

responsible for an approximately equal number of vertices, whereas that of edges will di↵er,

which determines the load-balancing factor.

Figure 2.1 shows an example of edge-cut partitioning. A graph with 5 vertices and 11

edges is given in Figure 2.1a. The goal is to divide this graph into 2 parts, such that each of

the parts is a complete subgraph. As mentioned earlier, vertices are partitioned first. In this

example, they are partitioned using the elementary hash partitioner, which is v%n, where v is

a vertex identifier and n is the total number of partitions. Hence, vertices 1, 3, and 5 are placed

into partition 1, and vertices 2 and 4 are placed into partition 2. This partitioning makes all of

the edges having vertices from both of the sets miserable. Those edges are demonstrated using

a hypothetical cut in Figure 2.1a. Hence, edges (1,2), (5,2), (5,4), (2,5), (4,5), and (4,3) are

ambiguous regarding their partition, but the rest of the edges are placed into the same partition

where both of their vertices are present. In order to place those miserable edges, a deterministic

scheme has to be decided. Suppose, those edges would be placed into their destination vertex’s

partition, meaning edge (1,2) would be placed in the same partition where vertex 2 is placed.

After this, the subgraphs are incomplete. For example, all of the edges of vertex 2 are not in

the same partition as it is; edge (2, 5) is in partition 1. In order to function, these subgraphs
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need to be completed. Therefore, some of the vertices and edges have to replicate themselves

into other partitions. The vertices and edges denoted by red dashed lines in Figure 2.1 are

those with such properties, and they are the cause of communication between the partitions.

(a) Actual Graph with Cut Edges (b) Partitioned Graph

Figure 2.1. Edge-cut Partitioning

(2) Vertex-cut: The motivation and fundamentals behind the algorithms in this category are

completely opposite to that of edge-cut algorithms. Unlike edge-cut, edges are equally dis-

tributed among the partitions, and vertices are cut and replicated across the partitions in order

to produce complete subgraphs, hence the name vertex-cut. As opposed to edge-cut, vertex

data is passed between the partitions, so the communication cost is directly proportional to

the number of the vertex replicas, and the load balancing factor is determined by the number

of edges assigned to each of the partitions.

Figure 2.2 shows the vertex-cut partitioning. As in the previous example, a directed

graph with 5 vertices and 11 edges is provided. The goal is also the same, but the technique

is di↵erent. Unlike the edge-cut process, there is an attempt to distribute the edges equally

among the partitions. Suppose, this has been achieved using the formula shown on top of Figure

2.2b, which is (Vs + Vd)%n, where Vs is the source vertex identifier, and Vd is the destination

vertex identifier. Because of this, edges (1,2), (5,2), (2,5), (5,4), (4,5), (4,3) are placed into
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partition 1, and the rest of the edges are placed into partition 2. Furthermore, suppose vertices

are partitioned using the elementary hash partitioner, v%n. Like the previous example, this

partitioning also creates subgraphs that are incomplete. However, as opposed to the previous

scheme, where both edge data and vertex data are passed between partitions in order to make

them complete, this strategy just passes vertex data. This is represented by red lined vertex

replicas in Figure 2.2b, which are the only source of network communication in this case.

(a) Actual Graph (b) Partitioned Graph

Figure 2.2. Vertex-cut Partitioning

The following measures are primary in evaluating the quality of partitions.

• Replication Factor: This measure quantifies the amount of replication of graph-property. With

the edge-cut strategy, the property under investigation is the set of replicated edges. In the case

of the vertex-cut strategy, the average vertex replica is investigated, which is nothing but the

ratio of the total number of vertex replicas to the total number of vertices. Clearly, this measure

is directly proportional to the communication between partitions.

• Load Balancing Factor: This measure shows the distribution of load among partitions. This

factor is represented by the standard deviation of the number of edges for which each partition is
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responsible. A lower standard deviation indicates better utilization of cluster resources and vice

versa.

The quality of any partitioning scheme totally relies on the measures mentioned above. An

ideal scheme incurs minimum replication. Thereby such a scheme minimizes communication, and it

distributes a nearly equal number of vertices and edges among partitions. In general, the ingression

time is directly proportional to the quality of partitions, meaning that a partitioning strategy with

a higher ingression time may produces better quality partitions and vice versa.

Early distributed graph-parallel systems, Pregel [22] and GraphLab [24], employed the edge-

cut partitioning scheme. The research on these systems discovered serious load balancing issues for

edge-cut partitioning in the case of Power-law graphs [27], the graphs that follow Power-law degree

distribution and are alternatively called real-world graphs or natural graphs, due to massively

imbalanced edge distribution. Therefore, PowerGraph [27] employed the vertex-cut partitioning

scheme and reported significant improvement in the quality of partitions for Power-law graphs.

Following this, later distributed graph-parallel systems, including Apache Spark GraphX [17], have

also employed vertex-cut partitioning along with various implementations of it. Edge-cut and

vertex-cut partitioning schemes serve di↵erent purposes. Edge-cut is well-suited for graphs with a

high number of low-degree vertices since there exists a high possibility of assignment of all edges of

a vertex to the same partition. In contrast, vertex-cut is best fit for graphs with a small number of

high-degree vertices, like the Power-law graph, since edges of these vertices are evenly distributed

and, consequently, balanced partitions are generated.

During this work, the 2D graph partitioning scheme, an implementation of vertex-cut par-

titioning provided by Apache Spark GraphX, has been studied thoroughly and enhanced for the

analytics platform, which is explained thoroughly in Chapter 5.
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CHAPTER 3

Related Work

This chapter is an overview of previous work in this area of research that largely explains the

absence of essential properties of the ideal approach. Recent findings compel researchers to improve

upon existing methods, justifying the necessity of this work.

During an outbreak, influential herds transmit the disease to their neighbors, ultimately making

outbreaks last longer or become more severe. As a result, the influence of a herd depends largely

on the influence of its neighbors. The analysis of influence in epidemiology has been a considerable

area of study, with much of the work revolving around the various characteristics of infected entities

and their influence on disease transmission [28], [29]. However, these approaches generally examine

standalone characteristics and not the underlying network or relationships that underlie disease

spread.

Social Network Analysis (SNA) focuses on human interactions in social networks, but it can

be applied to analyzing animal epidemics as well. Considerable research has been conducted on

influence in social networks [30], [31], [32], [33], [34]. The Independent Cascade (IC) model and

Linear Threshold (LT) model are commonly used to describe the influence of nodes in directed

graphs. The LT model declares a node as either active or inactive based on a threshold and the

sum of weights of neighboring edges. On the other hand, in the IC model, each active node is given

an opportunity to activate its inactive neighbors, with the process repeating until a steady state is

reached [35], [36]. In this case, active nodes are considered to be highly influential. However, since

both of these methods rely on binary states (active or inactive), relative measures between nodes

are not supported.

Cha et al. studied the influence of users on Twitter based on three metrics: in-degree, retweets,

and mentions [34]. This approach uses Spearman’s rank correlation coe�cient to compare user

influence, and it evaluates the behavior of the three metrics for highly influential users. An approach
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outlined by Khrabrov and Cybenko uses daily mentions of users on Twitter as a basis for calculating

di↵erent rank metrics such as PageRank, dRank, and StarRank to determine the influence of users

[37].

Aggarwal et al. proposed two algorithms, SteadyStateSpread and RankedReplace, to determine

information flow representatives, a small group of authoritative figures to whom the release of in-

formation leads to maximum spread [31]. SteadyStateSpread iteratively finds a candidate set of

nodes with higher steady state flow values as candidate representatives. This method ignores the

structural relationship of nodes, which inspired the RankedReplace algorithm. In RankedReplace,

nodes are replaced iteratively and sorted in descending order by their steady state flow values to

maximize total flow [31]. Moreover, Budgaga et al. [19] proposed a framework that explores statis-

tical ensemble and learning methods for predictive analytics. This framework uses dimensionality

reduction and ensemble techniques to improve the performance and accuracy of forecasting models

generated in a distributed environment.

Lately, a variety of methodologies and query-based frameworks have been introduced to per-

form anomaly detection over a distributed environment. Malensek et al. proposed a framework

which supports ad hoc queries that allow users to trade o↵ accuracy versus timeliness [38]. More-

over, there is support for programming analytic operations based on queries [39]. Optionally, the

query can be spatially constrained [40]. Support is also available for detecting anomalies based on

spatiotemporal characteristics [41].

Real-world graphs tend to be massive. They need to be partitioned and stored on a clus-

ter of commodity machines to process graph algorithms quickly. Partitions cause load balancing

problems, and synchronization between these partitions leads to communication-related issues.

Optimal graph partitions reduce communication costs, concurrently providing equal distribution

of workloads. Therefore, the associated research community has been concentrating on real-time

graph partitioning schemes, partitioning without knowledge of the complete graph. Recently, this
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approach has generally been used for streaming graphs. In addition to that, researchers have

explored graph-partitioning for scheduling in the context of scientific workflows [42], [43], [44].

PowerGraph, a distributed graph processing framework, has introduced the Oblivious graph

partitioning scheme [27]. This strategy demands information regarding previous edge assignments

to perform a current assignment more precisely. However, it refrains from collecting informa-

tion from other partitions and completely depends on local knowledge to avoid communication

overheads. It’s obvious that this is just a heuristic, although it performs better than random as-

signments. Sajjad et al. have proposed the HoVerCut methodology, which can be coupled with

existing graph partitioning algorithms [45]. This method uses a distributed multithreaded en-

vironment where each thread is called a subpartitioner and runs the partition algorithm inside.

Additionally, HoVerCut employs a windowing technique that produces a trivial shared state be-

cause it generates batch as opposed to immediate updates. This method is said to be the foundation

of optimal communication between partitions. Instead of a partitioning algorithm, HoVerCut can

be considered to be an addendum. PowerGraph has introduced the PDS scheme, which leverages

Perfect Di↵erence Set [46]. This method requires (p2 + p + 1) partitions, with p being a prime

number. Due to this hard constraint, this scheme is rarely used in real-world applications.

There have been a considerable number of graph partitioning algorithms that place emphasis

on the degree of the vertex to employ better heuristics [47], [48], [49]. These algorithms assign ver-

tices to partitions based on a random hash function and attempt to discover a finer technique for

edge partitions. Xie et al. have suggested a degree-based hashing algorithm, Libra [48], based on

the idea that better partitions are achieved if more vertices with higher degrees are cut. Therefore,

having two choices for each edge, the source and the destination vertex partition, this algorithm

assigns an edge to the vertex partition with a lower degree. Petroni et al. have proposed a

stream-based, vertex-cut partitioning algorithm, High-Degree Replicated First (HDRF) [47]. This

algorithm attempts to replicate high-degree vertices and maintains locality for low-degree vertices.

Chen et al. have employed an algorithm, the Hybrid-cut [49], which di↵erentiates partitioning
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schemes for low-degree and high-degree vertices based on the in-degree of a vertex; however, this

method is applicable only to directed graphs. It assigns all edges to their respective target vertex

partitions followed by reassignment of edges with high-degree vertices, identified by degree thresh-

old, to a respective source vertex partition. These algorithms claim to produce better partitions

for power-law degree graphs in terms of communication and load balance since they share a similar

foundation, which is to replicate high-degree vertices. Because deciding the partition for an edge

with the Hybrid-cut is based on the degree of vertices, vertices and their degrees have to be coupled,

before the algorithm functions. This constraint burdens the graph ingression time because coupling

requires communication between partitions. Granules and Neptune provide support for low latency

processing and analytics datastreams [50], [51]. In addition to these features, Granules leverages

the NaradaBrokering framework in order to disseminate data streams in cluster and grid settings

[52], [53].
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CHAPTER 4

Determining Influence

This chapter describes the analytical approach that was taken in this research to accomplish

the goal of finding influence measures. This description includes justification of the approach, cre-

ation of the Disease Transmission Network (DTN), preliminary geospatial analysis, the PageRank

algorithm, and the application of the PageRank algorithm to the DTN.

The actual problem discussed in Chapter 1 was that of finding relative influential measures

such that a limited amount of available resources can be used e↵ectively in the case of a disease

outbreak. Most approaches discussed in Chapter 3 facilitate binary outputs for an entity’s being

influential or not. Hence, they are unable to solve the problem in its entirety. A type of methodology

that considers the interaction between entities and finds the relative influence of each of them is

the best-fit solution. PageRank is such an algorithm that is in the process of development with

very convincing results. Google search results are powered by this algorithm. Empirically, it

is very unlikely not to find a desired article in the first 15 to 20 Google search results. These

articles are sorted based on the descending order of their PageRank values. Furthermore, these

values are related to the search term (purpose) meaning; PageRank values of an entity di↵er based

on the purpose. These attributes of the PageRank algorithm are completely aligned with the

preferable solution, which makes it the best-fit method for considering interactions between entities

to determine influence. The remainder of this chapter describes the steps required to apply the

PageRank algorithm to the subject dataset, which includes building the DTN and calculating the

PageRank values of the herds under consideration.

4.1. Disease Transmission Network (DTN)

PageRank is a graph algorithm. In order for it to be applied, the subject dataset, the NAADSM

simulation output, had to be converted to a sophisticated network that is able to represent disease
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interactions between the herds. This goal was achieved using the Disease Transmission Network

(DTN). The DTN is a weighted, directed graph of infection interactions where vertices represent

herds and directed edges represent the disease transmission between herds. Furthermore, edge

weights depict the influential relationship between the corresponding herds. Since simulation output

is data-intensive, a cluster of commodity hardware was leveraged to perform the analysis in a

concurrent fashion. Generation of the DTN from simulated output is explained in the steps outlined

below. The complete workflow of analytics tasks performed is displayed in Figure 4.1, which

includes generation of the DTN from the subject dataset, the inverted graph, and the application

of PageRank.

(1) NAADSM creates a compressed file per scenario iteration, which is decompressed and staged

to a reliable and fault-tolerant distributed filesystem, HDFS. HDFS partitions these files into

64MB or smaller chunks, and it stores a predefined number of replicas in the Hadoop cluster.

(2) Since content in the output files follows a specific format, the infection propagation pattern is

extracted using custom Hadoop Inputformat. File chunks, alternatively called input splits, are

scanned for the infection propagation pattern per scenario iteration, and a directed graph is

formed by ordinating the extracted patterns, which depicts disease spread during a simulated

outbreak. Since the initially infected herd, alternatively called the source herd, is the same for

each scenario iteration, this herd has been removed from this graph to preserve the stochastic

behavior. Nodes in this graph are herds, and directed edges represent infection propagation.

(3) Millions of such graphs are aggregated in order to build a sophisticated network, which has

been done in the following manner:

(a) For each of the edges in the graphs generated during the previous step, an edge is placed

between the respective vertices in the resultant graph with a unit weight. As an outcome,

the resultant graph is directed, where each of the edges represents an infection interaction

from any of the scenario iterations. The topological interpretation of this fact is that
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multiple instances of the same edge between any possible pair of vertices with a unit

weight may exist, which can be observed in Figure 4.1.

(b) Identical edges, those with same source and destination, are aggregated by summing their

weights. After this step, there is only one edge between any possible pair of source and

destination vertices. Furthermore, the weight of any edge is an integer number, which rep-

resents the total number of infection interactions observed combining all scenario iterations

for the simulation.

(c) These edge weights should be converted into a representation which strongly portrays

infection interaction between herds. This is attained by transforming these integer weights

to the percentage weights using the following formula.

weight(A,B) =
Number of times A infects B

Number of times B is infected
(1)

where

weight(A,B) = Weight of the edge from A to B in the DTN which represents the rate at

which A infects B;

Number of times A infects B = Weight of the edge from A to B in the graph generated

after step (b); and

Number of times B is infected = Sum of weights of incoming edges to B in the graph

generated after step (b).

To understand the above formula, consider the following example. Suppose herd B is

infected 5 times by herd A, 1 time by herd C, and 4 times by herd D. The edge from A

to B in the DTN will have a weight of 5
10 = 0.5, where the numerator, which is 5, is the

number of infections from A to B, and denominator, which is 10, is the sum of weights of

all incoming edges to B.
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The DTN created by following these steps precisely encodes the needed information regarding

infection interactions and the outbreak. Using the DTN, the subject dataset, which is comprised

of 6.26 TB of data, is concisely expressed by just over 132 MB. Following are two noteworthy

properties:

• The weight of an edge depicts the importance of the source in infecting the destination, focusing

on the total number of times the destination is infected (denominator), regardless of the number

of infections that originated from the source.

• For every vertex in the DTN, the sum of the weights of all incoming edges is one, but nothing

can be observed about the properties of the outgoing edges.

Figure 4.1. Analysis Workflow
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4.2. Preliminary Analysis: Geospatial Distance

After the initial creation of the DTN, the correlation analysis on the geospatial distance between

the units and the rate at which a unit infects others was performed. This evaluation served to test

the functionality of the DTN and gain insight as to how disease spread interactions behave spatially.

Using the DTN, infection rate between the herds was calculated using the following formula:

InfectionRate(A,B) =
CountOfInfections(A,B)

SourceOfInfection(A)
(2)

where

SourceOfInfection(A) = total infections from unit A, and

CountOfInfections(A,B) = total infections that unit A transmitted to unit B.

The infection rate, as defined in the Formula 2, as well as the geospatial distance between

the herds is calculated for every pair of herds in the DTN. Using these points of comparison, the

Pearson Correlation Coe�cient (PCC) calculated for this data was -0.048, indicating that there is

almost no correlation between the infection rate and distance between the herds. This experiment

demonstrates that within a particular scenario, a diseased unit is unlikely to infect a herd in close

proximity significantly more than those at greater spatial distances.

4.3. PageRank Algorithm

PageRank was proposed by Page et al. [14] and used by the Google search engine to sort search

results by their relevance or importance. The algorithm assigns a PageRank value to each web page

that describes the probability that a random surfer (randomly clicking on links) will arrive at the

web page. The higher the PageRank value, the more important the web page is. In general, highly

linked pages are more important than pages with a low number of incoming links. Furthermore, the

PageRank value of a particular page determines how influential its outgoing links will be. If a page

has very few input links but some of them are from highly linked web pages, the page is ranked
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higher than a page that has more, but less important, input links. This means that a website

can achieve a high PageRank value either by having a large number of incoming links or by being

linked to from an important page. When applied to the DTN, a PageRank value represents the

herd’s capability of infecting others in a random disease chain, which is the influence of that herd

on the entire network. Considerable research has been conducted on using PageRank to determine

influence [30], [31].

4.4. Application of PageRank to the DTN

Construction of the DTN produces a weighted, directed graph, where the weight of each edge

is the rate at which one unit is infected by the other. As a result, the sum of the weights of all

input links must be equal to one. When a disease is transmitted from vertex A to vertex B, the

interaction was modeled as A is influencing B. Similarly, vertex A influences all of its downstream

neighbors. However, the PageRank algorithm computes the importance of entities based on the

input links, but in this case the influence of a vertex is decided by the output links. Therefore,

the direction of the edges is reversed in the graph without changing their weights to generate an

inverted graph. This preserves the semantics of the network and allows usage of the PageRank

algorithm without modification. Afterwards, the PageRank algorithm is applied with 25 iterations,

and PageRank values are noted as the influence measure of corresponding herd.

This analytics approach is evaluated and compared with the super-spreader analysis [15].

Chapter 6 demonstrates the results of the comparison along with that of the scalability.
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CHAPTER 5

Enhanced 2D Graph Partitioning Scheme

This chapter explains the 2D graph partitioning scheme implemented in the Apache Spark

GraphX in detail. Moreover, the enhancement achieved in that scheme in order to build a cus-

tomized version of GraphX is described thoroughly.

5.1. Existing 2D Graph Partitioning

As discussed in Chapter 2, modern distributed graph-parallel systems have availed the vertex-

cut partitioning technique and provided various implementations of it based on heuristics. 2D

partitioning, alternatively called grid-based partitioning, is one of these techniques. This scheme

is an implementation of the grid-based constrained random vertex-cut strategy proposed by Nilesh

et al. [54], which claims an upper bound of 2
p
n � 1 on the vertex replication factor, where n is

the number of partitions. A detailed explanation of this bound is provided later in this chapter.

The grid is a two-dimensional geometry. Graphs possess two properties, which are vertices and

edges. The identifier space of vertices is one-dimensional, meaning that a vertex can be uniquely

identified just by its vertex-identifier. However, the identifier space of edges is two-dimensional

because source and destination vertex identifiers are required to uniquely identify an edge. Due

to this requirement, the grid has been leveraged to hold edge properties. Analogously, if an entity

could be uniquely determined by three properties, a three-dimensional cubical geometry would be

the best-fit solution to e�ciently map instances of an entity to the partition space. In this strategy,

figuratively, partitions are assumed to be a grid of rows and columns. The same vertex identifier

space is mapped to these rows and columns, sources on one and destinations on the other, using

hashing techniques. Obviously, the intersections of these rows and columns represent corresponding

edges. Because of this form of mapping, the intersections between identifier spaces, which are the

edges, can be accommodated elegantly in the grid, which is the partition space.
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5.1.1. Methodology: This section describes the step-by-step implementation of the 2D graph

partitioning scheme, named EdgePartition2D [55], in Apache Spark GraphX. EdgePartition2D

defines only the partitioning strategy used for edges because that of the vertices is predefined.

Consider that there exists a graph G = (V,E), where V is the set of vertices and E is the set of

edges. Every vertex in V has a vertex identifier of type long and a vertex property, while every

edge in E has source and destination vertex identifiers of type long and an edge property. The goal

is to divide this graph into n parts such that the partitions should incur minimum communication

and distribution should be as balanced as possible. Following is the guide that explains the existing

2D graph partitioning strategy used in Apache Spark GraphX. The complete process is pictured in

Figure 5.1.

Figure 5.1. Vertices and Edge Placement

(1) Logically, partition space is a two-dimensional grid. If n is a perfect square, then the grid will

have equal numbers of rows, hereafter called rows, and columns, hereafter called cols, that is

p
n. On the other hand, if it’s not square, the grid could have di↵erences in cols and rows,

where cols can be at most one greater than rows.

• In the case of n’s not being a perfect square number, cols is the ceiling part of the decimal

value of
p
n. Furthermore, rows is expressed by the floor value of (n+ cols� 1)/cols, which

26



also shows that cols can be at most one greater than rows. Every column has rows rows

except for the last column, where the number of rows may vary from 1 to rows, hereafter

denoted by lastColRows. For example, if n = 27, then cols = 6 and rows = 5, where the

last column would have 3 rows.

(2) Vertices are assigned to partitions based on elementary modular hashing. For instance, a

vertex with v as a vertex-identifier is assigned to the partition denoted by v%n in the case of

n partitions. Consequently, vertices are equally distributed among partitions.

(3) Edges, on the other hand, are assigned by hashing both the source and the destination vertices.

• The source vertex identifier space is assumed to be mapped on the columns. Therefore, the

column selection for any edge is performed using the source vertex, hereafter denoted by

src. If n is a perfect square, col, is identified using ((src ⇤mixingPrime)%
p
n). Otherwise,

((src ⇤mixingPrime)%n/rows), where mixingPrime is a large prime number that is used

to improve the balance of edge distributions [55].

• Unlike source vertices, destination vertices are assumed to be mapped on the rows. Hence,

the row selection for an edge is accomplished by the destination vertex, hereafter denoted by

dst. If n is a perfect square, row is identified using the ((dst ⇤mixingPrime)%
p
n) function.

If n is not square, row is identified using ((dst ⇤mixingPrime)%rows) if col < cols� 1 and

((dst ⇤mixingPrime)%lastColRows) otherwise [55].

(4) The edge property is assigned to the partition expressed by (col ⇤
p
n+ row) in the case of n’s

being a perfect square, and (col ⇤ rows+ row) otherwise [55].

5.1.2. Insights: This section provides insights on the EdgePartition2D scheme from the per-

spective of the vertex replication factor (described in chapter 2) and justifies the upper bound

claimed by the scheme. The section also includes an explanation regarding the load balancing that

is achieved by this scheme, which helps to explain its popularity in the graph-parallel community

for Power-law graphs.
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• Looking at the EdgePartition2D scheme from the perspective of a vertex helps in perceiving the

upper bound on the vertex replication factor. Consider a vertex with identifier v, where v could

be a source as well as a destination in a graph. All the edges where v is the source vertex would

be placed in the same column, col, of the grid, the partition space. Similarly, the edges where v

is the destination vertex, would be placed in the same row, row, of the grid. Apparently, all the

edges of v could either be in any of the
p
n partitions of the colth column or

p
n partitions within

the row

th row. Moreover, the intersecting partition of colth column and row

th row is common

among these 2
p
n partitions. Conclusively, any edge containing v has to be placed in any of the

p
n +

p
n � 1 = 2

p
n � 1 partitions, which justifies the upper bound on the vertex replication

factor, which is clearly perceivable from Figure 5.2.

Figure 5.2. Upper Bound on the Replication Factor

• From the implementation of EdgePartition2D explained above, it is evident that same directional

edges of any of the vertices are distributed among the partitions in the respective row or column,

as opposed to the case in a few other partitioning strategies where all the edges with the same

source or destination vertex would be placed in the same partition. The latter causes imbalanced

load distribution for the high-degree vertices in Power-law graphs, which ultimately results in

insu�cient use of cluster resources.
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5.2. Enhanced Version

EdgePartition2D is a foolproof implementation of the grid-based partitioning scheme. As ex-

plained earlier, it provides a perfect remedy for communication as well as load balance, two primary

issues of any stream-based graph partitioning scheme. Vertices are evenly distributed, and edge

distribution is nearly balanced; moreover, the vertex replication factor is under control. It is tough

to beat these properties and think of an enhancement.

However, the vertex partitioning factor in EdgePartition2D is not completely optimized, so

it has room for improvement. As mentioned in the earlier section, the partitioner is implemented

using elementary modular hashing. Consider a grid of c columns and r rows. For a vertex v, all

the edges where v is the source vertex are placed in partitions of the i

th column, i <= c, and all

the edges where it is the destination vertex are placed in partitions of the j

th row, j <= r. Given

this, the ideal place for v is the intersecting partition of the i

th column and j

th row. Instead, it is

placed in a partition expressed by v%n, where n is the total number of partitions.

The vertex partitioning scheme described above can be implemented by placing v in the par-

tition where a hypothetical edge, with v as both the source and the destination vertex, would

have been placed. Hence, the EdgePartition2D scheme can be leveraged to design such a vertex

partitioner. In fact, it is fairly easy to implement such a partitioner by performing minor changes

in the EdgePartition2D scheme. However, the implementation of this modified scheme raises load

balancing issues. Consider that there are n partitions where n is a perfect square, so the grid would

have
p
n rows and

p
n columns. As described in the earlier section, for a perfect square number of

partitions, the column as well as the row for an edge are determined by the same hashing scheme,

which is (v ⇤mixingPrime)%
p
n in this case. Clearly, applying this vertex partitioner would result

in all vertices being placed in the diagonal partitions of the grid. Any of the non-diagonal parti-

tions would not be accommodating a single vertex. Apparently, this hashing is unable to distribute

vertices among partitions equally. However, ideal load balancing can be achieved by employing
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di↵erent hashing techniques for source and destination vertices, which is described in the following

section.

• Given a perfect square number of partitions, n, the column for a vertex, v, can be elected using

the ((v ⇤mixingPrime)%n)/
p
n function instead of (v ⇤mixingPrime)%

p
n. However, there is

no change in row election, which was being performed using the (v⇤mixingPrime)%
p
n function.

Since, the newer approach selects a column by both the modulo and the division operation, instead

of just the modulo as in the previous approach, the column index would di↵er from the row index.

This enables vertices to disperse over the grid. For example, n = 100; v = 1546;mixingPrime =

1. With the previous partitioner, v would be placed into (1546 ⇤ 1)%10 = 6th column, and

(1546 ⇤ 1)%10 = 6th row in the grid of 10 * 10. With the newer approach, it would be placed

into ((int)((1546 ⇤ 1)%100/10)) = 4th column and 6th row.

• An approach similar to this is already followed for a non-perfect square number of partitions.

5.2.1. Insights: This section explains the insights of the new vertex partitioner described

above in terms of replication factor and load balancing.

• Because the vertex is placed into the intersecting partition of the row and the column where

the hypothetical edge having that vertex as the source and the destination would be placed,

the vertex has to replicate itself to
p
n � 1 partitions in a column and

p
n � 1 partitions in a

row. Hence, the upper bound on the replication factor would become 2
p
n � 2, which is one

less than the existing implementation, illustrated in Figure 5.3. For an iterative algorithm like

the PageRank, this turns out to be two network transfers less per vertex per iteration. This

reduction of the upper bound enhances the performance of the algorithm.

• Due to the di↵erence in hashing techniques employed for source and destination vertices, their

distribution throughout the grid would be balanced even in the case of a perfect square number

of partitions.
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Figure 5.3. Enhanced Approach with Replication Factor

• Although in the modified partitioning scheme, source vertex hashing is di↵erent from that of

EdgePartition2D, hashing of the destination vertex is unchanged. Therefore, the partitions iden-

tified by the EdgePartition2D scheme and modified partitioning would di↵er for a particular

edge, but untouched destination vertex hashing and balanced vertex partitioning ensure that the

edge distribution is balanced.

The results of a performance comparison of the enhanced version and the existing EdgeParti-

tion2D scheme are displayed in Chapter 6. This chapter includes results in terms of graph ingression

time, replication factor, workload distribution, and execution time.
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CHAPTER 6

Evaluation

In this Chapter, the evaluation of the proposed analytics approach is demonstrated, which in-

cludes a comparison of influence measure to the super-spreading analysis with an additional analysis

of seeding herds, those that initiate the infection chain. A later section displays the performance

of the proposed grid graph-partitioning scheme and compares it to the previous approach.

6.1. Experimental Setup

The benchmarks and evaluations carried out in this study were performed on a cluster of 30

HP Z420 servers (16-core Xeon E5-2560V2 @ 2.60 GHz, 32 GB RAM, 1 TB disk). Distributed

computations were executed on Apache Spark GraphX version 2.0 with OpenJDK JVM, version

1.8.0 131 and Scala version 2.10.4. Each host was configured with Fedora 25 (64-bit Linux kernel

4.5.7). The epidemiological test dataset from Colorado, USA, was used, and it was distributed

across the Hadoop cluster (version 2.7.3), totaling 3.2 million scenario iterations aggregating 6.26

TB data.

6.2. PageRank vs. Super-spreading Analysis

This part of the experiment depicts the analysis of the inclusion of super-spreaders in the

composition of highly influential herds identified using PageRank algorithm. Following the work

presented in Shah et al. [15], 3747 herds were identified as probable super-spreaders from the

subject dataset. Afterwards, cardinality of the intersection set between top n PageRank valued

herds and the 3747 super-spreaders was calculated for n 2 {50, 100, 200, ... , 18800}. The ROC

curve for this experiment was plotted, shown in Figure 6.1. According to the curve, the experiment

resulted in high accuracy, meaning super-spreaders account for a considerably large portion of the

overall set of herds with high PageRank values, which are highly influential. The reason behind
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this result is that both groups infect a higher number of herds on average; as mentioned in [15].

The degree of local infection contributes most when classifying a herd as a super-spreader, and

herds with high PageRank values tend to infect a higher number of herds overall, as mentioned

in Chapter 4. Moreover, it can be observed that the likelihood ratio is decreasing while moving

along the horizontal axis. The part of curve with a high likelihood ratio refers to herds with high

influence values, whereas the other part of the curve refers to its counterpart.

Figure 6.1. High PageRank Valued Herds vs. Super-spreadering Events

A two-sample t-test was performed to determine whether the tendency to include super-

spreaders in high- and low-PageRank herds was statistically significant. In this evaluation, the

top 20% of PageRanked herds (likely super-spreaders) were assessed with the next 20%. To con-

duct the t-test, 40 data points were generated by randomly selecting 1000 herds from each set and
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the count of super-spreaders was recorded. This experiment revealed a significant di↵erence be-

tween herds with high PageRank values (x̄1 = 839.93, s̄1 = 11.26) and herds with lower PageRank

values (x̄2 = 192.5, s̄2 = 9.9); t(76.72) = 1.84, p = 0.03452 for µ0 = 643. These results suggest

that the mean number of super-spreaders found in both groups is notably di↵erent.

6.3. PageRank vs. Seeding Analysis

This experiment analyzed the involvement of seeder herds, the ones that are infected by the set

of initially infected herds, in the evolution of super-spreaders. As described in Chapter 4, initially

infected herds have been removed from the infection propagation pairs, and the rest of the data

has been collected for analysis. Over the 3.2 million iterations, 6504 distinct seeders were found.

The same experimental procedure as in the previous study was performed in order to visualize the

involvement of seeder herds in the composition of highly influential herds. Therefore, the number of

herds having the top n PageRank values, who were among the seeders, was calculated for n in {50,

100, 200, ... , 18800} and plotted on the curve, which is shown in Figure 6.2. Initially, the curve

shows a small peak, which is later followed by a monotonically increasing curve. The area under

the curve is much smaller compared to the curve generated in the previous experiment performed

on super-spreaders. This result suggests that seeders do not contribute to the composition of highly

influential herds as much as the super-spreaders. There are likely two reasons for this: First, among

the 6504 seeder herds, most are classified as seeders a limited number of times in the overall dataset

of 3.2 million simulated outbreaks, resulting in a lower number of overall infections. Second, seeders

often infect herds with a low PageRank value, resulting in little contribution towards their own

influence.

To study the involvement of super-spreaders and seeders combined as a single group, the

union of two sets is computed to compare with highly influential herds derived from PageRank

values. Figure 6.3 shows the size of each of these sets based on the top n PageRank values. This

demonstrates that about 3000 of the top herds are either super-spreaders or seeders (with the
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Figure 6.2. High PageRank Valued Herds vs. Seeders

majority being super- spreaders), as the initial portion of the curve overlaps with the identity line.

After all the super-spreaders are considered (n = 7100), the union set follows the shape of the

seeder plot. This demonstrates that herds with the highest influence are largely super-spreaders.

The true Positive Rates (TPR) and False Positive Rates (FPR) used to create the ROC curves

in the previous experiments were calculated using the following formula:

TPRn =
NIn

Tp
;FPRn =

n�NIn

Tn
(3)

where

NIn = Intersection of super-spreaders or seeders with the top n high PageRank valued herds,

Tp = Total number of super-spreaders or seeders, and

Tn = Total number of non-super-spreaders or non-seeders.
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Figure 6.3. Seeders, Super-spreaders, and their Union Based on the Top n PageRanked Herds

6.4. Scalability Evaluation

In this experiment, the time taken by the Apache Spark GraphX framework to compute PageR-

ank values of herds in the disease transmission network for various combinations of data and cluster

sizes was measured. From the 100,000 simulation outputs from our Colorado dataset, disease trans-

mission information in the form of infection propagation pairs was extracted, and the PageRank

implementation was executed for 25 iterations. During this evaluation, cluster sizes with a varying

number of machines were considered, each of which was accountable for four Spark workers. Figure

6.4 demonstrates the results of this benchmark; the vertical axis contains the time taken to perform

the computation, and dataset sizes are presented on the horizontal axis. Clusters of 10 and 20 ma-

chines exhibited similar execution times due to resource constraints that increased synchronization

delays between stages, but the cluster of 30 machines improved computation times by about 25%

for the full-sized dataset, which is shown in Figure 6.4.
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Figure 6.4. Scalability Evaluation

6.5. GeoSpatial Analysis

Figure 6.5 depicts three heat maps, each of which was generated using a di↵erent analytics

approach to identify highly influential herds along with their geospatial locations in Colorado.

Herds with higher influence are highlighted by brighter shades of red, whereas less influential herds

are drawn in progressively darker shades of green. Note that these visualizations are based on

the top 20% of the herds in the dataset to increase the level of contrast between premises. Three

notable clusters can be seen in each of the subfigures, one in the mid-left, and another two near

the top and bottom-right. Figure 6.5a was generated using PageRank values of herds, and the

premise contribution to the overall infection (contherdID) is shown in Figure 6.5b [15]. Note that

both heat maps are similar, indicating that the super-spreaders detected by herd contributions are

a subcategory of the influential premises found via PageRank. On the other hand, Figure 6.5c is

formed using the Machine Learning model proposed by Shah et al. [15], in which the darker the

area in the heat map, the greater the confidence of the corresponding herd’s being classified as a

super-spreader.
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(a) Top 20% High PageRank
Valued Premises

(b) Premises’ Contribution
to Overall Infection

(c) Classified Super-spreaders
Using the SVM Model

Figure 6.5. GeoSpatial Information of Highly Influential Herds Based on Three Di↵erent Analytics
approaches

The rest of this chapter evaluates the extension of the 2D graph-partitioning strategy provided

by Apache Spark GraphX, which was described in the previous chapter and demonstrated in the

comparison with the existing implementation. This section covers the comparison in terms of graph

ingression time, vertex replication factor, execution time of the PageRank algorithm for a predefined

number of iterations, and workload distribution. All of the above experiments were conducted on

the inverted graph generated from the subject dataset, which is the DTN generated from NAADSM

simulation outputs of Colorado dataset, and comprised of 18,890 vertices and 1,682,361 edges. All

of the results were collected for the same set of varied numbers of partitions, that is {10, 25, 50,

75, 100, 125, 144, 200}. As this set contains perfect as well as non-perfect squared numbers, the

evaluation embodies all aspects of the candidate algorithms.

6.6. Graph Ingression Time

As mentioned in Chapter 2, graph ingression time refers to the time it takes to partition and

load the graph into memory. Conceptually, it’s the time taken by the partitioning algorithm starting

from dividing the graph and providing the meaning to each of the subgraphs up to loading each of

those into memory for further computation. Clearly, a partitioning scheme may a↵ect the ingression

time adversely, so it is worthwhile to verify the actual ingression time and compare it to the previous

implementation. Figure 6.6 shows the comparison of ingression time between the two partitioning
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algorithms for varying of numbers of partitions. The enhanced algorithm delivered nearly the same

results as the EdgePartition2D scheme. This observation is reasonable as both the algorithms are

implemented using stream-based hashing techniques. They are capable of placing an edge or a

vertex in an appropriate partition without having any prior knowledge of other placements.

Figure 6.6. Graph Ingression Time

6.7. Replication Factor

The vertex replication factor is a single representative value for the graph that describes the

amount of replication incurred by the partitioning algorithm. As it is directly associated with the

amount of communication, it is the key metric that decides the performance of any partitioning

algorithm. Obviously, a smaller replication factor implies less communication and better perfor-

mance. Hence, the ideal partitioning algorithm tries to improve itself by finding the avenues that

reduce the replication factor. Figure 6.7 shows a comparison between the original and the enhanced

partitioning algorithms in terms of the resulting eventual mean vertex replication factor for a set of

varying numbers of partitions. Undoubtedly, the enhanced version demonstrated better replication
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factor results than the standard EdgePartition2D scheme. It is worth noting that the di↵erence in

the mean replication factor for any particular observation is more than one. The reason behind this

behavior is that the enhanced algorithm brings down the upper bound on vertex replication from

2
p
n� 1 to 2

p
n� 2, n being the number of partitions, which is explained theoretically in Chapter

5. Subsequently, the mean replication factor for any observation is less than the corresponding

upper bound. For example, for n = 100, the mean replication factor observed is 14.3807, which is

less than 2
p
100� 2 = 18.

Figure 6.7. Vertex Replication Factor

In order to determine whether the di↵erences between mean replication factor of the EdgePar-

tition2D and that of the enhanced version are statistically significant, the Wilcoxon signed-rank

test was performed as the distribution of the di↵erence in mean replication factor was not normal

(p-value=0.03744 for Shapiro-Wilk Normality Test). The Wilcoxon signed-rank test demonstrated

that the di↵erences between mean replication factor of both the approaches are statistically signif-

icant (Z=-2.5205, p=0.007812). Moreover, the 95% Bootstrap Studentized Confidence Interval is
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(-1.414, -1.141) which indicates that the mean replication factor in enhanced version is at least one

less than that in EdgePartition2D.

6.8. Load Balancing

Load Balancing refers to the distribution of graph properties (vertices and edges) among parti-

tions. A key issue that a↵ects this metric is that the workload distribution and the replication factor

behave in a completely opposite manner. Oftentimes, attempts to improve one result in ruining

the other. Edge-cut partitioning is a classic example of this issue. In an attempt to improve the

replication factor for high-degree vertices in Power-law graphs, this strategy delivers unbalanced

partitions in terms of edge-distribution. In contrast, an ideal scheme should have control of both

of these factors. Load balancing is measured either by the statistical properties of a distribution,

which include the mean, median, and standard deviation, or using side-by-side boxplots of the dis-

tribution. Generating plots help readers visualize the distributions, which is essential to comparing

multiple approaches.

Figure 6.8 displays the distribution of vertices for both the approaches. The observed similarity

between them along with the reduction in upper bound of the vertex replication factor is the prime

reason for improvement in the performance of the later approach compared to the previous. Figure

6.8a depicts the comparison in the vertices distribution for n = 75, and Figure 6.8b demonstrates

the variation in distributions for n = 125 and n = 144. Evidently, the distribution of vertices

remains nearly the same with varying numbers of partitions. It can be observed in figure 6.8b that,

even for the perfect square number of partitions, vertices are distributed in a balanced fashion rather

than placed only in the diagonal partitions of the grid. As mentioned in the previous chapter, this

issue was handled by employing di↵erent hashing techniques for the source and the destination

vertices.

Figures 6.9a and 6.9b display the edge distribution for varying numbers of partitions, including

both the perfect and the non-perfect square. Apparently, edge distributions remain similar for
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(a) n = 75

(b) n = {125, 144}

Figure 6.8. Vertices Distribution

same number of partitions. In fact, the edge partitioning logic for the non-perfect square number

of partitions is untouched by the new algorithm. Consequently, the placement and subsequent

distribution of edges also remains the same for that case. Moreover, for the other case, only the

hashing of the source vertex was changed, not that of the destination vertex, which ensures that
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the row of the partition remains the same. This balanced distribution of vertices and edges along

with the reduced mean replication factor allows the new algorithm to perform better.

(a) n = 75

(b) n = {100, 125, 144, 200}

Figure 6.9. Edges Distribution
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6.9. Execution Time

Execution time refers to the entire time starting from the creation of the graph from raw data

representation to the time that it takes for the algorithm to finish. Clearly, this metric is a↵ected by

all three metrics mentioned above. Therefore, it is mandatory to verify the actual execution time

required by both algorithms. Figure 6.10 shows the execution times required by each algorithm,

and it can be observed that the new algorithm completed earlier or at least at the same time as

the EdgePartition2D in all cases. The primary reason for this result is that the reduction in the

mean replication factor of a vertex allows the algorithm to reduce communication and complete

the execution faster.

Figure 6.10. Execution Time

A Paired Samples t-test was performed to compare the EdgePartition2D and the enhanced

version of the same in terms of the execution time. It represented significant di↵erence in the

execution time of the enhanced version (M=36.75, SD=17.04) and that of the EdgePartition2D

(M=39.5,SD=15.56); t(7)=3.671 , p < 0.005. These results suggest that the execution time in the

enhanced version has decreased compared to that in the EdgePartition2D.
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CHAPTER 7

Conclusion and Future Research Directions

This thesis delivers an analytical approach to determining influence measures of premises from

simulated voluminous epidemiology data that facilitate the e↵ective use of limited resources during

a disease outbreak. This work demonstrates the concise representation of the copious simulated

data using the Disease Transmission Network (DTN), which is a weighted, directed graph that

encapsulates infection interactions while retaining the dynamics of the disease outbreak. The

influence of premises was computed by leveraging the PageRank algorithm, which gained popularity

by sorting webpages based on their importance in the webgraph and later found application in a

variety of domains. Moreover, the analysis was performed on the extended version of the distributed

graph processing framework, Apache Spark GraphX, which improves performance by minimizing

the communication metric. This study answers the research questions raised while designing the

solution.

(1) What data structure(s) allow the representation of disease spread interactions for

analysis? To achieve e↵ective analysis with reasonable latency, entire chains of infections were

extracted from the output dataset, and a graph-based data structure, the Disease Transmission

Network (DTN), was constructed that represents a holistic view of disease transmissions by

maintaining the probability of infections between each herd pair. The DTN is a compact data

structure that is less than 0.002% of the original dataset size. Since infections between herds

are observed over 3.2 million iteration outputs, maintaining this pairwise probability with the

DTN reduces the number of I/O accesses (encompassing both disk and network I/O) to the

dataset significantly.

(2) How is the influence of each premise measured? The PageRank algorithm was leveraged

to estimate the influence of each herd in the DTN. The PageRank value associated with a

premise represents the probability that it contributes to a random infection chain. The results of
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this study indicate that the premises with higher influential value tend to have super-spreading

characteristics.

(3) How is the analysis achieved at scale in the least time? The analysis was performed

on an environment that consisted of the reliable and fault tolerant distributed file system,

HDFS, and an extended version of a distributed in-memory graph-parallel system, Apache

Spark GraphX. The performance of GraphX is enhanced by extending the EdgePartition2D

graph-partitioning strategy such that the extension reduces the upper bound on mean vertex

replication factor by one, hence minimizes the overall execution time.

As part of future work, the DTN can be extended to accommodate other features such as types

of herds, time-related information, and verifying the quality of influence measures. Moreover, the

graph-parallel system can be further extended to employ a graph-partitioning strategy specifically

designed for the updated version of the DTN. In addition to that, the support for incremental

PageRank algorithm can be added such that any impacts on the relative influence measure resulting

from changes in the DTN can be accommodated in real-time.
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